Funktionalisierung polymerer Phasenwechselmaterialien
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Standard
2019.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Funktionalisierung polymerer Phasenwechselmaterialien
AU - Strommer, Bettina
N1 - gesperrt bis null
PY - 2019
Y1 - 2019
N2 - Die vorliegende Arbeit befasste sich mit der Entwicklung von polymeren Phasenwechselmaterialien (PCM) mit zwei Speichertemperaturen und deren Charakterisierung hinsichtlich anwendungsrelevanter thermo-physikalischer Eigenschaften. Hierzu wurden unterschiedliche Mischungen jeweils von Polypropylen (PP) bzw. von Polyethylen hoher Dichte (HDPE, zwei Typen) mit einem Paraffin (70:30 bzw. 50:50 gew.%), sowie von einem HDPE mit einem weiteren Polymer (Polyethylenglykol (PEG), lineares Polyethylen niedriger Dichte (LLDPE) und Polyamid 6 (PA6); 50:50 gew.%) erzeugt. Die verwendeten Mischungsarten waren Compounds (in einem Doppelschneckenextruder ineinander dispergiert), statistische Mischungen (händisches Vermischen von Granulaten) und Schichtenmischungen (Aufbau von Granulatschichten). Diese wurden in Mengen zwischen 100 und 200 g in einem Glasprüfgefäß bei Temperaturen von mind. 20 °C über der Schmelztemperatur der höherschmelzenden Komponente für bis zu 1440 h in Luftatmosphäre statisch ausgelagert. In bestimmten Zeitintervallen erfolgten Untersuchungen zur Durch- bzw. Entmischung, der thermo-oxidativen Stabilität sowie der Speicherkapazität der Materialmischungen mit dem Ziel ihre prinzipielle Eignung als PCM zu beurteilen. Die untersuchten PP-Paraffin Mischungen zeigten eine unzureichende thermo-oxidative Stabilität. Generell erwies sich PP als ungeeignet für die Anwendung als PCM. HDPE-Paraffin bzw. HDPE-Polymer Mischungen erwiesen sich hingegen als sehr gut geeignet für die Anwendung als PCM. Die Speicherkapazitäten dieser Materialien blieben im Untersuchungszeitraum weitgehend konstant. Im Zuge der Auslagerung bildete sich zunächst eine thermo-oxidativ degradierte Oberflächenschicht, die den Prüfkörper versiegelte und in der Folge einen – sofern aufgetretenen, weiteren – Materialabbau im Prüfkörperinneren bzw. ein Fortschreiten des Materialabbaus ins Probeninnere verhinderte. Bei HDPE-Paraffin Mischungen (Speicherkapazität 100-102 J/g für 50:50 gew.% bzw. 61 J/g für 70:30 gew.% bei 86°C sowie 110 J/g für 50:50 gew.% bzw. 153 J/g für 70:30 gew.% bei 136 °C – die Schmelzpeaks überlappen jedoch), bei denen es im Zuge der Auslagerung in keinem Fall zu einer Phasensegregation kam, war der Zeitpunkt der Bildung der Oberflächenschicht von der Mischungsart abhängig: während die schützende Oberflächenschicht bei den Compounds bereits nach 160h Auslagerungszeit deutlich ausgeprägt war, trat diese bei den statistischen Mischungen erst nach einer Auslagerungszeit von etwa 300h auf. Dieser Effekt korrelierte mit der Nullviskosität der Materialien. Bei HDPE-LLDPE Mischungen kam es während der Auslagerung zu einer teilweisen Phasensegregation, wobei dieses polymere PCM generell einen breiten Speichertemperaturbereich mit zwei Schmelzpeaks – dominanter Peak abhängig von der jeweiligen lokalen Mischungszusammensetzung – zeigte. Die Speicherkapazität lag zwischen 136-154 J/g bei 128 °C und zwischen 155-184 J/g bei 133 °C. Die HDPE-PEG Mischungen (Speicherkapazität 78 J/g bei 66 °C sowie 110 J/g bei 135 °C) und HDPE-PA6 Mischungen (Speicherkapazität 107 J/g bei 135°C sowie 33 J/g bei 220 °C) bildeten während der Auslagerung jeweils zwei klar getrennte Phasen, wobei das Polymer mit der geringeren Dichte die obere Schicht bildete. Durch die hohe Auslagerungstemperatur bei den HDPE-PA6 Mischungen hat sich die Speicherkapazität bei beiden Materialien im Probeninneren nach einer Auslagerungszeit von 240h um 9% (HDPE) und 6% (PA6) reduziert. Anschließend kam es zu keinen weiteren Änderungen der anwendungsrelevanten Eigenschaften.
AB - Die vorliegende Arbeit befasste sich mit der Entwicklung von polymeren Phasenwechselmaterialien (PCM) mit zwei Speichertemperaturen und deren Charakterisierung hinsichtlich anwendungsrelevanter thermo-physikalischer Eigenschaften. Hierzu wurden unterschiedliche Mischungen jeweils von Polypropylen (PP) bzw. von Polyethylen hoher Dichte (HDPE, zwei Typen) mit einem Paraffin (70:30 bzw. 50:50 gew.%), sowie von einem HDPE mit einem weiteren Polymer (Polyethylenglykol (PEG), lineares Polyethylen niedriger Dichte (LLDPE) und Polyamid 6 (PA6); 50:50 gew.%) erzeugt. Die verwendeten Mischungsarten waren Compounds (in einem Doppelschneckenextruder ineinander dispergiert), statistische Mischungen (händisches Vermischen von Granulaten) und Schichtenmischungen (Aufbau von Granulatschichten). Diese wurden in Mengen zwischen 100 und 200 g in einem Glasprüfgefäß bei Temperaturen von mind. 20 °C über der Schmelztemperatur der höherschmelzenden Komponente für bis zu 1440 h in Luftatmosphäre statisch ausgelagert. In bestimmten Zeitintervallen erfolgten Untersuchungen zur Durch- bzw. Entmischung, der thermo-oxidativen Stabilität sowie der Speicherkapazität der Materialmischungen mit dem Ziel ihre prinzipielle Eignung als PCM zu beurteilen. Die untersuchten PP-Paraffin Mischungen zeigten eine unzureichende thermo-oxidative Stabilität. Generell erwies sich PP als ungeeignet für die Anwendung als PCM. HDPE-Paraffin bzw. HDPE-Polymer Mischungen erwiesen sich hingegen als sehr gut geeignet für die Anwendung als PCM. Die Speicherkapazitäten dieser Materialien blieben im Untersuchungszeitraum weitgehend konstant. Im Zuge der Auslagerung bildete sich zunächst eine thermo-oxidativ degradierte Oberflächenschicht, die den Prüfkörper versiegelte und in der Folge einen – sofern aufgetretenen, weiteren – Materialabbau im Prüfkörperinneren bzw. ein Fortschreiten des Materialabbaus ins Probeninnere verhinderte. Bei HDPE-Paraffin Mischungen (Speicherkapazität 100-102 J/g für 50:50 gew.% bzw. 61 J/g für 70:30 gew.% bei 86°C sowie 110 J/g für 50:50 gew.% bzw. 153 J/g für 70:30 gew.% bei 136 °C – die Schmelzpeaks überlappen jedoch), bei denen es im Zuge der Auslagerung in keinem Fall zu einer Phasensegregation kam, war der Zeitpunkt der Bildung der Oberflächenschicht von der Mischungsart abhängig: während die schützende Oberflächenschicht bei den Compounds bereits nach 160h Auslagerungszeit deutlich ausgeprägt war, trat diese bei den statistischen Mischungen erst nach einer Auslagerungszeit von etwa 300h auf. Dieser Effekt korrelierte mit der Nullviskosität der Materialien. Bei HDPE-LLDPE Mischungen kam es während der Auslagerung zu einer teilweisen Phasensegregation, wobei dieses polymere PCM generell einen breiten Speichertemperaturbereich mit zwei Schmelzpeaks – dominanter Peak abhängig von der jeweiligen lokalen Mischungszusammensetzung – zeigte. Die Speicherkapazität lag zwischen 136-154 J/g bei 128 °C und zwischen 155-184 J/g bei 133 °C. Die HDPE-PEG Mischungen (Speicherkapazität 78 J/g bei 66 °C sowie 110 J/g bei 135 °C) und HDPE-PA6 Mischungen (Speicherkapazität 107 J/g bei 135°C sowie 33 J/g bei 220 °C) bildeten während der Auslagerung jeweils zwei klar getrennte Phasen, wobei das Polymer mit der geringeren Dichte die obere Schicht bildete. Durch die hohe Auslagerungstemperatur bei den HDPE-PA6 Mischungen hat sich die Speicherkapazität bei beiden Materialien im Probeninneren nach einer Auslagerungszeit von 240h um 9% (HDPE) und 6% (PA6) reduziert. Anschließend kam es zu keinen weiteren Änderungen der anwendungsrelevanten Eigenschaften.
KW - Latentwärmespeicher
KW - Phasenwechselmaterial
KW - PCM
KW - Polymerblend
KW - Polyethylen
KW - HDPE
KW - LLDPE
KW - Polypropylen
KW - PP
KW - Paraffin
KW - Paraffinwachs
KW - Polyethylenglykol
KW - PEG
KW - Polyamid
KW - PA6
KW - Latent Heat Storage
KW - Phase Change Material
KW - PCM
KW - Polymerblend
KW - Polyethylene
KW - HDPE
KW - LLDPE
KW - Polypropylene
KW - PP
KW - Paraffin
KW - Paraffin Wax
KW - Polyethyleneglycol
KW - PEG
KW - Polyamide
KW - PA6
M3 - Masterarbeit
ER -