A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Standard

A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic. / Gradwohl, Christopher; Dimitrievska, Vesna; Pittino, Federico et al.
in: Energies, Jahrgang 14.2021, Nr. 5, 1261, 25.02.2021.

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Harvard

Gradwohl, C, Dimitrievska, V, Pittino, F, Muehleisen, W, Montvay, A, Langmayr, F & Kienberger, T 2021, 'A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic', Energies, Jg. 14.2021, Nr. 5, 1261. https://doi.org/10.3390/en14051261

APA

Gradwohl, C., Dimitrievska, V., Pittino, F., Muehleisen, W., Montvay, A., Langmayr, F., & Kienberger, T. (2021). A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic. Energies, 14.2021(5), Artikel 1261. https://doi.org/10.3390/en14051261

Vancouver

Gradwohl C, Dimitrievska V, Pittino F, Muehleisen W, Montvay A, Langmayr F et al. A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic. Energies. 2021 Feb 25;14.2021(5):1261. doi: 10.3390/en14051261

Author

Gradwohl, Christopher ; Dimitrievska, Vesna ; Pittino, Federico et al. / A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic. in: Energies. 2021 ; Jahrgang 14.2021, Nr. 5.

Bibtex - Download

@article{839fa23d55d146248447458e2877da7c,
title = "A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic",
abstract = "Photovoltaic (PV) technology allows large-scale investments in a renewable power-generating system at a competitive levelized cost of electricity (LCOE) and with a low environmental impact. Large-scale PV installations operate in a highly competitive market environment where even small performance losses have a high impact on profit margins. Therefore, operation at maximum performance is the key for long-term profitability. This can be achieved by advanced performance monitoring and instant or gradual failure detection methodologies. We present in this paper a combined approach on model-based fault detection by means of physical and statistical models and failure diagnosis based on physics of failure. Both approaches contribute to optimized PV plant operation and maintenance based on typically available supervisory control and data acquisition (SCADA) data. The failure detection and diagnosis capabilities were demonstrated in a case study based on six years of SCADA data from a PV plant in Slovenia. In this case study, underperforming values of the inverters of the PV plant were reliably detected and possible root causes were identified. Our work has led us to conclude that the combined approach can contribute to an efficient and long-term operation of photovoltaic power plants with a maximum energy yield and can be applied to the monitoring of photovoltaic plants. ",
keywords = "PV system, failure detection, failure diagnostic, operation and maintenance, predictive- and reliability-based maintenance, model-based state detection;, physical model, one-diode model, statistical model, virtual sensors",
author = "Christopher Gradwohl and Vesna Dimitrievska and Federico Pittino and Wolfgang Muehleisen and Andr{\'a}s Montvay and Franz Langmayr and Thomas Kienberger",
year = "2021",
month = feb,
day = "25",
doi = "10.3390/en14051261",
language = "English",
volume = "14.2021",
journal = "Energies",
issn = "1996-1073",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "5",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic

AU - Gradwohl, Christopher

AU - Dimitrievska, Vesna

AU - Pittino, Federico

AU - Muehleisen, Wolfgang

AU - Montvay, András

AU - Langmayr, Franz

AU - Kienberger, Thomas

PY - 2021/2/25

Y1 - 2021/2/25

N2 - Photovoltaic (PV) technology allows large-scale investments in a renewable power-generating system at a competitive levelized cost of electricity (LCOE) and with a low environmental impact. Large-scale PV installations operate in a highly competitive market environment where even small performance losses have a high impact on profit margins. Therefore, operation at maximum performance is the key for long-term profitability. This can be achieved by advanced performance monitoring and instant or gradual failure detection methodologies. We present in this paper a combined approach on model-based fault detection by means of physical and statistical models and failure diagnosis based on physics of failure. Both approaches contribute to optimized PV plant operation and maintenance based on typically available supervisory control and data acquisition (SCADA) data. The failure detection and diagnosis capabilities were demonstrated in a case study based on six years of SCADA data from a PV plant in Slovenia. In this case study, underperforming values of the inverters of the PV plant were reliably detected and possible root causes were identified. Our work has led us to conclude that the combined approach can contribute to an efficient and long-term operation of photovoltaic power plants with a maximum energy yield and can be applied to the monitoring of photovoltaic plants.

AB - Photovoltaic (PV) technology allows large-scale investments in a renewable power-generating system at a competitive levelized cost of electricity (LCOE) and with a low environmental impact. Large-scale PV installations operate in a highly competitive market environment where even small performance losses have a high impact on profit margins. Therefore, operation at maximum performance is the key for long-term profitability. This can be achieved by advanced performance monitoring and instant or gradual failure detection methodologies. We present in this paper a combined approach on model-based fault detection by means of physical and statistical models and failure diagnosis based on physics of failure. Both approaches contribute to optimized PV plant operation and maintenance based on typically available supervisory control and data acquisition (SCADA) data. The failure detection and diagnosis capabilities were demonstrated in a case study based on six years of SCADA data from a PV plant in Slovenia. In this case study, underperforming values of the inverters of the PV plant were reliably detected and possible root causes were identified. Our work has led us to conclude that the combined approach can contribute to an efficient and long-term operation of photovoltaic power plants with a maximum energy yield and can be applied to the monitoring of photovoltaic plants.

KW - PV system

KW - failure detection

KW - failure diagnostic

KW - operation and maintenance

KW - predictive- and reliability-based maintenance

KW - model-based state detection;

KW - physical model

KW - one-diode model

KW - statistical model

KW - virtual sensors

U2 - 10.3390/en14051261

DO - 10.3390/en14051261

M3 - Article

VL - 14.2021

JO - Energies

JF - Energies

SN - 1996-1073

IS - 5

M1 - 1261

ER -