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Abstract 

Early detection of stuck pipe incidence in real-time will lead to reducing the downtime 

and costly corrective actions. Therefore, in the last decades, intensive efforts have been 

made to develop methods to identify the stuck pipes early symptoms.  One of these 

methods is torque and drag (T&D) modeling. Despite numerous advantages, the 

modeling-based method has, nowadays, T&D modeling is not common because it 

requires real-time merge and contextual data of heterogeneous frequency and quality as 

well as recalibration. The alternative approach is to apply data-driven algorithms to 

solve real-time torque and drag issues. This approach can be judged to be more robust 

than the first because real-time drilling data can be used. Besides, the data-driven 

algorithm does not limit the number of input parameters. From this perspective, this 

thesis proposes a model based on a machine learning concept focused on real-time 

detecting the early signs of impending stuck pipe by real-time monitoring the pertinent 

surface drilling parameters. 

The newly proposed method uses machine learning linear regression algorithms to 

predict several parameters such as standpipe pressure, hook load, surface torque. The 

model can train from the data gained and adjust its performance automatically. The 

predicted parameters help the model to evaluate the behavior of real-time data. This 

comparison results in an alert level table for every predicted parameter. The alert level 

table allows the model to calculate stuck probability and generate an alarm when the 

probability exceeds the preliminary set limits. As a result, the model is suited to use real-

time drilling operation data as input, calculate stuck pipe probability and notify the 

driller when the risk of stuck pipe is out of threshold and may be recognized as 

dangerous. 

The first part of the thesis provides an overview of the problem, the current thesis 

challenges, and objectives. The main machine learning algorithms and data-based 

approaches application for early stuck pipe sign detection are denoted in the second part 

of the thesis. Finally, the third part of the work covers the methodology of the proposed 

approach in detail. Two case studies of the approach implementation using real-time 

data are also presented here. 

In conclusion, the results of the work are presented and summarised. The features and 

shortcomings of the proposed approach are also discussed. The resulting model proves 

its ability to implement real-time data monitoring to avoid costly and time-consuming 

stuck pipe incidents.  
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Zusammenfassung 

Die frühzeitige Erkennung des Auftretens von Steckrohren in Echtzeit führt zu einer 

Reduzierung der Ausfallzeiten und kostspieligen Korrekturmaßnahmen. Daher wurden 

in den letzten Jahrzehnten intensive Anstrengungen unternommen, um Methoden zur 

Identifizierung der festsitzenden und frühen Symptome zu entwickeln. Eine dieser 

Methoden ist die Drehmoment-und Schleppmodellierung (T&D). Trotz zahlreicher 

Vorteile ist die modellierungsbasierte Methode heutzutage nicht mehr üblich,da sie 

Echtzeit-Merge-und Kontextdaten heterogener Frequenz und Qualität sowie 

Neukalibrierung erfordert. Der alternative Ansatz besteht darin, datengesteuerte 

Algorithmen anzuwenden, um Drehmoment-und Schleppprobleme in Echtzeit zu lösen. 

Dieser Ansatz kann als robuster als der erste beurteilt werden, da Bohrdaten in Echtzeit 

verwendet werden können. Außerdem begrenzt der datengetriebene Algorithmus die 

Anzahl der Eingabeparameter nicht. Aus dieser Perspektive schlägt diese Arbeit ein 

Modell vor, das auf einem maschinellen Lernkonzept basiert, das sich darauf 

konzentriert, die frühen Anzeichen eines drohenden feststeckenden Rohrs in Echtzeit zu 

erkennen, indem die relevanten Oberflächenbohrparameter in Echtzeit überwacht 

werden. 

Die neu vorgeschlagene Methode verwendet lineare Regressionsalgorithmen für 

maschinelles Lernen, um mehrere Parameter wie Standrohrdruck, Hakenlast und 

Oberflächendrehmoment vorherzusagen. Das Modell kann aus den gewonnenen Daten 

trainieren und seine Leistung automatisch anpassen. Die vorhergesagten Parameter 

helfen dem Modell, das Verhalten von Echtzeitdaten zu bewerten. Dieser Vergleich führt 

zu einer Tabelle mit Warnstufen für jeden vorhergesagten Parameter. Die Warnstufen-

Tabelle ermöglicht es dem Modell, die Wahrscheinlichkeit zu berechnen und einen 

Alarm zu erzeugen, wenn die Wahrscheinlichkeit die vorläufig festgelegten Grenzen 

überschreitet. Infolgedessen eignet sich das Modell, um Bohroperationsdaten in Echtzeit 

als Eingabe zu verwenden, die Wahrscheinlichkeit eines festsitzenden Rohrs zu 

berechnen und den Bohrer zu benachrichtigen, wenn das Risiko eines festsitzenden 

Rohrs außerhalb des Schwellenwerts liegt und als gefährlich erkannt werden kann. 

Der erste Teil der Arbeit gibt einen Überblick über das Problem, die aktuellen 

Herausforderungen und Ziele der Arbeit. Die wichtigsten maschinellen 

Lernalgorithmen und datenbasierten Ansätze Anwendung für die frühe Stuck Pipe Sign 

Detection sind im zweiten Teil der Arbeit bezeichnet. Schließlich behandelt der dritte 

Teil der Arbeit die Methodik des vorgeschlagenen Ansatzes im Detail. Hier werden auch 

zwei Fallstudien zur Umsetzung des Ansatzes anhand von Echtzeitdaten vorgestellt.  

Abschließend werden die Ergebnisse der Arbeit vorgestellt und zusammengefasst. Die 

Merkmale und Mängel des vorgeschlagenen Ansatzes werden ebenfalls diskutiert. Das 

resultierende Modell beweist seine Fähigkeit, eine Echtzeitdatenüberwachung zu 

implementieren, um kostspielige und zeitaufwändige Vorfälle mit feststeckenden 

Leitungen zu vermeiden. 
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Chapter 1 Introduction 

1.1 Overview  
Drill string stuck forecasting and mitigation strategies have attracted and will continue 

to attract attention in drilling as more complex wells are drilled in depleted zones to 

reach deeper formations. Detecting stuck pipe early and reducing the likelihood of pipe 

stuck in real-time helps prevent stuck pipe occurrence and assists in making informed 

decisions about the appropriate release mechanism to be adopted if it eventually occurs. 

It is reported that stuck pipe incidents take about 25% of total non-productive time (NPT) 

(Muqeem et al., 2012). 

A stuck pipe event occurs when it is impossible to move or rotate a drill string in the 

wellbore. In such cases, a drill string cannot be retrieved without damaging the pipe or 

bottom-hole assembly (BHA). Two main mechanisms are responsible for stuck pipe 

events: pressure differences and mechanical blockage. In the first case, if annular 

pressure is greater than the pressure in the formation being drilled, the drill string 

“sticks” to the wellbore wall due to such pressure difference. The contact surface area 

also plays a role in such kind of sticking. 

Conversely, the concept of mechanical sticking describes the restriction or prevention of 

drill string movement for other reasons, for example, debris in the wellbore, anomalies 

in the geometry of the wellbore, key-ways, seal formation due to poor hole cleaning, 

unfavorable properties of the drilled formation. 

Early detection of stuck pipe incidents in real-time will lead to reducing the downtime 

and costly corrective actions. Therefore, intensive efforts have been developed to 

develop methods to identify the stuck pipes’ early symptoms in the last decades.  One 

of these methods is torque and drag (T&D) modeling. Nowadays, T&D modeling is not 

standard because it requires real-time merge and contextual data of heterogeneous 

frequency and quality and recalibration. These results are not easily accessible to the 

user. The fundamental weakness of the current torque and drag models is its constant 

curvature wellbore trajectory. These trajectories mean that the drill string ’s bending 

moment does not change smoothly at survey points, which means that some contact 

forces and Axial loads are not present in the model.  

The alternative approach is to apply neural networks (deep learning) and machine 

learning (ML) algorithms to solve real-time torque and drag issues. This approach can 

be more robust because the inputs can be automatically entered in real-time into a model 

that will generate the appropriate outputs.  

1.2 Challenges  
If early signs are detected in most stuck pipe events and measures are taken, an incident 

is preventable. Time is critical in such cases to take avoidance or remediation measures. 

For this reason, suck pipe early signs detection is of great importance. Several attempts 

to detect preliminary signs and prevent developing stuck pipe incidents using machine 

learning were made. 
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Recently, attention was drawn to the use of different data-driven techniques for stuck 

pipe prediction. The most commonly used techniques are statistical methods, ML 

models (based on Artificial Neural Network (ANN)), Support Vector Machines (SVM), 

Linear Regression), and hybrid approaches. 

There were several attempts to use statistical learning methods to predict and classify 

torque and drag during drilling. Usually, such a predictive model does not need the new 

BHA or bit data but only surface parameters. However, such models require large 

amounts of input data.  

Despite the advantages of the ML models, they still have few remarkable shortcomings, 

which can be solved using this thesis’s approach.  The first issue is related to the data set 

used to build the predictive model, and the existing methods require the historical stuck 

pipe incidents data for building the models. The other issue is related to the data set for 

training the model; most of them used big data to significantly impact the data’s model 

performance.  For the method that uses classification algorithms, selecting the data 

windows for training the algorithms can be a big challenge.  

1.3 Objectives 
Based on the disadvantages denoted in the previous section, the main goal of the thesis 

is to develop a model based on a machine learning concept focused on real-time 

detecting the early signs of impending stuck pipe by real-time monitoring the pertinent 

surface drilling parameters. 

 The basic methodology of the proposed model is demonstrated in Figure 1. 

 

Figure 1: Basic Working Principle of the Developed Model  
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1.4 Thesis Structure 
To achieve the defined goal of the thesis, the following steps are developed to be the 

main focus of the thesis:  

•  Literature review of main Machine learning algorithms. 

•  Literature review, analysis, and comparison of methods and models used for 

real-time stuck pipe detection approach based on data-driven technique. 

•  Data preparation to build the predictive models. 

•  Model building, tuning, performance evaluation. 

•  Real-time stuck pipe probability calculation, alarming system development. 

•  Model validation. 
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Chapter 2 Machine Learning Application 

on Stuck Pipe Events Detection 

2.1 Overview 
Machine Learning is an extensive subset of artificial intelligence that studies methods 

for building learning-capable algorithms. Commonly, there are two main types of 

training. Inductive training is based on identifying dominant patterns from particular 

empirical data. Deductive learning involves formalizing the knowledge of experts and 

transferring it to a computer in the form of a knowledge base. Deductive learning refers 

to expert systems, so machine learning and use case learning can be considered 

synonymous. Machine learning is at the intersection of mathematical statistics, 

optimization methods, and classical mathematical disciplines and has its specificity 

associated with computational efficiency and overfitting problems. Many inductive 

learning methods have been developed as an alternative to classical statistical 

approaches. Many methods are mostly related to the extraction of information and data 

mining. 

The theoretical sections of machine learning are combined into a separate area, the 

theory of computational learning (Computational Learning Theory, COLT). Machine 

learning is not only a mathematical but also an engineering discipline. Pure theory, as a 

rule, does not immediately lead to methods and algorithms applicable in practice. 

However, to make them work well, additional heuristics have to be invented to 

compensate for the discrepancy between the assumptions made in the theory and the 

real problems. Furthermore, almost no research in machine learning is complete without 

an experiment on a model or actual data, confirming the practical workability of the 

method. 

This chapter will start by giving a short introduction to the most common type of 

machine learning algorithms. Then, the recent data-driven applications for the stuck 

pipe detection approaches are discussed. In general, they can be classified into four 

categories: 

1.  Statistical learning methods 

2.  Linear regression methods 

3.  ANN approaches 

4.  Hybrid approaches 

2.2 Supervised Learning Algorithms 

2.2.1 Linear Regression 

In mathematical statistics, linear regression is a method for approximating the 

dependencies between input and output variables based on a linear model. It is part of 

a broader statistical technique called regression analysis. 
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In regression analysis, input (independent) variables are also called predictor variables 

or regressors, and dependent variables are called criterion variables. 

 

Figure 2: Linear Regression Example (Source: Wikipedia) 

If the relationship between one input and one output variable is considered, then simple 

linear regression occurs. The regression equation is determined as y=ax+b. As a result, 

the corresponding straight line constructed is named the regression line. 

Odds a and b, also called model parameters, are determined so that the sum of the 

squares of the deviations of the points corresponding to the actual observations of the 

data from the regression line would be minimal. Therefore, the odds are usually 

estimated using the least-squares method. 

If a relationship is sought between inputs and one output variable, then multiple linear 

regression takes place. 

Linear regression was the first type of regression analysis thoroughly studied and got 

widespread in practical applications. The linear regression gets popular because, in 

linear models, the estimation of parameters is more superficial and also because the 

statistical properties of the estimates obtained are easier to determine.  

Linear regression has many practical uses. Most apps fall into one of two broad 

categories: 

•  If the goal is forecasting, linear regression can fit the model to the observed 

dataset. 

•  Suppose the goal is to explain the volatility of the output variable. In that case, 

linear regression analysis can be applied to quantify the strength of the relationship 

between the output and input variables. 
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2.2.2 Support Vector Machines  

This method is used as a classification method to adapt to torque data and use non-linear 

classification boundaries to classify them effectively. Using kernels helps to map SVM 

input into large feature spaces implicitly. The efficiency of SVM classification depends 

on the kernel, kernel parameters, and field parameters. The effectiveness of SVM in 

characterizing text has been discussed by Joachims (1998). Using SVM for pattern 

recognition or classifying the torque trend can be helpful in drilling, especially for use 

as a predictive tool. 

 

Figure 3: Support Vector Machine Example (Source: Wikipedia) 

Support Vector Machines are a family of supervised learning-based binary classification 

algorithms that use linear hyperplane partitioning of feature space. 

The method’s main idea is to map the vectors of the feature space, representing the 

classified objects, into a space of a higher dimension. Because in the space of higher 

dimension, the linear separability of the set turns out to be higher than in the space of 

lower dimension. The reasons for this are intuitively clear: the more features are used 

for object recognition, the higher the expected recognition quality.  

After being transferred to a space of greater dimension, a separating hyperplane is 

constructed in it. Moreover, all vectors located on one “side” of the hyperplane belong 

to one class, those located on the other - to the second. Two auxiliary hyperplanes are 

constructed on both sides of the main dividing hyperplane, parallel to it and at an equal 

distance from it. The distance between hyperplanes is called the gap. 

The task is to construct a separating hyperplane in such a way as to maximize the gap - 

the area of the feature space between the auxiliary hyperplanes, in which there should 
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be no vectors. It is assumed that the separating hyperplane constructed according to this 

rule will provide the most confident separation of classes and minimize the average 

recognition error. 

The vectors that fall on the boundaries of the gap (that is, they will lie on the auxiliary  

hyperplanes) are called support vectors (which gave the name to the method). 

2.2.3 Random Forests 

Random forest is a machine learning algorithm proposed by Leo Breiman and Adele 

Cutler, which uses a committee (ensemble) of decision trees. The algorithm combines 

two main ideas: the Breiman bagging method and the random subspace method 

proposed by Tin Kam Ho. The algorithm is used for problems of classification, 

regression, and clustering. The main idea is to use a large ensemble of decision trees, 

each of which by itself gives a poor quality of classification, but due to their large 

number, the performance is good. 

A Random Forest is a composition (ensemble) of many decision trees, which reduces 

overfitting and improves accuracy compared to a single tree. The forecast is obtained by 

aggregating the responses of many trees. Trees are trained independently of each other 

(on different subsets), which solves the problem of constructing identical trees on the 

same dataset and makes this algorithm very convenient for distributed computing 

systems. 

 

Figure 4: Random Forest Example (Source: analyticsvidhya.com) 

For bagging (independent learning of classification algorithms, where the result is 

determined by voting), it makes sense to use many decision trees with a sufficiently large 
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depth. During the classification, the final result will be the class for which most trees 

voted, provided that one tree has one vote. 

Suppose that a model was formed with 500 trees in the binary classification problem. 

For instance, 100 trees indicate the zero class, and the remaining 400 indicate the first 

class. In this case, the model will predict the first class. If Random Forest is used for 

regression problems, choosing the solution that most trees voted for would be 

inappropriate. Instead, it chooses the average solution across all trees.  

Random Forest (due to the independent construction of deep trees) requires many 

resources. Limiting the depth will damage accuracy (to solve complex problems, one 

needs to build many deep trees). 

The training time for trees increases approximately linearly with their number. So, 

increasing the height (depth) of trees does not have the best effect on performance. 

However, it increases the efficiency of this algorithm (although at the same time, the 

tendency to overfitting increases). 

2.2.4 Artificial Neural Networks  

A neural network consists of artificial neurons connected in a certain way and the 

external environment through connections, each of which has a specific coefficient. The 

value arriving through it is multiplied (these coefficients are called weights). 

 

Figure 5: Typical Neural Network Architecture (Source: Wikipedia) 

Neural networks can be implemented both in software and hardware (neurochips, 

neurocomputers). 

In the process of functioning of a neural network, data is converted, the specific type of 

which is determined by the weights of intraneuronal connections, the type of activation 

function of neurons, architecture, and configuration of the network 

Neural networks are machine learning-based models consisting of the iterative 

adjustment of the network weights according to the learning algorithm’s rule. The rules 
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can be used while constructing supervised learning (for multilayer perceptrons) and 

unsupervised (for Kohonen networks) neural networks. 

Most often, neural networks are used to solve the following tasks: 

•  Function approximation - recovering functional dependencies from training 

data. 

•  Classification - determination of the belonging of the input object, represented 

by the feature vector, to one of the predefined classes. 

•  Clustering is a grouping of objects based on the proximity of their properties. 

•  Forecasting - predicting a value 

•  Optimization - finding a solution that satisfies the system of constraints and 

maximizes or minimizes the objective function. 

•  Associative memory is content-addressable memory used in superfast search 

systems. 

•  Control is the calculation of such an input effect on the system, at which it follows 

the desired trajectory. 

•  Speech recognition and machine translation. 

Neural networks are widely used in data analysis, and neural network modules are part 

of almost any analytical platform. The main tasks solved using neural networks in data 

analysis are numerical prediction, classification, clustering, and forecasting. 

The first working algorithm for learning artificial neural networks, the delta rule, was 

proposed in 1949 by Donald Hubb. The first practically functioning neural network 

(single-layer perceptron) was developed by F. Rosenblatt in 1958. 

2.3 Classification Algorithms 

2.3.1 Naive Bayes 

Bayesian algorithms are a group of probabilistic classifiers used in ML. The method is 

based on applying Bayes’ theorem. It is one of the first algorithms used for machine 

learning. The algorithm is suitable for binary and multiclass classification and allows for 

making predictions and forecast data based on historical results. A classic example is 

spam filtering systems. Such systems used Naive Bayes up till 2010 and showed 

satisfactory results. However, when Bayesian poisoning was invented, researchers 

started to find other ways to filter data. The Bayes theorem describes how the occurrence 

of an event impacts the probability of another event. 

For example, this algorithm calculates the probability that a particular email is a spam 

based on the specific words. Thus, if the algorithm detects the specific words, there is a 

high possibility that the email is spam. However, the Naive Bayes algorithm assumes 

that the options are independent. Thus, the algorithm is called naive. 

2.3.2 Multinominal naive Bayes 

Multinomial Naive Bayes is usually applied for document classification based on the 

frequency of certain words present. However, bayesian algorithms are still used for text 
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categorization and fraud detection. Moreover, they can be applied for machine vision 

(for instance, face detection), segmentation of the market, and bioinformatics. 

2.3.3 Logistic Regression 

Even though the name of this method might seem contra-intuitive, logistic regression is 

one of the classification algorithms. Logistic regression is a model that makes predictions 

using a logistic function to find the dependency between the output and input 

variables. Statquest made a great video explaining the difference between linear and 

logistic regression, such as obese mice. 

2.3.4 Decision Trees 

A decision tree is a simple way to depict a decision-making model represented by a tree. 

The method is easy to understand, interpret and visualize. Also, decision trees demand 

little effort for data preparation. 

However, they also have a significant disadvantage. The trees can be unstable because 

of even the most negligible variance in data. Moreover, the over-complex trees do not 

generalize things well; it is called overfitting. Bagging, boosting, and regularization help 

to fix this problem. 

The main elements of every decision tree are: 

•  Root node. The root node asks the main question. It has the arrows pointing 

down. However, no arrows are pointing to it.  

•  Branches. A subsection of a tree is termed a branch. 

•  Decision nodes. These are the subnodes for the root node. The decision nodes can 

be splitting into more nodes.  

•  Leaves or Terminal nodes. These nodes do not split. Instead, they represent final 

decisions or predictions. 

Also, it is crucial to mention splitting, which divides a node into subnodes. Decision tree 

algorithms are referred to as CART (Classification and Regression Trees). These trees 

can work with both categorical or numerical data: 

•  Regression trees are primarily used when the variables have a numerical value. 

•  Classification trees can be implied when the data is categorical. 

Decision trees are intuitive to understand and imply. For this reason, diagrams are 

commonly applied in a broad range of industries and disciplines. 

2.4 Statistical learning Method to Detect Stuck Pipe 

Incident  
A statistical model can be used to predict torque and drag while drilling. This model 

includes elements of statistical learning. Statistical Learning Method (SLM) is a data-

driven model in which the forecast depends on the data available for the model. 

One of the examples of statistical learning method implementation was done by Hedge 

et al. The dataset used in this article has been subdivided to assess the errors accurately. 

Typically, to avoid over-fitting the data, the dataset is divided into a training set, a 
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validation set, and a test set. The training set is used to create the model. The validation 

set is responsible for cross-validation and limitation the number of parameters in the 

model to determine the most critical parameters. Finally, a test set is applied to “test” a 

model to establish its accuracy. The training and validation set is randomly divided into 

0-3900 feet of data.  

The model provides low error rates and the ability to learn as more data is acquired. 

Since the goal is to accurately predict and classify torque and drag, measuring the error 

will estimate the model’s accuracy. The root mean square error (MSER) of the model on 

the test data is the primary accuracy estimator in the case. The data was formatted using 

the dplyr toolkit developed by Wickham (2013), which provides an efficient way to clean 

and organize data.  Tyler and Dakota formations are presented as an example of the 

working principle. In both reservoirs, machine learning regression (MLR) was 

performed using the same predictors. The Dakota Formation has 158 data points, and 

the Tyler Formation has approximately 875 surface measurement data points. In each 

case, the first 20% of the data was a training set, the next 10% was a validation set, and 

the rest of the data set was a test set. MLR results for predicting downhole torque using 

surface parameters are confirmed where the MSER for the Dakota formation was 18.53, 

and for the Tyler formation, it was 1430.575, as shown in Figure 6. The first plot is the 

MLR forecast for the Dakota Sandstone, and the second plot is for Tyler. 
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Figure 6: MLR Used to Predict Downhole Torque in Dakota and Tyler Formations 

(Hedge et al.) 

Based on the results obtained in a limited field study, predicting torque during 

operations in real-time is possible using statistical learning methods. The use of 

statistical teaching methods has the advantage of predictive utility over conventional 

empirical methods. In addition, the SLM can adapt to changes during drilling and 

improve the model as the well is drilled. However, after making changes, the model will 

have to be re-trained.  

Brancovic et al. developed three indicators related to various physical phenomena to 

recognize stuck pipes and events that precede them. Then, the researchers used these 

indicators (and other well logging inputs) to explore a statistical model to anticipate 

stuck pipe events. Various data are available for this task, namely time-based data 

annotated by drilling operators and logging data obtained using surface equipment. 

Unfortunately, the consistency of these data is sometimes questionable due to the 

subjectivity of operators’ assessments.  
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The mud-log reports the measurements of several parameters related to the drilling 

process (some variables are not measured but computed from other measurements), 

sampled every 5 seconds. Numerous variables related to the drilling depth are available. 

In this work, the following mud-log variables were used: 

•  DBTM - bit depth along the drilling direction 

•  BPOS - position (height) of the traveling block, which supports the drill pipe 

•  HKLA - (average) tension on the cable from the drawworks (hook load) 

•  TQA - (average) rotary torque applied to the drill string (taken at the rotary table 

or the top drive motor cable) 

•  RPMA - (average) rotary speed 

•  SPMT - total pump stroke rate 

•  SPPA - (average) pressure of the mud on the standpipe 

The methodology of such an approach is the following. The three proposed detectors 

(standpipe pressure (SPP), Torque & RPM, Hook load & Block Position) can be used in 

post-processing to verify the wellbore problems. More importantly, these detectors can 

also be used while drilling to identify minor and significant drilling problems, the former 

also representing possible precursors of adhesion. In this section, the researchers 

tentatively discuss building a prediction model based on these detectors. The basic idea 

is to use the available drilling data to match detectors (and raw logs) with an artificially 

generated alarm by assigning the highest value for each documented stuck and 

gradually decreasing value backward in time and upwards in depth. Indeed, the system 

can sound the alarm (and increase in level) as drilling gets closer to the choice, either in 

time or in-depth. The inputs and outputs are aggregated into 4m bins based on depth 

and averaged before training to reduce variability and noise in the data. 

Figure 7 shows a graphical representation of the predictive model results obtained at 

three successive points during the drilling phase, resulting in a particularly severe stuck 

pipe. As drilling goes, the model (trained on other wells and the previous phase of the 

same well) indicates initially a relatively healthy status of the wellbore (left picture) until 

the 200th bin is reached. Then, several depth bins are marked with a high level of risk 

(middle picture). Although subsequent actions could change the risk level of deep bins 

only slightly in this area, drilling was resumed (the bit was run down to bin 240), leaving 

a high-risk area behind. Unfortunately, it turned out to be a poor choice as a stuck pipe 

incident occurred. Sticking occurs when the bit is several meters below a critical region 

that is compatible with the position of the large drill string elements concerning the bit. 

By appropriately reworking the critical zone before resuming drilling, sticking could be 

avoided. 
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Figure 7: Screenshots of the web Application Showing the Predicted Well Status of the 

Wellbore at three Subsequent Timesteps (Brancovic et al.) 

Based on the mud-log data, three different indicators have been developed to capture 

three different physical phenomena associated with the stuck occurrence. The first one 

is for detecting difficulties in linear movement of the drill string, and the second is for 

detecting problems with rotation. The third indicator detects unexpected pressure spikes 

in the annulus. 

2.5 Linear Regression Method to Detect Stuck Pipe 

Incident  
Ahmed et al. used a moving window-based regression machine learning approach to 

develop a model to detect early warning signs of a conventional pipe stuck mechanism 

during drilling operations. The unsupervised machine learning algorithm is 

programmed to automatically detect deviations in trends in drilling parameters in real-

time and predict potential pipe sticking and preliminary transmission of observation 
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results in the form of warnings to engineers for preventive, corrective action. In the first 

place, it invariably increases the chances of avoiding stuck pipe incidents and timely 

release of the pipe if possible. Since a stuck pipe accounts for a significant part of the 

NPT, time is of the essence in such cases, as the adverse reaction to a stuck pipe can easily 

make the situation worse. 

Several signs are used in the model: 

•  Hook load peaks between connections  

•  Non-smooth block position curve 

•  Increased standpipe pressure 

•  Torque spikes 

•  Dogleg severity Indicator  

In the case study, the data archived in real-time was passed through the model in re-

play mode. As seen in Figure 8, the model generated several sets of observations that 

should be detected by the model when running from the new BHA. As one gets closer 

to the stuck point, the severity and probability of a pipe stuck increases. The model 

generated two warnings before the pipe stuck. While these alerts were retrospective, 

they were generated in real-time data playback. It means that if this model were 

deployed while drilling the well, it would detect an abnormal trend and alert the driller 

to take actions to prevent pipe sticking. Thereby NPT could be possibly reduced. 

 

Figure 8: Two Stuck pipe Alerts with high probability before an Incident in Well-A 

(Ahmed et al.) 
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A methodology was presented using linear regression with a moving window to record 

and monitor the classic warning signs of pipe sticking. It is believed that while drilling 

a well, it informs the driller about its condition. The model presented in the study 

demonstrated that stuck pipe alerting can be automated, and early warning signs of 

stuck pipe can be identified from drilling parameters. For operational reasons, one or 

two of the alerts recorded in this study were false. However, the model shows overall 

promising results (accuracy of 0.67, the sensitivity of 0.8) for the ten validation wells. 

This approach can be further improved by refining existing symptoms, including 

additional symptoms and scenarios, and optimizing model performance for real-time 

deployment, ultimately helping to reduce the uncertainty in the likelihood of pipe stuck. 

The approach using logging-while-drilling (LWD) measurements in real-time to predict 

pipe sticking was proposed by Hess. The paper explains how to interpret LWD 

measurements to help determine if mud weight, which is about to be increased, is 

helpful if the penetration rate should be slowed. There are three main groups of variables 

that the model uses to predict possible sticking: 

 

•  Variables available pre-run (hole size, tool size, number, and spacing stabilizers) 

•  Variables available during running (uncontrolled) (measured depth, total 

vertical depth, equivalent circulation density, dogleg severity, Inclination, 

Temperature) 

•  Variables available while running (controlled) (rate of penetration (ROP), rotary 

speed, flow rate, mud weight, plastic viscosity of mud, yield point of mud, Gel 

strength of mud, Oil/Water ratio of mud, Chlorides in mud) 

When the required data is collected, and extra variables are created, the information is 

fed into linear regression software. All items entered receive their coefficients, which are 

summed up further. If the sum is 0, the drill-string is assumed to be free; if the sum is 1, 

the stuck pipe accident occurs. Finally, the model sets every coefficient based on the 

previously entered wells used to train the model. An example of coefficients is shown in 

Table 1. 
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-16.457 Y Intercept -0.029 2°/100ft-3°/100ft 

-1.532 Insurance (0-No/1-Yes) -0.011 3.01°/100ft-4°/100ft 

0.078 Hole Size -0.222 4.01°/100ft-5°/100ft 

0.093 Tool Size -0.043 5.01°/100ft-7.5°/100ft 

-0.015 Hole Size-Tool Size 0.552 7.5°/100ft-10°/100ft 

0.401 # Of Stabilizer In BHA 0.518 10.01°/100ft-15°/100ft 

-0.033 Min Stabilizer Spacing 0.007 ROP 

0.048 Max Stabilizer Spacing -0.181 Times Back reamed between 

stands 

-0.032 Distance From First to Last 

Stabilizer 

-0.002 RPM 

-1.259 Reamer In BHA (0-No/1-Yes) 0.119 Mud Weight 

0.187 Surge ECD 0.051 Plastic Viscosity 

-0.029 Mw Static -1.503 Ln (Plastic Viscosity) 

0.216 Surge-Mw Static -0.078 Yield Point 

-0.284 ACTECDX-Mud Weight 2.679 Ln (Yield Point) 

-0.165 ACTECDX -0.027 Plastic Viscosity+Yield Point 

-0.011 Temperature -0.04 Gel 10 Sec 

3.078 Ln (Temperature) -0.009 Gel 10 Min 

0.026 Inclination 0.031 10 Min-10 Sec Gel 

0.012 Dogleg Severity At TD -0.011 Oil 

-0.049 Highest Dogleg Severity 0.325 Oil/Water Ratio 

Table 1: Model Equation Coefficients and Associated Variables (Hess 2016) 

As a case study, the model was first trained using data from 42 wells of the Gulf of 

Mexico. Seven wells were used to test the model. The model predicted 3 out of 7 stuck 

pipe incidents correctly. The prediction was “BHA would get stuck permanently“ for 

the other four wells while it was stuck permanently only in one case. 

The shortcomings of this approach are the following. The model cannot be used for fields 

located out of the Gulf of Mexico because the model is constructed and trained for the 

particular wells typical for that area. Moreover, the model cannot effectively predict the 

incident if there are one or zero stabilizers in the BHA. 

2.6 Hybrid Method to Detect Stuck Pipe Incident  
The new method proposed by Zhang et al. integrates first-principles physics-based 

models, including a transient solid transport model, a drill string model (torque and 

drag model), and data-driven models. The proposed models are developed based on the 

analysis of field and experimental data. The physics-based model considers the basic 

rules of fluid mechanics, drill string mechanics, and multiphase flow during drilling 

operations.  

Stuck pipe events in this paper are classified into two categories: stuck pipe incidents 

associated with hole cleaning, which are indexed by the HCSPI (Hole Cleaning Stuck 

Probability index), and incidents caused by other reasons, which are indexed by the GSPI 

(General Stuck Probability index). Real-time stuck pipe analysis and risk prediction 
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generate two separate risk indices by analyzing torque data from three different sources: 

predicted torque with cuttings, Tc, predicted torque without cuttings, Tnc, and the 

measured out-of-hole free rotation torque, Tm. HCSPI is obtained by comparing the 

predicted torque with cuttings exposure and the predicted torque without cuttings. The 

GSPI is obtained by comparing the difference between the predicted torque adjusted for 

drill cuttings and the measured rotational torque at the bottom hole. The general 

workflow to predict the stuck pipe indexes can be summarized in Figure 9. 

 

Figure 9: Workflow for the RT-risk Generation Model (Zhang et al.) 

Case study. The measured torque gradually increases as drilling progresses from 1450 m 

to 1850 m. The difference between the predicted torque with cuttings and those without 

cut effect gradually increases, indicating that cuttings accumulate in the wellbore. At a 

depth of about 1850 m (22:30), the torque rapidly increased from 15 kNm to 20 kNm, 

indicating an emergency in the well. The drilling crew did not pay attention to the sharp 

increase in torque, and the drilling process continued. Another 150 m were drilled until 

the pipe was completely stuck. While drilling this 150m section, the rate of change of the 

measured torque also increases significantly, as shown in Figure 10. 
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Figure 10: Analysis of torque changes with bit depth (Zhang et al.) 

The proposed model for predicting pipe stuck was run on the data for post-drill analysis 

and algorithm validation—the risk increases in 4 hours before the incident, as shown in 

Figure 11. The HCSP stuck index associated with wellbore cleanup was already 0.5 at 

20:00, and before the incident, it rises over 0.7. Since the ROP was about 200 m / h, which 

is relatively fast, and the well inclination was about 55 degrees (which is the most 

challenging place to clean the hole), the well was not cleaned sufficiently during the 

drilling process. Before 10:30 pm, the risk index for other causes of GeSP was shallow 

(0.2 to 0.3), indicating that no other significant factors could cause pipe sticking apart 

from cleaning the wellbore. However, with a sudden increase in torque, GeSP suddenly 

increased to more than 0.9, representing a high probability of pipe stuck occurrence. 

 

Figure 11: Risk indexes as They were Predicted by the Model (Zhang et al.) 
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The method to detect various downhole failures was presented by Skalle et al. The 

researchers used real-time drilling data and end of well reports to analyze the entire 

situation. All the available data, such as equipment characteristics, geology, challenges 

characteristics, actions used to tackle these challenges, were used. The whole ontology 

to recognize the problem and its early signs was developed. The model implies thirty-

five dynamic agents extracting symptoms from the real-time data. The central 

methodology of developing such agents is the following:  

•  Find symptoms manually in historical real-time data and tag their depth 

•  Develop data agents in Matlab 

•  Evaluate agent performance 

After doing so, the structure of the ontology was developed. To detect causes accurately, 

the model sets up the relations between each part of ontology to be bi-directional. Then, 

when the failure case occurred, the model estimates possible failure using detected 

symptoms. Several metrics such as path strength, explanation strength, and others were 

used to estimate failure-probability relations. As an example of ontology structure, the 

part of it is presented in Figure 12. 

 

Figure 12: Part of Ontology Structure (Skalle et al) 

The model is trained to recognize almost all drilling problems, but the example was 

provided only for motor stall detection. However, the same approach is used to detect 

other incidents. Based on analysis of all the factors which were monitored, the model 

initiated the case of a motor stall 12 hours before it happened. 

Both models presented here have several shortcomings. As for the first example, such 

a model cannot accurately predict the stuck pipe events, which are not related to 

differential sticking. In addition, various downhole problems detection model requires 
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enormous amounts of data and its preparation work. Moreover, when the model is 

completely set up, it is applicable only for offset wells if they have similar well 

construction, used equipment, lithology, and others. Otherwise, there is a high risk of 

false alarms. 

2.7 ANN Method to Detect Stuck Pipe Incident  
Tsuchihashi et al. explore real-time pipe stuck prediction using deep learning. The 

researchers propose a 3-D Convolutional Neural Network (CNN) approach with 

constrained depth data. The clip illustrates depth domain data in 2D histogram images 

with a unique time domain abstraction. This study uses 30 field well data prepared in 

multivariate time series - 20 for training and 10 for validation. These checks include six 

stuck cases, and the 3D-CNN model successfully detected early signs of stuck three times 

before it occurred. The portion of the data clip that aids in detecting the anomaly is 

indicated by a Gradient Weighted Class Activation Map (grad-CAM), providing a 

physical explanation of the black-box model. The binary labeled data from stuck pipe 

events was fed to the CNN. This binary labeled data helps the model to define crucial 

early signs and changes in its patterns. 

 

Figure 13: Convolutional Neural Network Application on Detecting Stuck Pipe 

Incident (Tsuchihashi et al.) 

For the case study, real-time prediction of 1D-CNN and 3D-CNN is shown in Figure 14. 

In this case, 1D-CNN cannot detect features, whereas 3D-CNN does. On 3D-CNN 

output, the risk of stuck pipe was high 30 minutes before the incident occurred. It is 

visible in the figure that the first signs of sticking appeared earlier than an hour before 

the occurrence.  
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Figure 14: Real-time Stuck Risk Prediction and Validation (Tsuchihashi et al.) 

There may be times when the early symptom did not exist due to a drastic change in the 

situation. Hence, spotting the early symptom would be impossible. However, 

differential pressure sticking is different from others. The process of embedding the drill 

pipe into the mud cake does not occur immediately. Nevertheless, this method still 

requires specialists to prepare the data accurately before training; it takes too much time. 

Moreover, this approach requires large amounts of data from various stuck pipe events. 

Another attempt to use an artificial neural network to predict stuck pipe events was 

taken by Meor et al. The proposed Wells Augmented Stuck Pipe Indicator system is a 

data-driven approach, which uses historical drilling data and engineering knowledge to 

monitor and detect impending stuck pipe incidents. The model is based on real-time 

data, stuck pipe mechanism recognition, and operation time. The main objective of the 

model is to provide an alarming system that engineers will utilize for real-time drilling 

implementation.  

The main principle of the model is the following. The cloud has three preliminary 

prepared models representing different stuck pipe mechanisms: differential sticking, 

sticking due to poor hole cleaning, and mechanical sticking because of hole geometry. 

However, the real-time implementation experience of this model is still unknown and 

cannot be evaluated.  
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The model is evaluated using qualitative assessments to obtain a holistic result. First, 

real-time drilling data is quantified using mean absolute percentage error and 

normalized root mean square error. It was then further analyzed qualitatively using the 

confusion matrix. Analyzed data includes proxy parameters, historical forecast data, 

warnings, and alarms generated for the well evaluation. These evaluations inform about 

the limitations and opportunities for further improvement and development of machine 

learning models. 

The discussed methods based on ANNs have one significant disadvantage. The building 

and tuning of such models are challenging tasks. Furthermore, the ANN is extremely 

sensitive to input data, so it should be adequately prepared. Finally, the building and 

tuning of such models vary from well to well, so such solutions are not ready now to be 

utilized for real-time drilling. 

2.8 Gaps in the Discussed Methods 
As mentioned in the introduction chapter, current torque and drag monitoring 

approaches in stuck pipe detection have different shortcomings.  

Statistical learning methods can predict torque and drag during drilling. Mostly it is a 

predictive model that does not need the new BHA or bit data but only surface 

parameters. However, this model requires large amounts of input data. Such kind of 

models may be improved by shortening the amount of learning data to a specified length 

in real-time for different formations to have a more efficient and stricter prognosis for 

the current situation in the well. Also, the combination of parameters used by statistical 

learning methods may lead the system to recognize other actions as possible signs of 

stuck pipe, leading to false alarms.  

A moving window-based linear regression machine learning approach to detect early 

signs of pipe stuck during drilling was shown in one of the previous paragraphs. The 

proposed method uses unsupervised learning to detect trend spikes and calculates the 

stuck probability by weighting different parameters. However, such a system is also 

prone to false alarms because the contribution of different parameters to stuck pipe 

probability varies due to the situation. Moreover, using unsupervised learning does not 

allow recognition behavior of the spontaneous model, which can lead to unexpected 

results. 

A hybrid approach integrates physics-based models, including a transient solid 

transport model, a drill string model (torque and drag model), and data-driven models. 

The model works well to recognize sticking caused by hole cleaning problems, but it 

cannot recognize other kinds of sticking mechanics. 

ANN approaches have several shortcomings. First, ANN limits the number of input 

parameters. Second, neural networks are most effective in tasks for which a large set of 

disparate initial data is inherent. Thus, setting up a neural network for a specific job is a 

difficult task that deserves special attention. Moreover, neural networks require special 

data preparation, filtering. This fact makes these approaches unsuitable for real-time 

monitoring. 
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Chapter 3 Methodology 

3.1 Overview 
This chapter mainly focuses on describing the process followed to develop a model to 

detect the early signs of impending stuck pipe by real-time monitoring the three relevant 

surface drilling parameters. The model is built in a MATLAB R2020A environment. The 

basic workflow of the proposed model is shown in  Figure 15. 

 

 
Figure 15: Basic Workflow of Developed Methodology 

 

Generally, the model compares the actual data with predicted data to trace the 

deviations. Then, based on the severity of the detected deviation, an alert level is 

generated, which is later converted to a probability curve; eventually, based on 

generated stuck probability results, the risk of stuck pipes can be assessed.  

 

The working principle of the developed model can be classified into three stages  

1.  Data Preparation  

2.  Predictive Models Construction 

3.  Real-time Implementation 

  Figure 16 shows the detailed workflow of the proposed model.  
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Figure 16: Proposed Model Detailed Workflow 

3.2 Input Data Description 
Various parameters are monitored during drillings, such as rotary speed, mudflow in, 

block position, hook load, and so on. Some parameters are predictable because they 

typically should follow the linear regression trend. So, the large amounts of data coming 

from the well may be used to build and train the models to predict such parameters’ 

behavior, which may be helpful for further analysis.  

Most sticking mechanisms are related to the buildup of cuttings bed in the annulus, 

increasing friction between the wellbore wall and drill string. Several researchers 

(Ahmed et al., 2019; Carpenter, 2016) report that the most proper way to monitor such 

dangerous wellbore conditions is to analyze trends of standpipe pressure, surface 

torque, and hook load in real-time. For the current application, these three main 

parameters will be used to be monitored and analyzed. 

As a result, the following Table 2 summarizes the target parameters predicted by the 

model and the required inputs for each target (Hedge et al., Noshi et al.). 

Input Data Target 

Weight On Bit, Average Rotary Speed, Rate Of Penetration Surface Torque 

Weight On Bit, Mud Flow In, Average Rotary Speed, 

Average Surface Torque, Block Position, Rate of Penetration 
Hook load 

Weight On Bit, Flow Rate, Rate of Penetration 
Standpipe pressure 

(SPP) 

Table 2: Summary of  Proposed Targets and Their Relevant Inputs   
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3.3 Data Preparation 
To improve the model's performance and accuracy, it is strictly recommended to review 

the data, detect outliers and prepare the data for further analysis. This part will explain 

the workflow of data preparation to predict required parameters correctly. The general 

workflow is presented in Figure 17. 

 

Figure 17: General Workflow of Dataset Preparation Stage 

3.3.1 Input Data Uploading 

Generally, the data coming from the well has the WITSML (Wellsite information transfer 

standard markup language) format. This format is a standard format of transmission 

data from the rig to the oilfield company office.  Such data format cannot be used to train 

the model via machine learning algorithms. Therefore, it should be converted to .csv or 

.las etc. To convert the data to the appropriate formats, a process of «parsing» should be 

initiated. Parsing is an automated process of collecting data from the database. The 

parsing algorithm gathers required content from a large amount of information and 

converts it to the required format. For the given master thesis, the data from the Volve 

oilfield was parsed to .csv format and processed afterward. 

3.3.2 Missing Values Identification and Removing 

Machine learning algorithms do not support data with missing values. The missing 

values in real-time drilling data are usually having a unique number or stated as NaNs. 

In most cases, this unique number is -999.25. Thus, it is not a complicated task to detect 

missing values in the dataset. In the proposed model, the system deletes the whole row 

with missing values. The MATLAB command rmmissing is applied for this action. It 

removes missing entries from an array or table A. If A is a vector, then the 

function removes any entry that contains missing data. If A is a matrix or table, 

then rmmissing removes any row that contains missing data. 

There were also several points with values less than zero, which does not make any sense 

regarding the used parameters. To remove such values, the loop built detects the value 

less than zero in every column besides the Time column and deletes the entire row with 

such value. In most cases, such outliers affect other values in the row too. Therefore, the 

complete row of the data should be removed in this case. 

The model considers outliers detection during drilling operations. However, the dataset 

also contains values of several parameters during connections. The rows with a value of 

Weight on bit equal to zero are also deleted. It helps to get the pure drilling phase from 

the dataset. 
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3.3.3 Outliers Detection and Replacement 

Commonly, the outliers in the data may appear for different reasons, such as:  

•  Occurrence while experimenting, 

•  Wrong calibration, 

•  Sensor damage/error etc. 

The MATLAB function rmoutliers helps to remove such outliers from the real-time data.  

By default, this function detects a value that is more than three scaled median absolute 

deviations (MAD) as an outlier. However, adding ‘movmedian’ allows defining outliers 

as points more than three local scaled MAD away from the local median within a sliding 

window. Next, the algorithm finds the outliers’ locations in data relative to the points 

in t with a window size of 10 minutes (for the case) and removes them. As the window 

moves, it does not change the size but re-calculates MAD and then detects and removes 

the values that are more than 3 MAD. The example of the moving window approach is 

presented in Figure 18. 

 

Figure 18: Sliding Window Approach (Source: researchgate.net) 

After using this approach, the resulting dataset becomes free of outliers. An example of 

raw data and filtered data for torque after using rmoutliers is shown in Figure 19 (red 

squares highlight outliers). 

 

Figure 19: Unprocessed Torques Data with Highlighted Outliers are shown in upper 

Figure19-A. The lower Figure19-B shows the same data after removing the outliers 
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3.3.4 Data-set Dividing 

It is recommended to split the dataset into train and test sets. The training set is fed into 

the model to allow the model to find the behavioral patterns of various parameters and 

train itself. The test set is used to analyze the model’s performance on the novel data, 

which were not engaged in the training process. Hence, two partitions are a more 

efficient approach when each set has its functions: 

• Training set for training a machine learning model. 

• Test set for accessing the model performance or evaluating it. 

 

The MATLAB software allows the creation of two sets based on one dataset randomly 

using function cvpartition. The datasets for training and testing are chosen randomly via 

this function. As a result of this function usage, two datasets to train and test the model 

are created. 

3.4 Predictive Models Building and Tuning 
In this section, the process of building three predictive models for torque, standpipe 

pressure, and hook load will be explained. The section also presents the issues of model 

tuning and the testing of the predicting model. 

The basic workflow of the model training and tuning is illustrated in Figure 20.  

 

 

Figure 20: Predictive Model Construction and Optimization Workflow 

Stepwise regression is a systematic method for adding and removing terms from a linear 

or generalized linear model. The method is based on the statistical significance of the 

terms in explaining the response variable. In the current application, the function 

stepwiselm is used to train the model. Stepwiselm creates a linear model and automatically 

adds to or trims the variables. The workflow explaining the algorithm is shown in Figure 

21. 

https://uk.mathworks.com/help/stats/stepwiselm.html
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Figure 21: Stepwise Regression Algorithm Working Principle 

The pValue is the crucial idea of the algorithm workflow. The pValue concept is the 

evaluation of the probability of the model’s coefficients to affect its performance. It is 

testing whether the coefficient is equal to zero or not. A low value of p (usually < 0.05) 

suggests that the coefficient most likely can be added to the model because it impacts 

the Y response relatively strongly.  Conversely, a high value of p suggests that the 

coefficient is zero, which means that the predictor variable does not impact the Y 

response and should not be included in the model. 

3.4.1 Initial Model Training 

Further steps will cover the model training. First, the initial version of the model is built 

using the prepared training dataset. Then, the software shows basic information about 

the created model, such as the resulted regression model, root mean square error, r-

squared, pValue, and other information. This information is shown in Figure 22. 

 

Figure 22: software response after building the model 

3.4.2 Diagnostic Plots 

The next step is plotting diagnostic plots and their analysis. The resulted residuals plots 

are represented in figures 23-25. The data used to train the regression model should be 

normally distributed (Frees, 2009). Therefore, the histogram of the residuals can be 

beneficial to check whether the variance of parameters is usually distributed. A 

symmetric bell-shaped histogram evenly spaced around zero indicates that the 

normality assumption is expected to be correct (Figure 23).  
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A normal probability plot of residuals can also prove this assumption. If the resulting 

plot is approximately linear, it proves that the error terms are normally distributed 

(Figure 24).  

Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point 

when performing a regression analysis. Cook’s distance can be used in several ways: to 

indicate influential data points that are particularly worth checking for validity, to 

indicate regions of the design space where it would be good to obtain more data points 

(Figure 25). 

 

Figure 23: Residuals Errors Histogram  
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Figure 24: Residuals Errors Normal Probability Plot  

 

Figure 25: Cook’s Distance Plot. 
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3.4.3 Detecting Outliers in Trained Model 

Red marks highlight several data points in Figures 24 and 25.  It is visible that these 

values are out of the dominating trend, so such values are considered to be outliers and 

can be removed. The model can be re-trained by a filtered dataset to increase 

performance. In the proposed approach, the model performs such filtering 

autonomously. Based on the provided plots, the model detects maximum and minimum 

values from Figure 24 via max and min functions in Matlab, respectively. 

Moreover, to increase the model’s performance, the program also uses Figure 25 to 

detect the outliers, which cannot be detected by the first method. The next step is to 

detect the values in the training dataset, which has a value greater than three mean 

average values of Cook’s distance (Recommended by Matlab user guide). These 

maximum, minimum values and values with large Cook’s distance are collected in one 

table to be used in the next step. 

3.4.4 Model Re-training 

After the outliers have been detected , these outliers are removed from the training 

dataset. The model is re-trained when the training dataset is free of outliers. This action 

helps to increase the performance and made the relations between variables in resulted 

linear regression stronger. The resulted RMSE and R2 shown in Error! Reference source n

ot found. prove that the new model is more accurate than the previous version.  It 

demonstrates that after removing the values that are not in the primary trend, the root 

mean square error goes down, and r-squared increases.  

Evaluator With Outliers After Removing Outliers 

RMSE 1.31 1.3 

R2 0.756 0.86 

Adjusted R2 0.755 0.866 

Table 3: torque predictive model performance comparison before removing outliers 

and after removing outliers 

3.4.5 Model Performance Evaluation 

To evaluate the performance of the trained models, the Pearson correlation coefficient 

R2 and RMSE were used as performance indicators. 

Pearson correlation coefficient or Pearson’s r is defined in statistics as measuring the 

strength of the relationship between two variables.   Pearson’s correlation coefficient 

calculates the effect of change in one variable when the other variable changes.  For 

example, the Pearson coefficient is calculated as follows: 

𝑅2  = 1 − 
𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇
= 1 −  

∑ (𝑦𝑖− 𝑦𝑖̈)2𝑛
𝑖

∑ (𝑦𝑖− 𝑦𝑖
′)2𝑛

𝑖

, 

Where; SSRES is the residual sum of squared errors of the regression model, SSTOT is the 

total sum of squared errors. 

The issues concerning the range of values of the Pearson correlation coefficient between 

X and Y are represented in Table 4. 
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R2 range Correlation strength between X and Y 

≈1 Perfect correlation 

0.8-1 Strong positive correlation 

0.3-0.6 Moderate positive correlation 

0-0.3 Weak positive correlation 

≈0 No linear correlation 

  Table 4: Pearson coefficients and correlation strength between X and Y 

(Profillids et al.) 

Adjusted R2 also indicates how well terms fit a curve or line but adjust for the number 

of terms in a model. If one adds more useful variables, adjusted r-squared will increase. 

The value of Root Mean Square Error may help to evaluate the model correctly. RMSE 

is the rooted sum of distances between two points: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖 )̈

𝑁

𝑖=1
 

This formula heuristically depicts that RMSE can be viewed as some normalized distance 

between predicted values and the vector of observed values. Figure 26 explains this 

concept. First, for every particular point, the residual (red arrow) is calculated. The 

residual is the distance between the regression line and the data point. Then, the sum of 

the residuals is divided by the number of observations. Finally, the root of the resulted 

sum gives the RMSE. 

 

Figure 26: The Visualization of the RMSE Concept 
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3.5 Stuck Pipe Probability Monitoring and Evaluation   
In this part, the process developed for generating the stuck pipe probability monitoring 

curve and alerting system is provided; in general, the process can be divided into six 

steps as follows: 

1. Feeding real-time data to the model  

2. Computation of the predicted indicators (Torque, SPP, hook load) 

3. The predicted and real-time indicator averages calculation 

4. Deviation calculation 

5. Alert table generation  

6. Stuck pipe probability calculation 

3.5.1 Feeding Real-time Data into the Model 

Once the models are trained, they are ready to predict the required parameters. As the 

drilling process is continuous, the newly generated real-time data is fed into the model 

(this data is highlighted in blue in Figure 27). The model divides the newly generated 

data into small time-based windows. Each window has about 2-3 minutes of drilling 

data. The model provides a possibility to change the window size. Figure 27 shows a 

visualization of the window approach using torque indicator as an example. However, 

the same approach is applied to other indicators (SPP, hook load, torque). 

 

Figure 27:  Moving Window Concept  Example 

Once the data for the windows are imported into the model, data preparation takes 

place. First, the NaNs are detected via the rmmissing function, then the outliers are 

deleted using the rmoutliers function with a moving window. 
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3.5.2 Predictive Indicator Values Generation 

Further steps are related to the torque, SPP, and hook load values prediction by trained 

predictive models. For every real-time data point within the predefined window, the 

model predicts the value of the relevant indicator. Figure 28 illustrates the predicted and 

real-time values within the small windows for the torque. It is essential to mention that 

the model predicts the standpipe pressure and hook load values in the same manner. 

 

Figure 28: Actual versus Predicted Values within The Specific Window Frame  

3.5.3 Sliding Windows Averages Calculation 

After successful prediction, the model has two kinds of data points for every indicator 

divided in windows: predicted values and real-time gained values. These values are 

relevant for every particular point in the windows. To evaluate the accuracy of the 

predicted parameters, the model calculates the average of the predicted indicator within 

the window and the real-time parameter’s value average within the same window for 

further comparison. The model calculates these averages for all three indicators in each 

window. The resulting averages are used to estimate the difference between the real-

time indicator values and the predicted ones. The concept of deviation helps to compare 

these averages and evaluate the difference. 

3.5.4 Deviation Detection and Calculation  

As the next step, the model needs to compare the predicted average and the real-time 

average of every indicator within the same window. To estimate the difference between 

these two, the parameter which the model applies to evaluate data behavior should be 

introduced. The proposed model utilizes the deviation concept as a part of the indication 

of impending stuck pipe. 
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The deviation formula compares the average of the actual value in the window and the 

average of the predicted one. The deviation for the indicator x can be expressed 

mathematically as: 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(%) = |
𝑥_𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑎𝑐𝑡𝑢𝑎𝑙 −𝑥_𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑥_𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
| ∙ 100  (1) 

where 𝑥_𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑎𝑐𝑡𝑢𝑎𝑙  – the average of real-time values for an indicator in the 

specialized window, 𝑥_𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  - the average of predicted values for the 

indicator in the specialized window. This value is calculated separately for every 

window.  

Because the model has three indicators, the following deviations are calculated: 

1.  Torque deviation  

2.  Hook load deviation  

3.  Standpipe pressure deviation  

After this step, the model has the following data, which were calculated separately for 

every predefined window: 

•  Real-time datapoints of every required parameter 

•  Predicted values of torque, SPP, hook load 

•  Average real-time value of torque, SPP, hook load 

•  Average predicted value of torque, SPP, hook load 

•  Calculated deviation of torque, SPP, hook load in % 

3.5.5 Alert Generation 

After the previous step, the model has computed the deviation of every indicator. 

Further, it needs to appraise the calculated deviations. Mainly, the deviation threshold 

varies from well to well. It means that there is not always a single value beyond which a 

deviation from the model should trigger a warning. The possible solution is to combine 

the indicators’ deviations in a single stuck pipe risk probability, which distributes from 

1% to 100%. To convert the deviations combination into the stuck pipe probability, the 

model uses the additional calculation step - the alert generation technique. 

Using Equation 1, the deviation for every indicator in the predefined window has 

determined. Onwards, the model compares the deviation value for the next window (in 

this example, window 2) and the previous one (window 1). The procedure of comparison 

is the following. If the deviation for the next window is more significant than for the 

previous one, it means that the difference between real-time data points and predicted 

ones is even greater for the next window. Such behavior of parameters implies that the 

real-time value tends to grow. Nevertheless, the predicted indicator shows that there 

should be no increase in the indicator’s real-time value.  

In this case, the system recognizes such an event as a sign of growing stuck pipe risk. It 

means that the system should check how significant the difference is in the deviation 

and decide whether it can be recognized as an alert. The proposed model uses the 

relation between the deviations of the indicator for the next window and the previous 

one. This relation is calculated as follows: 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒  𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡  𝑤𝑖𝑛𝑑𝑜𝑤

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑤𝑖𝑛𝑑𝑜𝑤
 (2) 
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The deviation relation is calculated for every indicator. Then, the model analyzes the 

resulted indicator’s deviation relations to transform it into a stuck pipe probability. 

However, the model should not generate an alarm if the deviation relation is more than 

1, which means the increase of the indicator exists. Otherwise, any minor deviation will 

be recognized as a possible sign of stuck pipe with high risk.  The weighting method is 

introduced to avoid the “all-or-nothing” proposition while a relatively small deviation 

relation is detected (Figure 29). 

 

Check the 

deviation 

relation 

If the deviation 

relation is less than 1 

If the deviation relation 

is between 1 and 3 

If the deviation 

relation is greater 

than 3 

Alert level 0 

Take calculated 

deviation relation value 

as alert level 

3 

Figure 29: Alert Classification  

For instance, if the deviation for the indicator in the next window (window 2) is 12% and 

the deviation for the previous window (window 1) is 6%, the deviation relation for the 

case is 2 ( by applying  Equation 2). Therefore, the alert level for this indicator equals 

two, according to Figure 29. If the deviation relation is three or more, the alert level is set 

to 3. It is crucial to set the maximum possible alert level so extra-large data points do not 

affect the overall alert level. Therefore, the alert level is calculated for every indicator 

which is presented in the model.  

After calculating the indicator deviation alert level, the model has three alert level values 

for every indicator, representing its deviation trends. The resulting alert level values 

should be transformed into a single value, indicating the current situation in the well 

from the stuck pipe perspective. The stuck pipe probability estimation based on the alert 

levels helps to obtain the impending stuck pipe risk in real-time.  

3.5.6 Stuck-Pipe Incident Probability Estimation  

As it was explained before, after alert level calculation, every indicator has its alert level 

value for the next window. The sum of the alert levels represents the current risk of stuck 

pipe. The final step is to compare the actual alert level with the maximum possible alert 

level to find the Stuck Pipe Risk in percent. The stuck pipe risk in percent can be 

mathematically expressed as: 

𝑆𝑡𝑢𝑐𝑘 𝑝𝑖𝑝𝑒 𝑟𝑖𝑠𝑘 (%) = (
𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝐴𝑙𝑒𝑟𝑡 𝐿𝑒𝑣𝑒𝑙𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑙𝑒𝑟𝑡 𝐿𝑒𝑣𝑒𝑙
) ∙ 100 (3) 

The maximum alert level is predefined. In general, the maximum Alert Level is three 

times the number of parameters monitored (because there are three levels of alert for 

each parameter in the system, Figure 29). Thus, since three indicators are monitored in 

the current model, a maximum alert level is 9. 

Finally, the calculated stuck pipe risk is plotted versus time. The model’s alarm threshold 

is set to 50%. If the value of the probability calculated exceeds this limit,  the model 

recognizes it as a high risk of stuck pipe and triggers an alarm to notify the driller. Once 
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the new real-time drilling data is generated, the windows move further. The prediction 

and risk calculation process continue for newly generated data. 

3.6 Model Validation 
To demonstrate the developed model's ability to detect the downhole conditions that 

lead to high stuck pipe risk, two experiments were performed based on historical data 

belonging to two different wells. The data used is time-based data. The highlighted 

features of the cases are presented in Table 5. 

Case # Downhole incident 
The data 

frequency 

The window 

size used 

Indicators 

used 

1 Stuck pipe 
One data point 

per 5 seconds 

2 minutes 30 

seconds 

SPP, 

Hookload, 

Surface torque 

2 

High stuck pipe risk 

with overpull while 

tripping out 

One data point 

per 10 seconds 

3 minutes 20 

seconds 

SPP, 

Hookload, 

Surface torque 

Table 5: Case Studies Utilized Data Overview 

3.6.1 Case Study#1 

In this case, the data of the Volve oilfield from the open-source was used. Precisely, the 

drilling data for July 18 from the well F-5 was implied to validate the model. According 

to the daily drilling report (DDR), the pipe got stuck in the well between 15:00 and 15:15 

during drilling. 

The real-time set of the parameters consists of the following data: 

•  Time 

•  The flow rate in, L/min 

•  Average standpipe pressure, KPa 

•  Average Hookload, Kkgf 

•  Block position, m 

•  Rate of penetration, m/h 

•  Average surface torque, kNm 

•  Weight on Bit, Kkgf 

•  Average rotary speed, rpm 

The dataset, which is thoroughly cleaned of NaN containing rows, has 4593 data points. 

The resulting dataset has the pure drilling data phase information. The frequency of the 

data used is 1 point per 5 seconds.  The distribution of every dataset parameter is shown 

in Figure 30. 
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Figure 30: Statistic Distribution of Data Set#1 Prior to applying the Data Cleaning 

Process   

The model was trained based on 36% of the dataset (1676 points). The only drilling phase 

data for training was used to train the model. The training dataset has 2 hours and 15 

minutes of data (the dataset was taken in the interval 7:45-10:00). The predictive models 

for three indicators are based on the input data depicted in Table 6. 

 

Input Data Indicator 

Weight on Bit, Kkgf; Average rotary speed, rpm; Rate of 

penetration, m/h 
Surface Torque 

Weight on Bit, Kkgf; The flow rate in, L/min; Average rotary 

speed, rpm; Average surface torque, kNm; Block position, m; 

Rate of penetration, m/h 

Hook load 

Weight on Bit, Kkgf; The flow rate in, L/min; Rate of 

penetration, m/h 
SPP 

Table 6: Input Data  Utilized by Each  Predictive Models as Implemented in Case 

Study#1 

After the first training, the model automatically detected the following outliers in the 

training dataset: 114 SPP values, 28 Torque values, 153 Hookload values. According to 

this detection, the training dataset was corrected for every predictive model to optimize 

its performance. These values were removed from the training dataset. The predictive 

models were re-trained automatically after the dataset filtration. The result of the 

model’s adjustment is shown in Table 7. The predictive models have increased the 

performance in every case. 
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The model Performance parameter Before Tuning After Tuning 
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 R2 0.748 0.986 

Adjusted R2 0.747 0.986 

RMSE 2580 717 
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 R2 0.792 0.961 

Adjusted R2 0.792 0.961 

RMSE 3.33 1.4 
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 R2 0.726 0.868 

Adjusted R2 0.725 0.867 

RMSE 6.83 2.46 

Table 7: Predictive Model Performances Before and After Optimization (Case Study#1)   

The validation dataset has 2917 data points with the same frequency as the training 

dataset. The data used for the model validation are taken from 10:00 to 16:00. The 

window size used in this case study is 2.5 minutes (each parameter in the window has 

36 real-time data points). 

The model was trained based on the same day data from 7:45 to 10:00, which means the 

model was suitable for the BHA used, the bit used. When the process of training and 

tuning the model was done, re-playing to validate the model was initiated, so the 

validation data was fed to the model as in a real-time implementation case. The alarming 

level is set to 50%, so if the stuck probability is higher than 50%, the system generates an 

alarm.  

The stuck pipe probability curve represented in Figure 31 shows several alarms 

generated by the model. The first alarms were more than 3,5 hours before the actual 

incident (two alarms 51% and 62% about 11:30). Further, the alarm was triggered seven 

times with the probability from 60 to 80%. Finally, the last and the highest stuck pipe 

probability was detected 5 minutes before the reported stuck pipe incident, with a value 

of 100%. Based on the current case study, it can be concluded that in real-time 

implementation, the model could notify the driller about dangerous conditions and high 

stuck pipe risk so that the correct actions can be taken in time. 
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Figure 31: Well F-5 (Volve oilfield) with Stuck Pipe Incident occurred between 15:00 

and 15:15; (as it can be seen, the model generated  several alarms (red dots) before the 

actual incident encountered) 

3.6.2 Case Study#2 

The second validation case was done using the same re-play manner. The primary 

activity performed in the dataset was drilling. The set of real-time recorded parameters 

consists of the following data: 

•  Time 

•  Flow rate in, gpm 

•  Standpipe pressure, psi 

•  Hook load, klbs 

•  Block position, ft 

•  Rate of penetration, ft/hr 

•  Surface torque, lb*ft 

•  Weight on bit, klbs 

•  Rotary speed, rpm 

The complete dataset has 24 hours of data (8640 data points with one data point per 10 

seconds frequency). The distributions of the parameters used in the model as inputs are 

represented in Figure 32.  

The stuck 

pipe incident 

was notified 

here by the 

drilling crew 

Alarms Triggering Threshold  
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Figure 32: Statistic Distribution of Data Set#2 Before applying the Data Cleaning 

Process   

In this case study, 50% of the dataset (4320 data points from 00:00 to 12:00) was used to 

train the predictive model. The rest of the dataset (4320 data points from 12:00 to 24:00) 

represents a validation dataset. The inputs used in predictive models for the current case 

study are depicted in Table 8. 

Input Data Indicator 

Weight on bit, klbs; Rotary speed, rpm; Rate of penetration, ft/hr Surface Torque 

Weight on bit, klbs; Flow rate in, gpm; Rotary speed, rpm; 

Average surface torque, kNm; Block position, m; Rate of 

penetration, ft/hr 

Hook load 

Weight on bit, klbs; Flow rate in, gpm; Rate of penetration, ft/hr SPP 

Table 8: Input Data Utilized by Each Predictive Models as Implemented in Case 

Study#2 

The model detected and removed 36 SPP values, 102 torque values, and 46 hook load 

values for the training dataset applied in the case study. The results of the adjustment 

are demonstrated in Table 9. 
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The model Performance parameter Before adjustment After adjustment 
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 R2 0.931 0.973 

Adjusted R2 0.931 0.973 

RMSE 60.1 32.2 
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Adjusted R2 0.443 0.452 

RMSE 896 826 
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 R2 0.737 0.99 

Adjusted R2 0.736 0.99 

RMSE 6.71 0.738 

Table 9: Predictive Model Performances Before and After Optimization (Case Study#2)   

Figure 33 shows the results obtained when the validation dataset was fed into the model. 

Again, the alarming level was set to 50%, as in the first case study. In the current dataset, 

there was no report of a stuck pipe incident. However, the probability of a stuck curve 

shows several triggered alarms while drilling (at 13:45, 15:00, 17:20. 18:05, 20:00, 20:50). 

Furthermore, according to the daily drilling report, the drilling crew notified interment 

overpull at different depths while tripping out. This fact proves the mentioned theory 

regarding the hole conditions. 

 

Figure 33:  Graphical Presentation of the Generated Probability Curve for Second Case 

Study 

3.7 Model Limitations 
As every well is unique, the mechanism of the stuck pipe and its symptoms differ from 

well to well. In addition, these symptoms may be sensitive to the formation drilled, BHA 

used, drilling bit used, the diameter of tools in BHA, mud properties.  

The proposed model does not need information about BHA, well profile, mud 

properties, and other parameters. However, the main limitation is that the model 

requires some drilling time to gain the real-time data from the current well and be 

trained first for the particular case or section. When drilling a new section, change bit, or 

BHA, the model should be re-trained to have accurate results. In addition, the data used 

to train the model must be incident-free data. If the stuck pipe earlier sign is presented 
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at the input data set , then the model will be trained with improper data and as result , 

it will not be able to detect the stuck pipe  

Moreover, the alerting system may be improved by enhancing the number of alarm 

levels and describing them. This action can make the model more sensitive to unique 

changes and give more accurate results. As for case study 2, there was no actual stuck 

pipe, but the hole conditions were poor, so the model can be possibly adjusted to inform 

the user not only about high stuck pipe risk but also about changes in the wellbore 

conditions, which may lead to possible stuck pipe development.  
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Chapter 4 Conclusions 
The main conclusion of the thesis can be summarized in the following points: 

1.  Detecting the early signs of the impending stuck pipe has a benefit for 

operator companies and drilling contractors. Most stuck pipe incidents result 

in a significant increase in non-productive time, making this kind of incident 

more costly for the operators. In addition, from the drilling contractor's 

perspective, detecting the early signs of possible stuck pipe allow the drillers 

to be notified about the dangerous conditions in the wellbore from the stuck 

pipe point of view. 

2.  One method that can be used to identify the early warning signs of a stuck 

pipe incident is data-driven methods. Although these methods have shown 

promising results, they still have specific shortcomings.   Generally, these 

approaches require large amounts of input data and proper adjustment. Thus, 

it takes time to prepare the model for implementation in real-time data 

monitoring. Moreover, in most cases, such data preparation cannot be 

automated; the fact makes these approaches inapplicable for real-time 

implementation. 

3.  Methodology for detecting possible signs of possible stuck pipe incidents 

while drilling by monitoring the main three relevant surfaces drilling 

parameters was presented.  

4.  The proposed model uses the deviation approach to detect the imminent stuck 

pipe incident. A unique alerting system was developed to evaluate the 

deviation severity and transform it into a stuck pipe probability curve. The 

curve is utilized to generate alarms in the case that the probability value 

exceeds the predefined threshold. 

5.  Based on the conducted case studies, the following facts can be denoted:  

•  The example of implementing the methodology for the real-time data 

in case study #1 shows that the model can detect early signs of 

developing stuck pipe several hours before the actual incident 

occurred.  

•  The model also reported the high stuck pipe risk in case study#2. 

Although there was no stuck pipe incident, the model generated 

several alarms, which can be interpreted as poor hole conditions. This 

hypothesis is proven by the daily drilling report for the next day, 

where the high overpull while tripping out was denoted. 

6.  The shortcomings of the proposed model are underlined. Despite numerous 

advantages, the model needs actual data gained during drilling to be trained.  

The proposed 3-level alarming system can be improved by introducing more 

levels. This improvement is assumed to make the model more precise and 

sensitive in particular cases. 
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