Source Rock Evaluation, Petroleum Systems Modeling, and oil-oil correlation in the southern part of Iran
Research output: Thesis › Doctoral Thesis
Standard
2012. 233 p.
Research output: Thesis › Doctoral Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - BOOK
T1 - Source Rock Evaluation, Petroleum Systems Modeling, and oil-oil correlation in the southern part of Iran
AU - Fathi Mobarakabad, Afshin
N1 - embargoed until null
PY - 2012
Y1 - 2012
N2 - The study area is located in the northern part of the Arabian Plate and includes the the Persian Gulf Basin and the Zagros Simply Folded Belt. The latter is subdivided from NW to SE into the Lurestan, Dezful Embayment, Fars and Bandar Abbas provinces. In the Zagros Simply Folded Belt of Iran and in its contiguous offshore, five petroleum systems caused an impressive accumulation of oil and gas fields that represent some 8 % and 15 % of global oil and gas reserves, respectively. The main study aims are to characterize potential source rocks, to establish 1D petroleum systems models, and to perform oil-oil and oil-source rock correlations. Source rocks have been evaluated in the Dezful Embayment, the Persian Gulf Basin and the Bandas Abbas Province. In the Dezful Embayment the main source rocks for oil are the Kazhdumi and Pabdeh formations containing kerogen type II. Both formations are within the oil window. None of the formations which host source rocks in the Zagros Simply Folded Belt shows source rock characteristics in the Persian Gulf Basin. “Hot shales” at the base of the Silurian Sarchahan Formation, the likely source for gas in the area, was not yet drilled in the Persian Gulf Basin. However, outcrops in the Bandar Abbas Province with overmature Sarchahan Formation support its high organic-matter content. 1D models of 17 wells suggest that Neogene heat flow varied laterally from 47 to 85 mW/m². Present-day heat flow varies generally between 46 to 65 mW/m². Only the Aghar well (Fars Province) is characterized by a present-day heat flow of only 40 mW/m². Models from wells in the Dezful Embayment support earlier ideas of minor Neogene erosion. However, erosion of sediments up to 2000 m thick was reconstructed for wells located in the Fars Province. Main hydrocarbon generation typically started during Neogene time, although Paleogene generation is possible in some parts of the study area. Biomarker- and compound-specific carbon isotope analyses were used to compare oil samples recovered from Jurassic and Cretaceous reservoirs at South Pars and nearby fields in the Iranian portion of the Persian Gulf, and condensate samples associated with the giant gas accumulation in Permo-Triassic reservoirs at South Pars. The results indicate that all of the oil samples, including heavy oil from South Pars are genetically related. The most probable source rocks for these oils are Jurassic limestones or marls deposited under anoxic conditions. A source rock maturity of about 0.8% vitrinite refelctance was inferred. The distribution and maturity pattern of the source rocks suggest migration from a depocentre located to the south, with inferred migration distances of up to 250 km. There is no genetic relationship between the heavy oil in Mesozoic reservoirs at South Pars and condensates in Permo-Triassic reservoirs there. Based on biomarker compositions, the condensates (and the associated gas) at South Pars appear to be derived from Silurian source rocks. High thermal maturities equivalent to 1.7% are also consistent with a Silurian source rock.
AB - The study area is located in the northern part of the Arabian Plate and includes the the Persian Gulf Basin and the Zagros Simply Folded Belt. The latter is subdivided from NW to SE into the Lurestan, Dezful Embayment, Fars and Bandar Abbas provinces. In the Zagros Simply Folded Belt of Iran and in its contiguous offshore, five petroleum systems caused an impressive accumulation of oil and gas fields that represent some 8 % and 15 % of global oil and gas reserves, respectively. The main study aims are to characterize potential source rocks, to establish 1D petroleum systems models, and to perform oil-oil and oil-source rock correlations. Source rocks have been evaluated in the Dezful Embayment, the Persian Gulf Basin and the Bandas Abbas Province. In the Dezful Embayment the main source rocks for oil are the Kazhdumi and Pabdeh formations containing kerogen type II. Both formations are within the oil window. None of the formations which host source rocks in the Zagros Simply Folded Belt shows source rock characteristics in the Persian Gulf Basin. “Hot shales” at the base of the Silurian Sarchahan Formation, the likely source for gas in the area, was not yet drilled in the Persian Gulf Basin. However, outcrops in the Bandar Abbas Province with overmature Sarchahan Formation support its high organic-matter content. 1D models of 17 wells suggest that Neogene heat flow varied laterally from 47 to 85 mW/m². Present-day heat flow varies generally between 46 to 65 mW/m². Only the Aghar well (Fars Province) is characterized by a present-day heat flow of only 40 mW/m². Models from wells in the Dezful Embayment support earlier ideas of minor Neogene erosion. However, erosion of sediments up to 2000 m thick was reconstructed for wells located in the Fars Province. Main hydrocarbon generation typically started during Neogene time, although Paleogene generation is possible in some parts of the study area. Biomarker- and compound-specific carbon isotope analyses were used to compare oil samples recovered from Jurassic and Cretaceous reservoirs at South Pars and nearby fields in the Iranian portion of the Persian Gulf, and condensate samples associated with the giant gas accumulation in Permo-Triassic reservoirs at South Pars. The results indicate that all of the oil samples, including heavy oil from South Pars are genetically related. The most probable source rocks for these oils are Jurassic limestones or marls deposited under anoxic conditions. A source rock maturity of about 0.8% vitrinite refelctance was inferred. The distribution and maturity pattern of the source rocks suggest migration from a depocentre located to the south, with inferred migration distances of up to 250 km. There is no genetic relationship between the heavy oil in Mesozoic reservoirs at South Pars and condensates in Permo-Triassic reservoirs there. Based on biomarker compositions, the condensates (and the associated gas) at South Pars appear to be derived from Silurian source rocks. High thermal maturities equivalent to 1.7% are also consistent with a Silurian source rock.
KW - Iran
KW - Arabian Plate
KW - Persian Gulf Basin
KW - Zagros Simply Folded Belt
KW - source rock
KW - petroleum system modeling
KW - oil-oil correlation
KW - Iran
KW - Arabische Platte
KW - Persischer Golf
KW - Zagros Faltengürtel
KW - Muttergestein
KW - Kohlenwasserstoffsystem
KW - Modellierung
KW - Öl-Öl Korrelation
M3 - Doctoral Thesis
ER -