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Abstract 

Nano beam electron diffraction is a powerful technique used for strain 

determination in thin crystalline and amorphous samples, as it combines high 

spatial resolution, accuracy, and precision. The influence of three-dimensional 

strain fields in samples, which are mostly present due to complex strain states or 

effects of free surface relaxations, is still unknown today. This study aims to 

increase the understanding of the averaging of the Bragg angle and the impact of 

such three-dimensional strain fields on the measured strain. 

To analyze the effect of a three-dimensional strain field on the average diffraction 

angle and strain evaluation, a combination of finite element and diffraction 

simulations was carried out. Specimen were modeled and deformed using finite 

element analysis. The atom positions were then interpolated into the finite 

element mesh and an electron diffraction simulation was executed. The obtained 

diffraction images were then evaluated using the square-root magnitude weighted 

phase correlation method. The resulting strain values were compared to the actual 

strain in the samples obtained from the finite element models. 

The simulations showed that the measured strains are in good agreement with the 

average strain along the microscope optical axis. However, a strong dependency of 

the measured strain from the angular deviation could be found. For higher 

absolute strain values and gradients, the diffraction simulations led to distorted 

images, but the strain evaluation using the square-root magnitude weighted phase 

correlation still yielded good results, proving the immense stability of this 

technique. 
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Kurzfassung 

Nano-Elektronenbeugung vereint die Aspekte hoher räumlicher Auflösung, hoher 

Genauigkeit und hoher Präzision, wodurch sie zu einer der leistungsstärksten 

Methoden zur Dehnungsbestimmung in dünnen kristallinen und amorphen 

Proben zählt. Der genaue Einfluss dreidimensionaler Dehnungsfelder in den 

Proben, die meist bedingt durch komplexe Dehnungszustände oder durch Effekte 

der Oberflächenrelaxationen vorherrschen, ist bis heute ungeklärt. Das Ziel dieser 

Studie ist die Analyse der Mittelung des Bragg-Winkels, um den Einfluss solcher 

Dehnungsfelder auf die gemessene Dehnung genauer bestimmen zu können. 

Um diese Analyse durchzuführen, wurde eine Kombination aus Finite-Elemente-

Simulationen und Beugungssimulationen gewählt. Die Proben wurden unter 

Verwendung der Finite-Elemente-Methode modelliert und verformt. Anschließend 

wurden die Atompositionen in das Finite-Elemente-Netz interpoliert und eine 

Elektronenbeugungssimulation durchgeführt. Die erhaltenen Beugungsbilder 

wurden unter Verwendung der square-root-magnitude-weighted-phase-

correlation-Methode ausgewertet. Die resultierenden Dehnungen wurden mit den 

tatsächlichen Dehnungen der Proben verglichen, die den Finite-Elemente-

Modellen entnommen wurden. 

Die Simulationen zeigten, dass die gemessenen Dehnungen sehr gut mit der 

mittleren Dehnung entlang der optischen Achse des Transmissions-

elektronenmikroskops übereinstimmen. Es konnte eine starke Abhängigkeit der 

gemessenen Dehnung von der Winkelabweichung zwischen der Zonenachse und 

der optischen Achse festgestellt werden. Beim Vorliegen höherer absoluter 

Dehnungen sowie Dehnungsgradienten führte die Beugungssimulation zu stark 

verzerrten Bildern. Die Auswertung dieser verzerrten Beugungsbilder unter 

Verwendung der square-root-magnitude-weighted-phase-correlation-Methode 

ergab trotzdem gute Ergebnisse für die gemessenen Dehnungen. Das zeigt die 

große Stabilität dieser Technik. 

 



TABLE OF CONTENTS 

V 

 

Table of contents 
Abstract.................................................................................................................... III 

Kurzfassung ............................................................................................................. IV 

1 Introduction ........................................................................................................ 1 

2 Dynamical theory of electron diffraction ........................................................... 2 

2.1 Theory of high energy electron diffraction .................................................. 2 

2.2 Bethe-Bloch-Wave method ........................................................................... 4 

2.3 Multislice Method......................................................................................... 6 

2.3.1 Physical background .............................................................................. 6 

2.3.2 Deriving the Multislice equation .......................................................... 8 

2.4 The PRISM-algorithm ................................................................................ 10 

3 Experimental procedure .................................................................................. 12 

3.1 Samples....................................................................................................... 12 

3.2 Finite element calculations ........................................................................ 12 

3.2.1 Cantilever bending beam .................................................................... 12 

3.2.2 Tensile specimen .................................................................................. 13 

3.2.3 Cracked tensile specimen .................................................................... 13 

3.3 Specimen preparation for PRISM .............................................................. 13 

3.4 PRISM – diffraction simulation ................................................................. 15 

3.5 Strain measurement .................................................................................. 16 

3.6 Strain calculation from FE-Data ............................................................... 16 

4 Results and discussion ..................................................................................... 18 

4.1 Precision  and accuracy  of the simulations .......................................... 18 

4.2 Cantilever bending beam ........................................................................... 20 

4.2.1 Cantilever bending beam - 𝜖𝑥𝑥 ............................................................ 20 

4.2.2 Cantilever bending beam - 𝜖𝑦𝑦............................................................ 25 

4.2.3 Cantilever bending beam - 𝜖𝑥𝑦 ............................................................ 30 

4.2.4 Influence of specimen tilt .................................................................... 34 

4.3 Tensile specimen ........................................................................................ 39 



TABLE OF CONTENTS 

VI 

 

4.3.1 Tensile specimen - 𝜖𝑥𝑥 ......................................................................... 39 

4.3.2 Tensile specimen - 𝜖𝑦𝑦 ......................................................................... 41 

4.3.3 Tensile specimen 𝜖𝑥𝑦 ............................................................................ 43 

4.3.4 Diffraction images ................................................................................ 45 

4.4 Cracked tensile specimen ........................................................................... 46 

4.4.1 Cracked tensile sample - 𝜖𝑥𝑥 ............................................................... 46 

4.4.2 Cracked tensile specimen – 𝜖𝑦𝑦 ........................................................... 48 

4.4.3 Cracked tensile specimen - 𝜖𝑥𝑦 ............................................................ 50 

4.4.4 Diffraction images ................................................................................ 52 

5 Conclusion ......................................................................................................... 54 

List of figures ........................................................................................................... 56 

List of tables ............................................................................................................. 60 

References ................................................................................................................ 61 

 

 

 



 

 

 

 





INTRODUCTION 

[1] 

 

1 Introduction 

Accurate determination of strains with high spatial resolution is one of the keys 

for a greater understanding of many physical phenomena and towards improving 

material properties. For example, the deformation behavior of metals is 

fundamentally controlled by nanoscale strain fields surrounding defects in the 

material. Furthermore, a huge focus of the semiconductor industry is strain 

engineering, as the application of strain can be used to enhance charge carrier 

mobility [1]. Presently, transmission electron microscopy (TEM) is the only tool 

allowing for strain determination with spatial resolutions in the low nanometer 

range. A variety of techniques have been developed, such as converged and nano 

beam electron diffraction, dark field electron holography or high resolution TEM, 

each possessing its own advantages and drawbacks [2,3].  

Nano beam electron diffraction (NBED) uses a near parallel, nanometer sized 

electron probe which scans across the specimen. At each point, independent 

diffraction images are recorded with high resolution, which are then used for the 

strain determination. Modern TEMs achieve probe sizes below 1 nm, resulting in 

excellent spatial resolution. As the probe scans across the specimen, the field of 

view can be made extremely large. The determination of strain from diffraction 

images is pretty straight forward, and advances in peak finding algorithms allow 

for sub pixel resolution. More recent developments include the use of patterned 

electron probes [4] and precession NBED [5], which further improve the strain 

precision up to 2∙10
-4

. Despite all these advances, the effect of a three-dimensional 

strain field on the measurement has not been studied to date. If a strain gradient 

along the electron beam direction is present, the lattice constant changes with 

increasing penetration depth, thus resulting in a local variation of the Bragg angle. 

The total diffraction angle, respectively the derived strain, should therefore be 

some sort of an average along the microscope optical axis. 

This thesis aims to investigate the effect of averaging the Bragg angle in NBED 

experiments on specimens with a three-dimensional strain field. To properly 

examine this effect, it is essential to know the exact strain field in the sample. 

Hence, a simulation study was chosen to be best suited, especially since modern 

TEM image simulations provide results of high accuracy. Deformed specimens 

were modelled using finite element analysis (FEA), and subsequently STEM 

simulations were carried out on the distorted lattice. From the obtained diffraction 

images, the strain was evaluated and compared to the known results of the FEA 

to determine the effect of the three-dimensional strain field on the acquired data. 



THEORY 

[2] 

 

2 Dynamical theory of electron diffraction 

In the classical kinematical theory of diffraction only single scattering is assumed. 

In the case of electron diffraction, this description is, however, only sufficient if the 

specimen is extremely thin. For thicker samples, multiple scattering must be 

considered, which the kinematical theory does not account for. As a result, a new 

method was developed, widely known as the dynamical theory. This is based on 

solving the Schrödinger equation for the imaging electrons inside the specimen [6–

8]. In the following sections, the physical principles of these calculations will be 

described. The theoretical treatment will further be restricted to the imaging 

conditions in a TEM. First, the wave equation for fast electrons will be derived. 

Second, the most common methods used to solve the problem are presented.  

The mathematical descriptions in the following sections will primarily be taken 

from Kirkland [9] as his book provides an excellent overview of the concepts in 

dynamical electron diffraction. Furthermore, this ensures a consistent description. 

2.1 Theory of high energy electron diffraction 

As already mentioned, the problem of the elastic scattering of fast electrons by an 

atom is described by the Schrödinger equation. Under the typical conditions 

present in a TEM, the imaging electrons travel at a significant fraction of the speed 

of light. Hence, the Schrödinger equation is no longer appropriate, and the 

relativistic Dirac equation should be used. However, the effects of electron spin are 

negligible, and the use of the Dirac equation makes calculations far more 

complicated. The relativistic effects can also be adequately treated by using the 

Schrödinger equation with relativistically corrected mass and wavelength [10]. 

Further, the image is assumed to be stationary, thus time dependency is neglected 

[9]. 

[−
ℏ2

2𝑚
𝛻2 − 𝑒𝑉(𝑥, 𝑦, 𝑧)]𝛹(𝑥, 𝑦, 𝑧) = 𝐸𝛹(𝑥, 𝑦, 𝑧) (1) 

Here 𝛹 is the electron wave function, ℏ = ℎ/2𝜋 is Planck’s constant divided by 2𝜋, 

∇² is the Nabla operator squared (respectively the Laplacian), 𝑒 is the elementary 

charge, 𝑉 is the electrostatic potential in the specimen and 𝐸 is the kinetic energy 

of the imaging electrons. The relativistic corrected mass 𝑚 and wavelength 𝜆 are 

defined by: 

𝑚 = 𝑚0 +
𝑒𝑉

𝑐2
 (2) 
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𝜆 =
ℎ𝑐

√𝑒𝑉(2𝑚0𝑐2 + 𝑒𝑉)
 (3) 

where 𝑐 is the speed of light and 𝑚0 is the electron rest mass. Only elastic 

scattering will be assumed, so the kinetic energy stays constant and is given by: 

𝐸 =
ℎ2

2𝑚𝜆²
 (4) 

As the imaging electrons penetrate the specimen, they gain potential energy due 

to the electrostatic attraction to the positively charged nuclei. Since the electrons 

in the TEM possess very high kinetic energies, this change in potential energy is 

very weak and the electrons motions are only slightly perturbated. It is therefore 

useful to separate the large velocity in z-direction from the effects due to the 

interaction with the specimen. Thus, the complete electron wave function 𝛹 is 

separated into a plane wave traveling along the z-axis and a factor 𝜓(𝑥, 𝑦, 𝑧) that 

slowly varies with depth 𝑧 and represents the perturbations due to the interactions 

with the specimen [11]: 

𝛹(𝑥, 𝑦, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧) ⋅ 𝑒𝑥𝑝(2𝜋ⅈ𝑧/𝜆) (5) 

To use Equation (5) in (1) requires calculating ∇²𝜓. To do this, first the ∇² is split 

into a z-directional and a transversal part. 

∇2= [
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
] = [∇𝑥𝑦

2 +
𝜕2

𝜕𝑧2
] (6) 

Combining Equations (5) and (6) the derivatives of 𝛹 with respect to x and y are 

calculated.  

∇2𝛹 = [∇𝑥𝑦
2 +

𝜕2

𝜕𝑧2
]𝛹 = 𝑒𝑥𝑝(2𝜋ⅈ𝑧/𝜆)∇𝑥𝑦

2 𝜓 +
𝜕2

𝜕𝑧2
[𝜓 𝑒𝑥𝑝(2𝜋ⅈ𝑧 𝜆⁄ )]   (7) 

Next, the derivatives with respect to z need to be solved. 

Equation (9) can now be inserted into (1). With (4) the term on the far right in (9) 

cancels out and dropping the factor exp(2𝜋ⅈ𝑧/𝜆) leads to: 

𝜕

𝜕𝑧
[𝜓 exp(2𝜋ⅈ𝑧 ∕ 𝜆)] = exp(2𝜋ⅈ𝑧/𝜆) [

𝜕𝜓

𝜕𝑧
+

2𝜋ⅈ

𝜆
𝜓] (8) 

𝜕²

𝜕𝑧²
[𝜓 exp(2𝜋ⅈ𝑧 ∕ 𝜆)] = exp(2𝜋ⅈ𝑧/𝜆) [

𝜕²𝜓

𝜕𝑧²
+

4𝜋ⅈ

𝜆
 
𝜕𝜓

𝜕𝑧
] −

4𝜋2

𝜆2
𝜓 (9) 
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Equation (10) is mathematically identical to (1) as no approximations were made 

up to this point. Now however, the paraxial approximation is introduced. The 

second order derivative in Equation (10) is dropped as it is assumed that 𝜓 varies 

slowly with depth 𝑧 inside the specimen, which is often referred to as neglecting 

backscattering [11]. Also dropping the pre-factor on the left-hand side of Equation 

(10), it can be written as a first order differential equation [8,9]. 

where 𝜎 = 2𝜋𝑚𝑒𝜆 ∕ ℎ2 is the interaction parameter. Finally, Equation (11) 

describes the elastic interactions between the specimen and the imaging electrons. 

However, this equation has still no obvious solution and is rather hard to solve. In 

principle, there are two different methods today which try to solve the problem: 

the Bethe-Bloch-Wave method and the Multislice method. While the Bethe-Bloch-

Wave method solves Equation (11) analytically, the Multislice method tries to solve 

it numerically. In addition, there are also some hybrid methods using aspects of 

both theories, such as the PRISM algorithm used in this study. 

2.2 Bethe-Bloch-Wave method 

The Bloch wave method was first introduced by Bethe [12] in 1928 and is based on 

direct solution of Equation (11) using Bloch’s theorem. This theorem states that in 

a periodic potential, the solutions to the Schrödinger equation take the form of a 

plane wave modulated by a function with the same periodicity as the potential [13]. 

This means, that the solution to Equation (11) can be built from a plane wave and 

a function with the periodicity of the crystal. This implicitly states however that 

the specimen must represent a crystal with perfect periodicity [9,14].  

As the Bloch wave method allows for an analytical solution, it can provide 

fundamental physical insights which cannot be achieved by numerical methods 

[15]. 

Here, the well-known Howie-Whelan equations [16] will be derived. As the crystal 

potential needs to be perfectly periodic, it can be expanded into a Fourier series: 

−
ℏ2

2𝑚
[∇𝑥𝑦

2 +
𝜕2

𝜕𝑧2
+

4𝜋ⅈ

𝜆

𝜕

𝜕𝑧
+

2𝑚𝑒𝑉(𝑥, 𝑦, 𝑧)

ℏ2
] 𝜓(𝑥, 𝑦, 𝑧) = 0 (10) 

𝜕𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧
= [

ⅈ𝜆

4𝜋
∇𝑥𝑦

2 +
2𝑚𝑒ⅈ𝜆

4𝜋ℏ2
𝑉(𝑥, 𝑦, 𝑧)]𝜓(𝑥, 𝑦, 𝑧) = 

        = [
ⅈ𝜆

4𝜋
∇𝑥𝑦

2 + ⅈ𝜎𝑉(𝑥, 𝑦, 𝑧)]𝜓(𝑥, 𝑦, 𝑧) 

(11) 
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where 𝑮 = (𝐺𝑥 + 𝐺𝑦 + 𝐺𝑧) is a set of reciprocal lattice vectors of the specimen and 

𝑉𝑮 is the potential at the reciprocal lattice site 𝑮 (the bold letters indicate vectors). 

Using this Fourier series and Bloch’s theorem, the slowly varying part of the 

electron wave function 𝜓 can easily be described by a Bloch wave function in the 

form of Equation 13 [9,16,17]. 

The Fourier coefficients 𝜙𝑮 are slowly varying with depth 𝑧 in the specimen. 

Substituting Equations (12) and (13) into (11) and dropping the common factor 

exp[2𝜋ⅈ𝑮 ⋅ 𝒓] yields: 

where the excitation error 𝑠𝑮 = 𝐺𝑧 + 1
2⁄ 𝜆(𝐺𝑥

2 + 𝐺𝑦
2) is introduced and describes the 

deviation from the Bragg condition [6]. The derived set of first order differential 

equations is widely known as the Howie-Whelan equations. This set of equations 

can be solved using standard computer aided differential equation techniques. 

As all coefficients 𝜙𝑮 are known, the wavefunction in the specimen must be 

matched to the incident electron function via weighting coefficients 𝛼𝑮.  

Sturkey [18] shows how this problem can be restated into a scattering matrix 

approach. The scattering matrix 𝑺 connects the outgoing and incoming wave 

functions in the form of: 

In principle, the Bloch wave method can be solved by hand for small unit cells 

requiring only two or three beams, respectively Fourier coefficients. For larger unit 

cell sizes the number of necessary beams increases drastically making even 

computer aided calculations very inefficient [9]. 

𝑉(𝑥, 𝑦, 𝑧) = 𝑉(𝒓) = ∑𝑉𝑮

𝑮

exp[2𝜋ⅈ𝑮 ⋅ 𝒓] (12) 

𝜓(𝑥, 𝑦, 𝑧) = 𝜓(𝒓) = ∑𝜙𝑮(𝑧) exp[2𝜋ⅈ𝑮 ⋅ 𝒓]

𝑮

 (13) 

𝜕𝜙𝑮(𝑧)

𝜕𝑧
= −𝜋ⅈ(2𝐺𝑧 + 𝜆𝐺𝑥

2 + 𝜆𝐺𝑦
2)𝜙𝑮(𝑧) + ⅈ𝜎 ∑𝑉𝑮−𝑮′𝜙𝑮′(𝑧)

𝑮′

= 

= 2𝜋ⅈ𝑠𝑮𝜙𝑮(𝑧) + ⅈ𝜎 ∑𝑉𝑮−𝑮′𝜙𝑮′(𝑧)

𝑮′

                        

(14) 

𝜓𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑧 = 0) = ∑𝛼𝑮 𝜙𝑮(𝑧 = 0) exp[2𝜋ⅈ𝑮 ⋅ 𝒓]

𝑮

 (15) 

𝜓𝑒𝑥𝑖𝑡 = 𝑺 𝜓𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (16) 
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2.3 Multislice Method 

In this section the Multislice method will be described. First the physical principles 

of transmission and beam propagation are explained. Second, the Multislice 

equation will be derived from the Schrödinger equation as given by Equation (11). 

2.3.1 Physical background 

 

Figure 1: Illustration of the slicing of the specimen along the beam axis. 

The Multislice method is based on the physical optics theory developed by Cowley 

and Moodie [19]. In this method, the specimen is divided into thin slices normal to 

the incident beam direction as shown in Figure 1. Each of these slices must be thin 

enough to be treated as a weak phase object. In a weak phase object, the imaging 

electrons pass through with only a small deviation to their paths. This change in 

path can equivalently be treated as a change in wavelength or phase [9,20]. It is 

further assumed that the effect of the 3D specimen potential can be replaced by a 

2D object, the so called projected potential 𝜈𝑧. Hence, the potential is integrated 

over the slice thickness along the z-axis [6,21]. 

Knowing the incident electron wave function 𝜓𝑖𝑛, the outgoing scattered 

wavefunction 𝜓𝑜𝑢𝑡 can be calculated as: 

where 𝑡(𝑥, 𝑦) is the transmission function through one slice. The single slices are, 

however, separated by a distance 𝛥𝑧 and a description for the wave propagation 

between the slices is needed. This propagation is based on Huygens principle, 

which states that every point of a wave front gives rise to an outgoing spherical 

wave. These spherical waves propagate to the next slice, interfere with each other, 

and build up the next ingoing wave. An illustration of that principle is shown in 

Figure 2. This phenomenon can be described using the Fresnel-Kirchhoff 

diffraction integral (Equation 19) [9,22]. 

𝜈𝑧(𝑥, 𝑦) = ∫𝑉(𝑥, 𝑦, 𝑧)𝑑𝑧 (17) 

𝜓𝑜𝑢𝑡(𝑥, 𝑦) = exp[ⅈ𝜎𝜈𝑧(𝑥, 𝑦)] exp(2𝜋ⅈ𝑘𝑧𝑧) = 𝑡(𝑥, 𝑦) 𝜓𝑖𝑛(𝑥, 𝑦) (18) 
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where 𝑅 is the propagation distance from the point (𝑥′, 𝑦′, 𝑧) to point (𝑥, 𝑦, 𝑧 + ∆𝑧) 

as shown in Figure 2. For fast electrons, the scattering angle is very small so cos 𝜃 

is approximately one and the distance 𝑅 might be approximated as [6,9]: 

 

 

Figure 2: Illustration of Huygens principle for the propagation between the slices at 𝑧 and 

𝑧 + ∆𝑧. Each point of the wavefront at 𝑧 gives rise to an outgoing spherical wave [9]. 

This leads to the simplified diffraction integral in the form of Equation (21). 

Equation (21) can be rewritten in terms of a propagator function 𝑝(𝑥, 𝑦, 𝛥𝑧) and a 

convolution as follows: 

Using Equations (18) and (22), the Multislice equation for the propagation through 

one slice can be written as: 

𝜓(𝑥, 𝑦, 𝑧 + 𝛥𝑧) =
1

ⅈ𝜆
∫𝜓(𝑥′, 𝑦′, 𝑧)

exp(2𝜋ⅈ𝑅 𝜆⁄ )

𝑅
(1 + cos 𝜃) 𝑑𝑥′ 𝑑𝑦′ (19) 

𝑅 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + Δ𝑧2 ≈ ∆𝑧 (1 +
1

2

(𝑥 − 𝑥′)2

∆𝑧
+

1

2

(𝑦 − 𝑦′)2

∆𝑧
 ) (20) 

𝜓(𝑥, 𝑦, 𝑧 + 𝛥𝑧) = 

=
1

2ⅈ𝜆

exp(2𝜋ⅈ𝛥𝑧 ∕ 𝜆)

𝛥𝑧
∫𝜓(𝑥′, 𝑦′, 𝑧) exp {

ⅈ𝜋

𝜆𝛥𝑧
[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]} 𝑑𝑥′ 𝑑𝑦′ 

(21) 

𝜓(𝑥, 𝑦, 𝑧 + 𝛥𝑧) = exp(2𝜋ⅈ𝛥𝑧 ∕ 𝜆) [𝜓(𝑥, 𝑦, 𝑧)⨂𝑝(𝑥, 𝑦, 𝛥𝑧)] (22) 

𝑝(𝑥, 𝑦, 𝛥𝑧) =
1

ⅈ𝜆𝛥𝑧
exp [

ⅈ𝜋

𝜆𝛥𝑧
(𝑥2 + 𝑦2)] (23) 

𝜓(𝑥, 𝑦, 𝑧 + 𝛥𝑧) = 𝑝(𝑥, 𝑦, 𝛥𝑧)⨂ [𝑡(𝑥, 𝑦) 𝜓(𝑥, 𝑦, 𝑧)]  (24) 
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2.3.2 Deriving the Multislice equation 

Next, the Multislice equation will be derived, starting from the Schrödinger 

equation to show that the physical principles from the section before can be used 

to describe the electron diffraction in the TEM. The Schrödinger equation (11) can 

be written in operator form as: 

with the non-commutative operators: 

The formal operator solution to Equation (24) is given by: 

The solution for one slice is obtained by integration of Equation 28 from 𝑧 to  

𝑧 + Δ𝑧. Substituting the operators back into (28) yields: 

For Δ𝑧 → 0, Equation (29) ca be approximated as: 

where 𝑣𝛥𝑧 is the projected potential between 𝑧 and 𝑧 + Δ𝑧 (compare Equation (17)). 

The appearance of the operator ∇𝑥𝑦
2  in the exponential of the right-hand side of 

Equation (30) complicates the solution, but with some mathematical manipulation 

(compare Kirkland [9] section 6.4), it can be rewritten as: 

The introduction of the approximations led to the error term 𝒪(Δ𝑧2), where the 

magnitude of the error is of magnitude Δ𝑧2. To be more precise, the error term 

should actually be written as 𝒪(Δ𝑧2𝜈𝛥𝑧) meaning that the Multislice equation is 

more accurate the smaller the projected potential. Therefore, the simulations 

𝜕𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧
= [𝐴 + 𝐵]𝜓(𝑥, 𝑦, 𝑧) (25) 

𝐴 =
ⅈ𝜆

4𝜋
𝛻𝑥𝑦

2  (26) 

𝐵 = ⅈ𝜎𝑉(𝑥, 𝑦, 𝑧) (27) 

𝜓(𝑥, 𝑦, 𝑧) = exp [∫ [𝐴(𝑧′) + 𝐵(𝑧′)] 𝑑𝑧′
𝑧

0

] 𝜓(𝑥, 𝑦, 0) (28) 

𝜓(𝑥, 𝑦, 𝑧 + Δ𝑧) = exp [∫  (
ⅈ𝜆

4𝜋
∇𝑥𝑦

2 + ⅈ𝜎𝑉(𝑥, 𝑦, 𝑧))𝑑𝑧′
𝑧+Δ𝑧

𝑧

] 𝜓(𝑥, 𝑦, 𝑧) (29) 

𝜓(𝑥, 𝑦, 𝑧 + Δ𝑧) = exp [
ⅈ𝜆

4𝜋
Δ𝑧∇𝑥𝑦

2 + ⅈ𝜎𝑣𝛥𝑧(𝑥, 𝑦, 𝑧)]𝜓(𝑥, 𝑦, 𝑧) (30) 

𝜓(𝑥, 𝑦, 𝑧 + Δ𝑧) = exp (
ⅈ𝜆𝛥𝑧

4𝜋
∇𝑥𝑦

2 ) exp[ⅈ𝜎𝜈𝛥𝑧(𝑥, 𝑦, 𝑧)]𝜓(𝑥, 𝑦, 𝑧) + 𝒪(Δ𝑧2) (31) 
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should be more accurate for light atoms [9]. Comparing this result to Equation (18), 

the transmission function can be defined according to [8,9] as follows: 

The remaining exponential is more complicated to interpret. In principle, a Fourier 

transformation of Equation (31) is made. The operator ∇𝑥𝑦
2  is then split into 

𝜕² 𝜕𝑥²⁄ + 𝜕² 𝜕𝑦²⁄ , and the resulting two exponentials are expanded into power 

series. Repeated integration and the assumption that 𝑡𝜓 obeys periodic boundary 

condition yields: 

Where 𝑘 = (𝑘𝑥
2 + 𝑘𝑦

2)
1/2 

 and 𝑃(𝑘, Δ𝑧) is the propagator function in Fourier space. 

This propagator can also be written in real space with a convolution [8], leading to 

the same result as the previously shown Fresnel propagator (Equation (23)). 

Now the Multislice equation in real space can be written as: 

This equation describes the wave transmission and propagation through one slice. 

For the calculation of the interaction with the whole sample, this function must be 

used multiple times to alternately transmit and propagate the wave function. 

  

𝑡(𝑥, 𝑦, 𝑧) = exp[ⅈ𝜎𝜈𝛥𝑧(𝑥, 𝑦, 𝑧)] (32) 

𝐹𝑇 [exp (
ⅈ𝜆Δ𝑧

4𝜋
∇𝑥𝑦

2 ) (𝑡𝜓)] = exp[−ⅈ𝜋𝜆Δ𝑧(𝑘𝑥
2 + 𝑘𝑦

2)]𝐹𝑇[(𝑡𝜓)] = 𝑃(𝑘, Δ𝑧)𝐹𝑇[𝑡𝜓] (33) 

𝑝(𝑥, 𝑦, Δ𝑧) ⊗ =
1

ⅈ𝜆Δ𝑧
 exp (

ⅈ𝜋

𝜆Δ𝑧
(𝑥2 + 𝑦2)) ⊗ (34) 

𝜓(𝑥, 𝑦, 𝑧 + Δ𝑧) = 𝑝(𝑥, 𝑦, Δ𝑧) ⊗ [𝑡(𝑥, 𝑦, 𝑧)𝜓(𝑥, 𝑦, 𝑧)] + 𝒪(Δ𝑧2) (35) 
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2.4 The PRISM-algorithm 

The PRISM-algorithm developed by Ophus [23] tries to combine features of both 

methods explained above. The aim is to achieve a method for calculating images of 

thousands of STEM probe positions with a speed up compared to the traditional 

methods. Even though the Multislice method is already quite efficient for larger 

specimens compared to the Bloch wave method, it is still not practical for the 

calculation of thousands of STEM probe positions, as Equation (35) must be 

evaluated independently for each probe position. Ophus therefore reformulated the 

STEM simulations into a scattering-matrix approach, where the computational 

load of applying the Multislice Equation (35) to solve Equation (11) is shared 

between different probe positions. Furthermore, an interpolation factor is 

introduced, which reduces the number of plane waves used, leading to a further 

decrease in computational load. 

First, the specimen is divided into slices and the projected potential for each slice 

is calculated as in the Multislice method. Second, the interpolation factor 𝑓 is 

chosen. Typical values for 𝑓 range from 4 to 20, but to choose the proper factor it 

is recommended to simply simulate a few probes.  

The electron probe is determined as a set of plane waves given by: 

where 𝑚 and 𝑛 are the indices of the plane waves, 𝛿(𝒌) is the delta function and 

Δ𝑘 is the Fourier space pixel size. The plane waves are limited by: 

where 𝛼𝑚𝑎𝑥 is the maximum probe angle to be considered. The Multislice 

simulation is then performed for each of these incident plane waves. From 

Equation (36), it can be seen that the number of plane waves calculated is reduced 

by a factor 𝑓². The plane waves are stored in real space in a scattering matrix 𝑺. 

Then each converged electron probe at position 𝒓0 = (𝑥0, 𝑦0) is computed by first 

computing the required coefficients 𝛼𝑚,𝑛(𝒓0) for each plane wave 𝑆𝑚,𝑛(𝒓) using: 

where 𝐴(𝒌) is the probe aperture function, 𝜒(𝒌) is the phase shift function which 

corrects for the aberrations in the TEM and the terms ℎ tan(𝜃𝑥) and ℎ tan(𝜃𝑦) 

account for possible beam tilt angles 𝜃𝑥 and 𝜃𝑦 for a simulation cell of height ℎ.  

 

𝛹𝑚,𝑛(𝒌) = 𝛿(𝑘𝑥 − 𝑚𝑓Δ𝑘,   𝑘𝑦 − 𝑚𝑓Δ𝑘) (36) 

√𝑚2 + 𝑛2 𝑓𝜆Δ𝑘 ≤  𝛼𝑚𝑎𝑥 (37) 

𝛼𝑚,𝑛(𝒓0) = 𝐴(𝒌) exp[−ⅈ𝜒(𝒌)]  𝑒𝑥𝑝[2ⅈ𝜋𝒌 − (𝑥0 − ℎ tan(𝜃𝑥) , 𝑦0 − ℎ tan(𝜃𝑦))]  (38) 
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The probe aperture function is defined as: 

Once all coefficients are calculated, they are multiplied with the associated plane 

wave and summed over the whole cut out region defined by Equation (39) and the 

simulation is finished. 

 

Ophus [23] stated that compared to the Multislice method the PRISM method will 

always be less accurate, but as long as the interpolation factor 𝑓 is kept small, the 

error should be negligibly small. However, the speed up scales with 𝑓4, making 

this method very useful for STEM simulations. 

 

    𝐴(𝒌) = 1  where |𝒌| ≤  𝑘𝑝𝑟𝑜𝑏𝑒 and 

    𝐴(𝒌) = 0  everywhere else. 
 

𝑥0 −
𝑑

2𝑓
≤ 𝑥 ≤  𝑥0 +

𝑑

2𝑓
 & 𝑦0 −

𝑑

2𝑓
≤ 𝑦 ≤  𝑦0 +

𝑑

2𝑓
 (39) 
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3 Experimental procedure 

3.1 Samples 

In this study, three different samples were used: a cantilever bending beam, a 

tensile and a cracked tensile specimen; each one of those was modeled using finite 

element methods. The material was chosen to be silicon. The advantage of silicon 

with its low ordinal number is that the electrostatic potential is smaller compared 

to heavier atoms, hence, the diffraction simulations should be more accurate [9]. 

3.2 Finite element calculations 

For easier implementation and later evaluation, the isotropic orientation of the 

silicon unit cells was chosen in this thesis. The exact orientation of the crystal axis 

and the cartesian coordinate system can be seen in Figure 3, and the orthotropic 

constants for the finite element calculations are shown in Table 1. 

 

Figure 3: Definition of the coordinate 

system in the silicon unit cell [24]. 

Table 1: Silicon orthotropic constants for 

the orientation defined in Figure 3 [25,26]. 

 Orthotropic constants 

𝐸𝑥 = 𝐸𝑦 = 𝐸𝑧 = 130 𝐺𝑃𝑎 

𝐺𝑥𝑦 = 𝐺𝑦𝑧 = 𝐺𝑧𝑥 = 79.6 𝐺𝑃𝑎 

𝑣𝑥𝑦 = 𝑣𝑦𝑧 = 𝑣𝑧𝑥 = 0.28 

The used mesh was chosen to be equivalent to the silicon unit cells, as that leads 

to an easy interpolation of the remaining atomic coordinates inside the unit cells. 

Therefore, cubic brick elements were used. The elements possess eight nodes in 

total, one at each corner and linear shape functions were used.  

3.2.1 Cantilever bending beam 

The shape of the cantilever bending beam is presented in Figure 4 with the exact 

dimensions in Table 2. The ratios of length to height and length to width were five 

to one, therefore the beam could be treated to be thin and the Euler-Bernoulli 

theory could be assumed [27,28]. The force application point was on the far right 

of the beam, with the direction of force in negative z-direction. 
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Figure 4: Illustration of the bending beam. 

Table 2: Dimensions of the cantilever 

bending beam. 
 

 # of elements size [Å] 

L 325 1765.0 

W 65 353.0 

H 65 353.0 

3.2.2 Tensile specimen 

For the tensile specimen, exactly the same dimensions as for the bending beam 

were used (Table 3). The force acted on the y-z-plane on the right in positive 

x-direction. 

 

Figure 5: Illustration of the tensile sample. 

Table 3: Dimensions of the tensile 

specimen. 

 

 # of elements size [Å] 

L 325 1765.0 

W 65 353.0 

H 65 353.0 

3.2.3 Cracked tensile specimen 

For the cracked tensile specimen, the overall sample dimensions were reduced 

(Table 4) in order to extend the crack exactly to the middle in y-direction, as 

illustrated in Figure 6. The crack was implemented between the elements 160 and 

161 in x-direction (L/2), from element 1 to 32 in y-direction (W/2) and over the 

whole height in z-direction (H). The crack tip was perfectly sharp, as no elements 

were removed. 

 

Figure 6: Illustration of the cracked tensile 

specimen. 

Table 4: Dimensions of the cracked 

tensile specimen. 

 

 # of elements size [Å] 

L 320 1738.0  

W 64 367.6 

H 64 347.6 

3.3 Specimen preparation for PRISM 

For the diffraction simulation, regions of 65 by 65 by 65 elements were taken from 

the finite element models. On the bending sample, three different regions were 

defined as illustrated in Figure 7. These samples are from now on referred to as 
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Bending I, Bending II and Bending III. In the case of the tensile specimen only one 

region was defined, equivalent to Bending I. In case of the cracked tensile sample 

again only one sample was defined, with a size of 64 by 64 by 64 elements centered 

around the crack tip.  

 

Figure 7: Determination of the sample regions Bending I, II and III on the cantilever 

bending beam. 

As the bending samples were tilted out of the [001] zone axis, the three samples 

were rotated around the y-axis to align the [001] zone axis of the center element in 

x and y with the z-axis as schematically shown in Figure 8 below. This step was 

not necessary for the tensile and cracked tensile specimens.  

 

Figure 8: Illustration of the rotation of the bending samples. The samples were rotated 

around the y-axis to align the [001] zone axis in the middle of the x-y-plane with the z-axis. 

Subsequently, the positions of the remaining atoms in each unit cell had to be 

calculated. This was achieved utilizing the linear shape functions of a cubic brick 

element and the nodal displacements of the corner points of each element. 

Having interpolated all remaining atom positions, the input file for the diffraction 

simulation was created. PRISM requires an atomic coordinate file with a special 

structure, as specified on the website [29]. The occupancy probability of each lattice 

site was set to 100 %, and to account for thermal diffuse scattering a Debye-Waller-

factor of 0.076 Å [30] was used. Further, the supercell dimensions in x- and y-

direction were set to be equal in order to obtain diffraction images with the same 

number of pixels in both directions. 

In addition, an unstrained reference sample and a perfectly strained sample were 

created, as to determine the precision and accuracy of the strain measurements. 

The perfectly strained sample was strained by 2.00 % in x-direction and -0.56 % in 

y- and z-direction according to Poissons ratio, and no shear was introduced. 
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3.4 PRISM – diffraction simulation 

The diffraction simulation was carried out using the simulation program 

PRISMATIC [23,31]. The parameters for the simulation are shwon below in Table 

5 and an illustration of the diffraction setup is shown in Figure 9. 

Table 5: Parameters used for the STEM simulation. 

Pixel size 0.2 A  z 1,35 Å 

U 200 kV  𝑓  2 

 2.0 mrad  Probe step 5.43 Å 

max 3.0 mrad  Probe tilt 0.0 

C1, C3, C5 0.0, 0.0, 0.0    

The pixel size needed to be chosen small enough, as otherwise forbidden diffraction 

spots appeared visible, which came with the drawback of longer computation 

times. The probe semi-angle alpha was set to 2 mrad in accordance with typical 

experimental ones. For simplicity, the aberrations were all set to zero. The slice 

thickness ∆𝑧 was chosen to be the mean atomic distance along the z-axis, as 1 to 

2 Å should be sufficient for most cases [32]. 

The scan range was set from 0.15 % to 0.85 % in both x- and y-direction of the 

sample, leading to a scan area of roughly 247 by 247 Å². In order to calculate 

roughly one diffraction image per unit cell, the step size was set to 5.43 Å. These 

settings resulted in 46 by 46 diffraction images per experiment. In principle, higher 

values of the interpolation factor 𝑓 lead to drastically lower computation times. 

However, the number of pixels in the final diffraction image is inversely 

proportional to 𝑓. Hence, 𝑓 was set to 2 in order to achieve diffraction images with 

a sufficient resolution of 440 by 440 pixels. Due to the long computation times, only 

one frozen phonon configuration was calculated. 

 

Figure 9: Setup of the diffraction simulation. The incident electron probe is parallel to the 

z-axis. 
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3.5 Strain measurement 

The strain evaluation from the diffraction images was carried out in Gatan Digital 

Micrograph using the square-root magnitude weighted phase correlation. This 

should provide better results compared to standard techniques such as cross 

correlation methods, especially since the intensity distribution inside the disks is 

pronounced [33]. Only the {220} disks were used for the evaluation, as the intensity 

of the {400} disks was at times too low to be properly detected. 

3.6 Strain calculation from FE-Data 

In order to compare the measured strains from the evaluation of the diffraction 

images, the strains 𝜖𝑥𝑥, 𝜖𝑦𝑦 and 𝜖𝑥𝑦 of the finite element model were calculated. 

The calculation of the strains is illustrated in Figure 10. One element is taken from 

the FE mesh with the three points of interest 𝑃1, 𝑃2 and 𝑃3 and their corresponding 

nodal displacement vectors 𝑢𝑖̅, defined by Equations (40-42). The strains can then 

be calculated using Equations (43-45). 

 

Figure 10: Definition of the points of interest for the calculation the strains in one element. 

The red vectors define the nodal displacement of the given point due to the deformation. 

𝑢1⃗⃗⃗⃗ = 𝑃′1 − 𝑃1 = (

𝑥′1 − 𝑥1

𝑦′1 − 𝑦1

𝑧′1 − 𝑧1

) = (

𝑢1𝑥

𝑢1𝑦

𝑢1𝑧

) (40) 

𝑢2⃗⃗⃗⃗ = 𝑃′2 − 𝑃2 = (

𝑥′2 − 𝑥2

𝑦′2 − 𝑦2

𝑧′2 − 𝑧2

) = (

𝑢2𝑥

𝑢2𝑦

𝑢2𝑧

) (41) 

𝑢3⃗⃗⃗⃗ = 𝑃′3 − 𝑃3 = (

𝑥′3 − 𝑥3

𝑦′3 − 𝑦3

𝑧′3 − 𝑧3

) = (

𝑢3𝑥

𝑢3𝑦

𝑢3𝑧

) (42) 
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𝜖𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
≈

𝛥𝑢𝑥

𝛥𝑥
=

𝑢2𝑥 − 𝑢1𝑥

𝑥2 − 𝑥1
 (43) 

𝜖𝑦𝑦 =
𝜕𝑢𝑦

𝜕𝑦
≈

𝛥𝑢𝑦

𝛥𝑦
=

𝑢3𝑦 − 𝑢1𝑦

𝑦3 − 𝑦1
 (44) 

𝜖𝑦𝑥 = 𝜖𝑥𝑦 =
1

2
(
𝜕𝑢𝑦

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑦
) ≈

1

2
(
𝛥𝑢𝑦

𝛥𝑥
+

𝛥𝑢𝑦

𝛥𝑥
) =

1

2
(
𝑢2𝑦 − 𝑢1𝑦

𝑥2 − 𝑥1
+

𝑢3𝑥 − 𝑢1𝑥

𝑦3 − 𝑦1
) (45) 

 

The resulting strain distribution was further smoothed as the calculated strains 

showed some significant spikes in areas where a steady course was expected. The 

smoothing was carried out using a rectangular function in the x-y-plane. In Figure 

11 the scheme of the smoothing for the strains in the red node is shown, with the 

boundaries of the smoothing function for the individual specimens. For the bending 

beam and the tensile sample 25 nodes were used for smoothing, in favor of a 

smoother course, as the gradient should be linear. The cracked tensile sample 

however shows significant strain gradients, especially in the area round the crack 

tip. To distort this gradient as little as possible, only nine elements were used for 

the smoothing. The smoothed strains were then compared to the strain 𝜖𝑥𝑥 which 

was provided directly from the FEA to ensure that the smoothing was successful.  

 

  

Figure 11: Illustration of the smoothing process. To smooth the strain value in the red 

node, the mean strain of all nodes enveloped by the purple square for the bending and 

tensile specimen were used. For the cracked tensile sample only the nodes inside the green 

square were used. 
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4 Results and discussion 

In this section the results obtained from the NBED-simulations are presented. 

First, the precision and accuracy of the strain measurement technique are 

determined using the reference sample and the ideal tension sample. Second, the 

bending beam followed by the tensile and crack tensile specimens are analyzed and 

compared. 

4.1 Precision  and accuracy  of the simulations 

 

Figure 12: Strain maps obtained from the ideal tensile sample. a) shows the strain 𝜖𝑥𝑥, b) 

the strain 𝜖𝑦𝑦 and c) the strain 𝜖𝑥𝑦. The colorbar on the right is valid for all three figures. 

Figure 12 shows the strain maps obtained from the ideal tension sample. The 

results show only small deviations over the whole scan region, leading to the 

assumption that both the diffraction simulation and the disk registration work 

properly. The measured strains compare quite good with the actual strain state of 

the sample. To further quantify the results, histograms for each strain direction 

were created and are presented in Figure 13a to c, together with the real strain 

value in the sample (indicated by the purple lines). It should be noted that the 

strain in the histograms is unitless and therefore two orders of magnitude smaller 

than in the strain maps. This will be the case for all the following histograms. The 

bin size of the histograms was set to 5∙10
-5

.  

Figure 13a shows that the mean measured strain 𝜖𝑥𝑥 is +2.009 % with an accuracy 

Δ𝑥𝑥 of +0.009 % and a precision 𝜎𝑥𝑥 of 0.031 %. Interestingly, the results for the 

strain along the y-direction show a significantly worse accuracy but the precision 

is comparable (Figure 13b). The measured mean strain 𝜖𝑦𝑦 is 0.668 % with an 

accuracy Δ𝑦𝑦 of -0.108 % and a precision 𝜎𝑦𝑦 of 0.021 %. Figure 13c shows that the 

mean measured strain 𝜖𝑥𝑦 is +0.001 % with Δ𝑥𝑦 = +0.001 % and 𝜎𝑥𝑦= 0.009%. 

Values for precision found in literature range from around 0.06% to 0.12 % [34–37] 

and for accuracy from 0.06 % to 0.1 % [35,37,38]. The here obtained values for both, 
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precision and accuracy, are in the same order of magnitude or even significantly 

lower, thus the simulations can be assumed to be accurate and the chosen 

parameters for the diffraction simulation as adequate. 

Figure 13d shows an exemplary diffraction image of the ideal tension sample. The 

image shows only the allowed (000), {220} and {400} diffraction disks. However, it 

can be seen that the {400} spots have very low intensity, comparable to the 

background noise. Inside each diffraction disk, a strong intensity distribution due 

to dynamical diffraction is visible. 

 

 

Figure 13: Results of the histogram analysis of the strains measured from the ideally 

strained tensile specimen. a) the strain 𝜖𝑥𝑥, a) the strain 𝜖𝑦𝑦 and c) the strain 𝜖𝑥𝑦. d) shows 

an exemplary diffraction image including the indexing of the disks.  
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4.2 Cantilever bending beam 

Three sample regions on the cantilever bending beam are analyzed regarding their 

strain distribution. For the sake of better comparability between the three tests, 

the results of each strain direction are directly compared, rather than presenting 

each sample individually. 

4.2.1 Cantilever bending beam - 𝝐𝒙𝒙 

Figure 14 shows the comparison between the measured strain 𝜖𝑥𝑥 and the 

arithmetic mean strain obtained from the finite element simulation, which is the 

predicted result of the strain mapping according to [39,40], for all three sample 

regions. The results of Bending I in Figure 14a show positive strain values in the 

range of 0.0 to 0.1 % over the whole sample region, whereas the arithmetic mean 

strain of the FEA is 0.000 % with a negligible standard deviation of only 0.001 % 

(Figure 14b). Overall, the strain distribution appears to be quite homogenous, 

however, in the top third the strain shows slightly higher values. 

In general, the same holds true for Bending II as can be seen in Figures 14c and d. 

The strain map looks nearly the same as the one of Bending I. However, the strain 

values are smaller as gentle green areas (respectively slightly negative strains) 

already appear visible. On the top border (x → 0), the strain values slightly 

increase to values around 0.1 % which is comparable to the rise in the top third in 

Figure 14a.  

The appearance of the strain map obtained from Bending III (Figures 14e and f) 

indicates that the strain distribution inside the sample is very inhomogeneous. In 

the middle region the measured strain shows similar result as compared to the 

other two samples. At the boundaries in x direction, the measured strain drops 

significantly, showing values as low as -0.2 %. This is in great contrast to the other 

two samples, where the strain appeared to rise at the edges. In y-direction, the 

same kind of drop can be seen but is less pronounced, as the strain drops only to 

around -0.1 %. Similar to the two samples before, a rise in the strain in the top half 

can be seen, with strain values up to around 0.1 % 

To further quantify the results, strain profiles along the x- and y-axis were created 

and are shown in Figure 15. Each graph includes three profiles: one from the 

middle (index 23) and two from each side (index 10 and 35). The black graphs 

indicate the outer fiber strains in both the tensile (top layer) and compression 

(bottom layer) areas of the samples. 
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Figure 14: Comparison between the  𝜖𝑥𝑥 strain maps (left column) and the arithmetic mean 

strain 𝜖𝑥𝑥 along the electron beam direction obtained from the FEA (right column). a) and 

b) results of Bending I, c) and d) from Bending II and e) and f) from Bending III. 
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Figure 15: 𝜖𝑥𝑥 strain profiles of three bending samples along the x- and y-axis. a) strain 

profile of Bending I along the x-axis and b) along the y-axis. c) strain profile of Bending II 

along the x-axis and d) along the y-axis. e) strain profile of Bending III along the x-axis and 

f) along the y-axis. The indices of the used strain can be seen in Figure 14. 
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Figures 15a to f indicate that the measured strain does indeed compare quite good 

with the arithmetic mean strain along the electron beam direction. However, the 

results are not constant over the whole scan region. First, the strain shows some 

deviations from scan point to scan point. This is the typical measurement error 

from the nano diffraction image analysis, originating from errors like disk 

registration. Furthermore, the Bending I sample shows an increase of around 

0.05 % between 0 and 40 Å in x-direction in Figure 15a. This increase is even more 

pronounced in the sample Bending III (Figure 15e), where the strain level drops 

from around 0.05%, down to values lower than -0.10%. Additionally, towards the 

right edge the strain level shows a decrease in the same manner. This phenomenon 

is most likely caused by the bending of the sample. The fact that the sample is bent 

around the y-axis results in an angular deviation between the [001] zone axis and 

the microscope optical axis, referred to as beam tilt, respectively specimen tilt in 

this present case. This angular deviation causes excitation of specific diffraction 

spots, leading to evaluation error in the strain analysis [33]. This topic will be 

further discussed in Section 4.2.4. Interestingly, in case of the least bent sample, 

Bending II, this phenomenon cannot be seen, but rather the measured strain rises 

at the edges (Figure 15c).  

The strain profiles along the y-axis (Figure 15b, d and f) show no particular 

abnormalities. The strains are nearly constant over the whole range and deviate 

only in the range of the measurement precision 𝜎 as determined in Section 4.1. 

(The outer fiber strains are not included for better clarity, as each profile has 

different outer fiber strains.) 

To quantify the precision and accuracy of the measured strains, histograms for all 

three samples have been calculated and are shown in Figure 16a to c. To reduce 

the influence of the strain deviations at the boundaries, only the values inside the 

black rectangle in Figure 14a, c and e were used for this analysis. The measured 

precisions range from 0.011 % to 0.018 % and are again in good agreement with 

values mentioned in literature [34–36], confirming that the simulations are 

accurate. 

The average measured strains are +0.058 % for Bending I, +0.035 % for Bending 

II and +0.027 % for Bending III proving that the measured strain is in fact 

comparable to the real average strain along the beam direction but not equal. 

However, taking the outer fiber strains into account, no direct correlation between 

measured strain and maximum outer fiber strain in the sample could be found. 

The fact that the measured mean strain is positive for all three samples leads to 
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two possible explanations. First, the diffraction simulation might be more sensitive 

to positive strains than negative ones. Second, the fact that the electron beam 

penetrates the sample in the tension region first has an impact on the measured 

strain. This second possible reason is further strengthened by the fact that the 

electron probe was focused on the top layer. However, due to the small probe semi 

convergence angle of only 2 mrad, this should only have a minor influence on the 

result. 

It should also be noted that the measured strains are all of same magnitude as the 

accuracy of the measurement. Therefore, even small deviations can lead to false 

assumptions. However, the fact that all three samples showed comparable results 

confirms that the simulations are accurate. 

  

Figure 16: Histogram analysis of the measured strains 𝜖𝑥𝑥 for a) Bending I, b) Bending II 

and c) Bending III.  
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4.2.2 Cantilever bending beam - 𝝐𝒚𝒚 

Due to the lateral contraction, the 𝜖𝑦𝑦  strain gradient along the microscope optical 

axis is reversed compared to 𝜖𝑥𝑥. The electrons enter the compression area of the 

sample and leave through the tensile area. The examination of the measured strain 

in y-direction should therefore provide valuable insight into the averaging of the 

diffraction angle. 

First the strain maps are analyzed and again compared to the arithmetic mean 

strain along the electron beam direction (Figure 17). In case of the samples 

Bending I and II, the measured strain in the middle region is close to zero, with 

some minor deviations in both negative and positive direction (Figures 17a and c), 

but overall being in very good agreement with the expected result from the FEA 

(Figures 17b and d). In contrast, the middle region of Bending III shows mostly 

green areas equivalent to strain values between -0.1 and 0.0 %. 

Bending I shows a decrease of about -0.1 % in the measured strain at the 

boundaries in x-direction, where bright green areas are visible. This characteristic 

is also present in for Bending III, where the strain drops from around -0.1 % to 

values as low as -0.2 %. However, no such event is observable at the sample with 

the lowest outer fiber strain, Bending II. This effect is comparable to the one 

described in Section 4.2.1 and can also be traced back to the excitation of diffraction 

disks. Again, this will be treated in more detail in Section 4.2.4. 

Furthermore, all three maps (Figures 17a, c and e) show a rise in the measured 

strain at the edges in y-direction, where vibrant red areas are visible. This 

phenomenon is most pronounced for Bending II, where it is present over the whole 

range in x-direction. In the case of Bending I, this rise is visible nearly over the 

whole x-range but appears to be weakened at the top and bottom, where it overlays 

with the decreased strain described in the paragraph above. In the same manner, 

but far more pronounced, this is also visible in the map of Bending III, where the 

rise in strain is only visible between the x-indices 12 to 33. 
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Figure 17: Comparison between the  𝜖𝑦𝑦 strain maps (left column) and the arithmetic mean 

strain 𝜖𝑦𝑦 along the electron beam direction obtained from the FEA (right column). a) and 

b) results of Bending I, c) and d) from Bending II and e) and f) from Bending III. 
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Figure 18: 𝜖𝑦𝑦 strain profiles of three bending samples along the x- and y-axis. a) Strain 

profile of Bending I along the x-axis and b) along the y-axis. c) Strain profile of Bending II 

along the x-axis and d) along the y-axis. e) Strain profile of Bending III along the x-axis 

and f) along the y-axis. The indices of the used strain values can be seen in Figure 17. 
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For further visualization of the results, strain profiles along both axes were created 

and are presented in Figure 18.  

The graphs for Bending I and II (Figure 18a and c) show that the measured strain 

in the middle region is almost zero, deviating only by the usual measurement 

precision, perfectly reflecting the average strain from the FEA. Figure 18e shows 

that for the highest outer fiber strain, the measured strain is negative even in the 

middle region where the least errors in the diffraction simulation are expected. As 

the outer fiber strain is the highest for this sample, the influence of the direction 

of the incident electron beam on the averaged strain should be the strongest here.  

To investigate the influence of whether the imaging electrons enter the 

compressive or tensile region first, 𝜖𝑦𝑦 of Bending III and 𝜖𝑥𝑥 of Bending II are 

compared as the magnitudes of the outer fiber strains are best comparable  

(𝜖𝑦𝑦 = 0.7 % compared to 𝜖𝑥𝑥 = 0.9 % at x-index = 23). While the strain analysis for 

Bending II resulted in a positive strain value, the analysis for Bending III provided 

a negative value in the same magnitude. This strengthens the assumption that the 

measured strain depends on whether the imaging electrons first enter the tensile 

or compression region of the sample. Apparently, this effect cannot be detected in 

the other two samples, making a final conclusion impossible.  

As already mentioned, the strain level in both Bending I and III decreases at the 

edges from around 0.0 % to -0.07%, respectively from-0.05 % to -0.2 % in Figures 

18a and c, which can again be traced back to the angular deviation between the 

zone axis and the microscope optical axis. 

The three strain curves along the y-axis all show the same characteristics. The 

strain in the middle region is constant neglecting the usual measurement errors. 

At the edges, the strain levels rise to about 0.1 % in all three graphs. Further 

discussion on this follows in Section 4.2.4. 

The histogram analysis (Figure 19) brought to light that the average strains 𝜖𝑦𝑦 

measured for the three samples are: 

• Bending I:  𝜖𝑦𝑦  =       0.002 ± 0.011 % 

• Bending II:  𝜖𝑦𝑦  =       0.002 ± 0.010 % 

• Bending III:  𝜖𝑦𝑦  = −  0.054 ± 0.014 %  

The simulations are accurate, as the precisions of all three tests are about one 

order of magnitude smaller compared to values found in literature. 
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Figure 19: Histogram analysis of the measured strains 𝜖𝑦𝑦 for a) Bending I, b) Bending II 

and c) Bending III. 

.  
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4.2.3 Cantilever bending beam - 𝝐𝒙𝒚 

 

Figure 20: Comparison between the  𝜖𝑥𝑦 strain maps (left column) and the arithmetic mean 

strain 𝜖𝑥𝑦 along the electron beam direction obtained from the FEA (right column). a) and 

b) results of Bending I, c) and d) from Bending II and e) and f) from Bending III. 
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Lastly, the obtained maps of 𝜖𝑥𝑦 are compared and analyzed. According to the finite 

element analyses the strains 𝜖𝑥𝑦 are zero over the whole sample regions and also 

along the electron beam axis. This is a direct consequence of the bending beam 

being thin and hence, the Euler-Bernoulli theory holding true. Consequently, no 

significant characteristics in are expected. 

The comparisons between the measurements and the FEA in Figure 20 point out 

that in the middle regions of the scan areas the measured strain is indeed zero, 

again neglecting the usual measurement errors. Towards the corners, however, the 

measurements show results completely differing from the expected value. In all 

three samples (Figures 20a, c and e) the shear strain rises from the middle region 

towards the upper right and lower left corners. A direct correlation between the 

magnitude of this rise and the magnitude of the bend can be observed. In the other 

two corners of each map, the measured strain drops to negative strain values but 

shows a similar correlation. To further visualize this correlation, strain profiles 

along both axes were created and are presented in Figure 21. 

The three graphs in Figure 21a confirm the impression given by the strain maps 

that the strain rises more or less linear towards the corners. The blue graph is 

obtained from y-index 23 where no rise in the strain can be determined. For 

smaller y-indices (represented by the green graph in Figure 21a) the strain rises 

consistently along the x-axis. For y-indices greater than 23 (represented by the red 

graph) the curve drops along the x-axis. The overall course and maximum strain 

values of both the green and red graph are in good agreement. Figures 21c and e 

basically show the same result. As the bend in Figure 21c is less compared to 

Figure 21a, this characteristic is less pronounced. In Figure 21e the gradient is 

more pronounced due to the stronger bend in this sample. 

The strain graphs along the y-axis (Figure 21b, d and f) show the same behavior 

as the ones along the x-axis. 
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Figure 21: 𝜖𝑥𝑦 strain profiles of three bending samples along the x- and y-axis. a) Strain 

profile of Bending I along the x-axis and b) along the y-axis. c) Strain profile of Bending II 

along the x-axis and d) along the y-axis. e) Strain profile of Bending III along the x-axis 

and f) along the y-axis. The indices of the used strain can be seen in Figure 20. 
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To quantify the measured strains in the three samples, a histogram analysis was 

carried out. The outcomes, presented in Figure 22, prove that the determination of 

𝜖𝑥𝑦 inside the rectangular areas indicated in Figures 20a, c and e is in fact 

measured to be zero. The results are: 

• Bending I:  𝜖𝑥𝑦 = 0.000 ± 0.008 % 

• Bending II:  𝜖𝑥𝑦 = 0.001 ± 0.005 % 

• Bending III:  𝜖𝑥𝑦 = 0.001 ± 0.012 % 

The determined accuracies of these experiments are extremely good und up to two 

orders of magnitude lower compared to experimental values. 

 

Figure 22: Histogram analysis of the 𝜖𝑥𝑦 maps from a) Bending I, b) Bending II and c) 

Bending III. 
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4.2.4 Influence of specimen tilt  

In this section, the influence of specimen tilt on the diffraction images and further 

on the measured strains is analyzed. 

Due to the bend of the specimen, the [001] zone axis is not equal to the microscope 

optical axis over the whole sample. Consequently, some diffraction spots get 

excited, leading to drastically higher intensities, which makes the peak finding 

process more prone to errors [41]. The influence of the direction of the angular 

deviation on the diffraction images and measured strain will therefore be analyzed. 

The angular deviation angle is defined as the angle the zone axis is tilted away 

from the optical axis. For the analysis, the total angular deviation is split into two 

rotational parts, 𝛽 around the x-axis and 𝛾 around the y-axis. The directions of the 

angles 𝛽 and 𝛾 and the sign convention are defined in Figure 23 below.  

 

Figure 23: Definition of the two angular deviation angles β and 𝛾 between the [001] zone 

axis and the microscope optical axis and the sign convention.  

The analysis here will be based on specimen Bending III, as the effects should be 

most pronounced for the strongest bend. The angular deviation 𝛾 ranges from -1.7 

to +1.6 mrad and 𝛽 from -0.46 to +0.45 mrad, respectively.  

In Figure 24 nine exemplary diffraction images are presented, where the {400} 

spots were cut off as they were not used in the evaluation. Figure 24e shows the 

diffraction image obtained from the middle region of the sample, where both 𝛽 and 

𝛾 are zero. The intensities of all four {220} disks are well comparable and all 

possess equal intensity distributions inside the disks. For a negative tilt angle 𝛾 

and no tilt in 𝛽 the 22̅0 and 220 spots are strongly excited, especially in regions 

closest to the central spot, but also the 2̅2̅0 and 2̅20 disks appear slightly excited 

(Figure 24b). The strong excitation of these two disks led to an underestimation of 

both 𝜖𝑥𝑥 and 𝜖𝑦𝑦 by 0.1 to 0.2 %. The measurement of  𝜖𝑥𝑦 was, however, not affected 

by this tilt.  
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Figure 24: Exemplary diffraction images obtained from Bending III. The position on the 

sample where the images were obtained are given by the indices in the headings.  

In Figure 24a the negative tilt 𝛾 is superimposed by a positive tilt 𝛽. Comparing 

Figures 24a and b, this superposition resulted in an even stronger excitation of the 

22̅0 disk and lighter excitations of the 2̅2̅0 and 220 disks. The intensity of the 2̅20 

disk, however, is lowered compared to the single tilt in Figure 24b. This resulted 

in no further error in the determination of 𝜖𝑥𝑥 and 𝜖𝑦𝑦. However, the strain 𝜖𝑥𝑦 is 

strongly influenced by this superposition of two tilts, yielding values as low 

as -0.2 %. The same behavior was found to be true for the superposition of negative 

𝛾 and negative 𝛽. The intensities in Figure 24c are the ones from Figure 24a 

mirrored on the x-axis. Consistently, the measured strains 𝜖𝑥𝑥 and 𝜖𝑦𝑦 are again 

not further falsified compared to a simple tilt in negative 𝛾. In contrast, 𝜖𝑥𝑦 is 

measured to be a positive strain in the same magnitude as the negative strain in 

the case of a positive tilt 𝛽 in Figure 24a. 
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In Figures 24d-f the angular deviation 𝛾 is zero and only 𝛽 changes from a positive 

value in Figure 24d to zero in Figure 24e and finally to a negative value in Figure 

24f. As the angular deviation is very small, no pronounced excitation effects can be 

observed. The 2̅2̅0 and 22̅0 disks in Figure 24d appear to have slightly higher 

intensities, which is in accordance with Figure 24a. Again, the intensities in Figure 

24f are mirrored on the x-axis compared to Figure 24d, leading to very weak 

excitations of the 2̅20 and 220 disks. These excitations should be too small to 

significantly impact the strain determination. 

Finally, the diffraction images obtained for positive tilts 𝛾 are presented in Figures 

24g-i. The intensity distributions are like the ones in Figures 24a-c mirrored 

around the y-axis. For a single tilt to positive 𝛾 the 2̅2̅0 and 2̅20 disks are excited 

(Figure 24h) leading to an underestimation of both 𝜖𝑥𝑥 and 𝜖𝑦𝑦 by 0.1 to 0.2 %, but 

again no falsification of 𝜖𝑥𝑦 as in the case of negative tilts 𝛾 before. Superimposing 

this tilt with a positive tilt 𝛽 leads to an even stronger excitation of the 2̅2̅0 disk 

(Figure 24g), with no further error in the measurements of 𝜖𝑥𝑥 and 𝜖𝑦𝑦, but 𝜖𝑥𝑦 was 

measured about 0.15 to 0.20 % higher than the actual strain in the sample. For a 

superposition of positive 𝛾 and negative 𝛽, the 2̅20 disk is strongest excited (Figure 

24i), resulting in the same measurement error as the combination of negative 𝛾 

and positive 𝛽. 

With that in mind, the measured strains are plotted over the angular deviation 

angle 𝛾 as illustrated in Figures 25a, c and e. The measured strains of all three 

specimens are in good accordance. In Figure 25a, it can be seen that the strain 𝜖𝑥𝑥 

starts dropping for |𝛾| greater than around 1 mrad. This explains the anomaly in 

Section 4.2.1, where the strain in Bending II did not decrease at the boundaries in 

x-direction. Also, the strains 𝜖𝑦𝑦 correlate remarkably good (Figure 25c), however 

the measured values of Bending III are set off, which might be due to the bigger 

outer fiber strain as already discussed in Section 4.2.2. Figure 25e proves that 𝜖𝑥𝑦 

does not depend on the angular deviation angle 𝛾 as long as 𝛽 is zero. 

Further, the influence of the tilt angle 𝛽 will be discussed. Figure 25b shows the 

strain courses of 𝜖𝑥𝑥 for all three samples. It can be seen that the strain is more or 

less constant over the whole range. Considering that the maximum angular 

deviation in Figure 25b is only 0.46 mrad, these results are in god accordance to 

the strain profiles over 𝛾 (Figure 25a). The same holds true for 𝜖𝑥𝑦 in Figure 25f, 

where the strain courses are perfectly flat since 𝛾 is zero.  



4.2 Cantilever bending beam  RESULTS AND DISCUSSION  

[37] 

 

 

Figure 25: Plots of the strain profiles over the angular deviation angles. a) 𝜖𝑥𝑥 over 𝛾 and 

b) over 𝛽, c) 𝜖𝑦𝑦 over 𝛾 and d) over 𝛽, e) 𝜖𝑥𝑦 over 𝛾 and f) over 𝛽. The other angular deviation 

in each profile is zero. The legend in a) is valid for all six figures. 

However, the graphs of 𝜖𝑦𝑦 in Figure 25d exhibit some inconsistencies. All three 

graphs show a very similar behavior along the y-axis (Figure 18b, d and f), but 

plotting them over 𝛽 shows that the increases in strain level do not originate in the 

angular deviation. This effect can be traced back to the specimen itself and the 

image simulation. The diffraction simulations assume periodic boundary 

condition, which can lead to wrap around errors (compare Section 2.3.2). Due to 

the strain state of the sample, the dimensions in x-direction are larger than in y-

direction. The supercell dimensions used for the diffraction simulation were, 

however, set to be squared in order to generate undistorted diffraction images with 

the same number of pixels in x-and y-direction. This resulted in an atom free rim 

as illustrated in Figure 26. The blue area indicates the size of squared supercell 

and the reddish dots represent the atoms, respectively their projected potential 

(same number of atoms in both directions!). This potential free region most likely 
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influenced the diffraction simulation and therefore the strain measurements at the 

edges of the scan region. 

 

Figure 26: Schematic illustration of one projected potential slice of the used supercells. The 

reddish points represent the atoms where the potential is high, and the blue areas are more 

or less potential free. A potential free rim on both sides can be seen, which can influence the 

measurements. 
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4.3 Tensile specimen 

In this section the results of the strain measurements of the tensile specimen are 

presented. 

4.3.1 Tensile specimen - 𝝐𝒙𝒙 

 

Figure 27: Comparison between a) the 𝜖𝑥𝑥 strain map obtained from the NBED 

simulations and b) the average strain 𝜖𝑥𝑥 along the electron beam direction from the FEA. 

Figure 27 shows the comparison between the measured strain 𝜖𝑥𝑥 and the 

arithmetic mean strain along the electron beam axis obtained from the FEA. The 

measured strain extends from 1.95 to 2.05 % in the middle region and falls to 

values around 1.90 % and lower at the boundaries in y-direction. Along the x-axis 

the strain level is constant with deviations in the order of the measurement 

precision. The strain in the map obtained from the FEA (Figure 27b) on the other 

hand is 2.011 % with a standard deviation of only 0.002 %.  

 

Figure 28: 𝜖𝑥𝑥 strain graphs of the tensile specimen along a) the x-axis and b) the y-axis.  
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The three strain profiles along the x-axis in Figure 28a show no notable 

abnormalities. The measured strains are more or less constant over the whole scan 

region, showing deviations only in the range of typical measurement errors of 

around 0.05 %. In contrary to the bending samples in the section before, no drops 

in the measured strain are present, which can simply be explained by the fact that 

the [001] zone axis and the microscope optical axis align almost perfectly over the 

whole sample. The strain curve along the y-axis is, however, more interesting. 

Even though the zone axis and the microscope optical axis are aligned, the 

measured strain values drop below 1.90 %. This can again be traced back to the 

effect of the specimen dimensions and the squared supercell (compare Section 

4.2.4). The broader rim here did not result in a larger error. 

The histogram analysis (Figure 29) revealed that the average measured strain 𝜖𝑥𝑥 

is 1.988 ± 0.023 %. Hence, the measured strain is 0.023 % lower than the FEA 

suggests. However, this deviation is of same magnitude as the precision, so it can 

be stated that the measured strain is in great agreement with the arithmetic mean 

strain from the FEA. The fact that the standard deviation is below experimentally 

obtained values indicates that the simulations were accurate.  

 

Figure 29: Histogram analysis of the strain 𝜖𝑥𝑥 of the tensile specimen.  
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4.3.2 Tensile specimen - 𝝐𝒚𝒚 

 

Figure 30: Comparison between a) the 𝜖𝑦𝑦 strain map obtained from the NBED 

simulations and b) the average strain 𝜖𝑦𝑦 along the electron beam direction from the FEA. 

Figure 30 shows that the measured strain 𝜖𝑦𝑦 underestimates the real strain in 

the sample. The measurement shows mostly values below -0.6 % (green areas) 

whereas the strain obtained from the FEA is -0.563 ± 0.000 %. The measurement 

at the boundaries in y-direction appears to be flawed again as was the case for 𝜖𝑥𝑥 

in Section 4.3.1. This initial impression is further visualized in Figure 31 below.  

 

Figure 31: 𝜖𝑦𝑦 strain graphs of the tensile specimen along a) the x-axis and b) the y-axis. 

The three strain graphs along the x-axis (Figure 31a) show an almost perfectly flat 

course with the same deviations due to the measurement precision as in Section 

4.3.1. The average strain level is around -0.65 % over the whole length with no 

particular conspicuities. As already visible in the strain map, the three graphs 

along the y-axis, presented in Figure 31b, show a flat region between 40 to 220 Å. 
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Outside of these regions the strain spikes towards the edges from -0.65 % up to -

0.54 %. This phenomenon most likely originates again in the potential free rim in 

the supercell. 

The histogram analysis, shown in Figure 32, revealed that the average measured 

strain 𝜖𝑦𝑦 is -0.636 % with a precision of 0.020 %. Again, the precision suggests 

that the simulations are accurate, however the measurement underestimates the 

real strain in the sample by 0.073 %. This error in accuracy is quite large recalling 

that the strain 𝜖𝑥𝑥 was measured with an accuracy of 0.023 %. The same result 

was obtained from the perfectly strained sample in Section 4.1, which leads to the 

assumption that there might be a systematic error in either the diffraction 

simulations or the strain evaluation. Unfortunately, this could not be clarified 

within this work. 

 

Figure 32: Histogram analysis of 𝜖𝑦𝑦 of the tensile specimen.  
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4.3.3 Tensile specimen 𝝐𝒙𝒚 

The results of the measurement of 𝜖𝑥𝑦 are in very good agreement with the 

expected values. Figure 33a shows that the measurements are in the range 

between -0.05 and +0.05 %, with most of the results even closer to zero. The 

expected values from the FEA (Figure 22b) are zero over the whole scan region 

with deviations in the range of only 10-5 %. In contrast to the maps of 𝜖𝑥𝑥 and 𝜖𝑦𝑦 

no effect due to the potential free rim can be detected. 

 

Figure 33: Comparison between a) the 𝜖𝑥𝑦 strain map obtained from the NBED 

simulations and b) the average strain 𝜖𝑥𝑦 along the electron beam direction from the FEA 

for the tensile sample. 

The graphs along both the x- and y-axis in Figure 34 confirm this first impression. 

The measurements oscillate around zero with deviations about ± 0.02 to 0.03 %, 

showing no conspicuous features. Again, as described before, also the effect of the 

potential free rim is not visible. 

 

Figure 34: 𝜖𝑥𝑦 strain graphs of the tensile specimen along a) the x-axis and b) the y-axis. 
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The histogram analysis presented in Figure 35 resulted in a mean strain value of 

0.000 % with a precision of 0.010 %. The result is in very good accordance with the 

expected value and the precision of 0.010 % is extremely low compared to values 

found in literature.  

 

Figure 35: Histogram analysis of 𝜖𝑥𝑦 from the tensile sample. 
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4.3.4 Diffraction images 

For the validity of the measured results the diffraction images are analyzed. 

Figures 36 shows nine diffraction images obtained from the simulations. The {400} 

disks were cut off as they were not used in the evaluation. The positions on the 

sample where the images were obtained is given by the indices in the headings 

together with Figure 27, 30 or 33. The visual inspection of the diffraction images 

showed no abnormalities. The disks possess their normal intensity distributions 

due to dynamical diffraction, but all disks have nearly the same intensities. 

 

Figure 36: Exemplary diffraction images obtained from the tensile specimen. The positions 

on the sample where the images were obtained are given by the indices in the headings. 
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4.4 Cracked tensile specimen 

In this section the results obtained from the cracked tensile sample are presented 

and discussed. 

4.4.1 Cracked tensile sample - 𝝐𝒙𝒙 

Overall, the strain field obtained by the measurement in Figure 37a is in 

surprisingly good accordance with the arithmetic mean strain along the electron 

beam direction obtained from the finite element calculations (Figure 37b). The high 

strain field close to the crack tip, indicated by the bright yellow portion in Figure 

37b, can be identified in the measurement as well, but with a distorted shape. With 

increasing distance from the crack tip, the measured strain field is in better 

accordance with the reference. 

 

Figure 37: Comparison between a) the 𝜖𝑥𝑥 strain map obtained from the NBED 

simulations and b) the average strain 𝜖𝑥𝑥 along the electron beam direction from the FEA. 

The black part in b) represents the notch. 

Figure 38 shows three strain profiles along the y axis. The measured strain is 

compared to the arithmetic mean strain, the strain in the top layer and the strain 

in the middle layer of the finite element simulations. Figures 38a and c show that 

the measured strain is in fact comparable to all three different strains obtained 

from the FEA. The measured strain shows no smooth, continuous course, which 

makes comparison between the measured strain and the strains obtained from the 

finite element analysis quite hard, especially since the different strains from the 

FEA differ less than the fluctuations of the measured strain. From those two 

figures no statement on the how the electron diffraction averages the strain can be 

made, but the measurement is still a good representation of the real strain state 

within margins.  
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Figure 38b shows the strain course through the crack. The measurements for 

x-values lower than 120 Å are not of interest as those are inside the crack. The 

sharp strain peak at the crack tip is strongly overestimated by around 2 % 

compared to the arithmetic mean strain and by about 3 % compared to the strain 

in the top layer of the finite element models. Right to the crack tip the measured 

strain drops off steeply. However, the measurements in the area close to the crack 

tip should be treated with caution as will be explained in Section 4.4.3.  

  

Figure 38: Measured strain profiles  𝜖𝑥𝑥 along the y-axis for three different x-indices.  
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4.4.2 Cracked tensile specimen – 𝝐𝒚𝒚 

The 𝜖𝑦𝑦 strain field of the measurement in Figure 39a shows the same trend as the 

arithmetic mean strain from the FEA illustrated in Figure 39b. The areas with 

negative strain values (blue regions) are clearly reproduced in the same manner 

and also the tensile region right to the crack tip is clearly evident, even though it 

appears broadened compared to the reference. The areas experiencing tension in 

negative and positive x-direction next to the crack appear broadened and disturbed 

as well.  

 

Figure 39: Comparison between a) the 𝜖𝑦𝑦 strain map obtained from the NBED 

simulations and b) the average strain 𝜖𝑦𝑦 along the electron beam direction from the FEA.  

Strain profiles along the y-axis were created and for comparison the arithmetic 

mean strain, the strain in the top layer and the strain in the middle layer are 

shown. The profiles for x-indices 10 and 35 are quite similar (Figures 40a and c). 

Overall, the measured strain can best be approximated with the arithmetic mean 

strain in the sample, however, the measured strain is slightly higher compared to 

the three different strains from the FEA. Especially, in the regions with a strong 

strain gradient in y-direction (between 80 to 140 Å), the measurement seems to 

overestimate the real strain by up to 0.5 %. For small y-values the measured strain 

is best comparable to the strain in the middle layer of the specimen. There, the 

arithmetic mean strain and the strain in the middle layer however differ less than 

0.1 %, thus both are capable of describing the measured strain profile. Figure 40b 

shows the strain profile through the crack, hence the measurements left to the 

sharp peak are neglected. The height of the peak is strongly overestimated by 

around 7 % compared to the arithmetic mean strain. This originates most likely in 

the free surface due to the crack in this area, strongly influencing the diffraction 



4.4 Cracked tensile specimen  RESULTS AND DISCUSSION  

[49] 

 

simulation. For higher x-values, the measured strain is again in very good 

agreement with the arithmetic mean strain from the FEA. The maximum 

deviation is of magnitude 0.5 %. 

 

Figure 40: Measured strain profiles  𝜖𝑦𝑦 along the y-axis for three different x-indices. 
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4.4.3 Cracked tensile specimen - 𝝐𝒙𝒚 

The results of the diffraction simulation in Figure 41a replicated the strain field 

obtained from the FEA (Figure 41b) quite good, as all characteristics are present. 

However, the magnitudes of the measured strains are slightly lower. The blue area 

below the notch is visible, but the dark blue part from the FEA is not present in 

the measurement. The same holds true for the red area below the notch and the 

green area above. Interestingly, in the red area above the crack the strain 

magnitude of the measurement is in extremely good accordance with the reference. 

In the notch area, the measurement breaks down again, as expected.  

 

Figure 41: Comparison between a) the 𝜖𝑥𝑦 strain map obtained from the NBED 

simulations and b) the average strain 𝜖𝑥𝑦 along the electron beam direction from the FEA. 

The strain profiles in Figures 42a and c show that the course of the measured 

strain reproduces the strains of the FEA rather good. Especially for small y-values, 

where the strain in the specimen is close to zero, the measurement supplies an 

equivalent result. Interestingly, also the strong gradient between 120 to 160 Å is 

extremely well reproduced. However, in these areas, the strain gradient along the 

optical axis is negligible as all three FE-strains fall together. In the areas with 

higher absolute strain values (around 50 to 100 Å and 160 to 240 Å) the FE-strains 

are further apart due to a higher strain gradient along the electron beam direction. 

There the absolute value of the measured strain is about 0.2 to 0.4 % smaller 

compared to the arithmetic mean strain.  

The strain profile through the crack tip is shown in Figure 42b. The sharp peak at 

around 120 Å indicates the crack tip, leaving all measurements to the left out of 

interest. Exactly at the crack tip, the strain 𝜖𝑥𝑦 is measured about 1.5 % to low, 

which can be traced back to the influence of the crack itself, as can be seen in the 
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next section. For larger x-values the measurement is in better agreement with the 

reference, but still deviates by around -0.2%. 

 

Figure 42: Measured strain profiles  𝜖𝑥𝑦 along the y-axis for three different x-indices. 
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4.4.4 Diffraction images 

In Figure 43 exemplary diffraction images obtained from the cracked tensile 

specimen are presented. It is visible that the large strains and strain gradients 

pushed the diffraction simulation to its limits. In Figures 43a and g the strains are 

comparably low, thus the simulation still delivered sufficient results. In both cases 

the 2̅2̅0 and 22̅0 disks were strongly excited. With the results from Section 4.2 it 

can be expected that the strains 𝜖𝑥𝑥 and 𝜖𝑦𝑦 are measured falsely by at least 0.2 % 

or probably even more as the excitation is fairly strong. In Figures 43b and h the 

diffraction simulation is already expected to deliver falsified results, as forbidden 

diffraction disks appear visible. These disks cannot be assigned to specific planes 

but rather appear randomly. Furthermore, the 2̅2̅0 and 22̅0 disks are excited, 

leading to an additional source of error in the evaluation. The forbidden disks are 

also present in Figures 43c and i. Figure 43d was obtained inside the crack, where 

no atoms were present. Nevertheless, the {220} disks were slightly visible. 

Furthermore, the central beam disk 000 is broadened. At the crack tip the 

diffraction simulation provides strongly disturbed images (Figure 43e). The {220} 

peaks are washed-out, entirely losing their disk shape. In addition, a strong 

background noise is present. Further right from the crack tip, the diffraction image 

still contains a lot of background noise with a characteristic pattern (Figure 42f). 

Nonetheless, even for these extreme conditions the strain measurement provided 

a good description of the real strain in the sample. 
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Figure 43: Exemplary diffraction images obtained from the cracked tensile specimen. The 

positions on the sample where the images were obtained are given by the indices in the 

headings. 

 

 

 



CONCLUSION 

[54] 

 

5 Conclusion 

In this study the effect of three-dimensional strain fields on the strain 

measurement using NBED was examined. Since there are to date no studies on 

this topic, this thesis aims to increase the understanding of the averaging process 

by dynamical diffraction. 

First of all, it could be shown that STEM image simulations can be used to 

determine strains in samples with far higher precisions and accuracies compared 

to experimentally achievable ones and might provide a powerful tool to verify 

experimentally obtained results.  

The results of the cantilever bending beam indicate that the measured strain is in 

very good accordance with the arithmetic mean strain along the electron beam 

direction. However, the absolute values differ by about 0.01 to 0.05 % from this 

reference strain. In the simulations here, no correlation between the magnitude of 

the outer fiber strains and the absolute values of the measured strain could be 

found. Dependent on whether the imaging electrons enter the specimen in the 

tensile or compression region determines the sign of the measured strain. If the 

electrons enter the tensile region of the specimen, the measured strain is slightly 

tensile as well, whereas a compressive strain is measured if the electrons enter the 

compression region first. 

Further the influence of specimen tilt due to the bend was investigated. Tilting the 

specimen led to a strong excitation of specific diffraction disks which further 

falsified the strain measurement. Up to tilt angles of around 1 mrad the measured 

strain was more or less constant but started dropping for greater tilts. Tilts up to 

1.7 mrad around the y-axis where measured and led to underestimations of the 

strains 𝜖𝑥𝑥 and 𝜖𝑦𝑦 of up to 0.2 %. All three samples showed the same dependency 

on the tilt angle, where the decrease in the strain levels is not linearly dependent 

on the tilt angle. In addition, tilts around the x-axis of up to 0.46 mrad were present 

in the samples, which had no influence on the measured strain. The measurement 

of shear strains 𝜖𝑥𝑦 is not influenced by a single tilt direction, as it excites two 

neighboring diffraction disks equally. A superposition of two tilts around different 

axes, however, resulted in a stronger excitation of one single diffraction disk, which 

resulted in a falsification of the measurement. Depending on the tilting direction, 

𝜖𝑥𝑦 is either over- or underestimated. 

The results of the tensile specimen were in very good accordance with the 

arithmetic mean strain along the microscope optical axis of the finite element 
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simulations, deviating only by 0.023 % for 𝜖𝑥𝑥, 0.073 % for 𝜖𝑦𝑦 and 0.000 % for 𝜖𝑥𝑦. 

The results are all within margin of typical measurement accuracies. 

In the case of the cracked tensile sample, the strain gradients were extremely high, 

especially along the x- and y-direction. In the resulting diffraction images strong 

distortions were present, ranging from very strong excitations in regions with 

lower strain gradients to completely washed-out disks in the areas closer to the 

crack tip. In these areas the measured strains 𝜖𝑥𝑥 and 𝜖𝑦𝑦 were about 0.5 % off the 

arithmetic mean strain and roughly up to 1 % off the maximum strain in the 

specimen. Unfortunately, this specimen did not allow for a clear statement on how 

the strain is averaged in NBED experiments. Nevertheless, evaluating the images 

using the square-root magnitude weighted phase correlation method still resulted 

in a good agreement between the reference strains and the strain maps, 

demonstrating the stability of this technique.  

To conclude, the measured strains are well described by the arithmetic mean strain 

along the microscope optical axis. There are small deviations for the cantilever 

bending beam with the sign depending on the strain in the initial penetration 

region. For the tensile specimen, good results were obtained during the entire 

simulation process. Although the diffraction simulation for the cracked tensile 

specimen was brought to its limits, the measured strain was still in good 

accordance with the arithmetic mean strain. 
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