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Abstract 

Global trends of increasing ore complexity, growing demand for mineral resources, and rising 

social, environmental, and health issues awareness of mining have led the mining sector, as the 

primary sector of many national economies, to implement sustainable and resource-efficient 

strategies.  Geological and geometallurgical block models of the resources and reserves play a 

crucial role in resource efficiency, along with the management of mines and tailings (dumps). 

Data must flow into such models throughout all stages, from designing and planning and 

operation stages from exploration to reclamation and rehabilitation. In this regard, early 

knowledge of ore and waste characteristics is necessary for, e.g., early-stage constraints on the 

mine system's geotechnical stability or the physical-chemical behavior of dumps and tailings, 

and of course, for defining mine products and concentrate qualities. An analytical technique to 

characterize modal mineralogy, mineral association, and grain size distribution of ore and waste 

samples is scanning electron microscope based automated mineralogy (such as mineral 

liberation analysis, MLA, or Zeiss Mineralogical) which provides detailed information on many 

single particles, albeit on the polished section of the sample and not concerning the whole 

volume. In this study, a method to reconstruct the true 3D size (with uncertainty) from such 2D 

sections will be developed using Bayes' Theorem. This study constructs particle size 

distributions from a combination of 2D individual-particle measurements and bulk particle size 

distribution measured by sieving and laser diffraction. Verification of the prediction of the 

statistical model for the 3D sizes were done with data from X-ray computed tomography (XCT). 
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Chapter 1. Introduction 

 

1.1.  Mining and Particles Size Distribution 

Increasing ore complexity and demand for mineral resources led the mining sector, as the pri-

mary sector of many national economies, implement sustainable and resource-efficient strate-

gies. Optimized and efficient geological and geometallurgical block models of the resources 

and reserves play an important role in such resource efficiency throughout the life cycle of 

mines and tailings (dumps). Data must flow into such models throughout all stages, from de-

signing and planning mines and operation stages from exploration to reclamation (rehabilita-

tion); hence, early knowledge of ore and waste characteristics is necessary. A critical charac-

teristic of minerals particles is particle size distribution (PSD), which plays a crucial role in 

optimization in various stages of mining and other industries. For instance Wu et al. (2018) 

showed that optimizing the particle size distribution of the aggregate in the cemented rockfill 

could improve the loading capacity of the backfill to improve the filling effect, and it could 

decrease the internal stress of the rock mass to reduce the potential dangers around the coalface, 

such as rockburst. In another example, in a hard coal mine, Skubacz et al. (2016) implement 

the results of particle size distributions of ambient aerosols, the assessment of the radioactive 

particle size distribution of the short-lived radon decay products, and the corresponding values 

of dose conversion factors. Furthermore, Harris et al. (2015) examined the particle size distri-

butions of rock dust, which uses as a mitigation for the hazard of float coal dust that can con-

tribute to a significant underground coal mine explosion. Al-Thyabat et al. (2007) shows the 

estimation of the sieve size distribution of particles moving on a conveyor belt. In a bigger scale 

in surface mining, Zhou et al. (2019) predicted the particle size distribution of a muck-pile after 

blasting, which directly affects the costs of drilling and blasting the subsequent economic 

growth operations of loading, hauling, and crushing. 

1.2.  Relevance and Importance of PSD 

Several techniques characterize PSD; these techniques include physical operations like sieving 

and sedimentation, and spectroscopic techniques like laser diffraction (LD), image analysis 

based on optical and electron microscopy, and electrozone instruments (Li et al., 2019). Some 

of these analytical techniques, including sieving and LD, measure the particle size of the whole 

sample population (bulk sample) and not on an individual particle; nevertheless, they are much 
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faster and cheaper than image-based techniques. On the other hand, techniques such as X-ray 

computed tomography (XCT) and scanning electron microscope (SEM) can measure the parti-

cle size of individual particles. One of the conventional SEM-based techniques to characterize 

particle is the mineral liberation analysis system (MLA), which integrates Back Scatter Electron 

(BSE) and Energy Dispersive X-ray Spectroscopy (EDS) analyses (Fandrich et al., 2007). It is 

performed on sliced and polished specimens, which can be a section of a drill core or an epoxy 

block containing the particles to be analyzed. Due to the 2D nature of SEM-EDS, obtaining 3D 

features like size and volumetric composition exhibits a stereological bias (Furat et al., 2018). 

The advantage of measuring characteristics such as mineral grain size in three-dimensions is 

that the stereological issues that bias many measurements made on polished sections are re-

moved (Evans et al., 2015), albeit the 3D measurement of XCT increases time and costly greatly 

on an industrial scale. Therefore, assessing the actual 3D particle size distributions from simple 

2D measurements is a fundamental problem both in scientific and industrial applications 

(Benito et al., 2019).  

1.3.  Background  

The key problem has been mentioned in classic stereological textbooks (Russ and Dehoff, 

2000). In previous researches, Goldsmith (1967) developed a theoretical solution based on in-

tegrated kernels to relate the true distribution of spherical shape particle sizes to the apparent 

distribution seen in a thin slice. Orive (1976) presented a theoretical solution to the problem, in 

terms of the continuous, bivariate distributions involved, for spherical shape particles. 

Eisenhour (1996) provided a procedure that describes chondrule (spherical shape) sizes and 

relative abundances derived from thin-section data by considering non-diametrical cuts from 

random cuts of a sphere and the specific thickness of cuts. Sahagian and Proussevitch (1998) 

applied a numerical technique and showed for the first time that the vital parameter controlling 

calculated size distribution is particle aspect ratio; this allows the technique be applied to a 

range of particle shapes and sizes (multidispersal) and not only spherical shapes. However, the 

reliability of these estimates is also probably insufficient for many applications. They also de-

veloped stereology as a statistical technique to determine the number of particles of a particular 

size and shape enclosed by a given volume from the observed number of particle cuts of a 

particular size and shape in a random cross-section for mono and polydispersal systems (parti-

cles at same shape and different sizes). In another work Rickman et al. (2016) used the param-

eters aspect ratio and Heywood factor (circumference of a circle with the same area as the par-

ticle divided by the observed particle perimeter) to calculate particles shape and size in three-
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dimensional space by using two-dimensional projections on a plane. Cuzzi and Olson (2017) 

showed a method to recover spherical shape particles by considering the larger particle effects, 

as the cuts of bigger particles might be sampled more often than the smaller ones due to their 

larger diameter and deal with the bias of non-diametrical cuts. They found a method that with 

a particular inversion using geometrical binning provide the least biased overall results. They 

proposed a matrix (𝐹) which is a description of how a true diameter distribution (𝑁𝑣) is repre-

sented in a different apparent circle diameter distribution (𝑁𝐴) as Eq. (1-1). Due to the discrete 

nature of this matrix representation, the diameter distributions have to be discretized into bins. 

The upper bin edges are defined, according to the binning method, bin width and number of 

bins selected. The matrix (𝐹) is determined exclusively by the binning method and its parame-

ters. 

𝑁𝐴 = 𝐹.𝑁𝑣 

𝑁𝑣 = 𝐹
−1. 𝑁𝐴  

(1-1) 

The simplicity and flexibility of the method is clear: computing the matrix (𝐹) is extremely 

simple and many efficient ways to solve linear systems like these are easy to find. Nevertheless, 

there are two points in their study that could be improved: 1) the quality of predicting the true 

3D size of particles depends strongly on the number of bins, i.e. the number of apparent diam-

eters measured; and 2) Any bias on the measurement process is likely to produce incoherent 

results such as a negative number of observations of the true diameter distribution in some of 

the smallest bins. Benito et al. (2019) provided a method based on the linear representation of 

each particle effect on the smaller apparent sizes that are measurable in the 2D plane. They 

considered thickness of the section and the cuts, which are close to the centre of particle. Fur-

thermore, they demonstrated that the required number of measurements to accomplish detailed 

recoveries could be reduced by conveniently modifying and complementing it. The two im-

provements to the original algorithm are 1) the inclusion of either a parametric or a nonpara-

metric fit to the measured data and 2) the utilization of optimization tools to solve the resulting 

linear system. As we can see, the methods and results to solve the problem derived from differ-

ent fields such as material science, biology, mineralogy, and all together supplied the basis for 

solving the 3D recovery problem. More or less, there are the same multiple biases in previous 

works to recover 3D particle size distribution, as can be list as below: 

 Recovering the 2D cuts from sections, which cuts are slightly off the centre of the par-

ticle, might be difficult due to limits in the measuring method. 

 In random cuts, larger particles will be sampled more often because of their larger sizes. 
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 A random cut is likely to be non-diametrical. 

 The sections might have a certain thickness. 

1.4.  Goal and Aim 

In this study, a new 3D size reconstruction method is developed, with the specific objective of 

obtaining a probability distribution of the 3D particle sizes for each individual particle, by com-

bining its 2D cut from our cross-sections with 3D bulk particle size distribution from the sample 

population (LD or sieving) as a development for MLA technique. To do this, a combination of 

analytical techniques is used, and a statistical prediction model is provided that allows the prob-

ability distribution of the actual 3D particle size from its 2D cuts to be generated. The model is 

based on Bayes' Theorem as an inversion method. Bayes' Theorem provides a quantitative re-

lationship between two conditional probability assessments. This thesis is structured as follows; 

chapter 2 introduces the analytical and statistical methods. The model proposal and diagnostic 

settings are proposed in chapter 3. In chapter 4 results by using the actual data are shown and 

at the end in chapter 5, the conclusions, strengths and weaknesses of the study and future works 

are presented. As a framework for the scope of this master thesis, the following elements are 

remarked: 

Table 1. 1: Scope of the thesis 

Included Excluded 

Quantification of 3D particle size uncer-

tainty with different analytical and statistical 

techniques. 

Technical and economic evaluation 

Analytical techniques to measure particle 

size distribution such as sieving, laser dif-

fraction and x-ray computed tomography 

Implementation of the method on a case 

study of underground or surface mining 

Statistic based on Bayes Theorem Use of  MLA data as the 2D cuts 

Stereological bias reduction for 2D data -------- 

Prediction of probability distribution of 3D 

size of particle by given its 2D cuts 

-------- 

 Evaluation of the method performance -------- 
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Chapter 2. Methodology 

 

A combination of analytical and statistical methods were used to evaluate 3D particle size dis-

tribution from the size of 2D cuts of particles. In this chapter, the analytical steps, sample prep-

aration, aim, and purpose of each different analytical techniques will be reported. Afterwards, 

we will briefly discuss which analysis relates to which step in the statistical model, and each 

analysis procedure will be explained. Finally, the procedure and role of Bayes' Theorem in this 

study to predict 3D particle size distribution from a 2D distribution, as applied in this study will 

be described. 

 

Figure 2. 1: Three different materials, including quartz lump, quartz fine, and apatite 

2.1. Analytical Methods and Steps to Measure the PSD 

Three different pure materials were chosen; quartz fine, quartz lump, and apatite (Figure 2.1). 

The reason for choosing quartz and apatite was to observe the effect of shape of minerals in the 

results of this study. Different analytical techniques were performed depending on their roles 

in this study (Table 2.1). 

These analytical techniques were divided into sample preparation, model construction and val-

idation. For sample preparation grinding and splitting techniques were used. For the obtention 

of data for model construction, three analytics techniques were applied: sieving, laser diffrac-

tion and two-dimensional XCT. Finally, for validation, three-dimensional XCT was used. 
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Table 2. 2: Analytical techniques and their goals 

Goal of analyze Analytical technique 

Sample preparation Grinding Splitting 

Model construction Sieving Laser diffraction XCT (2D) 

Validation XCT (3D) 

 

2.1.1. Sample preparation 

To begin with, grinding was applied to reduce the size of particles with a combination of impact 

and abrasion; it was performed in cylindrical steel vessels (Finch and Wills, 2016). The samples 

were added to the cylinder with milling balls and the machine ran for 3 minutes. Figure 2.2 

shows the machine parts and milling balls were used during the process. 

        

Figure 2. 2: Grinding machine during sample preparation 

In the next step, samples were split to have a small representative sample for each material. 

Depending on the amount of material, two different splitting techniques riffle splitting and ro-

tary splitting. 

    

                                           (a)                                                                  (b) 

Figure 2. 3: (a) riffles and (b) rotary splitting at Helmholtz Institute Freiberg 
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A large amount of material was split by riffle and rotary splitting. Twelve to sixteen split sam-

ples of each material with an amount of 2-4 grams were retained. These samples were used for 

analysis in the following steps. 

2.1.2. Analytical techniques for model construction 

As mentioned before, three analytical techniques were used to construct the statistical model 

requirements. These analytical methods were divided into sieving, laser diffraction and XCT in 

2D. In the following subsections, these analytical techniques are described in detail. 

2.1.2.1.  Sieving 

Sieve analysis (or screening) is one of the oldest methods of size analysis and is performed by 

passing a known weight of sample material through successively finer sieves and weighing the 

amount collected on each sieve to determine the percentage weight of each size fraction (Finch 

and Wills, 2016). In this study, a vibration sieving tower was used with eight sieve size classes. 

   

Figure 2. 4: Vibration sieving tower machine 

The mesh sizes of the sieves used were 53, 75, 106, 150, 212, 300, 425 and 600 microns. The 

sieves were placed from the biggest (600 μm) to the smallest one (53 μm) on the tower, from 

top to bottom. For having accurate measurements, each material was sieved four rounds, and 

each round lasts fifteen minutes. After each round of sieving, the tared sieves were weighed. 

Table 2.3 shows the obtained distribution in detail. Analyses of the fourth round were recorded 

as the results and shows in Figure 2.5. As it was shown for each material, the distribution is in 

percentage with a size fraction between 50 to 1000 μm. 
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Table 2. 3: Sieving results for all materials 

Sieve size 

(μm) 

Sieve fraction (wt %) 

Quartz lump Quartz fine Apatite 

53 0 1 10 

75 0 1 7 

106 1 28 6 

150 35 59 9 

212 32 10 12 

300 28 1 17 

425 4 0 24 

600 0 0 15 

 

 

(a) 

 

(b) 
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(c) 

Figure 2. 5: Sieving results for each material (a) quartz lump (b) apatite (c) quartz fine 

2.1.2.2.  Laser Diffraction (LD) 

LD is one of the sub-sieve techniques, which allows having results that are typically more ac-

curate on smaller size particles, although this ultimately depends on the characteristics of the 

material (Li et al., 2019). In this technique, particles flow through a dilute suspension, and laser 

light is projected through them; the light is scattered by the particles, and the scatter pattern is 

detected by a solid-state detector measuring light intensity over a range of angles (Finch and 

Wills, 2016). 

 

Figure 2. 6: Basic Optical System of an LD particle size analyser (Olawuyi and Asante 

Samuel, 2016). 
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A light scattering reconstruction is used to estimate the PSD from the light distribution pattern, 

thanks to the fact that finer particles induce more scatter than coarser ones. LD instruments are 

fast, easy to use, and give reproducible results. LD size distributions tend to appear coarser than 

those of other methods, such as sieving (Finch and Wills, 2016). Care is necessary when com-

paring output across several environments or materials, or with data obtained by different meth-

ods. 

      

Figure 2. 7: LD machine Helos/KR at Helmholtz Institute Freiberg 

For each material, four to six samples were measured. In the end, average distribution of each 

material in percentage with size fractions between 5.5 to 1000 μm was used. Figures 2.8 to 2.10  

show the size distribution of particles for each material, and Figure 2.11 shows the average 

results of each material that can be used as representative data from LD. As the sample materials 

were monomineralic (one class of mineral), the volume and mass are equivalent because of the 

constant density. 

 

Figure 2. 8: LD result of volume (mass) size distribution for quartz lump. 
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Figure 2. 9: LD result of volume (mass) size distribution for quartz fine. 

 

Figure 2. 10: LD result of volume (mass) size distribution for Apatite. 

Two measurements of LD and sieving were done. In this study, all materials size was less than 

one millimetre. Comparison of the laser diffraction method with sieving shows that the number 

of sieve size fractions in the laser diffraction technique is higher than in the sieving technique 

and doing the same for sieving with many fine sieve meshes was not worth it. More amount of 

sieve size fractions help to have more data and smoother graphs and more reliable results on - 
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Table 2. 4: LD results of the average of each material 

Sieve size (μm) 
Fraction (wt %) 

Quartz lump Quartz fine Apatite 

0.5 0 0 0 

4.5 0.229 0.852 7.125 

5.5 0.061 0.147 0.714 

6.5 0.062 0.167 0.556 

7.5 0.063 0.171 0.438 

9 0.096 0.245 0.498 

11 0.131 0.307 0.469 

13 0.135 0.289 0.340 

15.5 0.174 0.344 0.333 

18.5 0.221 0.404 0.355 

21.5 0.244 0.411 0.386 

25 0.325 0.508 0.575 

30 0.547 0.804 1.190 

37.5 0.958 1.379 2.705 

45 1.011 1.507 3.444 

52.5 1.003 1.565 3.661 

62.5 1.300 2.230 4.758 

75 1.536 3.494 5.441 

90 1.761 6.403 5.692 

105 1.840 9.502 4.819 

125 2.938 15.398 5.426 

150 5.175 19.245 5.953 

180 9.068 18.029 6.899 

215 13.599 11.125 8.185 

255 16.915 4.397 8.966 

305 20.179 1.035 9.204 

365 17.020 0.028 7.045 

435 2.770 0 4.218 

515 0.597 0 0.591 

615 0.031 0 0 

735 0 0 0 

875 0 0 0 
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(a) 

 

(b) 

 

(c) 

Figure 2. 11: LD average result of volume (mass) size distribution for materials (a) quartz 

lump (b) apatite (c) quartz fine 
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smaller particles. Therefore, results of laser diffraction were chosen for further analysis. How-

ever, depending on the size fraction, the divergence between the results of sieving and laser 

diffraction due to shape and density effects is variable and not easy to predict quantitatively 

(Dinis and Castilho, 2012; Finch and Wills, 2016). 

2.1.2.3. Volume (mass) to number distribution conversion 

Some particle size measurement techniques determine number distributions, and some deter-

mine volume distributions. For example, LD is typically considered to yield particles sizes, 

which approximate to a sphere of equivalent volume. So, LD technique primarily provides a 

volume distribution. Other techniques that measure size distributions on a particle by particle 

basis, such as image analysis, measure number distributions. Results from number-based sys-

tems, such as microscopes or image analysers, construct their initial result as a number distri-

bution. In LD, the use of volume distributions introduces the concept of the equivalent sphere. 

An equivalent sphere is a sphere equal to real particle in the property that is measured. Thus for 

light scattering methods, it is a sphere that would produce the same scattering intensities as our 

fundamental particle; this approximates to a sphere of equal volume, although the more non-

spherical a particle is, the greater the error in this approximation will be. Techniques based on 

number distribution can also be used to calculate a volume distribution when the particle diam-

eters are taken to represent a spherical object's diameter. Here, as we are going to analyse the 

distribution of single particles, which requires all particles to be considered equally important, 

a conversion method was needed to convert results of laser diffraction from volume to number 

distribution (Tomas, 2014). Calculation of volume to number distribution is shown in chapter 

4. 

2.1.2.4.  Micro-X-ray computed tomography 

Micro-X-ray computed tomography (XCT) techniques were developed for the medical services 

field to provide accurate internal images of the human body. Later, XCT techniques started to 

be used in non-medical applications (Miller et al., 1990). It is a non-destructive technique that 

allows visualization of the internal structure of objects determined mainly by variations in den-

sity and atomic composition (Mees et al., 2003). With this technique, a 3D representation of the 

sample is generated based on 2D X-ray projections of the specimen acquired in different rota-

tion angles. These projection images are reconstructed to the volume data by calculating the X-

ray attenuation coefficient for each voxel using the "back filtered projection" algorithm (Miller 

et al., 1990). There are various configurations of this technique, such as the sample distance to 
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the source, the sample size, the required resolution, and the X-ray source energy spectrum 

(Mees et al., 2003). Its applications are vast in various fields, although the actual results and 

post-processing steps are different in each field. For doing XCT measurements, the steps are as 

follows: 1) sample preparation, 2) measurement and reconstruction, 3) image processing, in-

cluding denoising and binarization, 4) segmentation and 5) data analysis. All steps are described 

in the following sub-sections. In Figures 2.12 and 2.13, the machine parts and place of sample 

to analyse are shown schematically. 

 

Figure 2. 12: Schematic of XCT measurements machine (Leißner and Peuker, 2017) 

 

Figure 2. 13: X-ray microscope (XRM) Zeiss Xradia 510 Versa; combined a standard XCT 

architecture with microscopy optics enabling high-resolution tomography above limits of 

conventional micro XCT (Leißner and Peuker, 2017). 
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2.1.2.4.1. Sample preparation 

As the goal is to develop a method able to deal with data from MLA, the sample preparation 

for XCT samples was chosen close to the MLA sample preparation. The goal is to have a similar 

population of particles with similar characteristics and biases to those possibly occurring in a 

sample for MLA. Two grams of sample material from the splitting step were mixed with one 

gram of graphite. To achieve better results, the sample size was reduced from 20mm to 10mm 

in side. In an MLA sample preparation, the step after adding the graphite is to suspend the 

sample and graphite mixture in two grams of epoxy resin to prepare the grain mount and then 

vertically cut the resulting epoxy block to get sections in the direction of sedimentation (Furat 

et al., 2018). After mixing these preparation steps, the samples were sent to the lab to start the 

XCT measurements. 

   

                                         (a)                                                                (b) 

Figure 2. 14: Sample preparation to do XCT measurement (a) before and (b) after decreasing 

the size. 

2.1.2.4.2.  Measurement and reconstruction 

The samples were scanned using Zeiss Xradia 510 equipment. To attain volumetric data of a 

sufficient resolution and an appropriate size (3D field of view) a voxel size of 3.7 μm was 

chosen for the XCT. The parameters of the XCT scan are listed in Table 2.5. The 3D volume 

reconstruction was done using the Zeiss XRM reconstruction software. This software works 

with a filtered back-projection algorithm and an additional beam hardening correction method 

(Leißner and Peuker, 2017). This image reconstruction step creates a series of images that show 

slices through the particle in cross-section with each slice spaced one voxel apart (Evans et al., 

2015). A manual byte scaling is used to adjust the histogram's grayscale values to the range of 

interest. 

 

20 mm 

10 mm 



 

17 
 

Table 2. 5: Parameters for the XCT Scan of the considered Sample 

Parameters Values 

Source position (mm) -25 

Detector position (mm) 21 

Objective 4X 

Camera binning 2 

Magnification 4.00 

Pixel size (μm) 3.66 

Voltage/power (kV/W) 140 

Filter HE2 

Exposure time 5 

Angle (grad) 360 

Projections 2,401 

 

2.1.2.4.3.  Image processing 

Depending on the aim of XCT measurement and image qualities, different image processing 

methods are chosen. However, comparing the presentation of various image processing meth-

ods on the same set of test images often leads to different results (Schlüter et al., 2014). The 

methods used were divided into denoising and binarization. 

Denoising 

Image denoising aims to ease binarization. There are several methods to remove the noise and 

recover the correct image. The methods should not change the sample features; the main two 

methods were used for the denoising were non-local means filter and unsharp masking (Schlüter 

et al., 2014). The procedure was done with Avizo software. In a non-local means filter, the 

algorithm compares all voxel neighborhoods in a given search window with the current voxel 

neighbors. The similarity between the neighbors determines the weight with which a voxel 

value in the search window will influence the new value of the current voxel. The final weights 

are determined by transforming these similarity values with a Gauss kernel. Unsharp masking 

is a pervasive filter that sharpens edges on the elements without increasing noise. It first applies 

a Gaussian filter to a copy of the original image and blends it with the original. Undesired 

effects are finally reduced by using a mask to only apply sharpening to desired regions of the 

gradient image above a certain size threshold. 
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                                     (a)                                                                         (b) 

Figure 2. 15: Image (a) before and (b) after non-local means 

    

                                   (a)                                                                        (b) 

Figure 2. 16: Image (a) before and (b) after unsharp masking 

Binarization 

Binarization transforms a gray level image into a binary image. This method is used when the 

gray level image's relevant information corresponds to a specific gray level interval. A gray-

scale image is binarized, which means that the foreground phase (particles) is separated from 

the background (Furat et al., 2018). 

10 mm 10 mm 

10 mm 10 mm 
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Figure 2. 17: Binarized image (Particles are in foreground with blue color) 

2.1.2.4.4.  Segmentation and labelling 

One of the most complicated procedures for deriving data from XCT measurement is segmen-

tation. There are different comprehensive techniques to do this, depending on the goal and com-

plexity of data and particle characteristics such as shape and size. These techniques include 

watershed transform, morphological filters, and deep learning. Several filters were tried, and in 

the end, segmentation results were achieved by using deep learning and watershed transform. 

In this study, watershed method was suitable for more homogenized samples like quartz, while 

the deep learning method was better for non-homogenized samples like apatite. The two tech-

niques are described in the following subsections. 

Watershed transform and distance map 

A classic way of separating touching objects in binary images makes use of the distance trans-

form and the watershed method. The idea is to create a border as far as possible from the centre 

of the overlapping objects. This strategy works very well on rounded objects and it is called 

Distance Transform Watershed. It consists of calculating the distance transform of the binary 

image, inverting it and then applying watershed on it using the original image (Legland et al., 

2016). Dragonfly software version 2020.2 was used to operate this method. After doing the 

binarization and putting the particles to the foreground and the pore space to the background, a 

distance map on pore space was created and inverted. On the inverted distance map a threshold 

10 mm 
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range was implemented. The threshold range was a new binary region of interest that gives each 

particle core but does not connect the particles; otherwise, they would not be separated. The 

next step was to label the resulting particles. After labeling binarized seeds (particles), the wa-

tershed transform was performed. Running the watershed algorithm, seeds grow to the border 

of each particle, typically without producing over-segmentation. Figure 2.18 shows the process 

gradually to the end. 

Deep learning 

Deep learning (also known as deep structured learning) is part of a broader family of machine 

learning methods based on artificial neural networks with representation learning. Learning can 

be supervised, semi-supervised or unsupervised (Bengio et al., 2013). In image segmentation, 

deep learning can learn patterns in visual inputs in order to predict object classes that make up 

an image. The main deep learning models used for image processing are U-Net (Shelhamer et 

al., 2017), Autoencoder (Kramer, 1991) and Random forest (Breiman, 2001). In this study, the 

images were trained with all three models and in the end U-Net model was chosen to run on all 

of the images. U-Net is based on the fully convolutional network and its architecture is modified 

and extended to work with fewer training images and to yield more precise segmentations 

(Shelhamer et al., 2017). For this method, dragonfly software 2020.2 was used. The deep learn-

ing method can be directly applied on grayscale images, without need of a preliminary binari-

zation. Random areas in the image that include both particles and background were selected 

and the software tries different models and shows the results of each deep learning model in a 

separated windows (Figure 2.19). Depending on complexity of images, around 30-60% of all 

slices were needed for trainings to have an acceptable result. There was the possibility to com-

pare the models and choose the one with the best segmentation results, which was evaluated 

visually. After obtaining a suitable segmentation model, the model was operated on whole im-

ages slices (sample space). 

Labelling 

Depending on the segmentation method a connectivity analysis of individual objects in the 

entire 3D volume needs to be done. Each pixel in an individual object is assigned an identical 

value, and each object is assigned a different consecutive value, starting from value 1. The 

assigned value depends on the location of the object in the image (top to bottom, left to right). 

The maximum value gives the total number of objects in the original binary image and identifies 

each particle as individual data. Labeled particles are identified with a different color. 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_networks
https://en.wikipedia.org/wiki/Representation_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
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(a)                                                                               (b) 

   

(c)                                                                               (d) 

    

(e)                                                                               (f) 

Figure 2. 18: (a) grayscale image, (b) binarized image, (c) applying threshold on inverted 

distance map (new binarized image) (d) labeling particles (seeds) (e) grayscale image and 

labeled particles, (f) after running the watershed transform and segmentation is done. 

10 mm 10 mm 

10 mm 

10 mm 10 mm 

10 mm 
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Figure 2. 19: Trained models comparison for doing segmentation. 

Figure 2.20 illustrated the labelled particles in 2D and 3D views. In this study, this module was 

ran in Avizo software with a command name labelling. Explicit labelling was not necessary for 

outcomes of the watershed method. 

   

(a)                                                   (b)                                                              (c) 

Figure 2. 20: Labeled particles for the mineral quartz lump. (a) and (b) 2D view and (c) 3D 

view of particles. 

2.1.2.4.5.  Data analyses 

Analysis modules extract data values from an image. The XCT measurements can extract sev-

eral properties of particles, but the important point is to set measurement parameters depending 

on the goal and requirements of project. For example, if the purpose is to compare area, diam-

eter, and volume, one can set the measurements as it required. As data from different analytical 

techniques are combined in one statistical model, the statistical model needs to have one prop-

10 mm 

10 mm 
10 mm 

10 mm 
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erty that can describe particle size from all techniques. The equivalent circular (spherical) di-

ameter (ECD) of particles was extracted from XCT data, as the base of these measurements, 

such as laser diffraction, considers the diameter of particles from its volume. An equivalent 

circular diameter (ECD) corresponds to the diameter of the circle having the same base area of 

a circle (2D) or sphere (3D) of the particle. 

 

 

 

  

 

 

 

 

                                             (a)                                                                            (b) 

Figure 2. 21: (a) and (b) one labeled particle equivalent circular diameter. 

For XCT data, it was necessary to have one series of data in 2D as data of model construction 

and another series in 3D as validation the method. Therefore, the ECD data of labeled particles 

were first extracted in 3D and from each particle its 2D cuts were generated as well. 

 

Figure 2. 22: Labeled particles in dragonfly converted to grayscale image and ready to import 

to the Avizo software 

ECD 
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Figure 2. 23: Particles analyzed first view of 3D. 

 

Figure 2. 24: Particles analyzed in 2D and a single particle number 1472 is selected. 
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Figure 2. 25: Particles analyzed in 3D and a single particle number 1472 is selected. 

Image analysis of individual particles resulted primarily in a number weighted size distribution 

(counting the number of particles/bin), converted easily to an area – or volume-weighted dis-

tribution. The particle distribution can be presented as a bar or line chart (histogram or curve) 

2D & 3D particle size analysis of XCT image (Dalen, 2014). The data were exported as CSV 

file formats to use in R software for the next steps. 

2.2. Statistical approach for Particle Size Distribution 

In this study, a prediction statistical model was defined by using Bayes' Theorem. In Bayes' 

Theorem, as an inverse conditional probability, two conditional probability assessments were 

explored to find a quantitative relationship between them (Clementi et al., 2011). The main goal 

of the prediction model was to construct a probability distribution of  the 3D size of individual 

particles from the information of their 2D cuts and the bulk particle size distribution, because 

the methods to measure them exhibit less complexity and less cost than a full 3D XCT. The 

statistical model required input data as input to predict the 3D size distribution of particles from 

the two-dimension size distribution; these input data for the model, corresponding to the differ-

ent analytical methods, were divided into three parts depending on their roles in the model: 

prior, likelihood and posterior. Table 2.6 shows the model parts and analytical techniques re-

quired for it. 
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 Table 2. 6: Statistical model parts and analytical techniques requirements 

Model parts Required Analytical technique 

Prior Laser diffraction or sieving 

Likelihood XCT (2D) 

Posterior XCT 3D 

 

2.2.1. Bayes' theorem and particles size distribution 

The unique value of the Bayesian approach is to estimate the posterior probability distributions 

for all the unknown objects in a model, given the data sample. To use the model, marginal 

distributions are constructed for all those entities we interested in, i.e., the study end variables 

(Lampinen and Vehtari, 2001). These can be the parameters in parametric models or the 

predictions in (non-parametric) regression or classification tasks. The posterior probabilities 

require a clear definition of the prior probabilities for the parameters. The posterior probability 

for the parameters θ in a model H given the data D is, according to the Bayes' rule, 

P (θ⃒ D,H) =
P (D⃒ θ, H) ⋅  P (θ⃒ H)

P (D⃒ H)
 (2-1) 

,where p (θ⃒D,H) is the likelihood of the parameters θ, p (θ⃒ H) is the prior probability of θ, 

and p (D⃒ H) is a normalizing constant, called evidence of the model H. In this study, the prior 

probability is identified with p (3D) and the likelihood with p (2D ⃒ 3D), that denotes the 

probability of obtaining each possible 2D value given its actual 3D size ,  and for each individual 

particle. p (2D) is the normalizing constant, interpreted as the evidence of the model, which is 

the marginal probability distribution of two-dimensional cuts of individual particles. Therefore 

in this study, the Theorem is written as below: 

p (3D ⃒ 2D) =
p (2D ⃒ 3D) ⋅  p (3D)

p (2D)
 (2-2) 

The normalizing constant p (2D) needs to add at the end of calculations, so for now, we can 

remove it and write the Theorem as: 

P (3D ⃒ 2D) 𝛼  P (2D ⃒ 3D) . P (3D) (2-3) 
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It is important to note that the particle size distribution from our analytical methods to be used  

in Eq. (2-3) must be defined on the same system base. For instance, image base techniques such 

as XCT produce number distribution of particles, while LD reports volume (mass) distribution. 

Therefore, it is necessary to convert LD data to number distribution before using them in Eq. 

(2-3). 

2.2.2.  Prior 

In Bayes theorem, a prior probability of the target parameter is a probability distribution that 

would express one’s beliefs about this quantity before some evidence is taken into account. 

Prior (p (3D)) data was considered from the information of laser diffraction as global property 

(bulk sample population). For evaluating the performance of the proposed method, two possible 

scenarios for the prior distribution were considered: 1) A prior model for performance and di-

agnostic purposes (Figure 2.26), and 2) A prior of actual data (Figure 2.27). For the first case, 

we derived the prior distribution from XCT data, and for the second one, the measurement of 

the laser diffraction was used, previously converted to number distribution. Furthermore, the 

prior obtained from LD was constrained to the particle size range that could derive from XCT. 

2.2.3.  Likelihood 

The likelihood of a hypothesis given some data is the probability of the data assuming that the 

hypothesis is true. In Bayes’ Theorem, likelihood results are used to update prior information. 

In this study, the likelihood function defines a probability distribution of the 2D size distribution 

given a 3D size value. This is denoted as p (2D ⃒ 3D). The 2D of a particle can be measured 

by several analytical instruments, most importantly from MLA and other automated mineralogy 

systems based on scanning electron microscope technoloy. Additionally, we can emulate the 

obtention of such 2D cuts from the XCT data results. One way or another, the value of the 2D 

cut is observed, that is, it is known. However, for deriving the likelihood p (2D ⃒ 3D), a 

reasonable assumption about the shape of the particle is needed. In this regard, several strategies 

can be applied to evaluate the likelihood. In this study, a geometric approach was followed, 

with the simplification of considering spherical particles, as Figure 2.28. 

https://en.wikipedia.org/wiki/Probability_distribution
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(a) 

(b) 

 

(c) 

Figure 2. 26: Priors of model performance and diagnostic settings for minerals (a) quartz 

fine, (b) quartz lump, and (c) apatite 
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(a) 

 

(b) 

 

(c) 

Figure 2. 27: Priors of actual data from LD data for minerals (a) quartz fine, (b) quartz lump, 

and (c) apatite 
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Figure 2.28 (b) shows the relationship between the 2D size (denoted as 𝑟, apparent radius of 

the particle), and  its actual 3D size (denoted as 𝑅). Furthermore 𝑎 denotes the position of the 

2D measurement cut through that single particle. This value is unknown; nevertheless, its 

probability distribution is known. As the cut is randomly distributed, its probability distribution 

can be reasonably assumed to be uniform between 0 and 𝑅. So by the probability theory notation 

can write this assumption as ∼  𝑈 (0, 𝑅) , and its probability density function 𝑓𝑎(𝑎|𝑅) as Eq. 

(2-4) and its cumulative density function 𝐹𝑎(𝑎|𝑅) as Eq.(2-5). 

 

    

  

  

 

                             (a)                                                                           (b) 

Figure 2. 28:  (a) a group of particles of quartz lump, and (b) one particle is selected to show 

the geometric approach 

𝑓𝑎(𝑎|𝑅) = {
1/𝑅 if 0 ≤ 𝑎 ≤ 𝑅 
0 otherwise

 (2-4) 

𝐹𝑎(𝑎|𝑅) =       

𝑎

𝑅
𝑖𝑓 0 ≤ 𝑎 ≤ 𝑅

1 𝑎 > 𝑅
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2-5) 

From figure 2.28, we know:  

𝑅2 = 𝑎2 + 𝑏2   

𝑎 = √𝑅2 − 𝑟2 

(2-6) 

 

a 

r 
R 



 

31 
 

     

Figure 2. 29: (a) probability density function of uniform distribution and (b) cumulative 

density function of uniform distribution. 

By using Eq. (2-5) and (2-6) can write: 

𝐹𝑎(𝑎|𝑅)        =      

0               𝑖𝑓  √𝑅2 − 𝑟2  <  0

1              𝑖𝑓 𝑅 <  √𝑅2 − 𝑟2

√𝑅2  −  𝑟2

𝑅
                          𝑖𝑓   0 <  √𝑅2 − 𝑟2 <  𝑅

 (2-7) 

 

The three conditions of Eq. (2-7) can be simplified as below: 

I.  √R2 − r2 < 0 R2 − r2 < 02 R2 < r2 (impossible) 

(2-8) 
II.  √R2 − r2 > R R2 − r2 > R2 0 = R2 − R2 > r2 (irrelevant) 

III.    0 < √R2 − r2 <  R 0 < R2 − r2 < R2 −R2 < −r2 < R2 R > r > 0 

So from equation (2-8) can be written as (2-9) below: 



 

32 
 

𝐹𝑎(𝑟|𝑅)  =          

0               𝑖𝑓  𝑅 <  0

√R2  − r2

R
             𝑖𝑓  𝑟 <  𝑅

   

 (2-9) 

To convert CDF to the PDF derivation performed on equation (2-9): 

𝑓𝑎(𝑟|𝑅)  =
𝑑𝐹 (𝑟  𝑅)

𝑑𝑟
          

0               𝑖𝑓  𝑅 <  𝑟
𝑟
𝑅

√𝑅2 − 𝑟2
              𝑖𝑓  𝑟 <  𝑅

   

 (2-10) 

From equation (2-10) the likelihood function is obtained to be introduced in Eq. (2.2). 

Depending on 𝑟, the size of apparent from 2D cuts, the likelihood of its true size 𝑅 starts from 

a different point, but the curves are similar by a translation and a scaling on the x-axis. As it 

shown by the curves, the likelihood function is infinity at 𝑅 = 𝑟. 

  

Figure 2. 30: Likelihood curves with different particle cuts; cut sizes are 5, 137, 13, and 76, 

respectively 

2.2.4. Posterior  

In Bayesian statistics, a posterior probability is the revised or updated probability of an event 

occurring after considering new information. In other words, by multiplying likelihood and 

prior probabilities distributions, the result is (proportional to) the posterior distribution. Using 



 

33 
 

equation (2-10) with the results of the prior distribution as explained in section (2.2.2), which 

is represented by means of a specific discretization of the bulk sample number-based particle 

size distribution, the posterior probability density function p (3D ⃒ 2D) was obtained. Figure 

2.31 shows as an illustration one case of prior, likelihood and posterior for one single particle 

of apparent size 𝑟 = 4 . 

  

   

(a) 

   

(b) 
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(c) 

Figure 2. 31: (a) prior curve sample (b) likelihood curve with a 2D cut size 4 micron, and (c) 

posterior curve after multiplication 

 

2.2.5. Validating posterior result for single particles 

After obtaining the curve of the posterior, as in figure 2.31 (c), the method requires validation 

to check that it provides reasonable assessments of the true size 𝑅 of each particle, and to assess 

the uncertainty of this quantity. Therefore, the actual particle size was extracted from the same 

XCT measurement is also shown on Figure 2.32 as a vertical line. Figure 2.32 (a) displays the 

actual 3D size of a particle on the curve. As can be seen, the particle's actual 3D size, with a 

size of 25 microns, is very close to its cut size from 2D data. Closer the actual 3D size is to the 

peak of the posterior curve, the more similar the true and apparent sizes are. For quantifying 

that similarity, we can calculate the integral of the curve from the place of the actual 3D size 

(green line) upwards (figure 2.32 (b)) and normalize it to the whole area of the curve as equation 

(2-11). The normalizing constant in Eq (2-2) can be ignored, because the normalization is taking 

place in Eq. (2-11). As much as 𝑄(𝑅) is closer to 1 the true and the apparent size are more 

similar. 
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(a) 

 

(b) 

Figure 2. 32: (a) and (b) show what the posterior curve area from the actual 3D point looks 

like. 

𝑄(𝑅) =
∫ p(R|r)dR 
∞

R

∫ p(R|r)dR
∞

0

 (2-11) 

In this way, results from all particles are made comparable to each other. If the hypotheses we 

assumed in constructing the model are correct in describing the actual value, then the Q(R) 

values must follow a uniform distribution, which is flat between zero and one, whichever 

form the posterior has.  
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Chapter 3. Model proposal, validation, and diagnostic 

settings 

 

After clarifying the method and before applying the model to the actual data, a validation, and 

diagnostic were needed; given the available data two series of analyses were implemented. 1) 

model proposal, validation, and diagnostic settings and 2) usage in a realistic setting with actual 

data; by actual data, as it was mentioned in section 2.2.2, meaning the prior distribution derived 

from laser diffraction as the bulk sample. 

3.1. Model Proposal 

In this step, 1485 single particles from XCT data of one of the materials (quartz lump) were 

extracted. Each of these single particles includes several cuts from 2D data. Randomly one cut 

for each particle was selected. Afterwards, data was used as explained in chapter 2 to construct 

the model for the uncertainty on the actual 3D size of each particle via the Bayes theorem strat-

egy. 3D data defines the prior distribution, as shown in figure 3.1. 

 

Figure 3. 1: Prior curve from XCT 3D data for mineral quartz lump size of x axis is in micron 

The same 3D data was used as prior as was used in validation as actual 3D particle size. Ap-

plying this strategy helped to find how the model works, removing potential differences be-

tween the way LD and XCT measure the 3D particle size. The likelihood equation curves, de-

pending on the cuts size (2D size), were evaluated with Eq. (2-10). After importing the data, 
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likelihood and prior curves were multiplied to produce a posterior curve—the actual particle 

size was placed on posterior curves and represented as a line. The integral 𝑄(𝑅𝑖) was computed 

for particle 𝑖 with true size 𝑅𝑖, and results were represented as histograms in figure 3.2.  

Table 3. 1: Summary of Q-values of the histogram 

Variable 
Summary of Q-values of histogram 

Min. 1st Qu Median Mean 3rd Qu Max 

HIST 0 0.1562 0.3343 0.3760 0.5709 1 

 

Figure 3. 2: Histogram of Q-values 

The histogram was proposed to visualize how well the method works for all particles. As shown 

in Figure 3.2, the method has deviations from the expected result (a flat line): too low frequency 

of high Q-values and too high frequency of low and near-zero Q-values are identified, as the 

expected result should be a flat frequency. To explore the reason of the deviations from the 

expected behaviour, each posterior was classified as a function of the interval of the histogram 

they belong to. For each one of these sequences, one representative was extracted at random. 

These posterior curves are shown in column 2 of Table 3.2. They show the typical shapes of 

posteriors and under which circumstances high or low Q-values are acquired. 

In Table 3.2, the actual particle size is shown by the green line on posterior curves. From 

sequence 1 to 10, the true size moves closer to the apparent size. This means that in sequence 

10, which includes the highest Q-values, the particles tend to be cut through the middle. This is 

supported by the deviation, the minimum, average and maximum 3D size of all particles in each 

sequence (columns 4-6, Table 3.2). Furthermore, the exact number of particles in each 

histogram is presented as well; these numbers correspond to the height of each bar in the 
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histogram of Figure 3.2. In other words, the histogram is a visualization of the same numbers 

reported here. The size information in the table shows that particle sizes increase from highest 

to lowest Q-values. The average size of the cuts in each sequence shows the same trend, but 

less pronounced. In the following subsections, two different methods are implemented to further 

analyze the deviations. 

3.2. Validation and Diagnostic Settings 

The posterior curves are split in several series following different criteria to try to understand 

in which circumstance the deviations occur. Two cases are considered. One is different cuts for 

the same sample particles. The second one is to filter particles by their aspect ratio. These two 

methods and their results are provided in the following subsections. 

3.2.1. Cut variability 

The first experiment is to select different random 2D cuts for each particle. For doing so, 300 

particles are randomly sampled from the 1485 single particles from XCT data of quartz lump. 

For these 300 particles, five different random cuts are selected and are set in five different series. 

Following the same scheme as for the general case, all the model proposal procedures are 

applied to the five different random cuts separately. One prior curve for different random cuts 

and five histograms are presented in Figures 3.3 and 3.4, respectively. 

 

Figure 3. 3: Prior distribution for different random cuts 
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Table 3. 2: Examples of posterior curves and particles information in each sequence 

Seq 

No. 

Posterior's curve of each 

sequence 

Number 

of 3D 

particles 

Actual 3D particle size - (R)  
2D cuts 

size (r) 

Min Mean Max Mean 

Seq 1 

 

 253 105.062 148.418 247.467 69.680 

Seq 2  197 93.65 114.912 232.132 68.162 

Seq 3  204 86.911 104.314 204.315 67.692 

Seq 4  169 80.257 97.385 186.810 64.422 

Seq 5  169 70.4705 95.435 227.672 68.833 

Seq 6  141 31.138 84.845 182.709 59.093 

Seq 7  127 25.33235 78.413 157.669 59.891 

Seq 8  97 21.31805 72.413 144.899 58.598 

Seq 9 

 
73 13.75745 66.774 210.194 57.476 

Seq 

10 
 28 16.148 83.027 217.843 80.562 
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The five histograms (Figure 3.4) show possible outcomes for the same method and for the same 

particle population, but for a different sample. Differences between them are therefore only due 

to the randomness of sampling. There is always variability in the data. From the results of 

histograms we can see how the variability in the data propagates to variabilities in the results 

of the method. Again, one element of each bar is extracted to see why frequencies are different. 

In Tables 3.3 and 3.4, the details and summary Q-values and curves extracted from histograms 

and sequences numbers as the elements of each histogram bar are shown. The histograms and 

tables of Q-values demonstrate that the randomness of 2D cuts for the same particle does not 

have pronounced effects on the results of posteriors. The same behaviour as observed in the 

previous general case can be seen here as well: the effect of particle sizes from sequence one to 

ten is notable in the Tables 3.4 and 3.5. 

Table 3. 3: Individual Q-values of individual cases 

Summary Q-values of posterior distribution of histogram Fig 3.4 

Hist 

No. 
Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8 Seq 9 

Seq 

10 

1 9 19 25 40 44 58 66 77 84 94 

2 9 19 29 39 46 59 66 74 90 92 

3 9 19 29 33 46 59 63 76 83 91 

4 7 20 27 39 44 53 69 74 81 91 

5 8 19 30 39 49 60 68 71 83 91 

Table 3.5 shows the size of the actual particle and the size of the 2D cut in each sequence of 

each variable (histogram), in columns four and five. Also, images of particles are grouped by 

sequences for a better visualisation and are shown from Figures 3.5 to 3.14. From the posterior's 

curves of each bar give hints to the reason for the observed differences, e.g., at sequence 10 

representing bar number ten in all histograms. In sequence 10, the size of the actual particles is 

very close to the size of 2D cuts of particles; this means that the probability of cutting particles 

from their centre is lower than specified by the assumption of random cut and mostly happens 

in smaller particles. On the other hand, particles from the first bar show larger actual size than 

the rest, so they have a higher chance of having more cuts in different places than smaller 

particles. 
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Figure 3. 4: Histograms of five variables 
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Table 3. 4: Posterior curves extracted from five variables and divided by each sequence. 

 HIST 1 HIST 2 HIST 3 HIST 4 HIST 5 

Seq 1 

 

     

Seq 2    

 

 

Seq 3      

Seq 4      

Seq 5      

Seq 6      

Seq 7      

Seq 8      

Seq 9      

Seq 

10 
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Table 3. 5: Particles information of each sequence of five variables (histograms) 

Detail information of particles of each sequnce of each histogram 

Seq No. Figure no. Particles label color 
Particle actual 

size (3D) 

Partricle cut 

size (2D) 

Histogram 

number 

Seq 1 Fig 1 

Green 226,439 14,316 1 

Violet 229,396 57,858 2 

Yellow 230,714 142,864 3 

Yellow 230,714 21,474 4 

Green 226,439 35,790 5 

Seq 2 Fig 2 

Green 192,262 25,809 1 

Violet 190,568 19,384 2 

Red 195,522 46,573 3 

Yellow 190,528 22,636 4 

Light blue 193,482 24,796 5 

Seq 3 Fig 3 

Light Blue 182,515 10,123 1 

Green 176,548 30,086 2 

Red 175,556 10,123 3 

Violet 173,635 31,744 4 

Yellow 180,854 45,834 5 

Seq 4 Fig 4 

Green 160,185 25,809 1 

Yellow 162,755 12,398 2 

Red 170,894 35,310 3 

Violet 160,996 17,533 4 

Yellow 162,755 34,329 5 

Seq 5 Fig 5 

Red 154,658 36,028 1 

Green 147,476 7,158 2 

Violet 130,081 31,744 3 
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Red 154,658 34,329 4 

Yellow 144,531 16,531 5 

Seq 6 Fig 6 

Green 80,488 20,663 1 

Red 120,289 40,702 2 

Violet 80,488 23,740 3 

Yellow 119,881 18,482 4 

Green 83,1961 14,316 5 

Seq 7 Fig 7 

Red 80,57 38,988 1 

Green 55,029 18,014 2 

Yellow 64,599 10,934 3 

Green 55,029 5,844 4 

Violet 50,664 18,014 5 

Seq 8 Fig 8 

Violet 42,636 20,663 1 

Green 47,718 14,316 2 

Green 47,7185 25,138 3 

Green 47,7185 14,316 4 

Violet 53,804 14,316 5 

Seq 9 Fig 9 

Yellow 47,718 38,547 1 

Green 50,664 48,018 2 

Violet 42,636 32,012 3 

Green 50,664 41,120 4 

Violet 42,636 32,012 5 

Seq10 Fig 10 

Green 71,195 69,523 1 

Light blue 42,636 41,327 2 

Red 83,196 74,044 3 

Light blue 42,636 40,492 4 

Blue 47,718 45,460 5 
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Figure 3. 5: Particles of seq 1                                      Figure 3. 6: Particles of seq 2 

 

     

Figure 3. 7: Particles of seq 3                                        Figure 3. 8: Particles of seq 4 

         

Figure 3. 9: Particles of seq 5                                    Figure3. 10: Particles of seq 6 

 

Figure 3. 11: Particles of seq 7 
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Figure 3. 12: Particles of seq 8 

 

Figure 3. 13: Particles of seq 9 

 

Figure 3. 14: Particles of seq 10 

3.2.2. Influence of sphericity  

To consider the influence of sphericity of the particles and to observe deviations resulting from 

this property, the aspect ratio of particles was taken into account. Aspect ratio is defined as the 

ratio of longest width to the longest length of particles. There are two series of particle data 

available (real particles size 3D and cuts of particles 2D), aspect ratio was calculated separately 

for the two systems. Both aspect ratio on 3D particles and of their 2D cuts were considered. If 

there is a systematic underestimation of a certain kind for very high aspect ratio of particles, we 
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can consider the possibility of putting a warning that the estimate should be discounted due to 

the high or low aspect ratio in this case. 

3.2.3. Aspect ratio of 3D particles 

The aspect ratio of 3D particles provides information on the particles properties that allow for 

the assessment of the quality of the method. Mainly, it gives information on why the method 

has some deviations in terms of particle shapes. To evaluate the influence of 3D aspect ratio on 

the results, the sample space is split by aspect ratio quartiles, as shown in Table 3.6. 

Table 3. 6: Quartiles of aspect ratio of 3D particles (prior data). 

Quartiles of aspect ratio of 3D particles 

 0% 25% (Q1) 50% (Q2) 75% (Q3) 100% (Q4) 

Range 0.1395188 0.3568155 0.4397003 0.5281389 0.8236856 

An individual prior is derived from the particles falling within each quartile. The same methods 

are applied to obtain histograms, a summary of Q-values, and posterior curves for the data in 

each quartile of the 3D aspect ratio of particles. 

 

Figure 3. 15: Prior curves of each quartile of aspect ratio of 3D particles 

From the histograms in Figure 3.16 can see the method is performing similarly for all aspect 

ratio classes. The histograms are roughly flat, but that decrease in the last three bars. 

Q1 Q2 

Q3 Q4 
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Table 3. 7: Summary of Q-values of each quartile of aspect ratio of 3D particles 

Aspect 

ratio 

quartiles 

Summary Q-values of aspect ratio of 3D particles 

Min. 1st Qu Median Mean 3rd Qu Max 

Q1 0.006 0.150 0.325 0.359 0.550 0.943 

Q2 0.001 0.153 0.339 0.365 0.549 0.996 

Q3 0 0.156 0.352 0.375 0.554 1 

Q4 0.002 0.175 0.350 0.381 0.577 1 

Table 3.7 reports, for each aspect ratio class, how the Q-values are distributed. Essentially, we 

would expect the minimum to always be 0 and the maximum to be 1, while the quartiles and 

median should be near 0.25, 0.5 and 0.75, respectively. It is shown that all 4 series show similar 

deviations from these expectations, with none of aspect ratio group showing a large difference. 

However, the Q-values slightly increase from quartile one to four. It can be concluded that the 

aspect ratio of 3D particles influences the method, but not notably. 
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Figure 3. 16: Histograms of each quartile of the aspect ratio of 3D particles 
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Table 3. 8: Posterior examples of each quartile of aspect ratio of 3D particles and sequences 

 Q1 Q2 Q3 Q4 

Seq 

1 

 

    

Seq 

2 
    

Seq 

3 
    

Seq 

4 
    

Seq 

5 
    

Seq 

6 
    

Seq 

7 
    

Seq 

8 
    

Seq 

9 
    

Seq 

10 
  

 

 



 

51 
 

In table 3.8, the posterior curves of each quartile are displayed. As can be observed, the posterior 

curves behave differently, such as column one - row two or column two - row one, where a 

spike in leftmost part of the posterior is noticeable, which means the size of particles cut (2D) 

is big. On the other hand, in the fourth column and some in the third column in most sequences, 

the spike does not exist and small bumps appeared instead. It can be concluded that, when there 

are small bumps, the cut is small for the aspect ratio near one (more spherical shape). In figure 

3.17 boxplots of real particle size by quartiles of aspect ratio of 3D particles are shown. 

 

 

Figure 3. 17: Boxplots of each quartile of the aspect ratio and the sequences of them with 3D 

size of particles for quartz lump 

In figure 3.17, the actual 3D size vs. ten sequences of the histograms and four aspect ratio 

classes is shown, with the highest to lowest sphericity (aspect ratio) from right to left. A clear, 

decreasing trend is apparent in all four 3D aspect ratio quartiles. As shown for each aspect ratio 

class, the larger the Q-value is, the smaller particles become. For example, in the leftmost 

quartile (Q1), the ten boxes represent one of the sequences between 0-0.1 and 0.9-1. As Figure 

3.17 shows, particles with the lowest Q-values are large and with increasing Q-value, the 

particles get smaller. In the lowest quartile, we see lower frequencies and not as much data as 

in the other quartiles. The box plot in the last (sequences) bar of the 4th quartile has a larger 

spread of data, but the number of particles here is very low. It can also be observed that the 

Q1 Q2 Q3 Q4 
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median decreases consistently for each sequence in the first two quartiles (the tick bar). In the 

third and fourth quartiles, there are higher uncertainties; in the last bars, the boxes are more 

extensive and much more prominent. 

Moreover, the lack of data relative to the other sequences is the reason for the larger spread of 

data for the last sequence of each quartile. It can be concluded that the aspect ratio of actual 

particles (3D) does not have a significant influence on the quality of the results. Furthermore, 

we see that for every quartile of aspect ratio, the larger particles tend to have lower Q-values, 

and this is general for all aspect ratios. This occurs consistently, except for the highest aspect 

ratios. 

 

Figure 3. 18: Boxplots grouped by quartiles of aspect ratio by each sequence of quartz lump. 

Figure 3.18 shows the same information as figure 3.17, but with a differnet ordering of the 

boxes, to get a clearer visualization of the influence of aspect ratio. Quartiles of aspect ratio for 

each sequence are grouped next to each other. As it is shown decreasing trend is same as figure 

3.17. At figure 3.18 is shown in each sequence, the size classes tend to increase from quartile 1 

to 4. It means in the same sequence with equal Q-values, size of particles increase from lower 

to higher sphericity. This trend continues until sequence 9. In sequences 9 and 10 things are 

more uncertain and have bigger boxes with the reason for this being the lower frequencies in 

those boxes. From figure 3.18 can conclude that the particles size are bigger in higher aspect 

ratio class of particles (more sphere particles) with the same Q-values. Figures 3.19 to 3.22 

Seq 1 
Seq 2 

Seq 3 

Seq 4 

Seq 5 

Seq 6 

Seq 7 
Seq 8 

Seq 9 
Seq 10 
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show the same observation as the above boxplots for two different materials, apatite, and quartz 

fine. 

 

Figure 3. 19: Boxplots of each quartile of the aspect ratio and the sequences of them with real 

size of particles for apatite 

 

Figure 3. 20: Box plots grouped by quartiles of aspect ratio by each sequence for apatite 

As we can see, for apatite this change the change of size is more pronounced from the first to 

the last sequence in comparison to minerals such as quartz. The reason for this is a higher 

Seq 1 

Seq 2 Seq 3 

Seq 4 
Seq 5 

Seq 6 

Seq 7 

Seq 8 

Seq 9 

Seq 10 

Q1 Q2 Q3 Q4 
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amount of smaller particles than larger particles in the sample space, also size of particles in 

each sequence increases from lower to higher aspect ratio classes. 

 

Figure 3. 21: Boxplots of each quartile of the aspect ratio and the sequences of them with real 

size of particles for quartz fine 

 

Figure 3. 22: Box plots grouped by quartiles of aspect ratio by each sequence for quartz fine. 

Q1 Q2 Q3 Q4 

Seq 1 

Seq 2 
Seq 3 

Seq 4 

Seq 5 

Seq 6 Seq 7 Seq 8 Seq 9 
Seq 10 
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As we can see for quartz fine, the change is smoother because of more homogeneous size 

classes. As shown in the box plots, the effect of particle aspect ratio on the current method is 

not significant and the main property that has influenced Q-values is particle size. This is true 

across all minerals considered. It could be observed that as the particles get smaller, the 

sequence number increases and the frequency of particles decreases.  

3.2.3.1. Aspect ratio of 2D particle cuts 

Considering the aspect ratio on 2D cuts, i.e. the apparent aspect ratio, can provide insight on 

how shape of 2D cuts can influence the method. To evaluate the influence of aspect ratio of 2D 

cuts on the results, the samples of particles are split by 2D cuts aspect ratio quartiles, as shown 

in Table 3.9. 

Table 3. 9: Quartiles of aspect ratio of 2D particles (r). 

Quartiles of aspect ratio (r size) 

 0% 25% 50% 75% 100% 

Range 0.1168673 0.3906805 0.5260452 0.6483720 0.9226922 

 

Figure 3. 23: Prior curves of each quartile of aspect ratio of 2D particles 

The same as for the previous subsection, priors are derived from each quartile of 2D cuts. The 

same process was implemented as in the previous section. From the histogram of each quartile, 

as seen in Figure 3.24, the effect of sphericity from the first quartile to the last quartile of 2D 
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aspect ratio is evident. The Q-values increase more noticeably than in the results of the 3D 

aspect ratio. However, deviations from the first bars to the last bars of the histograms remain. 

In Figure 3.24, histograms of Q-values display a slight increase from the first quartiles of aspect 

ratio to the fourth. 

 

 

Figure 3. 24: Histograms of each quartile of the aspect ratio of 2D cuts of particles 
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Table 3. 10: Summary of Q-values of each quartile of aspect ratio of 2D cuts of particles 

Aspect ratio 

range 

Summary Q-values 

Min. 1st Qu Median Mean 3rd Qu Max 

Q1 0.001 0.132 0.327 0.351 0.561 0.936 

Q2 0 0.170 0.346 0.362 0.539 0.973 

Q3 0.001 0.177 0.336 0.383 0.578 0.963 

Q4 0.003 0.163 0.376 0.390 0.573 1 

In Table 3.10, the distribution of the Q values for each aspect ratio class are reported. It is 

expected that the minimum will always be 0 and the maximum 1, while the quartiles and median 

should be near 0.25, 0.5 and 0.75, respectively. All 4 series show similar deviations from these 

expectations, none of aspect ratio group shows a significant difference. However, the Q-values 

increase slightly from quartile one to four; it is seen that the aspect ratio of 2D cuts of particles 

influences the method but not significantly. 

In Table 3.11, posterior curves of each quartile and sequence are shown. As it is shown from 

quartiles one to four (columns one to four), the spikes of the posterior curves get smoother; 

however, there are exceptions, such as sequence three in the fourth quartile since a big particle 

can seldom be cut across the center. In figure 3.25 to figure 3.30 boxplots of the three minerals 

and the influence of the size of real particles and aspect ratio of 2D cuts are shown. 

From the boxplots of all the minerals, it can be interpreted that particle cut sphericity affects 

the method but not as much as the property of size of particles. It is shown, by quartiles of 

aspect ratio of 2D cuts of particles there is the same results as the previous settings of aspect 

ratio of 3D particles. The only different from previous setting is that in the same sequence the 

size of particles are randomly distributed in each quartile of aspect ratio and do not change 

gardually with increasing the sphercicity from quartile 1 to 4. 

The aim of these exercises were to evaluate which effects or properties of particles control how 

well the method works. The possible criteria that have an influence are real size, real aspect 

ratio and apparent aspect ratio. From all the observed properties in this chapter, the influence 

of size, both 3D and 2D, is the main factor that affects the results. 
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Table 3. 11: posterior examples of each quartile of aspect ratio of 2D cuts 

 Q1 Q2 Q3 Q4 

Seq 1 

 

 

 

  

Seq 2     

Seq 3     

Seq 4     

Seq 5     

Seq 6     

Seq 7     

Seq 8     

Seq 9     

Seq 10     
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Figure 3. 25: Boxplots of each quartile of the aspect ratio of 2D cuts and the sequences of 

them for quartz lump 

 

Figure 3. 26: Boxplots grouped by ten sequences and four quartiles of aspect ratio of 2D cuts 

for Quartz lump. 
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Figure 3. 27: Boxplots of each quartile of the aspect ratio of 2D cuts and the sequences of 

them for Apatite 

 

Figure 3. 28: Boxplots grouped by ten sequences and four quartiles of aspect ratio of 2D cuts 

for Apatite 
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Figure 3. 29: Boxplots of each quartile of the aspect ratio of 2D cuts and the sequences of 

them for quartz fine 

 

Figure 3. 30: Boxplots are grouped by ten sequences and four quartiles of aspect ratio of 2D 

cuts for quartz fine 
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Chapter 4. Results  

 

After proposing the model and identifying the deviations, and influence of size in the model, 

the method is implemented on actual data. As already mentioned in methodology chapter 2, to 

incorporate the data of LD into the model, a conversion to number distribution is required. After 

conversion the prior curves are extracted. Tables 4.1 to 4.2 show the obtain distribution before 

and after conversion from volume (mass) to number distribution and Figures 4.1 to 4.3 show 

the prior curves of prior distribution from the data of Table 4.2. The likelihood equation curves, 

depending on the cuts size (2D size) are evaluated same method in chapter 2 with Eq. (2-10). 

Prior curves and likelihood curves are multiplied as Eq. (2-3) to obtain posterior curves as it is 

shown in Table 4.4. The actual particle size was placed on posterior curves and implemented 

as a green line (Table 4.4). The integral of 𝑄(𝑅) from Eq. (2-11) is computed and results are 

represented as histograms in figures 4.4 to 4.6 for each mineral separately. All the details are 

shown in the following subsections of this chapter. 

4.1. Calculation of Volume (Mass) to Number Distribution Conversion 

First of all, results of prior data from table 2.4 are filtered by the size of particles in the range 

that could have XCT data; the results are shown in Table 4.1. After wards, the data of Table 4.1 

is imported into equation (4-1), and number distribution are derived, as seen Table 4.2. 

𝑞0(𝑑) =
∫ 𝑑−3𝑞3(𝑑) 𝑑(𝑑)
𝑑

𝑑𝑢

𝐽𝑑𝑢
𝑑0: 𝑑−3𝑞3(𝑑) 𝑑(𝑑)

≈

∑ 𝑑𝑚,𝑖
−3

𝑛

𝑖=1
⋅ 𝜇3,𝑖

∑ 𝑑𝑚,𝑖
−3

𝑁

𝑖=1
⋅ 𝜇3,𝑖

 

 

(4-1) 

In Eq. (4-1) 𝑞0 (d) represents the number distribution and 𝑑𝑢and 𝑑0 represent lower and upper 

particle size limit respectively. 𝑞3(d) denotes particle size-frequency distribution and dm,i and 

μ3,i represent mean interval and mass fraction, respectively. N is the overall number of 

intervals and n denotes the running number of intervals. 
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4.2. Prior Distribution Data and Curves  

Table 4. 1: Laser diffraction results base on volume (mass) distribution 

Sieve size (μm) 
Fraction (wt %) 

Quartz lump Quartz fine Apatite 

0.5 0 0 0 

4.5 0 0 0 

5.5 0 0 0 

6.5 0 0 0 

7.5 0 0 0 

9 0 0 0 

11 0 0 0 

13 0 0 0 

15.5 0 0 0 

18.5 0 0.415 0 

21.5 0 0.422 0 

25 0.329 0.522 0 

30 0.555 0.826 0 

37.5 0.972 1.415 0 

45 1.026 1.546 0 

52.5 1.018 1.606 0 

62.5 1.319 2.288 0 

75 1.558 3.585 0 

90 1.787 6.569 0 

105 1.867 9.748 9.745 

125 2.980 15.797 10.972 

150 5.249 19.745 12.038 

180 9.199 18.497 13.952 

215 13.795 11.413 16.552 

255 17.159 4.511 18.131 

305 20.470 1.062 18.611 

365 17.265 0.029 0 

435 2.810 0 0 

515 0.606 0 0 

615 0.032 0 0 

735 0 0 0 

875 0 0 0 
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Table 4. 2: Laser diffraction result of base on number distribution 

Sieve size (μm) 
Fraction (number %) 

Quartz lump Quartz fine Apatite 

0.5 0 0 0 

4.5 0 0 0 

5.5 0 0 0 

6.5 0 0 0 

7.5 0 0 0 

9 0 0 0 

11 0 0 0 

13 0 0 0 

15.5 0 0 0 

18.5 0 23.413 0 

21.5 0 14.644 0 

25 20.315 11.527 0 

30 20.673 11.017 0 

37.5 19.584 10.218 0 

45 11.319 6.115 0 

52.5 6.805 3.847 0 

62.5 5.373 3.340 0 

75 3.713 3.061 0 

90 2.464 3.246 0 

105 1.559 2.918 36.168 

125 1.517 2.882 23.826 

150 1.564 2.107 15.127 

180 1.586 1.143 10.223 

215 1.387 0.411 7.199 

255 1.024 0.096 4.662 

305 0.722 0.013 2.794 

365 0.356 0.0002 0 

435 0.034 0 0 

515 0.004 0 0 

615 0.0001 0 0 

735 0 0 0 

875 0 0 0 
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As it has shown in Tables 4.1 and 4.2 the size of smaller particles are considered 0 in different 

size ranges. And also for one mineral (apatite) the range size of bigger particles are considered 

0 as well. The main reason of it as mentioned in subsection 2.2.2 is because of particle size 

range should be the same as size range that could derive from XCT technique. 

 

Figure 4. 1: Prior curve of quartz lump base on number distribution 

 

Figure 4. 2: Prior curve of apatite base on number distribution 
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Figure 4. 3: Prior curve of quartz fine base on number distribution 

4.3. Histograms of Actual Data for all Minerals 

 

Figure 4. 4: Histogram frequency of quartz lump 

 
Figure 4. 5: Histogram frequency of apatite 
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Figure 4. 6: Histogram frequency of quartz fine 

4.4. Q-values of Minerals 

Table 4. 3: Summary of Q-values of actual data 

Aspect 

ratio 

range 

Summary Q-values of actual data for minerals 

Min. 1st Qu Median Mean 3rd Qu Max 

Quartz 

lump 
0 0.067 0.212 0.257 0.406 0.954 

Apatite 0.012 0.322 0.619 0.612 0.964 1 

Quartz 

fine 
0 0.169 0.361 0.389 0.588 1 

 

The results show the method behaves the same way as in the previous chapter for diagnostic 

settings.  It is shown that the histograms bars are roughly decreasing from the first bar to the 

last bar, which implies lower frequency of higher Q-values. Apatite behaves differently on a 

combination of actual data. This is possibly because of its limited range of size, as is shown in 

table 4.3. The summary Q-values in table 4.3 indicate that the method works better for smaller 

particles than larger ones. Posterior curves in Table 4.4 are also presented as examples of a 

combination with actual data. The validation line (indicating actual 3D size) moves to the left 

along the x-axis in different sequences, that is, apparent and real size become more or more 

similar. 
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4.5. Posterior Curves Examples of Minerals 
Table 4. 4: Posterior curves of examples for actual data 

 Quartz lump Apatite Quartz fine 

Seq 1 

 

 

  

Seq 2  

 

 

Seq 3   

 

Seq 4    

Seq 5    

Seq 6    

Seq 7    

Seq 8    

Seq 9    

Seq 10    
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Chapter 5. Conclusions, Strengths vs. Weaknesses and 

Future Work 

 
5.1. Conclusions 

The aim of this work is to derive a method with the specific objective of quantifying the 

uncertainty on the actual 3D size of each and every individual particle by combining the 2D 

cuts of particles from the cross-sections (possibly coming from MLA, in this work obtained 

from XCT) with 3D particle size distribution from the sample population (laser diffraction or 

sieving). This should serve to improve the assessment of data from MLA and other 2D 

automated mineralogy techniques in the future. For this, a statistical prediction model is 

provided that allows the probability distribution of particle size from 2D cuts to be generated 

in actual 3D. A series of analyses are applied, in a combination of analytical and statistical 

methods. Analytical techniques to obtain data and validate the model are divided into three 

parts: laser diffraction, XCT in 2D and XCT in 3D. In parallel, the statistical model subdivided 

in 1) prior, 2) likelihood, and 3) posterior. 

For the prior, bulk sample population is needed, which is derived from laser diffraction data; 

laser diffraction measurement were performed several times and an average result was taken 

from all measurements. LD results are based on volume distributions, and a conversion to 

number distribution is required to consider particles equally important. The results of LD are 

restricted to the size range of particles which are measurable by XCT analysis as the likelihood 

input data (2D cuts) and validation data (3D) come from this technology. Two possible 

scenarios are considered for a prior distribution: 1) prior for model performance diagnostics; 

and 2) prior for actual data. The calculation of the likelihood required the establishment of a 

relationship between the two-dimensional cut of single particles with the actual 3D size, 

assuming that the particles are spherical (Eq. 2-10) for simplicity. The real two-dimensional 

cuts of the particles are generated from XCT data, although in reality they can be derived from 

MLA. For deriving the data from XCT, several steps were followed and the data are measured 

as the equivalent circular diameter of each particle. After completing the analytical dataset, the 

data is embedded into the statistical model. The model takes global properties of particles and 

converts them to individual particle information. For validating the method, the actual particle 

size in 3D from XCT data are displayed on the posterior curve. The results are more acceptable 

the closer the true 3D size is to the peak of the distribution of the posterior curve. For this, a Q-

value of validation is calculated by evaluating an integral of the upper tail of the posterior curve, 
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from the validation point to infinity, divided by the whole area under the curve, as shown in Eq. 

(2-11). As 𝑄(𝑅) becomes closer to 1, the true and the apparent size are more similar to true size 

of the particle. 

The method performance is evaluated by using the XCT data both as prior and as validation. 

Histograms show the whole results to compare the variabilities of the method, and evaluate 

which particle properties may control the method performance. There is a relation between 

larger particle size and lower Q-values. The effect of size is more noticeable than the effect of 

aspect ratio of particles; however, splitting the analysis in 2D sphericity classes showed slightly 

better performance. These behaviours were also observed when using the second scenario for 

the prior, i.e. using laser diffraction data as prior, thus allowing to conclude that the differences 

in the physical measurement process between LD and XCT are not strong for this method 

performance. However, size of particles has a notable effect on Q-values.  

From the histograms of final results we can find that two biases are apparent, being highlighted 

as well by previous literature studies. The same as Cuzzi and Olson (2017) found biases of 1) 

larger particles are more sampled because of their larger size; and 2) a random cut is likely to 

be non-diametrical. Benito et al. (2019) further developed the method by considering ways to 

tackle the biases proposed by Cuzzi and Olson. 

 

5.2. Strengths and Weaknesses 

The method strengths are that it can be applied to different analytical techniques with different 

sets of measurements and represent results as one output. For example, this study used laser 

diffraction and XCT, one based on volume and the other on number distribution. The various 

diagnostic checks helped identify the deviations, localize them and improve the model before 

running it on actual data. Any single-particle used in the model can be tracked and its properties 

observed.  

The weaknesses of the current method include that is limited to the dominantly spherical 

particles as all particles must be considered perfect spheres. The deviation of overestimation in 

the first bar of the histogram of actual application data increased as the probability of counting 

particles cuts for bigger particles increases, and also in higher Q-values have less frequencies 

as the last bar of histograms. 
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5.3. Future Work 

By considering the current behaviour of the model and decreasing the biases by using the 

techniques were mentioned from previous studies, the model should be extended to incorporate 

particle shape parameters such as length, width and height, sphericity or aspect ratio. In this 

way, the various particles shapes could be considered. However, this would increase the 

complexity of the calculations. From an analytical point of view, perhaps measurements could 

be replicated for classed particles to more accurately observe the behaviour of the method for 

particles of different size classes. 2D cuts can achieve from MLA analysis and use as the inputs 

of the model. 
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