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Abstract

Unplanned and unexpected events during drilling a well do not only lead to a massive
loss of resources by increasing the amount of non-productive time, but also cause the
necessity of plugging a well and starting a contingency side-track, which will add
environmentally and economically risks to the originally planned project. Therefore,
detecting the undesirable downhole drilling trouble at the earlier stages may help avoid
the matters above.

Several surface drilling parameters can be used to predict the downhole drilling
problems in real-time. Nevertheless, torque and standpipe pressure are considered to be
the most critical and useful parameters. Therefore, several methods utilizing the two
indicated surface parameters for detecting the downhole drilling problems were
published in the last decade. However, these methods have flaws, mainly related to
delays in receiving the necessary information, uncertainties associated with involved
data, human error by potential incomplete data sets (due to sensor misreading), as well
as human error interpretation of the data. Thus, linking sequential pattern recognition
for possible drilling event determination is impacted. Consequently, recognizing drilling
parameter anomalies in real-time using one single approach, such as data-driven or
model-driven, can lead to an excessive increase in the nonproductive time due to the
generation of undue false alarms. Thus, integrating a stochastic model with a data-
driven model will reduce the associated uncertainties and make the predictive model
more effective. From this perspective, the ultimate goal of this thesis is to develop a
hybrid model that provides better accuracy in detecting abnormal behavior of measured
drilling parameters such as standpipe pressure and torque.

A standalone application based on a hybrid model was developed during the thesis
work by the implementation of statistical calculations based on actual and predicted data
channels. As a result, uncertainty windows are created and compared to the actual data
points in order to detect abnormal drilling behavior and triggering alerts to provide
warnings to the user. In order to evaluate and determine the shortcomings of the
developed workflow, the developed hybrid model, a case study was conducted. The
final results of the case study reveal that the workflow is reliable and easy to use.
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Zusammenfassung

Ungeplante und unerwartete Ereignisse wahrend des Bohrens eines Bohrlochs fithren
nicht nur zu einem massiven Ressourcenverlust, indem die Menge an unproduktiver
Zeit erhoht wird, sondern verursachen auch die Notwendigkeit, ein Bohrloch zu
verschlielen und eine Nebenbohrung aufgrund unvorhergesehener Ereignisse zu
starten, die neben Okologischen Auswirkungen die wirtschaftliche Risiken fiir das
urspriinglich geplante Projekt erhoht. Daher kann das Erkennen der unerwiinschten
Bohrprobleme im Bohrloch in den fritheren Stadien dazu beitragen, die oben genannten
Probleme zu vermeiden.

Verschiedene Oberflichenbohrparameter konnen verwendet werden, um die
Bohrlochprobleme in Echtzeit vorherzusagen. Trotzdem werden Drehmoment und
Standrohrdruck als die kritischsten und niitzlichsten Parameter angesehen. Daher
wurden im letzten Jahrzehnt mehrere Methoden verotffentlicht, bei denen die beiden
angegebenen Oberflachenparameter zur Erkennung der Bohrprobleme im Bohrloch
verwendet wurden. Diese Verfahren weisen jedoch Mangel auf, die hauptsachlich auf
Verzdgerungen bei der Ubertragung der erforderlichen Informationen, auf
Ungenauigkeiten im Zusammenhang mit den verwendeten Daten, auf menschliches
Versagen durch moglicherweise wunvollstindige Datensdtze (aufgrund von
Sensorfehlern) sowie auf menschliches Versagen bei der Interpretation der Daten
zuriickzufiihren sind. Somit wird die Verkniipfung der sequentiellen Mustererkennung
fiir eine mogliche Bestimmung des Bohrereignisses beeinflusst. Folglich kann das
Erkennen von Anomalien von Bohrparametern in Echtzeit aufgrund eines einzigen
Ansatzes, z. B. datengesteuert oder modellgesteuert, zu einer {ibermafSiigen Erhchung
der unproduktiven Zeit fithren, wenn Fehlalarme generiert werden. Die Integration
eines stochastischen Modells in ein datengesteuertes Modell verringert somit die damit
verbundenen Ungenauigkeiten und macht das Vorhersagemodell effektiver. Aus dieser
Perspektive besteht das ultimative Ziel dieser Arbeit darin, ein Hybridmodell zu
entwickeln, das eine erhohte Genauigkeit bei der Erkennung abnormalen Verhaltens
gemessener Bohrparameter wie Standrohrdruck und Drehmoment bietet.

Eine eigenstandige Anwendung basierend auf einem Hybridmodell wurde wahrend der
Arbeit durch die Implementierung statistischer Berechnungen basierend auf
tatsdachlichen und vorhergesagten Datenkandlen entwickelt. Infolgedessen werden
Unsicherheitsfenster erstellt und mit den tatsdchlichen Datenpunkten verglichen, um
abnormales Bohrverhalten zu erkennen und Alarme auszuldsen, um den Benutzer zu
warnen. Um die Mangel des entwickelten Workflows, des entwickelten Hybridmodells,
zu bewerten und zu analysieren, wurde eine Fallstudie durchgefiihrt. Die endgiiltigen
Ergebnisse der Fallstudie zeigen, dass der Workflow zuverldssig und einfach zu
verwenden ist.
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Introduction

Chapter 1 Introduction

1.1 Overview

Drilling operations are always encountered with the risk of equipment, procedure, and
downhole environmental related issues, which can influence drilling performance
negatively and, in a worst-case scenario, lead to loss of the well being drilled. Common
problems that are encountered during drilling formation can be classified into two
categories, minor issues related to hole cleaning or bit balling, and major issues such as
twist offs, stuck pipe, fluid losses, kicks, and critical hole conditions like a tight hole,
washouts through to the collapse of the hole. It is important to understand that drilling
problems appear at each well being drilled and can be mitigated to an acceptable level
by keeping control over the drill string and downhole conditions. There are several
routine options and state of the art procedures to detect or recognize potential risk and
issues during drilling. However, most of them required human interference; hence, there
is the potential of such risks being missed or might be recognized too late, and it will be
no enough time to take the proper actions to reduce the impacts.

Continuously monitoring the surface torque and standpipe pressure data provides a
good indication of the possible issues mentioned above; hence most of the existing
methods that deal with identifying the downhole problems rely on these two
parameters. In the state-of-the-art drilling industry, surface sensor data is used to apply
simulation models and algorithms and to evaluate the actual data that is acquired, e.g.,
via WITSML real-time data streams.

- Torque and drag simulation vs. real-time monitoring

- Deterministic approach for pressure loss calculation

- Standpipe pressure simulation vs. real-time monitoring
- Analysis of historical data (offset wells)

- Machine learning approach

Torque and drag simulation and monitoring as a down-hole problem detection method
were introduced decades ago. Different simulations are performed upfront to the good
operations according to varying equipment and conditions that are being expected. Once
drilling is performed, torque and hook load data are being recorded in real-time, and a
data plot based on the actual data will be generated on the fly. The actual “torque and
drag plot” can be compared to the simulated data, and deviations from the expected
range and potential upcoming drilling issues respectively can be identified.

Major disadvantages of the torque and drag analysis are the required pre-work
simulation on the one hand and that the required analysis parameters on the other. For
example, once a component of the drill string is being changed, the simulated curve will
not apply realistically anymore, leading to additional re-simulation work. Another
disadvantage is that the actual torque and hook load data could potentially be
misinterpreted due to invalid sensor data and human factors. If the simulation was done
based on offset data, this applies another factor of uncertainty.

A common method to estimate the pressure loss of the system is a deterministic
approach. It is a complex method with consideration of drilling mud rheology,
5
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downhole conditions, and time-related effects on the mud properties and equipment
related input. On the market, a wide range of hydraulic simulation software tools is
available. Real-time applications use the streaming mud logging sensor data, that is, e.g.,
transmitted via WITSML or WITS0, as an input for the simulator and recalculate the
pressure regimes.

1.2 Motivation

As it was clarified in the previous section, all of the mentioned methods have flaws; the
points below summarize the most obvious ones:

e Manual input of some specific parameters that need to be identified in the
laboratory and can often not be provided frequently to update the models.

e Lack of a systematic approach for filling up the missing data. As a result, relevant
input data is reduced, or the filling is done by the human, which could lead to
uncertainties due to invalidity and human factors.

e Use of the off-set well data as the main source for building the models. In most
cases, such data never match the exact environmental conditions of another
wellbore; hence its scope of application is limited to operational performance
related analysis and planning, but not to downhole conditions related
simulations in terms of health safety and environmental (HSE) aspects.

e For machine learning methods, usually, they used to fill data gaps in case of
missing timestamps of a specific sensor data channel without considering
possible deviations related to the uncertainty of the provided data. This gave the
basic idea for extending sensor data-driven neural networks by calculating an
operational window after comparing predicted and actual data to make the
predictive model more effective.

1.3 Objective

The prime objective of this thesis is to develop a hybrid model that provides better
accuracy in detecting abnormal behaviors of measured drilling parameters such as hook
load, standpipe pressure, torque, flow-out, and validate the model by using made-up
cases of manipulated data. It was decided to focus on torque and standpipe pressure
data since these are significant for detecting and predicting the following drilling
problems:

- Stuck pipe

- Losses

- Kick

- Tight hole

- Washout

- Hole collapse
- Hole cleaning
- Twist off

- Bitballing
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In order to accomplish the prime goal of the thesis a set of sequential objectives were
defined;

1. Data Collection: Get in touch with the supporting company with data enough
for performing what is aimed. It should relate to at least sequential 03 (three)
hours of drilling, or sequential drilling data of a drilled joint, as a minimum
necessity. The more data is provided, the better it is.

2. Data filtering and processing: All data received may be susceptible to gaps,
unreliable data-points, and outliers, needing filtering and processing in order to
be able to be used for the purpose of the thesis. This is intended to be done with
a developed script, allowing fast processing in a more automated manner.

3. Development of predictive model: The predictive model to be programmed
using to be used is part of this step. Once data is collected and processed, several
predictive models will be generated based on the number of drilling parameters
to be studied.

4. Development of alert window sub-function and signs shown: Based on step 3
and as an enhancement of the coding, determination of window for triggering
different alerts and also different levels is to be defined and implemented.

5. Stand-alone application: A user interface will be generated to provide a quick
evaluation of real-time data.

6. Model Validation: At this stage, with all developed, the test is to be run, results
analyzed, corrective measures applied. Tests will be performed based on
historical datasets from Equinor’s “Volve” open source.

1.4 Thesis Structure

The research was undertaken, which is covered in Chapter 2, prior to the development
work for the creation of a standalone application. Starting with the most common issues
arising in the daily business of a drilling rig, state of the art procedures for detecting
those issues are explained in detail, as well as up-to-date developments in the field of
machine learning approaches are introduced.

Chapter 3 gives insights into the methodology behind the developed standalone
application. Data processing, building the predictive models, and statistical calculations
are explained in detail. Considerations for triggering alerts and building the standalone
application are illustrated further.

Finally, Chapter 4 compiles the results of a performed case study, where manipulated
data was used to test the capabilities of the standalone application. Different scenarios
have been created by manipulating original data sets without abnormal drilling
behavior to evidently abnormal trends in the data channels is to be investigated.



Abnormal Drilling Behaviors Verification Methods

Chapter 2 Abnormal Drilling Behaviors
Verification Methods

2.1 Overview

This chapter provides an overview of common drilling problems, their prediction,
detection, and mitigation methods of today’s drilling industry. There are many problems
that can occur whilst drilling is performed. Figure 1 illustrates an example for the
distribution of root causes for average non-productive time (percentage compared to
drilling days) compiled from 263 wellbores drilled over six years and below 600 feet
water depth (waiting on environmental conditions excluded). It can be noticed that the
majority of the problems are related to equipment failures and downhole issues, for
instance, stuck pipe, kicks, or loss of circulation.

Average NPT% to Drill Time (WoW excluded)
263 Wellbores drilled 2004/09 -2010/08

Avg, Days Drlg: 35 Water Depth <600

Avg. NPT Days: 4
Avg. %NPT to Drlg Days: 12%
Avg. Cost/ft: $758 |

©2010by James K. Dodson Company

W Stuck Pipe Twist Off Kick W Directional Corrections
Cement Squeeze B Mud Chemistry B [ost Circulation M Case/Wellhead Fail
M Rig Fail M Equipment Fail B Wellbore Instability SGF

Figure 1: Example non-productive time (NPT) distribution (modified from Pritchard et
al. 2012)

The main focus of the following subchapters lies in the explanation of the major issues
that could be avoided by considering methods for verifying abnormal drilling behavior
and techniques of monitoring torque and standpipe pressure trends.

8
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2.2 Drilling Problems
2.2.1. Pipe Sticking

Pipe sticking is the major reason for causing the drill string to get stuck (stuck pipe). A
differentiation between differential sticking that is induced by differential forces in the
borehole and mechanical sticking, which the origin may be subsurface material
(formation) or equipment related.

2.2.2. Differential Sticking

Differential sticking can occur when the drill string gets in contact with the filter cake.
While normal drilling is carried out with slight overbalance (higher than the pore
pressure of the formation and equal to the filter cake’s differential pressure), once the
drill string is partly embedded in the filter cake, the pressure will be different in the fluid
surrounding the area of the string and therefore forcing it to get stuck with time.

Figure 2 illustrates the conditions that lead to differential sticking.

Mud circulation

Impermeable zone

Filter cake

Porous and
permeable zone

Figure 2: Differential sticking (Hussain Rabia, 2015)

It is important to mention that any differential force will add to the forces that are already
present in the drill string related to the path and geometry of the well. The magnitude
of overbalance and friction is critical to the magnitude of the differential sticking force
(overpull). The friction factor is prone to increase over time. The following formula (1)
considers pressure conditions and friction factor to calculate the differential sticking
force.

DSF = (Hs — Pr)XAcXff (1)
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where DSF is the differential sticking force in lb., Hs the hydrostatic pressure of the mud,
Pt the formation pressure in psi, Ac the effective contact area in in? (2) and ff represents

A2V (5 - ) = [ - e ()] @

Where h is the thickness of the permeable zone, tmc the thickness of the filter cake in
inches and OP5 the outer diameter (OD) of the drill pipe or collars in inches.

the friction factor.

Figure 3 shows an example of the magnitude of overpull at a contact perimeter of 1200
in? resulting in 1200000 Ib.

Overpull

- - — T 4“
§ 25ftsand i I
§ P,=4000psi 120 25 ft
' i (300”)

Differential Force=

- (5000-4000)psi x 4 x 300in2=
12000001b

Figure 3: Magnitude of differential sticking force (Hussain Rabia, 2015)

The difficulty in early detection of differential sticking is that circulation will not be
influenced (no change of surface parameters). The major indicator is an abrupt increase
of surface torque values (torque and drag), in which the alerting period may be too short
to prevent it completely from getting stuck. After differential sticking is being noticed,
mud weight can be reduced while circulating to mitigate the symptoms; however, this
method will increase the danger of an unrecognized kick. Other methods are displacing
the choke with seawater (offshore well) and the U tube method (Hussain Rabia, 2015).

2.2.3. Mechanical Sticking

The leading cause of mechanical sticking is related to pack off or formation and bottom
hole assembly (BHA). Partly collapsed hole material, as a result of insufficient hole
cleaning or formation instability, is “bridging” around the drill string, where the pipe
diameter changes downwards, or it is “packing off” between the borehole wall and the
pipe shortly above the drill bit and prevents the ability to pull back-wards while rotating
the string is still possible (overpull). Besides decreasing drilling performance, torque will
increase before getting stuck. Hence torque and drag simulation and monitoring are
commonly done, and the developed torque window could ease early detection of it. The
following figure illustrates packing off and bridging behavior while drilling.

10
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Figure 4: Sketch of "pack off" (a) and "bridging" (b) (Hussain Rabia, 2015)

Especially highly inclined wells tend to form cutting beds on the low side of the well
while drilling, and removing them can be impossible. Once the string is being pulled,
the cuttings bed will accumulate around the drill string and stuck the pipe mechanically
(Hussain Rabia, 2015). Figure 5 shows how hole cleaning conditions change with the
well paths deviation. While fast cleaning is appearing at lower inclinations (<30°), the
speed of cleaning may be reduced with increasing deviation. At the inclined section >65°,
a cuttings bed tends to be developed. Hence proper hole cleaning should be carried out
according to the degrees of inclination and after guidelines for effective hole cleaning
(Abdelaziz Gabr, 2017).

- 0-30°
Can

' Fast Cleaning
Suspend a

65° +

Figure 5: Guidelines for effective hole cleaning (Abdelaziz Gabr, 2017)
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Referring to the conditions illustrated in Figure 5, well inclination and cuttings bed
behavior can be categorized into three types (Type 1-3) (Asad Elmgerbi, 2019).

Type one (I) is valid for wellbore inclinations below 30° and can form pack-offs or
bridging, as illustrated in Figure 4. Type two (II) is valid for an inclination of 30°-65°. In
such cases, the particles tend to move downwards again after a velocity decrease during
uplift and due to gravity. The particles will be held in a state of local circulation between
the drill string and the borehole wall and may lead to stuck pipe conditions due to
accumulation. The particles will form accumulations, and the so-called phenomenon of
avalanche effect can appear, whereas an abrupt downward movement of the
accumulated cuttings is induced and will cause the drill string to be stuck.

Type three (III) is valid for highly inclined wells of more than 65°. The particles will form
accumulations at the low side of the well. Pipe rotation is a critical parameter to avoid
formation damage and viscous coupling of particles onto the drill string (maintain
optimum RPM).

Reaming and circulating the hole clean needs to be performed carefully to avoid the
cuttings bed to slide down (avalanching). A common procedure is to perform frequent
short trips. Sufficient hole cleaning is highly related to the mud parameters, flow rate,
the cuttings size, and their annular velocity and can be influenced by changing the mud
system (fluid properties, rheology, additives, solvents, etc.), the setup of the bottom hole
assembly (can cause dog legs, etc.) or hydraulics (pump rate, pump volume, etc.), hence
proper prediction of the pressure losses of the complete system is obligatory.

In general, turbulent flow is desired for optimum hole cleaning behavior. However, for
laminar flow regimes, the flow rate needs to be increased accordingly, although the
optimum flow rate is hard to determine under realistic conditions (unconsolidated
formations, cutting size, etc.) [Hussain Rabia, 2015].

The predicted standpipe pressure window could therefore improve procedures of
adjusting the flow parameters at an early stage of developing hole cleaning problems, as
the pressure losses are reflecting changes in the flow as well.

2.2.4. Tight Hole

Tight holes are usually developing in reactive formations (e.g., shales) and lead to
restricted rotary or vertical movement of the drill string and may end up in stuck-pipe.
The effect can be intensified by the particular sticking mechanism. The symptom can be
detected by increasing, and erratic rotary torque and drag (overpull to lift the pipe or
increased weight when lowering the pipe), as well as via monitoring the standpipe
pressure (or pump pressure) since an increasing trend is a clear indicator of tight hole
formation.

The swelling of shale appears when the filtrate from the drilling fluid is being absorbed
and will lead to tight hole conditions. Hence it is critical to select the proper mud to
mitigate chemical effects with the formation. Mud inhibitors and oil-based muds are
used to lower the effect of swelling.

Over pressured formations, in other words, formations with a higher pore pressure than
normal for the depth of their occurrence, are the result of incomplete compaction and
de-watering during the burial process. These formations apply another source of tight
hole condition and may be indicated by:
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- increased pressure and reduction in hole size
- shale cavings are falling into the hole, which might accumulate on the bottom of
the hole.

Tight hole conditions can lead to extended operational timings and a number of
scheduled runs due to the necessity of additional reaming and hole cleaning operations
(wiper trips or additional conditioning runs before drilling ahead), logging operations,
and additional casings to be set as severe hole stability problems may occur.

2.2.5. Bit Balling

The symptoms of bit balling are close to that of forming a tight hole, whereas in such
case, the BHA will be adhered to by the reactive formation material, and the bit nozzles
may be plugged with time. Formations of low permeability are characteristic for bit
balling conditions, shales for instance, which is strongly influenced and increased by its
(sticking) clay mineral content (A. Hayatdavoudi, 2011).

The theory behind bit balling can be explained by the plasticity of the clays, which lead
to a longer state of the plasticity of the shale before being hydrated to a liquid (less sticky
state). “This extended plasticity state is believed to contribute towards cuttings
becoming molded onto the steel parts of the bottom hole drilling assembly (BHA) and
being plastered onto the walls of the wellbore.” (G. De Stefano, S. Young, 2009).

Amongst other factors, the liquid and plastic limit depends on the type of the clay
mineral (e.g., kaolinite or montmorillonite), clay fraction, and type of cations present
and its radius. While Na* has the smallest impact on the PL/LL ratio, Al**has the largest
on it. Mechanical force is reducing accretion and delaying it significantly with reduced
magnitude.

The “stickiness” of the shale surface may be enhanced by additives that absorb surface
water rapidly. The cuttings size is significantly influencing the accretion, whereas the
accretion will be reduced over time with increasing cuttings size. However, at smaller
cuttings size, the resulting greater surface area can lead to support plasticity and
accretion to lower timings.

While on the one hand, water-based fluid systems and additives have improved
wellbore stability whilst drilling; on the other hand, majority of non-productive time is
related to bit balling. The standpipe pressure will rise due to the plugged nozzles and
the resulting smaller annular diameter. Torque and drag will increase whilst pulling the
string (overpull), and a higher weight needs to be applied on the bit. The drilling
performance will be reduced dramatically (ROP); hence actions will be required (change
mud properties, additives), including necessary extra trips to clean the bit.

Alternatively, to water-based drilling fluids, oil-based or synthetic muds can be used
and will lower the risk of operational problems due to bit balling, agglomeration, and
accretion of drilled cuttings. The use of oil-based and synthetic muds is often associated
with higher costs for cuttings treatment, waste stream processing, compliance testing,
and higher costs for the material in general (G. De Stefano, S. Young, 2009).

2.2.6. Matrix Losses

Loss of circulation describes the fluid being lost to the formation whilst drilling. Lost
material is a major issue in terms of economics and health safety and environment (HSE).
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There are various reasons for induced fluid losses. The loss can be due to the natural
composition and geometry of the formation (porosity, permeability, brittleness, etc.),
caused by the wrong drilling procedure or underestimation of the annular conditions
(cuttings volume, pressure, etc.) respectively. Further, a tight mud window can lead to
exceeding the (formation) fracture pressure. Fractures will be formed, and fluid will be
lost. Besides mud rheology and pressure control, the volume of the cuttings in the
annulus needs to be considered and can be determined by the following formula (3),
which describes the ratio of the total mass to the total volume of the mud and cuttings
(Hussain Rabia, 2015).

_ pmXQ+141.4296X10"*ROPxd} 3)
Peff = = Qt67995x10-*ROPXd],

where p, is the effective mud density in the hole, ppg
Pm is the density of the mud at the surface, ppg
Q is the mud flow rate, gpm
ROP is the rate of penetration, ft/hr
and  d, is the bit size, in
The equivalent circulating density is given by summing up (4).

ECD = static mud density + drillcuttings contribution +
annular pressure loss contribution 4)

To reduce the loss severity while tripping, tripping speeds should be restricted whilst
running into the hole (surge pressure), which can be monitored in real-time. The
magnitude of the loss can be determined by the circulating pressure difference before
and after the losses appear compared to the mud weight. Therefore, a predictive window
for monitoring the pressure could advance the detection of losses.

In a case of fluid loss, the symptoms can be mitigated by reduction of the mud weight
or using loss circulation material (LCM). An abrupt change in the monitored pressure
loss (standpipe pressure) will clearly indicate abnormal circulation behaviors (losses)
and may avoid kick situations. The methods of evaluating the pressure losses will be
described at a later point in the thesis.

2.2.7.Kicks

Kicks are no big issue if control can be maintained, and the “unwanted influx from the
formation” can be circulated out through the well control system after following the
specific procedures accordingly. It is important to mention that when drilling with a
bottom hole pressure (BHP) close to the pore pressure of the formation, so-called “mini
Kicks” can appear at gas wells, which can lead to a misleading interpretation of the
pressure readings. In case of a gas influx into the annulus, the standpipe pressure will
decrease gradually (Anton Lettner, 2019). It is preferred to stay rather close to the pore
pressure than to the formation fracture pressure since a kick may be easier to control
than a fractured casing shoe (severe loss of the well operation) (Anton Lettner, 2019).
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However, the main purpose is to avoid kicks completely, if possible. Hence the pressures
need to be monitored at all times, and critical pressure changes should be recognized
initially. If the fluid flow becomes uncontrollable, a “blowout” is induced either;

- on the surface (fluids flowing at the surface) or
- underground where fluids are flowing between subsurface formations.

Causes of kicks can be related to:

- the formation pressure

- insufficient hold fill while tripping

- swabbing while tripping (frictional pressure caused by mud movement whilst
pulling the string leads to a reduction of mud hydrostatic).

- insufficient mud weight

- lost circulation

- excessive ROP through gaseous sands

The major reason for kicks is insufficient mud weight. The friction between the drill
string and the borehole wall may also lead to a reduction (swab, whilst pulling out of a
hole) or increase (surge, whilst running in a hole) of the BHP.

Amongst others (return flow, pit volume), kicks can be indicated by loss of circulation
and an increase in torque and drag. This once more clearly shows the importance of
monitoring pressure changes, torque, and drag. The most common signs of the kick are:

- increased ROP or drilling breaks

- falling pump pressure

- increase in mud flow from the annulus

- increase in pit levels

- gas cut, water cut, and salinity (reduction in the mud weight)

In general, once a kick was noticed (e.g., the flow was observed during a flow check),
the mud weight needs to be increased after safely shutting in the well and circulating
out the kick. There are standardized “killing” procedures for kick situations by the
International Association of Drilling Contractors (IADC) and the International Well
Control Forum (IWCF).

2.2.8. Equipment Related Downhole Issues

While issues related to the bottom hole assembly (BHA), such as bit damages (nozzles)
or twist-offs, can be indicated by an abrupt decrease of the standpipe pressure,
developing washouts are indicated by a gradual decrease. Washouts can lead to severe
additional stresses under compression and result in drill pipe failure.

Key seats or doglegs may be formed by the couplings (joints) of the drill string, touching
the borehole wall whilst pulling out of the hole. The location of potential doglegs is
usually known upfront and can be monitored via torque and drag to prevent the stuck
pipe during tripping operations (increase in drag). Figure 6 illustrates the formation of
a key seat whilst pulling out of the hole by the smaller diameter of the pipe rotating
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against the borehole wall. The string can be caused to get stuck when, e.g., a stabilizer is
reaching the spot, and a sudden overpull will be experienced. Another indication may
be either constant or increase in standpipe pressure will be experienced due to
unrestricted circulation (Colin Bowes, Ray Procter, 1997)

Figure 6: Formation of a key seat (Sedco Forex, 1997)

Doglegs (Figure 7) tend to form in varying formation layers (e.g., soft and hard formation
beds) that force the drill string to change the direction (accidentally) and are often related
to unsuitable setups of the BHA, too frequent change of BHA or too frequent or abrupt
changes in the direction of the rotary steerable system (RSS).
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Figure 7: Formation of a dogleg (Sedco Forex, 1997)

Dogleg severity is calculated during the planning stage of a wellbore (drill string design),
considering the maximum allowable bending in the drill pipes and couplings.

While key seats and doglegs can only form whilst pulling out of the hole, change of the
bit (e.g., PDC after roller cone) can cause under gauge hole conditions. Bit wear or coring
bottom hole assemble (BHA) can result in under gauged hole diameters, and the post-
run BHA can jam into it, causing severe equipment failures. Reaming should be
performed after coring and in danger of under gauging conditions. Stabilizers and
protected equipment should be used. Frequent logging runs should be carried out at
varying formation conditions to evaluate the well path for restrictions or obstacles.

Indications are under gauged parts of the BHA, sudden decrease of the string weight up
to experienced stuck pipe while the circulation shows rather unrestricted (Colin Bowes,
Ray Procter, 1997). A critical issue related to human factors is dropped objects in the
wellbore, which can lead to a significant amount of non-productive time due to
additional operational runs (fishing runs). An incident of a so-called “junk” is caused by
non-compliance with the health, safety, environmental, and quality (HSEQ) regulations
on the rig floor. Hence such incidents (and near incidents) should be tracked and
evaluated properly.
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2.3 Methods and Approaches used to Detect Downhole
Problems

2.3.1 Torque and Drag as Index for Detecting Downhole
Problems

2.3.1.1 The Principal of “Torque and Drag”

Torque and drag planning, monitoring, and analysis are essential for safe drilling
operations. The principals and applications in the drilling industry are explained in the
following subchapters. The principle of torque and drag is well known and is already
applied in the drilling industry for decades; it is related to kinematics. The base
calculations can be traced back to the free body diagram in Figure 8 that illustrates the
forces acting on a body on an inclined plane. Since the body of a drill string will be in
motion, friction forces need to be considered. Friction acts in the opposite direction of
the motion, hence whilst running in the hole, it acts upwards (Figure 8) and downwards
whilst pulling out of the hole.

Figure 8: Free body diagram of a moving body on an inclined plane (u=p).

The resulting force for running or pulling is given according to the sketch.
F =AT + F (5)

Where F is the force required to move the pipe in the specific direction, Ftthe friction
force, N the normal force, W reflects the buoyed weight, and therefore the axial tension
AT is given, and the formula can be solved as followed.

F =W Xcosp+puXxXW Xsing (6)

The following table shows the default values for the (kinematic) friction coefficient p.
The friction factors can vary significantly under realistic conditions and should be
obtained as accurately as possible from field measurements.
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Mud Type Cased hole (CH) Open hole (OH)
Water based mud (WBM) | 0.24 0.29
Oil based mud (OBM) 0.17 0.21
Brine 0.30 0.30

Table 1: Default friction factors based on historical well data (M.L. Payne &, F.
Abbassian 1996)

Drag is an axial-force generated due to friction between the drill string and the borehole
wall. To calculate the drag of a specific drill string element, starting from the bottom
where the drag force will be equal to weight on bit (WOB), the resulting formula can be
generated from the free body diagram (Figure 8).

Tp_y =Ty + AT — Fy = —~WOB + AT — F; 7)

Especially at extended reach wells, drilling drag is very critical due to the excessive
compressional forces (axial) in the drill string during running into the hole or whilst
sliding drilling. When reaching critical loads (increasing WOB), buckling will be induced
to drill string and lead to additional stresses that may result in drill pipe failure and
fatigue, respectively.

Figure 9 shows different scenarios of buckling, depending on the magnitude of WOB.

-

NO BUCKLING SNAKY BUCKLING HELICAL BUCKLING

WOB) Critical WOB) Hellcal
woB —>»

Figure 9: Drill string buckling behavior under increasing compressive load.
(M. L. Payne, Fereidun Abbassian, 1997)

Torque measurements provide a lot of information about the downhole conditions
whilst ongoing drilling operations. Torque is created by the friction when the rotating
drill string gets in contact with the borehole wall. The sketch in Figure 10 illustrates the
forces and torque on a rotating drill pipe.
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F=uxN
(a) (b)

Figure 10: Torque on a rotating drill pipe at a low well inclination (a) and high well
inclination (b) section (u=pi).
ATorque = Fs * DPop = X N X DPy) (8)
where
DPobis the outer diameter of the drill string element.

Considering an uplift of the drill string to the high side of the well the torque can be
calculated as followed.

DPop
2

ATorque =W X ( ) X sind 9)

where

@ = atan (10)

2.3.1.2 Torque and Drag Modeling

Torque and drag modeling are the pre-calculation of a drilling scenario in terms of
equipment and operations related limits in order to provide a safe drill string design that
considers tension and compression whilst running in the hole (RIH), pulling out of hole
(POOH) and drilling compared to buckling limits (vibrations) that were evaluated by
calculation of appearing torque and forces.

There are two major models for calculating torque and drag:

- Soft-string model
- Stiff-string model

I.  Soft-string Model

The soft string model considers a simplified picture of the drill string as a uniform
weighted steel chain without joints or clearance. It further neglects any deformation of
the drill string (no stiffness, no bending). Besides the critical considerations, which can
lead to underestimation of buckling prediction, the model can be applied below a build
of 1.5°/100m. Figure 11 illustrates the forces on the drill string during pick up and the
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prediction of buckling can be calculated by the previous explanations and additional
formulas given below. The method is applied by starting from the bottom of the string
and calculating torque and drag for each element (drill collars, heavy-weight drill pipes,
drill collars, etc.) until the top and summation of the results afterward.

Fi+ AF:

0+A0, a+Axx

\%Y Ft

Figure 11: Forces acting on drill string element during pickup. (C.A. Johancsik, D.B.
Friesen, Rapier Dawson, 1984)

Buckling Limits (by Dawson-Pasley):

OH:r =~ (BHp — DPp) (11)
CH:7 =3 X (CSGip — DPop) (12)
I = % X (DPlgipe - ID;ipe) (13)
Feritsin = —2X "w (14)
Fcrit,hel = (2\/5 - 1) X Fcrit,sin (15)

where BHb is the borehole diameter, CSGio the inner diameter of the casing, E the E-
modulus for steel = 2,06843x10"! Pa, I the moment of inertia, W. the unit weight [N/m], F
the critical forces where sinusoidal and helical buckling may occur.
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The following information is required as input for each element of the drill string to the
model:

- MD

- Trajectory

- Inclination

- CHor OH

- Friction coefficient

- Torque at bit

- WOB

- Young's Modulus

- Mud and steel density
- Buoyancy factor

- Casing and well diameter
- Pipe specification

After the required data was obtained, the calculation starts from the bottom up:

- Weight per element in the mud
- Normal force

- Tensional force

- Friction force

- RIH force

- POOH force

- Torque

The next step is to calculate the load profile by the cumulation of:

- RIH force (RIH profile)

- POOH force (POOH profile)

- Drill with WOB profile (formula (7), start with WOB and torque at bit)
- Torque (Torque profile)

Finally, the critical buckling limits can be calculated and can be compared in a
tension and compression plot (Figure 12). The curves for RIH (dark blue), POOH
(red), and drilling (light blue) must not exceed the curve for helical buckling (purple).
Sinusoidal buckling (green) allows tolerances but may be avoided if possible. It can
be noticed that the profile changes from tensional conditions (positive area) to
compressional conditions (negative area) at approximately 2200 meters. This point
is called the neutral point and appeared exactly at the kickoff point (KOP, end of
vertical section), where the first contact of the drill string with the borehole wall is
considered within the soft-string model.

In case a curve exceeds the limits, the setting of the drill string can be changed by
varying available pipe specifications and repeated until the model shows a safe
profile. The planning needs to be done realistically (e.g., avoiding HWDP in
horizontal sections), and the number of different used pipe gradings may be kept
small.
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Figure 12: Example of a tension and compression plot for a planned drill string (soft-
string model)

II.  Stiff-string Models

Stiff-string models consider bending stiffness of the drill string elements, clearance,
contact, and mechanical integrity for calculating the tension and compression curves. A
stiffness-factor can be added to the soft-string model. The soft-string model tends to
become inaccurate with increasing compressional conditions, and the difference
between stiff and soft-string can be significant.

Many different models for stiff-string were created, and their approach is not always the
same. In general, the importance of stiff string models was growing when horizontal
wells were becoming industry-standard e.g., HWDP and drill collars are being run in
compressional sections frequently; the goal was to overcome the poor results of the soft-
string model for stiff tubular, high dogleg severity or narrow radial clearance. To name
outstanding stiff-string models:

- Inclusion of bending stiffness:
They generally improved the soft-string model by adding BHA specific
calculations for stiffness and considering different approaches for directional
surveys (Mirhaj, S. A et al.,, 2016 ) but still neglecting clearance.

- Inclusion of radial displacement:
Analytical and finite element models that consider both bending stiffness and
radial displacement.
Finite element analysis model for the radial displacement of the casing .

- Dynamic stiff string model [Vadim Tikhonov, et al., 2013]

As these models have been discussed in previous publications, a detailed description
will not be given at this point.
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2.3.1.3 Torque and Drag Simulation

Software tools apply a similar approach of torque and drag modeling, explained in the
previous chapter, and are capable of simulating it for multiple scenarios and conditions
in a short time. The simulated scenarios may further be updated whilst ongoing
operations after input of actual measurements and real-time data in an automized way,
which is a clear improvement to the manual approach that was done in the past. A wide
variety of simulation tools is available on the market, which makes it easy to generate
torque and drag and buckling prediction plots, that can be used for a safe drill string
design. In general, the tools use a similar approach based on the fundamental kinematic
equations that were explained earlier. An outcrop of simulated torque and drag
broomstick plots is shown in Figure 13. The different colored lines are indicating
different simulated operational loads and torque in terms of moving the drill string
upwards (red), downwards (blue), or rotating it on the bottom (green) for varying
friction factors in cased and open hole (varying line formatting).
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Figure 13: Simulated torque and drag broomstick plots, indicating simulations for RIH
(blue), POOH (red), and ROB (green) for the different cased hole (CH) and open hole
(OH) friction factors (number beside CH and OH) (©proNova by TDE)

2.3.1.4 Torque and Drag Real-time Monitoring

The simulated curves can be used to monitor and identify abnormal behavior of the
sensor data channel trends in real-time. The surface sensor data channels that are
available via a standard real-time WITSML data provider setup are:

- Hook-load

- WOB

- Torque (surface)
- SPP

- Flowin
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- RPM

- ROP

- Block position

- Bitand hole depth

The following figure shows a monitoring plot of simulated vs. actual sensor data (red,
blue, and green markers) and indications for abnormal behavior. It plots frequent sensor
data channel points (usually average values) of torque and hook-load for RIH, RIH with
rotation, POOH, POOH with rotation, and whilst drilling in real-time. Rig state detection
algorithms and alerts are used to notify the personnel of any deviations from the
simulated trends. A deviation of torque at a measured depth between approximately
3300m and 3500 m can be spotted for spacing out, picking up, and rotating on the bottom
in the example. The simulated curve should be updated as often as possible, and if the
deviation is maintaining, the driller should act accordingly in order to prevent possible
upcoming incidents.
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Figure 14: Torque and drag real-time data vs. simulated curves (©OproNova by TDE)

There are tools available that update the friction factor based on the measured sensor
data frequently and calculate it via iterations, e.g., until the actual HKLD matches the
predicted one. This method is called “Torque and Force Method” [Frank Reiber (Baker
Hughes Inteq), Bart E. Vos (Baker Hughes Inteq), Svein E. Eide (Statoil), 1999]. Besides,
the real-time friction factor calculation for other surface and downhole parameters may
be used as input at the rig site and improve the quality of problem indications.

Dogleg severity plots are used in addition to identifying possible obstacles in the
wellbore (Figure 15).
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Figure 15: Dogleg severity for entire well - planned vs. actual (Eddie Martinez et al.,
2020)

Tests have been performed on models that use downhole measurements (e.g., torque at
the bit). However, it needs to be carefully considered that measurements at the bit are
highly influenced by downhole conditions, and the error may be high as, e.g., vibrations
in the drill string can add up to the measured (real) torque at the bit and therefore make
the values useless for HSE-related monitoring purposes. One major problem of
nowadays torque and drag monitoring procedures is the dependency on multiple
parameters, meaning that there can be significant differences in the predictions and
possible misinterpretation of the results (human factor).

2.3.2 Standpipe Pressure as Index for Detecting Downhole
Problems

2.3.2.1 Standpipe Pressure Modeling

A proper determination of the pressure drop in the wells system is not only vital for safe
planning and realization but also for improvement of drilling performance. The
deterministic approach considers onsite measurements of the drilling mud composition,
etc. and applies laboratory tests for tracking hydraulic conditions and to monitor
pressure losses over the complete period of ongoing well operations. Since annular
pressure drop is the critical component of pressure drops to be evaluated and the other
components were discussed in detail in previous papers already, the description in this
thesis is limited to the methodology of the annular section.

It is critical to consider the correct models and procedures related to the fluid system.
The pressure losses vary significantly for different rheological models and equivalent
diameter definitions at different operating conditions. The importance of determining
the pressure losses during drilling fluid circulation is related to the influence on ECD, as
the mud window must not be exceeded.

Considering rather non-newtonian than Newtonian fluids in the wellbore annulus
under realistic conditions, the applied rheological models are:

- Bingham Plastic
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T=To+ Uy XY (16)
- Power Law

T=Kxy" (17)
- Yield Power Law

T=To+kxy" (18)

where pp = Plastic viscosity [cp]
Ty = Yield point [Ibf/100£t?]

v = Shear rate [s']

T = Shear stress [1bf/ft?]

Which differ basically in their relationship between friction factors, velocities, diameters,
shear stress, and shear rate. They also reflect the viscosity of the drilling fluid and its
hole cleaning ability.

After the proper model was chosen, the flow regime needs to be defined and is achieved
by determination of the critical Reynolds Number (laminar below 2100 or turbulent flow
above 2100). For the pressure loss calculation in the annulus, laboratory tests with the
rotational viscometer are performed at different rotations per minute (0) to provide the
rheological parameters for the respective model. Where the plastic viscosity and yield
point are determined:

Up = 8600 — H300 (19)
TY = 9300 - ﬂp (20)

The power law rheological parameters in the annulus are determined as followed:

- For high shear rate:

nys = 3.32log 52 1)

Kys = S eno (22)
- For low shear rate conditions in the annulus:

nys = 0.657log 21 (23)

3
5.110
Kis = s (24)

where

Kus = High shear consistency index [eqcp]
Kvs = Low shear consistency index [eqcp]
nus = High shear flow behavior index [-]
nis = Low shear flow behavior index [-]

Equivalent diameters are used to perform a comparative comparison of pressure losses
of different sections. Annular pressure loss gradients versus flow rates can be
determined for each section and further the effect on total pressure loss.
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- Hydraulic Diameter:

d, =4Xry=d,—d; (25)
- Crittendon’ Criteria:
2_g2
d, =1x ‘:/dg—d?—w +1ix a2 - a2 (26)
2 In (d_ii’) 2
- Slot Approximation:
d, = 0.816 X (d, — d;) (27)
- Lamb'® Approach:
2_ g2
d, =\/ d? + d? —("’—d‘”] (28)
In (d_i)

where

de = Equivalent diameter [in]

di = Drill pipe or collar outer diameter [in]

do = Wellbore or casing inner diameter [in]

K = di/do ratio [-]

The frictional pressure loss inside an annulus using the slot approximation:

dapP _ frxpxv§

dz ~ 25.81x(D,—D;) (29)

Where p is the static density, vais the average annular velocity, and ftis the friction factor.
The friction factor is changing significantly with the flow regime and pipe rotation,
respectively. Figure 16 shows a sample plot for determining frictional pressure loss
gradients at varying flow rates based on a drill collar section on the explained
methodology.
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Calculated Annular Pressure Loss Gradients using Different
Equivalent Diameter Definitions (Hole-DC Section)

0.1600

& 0.1400 <
[ /
< 01200

g / -
5 0.1000 f_.-"/
g

o W

w

w

=]

-l

2

=

w

w

2

o

700

Flowrate, gpm

= BP Narrow Slot === =BP Hyd.Dia. = = 1BP [amb's App. === «BP_Crittendon's
=—HPL Narrow Slot == =HPL Hyd.Dia. = = 'HPL Lamb's App. = =HPL_Crittendon's

= PL Narrow Slot == sLPL Hyd.Dia. = = 1| PL Lamb's App. " LPL_Crittendon's
==YPL_Narrow Slot =— =YPL_Hyd.Dia. = = YPL_Crittendon's

'YPL_Lamb's App.

Figure 16: Example for pressure loss gradient analysis at open hole - drill collar annular
section (K=0.735) (Demirdal, B., & Cunha, J. C. S 2007)

After the determination of the annular pressure loss, the total pressure loss of the system
can be calculated by summing up the components.

AP = APHydrostatic + APDP + APBHA + APBit + APAnnulus + APSurface Tools (30)

The major problem for the deterministic approach is the consistency in the required
measurements to be performed (uncertainty of parameters), time, and human factors
(misinterpretation). Temperature profiles and alteration of the mud system add up
possible errors to the calculation.

2.3.2.2 Standpipe Pressure Simulation

Similar to torque and drag simulation software tools, there are a variety of hydraulics
simulators available on the market. The majority use the input parameters similar to the
deterministic approach and compute the pressure loss for the desired component.
Hence, the computation of the results was digitalized and enhanced.

The computed pressure loss is used for evaluation of the actual pressure readings at the
pressure gauges or of the real-time sensor data channel stream. Monitoring and analysis
of standpipe pressure provide information on the efficiency of the hole cleaning and may
indicate major upcoming drilling problems.

Figure 17 shows calculated pressure loss curves based on the rheological models vs.
actual measurements. The curves were computed by a simulator that requires the input
well information and parameters from the laboratory (viscometer). The rheological
model that fits best with the actual curve can be applied for further downhole condition
interpretation and hence for standpipe pressure evaluation in real-time. It can be seen
that while at shallow depth, the simulation after Herschel Bulkley (purple) fits best, the
power-law model simulation (yellow) is closest to the actual measurements (black) with
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advancing measured depth and should therefore be used for further monitoring purpose
of the ongoing operations [K. Ayeni, S.0. Osisanya (The University of Oklahoma), 2004].

DRILL STRING PRESSURE LOSS (8-3/4-INCH HOLE)
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Figure 17: Drill string pressure loss plot for 8 3/4" hole (Ayeni, K., & Osisanya, S. O,
2004)

2.3.2.3 Standpipe Pressure Real-Time Monitoring

Monitoring of standpipe pressure in real-time is further used to evaluate performance-
related behavior during routine drilling-related operations (e.g., during Weight to
weight connection, slip to slip connection). Pumps-off and pumps-on procedures can be
analyzed in detail and improved if necessary. A case study proved that focus on gel
breaking related standpipe pressure (SPP) peaks after changing from static conditions to
pumps-on can improve performance and prevent damaging the wellbore. “Especially in
narrow drill-ability windows, this pressure peak may lead to a fracturing of the
formation, lost circulation, kicks or even collapse of the wellbore” (Zoellner, P et al.,
2011). Figure 18 shows a pressure peak of 12 bars after starting up the pumps, which led
to a significant increase in ECD. The pressure peak in the shown case describes the
difference between the highest value and the stabilized pressure value.
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Figure 18: Pressure peak observed during pump start-up (Reitsma, D, 2011)

HSE related alerts may be set, and performance-related timings (Key Performance
Indicators) can be measured by implementing algorithms based on the provided sensor
data. Additionally, to the standpipe pressure sensor, an annular discharge pressure
(ADP) sensor may be installed (e.g., anywhere along with the discharge piping, BOP,
etc.) and connected directly to the system on the rig site since the detection of anomalous
behavior could be delayed via WITS streaming. This is only applicable for managed
pressure drilling (MPD) and underbalanced drilling (UBD) but not at overbalanced
conditions. Tests have shown that a lower sensor span can result in significant
improvement of the resolution, which enhances the timing for detecting anomalies
(Reitsma, D, 2011). Figure 19 shows that normal variations have been removed
(corrected) since an anomaly will cause significant changes in the data channels, and a
lower frequency will improve visibility.
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Figure 19: Calibration of SPP vs. ADP monitor (Reitsma, D, 2011)
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Once calibrated, this approach is useful to detect a number of issues. Amongst others,
besides kicks and losses, leaking equipment and plugging may be indicated by clear
changes in the sensor channel data trends.

While Figure 20 shows an indication of a fast kick on the left (an abrupt increase of both
channels), on the right, a clear indication of a washout (drill-pipe leak) is given by a
decrease in the SPP and a consistent ADP trend at the same time (losses would be
indicated by a decrease in both channels).
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Figure 20: System screen of fast kick test (left) and drill-pipe leak (right) (Reitsma, D,
2011)

A major advantage of this method compared to a Coriolis flowmeter is that kicks can be
detected when the well is shut-in. The major disadvantage is missing kick rate and
volume calculation. Critical parameters that may influence the behavior of the data trend
to misleading view (e.g.,, downhole torque measurements, heaves, etc.) need to be
considered.

Alerts can be improved by preventing false alarms during “ballooning” and “breathing”
conditions due to total flow and the continuous total change in volume-related pressure
change. Standard alarm settings that are based on the change in total flow (whilst steady-
state conditions) may be deactivated during specific periods to avoid false alarms and is
critical for HSE. Concluding standpipe pressure real-time monitoring, the simulated
standpipe pressure curves by considering varying calculation models can be updated in
real-time by the input of actual measurements and compared in terms of pressure trend
evaluation in real-time. Most models are limited by the required input parameters, the
accuracy of required measurements, and not easy to apply for complex wells.

2.3.3 Delta Flow for Detecting Kicks and Fluid (Matrix) Losses

Flow meters (Coriolis meter) are capable of detecting kicks and losses at the rig site.
However, there is a potential error due to vibration sources, and maintenance is required
frequently to assure reliability. Downhole measurements (e.g., via downhole pressure
sensors) also are limited to a range of uncertainty that is related to the telemetry system
and the delay encountered in signal transmission. Pressure sensors (e.g., hysteresis) are
smaller and easier to install, and cheaper than flow meters.

2.3.4 Analysis of historical data (offset wells)

The use of historical data for HSE-related simulation and analysis is limited due to
varying equipment, procedures, and downhole conditions from well to well. Even at
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batch wells and fields with several offset wells, respectively, the changing parameters
need to be considered carefully.

Gathered data from offset wells may be used for planning and lessons learned purposes
in general but never seen as a correct outlook for upcoming well operations.

Like torque and drag, historical hydraulics data can be used rather than review issues
with the equipment at certain conditions than as a reliable reference for simulations and
predictions.

As using historical data is critical to make predictions for safe well operations, this
approach will not be discussed further in this thesis. To sum it up, historical data may
be useful for planning purposes of the well design and to review operational problems
(non-productive time) and to analyze performance related to the human factor,
equipment, or operational procedure.

2.3.5 Machine Learning Approach
2.3.5.1 Overview

Machine learning approaches are rising in the drilling industry for a couple of years,
with wells becoming more challenging, and HSE has priority from planning until
competing operations for a well. This section provides an overview and outlook on
machine learning trends being established in the near future. It needs to be stated that
this summary does not provide a description of all existing machine learning techniques.

Popular machine learning methods are [Noshi, C. I., & Schubert, J. J., 2018]:

- Linear Regression

- Decision Trees (Random Forest)

- Linear Classifiers (Perceptron, Support Vector Machine)
- Artificial Neural Network

- Principal Component Analysis (PCA)

- K-Means Clustering

- Fuzzy Logic (BBN)

- Genetic Algorithms (GA)

- Bayesian Belief Networks (BBN)

2.3.5.2 Machine Learning Approaches Applied for Drilling Parameters
23.5.2.1 Statistical Learning Models

Statistical learning models can be supervised by calculating an output from defined
inputs or unsupervised by learning trends in data without definite outputs. A
supervised model is described in [Hegde, C., 2015], which differs between “normal” and
“abnormal” torque via putting the prediction into classes that reflect operational
performance.

The model accuracy was determined as followed:
MSER = % ;-‘=1(Actual Torque — Predicted Torque)? (31)

Where MSER = Mean Squared Error
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Modeling techniques differ from regressions, bootstrapping, and random forests to
support vector machines (SVM).

Regressions [e.g., Multilinear regression (MLR)] uses linear models for predictions of
torque.

Torque = YX_, axx, (32)
where k = number of parameters
a = constant determined by MLR algorithm
Bootstrapping returns the uncertainty by sampling the data.
Residual = Actual Torque — Y X_, ax, (33)
Figure 21 illustrates an example for bootstrapped regression.
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Figure 21: Depth plotted against downhole torque in Tyler formation using
Bootstrapped regression (Hegde, C., 2015)

Random Forests use decision trees to capture non-linearity in the data. Random forests
use bootstrapping samples to overcome low accuracy and overfitting (Figure 22).
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Figure 22: Random forest visualization (Hegde, C., 2015)

Figure 23 illustrates an example for random forest.

TAA] J‘..o*
.". ‘.
e &*
oy . w
. ot . 2
s
4 "‘ﬁ Py ae
*
oA
e v '-lr.ﬁ
- - - -
- - :* *
LI L
& ‘-.' A ..
" ¥ -
- - ‘. ... A -
L -
T4B0 - P
b . .t LR
L]
P -4"
* L
g '. -
%_ e ‘v. * Messured Reading Tyler Formation
= g . - - "
[a] £ “J..'. A *  Fredicted Torque Using Random Forests
" 1%
il
ST
- L}
LR -t
*» oo :
: . ‘.\ *
& R ] LG
A 5 b
00 = =g - ‘.. oy
+ :‘ 1"‘" &
L) e
* PO Y -
. . * : ! g
LI PO
".v - -
- - . e
« %
bocll o S i
. . -t
- ] Tl
4 @

4.5 &0
Torgue(klbif)

Figure 23: Downhole torque versus depth using random forests with 80% of the data
used for training (Hegde, C., 2015)
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A moving window linear regression model is shown in Figure 24. A moving window
algorithm was developed for different surface data channels. Once torque changes are
noticed, the next value is predicted via linear regression and compared to the upcoming
actual value, which will provide a possible indication of abnormal behavior. “Evolving
differential sticking tendency and poor hole cleaning can be detected and addressed
early with this symptom”( Ahmed, O. S.,, 2019).
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Figure 24: Change Point Detection algorithm. The black line is the input data stream,

the green, and blue boxes are the right and left sliding window, respectively, and the

red line is the calculated distribution divergence distance for data from both sliding
windows evaluated at their adjacent point (Ahmed, O. S., 2019)

SVMs use non-linear classification boundaries for classification and pattern recognition
of the torque trend (Table 2). Pre-processing the input and target data (e.g.,
normalization) is necessary to improve the predicted results, and different types of
kernel functions are used.

Total Population Condition Positive Condition Negative

Test Outcome Positive

Test Outcome Negative

Accuracy = ) True Positive + } True Negative / ) Total Population

Table 2: Confusion matrix used to evaluate the accuracy of classification algorithms in
machine learning (Hegde, C., 2015)

The method splits the two classes by a hyperplane (Figure 25).
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Figure 25: Hyperplane in SVM (Mishra and Datta-Gupa, 2017)

The method being used depends highly on the run time for processing the data as it may
be used for real-time alerting applications.

2.3.5.22 Deep Learning for Torque Predictions

Artificial neural networks use input, hidden, and output layers that are linked via
transfer functions for predictions. The methods vary from feed-forward to recurrent
networks. Feedforward backpropagation is a supervised learning method, whereas
Levenberg-Marquard training function is probably the best-known learning algorithm
for ANNs [Abbas, A. K et al., 2019]. Figure 26 illustrates the basic structure of an artificial
neural network (ANN).

iﬁ-—

: outputs
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—_—
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input layer hidden layer output layer
Figure 26: ANNSs structure with one hidden layer (Abbas, A. K et al., 2019)

The ANNSs used in this project will be explained further in the “Methodology” chapter
of the thesis. The following deep neural network (DNN) contains several additional
layers between the input and output layers (Figure 27). The network was trained with
42287 samples and a sample rate of 5 seconds/sample, including block position (BPOS),
hook load (HKLD), pressure (SPPA), surface torque (STOR), RPM, and pumping rate
(SPM1). The training was carried out for 200 epochs and reached an accuracy of 98%,
using the mean-square error function.
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Figure 27: Overall architecture of the proposed DNN model (Yu, Y., Chambon, S., et
al.,, 2018). N is the number of channels, CNN convolutional layers, LSTM long short-
term memory layer and FC are fully connected layers

As a result, over 10000 timestamps were simulated recursively (Figure 28). It has to be
considered that depth data was not considered for the model, which may lead to
increasing errors in the predictions.
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Figure 28: Simulated time sequence by the proposed DNN (Yu, Y., Chambon, S., et al.,
2018)
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23523 Lost Circulation Prediction Via Deep Learning

A neural network approach was proposed based on data acquired from the Yingqgiong
Basin in the southern Chinese sea, which is known for a narrow safe drilling mud density
window (Figure 29). Hence the loss of circulation is a serious issue in the mentioned
region.

Formation pressure coefficient
depth

[m]

Fracture pressure

Figure 29: Illustration of the safe drilling mud window (SDMDW) in Yingqiong Basin
(Hou, X. et al., 2020)

The data was selected by consideration of drilling parameters of available surface sensor
data channels (e.g., TQA, SPP, MD, WOB, etc.), geological parameters (e.g., lithology,
pore pressure, formation fracture pressure, etc.), and drilling fluid properties (e.g., yield
point, mud weight, etc.). After selection, the data was pre-processed in terms of data
outliers, qualitative features, and normalization (34).

’ x;—Min;
X = ———

" Max;—Min; (34)
Where

Xiis the value of i-th feature after normalization

xi is the original value i-th feature

Maxiis the maximum of i-th feature

Mini is the minimum of i-th feature

The ANN was a supervised learning model, using rectified linear unit (ReLU) as
activation function, L-Norm for regularization and hidden neurons number N (35).

Npy=vm+n+a (35)
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Where

m is the neuron number of input layers

n is the neuron number of output layers (loss risk type)

a is a constant within 1-10

The model was evaluated using the cross-entropy loss function J (36).
J ==X ylog () (36)

Where

K'is the number of class

y is label, that is, if class is i, yi=1, otherwise y=0

p is the output of the ANN

The architecture of the ANN is illustrated below.

@ nput layer @ Criginal cutput layer
€ Hidden layer @ ultimate output layer
Figure 30: Architecture of lost circulation prediction ANN (Hou, X. et al., 2020)

Accuracy and loss during training and testing are illustrated in Figure 31. It can be seen
that the accuracy during both testing and training is exceeding 0.9 after 10 epochs and
the loss is decreasing below 0.2 after 10 epochs.
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Figure 31: Accuracy (a) and loss (b) on training and testing set (Hou, X. et al., 2020)

The results showed no overfitting issues and an accuracy of 91% (mean) after 50 epochs
(Table 3).

Loss risk type Precision
No loss 0.86
Micro loss 0.90
Small loss 0.95
Middle loss 0.95
Large loss 0.89
Severe loss 0.93
Mean 0.91

Table 3: Metrics of six loss types (Hou, X. et al., 2020)

Generally, the classification results of the proposed circulation lost risks prediction
method agree with the practical engineering situation, satisfy the needs of drilling
engineering, and can provide guidance for the estimation of lost circulation risks. This
method can be applied to other fields if the required data is available (Hou, X. et al.,
2020).

2.3.5.24 Dirilling Hydraulic Optimization Via Deep Learning

A model that is capable of predicting pump pressure versus depth (in similar
formations) and in real-time was proposed in 2015 (Wang, Y., & Salehi, S. 2015). It was
built in MATLAB by using the fitting tool. The ANN used 12 input parameters (Table 4).
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Pump
pressure

Table 4: Input and output parameters (Wang, Y., & Salehi, S. 2015)

The data was pre-processed by normalizing before training the model, whereas the mean
squared error function was used for scaling. The number of hidden layers was
determined after the heuristic approach. The data was split into 75% for training, 15%
for validation, and 10% for testing. Overfitting is prevented by the determination of the
minimum validation error in general (MSE).

One hundred twenty networks were created and evaluated. The best results were
provided by a three-layered network with 11 hidden neurons in the hidden layer. A
feed-forward network with ‘tansig” activation function, “purelin” output layer function,
and Levenberg-Marquant function (back-propagation) has been used for training.

To evaluate the impact of each data channel on the error of prediction, a forward
regression (heuristic approach) was undertaken. Single channels were considered as the
input layer, and 1440 networks were created to identify the ranking after MSE (Figure
32). It turned out that depth has the most impact on the model.
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Figure 32: Ranking of model input, one input channel (Wang, Y., & Salehi, S. 2015)

Afterward, the other channels were used in combination with the depth channel as
input. The pump speed (total spm) showed the lowest error together with depth. The
final step was using depth, pump speed in combination with the other channels,
showing differential pressure as the next best fit, etc. up to 9360 networks in total (Figure
33).
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Figure 33: Ranking of model input (Wang, Y., & Salehi, S. 2015)

A regression of the simulated pump pressure vs. measured pump pressure is illustrated
in Figure 34 and shows good results.
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Figure 34: Regression of the overall simulation results for three wells (Wang, Y. &
Salehi, S. 2015)

The review of the discussed papers provided the base for the neural network approach
developed during this thesis project, in which the methodology is introduced in the next
chapter.

2.3.5.3 Limitations of Machine Learning for Predicting Torque and
Standpipe Pressure

The main limitation of the discussed machine learning methods is that they are only
considering the prediction of abnormalities of a single data channel. The input
parameters often need to be manipulated, or manual work has to be done to fit the
requirements of the existing approaches and may not be set up quickly or require
frequent updates of specific manual measurements.

The developed hybrid model analyses torque and standpipe pressure behavior at the
same time and can easily be integrated at any system that is gathering a standard set of
surface sensor data without changing settings or preparing the configuration of the
parameters manually. It provides an easy approach in addition to existing methods that
are used in the field in order to verify false alarms that are e.g. caused by inaccurate
simulations of curves, leading to confusion amongst the drilling personnel.
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Chapter 3 Developed Methodology to
Detect Anomalies in Drilling Behaviors

3.1 Background

In this chapter, a detailed description of the steps undertaken to develop a hybrid model
that provides better accuracy in the detection of abnormal behaviors of measured
drilling parameters is provided. The terminus “hybrid model” is related to the different
sets of neural networks that are used at the same time to identify the critical behavior of
a specific data channel. For each data channel, three networks are used to predict the
actual and future values and trends. After importing and filtering the sensor data, the
networks will be trained, and the algorithms for predicting the data will be applied once
new sensor data is available. In order to reduce the impact of uncertainty of the
prediction models, and uncertainty window is constructed. It is calculated based on
statistical evaluation of the error between the predicted and the actual data. Therefore,
the standard deviation of the mean squared error between the actual and predicted data
is used. Once a predefined number of actual data points is shown to be outlaying the
window of uncertainty, alerts will be triggered accordingly.

The following flow chart (Figure 35) illustrates the undertaken development steps for
creating the hybrid model.
Data acquisition and processing
Build predictive model

Construction of uncertainty windows

Alert definition and activation

Standalone application

Figure 35: Flow chart of undertaken development steps for creating the hybrid model
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3.2 Data Processing

The procedure of data acquisition and pre-processing is illustrated in Figure 36.

EDR Sensor data WITSML data

- xd Import raw dara
acquisition files I

Pre-processed

data table Display data

Figure 36: Data acquisition and pre-processing procedure

3.2.1 Data Acquisition

The data acquisition is conducted via standard EDR surface sensor and MWD/LWD
data, provided via WITSML files via a setup server connection, usually called the
WITSML bridge. The WITSML data is converted into .csv format by a developed Python
script to ease data import into Matlab. A sample file of the WITSML data and converted
import table file can be found in the Appendix.

The available well data contain varying amounts of data channels, but the desired
surface sensor data channels are available as per standard data provider companies of
the drilling industry in general. The minimum required surface sensor data channels for
developing the presented hybrid model are:

- TIME
- TQA (Surface average torque)
- SPPA (Standpipe pressure average)
- DBTM (Measured bit depth)
- DMEA (Measured hole depth)
- RPM (Rotation)
- SPM 1 (Pump rate 1)
- SPM2 (Pump rate 2)
- SPM3 (Pump rate 3)
- BPOS (Block position)
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- HKLD (Hook load)

- TFLO (Flow in)

- SWOB (Surface weight on bit)
- ROP (Rate of penetration)

3.2.2 Data Selectivity

In order to provide the best possible input for training the hybrid model that intends to
predict abnormal drilling behavior in real-time, it is necessary to meet the minimum
requirements to the data set, which are:

- Minimum of 3 hours bit on bottom drilling or at least one completed stand of
drilling.

- Sufficient period of drilling without issues.

- Sufficient data quality.

- Available daily drilling reports (DDR) to verify potentially identified issues.

- Available “issue data” to test the hybrid model for feasibility in terms of
industrial requirements.

3.2.3 Data Handling

The data of the explained surface sensor data channels are imported into Matlab and
pre-processed in order to meet the requirements of machine learning purposes. Pre-
processing of the data is important, as inaccurate measurements, such as outlaying
datapoints, missing data, or small variations in the data intervals (heaving), will lower
the quality and validity of the trained hybrid model.

3.2.3.1 Outliers, Data Gaps, and Conversions

Outliers of specific data channels are being removed via threshold rules applied and
filled afterward by linear regression. Data gaps are filled by the available linear
regression (fill missing indices functions), and outliers are removed and replaced via
outlier threshold functions in Matlab. The data of the output layers is further
smoothened (via an available smoothening function in Matlab), as removing small
variations (heaves) in the curves will reduce overfitting later at creating the ANNs. Every
filtering process influences the results in terms of distortion; hence filtering (removal of
outliers and smoothing data curves) should be kept at a minimum level and according
to necessity. Specific data channel units are converted to improve visualization in the
plots. The pump stroke parameters (often three mud pumps at rig site) are merged due
to the fact that not always the similar pumps are operating at the same time, and the
pumps that are inactive would show zero values and falsify the results.

The pre-processing and cleaning of the data is achieved by the implementation of
additional functions and plots that will provide the user an overview of the filtered data
points compared to the raw data points of each channel that was received via WITSML
data stream. The pre-processed data channels were merged into a new table, whereas
the filtering functions are displayed in Table 5.
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Table 5: Applied filtering functions of the merged filtered data table

3.2.3.2 Raw versus Filtered Data

Figure 37 illustrates an outcrop of the major raw surface sensor data of interest after
import into Matlab. Where the blue line indicates the torque channel data and the red
line the rotations per minute, missing data (empty intervals at both channels) and
outliers (peaks to approximately -400, -600, and -800 in the blue line) can be found.
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Figure 37: Outcrop of raw surface sensor data, rig Maersk Inspire, well NO 15/9-F-15 A

Figure 38 illustrates an outcrop of pre-processed data (red line) in comparison to the raw
torque data of the surface sensors (blue line), where the missing data points shown in
the previous plot are being filled, and outliers are being removed at the TQA channel.
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Jan 02, 2009

Figure 38: Outcrop of pre-processed surface sensor data, rig Maersk Inspire, well NO
15/9-F-15 A

3.3 Building Predictive Model

The hybrid model was designed to be able to predict abnormal behavior based on actual
time input parameters and to provide an expectation of the behavior of the data in the
future. It is comparing a future prediction that is done via a delay between input and
output parameters during training to a future trend that is simulated via a closed-loop
network of an input parameter.

Since the input data is provided in timestamps and to meet the purpose of training a
model to predict future timestamps, usage of neural network times series application in
Matlab was chosen. However, the models will be independent of data frequency since
the models will predict for similar intervals between data points. This means that similar
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timestamps as actual datapoints (actual network) and 50 timestamps in the future, with
similar data frequency as the input parameter, will be predicted.

The hybrid model will be trained for two separate input parameters (One for Torque and
one for SPP); hence Data Handlingence six artificial neural networks will be generated
(Figure 39).

Pre-processed
data table

Test ANNSs

Figure 39: Predictive models creation workflow

3.3.1 ANN for Actual Time Prediction

The neural networks for the hybrid model predicting the actual time series were created
via the neural network time series application in Matlab and use the Levenberg-
Marquardt backpropagation as training function. The non-linear autoregressive
network with external input (“NARX"”) was constructed with the determination of the
network’s hyper-parameters, such as 1:50 input delays, 1:50 feedback delays, and 1
hidden layer. The division of data is set to 70% for training, 15% for validation, and 15%
for testing. The performance was evaluated using the mean squared error (MSER)
function.

The time series for input and output use similar timestamps of data points. It predicts
series y(t) given d past values of y(t) and another series x(t) (Matlab R2019b).

The architecture of the actual prediction networks was constructed, as shown in the
following example figure. The input parameters are streamed into a single hidden layer
with 10 hidden neurons and used to train the network based on one output layer.

Figure 40: NARX Neural Network architecture, prediction of actual time series
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3.3.2 ANN for Future Prediction

The neural networks for the hybrid model predicting the future time series were created
via the neural network time series application in Matlab and use the Levenberg-
Marquardt backpropagation as training function. The non-linear autoregressive
network with external input (“NARX"”) was constructed with the determination of the
network’s hyper-parameters, such as 1:50 input delays, 1:50 feedback delays, and 1
hidden layer. The division of data is set to 70% for training, 15% for validation, and 15%
for testing. The performance was evaluated using the mean squared error (MSER)
function.

The timestamps of the output time series are 50 timestamps delayed to the future of the
input time series timestamps. This allows creating a network for a prediction of 50
timestamps ahead. It predicts series y(t+50) given d past values of y(t+50) and another
series x(t) (Matlab R2019b).

The architecture of the actual prediction networks was constructed, as shown in the
following example figure. The input parameters are streamed into single hidden layer
with 10 hidden neurons and used to train the network based on one output layer.
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Figure 41: NARX Neural Network architecture, prediction of future time series

3.3.3 ANN for Future Trend Prediction

The neural networks for the hybrid model predicting the future time trends were created
via the neural network time series application in Matlab and use the Levenberg-
Marquardt backpropagation as training function. The non-linear autoregressive
network (“NAR”) considers 1:50 feedback delays and one hidden layer. The division of
data is set to random. The performance was evaluated using the mean squared error
(MSER) function.

The architecture of the open-loop network is illustrated in Figure 42.
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Figure 42: NAR Neural Network architecture, trend prediction, open loop

After simulating the open-loop network, the network is being closed and will predict the
future trend of the input channel for 50 timestamps into the future (Figure 43). The
output is used as further input to the network after closing the loop.
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Figure 43: NAR Neural Network architecture, trend prediction, closed-loop

Table 6 shows the models of prediction and their functions in the context of the entire
model and for defining the abnormality.

Predictive Model Function Purpose
ANN for Actual Time | Predicts datapoints based | Comparison of actual and
Prediction on actual channel data | predicted datapoints to

input.

identify abnormalities.

ANN for Future Prediction

Predicts datapoints with 50
timestamps offset into the
future based on actual
channel data input.

ANN for Future Trend
Prediction

Predicts the trend of a
single data channel input
with 50 timestamps offset
into the future.

Comparison of predicted
future datapoints and the
predicted future trend of a
single
order to provide drilling
behavior forecasts.

data channel in

Table 6. Models of prediction description

3.4 Construction of Uncertainty Windows

3.4.1 Overview

The main purpose of triggering alerts is achieved by calculating a predictive window of
uncertainty (safety window) and detection of outlier data points. Once data points are
identified as outliers from the window that is being generated by calculating the MSER
and considering the standard deviation of it, alerts are going to be triggered accordingly
(Figure 44).
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Actual vs. predicted
data channel

Compute safety

window

Trigger alerts

Figure 44: Workflow of safety window creation and triggering alerts

The sketch in Figure 45 illustrates the principle of identifying outliers (abnormal
behavior of a data channel). The window is created by considering the MSER function
and standard deviation of each timestamp of the investigated range of data. A similar
principle is applicable for the future prediction of the channels compared to the
predicted future trend of a single channel.

ert

Vi
MSER

6...Standard deviation / / / / / identified outliers

MSER...Mean squared error an~on- predicted data channel
v~ actual data channel

safety window

Figure 45: Principal of identifying outliers, in other words, abnormal behavior of the
specific data channel
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3.4.2 Extraction of Actual and Predicted Data

After applying the models of predicting the torque and standpipe pressure, the data
points can be extracted for further calculations.

3.4.3 Compute Mean Squared Error (MSER)

After simulating the curves for TQA and SPPA the error between the predicted and
actual data and between the future prediction and trend lines respectively can be
calculated. The mean squared error function was applied to each timestamp.

MSER = \/(Pactual - Ppredicted)z (37)

3.4.4 Obtain Standard Deviation

The standard deviation of the calculated MSER can be computed by the statistical
approach. The error histogram in the figure shows the distribution of the MSER and the
standard deviation in theory. The data samples (MSER of each timestamp) are plotted
against their density (occurrence). By evaluating the mean, the standard deviation (of
the normally distributed histogram) is defined to the left and right.

07 [ T T T T T T T il
Data samples
Mean Normal distribution
06 1
05+F /" "\ 4

. /

=
w
T
1

=
\S]
T
1

h / =

| \.

0 0.5 1 1.5 2 2.5 3 35 4
Data

Figure 46: Normal distributed histogram of data samples (MSER of each timestamp),
indicating mean and standard deviation

The standard deviation for a sample is calculated as followed.

Z?: (Xi—Xmean)”
6= |==i TR ) (38)

where
0 is the Standard Deviation
xiis the value of the sample

n is the total number of sample elements
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Xmean 1S the sample mean

Xmean = Zim i (39)

3.4.5 Create Windows

After obtaining the overall standard deviation explained earlier, the windows can be
created once new predictions based on new data input were calculated.

3.4.6 Compare Actual Data with Predictive Windows

The actual data will be compared to the predictive windows. If the actual data is within
the window, the situation is expected to be safe, and no alert will be triggered. In case
the actual data is detected to be outside the window, alerts will be triggered accordingly.

3.5 Alert Level Definition and Activation

Once a specific amount of data point is identified as an outlier from the window of
uncertainty, alerts are triggered accordingly. The main purpose is to indicate any
potential evolving issue and to draw attention to the drilling personnel at an early stage
of a possible problematic situation, but not to classify the reason at this point (more
explanation will be given in the future work chapter).

The thresholds for the specific alerts were defined as followed:

- 50 data points of actual TQA above upper window border: potential packoff,
stuck pipe

- 50 data points of actual TQA below lower window border: potential twist off

- 50 data points of actual SPPA above upper window border: potential packoff,
plugged equipment (bit balling) or kick

- 50 data points of actual SPPA below lower window border: potential losses or
washout of equipment

3.6 Standalone Application

The aim was to create a simple user interface (UI), which is capable of performing pre-
processing, training algorithms, and operational evaluation of the imported data at the
same time, without adding additional afford to the drilling personnel. The application
was designed specifically for analyzing the behavior of surface torque (TQA) and
standpipe pressure (SPPA). Figure 47 illustrates a flow chart of the methodology behind
the developed standalone application.
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Figure 47: Outlook of the developed standalone application

The overview of the standalone application shows an indication of a critical torque after
the comparison of actual versus predicted values of actual timestamps and predicted
future timestamps versus future trends of TQA and SPPA (Figure 48).
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Figure 48: Workflow of the developed Standalone Application
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3.6.1 Data Import and Filter

By pushing the data import and filter button, the folder which contains the new (actual)
data sample can be selected. The format of the import data needs to be in “csv,” and the
channel mapping of the sample data table needs to be adjusted accordingly in the script
upfront. Usually, the channel mapping does not change during a well operation; hence
once a standard mapping was applied, no further changes need to be done.

The software imports the raw data and applies pre-defined filters for filling missing data

points and replacing outlier data values. The data is visualized once the filtering process
was completed (Figure 49).
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Figure 49: Visualization of the imported raw and filtered actual data in standalone
application charts (well NO 15/9-F-15 A)

3.6.2 Train Torque Network

By pushing “train torque network,” training of the three torque prediction networks for
a chosen time range is triggered. The start time and end time of the training data can be
entered by the user (Figure 50).

« - x @ - x
enter startpoint of training data (yyyy-MM-dd HH:mm:ss.555) enter endpoint of training data (yyyy-MM-dd HH:mm:ss.555)
2009-01-02 10:00:00.000| 2009-01-02 15:00:00.000]

I OK | Cancel OK Cancel

Figure 50: Enter the start point (start time) and endpoint (end time) of training data
(well NO 15/9-F-15 A)
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3.6.2.1 ANN for Actual TQA
The architecture of the ANN is illustrated in Figure 51.

Hiddan

Figure 51: NARX Neural Network architecture, prediction of actual TQA time series
The ANN for predicting the actual torque values uses the input parameters shown in
Table 7 for training.

Input time series x(t) ‘ Target time series (output) y(t)

filtered RPM2 ‘ filtered_SWOB ‘ filled HKLD ‘ filtered_TQA2

Table 7: ANN for actual TQA prediction, data selection

3.6.2.2 ANN for future TQA prediction
The architecture of the ANN is illustrated in Figure 52.
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Figure 52: NARX Neural Network architecture, prediction of future TQA time series

The ANN for predicting the actual torque values uses the input parameters shown in
Table 8 for training.

= | Input time series x(t) — | Target time
g g series (output)
2 S | y(t+50)
3 3
o] o]

t filtered_ RPM2 | filtered SWOB | filled_ HKLD | t+50 filtered_TQA2

Table 8: ANN for future TQA prediction, data selection

3.6.2.3 ANN for Future Trend Prediction

The target time series, defining the desired outputs of the trend prediction, are stated in
Table 9.

NAR Neural Network Target time series (output) y(t)

TQA future trend filtered_TQA2

SPPA future trend filtered_SPP2
Table 9: ANNs for TQA and SPPA future trend prediction, data selection
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Training the torque networks reached a sufficient performance after a small number of
iterations and short durations:

- Training the actual torque prediction network took 12 iterations (20 seconds)
with a performance of 1.45*1073.

- Training the future torque prediction network took 17 iterations (32 seconds)
with a performance of 1.19*10°.

- Training the torque trend prediction network took 78 iterations (9 seconds) with
a performance of 1.62*10.

3.6.3 Train SPPA Network

By pushing “train torque network” training of the three standpipe pressure prediction
networks as described in chapter 2.3 for a chosen time range. The start time and end time
of the training data can be entered by the user (Figure 53).

oy - X < - x
enter startpoint of training data (yyyy-MM-dd HH:mm:ss.555) enter endpoint of training data (yyyy-MM-dd HH:mm:ss.555)
2009-01-02 10:00:00.000| 2009-01-02 15:00:00.000]

I OK | Cancel OK . Cancel

Figure 53: Enter start point (start time) and endpoint (end time) of training data (well
NO 15/9-F-15 A)

3.6.3.1 ANN for actual SPPA
The architecture of the ANN is illustrated in Figure 54.

Figure 54: NARX Neural Network architecture, prediction of actual SPPA time series

The ANN for predicting the actual standpipe pressure values uses the input parameters
shown in Table 10 for training.

Input time series x(t) Target time series (output) y(t)

filled_ | filled_ | filled_ | filled_ | filled_Output | filtered_SPP2
TFLO | SPM1 | SPM2 | SPM3 | DMEA

SPM total
Table 10: ANN for actual SPPA prediction, data selection
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3.6.3.2 ANN for Future SPPA Prediction
The architecture of the ANN is illustrated in Figure 55.
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Figure 55: NARX Neural Network architecture, prediction of future SPPA time series

The ANN for predicting the actual standpipe pressure values uses the input parameters
shown in Table 11 for training.

=1 | Input time series x(t) —~ | Target time series
&Eé E; (output) y(t+50)

& &

3 3

e o

t filled_ | filled_ | filled_ | filled_ | filled_Output | t+50 | filtered_SPP2
TFLO | SPM1 | SPM2 | SPM3 | DMEA
SPM total

Table 11: ANN for future SPPA prediction, data selection

The big difference to the torque networks in iterations of the training processes can be
explained by the different training modes and the bit depth channel used as an input
channel, which is gradually changing and, therefore, will not lead to steady gradients.
The training processes were stopped after sufficient performance was reached.

- Training the actual SPPA prediction network took 600 iterations (manually
stopped after 35 minutes 34 seconds) with a (sufficient) performance of 1.21*10%.

- Training the future SPPA prediction network took 325 iterations (manually
stopped after 23 minutes 41 seconds) with a (sufficient) performance of 2.50*107.

- Training the SPPA trend prediction network took 1000 iterations (2 minutes 7
seconds) with a performance of 4.05*10-.

Re-training of the networks should be performed at the start of a new drilling run once
the first stands have been drilled without issues, or after a longer period of missing
sensor data (an outage of sensor measurements) and drilling ahead of the required
stands for sufficient amount of training data.

3.6.4 Calculate Torque Window

“Calculate Torque Window” will perform the statistical calculations for the construction
of the torque windows of uncertainty, as described in chapter 2.4.

The histogram of the mean squared error of predicting the actual torque values is
illustrated in Figure 56. The standard deviation can be evaluated after the normal
distribution. The majority of error values was ranging between 0 and 0.4.
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Figure 56: Mean squared error (MSER) of actual torque prediction (TQA), Histogram

3.6.5 Calculate SPPA Window

“Calculate SPPA Window” will perform the statistical calculations for the construction
of the standpipe pressure windows of uncertainty, as described in chapter 2.4.

The histogram of the mean squared error of predicting the actual standpipe pressure
values is illustrated in Figure 57. The standard deviation can be evaluated after the
normal distribution. The majority of error values was ranging between 0 and below 0.05.
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Figure 57: Mean squared error (MSER) of actual standpipe pressure prediction (SPPA),
Histogram
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3.6.6 TxD Plot Results

The final results are plotted by pushing the “TxD Plot Results” button. The charts area
of the standalone application will change to visualize the actual vs. actual predicted
windows of uncertainty, and future trend vs. future predicted windows of uncertainty.
Figure 58 shows the visualization of the predicted data and windows of uncertainty in
the actual data charts section (the predictions after timestamp 15:00:00 vary from the real
values since the data was not included in the training data set). Additionally, the future
predictions (50 timestamps after the last available real data point) are visualized in the
right-hand charts section.

It has to be mentioned that future predictions potentially indicate upcoming problems
by comparing the future trends of the channels to the predicted future uncertainty
windows, but due to the insufficient testing period of the software, it is not considered
for triggering alerts at this stage.

The outcrop in Figure 58 shows that the actual data channels (green line) stay inside the
predicted actual windows of uncertainty (dashed red lines). Therefore no alerts will be
triggered.

The future predictions show that the torque trend (green line) tends to exceed the upper
boundary of the window (sigma., future) partly over the next 50 timestamps and the
standpipe pressure trend to stay within the window (between sigma., future, and
sigmao, future) over the next 40 timestamps with a sudden increase afterward. Both
channels should be monitored closely for the new imported actual data (does actual data
reflect a similar trend?) as well as updated future predictions for a potential indication
of upcoming problems in such cases (Figure 59).
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Figure 58: Visualization of the actual results in the standalone application (well NO
15/9-F-15 A).

62



Developed Methodology to Detect Anomalies in Drilling Behaviors

Aehe T Wi ] T Torws Pt Pradicion RNAL

————, o, 3PP P Presctan )

M mens Degen )

Torque Future Prediction [kN.m]

SPPA Future Prediction [bar]

Figure 59: Visualization of the future results in the standalone application (well NO
15/9-F-15 A).

Alerts will be triggered accordingly after importing new sample data, recalculating the
windows, and plotting the results. It is important that the new sample data contains the
previous imported time range, hence continuously updating data similar to real-time
mode. The real-time mode is not available in the developed application.

63



Developed Methodology to Detect Anomalies in Drilling Behaviors

3.6.7 Advantages and Limitations of The Standalone
Application

Table 12 compiles the advantages and disadvantages of the standalone application.

*quick and easy to use *no real-time mode

import and filter e csv data format required
*independend from data eno direct configuration of
freqeuency data file mapping, network

e re-training of networks for
desired time intervall and
calculation of results
without re-start

and alert settings

*no specific classification of
abnormality available (alert
level)

*no parallel zoom of charts
(to show similar time
interval)

eillustration of desired actual
data channels and results

ewarning signs shown
immediately in case of pre-
defined alert case

spreview of future
predictions (50 timestamps)

Advantages
Disadvantages

Table 12: Advantages and disadvantages of the standalone application
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Chapter 4 Case Studies

In order to examine the functionality of the developed standalone application, made-up
scenarios based on manipulated data are created. The Data from Volve (well NO 15/9-
F-15 A) was manipulated in terms of deviating torque and standpipe pressure data
measurements to provide sufficient data for case studies evidence.

4.1 Model Definition

Similar network settings in terms of hyperparameters, as described in chapter 3.6 have
been used to test the standalone application. The tests were performed after
manipulating the original raw data set to provide the different test scenarios. After re-
training was performed, a similar data file, including manipulated data points after 17:47
was imported to test the standalone application. The networks have been re-trained
based on wells NO 15/9-F-15 A time interval from 2009-Jan-02 8:39 to 2009-Jan-02 17:47
(Figure 60).

TQA [kN.m]

raw SPPA (+Pa]

fored BPOS ()

Measured Depth fm]

Figure 60: Standalone application view of the actual data training interval, imported,
filtered, and trained networks, well NO 15/9-F-15 A

To demonstrate that the application requires a short amount of time for training, in order
to provide feasibility of handling during ongoing drilling operations (e.g. whilst
performing a weight to weight connection) and without adding additional effort to the
drilling personnel, the performance of training the system is given:

- Training the actual torque prediction network took 35 iterations (1 minute 26
seconds) with a performance of 1.40%10-.

- Training the future torque prediction network took 39 iterations (1 minute 34
seconds) with a performance of 1.41¥10-.

- Training the torque trend prediction network took 199 iterations (26 seconds)
with a performance of 1.30*10.
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- Training the actual SPPA prediction network took 45 iterations (manually
stopped after 3 minutes 00 seconds) with a (sufficient) performance of 1.2*10-.

- Training the future SPPA prediction network took 35 iterations (manually
stopped after 3 minutes 00 seconds) with a (sufficient) performance of 2.81*107.

- Training the SPPA trend prediction network took 1000 iterations (3 minutes 13
seconds) with a performance of 4.09*104.

4.2 Performed Scenarios

The standalone application has been trained for the following scenarios:

- Excessive torque

- Decreasing torque

- Excessing standpipe pressure

- Decreasing standpipe pressure.

4.2.1 Excessive Torque

To test the alerting for excessive torque, the dataset for upcoming test import (100
timestamps) was manipulated by increasing the actual torque values (raw datapoints
inside red square) by 5 kN.m (Figure 61).

TQA [kN.m]

filtered TQA

Jan 02, 2009

Figure 61: Manipulated input data, excessive torque

Figure 62 shows an increase of actual torque after importing new timestamps (after
approx. 17:48) and the actual (real TQA - in green) exceeding the predicted window
(sigmao — in red). Hence a warning for excessive torque was triggered.
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Figure 62: Performed Scenario to identify excessive torque behavior, manipulated well
data (NO 15/9-F-15 A). a.) Standalone application view shows a warning message
shown b.) Zoomed “Actual Torque Window” view indicates the actual outlier data in
green from the predicted window in red c.) Zoomed “Actual Torque Window” view
(IT) provides a closer look into the outlier data range, whereas the actual TQA data in
green is clearly exceeding the predicted window of uncertainty (upper border) in red.

The application detected abnormal torque behavior based on the increased values by
five kN.m accordingly; hence the networks can be considered as sufficient models.
However, for advanced detection, a classification of the specific issue, additional data
channels should be implemented as network training references [directional drilling
data (e.g., inclination, dogleg severity).

4.2.2 Decreased Torque

To test the alerting for decreased torque, the dataset for upcoming test import (100
timestamps) was manipulated by decreasing the actual torque values (raw datapoints
inside red square) by 5 kN.m (Figure 63).
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Figure 63: Manipulated input data, decreased torque
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Figure 64 shows a decrease of actual torque after importing new timestamps (after
approx. 17:48) and the actual (real TQA — in red) exceeding the predicted window
(sigmau — in red); hence a warning for decreased torque was triggered.
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Figure 64: Performed Scenario to identify decreased torque behavior, manipulated well
data (NO 15/9-F-15 A). a.) Standalone application view shows a warning message
shown b.) Zoomed “Actual Torque Window” view indicates the outlier actual data in
green from the predicted window in red c.) Zoomed “Actual Torque Window” view
(IT) provides a closer look into the outlier data range, whereas the actual TQA data in
green is clearly exceeding the predicted window of uncertainty (lower border) in red.

The application detected abnormal torque behavior based on the decreased values by 5
kN.m accordingly, hence the networks can be considered as sufficient models. Similar
approach for potential improvement of the models as for excessive torque should be
considered in the future.

4.2.3 Excessive Standpipe Pressure

To test the alerting for excessive standpipe pressure, the dataset for upcoming test
import (100 timestamps) was manipulated by increasing the actual SPPA values (raw
datapoints inside red square) by 10000 kPa (100 bar) (Figure 65).
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Figure 65: Manipulated input data, excessive standpipe pressure
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Figure 66 shows significant increase of actual SPPA after importing new timestamps
(after approx. 17:48) and the actual (realSPPA — in green) exceeding the predicted
window (sigmao — in red), hence a warning for excessive SPPA was triggered.
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Figure 66: Performed Scenario to identify excessive SPPA behavior, manipulated well
data (NO 15/9-F-15 A). a.) Standalone application view shows a warning message
shown b.) Zoomed “Actual SPPA Window” view indicates the outlier, actual data in
green from the predicted window in red c.) Zoomed “Actual SPPA Window” view (II)
provides a closer look into the outlier data range, whereas the actual SPPA data in
green is clearly exceeding the predicted window of uncertainty (upper border) in red.

While the tests performed based on manipulated standpipe pressure data provided
evidence for abnormal SPPA behavior for significantly higher values (>50 bar increase),
detection was showing less reliability with decreasing values added, hence potential
miss of detection (and therefore warnings) could be induced after slight increase of
SPPA. The miss of detecting slight increased SPPA values could lead to delayed
recognition of severe problems like equipment failure.

Output of the SPPA networks could be improved by implementation of additional data
channels for training input. In other words, discharge pressure, ECD and
implementation of formation data classification would improve detection of abnormal
standpipe pressure.
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4.2.4 Decreased Standpipe Pressure

To test the alerting for decreased standpipe pressure, the dataset for upcoming test
import (100 timestamps) was manipulated by decreasing the actual SPPA values (data
points inside red square) by 10000 kPa (100 bar) (Figure 67).

SPPA - o]
low

5 A | SPPA

17.00 17:10 1720 1730 17:40 17.50
Jan 02, 2009

Figure 67: Manipulated input data, decreased standpipe pressure

Figure 68 shows a significant decrease of actual SPPA after importing new timestamps
(after approx. 17:48) and the actual (realSPPA — in green) exceeding the predicted
window (sigmau—in red); hence a warning for decreased SPPA was triggered.
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Figure 68: Performed Scenario to identify decreased SPPA behavior, manipulated well
data (NO 15/9-F-15 A). a.) Standalone application view shows a warning message
shown b.) Zoomed “Actual SPPA Window” view indicates the actual outlier data in
green from the predicted window in red c.) Zoomed “Actual SPPA Window” view (II)
provides a closer look into the outlier data range, whereas the actual SPPA data in
green is clearly exceeding the predicted window of uncertainty (lower border) in red.
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While the tests performed based on manipulated standpipe pressure data provided
evidence for abnormal SPPA behavior for significantly lower values (>50 bar decrease),
the detection was showing less reliability with decreasing values removed, hence
potential miss of detection (and therefore warnings) could be induced after slight
decrease of SPPA. The miss of detecting slightly decreased SPPA values could lead to
delayed recognition of severe problems like severe fluid losses to the formation or
washouts.

A similar approach for potential improvement of detecting abnormal behavior as for
excessive standpipe pressure should be considered in the future.

4.3 Case Study Conclusion

After undertaking the study on the provided scenarios in this chapter, the standalone
application has proven its user-friendliness by an easy approach of performing analysis
on input data.

The application showed a short timeframe between configuring the models (training the
networks), importing new data into the program, and showing valuable results, for
instance, warning messages, in case abnormal drilling behavior was detected. The
accuracy of the predictions was sufficient after short training intervals, although results
could be improved by considering additional data channels.

Aside from the proven functionalities of the developed standalone application, a
number of limitations still appear. The import data needs to be converted from WITSML
to csv format externally before it can be imported into the application; therefore real-
time streaming without manual input is not applicable yet. A direct configuration in the
standalone application is not possible and needs to be handled by the administrator in
case changing conditions and considerations is desired.
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Chapter 5 Conclusions and Future Work

5.1 Conclusions

The main conclusion of the presented work can be summarized in the following points.

1.

The major drilling problems that appear during routine operations are
related to pipe sticking (differential sticking or mechanical sticking), tight
hole conditions, bit balling, losses, kicks, or the equipment being used.

Today a lot of simulation programs are available for torque and standpipe
pressure calculations and are used for real-time monitoring purposes. The
actual trend of the data can be compared to the simulated expected values.
Hence drilling problems can be noticed by deviating trends but can
potentially be missed due to human factors.

Often historical data is being used for planning purposes and to review the
performance at previous well operations of a similar field. This can be a
useful approach for choosing the equipment and creation of the drilling
program. However, previous theses have shown that this is not applicable
for detecting drilling problems as minor changes in the setup or downhole
conditions will lead to a completely different scenario.

Since the age of machine learning also reached the oil business a decade ago,
various machine learning approach concepts for minimizing health, safety,
and environmental risks and improving drilling performance have been
proposed, developed, and tested to the industry. Amongst various statistical
learning models, artificial neural networks for torque and drag predictions
and lost circulation, as well as drilling hydraulic optimization related to
standpipe pressure prediction, have been introduced and discussed in this
thesis.

Up to now, simulating torque and drag and standpipe pressure after
standard principals are still state of the art and most used approaches at the
drilling rig.

The developed hybrid model compiles six artificial neural networks,
whereas three are used for predictions of a single data channel (e.g. torque
or standpipe pressure). The actual data channel values are predicted based
on a set of related data channels and are compared to the actual data
afterward. Additionally, future values are predicted based on related actual
data channels, and the future trend of a specific data channel is predicted
based on the actual values. Windows of uncertainty are calculated based on
the mean squared error between actual and predicted values to identify
outliers (deviations from the trend) and, therefore, potential drilling-related
problems. The standard deviation is used to create the windows. Alerts are
being triggered once a pre-defined number of outliers was identified, and
warning signs are shown.
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7. The created standalone application provides an easy user interface to ease
data import & filter, training the networks, calculation, and visualization of
the results and to provide warning messages related to the type of the issue.
The advantages of the application include quick and easy usage,
independence from the data frequency, re-training of networks for the
desired time interval, and calculation of results without restarting it. The
illustration of the actual data channels and results, warning signs being
shown, and a preview of future predictions (50 timestamps) also add up to
a plus. Potential future work and disadvantages of the app can be seen in the
missing real-time mode, the required data format (.csv), and that a direct
configuration of the data file mapping, network, and alert settings, as well as
parallel zoom of the charts, is not available yet.

8. Based on the results of the conducted scenarios, the following points can be
considered as main findings.
e The planned laboratory tests at UFES Brazil (mini drilling rig) could
not be performed due to the COVID-19 situation, hence data from
Volve (well NO 15/9-F-15 A) was manipulated in terms of exceeding
torque and standpipe pressure data measurements to provide
sufficient data for case studies evidence.
e Performed Scenarios have been performed on four main scenarios,
i.e. excessive torque, decreased torque, excessive standpipe pressure,
and decreased standpipe pressure.

e The outcome of the case studies was that while abnormal torque
behavior could be detected properly at small deviations from the
safety windows, abnormal standpipe pressure tends to be detected
the easier, the larger the deviation of the actual values from the
predicted. In other words, the standpipe pressure model provides the
potential for improvement.

e [t is recommended to consider additional input data channels for
predicting torque and standpipe pressure and to perform further
tests in real-time and on the rig site, respectively.

5.2 Future work

General future work should be done on the main developed hybrid model:

Real-time mode for automated data import (direct import and convertion of
WITSML data)

Classification of alert level and issue type (e.g. loss rate or kick rate could be
calculated)

Improve actual networks and therefore, alert timing by consideration of
additional input data channels for torque (e.g. inclination, DLS) and standpipe
pressure predictions (e.g. discharge pressure, ECD, formation classification).
Improve future networks and therefore alert timing by consideration of
additional input data channels and neural network settings (e.g. type,
parameters)
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Additional tests based on real issue data and in real-time (data stream at or from
rig site)

The following implementations should be done to the standalone application to improve
capabilities, independent from administrators (easier user handling) and alert timing;:

Allow for direct configuration of data format and input, networks training
parameters and alerts.

Parallel zoom option of charts

Mark outlier regions of actual data from windows of uncertainty in the results
charts

Improve preview of future predictions (show information about changing
upcoming trends)
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Appendix A

Developed Scripts

A.1.1 Python Script
Incoming WITSML data is converted from WITSML to CSV format via a python script.

- <logData>
<mnemoniclist>TIME,GRID_CORR,SHKLV,GS_SPM3,ROP30s, MWIN,MTF_RT,| DLREF PMAX_| RT SGY,! GS TVDS DCRNT ETSL MSP6,ECD_MW _] IN MBOT,HV CRS4 OSTM,MS1(
<unitList>s,dega,unitless,1/min,m/h,mS/m,dega,rpm,kPa,m/s2,m3,A,s, g/cm3, 5 ohm.m,m, m3,m, h,unitles:

<data>2009-01-
21T00:36:32.0002,,0,,0.9906,,,,,65.47104,,,,,,,,,,1,2794.52832,,,,,39.93,,2794.52832,6.0400004336052,,23.91,0,,,60,,0,,30,55.0891107724152,5616, ,,,,,,,247.75,,,
20, 1,,2794.52832,44928, 120,11,0,,19501.8899512096,,,248.38,,0,293.88816,0,,4.182626318,50.92,,,,,,,,3,78,,156.3759695575,,,,,,,1,,1,0,, 153,11,
<data>2009-01-
21T00:36:36.0002,,0,,0.646176,,,,,65.47104,,,,,/,11,2794.52832,,,,,39.93,,2794.52832,10.277100048352,,23.91,0,,,60,,0,,30,0,5616,,,,,,,,247.78,,,,0,,168,32.1740
20,,,11010001,,2794.52832,44928, o,,,,0,,18501.8899512996,,,248.38,,0,293.88816,0,,4.182626318,50.92,,,,,,,,3,78,,156.4122569471,,,,,1,1,,,,,0,,153,,,,,..
<data>2009-01-
21T00:26:40.0002,,0,,0.24384,,,,,65.47104,,,,,,,,1,,,2794.52832,,,,,39.93,,2794.52832,11.6871507146167,,23.91,0,,,60,,0,,30,0,5616,,,,,,,,247.78,,,0,,168,32.1740
20,1111011:0111 2794.52832,44928 1100 00100100000001 01001 0,,19501.8899512996,,,248,38,,0,293.88816,0,,4.1826 26318,50.92,,,,,,1,3,78,,156.43947 248931111 L1101:91: 153 110100,
<data>2009-01-
21T00:26:44.000Z,,0,,0.070104,,,,,65.47104,,,11:1001112794.52832,,,,,39.93,,2794.52832,12.5684323810321,,23.91,0,,,60,,0,,30,0,5616,,,,,,,247.78,,,,0,,168,32.174
1,,2794.52832,44928, 1101111,0,,19501.8699512996,,,248.38,,0,293.88816,0,,4.182626318,50.92,,,,,,,,3,78,,156.48936765,,,,,,r11101/0,: 153, srerserss
<data>2009-01-
21T00:36:48.0002,,0,,0,,,,,65.47104,,,,,,,,,:,,2794.52832,,,,,39.93,,2794.52832,39.1017696 298776,,23.91,0,,,60,,0,,30,0,5616,,,,,,,,247.78,,,,0,,168,32.1740486,,,,.
20,,1010r500 L 2794.52832,44928, ,,,,111000r10r000s 14 1110,0,,19534.2953105775,,,248.38,,0,293.88816,0,,4.182626318,50.93,,,,,,,,3,78,,156.580086 124,,,,,,, 1,,,,,0,,153 ..,
<data>2009-01-
21T00:36:52.0002,,0,,0,,,,,65.47104,,,,,,1,1,,,2794.52832,,,,,39.93,,2794.52832,44.6742013975197,,23.91,0,,,60,,0,,30,0,5616,,,,,,,,247.78,,,,0,,168,32.1740486,,,,.
20,,,/1e10001,,2794.52832,44928, 0,,19534.2953105775,,,248.38,,0,293.88816,0,,4.182626318,50.93,,,,,,,,3,78,,156_6073016662,,,,,,,1,,,,,0,,153,,,,,
<data>2009-01-
21T00:36:56.0002,,0,,0,,,,,65.47104,,,,,,1,,,,,2794.52832,,,,,39.94,,2794.52832,54.1513688563561,,23.91,0,,60,,0,,30,75.4286 447872615 5615,,,,,,,,247 78,,,,0,,1
20,,1010100011,2794.52832,84928,,,,, 11010001104 O1e110,,19593.9349611634,,,248.38,,0,293.88816,0,,4.182626318,50.93,,,,,,,,3,78,,156.6
<data>2009-01-
21T00:37:00.000Z,,0,,0,,,,,65.4710%,,,1111/11,,2794.52832,,,,,39.94,,2794.52832,67.2756865962041,,23.91,0,,,60,,0,,30,75.4286447872618,5616,,,,,,,247.78,,,0,,1
1,,2794.52832,44928 0,,,,,0,,19583.9349611634,,,248,38,,0,293.88816,0,,4.182626318,50.83,,,,,,,,3,78,,156.7206997587, .1, 1,1,1,0,,153,,,1,..

Figure 69: WITSML (.xml) Well Data Outcrop before format conversion to CSV (.csv)

vecoosssieessorenn I ned!

E xml_to_csv.py® O &

limpert glob
2zmglob.glob({r"C:\Users\Andi\OneDrive\Uni\Master Thesis\data collection\Norway-StatoilHydro-15_$47$_9-F-154_converted\1\log\DateTime\858%1\*. xml")
3

4
Sdef wxml_to_csv{input_):

& with cpen{input_, "r") as file:
v raw = file.read()

8

3 import xmltodict

18 data = xmltnﬂ):t parse{raw)

11 i

1z

13

14 import pandas as pd

15 df = pd.DataFrame(data["legs"])
16 wdf.head()

17

18

19 dl=data["logs”]["leg"]

28

21 logbata=dl["loghata™]
22 logDl=logData[“data”]

in logbi])

48li=["ga@@3.xml"]

49|
sefor andreas in z:
s1 xml_to_csv(andreas)

Figure 70: Python script, xml to csv converter
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10:1;2;3,4,5:6,7:8,9;10;11;12;13;14;15;16;17;18;19;20;21;22,23;24,25;26,27,28;29;30;31;32;33;34;35;36;37,38;39,40;41,42;43,44:45;

5;2009-01-21T00:36:52.000Z;;0;;0;;;::65.47104;;;
6;2009-01-21T00:36:56.000Z;;0;;0;;;::65.47104;;;:::;
7;2009-01-21T00:37:00.000Z;;0;;0;;;::65.47104;;;

10;2009-01-21T00:37:12.000Z;;0;;0;;;;:65.47104;
11;2009-01-21T00:37:16.000Z;;0;;0;::::65.47104;
12;2009-01-21T00:37:20.000Z;;0;;0;;:::65.47104;

15;2009-01-21T00:37:32,000Z;;0;;0;::::65.47104;
16;2009-01-21T00:37:36.000Z;;0;;0;;;;:65.47104;
17;2009-01-21T00:37:40.000Z;;0;;0;;;;:65.4 7104
18;2009-01-21T00:37:44.000Z;;0;;0;;;;:65.47 10475520

Figure 71: CSV Well Data Outcrop after format conversion

A.1.2 Matlab Scrips

Before running the standalone application and importing files, the script needs to be
adjusted to the well data file columns header.

IIMPORT?R.AW?datafandfFILTER.mI | RESULTS_TIME_PLOT.m ‘\ Torque_trend_prediction_VERSION_1.m

o]

2

% Specify celumn names and typ

opts.VariableNames = |["Line"”, "TIME", "BHFG", "P28H ECO RT", "DMEA", "TQA", "CRS (]
opts.VariableTypes = |["double","string", "double", "double", "double", "double",
opts

%% Setup the Import Options
opts = delimitedTextImportOptions ("NumVariables", 253);

3 Specify range and delimiter

ots.Datalines = [2,Inf];

n,n

optshbelibimdter s =ittt -

setvaropts (opts, 2, "WhitespaceRule", "preserve");

opts = setvaropts(opts, 2, "EmptyFieldRule", "auto"):;
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";

$import latest data file from directory

Q

startingFolder = pwd; % Whatever.

folder = uigetdir(startingFolder) ;

% Now get .csv files

filePattern: = fulilfile (folder,  '* et )

Figure 72: Import and filter data script, outcrop, heada parameters to be adjusted
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| Merged_well_filtered_data
[ 1000014 table
) 2 3 4 T 6 F 8 k] 10 1 12 13 14
TIME filteredTQA2  filteradSPP2  filteredRPM2. filled_OutputDMEAFiled_ OutputDETH filled SWOB  fillad ROP  filed TFLO filed HKLD filled BPOS filled SPM1  filac SPM2  filled SPM3
!1 2009-01 'UZTUEJEZ‘/.U'MH 11.0884 155.9437 49 -3.1794e+03 -3.1589e+03 o 332.5900 2.1374e+03 130.6868 35.6100 48 0 48 -~
2 2009-01-02T08:39.27.965Z 110887 156.1446 495000 -31794e403  -3.4589e+03 0 3325000 21373e+03 1312069 356100 48 0 48
3 2009-01-02T08:39:32.0267 110925 1563470 50 3179de+03  -3.1589+03 0 3325900 21372e+03 1317269 355100 48 0 48
4 2009-01-02T08:39:36.000Z 11.0878 156.5507 50 -3.1794e+03 -3.1589% +03 0 332.5900 2.1371e+03 131.7235 356100 48 0 48
5 2009-01-02T08:39:39.974Z 11.0750 156.7557 50 -3.1794e+03 -3.1589e+03 o 3325900 2.1371e+03 131.7201 35.6100 48 0 48
6 2009-01-02T08:39:41011Z 110970 1569621 50 -3479de+03  -3.1589e4+03 0 3328000 21371e+03 1307167 356100 48 0 48
U 2009-01-02T08:39:44.0357 11.1419 157.1698 49.5000 -3.1794e+03 -3.1589%e+03 0 332.5900 2.1369e+03 131.7167 35.6100 48 0 48
8 2009-01-02T08:39:44.9867 11.2091 157.3786 49 -3.1794e+403 -3.1589%+03 0 3325900 2.1368e+03 131.7167 356100 48 0 48
] 2009-01-02708:32:48.010Z 113143 157.5886 49 -3.1794e+03 -3.1589¢+03 0 332.5900 2.1371e+03 1317218 356100 48 0 48
10 2009-01-02T08:39:49.9977 11.4426 157.7997 49 -3.1794e+03 -3.1589% +03 0 3325900 2.1375e+03 131.7269 356100 48 0 48
" 2009-01-02T08:39:51.984Z 11.5652 158.0117 49.5000 -3.179de+03 -3.1589e+03 o 3325900 2.1374e+03 131.5485 35.6100 48 0 48
1z 2009-01-02T08:39:53.971Z 11.6405 158.2246 50 -3.1794e+03 -3.1589e+03 0 332.5900 2.1374e+03 131.3700 356100 48 0 48
13 2009-01-02T08:39:55.9562 116215 1584383 495000 3.1794e+03  -5.1589+03 0 3325900 21371e+03 1314465 355100 8 0 48
14 2009-01-02T08:39:58.9827 11.4766 158.6528 49 -3.1794e+03 -3.1589% +03 0 3325900 2.1369e+03 131.5230 356100 48 0 48
15 2009-01-02T08:40:00.019Z 11.2278 158.8678 49,3333 -3.1794e+03 -3.1589e+03 0 332.5900 2.136%+03 131.4652 35.6100 48 0 48
16 2009-01-02T0840:03.984Z 109785 159.0834 496667 31794403 -3.1589e+03 0 3325000 21368e+03 1314074 356100 48 0 48
17 2009-01-02T08:40:07.9662 108349 1592094 50 -3179de+03  -3.1589403 0 3325000 21368e+03 1313496 3556100 48 0 48
18 2009-01-02T08:40:12.0297 10.8090 159.5157 49 -3.1794e+03 -3.1589%+03 o 3325000 2.1374e+03 131.5230 356100 48 0 48
19 2009-01-02T08:40:16.,003Z 10.8633 159.7323 49 -3.1794e+03 -3.1589e+03 o 3325900 2.1374e+03 131.5281 356100 48 0 48
20 2009-01-02T0840:17.040Z 109257 1599489 49 307948403 -3.1589e+03 0 3325000 21375403 1315332 356100 48 0 48
21 2009-01-02T08:40:19.9787 10.9361 160.1656 49 -3.1794e+03 -3.1589%e+03 o 3325900 2.1374e+03 131.5332 35.6100 48 0 48
22 2009-01-02T08:40:21.014Z 10.8891 160.3822 49 -3.1794e+03 -3.1589% +03 o 332.5900 2.1374e+03 131.5332 356100 48 0 48
23 2009-01-02T08:40.24.038Z 10.8093 160.5986 49 -3.1794e+03 -3.1589¢+03 o 3325900 2.1371e+03 1315485 356100 48 0 48
24 2009-01-02T08:40:26.0267 10.7240 160.8148 49 -3.1794e+03 -3.1589% +03 0 3325900 2.1369e+03 131.5638 356100 48 0 48
25 2009-01-02T08:40:28.013Z 10.6501 161.0305 49 -3.1794e+03 -3.1589e+03 0 3325900 2.1370e+03 131.6114 35.6100 48 0 48
26 2009-01-02T08:40:31.987Z 10.6191 161.2458 49 -3.1794e+03 -3.1589%e +03 0 332.5900 2.1371e+03 131.6590 356100 48 0 48
27 2009-01-02T08:40:35.011Z 106647 1614605 49 34794es03  -3.1589¢403 0 3325000 21372e403 1317065 355100 8 0 8
28 2009-01-02T08:40:35.9627 10.7390 161.6747 49 -3.1794e+03 -3.1589% +03 o 3325900 2.1373e+03 131.6658 356100 48 0 48
29 2009-01-02T08:40:38.986Z 10.7287 161.8881 49 -3.1794e+03 -3.1589%e+03 0 3325900 2.1375e+03 131.6250 356100 48 0 48
30 2009-01-02T0840:40.0227 106288 1621007 48 317940403 -3.1589e+03 0 3325000 21374e+03 1315689 356100 48 0 L
7 >

Figure 73: Imported and filtered data table

Training parameters of the neural network models may also be calibrated after the users
desire upfront (administrator). The scripts will prepare the table parameters and create
a matrix for each input and output table before training of the models will be triggered.

TQA_NEW_NETWORK_ACTUAL_2.m +

5 % This ript as defined: T

6 %

7 % X no 24 -

8 % T no 24 - feedback time series.

9- Input_Data X TQA train_timetable = table (Merged well filtered data.filteredRPM2,Merged well filtered data
10— Input_Data X TQA train_timetable.TIME = datetime (Merged well filtered data.TIME, 'For . "yyyy-MM-dd HH:m
11— Input_Data X TQA train timetable.Properties.VariableNames{4} = 'TIME';

12 Input_Data X TQA train_timetable.Properties.VariableNames{l} =

18- Input_Data X TQA train_timetable.Properties.VariableNames{2}

14— Input_Data X TQA train_timetable.Properties.VariableNames{3} = 'filled HKLD':

15

1a= Input_Data X TOQA tra in_t imetable=table2timetable (Inpu t_Data_X_TOA tra s n_t imetable) ;

17

18— Input_Data_X TQA train_timetable=Input_Data_X TQA train_timetable(TR,:):

19

20— Input Data X TQA train = table(Input_Data X TQA train_timetable.filteredRPM2, Input_Data X TQA train_timet
21 = Input_Data X _TQA train.Properties.VariableNames({1} = 'filteredRPM2';

S0 Input_Data X TQA train.Properties.VariableNames({2} = 'filled SWOB';

23— Input Data X TQA train.Properties.VariableNames{3} = 'filled HKLD';

24

25 Input Data X TQA matrix train = Input Data X TQA train{:,:};

26

2= Input Data T TQA train timetable = table(Merged well filtered data.filteredTQA2):

28 — Input Data T TQA train timetable.TIME = datetime (Merged well filtered data.TIME, 'Format','yyyy-MM-dd HH:m
Z289= Input Data T TQA train_ timetable.Properties.VariableNames{2} = 'TIME';

S0= Input Data T TQA train timetable.Properties.VariableNames{l} = 'filteredT( Bip

Zik

22 = Input Data T TQA train timetable=table2timetable(Input Data T TQA train timetable);

23

34— Input Data T TQA train timetable=Input_Data T TQA train timetable(TR,:);

35

56 Input Data T TOA train = table(Input Data T TOA train timetable.filteredTOAZ2); *

I( >

Figure 74: Actual Torque Prediction Script, outcrop, input parameters
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43
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45—
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47
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S
52
54
54
S5
56 —
S =
58 —
55

<

| TQA NEW_NETWORK ACTUAL 2.m

il

= o = —
Input Data T TQA train timetable.TIME = datetime(Merged well filtered data.TIME, 'Format','yyyy-MM-dd HH:m

Input Data T TQA train_timetable.Properties.variableNames{2} = "TIME';
Input_Data T TQA train_timetable.Properties.VariableNames{l} = 'filteredTQA2';

Input Data T TQA train timetable=tableZtimetable(Input Data T TQA train timetable);
Input Data T TQA train timetable=Input Data T TQA train timetable(TR,:);

Input_Data_T_TQA train = table(Input_Data_T_TQA train_timetable.filteredTQAZ2):
Input_Data T TQA train.Properties.VariableNames{l} = 'filteredTQA2';

Input Data T TQA matrix train = Input Data T TQA train{:,:};

X = tonndata(Input Data X TQA matrix train, false,false);
T = tonndata(Input_Data T_TQA matrix_train,false, false);

X=X (1l:end) ;

T=T (1:end) ;

% Choose a Training Function

% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.

% Ytrainscg' tuations.

trainFen = 'trainlm'; % Levenberg-Marquardt backpropagation.

less memory. Suitable in low memory ¢

% Create a Nonlinear Autoregressive Network with External Input
inputDelays = 1:50;

feedbackDelays = 1:50;

hiddenLayerSize = 10;

NEW_NET_TQA ACTUAL_2 = narxnet (inputDelays, feedbackDelays, hiddenLayerSize, 'open’', trainFen) ;

Figure 75: Actual Torque Prediction Script, outcrop, training parameters

| Input_Data_X_TQA | Input_Data_X_TQA_matrix
{5 100003 table £+ 10000x3 double
1 2 3 1 2 3

filteredRPM2 _ filled SWOB filled HKLD ~ ¢ [ o 0 694529
1 0 694529 5 0 0 696262
2 0 0 69.6262 4 0 0  69.799%
3 0 0 69.7996 Ry 0 0 700953
4 g LR 0 0 700137
= L 0 woilenl 0 0  69.6568
o 0 0 ERE560 0 0 697792
7 0 0 69.7792
I8 0 0 700647 © L 4 70060
; = = 57556 0 0 69799
= . g 9,425 B 0 0 694835
1 0 0 607486 11 0 0 697486
12 0 0 697486 12 0 0 697486
13 0 0 70.0137 13 0 0 70.0137
14 0 0 69.8353 14 0 0 69.8353
15 0 0 69.6568 15 0 0 69.6568
16 0 0 69.7486 16 0 0 69.7486
17 0 0 69.9933 17 0 0  69.9933
18 0 0 69.7792 18 0 0 697792
19 0 0 700647 19 0 0  70.0647
20 0 0 69.9933 20 0 0  69.9933

Figure 76: Input data for Actual Torque Prediction, outcrop, table (left) and matrix

(right)

79



SPPA_NEW_NETWORK_2.m 53

an Auto ion Problem

r

generate
Input Data ¥ SPPA train timetable

Input Data X SPPA train timetable.
Input_Data_X_SPPA train_timetable.
Input_Data X SPPA train timetable.
Tnput Data X SPPA train timetable.
Input_Data X SPPA train timetable.
Input_Data X SPPA train timetable.
Input_Data X SPPA train timetable.
Input_Data X SPPA train timetable.

Input Data X SPPA train timetable=tableZtimetable (Input Data X SPPA train timetable);

by Neural Time Se

with

ies app

External Input with a NARX Neural MNetwork

Appendix A

= table (Merged well filtered data.filled TFLO,Merged well filtered data.filled SPMi1,t

TIME = datetime (Merged well filtered data.TIME, 'Format','
Properties.VariableNames{7} = 'TIME';
Properties.VariableNames{1l} = 'filled TFLO';
Properties.VariableMames{2} = 'fille
Properties.VariableNames{3} = "filled
Properties.VariableNames{4} = "filled
Properties.VariableNames{5} = "filled
Properties.VariableNames{6} = 'filteredRPM2';

Input_Data X SPPA train_ timetable=Input Data X SPPA train timetable(TR,:);

Input_Data X_SPPA_train= table(Input_Data_ X SPPA_train_timetable.filled TFLO, Input_Data X SPPA_train_timetable.filled (

Input_Data X SPPA train.Propertie
Input_Data X_SPPA train.Propertie
Input_Data X SPPA train.Propertie
Input Data X SPPA train.Propertie
Tnput_Data X_SPPA_train.Propertie
Input_Data_ X SPPA train.Propertie

Input_Data X_SPPA matrix train =

Input Data X SPPA matrix train(:,4:6)=sum{Input Data X SPPA matrix train(:,4:6),4):
Tnput_Data_X_SPPA matrix_train=Tnput_Data_X_SPPA_matrix_train(:,1:4);

Input_Data T SPPA train timetable = table(Merged well filtered data.filteredSPP2);
Input_Data T SPPA train_timetable.TIME = datetime (Merged well filtered data.TIME,'Format', 'yyyy-MM-dd HH:mm
.Properties.variableNames{2} = "TIME';

Input Data T SPPA train timetable
Tnont Data T SPPA train timatahle

s.VariableNames{1l} =
s.VariableNames{2) =
s.VariableNames{3} =
s.VariableNames{4} =

s.VariableNames{5) = 'f

led TFLO';

led SBM2';
s.VariableNames{6) = "filled SPM3';

Input_Data X SPPA train{:,:};

OutputDMEA' ;

_Proverties_VariahleNames{1}l = "filtaradSpp2':

Figure 77: Actual Standpipe Pressure Prediction Script, outcrop, input parameters
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% Setup Division of Data for Training, Validation, Testing

NEW NET SPPA_ACTUAL 2.divideParam
HEW_NET_SPPA_ACTUAL_2.divideParam
NEW_NET SPPA_ACTUAL 2.divideParam

% Train the Network

.trainRatio = 70/100;
.valRatio = 15/100;
.testRatio = 15/100;

x_sppa_act,xi_sppa_act,ai_sppa act,t_sppa_act] = preparets(NEW_NET_ SPPA ACTUAL 2,X sppa_act,{},T_sppa_act);

[NEW_NET SPPA ACTUAL 2,tr] = train(NEW_NET SPPA ACTUAL_2,x sppa_act,t_sppa_act,xi sppa act,ai_sppa act):

% Test the Net

rk

yNEW_ACTUAL_SPPA_2 = NEW_NET_SPPA_ACTUAL_2 (x_sppa_act,xi_sppa_act,ai_sppa_act);

e sppAa_Aact = asnbtract (t sopa_act

. VNEW _ACTIIAT, SPPA 2):

Figure 78: Actual Standpipe Pressure Prediction Script, outcrop, training parameters

Note: The channels for pump strokes are being compiled to a single channel since there

are not always the same pumps active, which would falsify the results.

80



Appendix A

Input_Data_X_SPPA | Input_Data_X_SPPA_matrix
i 10000x4 table - 10000x2 double
1 2 3 4 1 2

filled TFLO  filled_SPM1 filled_SPM2 filled_SPM3 | 4 E 0
1 [ 9 0 0 0 » 0 0
2 0 0 0 ] 0 0
3 0 0 0 0| , P 0
4 0 0 0 of ¢ 5 o
5 0 0 0 o ¢ 2 2
6 0 0 0 0
7 0 0 0 ol 7 L 0
8 0 0 0 of 8 0 0
9 0 0 0 ol 9 L 0
10 0 0 0 o| 10 0 0
11 0 0 0 o| 1 0 0
12 0 0 0 o| 12 0 0
13 0 0 0 o| 13 0 0
14 0 0 0 o| 14 0 0
15 0 0 0 ol 15 0 0
16 0 0 0 o| 16 0 0
17 0 0 0 of 17 0 0
18 0 0 0 0| 18 0 0
19 0 0 0 ol 19 0 0
20 0 0 0 ol 20 0 0

Figure 79: Input data for Actual Standpipe Pressure Prediction, outcrop, table (left) and
matrix (right)
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Figure 80: Graphical User Interface for Developed Standalone Application
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# Description and Function

1 | Imports and filters new data sample.

2 | Calculate torque and standpipe pressure windows based on trained networks.

3 | Visualizes results in the specific plot sections.

4 | Train neural networks for torque predictions

5 | Train neural networks for standpipe pressure predictions

6 | Visualization of actual raw data vs. filtered data, predicted torque and
standpipe pressure windows

7 | Visualization of additionally filtered data channels (hookload vs. block
position and measured depth of bit vs. hole).

8 | Visualization of predicted torque trend, future torque (based on other
channels) and torque window.

9 Visualization of predicted SPPA trend, future SPPA (based on other channels)
and SPPA window.

10 | Warning shown by alert trigger functions.

Table 13. Detailed Description of the GUI Panel
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TQA
SPPA
WITSML
WITSO
HSE
uI
DSF
oD
BHA
RPM
ROP
LCM
BHP
WBM
OBM
CH
OH
WOB
DP
CSG
KOP
HWDP
RIH
POOH
ROB
KPI
spp
ADP
MSER
SVM

Acronyms

Average (surface) torque
Average Standpipe Pressure
Wellsite information transfer standard markup language
Wellsite Information Transfer Standard Level 0
Health Safety Environment
User Interface

Differential Sticking Force
Outer Diameter

Bottom Hole Assembly
Rotations per Minute

Rate of Penetration

Loss Circulation Material
Bottom Hole Pressure
Water based Mud

Oil based Mud

Cased Hole

Open Hole

Weight on Bit

Drill Pipe

Casing

Kickoff Point

Heavy Weight Drill Pipe
Running in hole

Pulling out of hole

Rotating off bottom

Key Performance Indicator
Standpipe Pressure
Annular Discharge Pressure
Mean Squared Error

Support Vector Machines
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MLR
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NARX
NAR
IADC
IWFC
RSS

Acronyms

Multilinear Regression

Artificial Neural Networks

Nonlinear Autoregressive with External (Exogenous) Input
Nonlinear Autoregressive

International Association of Drilling Contractors
International Well Control Forum

Rotary Steerable System
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