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Abstract. Several sensor measurements collected from drilling rig during oil well drilling process. These measurements carry
information not only about operational states of drilling rig but also about all high-level operations and activities performed by
drilling crew. The work presented in this paper shed the light on analysis of hidden lost time in drilling process through automatic
detection and classification of drilling operations.

This paper develops a novel algorithm for detecting drilling events and operations in sensor data of drilling rig. Expectation
Maximization EM and Piecewise Linear Approximation PLA algorithms applied for detecting drilling events. The Expectation
Maximization algorithm performs high-level segmentation on hook-load sensor data. In addition, Piecewise Linear Approxima-
tion algorithm slices standpipe pressure; pump flow rate; rotational speed and torque of top drive motor into labeled segments
(low-level segmentation). Merging results from both Expectation Maximization and Piecewise Linear Approximation gives the
suggested algorithm ability to detect all drilling events and activities performed by drilling rig and crew. Moreover, this paper
shows the usage of discrete orthonormal basis functions (Gram basis) as a tool to classify drilling operations from detected seg-
ments in drilling time series. The classification process performed in cooperation with the concept of Patterns Templates Base.
The optimal polynomial degree to represent drilling operations has been concluded through analysis of polynomial spectrum of
each drilling operation.

Keywords: Drilling operations, gram polynomials, Expectation Maximization, Piecewise Linear Approximation, orthonormal
basis functions

1. Introduction Automatic detection of drilling events and opera-
tions considered as an urgent need in the drilling in-
Improving performance of drilling process is a big dustry. Detecting these events gives services of drilling

data analysis more aptitude to examine all actions
performed by the drilling crew at the rig site [8].
Furthermore, automatic detection also provides essen-
tial mechanisms to judge the performance of drilling
machinery. Moreover, this leads to the possibility to
perform sequence mining and analysis on particular
drilling process sections.

Usually sensors measurements collected during the
whole drilling process. Such measurements used by
drilling engineers and drilling crews to monitor the
drilling process by action/response models [2]. For ex-
ample, any change in the hydraulic flow rate parame-

*Corresponding author: Arghad Arnaout, Institute for Automa- ter causes a response in the pump pressure. ,leeWISe’
tion, University of Loeben, Leoben, Austria. E-mail: Arghad @stud. torque measurements observed through altering the ro-
unileoben.ac.at. tational speed of the drill string.

challenge in nowadays drilling industry. To improve
drilling performance, we need first to measure it [8].
Performance measurement means determining quan-
titative values or weights that describe each drilling
operation and complete drilling process as resultant.
For example, duration of each drilling operation con-
sidered as a useful measure. In addition, number of
drilling operations and distributions of those opera-
tions over different well drilling phases are important
measures of drilling performance.
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Through drilling process, a huge amount of data
in form of sensors measurements produced over time.
This data contains not only readings of sensors but also
information about each drilling operation i.e. start, end,
and behavior of each equipment. Drilling operations
such as formations drilling, making connection for new
drillstand, breaking connection, pulling out of hole,
running in hole, and cleaning hole are carefully cho-
sen as basic drilling operations performed by drilling
crew [6]. Each of those drilling operation has a specific
pattern in rig sensors measurements [1].

The cyclic nature of drilling processes exposes spe-
cific patterns for each drilling activity or event in sen-
sor measurements. Furthermore, each time series of
sensor data has specific statistical distribution. These
distributions look very similar in almost all similar-
type drilling rigs (offshore or land rigs). This gives the
drilling process a similarity property [1,2]. Here we
can find a big chance to generalize our findings and
analyses.

Expectation Maximization (EM) is a powerful tool
to estimate the parameters of Gaussian distributions in
the data. EM has ability to discriminate data into clus-
ters if this data have the nature of Gaussian mixture
models. EM provides the possibility to find and de-
scribe main clusters in the data by estimating descrip-
tion parameters of each cluster. Segmenting of data
based on a cluster will be a minor task if the parameters
are estimated [3]. The Expectation Maximization algo-
rithm considered with stable performance in data with
less amount of noise [4]. Piecewise Linear Approxi-
mation (PLA) is another important tool for time series
segmentation. Usually PLA used to approximate main
sections in time series. PLA has no tolerance to data
with low value of signal to noise ratio, but it applied to
data with a limited S/N ratio [5].

Patterns recognition using discrete polynomial mo-
ments as features to classify the data is a nowadays
trend in patterns recognition domain. Most of the stud-
ies in this area perform detection of patterns after cal-
culating polynomial moments from data. The calcu-
lated coefficients called features. These features con-
sidered as descriptors of pre-defined templates in the
data. Those templates extracted during learning phase.
Then the templates and calculated features used to
classify unknown data and assign classes to it [9].

Detecting drilling operations patterns in sensors data
supports rig operators in finding out the state of drilling
rig instantly. At the end of the day, it gives detailed
information on rig state over any span of time [8].
Therefore, rig’s operator can easily observe operating
time of drilling rig and how actual drilling performance
matches with pre-defined well plan.

2. Contribution

The contribution of this paper outlined as follows:

1. Automatic detection of different drilling events
and operations;

2. Show how prior-knowledge on drilling process
affects all suggested algorithms;

3. Hiring Expectation Maximization algorithm as
core algorithm for high-level segmentation of
hookload sensor data;

4. Piecewise Linear Approximation algorithm ap-
plied as low-level segmentation of Block Position
sensor data;

5. Combine two algorithms (EM and PLA) to ac-
complish multi-level drilling time series segmen-
tation;

6. Using discrete polynomial moments (Gram ba-
sis functions) as descriptors of drilling operations
templates;

7. Suggest weighted similarity distance based on
Mahalanobis distance and sensors importance
matrix;

8. Combining phases of segmentation and classi-
fication for drilling operations using distributed
component architecture.

3. Drilling process and Rig’s sensor measuremtns

Oil well drilling is a process of making a hole in the
ground in order to extract oil, gas or any other natural
resources from the subsurface; usually performed by a
rig. One of the most important parts of such a drilling
rig is the drill-string. A drill-string is a chain of con-
nected pipes usually having a length of 10 meters each.
The bottom end of drill-string is made of special de-
vices, denoted as bottom hole assembly (BHA). The
last part of the BHA is drill-bit [6].

Numerous sensors are mounted at the rig to record
different physical measurements during drilling such
as block position, hook-load, flow rates, pump and
circulation pressures, hole and bit depth and torque,
among others [2].

Figure 1 shows a sketch of such sensor data over
a period of 20 hours, recorded with a resolution of
0.2 Hz.

The gray highlighted areas “1” in Fig. 1 refer to a
special state in drilling process; drill-string is hanging
in the rig floor fixed by slips, thus such a state is de-
noted as InSlips. The non-highlighted areas “2” refer to
converse situations denoted as OurOfSlips; this means
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Fig. 1. Sketch of drilling time series (20 Hours, 0.2 Hz). (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/HIS-

130181)

that drill-string is hanging at hook of rig and therefore
applies force to the hook-load sensor [6]. Such a hook-
load sensor usually measures the weight of the drill-
string together with weight of the hook; therefore, the
hook-load is not zero at InSlips state. Two different pat-
terns formed by hook-load measurements during /n-
Slips and OutOfSlips states [7]. At InSlips state, hook-
load is low, the measured value indicates the weight
of the hook only. At OutOfSlips state the hook-load is
higher, the weight of the hook plus the weight of the
drill-string hanging at hook is measured.

The separation of InSlips from OutOfSlips states is
one of main steps of an automated drilling operations
classification system [8]. Usually, drilling experts set a
threshold value manually for the hook-load to separate
this states.

In addition, the situations and states, which tagged in
Fig. 1 by “3”, “4”, “5”, “6” and “7”, are considered as
usual and unusual events and states in the time series.
“37,%“4” and “5” represent different levels of RPM. The
tag”7” refers to a specific level of the pump flow rate
flowIn. Tag “6” points to a standpipe pressure as re-
sponse of the flowln level in tag “6”. From drilling ex-
pert viewpoint, no clear reason explains why this level
“6” in flowIn time series happened.

4. Rig’s sensors systems

Drilling rig performs its functionality in drilling
boreholes through collaboration of three main sub-
systems: Rotary System, Circulation System, and
Hoisting System.

Rotary System is the system that turns the drill-
string. Top drive as type of rotary system which con-
sists of one or more motors (electric or hydraulic) con-
nected with appropriate gearing to a short section of
pipe called a quill, that in turn may be screwed into
a saver sub or the drillstring itself. In addition, rotary
table another type of rotary system and it consists of
revolving or spinning section of the drillfloor that pro-
vides power to turn the drillstring in a clockwise di-
rection (as viewed from above). The rotary motion and
power are transmitted through the kelly bushing and
the kelly to the drillstring. RPM and torque sensors
measure the revolution per min and torque of rotation
at the surface [2].

Circulation system is defined as the complete, cir-
cuitous path that the drilling fluid travels. Starting at
the main rig pumps, major components include sur-
face piping, the standpipe, the kelly hose (rotary), the
kelly, the drillpipe, drill collars, bit nozzles, the vari-
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Fig. 2. Drilling operations highlighted on drilling sensors data (Blue color: drilling operation and making hole. Gray color: making connection).
(Colours are visible in the online version of the article; http://dx.doi.org/10.3233/HIS-130181)

ous annular geometries of the opened-hole and casing
strings, the bell nipple, the flowline, the mud-cleaning
equipment, the mud tanks, the centrifugal precharge
pumps and, finally, the positive displacement main rig
pumps [6]. The first mission of circulation system is
keeping opened-hole section in wellbore stable by cre-
ating pressure equilibrium on walls of wellbore. The
second purpose of circulation systems is cleaning well-
bore by removing cuttings and lifting them to surface.
The major sensors that are mounted to this system
are: FlowIn, FlowOut and Pumps Pressure. FlowIn/Out
sensors measure quantity of flow in/out of the mud
pump. Pumps Pressure sensor measures the pressure at
the standpipe [2].

The main function of hoisting system is getting
drilling string or another necessary equipment in/out
of borehole safely and efficiently [6]. The main com-
ponents of hoisting system are: Draw-works, Hoisting
tackle including crown and travelling block, hooks and
elevators, Deadline anchors, Drilling line and Derrick.
The basic sensors measurements related to this sys-
tem are: Hookload, Position of block. Hookload sensor
reads how much weight and load hanged by the hook.
While posblock sensor measures the distance between
travelling block and floor level of rig [2].

Other surface values provided as sensors read-
ings. In reality, these values not measured but calcu-

lated. WeightOnBit calculated by subtracting the string
weight from the value of hookload. Rate of penetra-
tion calculated as the speed of drilling string move-
ment during drilling operation. Hole depth is esti-
mated through the length of drillstring and the distance
between the surface level and the maximum value
reached down by drillstring. Bit Depth is the length of
drillstring when the drillstring hanged at hook and not
stuck in slips at rig floor.

5. Drilling operations

The drilling process is a process of making a hole
in the ground until it reaches a pre-specified depth as
definite in the well plan. The drilling crew sets up a rig
and uses it to generate the hole. Normally the drilling
process consists of a sequence of operations. Before
start drilling operations, some important main proce-
dures performed and they summarized as following:

1. Setup Bottom Hole Assembly, which is the lower
part of drillstring. It consists of drillbit, mud mo-
tor, collars, heavy-weight drillpipe, etc.;

2. Attach kelly and rotary table to the drill string;

3. Setup the pumps as part of circulation system to
pump the mud through pipes and out of drillbit to
carry the cuttings out of hole.
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Fig. 3. Histogram of hook-load data with indicator to location of threshold between InSlips/OutOfSlips states. (Colours are visible in the online

version of the article; http://dx.doi.org/10.3233/HIS-130181)

After finishing previous phases, the drillstring is
ready to make a hole in the ground. Then a sequence of
drilling operations starts executed in a recurring man-
ner. These operations defined as follows:

1. Drilling formation operation is the operation of
making hole in the ground through applying
weight or load on drillbit. Hole generating is
mainly achieved through: applying weight on
drill bit or BHA; starting rotation of drillstring;
and circulating the cuttings. The mud is pumped
in drilling pipes through drillbit and then to the
annulus (the space between drillstring and walls
of wellbore) to the surface. At the surface, all cut-
tings removed from the mud through specific de-
vice called shale shaker.

2. Making a connection is an operation of adding
new drillstand to the drillstring to increase
string’s length and then the hole drilled deeper.

3. Running in hole, in this operation, the drillstring
with new BHA is tripping into the hole till the bit
touches Hole’s bottom.

4. Pulling out of hole is the operation of tripping
drillstring out of hole in purpose of changing
drillbit and making new Bottom Hole Assembly.

5. Breaking connection is the operation where the
drilling crew disconnects drillstand from drill-
string to decrease its length and pull BHA out of
hole.

6. Cleaning Hole (Circulation): In this operation,
the drilling crew pumps the mud continuously to
give a chance for the circulated mud to curry the
cuttings up to the surface and cleaning the hole
from drilling cuttings.

Once the drilling crew reaches the pre-set depth,
they must run and cement the casing — place casing-
pipe sections into the hole to prevent it from collaps-
ing in on itself. The casing pipe has spacers around
the outside to keep it centered in the hole. The casing
crew puts the casing pipe in the hole. The cement crew
pumps cement down the casing pipe using a bottom
plug, a cement slurry, a top plug and drill mud. The
pressure from the drill mud causes the cement slurry to
move through the casing and fill the space between the
outside of the casing and the hole. Finally, the cement
allowed to harden and then tested for such properties
as hardness, alignment and a proper seal.

In this paper, we try to model and recognize the
drilling operations automatically by studying and mod-
eling trends of sensors data (Fig. 2). The drilling oper-
ations analyzed to describe each operation using poly-
nomial spectrum of sensors data. The basic operations
that we automatically recognize through this paper are
Formation Drilling Operations (Making Hole), Mak-
ing Connections, Breaking Connections, Circulations,
Running in Hole, and Pulling out of Hole.
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6. High level drilling time series segmentation

In our approach, we used the dataset shown in Fig. 1
incorporating the knowledge of drilling experts. This
approach based on hook-load sensor measurements.

Figure 3 shows the histogram of the hook-load data
over a period of 10 days of drilling. Applying drilling
experts’ know-how, knowledge can be explained on
this histogram. It shows that hook-load data has the na-
ture of Gaussian Mixture Models, i.e. the data are com-
posed at least out of 4 Gaussian distributions. Each of
these distributions reflects information about a specific
state of the rig. Obviously, two main distributions are
located in the data i.e. InSlips and OutOfSlips. The left
most distribution certainly defines the InSlips state.

The statistical parameters of each distribution pro-
vide information about the hook-load data for each
state. The estimation of the threshold that discriminates
InSlips states from other states is a significant step in
segmentation. The segmentation, which separates In-
Slips state from OutOfSlips state, is a high-level seg-
mentation. The advantage of EM is that it can be ap-
plied to big data set with acceptable performance.

Arnaout et al. [3] discussed in detail the use of hook-
load data to determine automatically the threshold
value for separation of InSlips and OutOfSlips states.

After estimating the parameters of the particular
cluster in the hook-load data, the second step is the cal-
culation of the intersection point, which is the thresh-
old, used for separation of InSlips and OutOfSlips
states.

The algorithm below shows how to calculate the in-
tersection point between two clusters based on Bayes’
theorem, using the clusters’ statistical parameters,
mean value and standard deviation.

7. Low level drilling time series segmentation

The low-level segmentation applied to each segment
obtained from high-level segmentation as discussed
above. In our approach, Piecewise Linear Approxi-
mation applied to the hydraulic flow rate, denoted as
flowln, and the rotational speed of the drill string, de-
noted as RPM.

The algorithm BottomToUp [5] forms the base for
the segmentation by Piecewise Linear Approximation
based on customized error cost function. The algorithm
begins by creating the finest possible approximation of
the time series consisting of n samples by using ini-
tially n/2 segments. In a subsequent step, the costs of

Intersection Point of two Clusters

Input:
Two univariate clusters C; and Co assumed to be Gaussian
distributed with ©1 ={p1,01} and Oz ={u2,02}.
Output:
The separation threshold x; of the two clusters.
Do
The probability density p(x|Cy,) for the k*? cluster of a Gaussian
Mixture Model is given by

1 _(e—pp)?

e 2% . )
,/271'01%

According to Bayes’ theorem, the separation threshold x; is located
where the posterior probabilities P(Cy, |x) of both clusters are iden-
tical [14].

Using

p(z|Cy) =

N p(x|C1)P (C1)
P(C|z) = p(z|C1)P (C1) + p(z|C2)P (C2)’ 2

and
x|C2)P (C2
P(Csla) = p(z|C2) P (C2) . 3
p(z|C1)P (C1) + p(z|C2) P (C2)
The prior probabilities P(C'1) and P(C2) given by
number of points belonging to clusterC;
P(Cy) = L TE @
total number of points

The separation threshold x; estimated by solving the equation

P(Crlz:i) = P(Calzi). Q)

End

merging pairs of adjacent segments are calculated. The
algorithm iteratively merges the pairs with the lowest
costs until a stopping criterion is met. Merging pairs
of adjacent segments, i and i + 1, bookkeeping about
the neighborhood merging costs is inevitable. The cost
of merging the actual segment with both, right and left
neighbors, must be calculated [5].

Figure 4 shows detailed segment of OutOfSlips state
for sensors: hook-load, flow rate (flowln), and Rota-
tion Speed (RPM). In assistance of drilling experts, it
is required that each change or event in those sensor
measurements should be detected. Applying Piecewise
Linear Approximation on each of those time series
gives the possibility to detect main and minor changes
in these time series. The accuracy of detection depends
primarily on customized error cost function of PLA.

7.1. Drilling timeseries segmentation algorithm

In this paragraph, the algorithm of applying EM and
PLA on drilling time series presented. The data showed
in Fig. 1 used as sample data.

Figure 4 illustrates detailed view of OutOfSlips sec-
tion “1”. “2” and “3” point to the pump’s startup/shut-
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Fig. 4. View of OutOfSlips section. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/HIS-130181)

Segmentation Algorithm

Input
Measurements of sensors as raw data
Output
Segments of time series
Do
1. Estimate of clusters parameters in hookload data using Ex-
pectation Maximization algorithm.
2. Calculate the intersection point, which is the threshold as
specified earlier in Intersection Point Calculation ‘Algorithm.
3. Create high-level segments (InSlips/OutOfSlips) based on
the intersection point (threshold) and hook-load sensor data.
4. Use PLA as specified in previous paragraph to slice each seg-
ment from previous step into smaller segments.
5. Merge segments from previous two steps as resulting seg-
ments.
End

down procedures.”’6” represents high level of rotational
speed. “7” shows startup procedure of the rotary sys-
tem over two phases. “8” shows lower level of ro-
tational speed. “4” shows middle level of rotational
speed. “5” indicates to procedure of shutting down the
rotary system.

8. Results of segmentation algorithm

Figure 5 illustrates the results of high-level segmen-
tation using hook-load sensor measurements as well as
low-level segmentation using other sensor data.

The results confirm a high level of accuracy at high-
level segmentation. This because the stability of the
Expectation Maximization algorithm with noisy data.
In addition, prior-knowledge about the fact of locating
InSlips distribution as the left most distribution gives
more strength to the suggested segmenting algorithm.

The accuracy of low-level segmentation shows sen-
sitivity to the value of predefined error parameter of
PLA algorithm. Normalizing the data helps in converg-
ing values of error parameters for each sensor data. In
most cases, we use same value for all error cost func-
tion of PLA.

9. Patterns recognition using basis functions
method

In this paragraph, we introduce simple derivation of
polynomial discrete moments and how they extracted
from drilling sensors data. The main idea is to ex-
tract the pseudo inverse BT of design matrix B from
drilling sensors measurements, then use BT to com-
pute the coefficients vector z, which describes the poly-
nomial that fits the measurements of sensors data [11].
The coefficients vector z is the pattern descriptor in our
case. For each drilling operation, we derive z; ...z
vectors where k is the number of sensors that we have.

Consider that we have a drilling dataset D of n data
points y;, where a Gaussian Noise perturbs each data
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Fig. 5. Results of the suggested segmentation algorithm on drilling time series (Automatic-detected sections in red lines). (Colours are visible in

the online version of the article; http://dx.doi.org/10.3233/HIS-130181)

point. The objective of polynomial regression of de-
gree d is to model the data points 7, by a sum of mono-
mials, i.e.

i=0 .
T = ag +arz 4 asx? ... +agx® = d a;xt. (6)

Since the data points y; are perturbed, they in general
do not lie exactly on the polynomial. Consequently,
there is a residual r; associated with each point,

Ti=Yi — Y = Yi — Tlo a;x’. (7)
We can rewrite the Eq. (7) in matrix form yields;
T Y1 1 ay 23 ...2f ao
S EREE e
Tn Un 1 x, :B% xﬁ aq

In general, measurements data; the design matrix B and
the coefficient vector z are defined as,

1z 22 .. .2f aog
B=|: and z = | .(9)
1 x, x% . xfl a4
Consequently,
y = Bz. (10)

So the error rewritten as,
n
E =

%

r?=rr. (11)
1
Then, the coefficient vector calculated using,

2= (B"B)"' BTy = BTy, (12)

where BT is the pseudo-inverse of B [11].

The column vectors forming the matrix B are the ba-
sis functions. The matrix B called Vandermonde ma-
trix. The fact is that the polynomials or the basis func-
tions of Vandermonde matrix are not orthogonal. This
causes complexity in computation and calculation of
high degrees of polynomials. Moreover, this means
that the Vandermode basis functions are not suitable
for solving large-scale problems. This fact leads us to
choose another set of basis functions that are orthog-
onal and it is possible to calculate higher degrees of
such polynomials. Here are examples on orthogonal
polynomials from functional analysis domain: Legen-
dre, Chebyshev, Gram, Gegenbauer, etc.

In our study on drilling sensors data, we will use
Gram polynomials to describe drilling time series of
different drilling operations. We choose Gram polyno-
mials because not only they are orthogonal but also
they have a uniform scaling and this is important to
fit some complex shapes in drilling time series with
higher performance than what Vandermonde basis can
do.

The equation of generating Gram polynomials given
by [10]:

gn (2) = 200 12gan1 () = 2" gu s (2). (13)

n—

Whereby,
2_1/2\"?
nt = = (%) , (14)
n \m?—n
and
go(z)=1,9-1(x)=0and vy = 1. (15)

Figure 6 shows us how Gram basis functions look like.
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Fig. 7. Two drilling formation operations and their polynomial representations (Patterns). (Colours are visible in the online version of the article;
http://dx.doi.org/10.3233/HIS-130181)

10. Analysis of drilling operations using shown. All the sensors measurements normalized to
orthonormal basis functions keep the values of coefficients close to each other and
make it comparable. The red lines on upper four sub-

Figure 7 shows two different formation drilling op- plots in Fig. 7 represent the fitted Gram polynomials of
erations (left and right). The sensors measurements each sensor data. While the lowest sub-plot in Fig. 7

of block position, RPM, flowln, and hole depth are shows the values of coefficients vectors z1, zo, z3, and
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z4 as map of colors. We call the coefficient matrix at
the lowest sub-plot as pattern descriptor of drilling op-
eration. Gram basis functions of high order used in
calculations i.e. each of sensors data in each forma-
tion drilling operation in Fig. 7 represented using Gram
polynomial of degree 20.

The lowest part of Fig. 7 shows that the two for-
mation drilling operations look similar and their pat-
terns are close to each other. This will be a key indi-
cator in drilling operations recognition process. Fur-
thermore, we notice that the block position data rep-
resented as a line and this already shown in the coef-
ficients matrix (lowest sub-plot in Fig. 7, first row in
color map). Where from 20 degrees polynomial only
the second component has distinct value (blue color).
The second value in Gram polynomial spectrum repre-
sents line component (see Fig. 6, second degree). The
RPM data in drilling operation shows that this data is

not exactly at one level, and this is opposite to what
was believed from drilling domain where the driller
sets and fixes the RPM to a specific value while forma-
tion drilling operation. The raw data shows that the val-
ues of RPM and flowln are fluctuated in small range.
RPM fluctuated in range [139-142] rev/min, and flowIn
fluctuated between 1983 and 1985 L/min at depth of
3070 m. these small fluctuations will be the key indica-
tor to recognize the trends of RPM and flowIn through
formation drilling from other states where the pumps
are off and the drillstring is not rotating.

Figure 8 presents applying of trend analysis us-
ing Gram polynomials on drilling sensors data dur-
ing cleaning hole (Circulation) operation. The polyno-
mial spectrum shows us how the coefficients fluctu-
ated where each change in values of coefficients gives
us information about the importance of the polynomial
component in representing and reconstructing the cor-
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Fig. 9. UML Components diagram of distributed system architecture for drilling operations detection and classification.

responding sensors data. For example, the spectrum of
hookload sensor data indicates that the first component
in polynomial spectrum carries no information because
it has a value of zero, but the components from 2 to 7
are representing most of the information in hookload
sensors data during cleaning hole. If we look at propor-
tional of total power of hookload sensor data, we find
that the first five components represent around 95% of
the information in hookload sensor data and the first
component has zero information. Then we can say that
we need to keep four components (2 to 5) to be able to
represent and reconstruct the hookload sensors data.

If we use same analogy on other sensors data in
Fig. 8, we can conclude the following facts about sen-
sors data during cleaning hole (Circulation) operation:

1. To get all information about Block position sen-
sor data, we need to preserve just one component
from polynomial spectrum.

2. It is enough to keep the components from 2 to 8
to have 95% information from torque sensor data.

3. We need just two components (2 and 3) to be able
to reconstruct the flowIn sensor data.

4. One component for each Hole Depth and Bit
Depth is sufficient.

5. Three components (2-3-4) of polynomial spec-
trum are enough to have 95% of information
about pressure of mud pumps.

6. The second and third components of spectrum
are adequate for RPM representation.

11. Distributed recognition system

In Fig. 9, we proposed distributed components-
based architecture that shows how all proposed algo-
rithms above will work together to perform the in-
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tended goal in drilling operations detection and classi-
fication.

As the architecture shows, the raw data flows to
segmentation component where the segmentation al-
gorithm hosted. The segments have the structure of
start index, end index, attributes and data points. These
segments published to Message Oriented Middleware
MOM in form of messages. Here we consider the
phase of detection drilling operations is finished where
each segment represents a drilling operation.

After publishing the segments, a classification step
for each segment is required. Patterns classifier com-
ponent receives the segments from MOM through a
subscription component. Then the patterns classifier
search for the matched pattern class in its patterns base.
The matching process between the new received seg-
ments and the patterns templates is determined through
Patterns Matching Algorithm (as shown in the next
paragraph).

Once classification of each segment is finished, the
classified segment published again with known class to
MOM where all other clients (parties) which are inter-
ested in getting such information can subscribe to get
these segments with their classes

11.1. Patterns matching algorithm

Patterns Matching Algorithm between data segment and pat-
terns templates

Input:

Data Segment S
Output:

Drilling Operation Class of the segment S
Start

— Calculate Gram polynomials coefficients of data V in segment
S.
For each patterns template P in Drilling Patterns Base do:

* Calculate the similarity between V and P (see next para-
graph).

* Record the bigger value in similarity (closest patterns tem-
plate).

End For.

— The class of most similar pattern template is the class of S.

End

11.2. Drilling patterns base

In cooperation with drilling experts, a drilling pat-
terns base built. This base contains all templates of
known drilling operations such as Drilling, Running in
Hole, Pulling out of Hole, Making Connections, and
Circulation.

Each operation can have many templates. This de-
pends on the rig’s type and the drilling process and
methods used by the drilling crews.

As a preparation step, we take each possible tem-
plate data; calculate its Gram polynomial coefficients;
and store them in the Patterns base. At the end of the
day, we have all the possible patterns templates stored
in this base. One of the most useful usages of such base
is that we can use it to store the drilling expert’s knowl-
edge. The extension of this base by new patterns tem-
plates for new drilling operations considered as a triv-
ial task.

11.3. Patterns similarity measure

Given matrix D that represents the sensor data ma-
trix of a segment. We calculate the corresponding gram
polynomial coefficients matrix V' of matrix D. In ad-
dition, we consider that all the patterns templates for
each drilling operation are stored in patterns base (see
Fig. 9). Moreover, we consider that each pattern repre-
sented by matrix P;, where P; contains the coefficients
of gram polynomials of template raw data that repre-
sent drilling operation number ¢ selected by drilling
expert.

After the discussion and the analysis of drilling op-
erations in previous paragraph, we find that to increase
our accuracy we need to introduce the weighting (im-
portance) matrix W into our similarity measure calcu-
lation

pl -+ 0 '|
W= - (16)
]
where p1, ..., p, are the importance of sensors data.

For example if we want to consider that the weights
of sensors as following: Hookload sensor is very im-
portant in our detection process then we give it impor-
tance or weight as 1.0. Posblock sensor is another im-
portant sensors data we assign 1.0 to it. Mdbit does not
affect our detection results as much as Posblock, then
we give it importance or weight of 0.5 and so on. The
weight matrix W is suggested after similar analysis to
what we discussed in previous paragraph.

The matrix W should affect both patterns templates
P,

P,=PW, 17
and coefficient matrix of new raw data V/,

Vi =V W. (18)
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Table 1
Learning and test wells information
Well Name Resolution Depth Sensors used in patterns recognition
Learning Well 1 1 data point each second, 1 Hz 4000 m  Hkld, posblock, mdbit, mdhole, flowIn, RPM, torque, prespump
Test Well 1 1 data point each 5 seconds, 0.2 Hz 2550 m  Hkld, posblock, mdbit, mdhole, flowIn, RPM, torque, prespump
Test Well 2 1 data point each 5 seconds, 0.2 Hz 4100 m  Hkld, posblock, mdbit, mdhole, flowIn, RPM, torque, prespump
Test Well 3 1 data point each 5 seconds, 0.2 Hz 1860 m  HKkld, posblock, mdbit, mdhole, flowIn, RPM, torque, prespump
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Fig. 10. Results of Segmentation and Classification (= 4.5 Hours of Drilling. 0.2 Hz), each color represents different drilling operation. (Colours
are visible in the online version of the article; http://dx.doi.org/10.3233/HIS-130181)

The error r represents Mahalanobis distance between d=WT(P-V)x" Y (P-V)W, (22)

P, and V,, given by:
r = mahal (P, Vy).

Noticing that

(19) e
mahal (P,V) = (P-V)TS 1 (P-V). (23)

According to definition of Mahalanobis distance then,

Tl Then the similarity measurement between patterns
mahal (P, Vi) = (Py — Vi)™ 77 (Py — Vi) ,(20)

templates P of drilling operations and coefficient ma-

where ¥ is the covariance matrix of Py, and V. trix V given by the following equation:

From Eq. (19), we can write Eq. (20) as
d=PW-vw)" s~ (PW— VW),

where d = mahal(Py, Vay).
Rewrite Eq. (21),

d =W mahal (P,V)W. (24)

ey . o
In our testing work, we use the similarity measurement

suggested in Eq. (24) as a distance function of the pro-
posed patterns classifier.
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Test Well 1

Classified Operations (Total Accuracy: 94.05%)

2 Drilling RuninHole Pull outof Hole Circulation MakeCon Accuracy (Operation)
2 Drilling 1819 0 1 0 99.95%
T RuninHole 78 789 9 7 88.55%
& Pull out of Hole 81 0 1 7 84.68%
E Circulation 39 16 143 21 61.90%
& MakeCon 15 46 23 3111 96.23%
Test Well 2
Classified Operations (Total Accuracy: 88.61%)
2 Drilling RuninHole PulloutofHole Circulation MakeCon Accuracy (Operation)
2 Drilling 726 5 1 0 99.18%
T RuninHole 95 472 3 14 80.55%
& Pull out of Hole 39 0 3 14 86.92%
?3 Circulation 78 36 209 13 57.42%
& MakeCon 35 20 15 1412 94.70%
Test Well 3
Classified Operations (Total Accuracy: 88.56%)
2 Drilling RuninHole PulloutofHole Circulation MakeCon Accuracy (Operation)
2 Drilling 1095 0 9 0 99.18%
T RuninHole 105 219 1 0 67.38%
& Pull out of Hole 55 0 1 3 85.21%
§ Circulation 62 32 312 30 69.64%
& MakeCon 27 5 40 1085 92.81%

Fig. 11. Confusion matrices of test wells with classification accuracy of each one.

12. Test dataset

The test database, which we worked on, consists of
four complete drilled offset wells. The drilling opera-
tions highlighted manually by drilling experts on raw
data. Table 1 contains information about the testing
wells.

13. Results and discussion

Figure 10 illustrates detailed view on how the seg-
mentation and the classification algorithms worked to-
gether to accomplish the mission of drilling events de-
tection and classifications. The drilling sensors mea-
surements shown and vertical redlines (segments) plot-
ted over them. The color ranges represent drilling oper-
ations that classified using our suggested system. Each
color is different class of operations.

Figure 11 demonstrates the results of applying pat-
terns classifier on three offset wells as testing wells.
The accuracy of classification process gives a per-
centage around 90% and we consider that as a high
classification rate. It is shown that the confusion of
this classifier happen between formation drilling oper-
ations and non-drilling operations. This is due to the
similarity of flowln and RPM trends during forma-

tion drilling (making hole) and non-drilling situations
where both situations show that flowIn and RPM sen-
sors data should be in straight trends. For this reason,
the patterns-based classifier is confused between both
situations. As a solution for this problem, a thresh-
old level can be defined to employ more informa-
tion on the trend of flowln or RPM. Another reason
for confusion in the classification results is using all
sensors data available. As we discussed in previous
paragraph, some sensors data contain same informa-
tion. For example hole depth, bit depth, and posblock
during drilling operation carry same information and
they considered as redundant components and this may
cause confusion if the quality of those sensors data is
bad.

In addition, some sensors data are more important
than other sensors data during specific operations. For
example during making connection, each of flowln,
pumps pressure, hole depth, and bit depth sensors data
are not important for recognizing this operation. The
two important sensors data here are Block Position and
Hookload.

We believe that the accuracy of results will be more
than what it is now, if the previous comments are re-
flected on the current implementation of the patterns-
base classifier. Furthermore, data with no outliers or
missing values is expected to have higher accuracy.
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14. Future work

The suggested segmentation algorithm in this paper
opens doors to do further analysis and recognition us-
ing different classification techniques on each detect
segment in drilling time series. In addition, more work
is possible to reduce/filter the noise in time series be-
fore processing. The noise-filtering step will certainly
improve the accuracy of segmentation algorithm.

It is also possible to extend the suggested method of
drilling operations classification to recognize any other
required operation based on whatever drilling sensors
data. The only condition to apply this method is that
the trends of sensors data should be obvious.

In addition, the suggested method can be improved
by using a rejection classifier to reject specific patterns
do not belong to particular operation.

In our work, we used automatic adding for all possi-
ble patterns templates in the database and here the er-
ror of experts classification is included the results. As
improvement, a continuous filtering process should run
on the patterns base to remove bad and wrong patterns
that cause low classification rate.

Another important improvement is that the results
of classification from test wells added to the patterns
base, if and only if they reviewed, corrected, and ac-
cepted by experts. This supports the idea of extending
current patterns base with new knowledge from experts
and it shows an example on how to extract the knowl-
edge from experts and teach current running systems
to do better in future.
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