Multilayer Design for Increased Toughness of CrN-based Coatings
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Dissertation
Standard
2012. 71 S.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Dissertation
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - BOOK
T1 - Multilayer Design for Increased Toughness of CrN-based Coatings
AU - Schlögl, Manfred
N1 - embargoed until null
PY - 2012
Y1 - 2012
N2 - Ceramic-like coatings are widely used for various industrial applications because of their outstanding properties like high thermal stability, oxidation resistance and abrasion resistance. Particularly, transition metal nitrides, such as CrN are well known and investigated with respect to their microstructure, morphology, thermal and mechanical properties. Due to the demand of versatile requirements smart architectural designs such as nanocomposite and multilayers become more important during the last decades. This study focuses on the structural, mechanical and thermal properties of CrN/AlN multilayer coatings. The influence of the individual layer thickness is investigated by preparing multilayer coatings composed of 1, 2 and 3 nm thin AlN layers and CrN layers with thicknesses ranging from 1 to 10 nm. Based on X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) it can be concluded that a fully stabilization of the AlN layers in their metastable cubic structure can be achieved up to layer thicknesses of 3 nm with the condition that the CrN layers need to be at least as thick as the AlN layers. Otherwise the AlN layers crystallize also in their stable ZnS wurtzite type structure. The superlattice coatings exhibit a characteristic hardness profile as a function of the bilayer period Λ with a pronounced hardness maximum of 31 and 28 GPa. Highest thermal stability for these superlattice coatings is obtained when the columnar growth is inhibited. Further investigations concentrate on the influence of AlN layers in their metastable cubic structure and stable wurtzite structure on the columnar growth of CrN-based multilayers and the resulting mechanical and thermal properties. Therefore, multilayer coatings were developed composed of 3 or 10 nm thin AlN layers and combined with ~100 nm thin CrN, CrAlN, or CrAlYN layers. The study clearly demonstrates improved mechanical and thermal properties for coatings composed of 10 nm thin AlN layers. If the AlN layers are thicker than 3 nm, coherency strains to the CrN, CrAlN, or CrAlYN layers are too weak to allow for a fully coherent cubic stabilization. Hence, they tend to crystallize in their stable wurtzite structure and thereby inhibit a pronounced columnar growth structure. The brittleness of ceramic-like coatings often negatively influences their performance especially when used in conditions with an increased need for crack resistance. Therefore, the influence of AlN layers (in their metastable cubic or hexagonal structure) on the fracture behavior of ceramic-like CrN/AlN multilayers is investigated. In-situ micro-compression, bending and tensile tests were conducted for such multilayers and compared to monolithic CrN. The study clearly demonstrates crack deflection, crack arrest and crack stop mechanisms for the fully cubic stabilized CrN/AlN multilayer coating and highest fracture stress which can be attributed to a strain induced phase transformation of the metastable cubic to the stable wurtzite AlN phase. In contrast CrN/AlN multilayers with mixed cubic/wurtzite structured AlN layers showed no crack deflection and lowest fracture stresses. The study shows extensive in-situ fracture tests in a micro-scaled range providing necessary information on the fracture behavior of hard coatings.
AB - Ceramic-like coatings are widely used for various industrial applications because of their outstanding properties like high thermal stability, oxidation resistance and abrasion resistance. Particularly, transition metal nitrides, such as CrN are well known and investigated with respect to their microstructure, morphology, thermal and mechanical properties. Due to the demand of versatile requirements smart architectural designs such as nanocomposite and multilayers become more important during the last decades. This study focuses on the structural, mechanical and thermal properties of CrN/AlN multilayer coatings. The influence of the individual layer thickness is investigated by preparing multilayer coatings composed of 1, 2 and 3 nm thin AlN layers and CrN layers with thicknesses ranging from 1 to 10 nm. Based on X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) it can be concluded that a fully stabilization of the AlN layers in their metastable cubic structure can be achieved up to layer thicknesses of 3 nm with the condition that the CrN layers need to be at least as thick as the AlN layers. Otherwise the AlN layers crystallize also in their stable ZnS wurtzite type structure. The superlattice coatings exhibit a characteristic hardness profile as a function of the bilayer period Λ with a pronounced hardness maximum of 31 and 28 GPa. Highest thermal stability for these superlattice coatings is obtained when the columnar growth is inhibited. Further investigations concentrate on the influence of AlN layers in their metastable cubic structure and stable wurtzite structure on the columnar growth of CrN-based multilayers and the resulting mechanical and thermal properties. Therefore, multilayer coatings were developed composed of 3 or 10 nm thin AlN layers and combined with ~100 nm thin CrN, CrAlN, or CrAlYN layers. The study clearly demonstrates improved mechanical and thermal properties for coatings composed of 10 nm thin AlN layers. If the AlN layers are thicker than 3 nm, coherency strains to the CrN, CrAlN, or CrAlYN layers are too weak to allow for a fully coherent cubic stabilization. Hence, they tend to crystallize in their stable wurtzite structure and thereby inhibit a pronounced columnar growth structure. The brittleness of ceramic-like coatings often negatively influences their performance especially when used in conditions with an increased need for crack resistance. Therefore, the influence of AlN layers (in their metastable cubic or hexagonal structure) on the fracture behavior of ceramic-like CrN/AlN multilayers is investigated. In-situ micro-compression, bending and tensile tests were conducted for such multilayers and compared to monolithic CrN. The study clearly demonstrates crack deflection, crack arrest and crack stop mechanisms for the fully cubic stabilized CrN/AlN multilayer coating and highest fracture stress which can be attributed to a strain induced phase transformation of the metastable cubic to the stable wurtzite AlN phase. In contrast CrN/AlN multilayers with mixed cubic/wurtzite structured AlN layers showed no crack deflection and lowest fracture stresses. The study shows extensive in-situ fracture tests in a micro-scaled range providing necessary information on the fracture behavior of hard coatings.
KW - multilayer
KW - crack
KW - toughness
KW - CrN
KW - AlN
KW - compression test
KW - tensile test
KW - bending test
KW - in-situ fracture test
M3 - Doctoral Thesis
ER -