Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Macromolecular materials and engineering, Jahrgang 12, 14.04.2018, S. 1800037.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing
AU - Kaynak, Baris
AU - Spörk, Martin
AU - Shirole, Anuja
AU - Ziegler, Wolfgang
AU - Sapkota, Janak
PY - 2018/4/14
Y1 - 2018/4/14
N2 - The preparation of polypropylene (PP)/microcrystalline cellulose (MCC) composites and their applicability for material extrusion additive manufacturing (ME-AM) is reported. MCC is modified by grafting onto its surface with different silanes, in particular perfluorooctyltriethoxysilane, n-octyltriethoxysilane (OTS), or aminopropyltriethoxysilane. The efficacy of the surface modification is confirmed by attenuated total reflectance and X-ray photoelectron spectroscopy. The affinity of the modified MCC to the polar PP matrix is investigated by direct melt-compounding, and the applicability of the resulting composites for material ME-AM is accessed by fabrication of filaments and evaluating the relevant property requirements. The surface modification of the MCC improves their dispersibility in PP and enhances the mechanical properties of the composites. Moreover, the OTS-modified MCC shows the best reinforcement, good surface finish of the filament, and flawless printability.
AB - The preparation of polypropylene (PP)/microcrystalline cellulose (MCC) composites and their applicability for material extrusion additive manufacturing (ME-AM) is reported. MCC is modified by grafting onto its surface with different silanes, in particular perfluorooctyltriethoxysilane, n-octyltriethoxysilane (OTS), or aminopropyltriethoxysilane. The efficacy of the surface modification is confirmed by attenuated total reflectance and X-ray photoelectron spectroscopy. The affinity of the modified MCC to the polar PP matrix is investigated by direct melt-compounding, and the applicability of the resulting composites for material ME-AM is accessed by fabrication of filaments and evaluating the relevant property requirements. The surface modification of the MCC improves their dispersibility in PP and enhances the mechanical properties of the composites. Moreover, the OTS-modified MCC shows the best reinforcement, good surface finish of the filament, and flawless printability.
M3 - Article
VL - 12
SP - 1800037
JO - Macromolecular materials and engineering
JF - Macromolecular materials and engineering
SN - 1438-7492
ER -