Mikrostrukturbasierte Simulation der Eigenspannungsverteilung in wärmebehandelten Turbinenscheiben aus INCONEL718
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Dissertation
Standard
2018.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Dissertation
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - BOOK
T1 - Mikrostrukturbasierte Simulation der Eigenspannungsverteilung in wärmebehandelten Turbinenscheiben aus INCONEL718
AU - Drexler, Andreas Karl
N1 - gesperrt bis 03-05-2023
PY - 2018
Y1 - 2018
N2 - Eine verbesserte Dimensionierung von Turbinenscheiben aus INCONEL718 führt zur Emissionsreduktion künftiger Triebwerke. Um dies bewerkstelligen zu können, müssen die Eigenspannungsfelder aus dem Herstellungsprozess in der Auslegung mitberücksichtigt werden. Der Herstellungsprozess setzt sich aus dem Schmieden, der Wärmebehandlung und der Oberflächenbearbeitung auf Endkontur zusammen. Der gesamte Prozess umfasst einen Temperaturbereich von ca. 1000 °C, in welchem sich die Ausscheidungsverfestigung stetig verändert. Für die Beschreibung der Ausscheidungsentwicklung wurde ein thermokinetisches Modell auf Basis von umfangreichen experimentellen Untersuchungen parametrisiert und validiert. Ein semi-empirisches Kriechgesetz wurde hergeleitet, welches den Einfluss der Ausscheidungsverfestigung auf die sekundären Kriechraten berücksichtigt. Unter Verwendung des mikrostrukturbasierten konstitutiven Modells und einer akkuraten Temperaturfeldsimulation konnten die Eigenspannungen mit einer Genauigkeit von ± 50 MPa simuliert werden. Die Validierung erfolgte mit Hilfe der Bohrlochmethode und der Neutronendiffraktion. Die Integration des verbesserten Modells in den Auslegungsprozess von Turbinenscheiben ermöglicht die Berücksichtigung des Herstellungsprozesses und damit der Eigenspannungen.
AB - Eine verbesserte Dimensionierung von Turbinenscheiben aus INCONEL718 führt zur Emissionsreduktion künftiger Triebwerke. Um dies bewerkstelligen zu können, müssen die Eigenspannungsfelder aus dem Herstellungsprozess in der Auslegung mitberücksichtigt werden. Der Herstellungsprozess setzt sich aus dem Schmieden, der Wärmebehandlung und der Oberflächenbearbeitung auf Endkontur zusammen. Der gesamte Prozess umfasst einen Temperaturbereich von ca. 1000 °C, in welchem sich die Ausscheidungsverfestigung stetig verändert. Für die Beschreibung der Ausscheidungsentwicklung wurde ein thermokinetisches Modell auf Basis von umfangreichen experimentellen Untersuchungen parametrisiert und validiert. Ein semi-empirisches Kriechgesetz wurde hergeleitet, welches den Einfluss der Ausscheidungsverfestigung auf die sekundären Kriechraten berücksichtigt. Unter Verwendung des mikrostrukturbasierten konstitutiven Modells und einer akkuraten Temperaturfeldsimulation konnten die Eigenspannungen mit einer Genauigkeit von ± 50 MPa simuliert werden. Die Validierung erfolgte mit Hilfe der Bohrlochmethode und der Neutronendiffraktion. Die Integration des verbesserten Modells in den Auslegungsprozess von Turbinenscheiben ermöglicht die Berücksichtigung des Herstellungsprozesses und damit der Eigenspannungen.
KW - residual stresses
KW - turbine discs
KW - Inconel 718
KW - thermo-kinetic modelling
KW - multiphysics simulations
KW - constitutive modelling
KW - Inconel718
KW - Mikrostruktur
KW - Eigenspannung
KW - Wärmebehandlung
KW - Materialmodellierung
M3 - Dissertation
ER -