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Abstract

ABSTRACT

Despite the progressing decarbonization of our power sources through the increase of
renewable energy, conventional power stations like combined cycle power plants (CCPP) still
contribute to the power mix by providing highly efficient backup power. To maintain an
efficient operation of these plants, the early identification of occurring degradation is
essential. In this context, this work deals with a novel approach of automated fault detection

carried out by a neural network based on simulated process data.

The initial comprehensive literature research on failure modes in combined cycle power
plants and their thermodynamical impact serves as a solid foundation for their realistic
simulation. Due to the necessity to generate large amounts of data to constitute every
failure mode under various plant operation conditions, an automated workflow of data
generation, preparation and validation is introduced. The process of constructing a neural
network and enhancing its performance by optimizing the underlying data structure and the
networks’ hyperparameters are shown. Finally, a statistical evaluation of different network

models and their achieved results is conducted.

The networks’ ability to detect both, the occurrence of single and multiple failure modes at a

time, is evaluated.

It can be shown that the developed neural network is capable of detecting the failure modes
with high precision, even when noise is applied to the simulated process data to mimic the

scatter of real plant measurements.



Kurzfassung

KURZFASSUNG

Trotz der fortschreitenden Dekarbonisierung unserer Energiequellen durch den Ausbau
erneuerbarer Energien, sind konventionelle Kraftwerke wie Gas-und-Dampf-Kraftwerke ein
essenzieller Teil unserer Stromversorgung, da sie beispielsweise hocheffizient
Reserveleistung bereitstellen. Um einen effizienten Betrieb dieser Anlagen zu gewahrleisten,
ist die frihzeitige Erkennung auftretender Degradationen unerlasslich. Aufgrund dessen wird
in dieser Arbeit ein neuartiger Ansatz der automatisierten Fehlererkennung durch neuronale

Netze auf der Basis von simulierten Prozessdaten behandelt.

Eine umfassende Literaturrecherche zu Fehlermoglichkeiten und den resultierenden
thermodynamischen Auswirkungen in Gas-und-Dampf-Kraftwerken dient als Fundament fir
deren physikalisch korrekte Simulation. Eine enorme Menge an Simulationsdaten wird
benotigt, um die einzelnen Fehlermdglichkeit in verschiedensten Anlagenbetriebspunkten
darzustellen. Deshalb wird ein automatisierter Arbeitsablauf zur Datenerstellung,
-aufbereitung und -validierung eingefiihrt. Das Erstellen von neuronalen Netzen sowie deren
Optimierung durch Verbesserung der zugrundeliegenden Datenstruktur und deren
Hyperparameter wird behandelt. Abschlielend folgt eine statistische Evaluierung der

erzielten Ergebnisse unterschiedlicher neuronaler Netze.

Die trainierten Netze werden auf die Fahigkeit, einzelne wie auch kombiniert auftretende

Fehler zu erkennen, gepruft.

Es kann gezeigt werden, dass das entwickelte neuronale Netz in der Lage ist, die Fehler mit
hoher Prazision zu erkennen, selbst wenn die simulierten Prozessdaten mit Rauschen

Uberlagert werden, um die Streuung von realen Anlagenmessungen nachzuahmen.
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Nomenclature

NOMENCLATURE

Abbreviations

Al
ANN
API
CcCPP
co
CRH
cv
ES

FI
FM
FN
FP
GT
GTCCPP
HP
HRH
HRSG

IDE

LP

LR

Artificial Intelligence

Artificial Neural Network

Application Programming Interface
Combined Cycle Power Plant

Carbon Oxide

Cold Reheat

Cross-Validation

EarlyStopping function

Failure Impact

Failure Mode

False Negative

False Positive

Gas Turbine

Gas Turbine Combined Cycle Power Plant
High Pressure

Hot Reheat

Heat Recovery Steam Generator
Integrated Development Environment
Intermediate Pressure

Low Pressure

Learning Rate



Nomenclature

LRS Learning Rate Scheduler

MC ModelCheckpoint function

NHs Ammoniac

NN Neural Network

NOx Nitrogen Oxides

RelLU Rectified Linear Activation function
ST Steam Turbine

TN True Negative

TP True Positive

Formula Symbols

A Heat transfer area Square meter (m?)
CAN Nominal free cross-section Square meter (m?)
DP12RN Nominal pressure drop Bar (bar)

E Energy Joule (J)

ETAI Isentropic efficiency

ETAPN Polytropic efficiency

KAN Nominal heat transfer factor Watt per Kelvin (W/K)
M1N Nominal mass flow Kilogram per second (kg/s)
P Power Watt (W)

PFETA Performance Factor on Efficiency

PFFLOW Performance Factor on Flow

Q Heat quantity Joule (J)

Q Heat flow Watt (W)

T Temperature Degrees Celsius (°C)



Nomenclature

w Work Joule (J)

b Bias of neurons

o Confusion matrix entry

K Heat transfer coefficient Watter per square meter
times Kelvin (W/m?K)

m Mass flow Kilogram per second (kg/s)

p Pressure Bar (bar)

w Specific weight neuron connection

X Input value neural network

y Output value neural network

z Weighted sum

n Degree of efficiency
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INTRODUCTION

1 INTRODUCTION

The Paris Agreement was, till now, ratified by 189 Parties. Countries worldwide signed the
agreement to limit the global temperature increase compared to pre-industrial levels below
2.0 degrees Celsius by reducing greenhouse gas emissions. [1] The decarbonization of our
energy system is one of the challenges we face in the upcoming decades to reach this goal.
This drives the expansion of renewable energy, such as wind and solar power forward.
Energy production from these technologies depends highly on weather and day time, hence
requires immense storage capacities and a suitable power grid to compensate for
fluctuations in power generation and demand. Energy storages balance demand in time, and

the power grid balances demand between the locations of generation and consumption.

Today we only start to build these infrastructures and still need fossil fuels to back up the
installed renewable power. In this transition period, it's essential to use highly efficient
technologies to emit as little CO; as possible. Combined Cycle Power Plants (CCPP) represent
one of these bridge technologies. CCPPs provide high electric efficiency and enormous fuel
utilization rates. The key for assuring high efficiency over time is perfect maintenance, which
directly affects fuel consumption and CO; emissions. Therefore, effective use of resources
for revision planning and detection of degradation failure modes is necessary. Especially
efficiency losses due to degradation are hard to detect because they usually don't cause
forced outages of system parts or even the whole power plant. Instead, the impact of these
failures gradually increases over time and affects the performance parameters of the power
station. The performance and the power output of CCPPs also depend on environmental
conditions as ambient temperature and air humidity or cooling water temperature. These

interdependencies add even more complexity to the detection of equipment degradation.

Today physical performance monitoring systems are already established in CCPP
applications. These systems track important process parameters in plant operation. [2] But
they are restricted to observing the power plant and usually have only limited capability of
predicting which failure led to a deviation in the operation parameters. Other systems
provide the opportunity to predict failures only for single components. They are often based
on pattern recognition in vibrations or other measurements. [3] However, none of the
mentioned methods to date sufficiently addresses the issue of monitoring equipment
performance of a total power plant by deriving present failure modes from available
operational measurements. Hence this work deals with a novel approach to prove the

potential of automatic failure detection based on simulated data.
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TASK ASSIGNMENT

2 TASK ASSIGNMENT

This work aims to prove the possibility of automated failure detection in combined cycle
power plants using simulated data. The company ENEXSA GmbH uses EBSILON Professional
to simulate thermodynamical processes and optimize thermodynamic cycle applications. An
existing EBSILON model representing the characteristics of the whole CCPP process serves as
the basis for further investigations. Different degradation failure modes (FM) shall be
implemented in the model to enable the simulation and analysis of their effect on the power
plant. Comprehensive literature research on failure modes ensures the physically accurate

modeling of their impact on the affected plant component.

Subsequently, so-called labeled data sets for the different failures shall be created: Each
data set represents the response of the power plant to an occurring failure, at various

ambient and load conditions.

The variation of the quantity of all simulated failure modes leads to a multi-label
classification problem, which shall be solved by utilizing a neural network (NN). The goal is to
build and train a NN capable of detecting degradation failures using the before-mentioned
simulated data. After optimizing the NN, statistical evaluation of the achieved performance

follows.

2.1 Methodology

The first step is comprehensive literature research on failure modes in CCPPs. This research
covers all major components of the power plant, such as the gas turbine (GT), the heat
recovery steam generator (HRSG), the steam turbines (ST), and the condenser. Besides the
systematical categorization of the failure modes, the analysis focuses on the predicted
thermodynamical impact. Furthermore, research on the CCPP cycle and the highly
interdependent sub-systems (GT, HRSG, ST, condenser) is necessary to gain a more profound

knowledge of the underlying processes.

Next, a physically correct model of a CCPP is needed. The EBSILON®Professional software [4]
from the Steag Energy Services company is utilized to modify an existing model of a CCPP
from ENEXSA. After adopting the CCPP model, the integration of the failure modes follows.
The usage of an EBSILON Add-In for Microsoft Excel enables the automated calculation of
power plant simulation runs. The specifications for the simulation runs are set in the Excel
file. Transmitting these calculation tasks to the ENEXSA servers, using ENEXSA's EbsGrid
Distributed Calculation Technology, assures an efficient and fast way to execute a large

number of simulations.
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TASK ASSIGNMENT

The data generation process is further automated by using Python scripts and a Python
client, enabling access to servers of ENEXSA. Python scripts simplify data handling and
analysis, especially for vast amounts of information. The programming takes place in the
PyCharm integrated development environment (IDE) [5] and the web-based JupyterLab IDE
[6]. Utilizing these environments and deploying the methods mentioned above, the labeled
failure mode data can be generated and preprocessed before training the failure predicting

neural network.

The NN is set up and trained with Python scripts by deploying Tensorflow [7] and the Keras

application programming interface (API) [8].

Finally, statistical methods will help to judge the performance of the developed NN in its
capability of detecting failures.
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THEORETICAL BACKGROUND

3 THEORETICAL BACKGROUND

This chapter represents the basic knowledge for the applied methods and empirical studies
of this thesis. The physics of the investigated power plants and the theoretical background of

neural networks are explained.

3.1 Combined Cycle Power Plants

The term combined cycle power plant could refer to any plant which uses two or more
thermodynamic cycles to generate electricity. However, this work deals with CCPPs
combining a Brayton cycle (also known as Joule cycle) and a Rankine cycle. These two cycles
serve as thermodynamic models for a gas turbine and a steam turbine system. The resulting
CCPP is known as a gas turbine combined cycle power plant (GTCCPP). The CCPPs mentioned
in this thesis always refer to GTCCPPs. An HRSG acts as the linking structure between the
systems. The HRSG utilizes the gas turbine's waste heat to generate high-pressure steam for

the steam turbine. [9]

Combining these systems leads to the highest efficiencies of all commercially used power

plants. The following list shows a few beneficial characteristics of GTCCPP: [10]

e Efficiencies from 50 % to above 60 %

e Lowest emissions of unburnt hydrocarbons, carbon oxide (CO), and oxides of
nitrogen (NOx) of all thermal power plants

e Low construction costs ranging between 450 $/kW and 650 S/kW for CCPPs of
200 MW and above

e Construction time of 200 MW and above CCPPs could be less than 24 months

The following sub-chapters explain the basic functionality of CCPPs and their components.
For further information on the described processes, the reader is referred to [9], [11], [12]
and [13].

3.1.1 Gas Turbine

Today various types of gas turbines are available for stationary or mobile applications. Ships,
aircraft, pumping stations, trains, and power plants run on gas turbines. [14] Determined by
the field of operation, either aero-derivative turbines, heavy-duty industrial turbines, or
other gas turbines are utilized. However, state-of-the-art CCPPs with a power output of
200 MW and above use heavy-duty industrial gas turbines as their core component. Gas

turbines in simple cycle operation reach efficiencies of about 40 % and slightly above.
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THEORETICAL BACKGROUND

The following explanation describes the main components and basic functionality, as shown

in Figure 3-1.

First, air enters the system and the compressor increases the pressure and temperature of
the fluid. In the combustion chamber, fuel injection and ignition follow. The added heat
increases the fluid temperature at a constant pressure. This high-temperature pressurized
gas expands isentropically and powers the turbine (or expander). The majority of gas
turbines operate in an open thermodynamic cycle, and therefore the flue gas is afterward
emitted and not returned to the beginning of the cycle. The gained mechanical energy runs
the compressor and the dedicated gas turbine application. In this case, the shaft transmits

the mechanical energy to a synchronous generator to produce electricity.

Fuel Por

Generator

Compressor g)

Turbine 4

Exhaust Gas

Figure 3-1: Gas turbine schematic, [15] S. 24

The following rating parameters of gas turbines are essential for the application in CCPPs as

they influence the power plant's overall efficiency:

e Powerin kW or MW

e Heat Rate in kJ/kWh or Btu/kWh

e Electrical Efficiency in kWh/kJ or kWh/Btu
e Exhaust Flow in kg/s or klb/s

e Exhaust Temperature in °C or °F

The power determines the gross electrical power output without auxiliary or step-up
transformer losses. The heat rate indicates the amount of fuel needed to generate a defined
amount of electric energy. The electrical efficiency is the inversion of the heat rate. And the
exhaust flow parameters refer to the flue gas used to fuel the steam cycle of the

investigated CCPPs.

The rating of gas turbines is always defined at reference conditions, and the mentioned

performance parameters are achieved at this specific operation point. [16] At other

PAGE | 5



THEORETICAL BACKGROUND

operating conditions, for example, changing ambient temperatures or air pressure, the
power output and the other parameters differ. Therefore, the term Base Load is defined to
describe if the gas turbine runs at full load at the given ambient conditions. Base Load is the
load at which the gas turbine process is operated at its aerodynamic design point with
maximum throughput and optimal flow pattern. Since the specific volume of the airflow
varies with the conditions at the compressor inlet, the compressor exit pressure and the
mass flow through the combustor will change accordingly. In addition, the pressure at the
exit of the gas turbine limits the pressure ratio of the expander, and thus the Base Load
power generated by the gas turbine is varying significantly with these parameters. Not
reaching expected Base Load performance at specified conditions is a sign of degradation of

the power plant.

The exhaust flow and especially the exhaust temperature of the gas turbine directly affect
the CCPP efficiency. Modern heavy-duty gas turbines apply complex control schemes to
optimize overall combined cycle performance through inlet guide vane positioning, firing

temperature control, different burner schemes or bypass/blow-off mechanisms.

3.1.2 Steam Turbine

Steam turbines still represent the backbone of the power industry. [17] They are in
operation in coal-fired power plants, nuclear power plants and combined cycle power plants,
but also in solar thermic and geothermal applications besides others. All these plants
operate on the same principle, the Rankine cycle (see Figure 3-2): The feedwater pump
delivers water into the boiler and increases the liquid's pressure. In the boiler, a heat source
adds energy to the water, evaporates and superheats it. As mentioned above, the heat
source can be anything from nuclear fission to solar energy. The superheated steam enters
the steam turbine, expands and afterward returns to its liquid state in the condenser. The

condensate is again fed to the pump and closes the cycle.

Boiler ST 4@

>
Pump I —
/\ Condenser
\_/

Figure 3-2: Rankine cycle schematic
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THEORETICAL BACKGROUND

Carnot's theorem describes the maximum efficiency of heat engines. The hot and cold
reservoir temperature, between which the cycle operates, determines the maximal
achievable efficiency of the engine (3-1). Therefore, a high mean temperature of heat
addition and a low mean temperature of heat rejection lead to a high cycle efficiency. In
steam power plants, the mean temperature of heat addition is low compared to other fossil-
fuelled power plants like gas turbines. But the condenser assures low heat rejection
temperatures as it operates at low pressures. This low turbine back pressure guarantees a
high cycle efficiency.

Tc (3-1)
Nearnot = 1 — E

The methods to increase the efficiency of power plants that operate on a Rankine cycle
differ among the various power plant types. To achieve high efficiency in CCPPs it's
important to extract as much heat as technically possible out of the GT flue gas. Therefore,
modern CCPPs operate on three pressure levels with corresponding turbine sections and
various reheating and preheating cycles. An example of a three pressure process in CCPPs is

explained in the following subsection.

3.1.3 HRSG

The heat recovery steam generator acts as the linking structure between the Brayton cycle
and the Rankine cycle. The flue gas of the gas turbine surges through the HRSG and passes a
series of heat exchangers. The extracted heat fuels the steam cycle of the CCPP. The HRSG
can either be constructed vertically or horizontally. The HRSG shown in Figure 3-3 is aligned
vertically and operates in counter-current mode, except for the evaporator. Feedwater,
coming from the condenser, enters the economizer and is heated up close to boiling
temperature. A few degrees of subcooling are beneficial to avoid evaporating in the
economizer, which would cause excessive flow velocities in the pipes. The water's physical
state changes from liquid to steam in the evaporator section. The liquid flows from the drum
through the heat exchanger pipes and evaporates. The drum itself separates the steam from
the liquid phase and contains a blowdown system. Impurities that accumulate in the drum
can be extracted by blowing water out. In the superheating section, the extracted heat from
the flue gas increases the steam temperature, and the superheated steam is led to the

turbine.
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Figure 3-3: Single pressure HRSG schematic, [15] S. 29

CCPPs with a triple pressure HRSG run on the same principle, with an economizer, an

evaporator and a superheater for each pressure level. The goal is to extract more heat from

the flue gas and increase plant efficiency. For each pressure level (high pressure (HP),

intermediate pressure (IP) and low pressure (LP)) a corresponding steam turbine section

exists. The schematic diagram in Figure 3-4 shows a simple triple pressure HRSG without any

reheat cycles.

To the Stack T Feed water pump
; e
LP Economizer > \..-_)_
LP Drum
LP Evaporator E
LP Superheater
IP Economizer >> LP Steam
IP Drum
IP Evaporator %
IP Superheater > IP Steam
|
HP Economizer > HP Drum
HP Evaporator % Q@_‘
-
HP Superheater > HP Steam
Gas Turbine Exhaust 3

Figure 3-4: Triple pressure HRSG schematic, [15] S. 30
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3.1.4 Combination of Brayton Cycle and Rankine Cycle

Gas turbine combined cycle power plants reach field-proven efficiency levels of 60% and
above. [9] The reason for this performance is the combination of two thermodynamical
cycles that operate at different temperature levels. CCPPs combine the high mean
temperature heat addition of gas turbines with the steam turbines' low mean temperature
rejection. Referring to their positions in the temperature-entropy (T-S) diagram in Figure 3-6,
the Brayton cycle represents the "topping cycle" and the Rankine cycle the "bottoming
cycle". The HRSG between them serves as the heat sink for the former and the latter's heat

source.

The flue gas temperature and mass flow determine the achievable superheating
temperature of the steam cycle. A high flue gas temperature leads to a higher HRSG- and
Rankine cycle efficiency but also a lower GT efficiency. Therefore, HRSG- and GT design are
critical for optimal design in this trade-off. However, from the TS-diagram in Figure 3-6 a
simplified version of the overall plant efficiency (ncc) can be derived (3-7). Qer symbolizes
the gained heat quantity by burning the fuel. Wer and Wsr present the amount of work
output of the cycles. The HRSG transfers Qursc from the exhaust gas to the Rankine cycle,

and Qyoss describes the total heat loss of the process. The HRSG losses are combined in nursc.

P.. =
GT dt
Py = ——
ST dt
Per = QGT *Ner (3-4)
Psp = (QGT - PGT) *Nst " MHRSG (3-5)
Per + Por (3-6)
Nee = ————
Q¢r
Nee = Ner + Msr *Murse * (1 — Ngr) (3-7)
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Figure 3-6: TS-diagram for the combination of Brayton and Rankine cycle, [15] S. 36
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3.1.5 Failure Modes in CCPP

The following sub-chapter summarizes potential degradation failure modes in CCPPs, their

causes, and the estimated impact.
GT Compressor Fouling

Air impurities that pass the inlet filter of the gas turbine for any reason may build up on the
surface of the compressor blades. These deposits change the blades' inlet angles, the airfoil

shape and increase the surface roughness. [14] [18]
Impact:

e isentropic efficiency reduction
e increased fuel consumption

e decreased flow capacity
GT Compressor Tip Clearance

Tip Clearance describes the distance between the rotating blades and the housing. Due to
transient load conditions, the compressor blades may rub on the housing surface (because
the blades heat up and expand faster than the housing) and the tip clearance increases. The
increasing cross-section area leads to a rising leakage between the different pressure

sections of the compressor.
Impact: [14]

e loss of compressor efficiency
e drop of pressure ratio

e decreased flow capacity
GT Expander Fouling

Turbine fouling or hot section fouling is caused by combustion products, which form
deposits on the turbine blades. Contaminants leading to turbine fouling enter through the
inlet air or liquid fuel, containing fuel additives. Fluids that are injected for NOx control

purposes are also part of the problem. [14] [18]
Impact:

e reduced power output and efficiency
e increased fuel consumption

e decreased flow capacity
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GT Expander Tip Clearance

The increase of turbine tip clearance follows the same principle as the above-mentioned
compressor tip clearance increase: The surface area between the rotor blades and the casing
of the turbine increases because of blade rubbing caused by transient load conditions. An

increasing mass flow bypasses the tips of the turbine blades leading to additional losses.
Impact: [14]

e increased exhaust temperature and flow capacity

e decreased turbine efficiency
GT Filter Clogging

The gas turbine's air inlet filter protects the compressor and the turbine from impurities in
the ambient air. These pollutions include dust, sand, moisture, or anything else that might

be suspended in the air. Filter clogging occurs as the impurities accumulate in the filter. [18]
Impact:

e increasing the pressure drop over the filter

e decreased plant efficiency and capacity
Steam Turbine HP Bowl to IP Bowl Leakage

Besides the leakage by design, seal damaging or weakening increases the leakage from the
HP to the IP section of the steam turbine. The degradation of the sealing happens through
misalignment, poor start-ups, or temperature excursions. Inner shell distortion or loose and
overstretched bolting can also cause leakage from the HP bowl into to IP bowl at the
horizontal joint. The direct mass flow from the HP to the IP turbine reduces the reheat
cycle's mass flow. The reduced cold reheat flow causes overheating of the reheater tubes
and may stress the spray coolers to control both HP and reheat steam temperatures in the
HRSG and at the ST inlet. Once cooling flow limits are reached, load curtailing is necessary to

avoid overheating. [19]

Impact:

e power-loss because of load reduction
e increased steam entrance through the sealing leads to higher measured (apparent)
efficiency at the IP turbine [19]

Figure 3-7 shows the HP and the IP turbine section with the affected sealing package

between them.
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Figure 3-7: HP turbine and IP turbine with sealing package, [20]

HRSG Tube Failure and Leakage

Leakages in HRSG tubes occur due to various mechanisms: creep, fatigue, creep-fatigue,
under deposit attack, flow-accelerated corrosion, mechanical erosion, stress-corrosion
cracking, and overheating. These chemical and mechanical attacks on the tubes cause

leakages and, therefore a loss of energy. [21]
Impact:

e decreased power output of the steam turbines
e decreased plant efficiency and capacity

e excessive make-up water consumption
Evaporator Blowdown Leakage

Evaporator blowdown leakage describes an unscheduled loss of mass flow and enthalpy
caused by a failure of the drum's blowdown system. A broken valve, defect closing

mechanism, or a sealing degradation are possible leakage reasons.
Impact:

e decreased power output of the steam turbines
e decreased plant efficiency and capacity

e excessive make-up water consumption
HRSG Fouling

Fouling is the term for deposit accumulation on surfaces, in this case on the heat exchange
tubes of the HRSG. Fouling can occur on the inner or the outer surface of the heat

exchanger.

On the inside of the tubes impurities of the feedwater may build up deposits, leading to

under-deposit corrosion and overheating failures. [22] [23]
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Impact:
e degradation of the heat transfer capability

On the outer surface, flue gas may attack the tubes. If fuel oil is used to fire the gas turbine,
the sulfur content of the fuel can lead to ammonium-salt (Ammonium Bisulfate and
Ammonium Bisulfite) deposits at components after the catalysator. An Ammoniac (NHs)-slip,
occurring from a not complete chemical reaction of all NHs molecules in the catalysator

enables the formation of Ammonium. [24]
Impact:

e degradation of the heat transfer capability

e increased pressure drop on the gas side
Letdown Leakage

Letdown valves are part of the turbine bypass system which provides the opportunity to
discharge steam directly into the emergency letdown to minimize transient stresses during a
sudden load reduction. [25] In a triple pressure CCPP the process steam is lead in three

different paths:

e Bypass for the HP-turbine: High-pressure steam —> cold reheat (CRH); to maintain
cooling for the reheater even if the turbines are shutdown
e Bypass for the IP-turbine: Hot reheat (HRH) steam - Condenser

e bypass for the LP-turbine: Low-pressure steam = Condenser

Malfunction of the letdown valves leads to a steam mass flow in the mentioned paths even

during normal operation.
Impact:

e |oss of process steam
e decreased power output of steam turbines

e decreased plant efficiency
ST Blade Erosion/Fouling

The expansion of the steam flow in the last stages of the LP turbine causes condensation.
The resulting droplets damage the turbine blades and lead to erosion and a change in the
surface roughness. In higher pressure stages thermal erosion, fouling, and collision of

particles also cause abrasion and impact the blade surface. [26]

PaGe | 14



THEORETICAL BACKGROUND

Impact:

e decreased steam turbine efficiency

e may increase vapor condensation in the turbine [26]

ST Tip Clearance

An increase of tip clearance occurs on steam turbines leads to the same effect as for gas

turbines (see GT compressor and turbine Tip clearance). The rubbing of the turbine blades is

induced by the highly dynamic operation of the power plant and transient load conditions.

Impact:

e decreased steam turbine power output

e decreased steam turbine efficiency

ST Low-Pressure Exhaust Loss

The term steam turbine exhaust loss (in ki/kg) describes the kinetic energy of the steam that

leaves the last stage of the LP turbine plus the energy loss through friction and additional

losses through vortex generation in the exhaust diffuser and the hood. This energy will

dissipate in the condenser and is not available to generate electrical power. The exhaust loss

depends on the steam mass flow and the annular exhaust velocity which is determined by

the turbine back pressure and the blade geometry (see Figure 3-8). Erosion and fouling

change the surface roughness of the turbine blades and affect the characteristics of the

exhaust loss behavior of the LP turbine. [27] [28]

Exhaust loss ki/kg
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Figure 3-8: Exhaust loss curve of a steam turbine, [29]
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Impact:

e increased exhaust loss
e decreased LP steam turbine power output

e decreased LP steam turbine efficiency
Condenser Incondensable Gas Accumulation

In the condenser, the physical state of the process steam changes to liquid water which is
then returned to the deaerator. The condensate temperature and its corresponding steam
pressure determine the back pressure of the LP turbine. Therefore, the temperature of the
cooling water (water side of the heat exchanger) should be as low as possible, to maintain
low pressure in the condenser. A condenser pressure above the corresponding steam
saturation pressure of the condensate indicates the accumulation of other gases in the

condenser.

Steam volatile chemicals (chemicals with a boiling temperature below the steam
temperature) such as amines are used for boiler water conditioning. At the elevated
operation temperatures in the HRSG, the amines break down to ammonia which causes
damage to condenser tubes. Ammonia is incondensable in the field of the operation
parameters of a condenser and relies on the extraction by the air removal system. [25] If the
system doesn't work probably incondensable gases accumulate in the condenser and lead to

higher back pressure for the LP turbine.
Impact:

e decreased LP steam turbine power output

e decreased LP steam turbine efficiency
Condenser Fouling and Scaling

Condenser fouling or scaling is a process where impurities form deposits on the heat
exchanger tubes. These accumulations occur mainly on the cooling water side of the
condenser and are accountable for the reductions in heat transfer capability that occurs in
service. [30] Micro-fouling or scaling is caused by foulants as calcium carbonate, calcium
sulfate, salts, and lime in the cooling water. [31] Additionally, biofouling may occur which
means the deposition of micro-organism that built an organic film on heat exchanger

surfaces. This type of fouling appears if seawater is used in the condenser. [32]
Impact:

e decreased heat transfer coefficient

e increased turbine back pressure because of the higher temperature in the condenser
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Condenser Hotwell Subcooling

In the condenser, process steam condenses and covers the heat exchanger tubes. The heat
transition continues as the condensate falls towards the bottom of the condenser, into the
hot well. The temperature reduction beneath the condensation temperature is called

subcooling. [33]

TUBE STEAM
SUPPORT

PLATES
TUBESHEET~y

TUBES \T UBESHEET

INLET WATERBOX
OUTLET WATERBOX

COOLING
WATER
QUTLET

COOLING
WATER
INLET

CONDENSATE CUTLET

Figure 3-9: Condenser for steam power plants, [34]

Figure 3-9 shows a condenser without subcooling and a normal hotwell level. A certain
degree of subcooling is normal but excessive subcooling indicates problems with the level
control of the hotwell. The rising liquid covers the lower heat exchanger tubes of the
condenser leading to a subcooled fluid and an increase in turbine back pressure due to a
reduced remaining heat transfer area for condensation. The degrees of subcooling are
shown in Figure 3-10 by the difference between the condensation temperature T1 and the
temperature in the hotwell T1.. The dark blue area between the points 1 and 1’ presents the

additional heat rejection due to subcooling.

Subcooling Rejected Heat without Subcooling

Figure 3-10: 1-2-3-4: Ideal Rankine cycle; 1-1’: Condensate subcooling
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Impact:

e decreased efficiency because reheating of the condensate will require more energy

e increase of LP turbine back pressure

3.2 Artificial Intelligence

The definition of artificial intelligence (Al) involves the philosophical question of what
intelligence itself means and how to determine if an artificial entity is capable of thinking.
This short introduction to artificial intelligence focuses on technical implementation rather
than on philosophy. Alan Turing, a famous English mathematician and one of the first
computer scientists developed the Turing test, an empirical test for artificial intelligence. In
this test, an interrogator communicates with a real human being and an artificial entity at
the same time. If the interviewer can’t distinguish the human from the artificial intelligence

by their answers to the posed questions, then the artificial entity is considered intelligent.

Since the introduction of the Turing test in 1950, the research field of artificial intelligence
has grown and today includes various subcategories. This work deals with the methods of
neural networks and their application. For further information on artificial intelligence, the
reader is referred to [35] and [36].

3.2.1 Neural Networks

The first models of artificial neurons were developed in the 1940s resulting in the research
field of artificial neural networks (ANN). The initiating idea was to model the neurons of
biological brains and their information processing. In the 1950s neural networks lost
scientific interest because of other approaches to build Al systems (for instance expert
systems using deterministic reasoning or statistical systems such as Bayesian belief
networks) and due to lack of computational power at that time. However, with the
increasing power of computers, new training algorithms and the various application
possibilities, neural networks gained popularity again. A large number of artificial neurons
are assembled in an organized structure which build modern ANNs. Neural networks are
used in applications like speech recognition or computer vision and other fields for pattern

recognition. [35]
The Biological Model of Neurons

An illustration of a neuron in a human brain is shown in Figure 3-11. The dendrites collect
input signals from other neurons and transmit them to the cell body. If the intensity of the

accumulated signals exceeds a certain threshold, the neuron itself sends a signal out to other
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neurons. The axon and the corresponding terminals serve as a linking structure to

communicate with other neurons. [35]
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Figure 3-11: Biological neuron model, [37]

Artificial Replication of Neurons and Network Structure

The input of an artificial neuron is represented by a vector (x1,X2,..,Xn). The elements of the

vector are multiplied with specific weights (w1,w,..,wn) for each element and added up to a

weighted sum z (3-8). Further, a neuron assigned bias (bo) is added. Subsequently, an

activation function f is applied on the sum value z. This function defines the output value v,

which is passed to the following neurons or is displayed as the final result. Figure 3-12 shows

the simplest neural network, the perceptron which is often referred to as the first machine

learning algorithm. [38] It consists of only one neuron with different inputs and one output.

The perceptron acts as a binary classifier, meaning that the output of the network only has

two possible outcomes. With the chosen discrete activation function seen in (3-9), the

output y can either be -1 or 1. [35]

n
zZ = bO + Z w; - xi
i=1
_ lifz>0
f(#) = {—1 otherwise
y= f(2)

(3-8)

(3-9)

(3-10)
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v

Figure 3-12: Perceptron: Neural network model consisting of one neuron, [35] S. 374

The activation function can also be a function resulting in a non-discrete value. Then the
output y represents the probability for a certain prediction. For example, the probability that
somebody has a disease. If the output value exceeds a defined threshold, the prediction

result is true and otherwise false.

Complex problems like multilabel classifications lead to enlarged networks containing
multiple hidden layers, besides the input and output layer. Hidden layers built the linking
and data processing structure between the input and the output layer as shown in Figure
3-13. Every node in each hidden layer represents a neuron and gets input data from the
neurons of the previous layers. The nodes run through the above-explained process of
calculating a weighted sum, applying an activation function and transmitting data to the
neurons of the following layer until the output layer is reached. However, choosing the
optimal number of layers and neurons within the ANN for a specific application is not trivial

and still the topic of research.
Multilabel Classification

Classification problems with more than two possible outcomes require neural networks that
are capable of solving multi-label classification problems. The output layer of such networks
includes one neuron for each class that shall be identified. The Softmax activation function
(see 4.5.1), a function designed for multinomial classifications, calculates a probability value
for each neuron of the output layer summing up to 100 percent in total. The output with the

highest value represents the predicted class.
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Figure 3-13: Neural network structure, [35] S. 386

Training of NNs

Neural networks produce predictions in the above-described feed-forward process. Initially,
the weights of the connections and the neuron biases are set randomly. In every training
loop, the weights and biases are adjusted to optimize the prediction accuracy. Thereby the
input data passes through the neural network, resulting in a prediction. The difference
between the prediction and the actual value yields to the so-called “loss”. The loss is
calculated in the loss function chosen by the programmer. This loss is propagated from the
output through the hidden layers to the input layer, called backpropagation. In every step
backward the weights of the neuron connections and the biases of the neurons are adjusted
to minimize the error for the next run. Different optimizers, which are chosen by the
programmer, enhance the performance of the network by applying their corresponding
mathematical optimization functions in the backpropagation process. This procedure is

carried out iteratively until the prediction error reaches its minimum.

The goal is to train the neural network to recognize patterns in the input values and predict
the consequent output. This training process is also called “fitting” the network to the data.
If the network is not trained probably underfitting or overfitting may occur. An underfitted
network is not able to recognize the characteristic pattern of the input data. An overfitted
network “remembers” the patterns of the already seen training data, but can't make
accurate predictions when exposed to new data as it is too strongly fit to the training data

(see Figure 3-14).
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Figure 3-14: Examples of fittings of a neural network to training data, [39] S. 253

Hyperparameters

Some parameters of NNs, which are usually not modified through the training process,

require initialization before the training process starts. These parameters are named

hyperparameters. They include, among others, the number of layers, the number of neurons

in each layer, batch size, learning rate and epochs. As mentioned before, no specific rules for

setting hyperparameters exist, but methods for tuning them can be applied (see 5.1.1). The

following listing describes the above-mentioned parameters.

Epochs: The number of epochs determines how often each sample (pair of input and
output data) is passed through the network in the training process. One epoch is
finished when every pair of input and output data is processed once.

Batch Size: The number of samples that are handed to the network to be processed
at once. For example: If we have 100 training samples and we choose a batch size of
20, then the training data set is split into 5 batches of 20 samples. When all 5 batches
are passed through the classifier, one epoch is finished.

Learning rate: The step size for changing the internal variables of the layers during
the optimization process. For example, the above-described weights are updated
through the backpropagation process. For the perceptron, the new weight w; of a
certain connection is computed by subtracting the calculated loss gradient multiplied
with the learning rate g from the old weight wi of the previous learning step (see 3-
11). This method of optimizing the weights and biases with the loss gradient is called

stochastic gradient descent optimization.

dLoss (3-11)

an'

W.

= Wi —q-

PAGE | 22



THEORETICAL BACKGROUND

3.2.2 Statistical Methods for Performance Evaluation

Before we discuss the performance parameters for neural networks, some statistical terms
are introduced. A statistical test with two possible outcomes is called a binary classifier. A
disease test represents such a classifier: The test predicts if a person has a certain disease
(=Positive) or not (=Negative). These predictions can represent four different states which

are recorded in a confusion matrix (see Figure 3-15):

e True Positive (TP): The person is ill and is predicted ill
e False Positive (FP): The person is not ill and is predicted ill
e False Negative (FN): The person is ill and is predicted not ill

e True Negative (TN): The person is not ill and is predicted not ill

Actual Class
Positive Negative

Positive Lz FP
o (True Positive) (False Positive)
m
o
-
QG
5
=
< FN TN
o ! \

Negeive (False Negative) (True Negative)

Figure 3-15: Confusion matrix for binary classifications

The number of each of these possible outcomes (TP, FP, TN, FN) determines the
performance of the applied test. The quality of classifiers can be evaluated by various
parameters. The equations below (3-11, 3-12, 3-13, 3-14) describe some of the most
common ones. It should be noted that these parameters are utilized for all kinds of statistical

tests and machine learning applications, not only for binary classifiers.

2 _ TP+ TN (3-12)
COUracY = TP X TN + FP + FN
Precision — TP (3-13)
recision = TP n FP
Sensitivity = TP (3-14)
ensitivity = oo
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TN (3-15)

Sp@CifiCit_’y = m

Accuracy is the ratio of all correct classifications (TP + TN) to the total number of all
classifications (TP + TN + FP + FN).

Precision is the ratio of all correct classified positives (TP) to all positive predictions (TP + FP).

It defines the certainty for a positive prediction to be true.

Sensitivity is the ratio of all correct classified positives (TP) to the number of actual positives

(TP + FN). It defines the ability of the network to identify an actual positive.

Specificity is the ratio of all correct classified negatives (TN) to the number of actual

negatives (TN + FP). It defines the ability of the network to identify an actual negative.

The importance of each evaluation parameter depends on the purpose of the classifier. For a
virus detecting test, high sensitivity is important, because a low rate of false-negative
examples is desirable. A not detected contagious person may have contact with healthy
persons and infect them. In contrast, for the detection of degradation failures in power
plants, a high precision may be beneficial. Because a false positive possibly leads to a
revision and opening of a faultless system, which would cause plant downtime and
unnecessary maintenance costs. However, in most cases, high precision and high sensitivity
are not achieved at the same time but setting a prediction threshold at a suitable level
affects these parameters. A threshold is a barrier set at a defined level that has to be
reached (or exceeded) by the classification sample to lead to a certain prediction. For
example, a tested person is predicted as ill if the viral load of this person exceeds the set
threshold. A low threshold leads to more false positives and fewer false negatives and a
corresponding high sensitivity. A higher threshold level increases the precision and
simultaneously decreases the sensitivity. Referred to the disease example, a test with a low
threshold will detect persons even with a modest viral load but also diagnoses more healthy

persons to beiill.

The explained measures are typically applied to binary classifications. For a multiclass
classification problem, the parameters are calculated class-wise (3-16, 3-18) and a weighted
mean is computed (3-17, 3,19) [40]. N symbolizes the total number of classes and c;j stands
for the confusion matrix entries with their corresponding index for the predicted class i (row

index) and the actual class j (column index).
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Figure 3-16: Confusion matrix for a multi-label classification problem

?’—o Cii (3-16)
Accuracyoperan = N ZN
i=0 2ij=0 Cij

Precision = TFetass o
lass =
crass TPclass + FPClaSS
o N o Precision; - (TP; + FN;) (3-18)
Precision,yerqn = N N
i=0 2]: Cl]
Sensitivity = MFetass o
lass =
crass TPclass + FNClaSS
YN, Sensitivity; - (TP; + FN; (3-20)
o i=0 Yi l d
Sensitivity,peran = N ©N
i=0 Xj=0 Cij
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4 MODEL DESIGN

This chapter deals with the design of the CCPP model and the procedure of simulated data
generation and pre-processing. Further, the setup for the neural network and its training and

testing methods are explained.

4.1 Software

The following descriptions provide a short insight into the software which was utilized in this

work.

4.1.1 EBSILON

For generating an accurate model of the power plant, the EBSILON®Professional heat
balance software ([4]) was used which has proven to be a valuable modeling tool for
simulation-based design- and operation optimizations of all types of thermal power
generation systems. It is used by utilities, engineering companies, equipment manufacturers
and research organizations worldwide. Through individual model components, the gas
turbine and/or engine performance characteristics can be integrated with a detailed plant
model, and in-depth thermodynamic analysis can be performed benefiting from the features

of EBSILON®Professional, such as:

e individual equipment characteristics in design and off-design mode

e full record of all gas, water/steam and electrical flows of the plant

o flexibility in equipment arrangement, plant configuration and mix of technologies

e apowerful, fast and reliable equation-based solver

e open architecture to include user-defined models for new technology or vendor data

e a state-of-the-art graphical user interface and a wide variety of output options in
graphical and tabular formats and

e an interface to Microsoft® Office Excel®.

ENEXSA GmbH has further extended the usability of EBSILON by adding a framework for
distributed calculation technology which allows for fast processing of very large simulation
tasks such as the hourly re-calculation of the annual operating profile of a power plant. [41]
This work uses this distributed calculation technology for the generation of the operating
patterns of the ‘healthy’ power plant and with various failure modes, enhanced by an

interface to Python for data pre- and post-processing.
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4.1.2 Python

Python is a popular programming language for instance for handling huge data files. It allows
automating data manipulations and repetitive tasks. The PyCharm IDE facilitates the creation
and debugging of Python programs. Besides PyCharm, the web-based JupyterLab IDE is

utilized for programming and executing python files directly on the ENEXSA webserver.

4.1.3 Tensorflow and Keras

Tensorflow is an open-source platform with a focus on machine learning. It provides various
tools, libraries and community resources for programming state-of-the-art machine learning
applications. [42] Keras is designed to ease the construction of deep learning neural
networks. This APl is built on top of Tensorflow and enables the utilization of the Tensorflow
libraries. [43]

4.2 CCPP EBSILON-Model

In this thesis, a state-of-the-art CCPP model from ENEXSA was utilized. The power plant
model includes a gas turbine, a triple pressure HRSG with one reheat cycle and three steam
turbine sections (HP, IP and LP). The simulation in EBSILON is carried out in two consecutive

stages: the design mode and the off-design mode.

Design mode: In the first step, a model is built in the design mode. The topology is set up, all

design parameters and the physics of the components for the power plant is defined.

Off-design mode: The simulation of the plant operation under different environmental and

load conditions is carried out in the off-design mode.

Before the failure mode simulation and the process of labeled data generation can be

explained, some terms have to be specified:

e Specification values (or parameters) represent all values that have to be set to run
the simulation. They are also called input values of the EBSILON model.

e Result values represent all values that are calculated in the simulation run. They are
also called output values of the EBSILON model.

e Input (or input values) of the NN represent all values that are fed to the input layer
of the NN. These values contain all result values of the EBSILON model and certain

specification values, seen in Table 4-2.
Three elements are necessary to characterize a power plant model:

e Topology (used components and their linking connections)
e Physics of the components’ behavior
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e Parameterization

The topology and the physics of the components’ behavior and their mathematical
description can only be adopted directly in EBSILON (in design-mode). The simulation in the
off-design mode uses the component characteristics specified by the user or already pre-
defined in Ebsilon to determine off-design performance for every model component. In each
simulation run the specification values, including gas turbine target power, ambient
conditions, the failure mode and the failure impact, are set from the input array. The results
of the simulation and the respective ambient conditions represent the input values for the
neural network. By setting measuring points in the model, the results at a specific process
stream (mass flow, temperature, pressure, enthalpy, or power/heat flow) can be extracted.
Measuring points were only placed in the model where measurement equipment is typically
in operation in existing CCPPs. Thus, the input for the neural network is representing
information that can be gathered in the real-life application. No additional simulation results

are required.

4.3 Failure Mode Simulation

Each of the described failure modes in 3.1.5 results with a specific impact on the
thermodynamic cycle. The applied simulation methods focus on the most severe effects and
can’t replicate the exact physical impacts of every failure, but represent good
approximations. Further, these simulations are limited to the static operation of the power

plant. Hence shutdown, starting or other dynamic processes were not investigated.

For the implementation of the investigated failure modes, the specification macro of the
model in which all specification values are set, has been expanded for the selection of the
active failure modes. The failure modes can be activated by selection via a drop-down menu
and the corresponding failure impact (FI) can be set. The failure impact is a unitless input
value ranging from 0 to 1, representing a relative impact between 0 and 100 percent. The
maximum impact of a failure mode is defined in a script of the specification macro, which is
executed before every simulation run. This script overwrites a specific design value of the
affected component with a value affected by the specific failure to the specified extent.
After the calculation and the extraction of the results, another script resets all model

modifications and returns the model into a faultless state.

Besides the mathematical operations and parameter manipulations of the macros, various
modifications of the model topology have been implemented. The added system parts, like
the letdown system, are simultaneously activated with the corresponding failure modes. The

following section presents the modifications for each failure mode.
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It should be noted that the design values are changed linearly as a function of the Fl. This can
be done because the goal is to simulate the resulting impact on the plant operation and not

the exact process leading to it.

Normal Mode

The normal mode represents the power plant operation without any failures.
GT Compressor Fouling

Compressor blade fouling leads to a loss of efficiency. The isentropic efficiency (ETAI) of the

compressor component can be directly affected by modifying the ETAI parameter (4-1).

ETAI = ETAI - (1 —FI-0.2) (4-1)
This means that compressor blade fouling in this study is assumed to lead to a loss of
isentropic efficiency up to 20 % of its initial “faultless” value.

GT Compressor Tip Clearance

Tip clearance increase at the gas turbine compressor directly affects its flow capacity. The
airflow reduction is modeled by manipulation of the control system of the gas turbine. The
gas turbine requires a certain amount of fuel and a corresponding airflow to reach the target
load. The calculated airflow value is manipulated which leads to curtailing of the inlet mass

flow of the compressor (4-2).
mCompr,inlet = mCompr,inlet ) (1 — FI- 0'03) (4-2)

GT Expander Fouling

Expansion turbine blade fouling affects the efficiency and the power output of the gas
turbine. The reduction in efficiency is directly simulated by manipulating the nominal

polytropic efficiency (ETAPN) of the gas turbine component in the off-design run (4-3).
ETAPN = ETAPN - (1 — FI-0.2) (4-3)

GT Expander Tip Clearance

Expansion turbine tip clearance leads to a mass flow over the tips of the turbine blades. This
effect is modeled by implementing a bypass system. Separating the gas turbine into different
stages enables the implementation of this bypass. In front of each turbine element, a splitter
divides the gas stream into two paths. The flow ratio of the streams defines the amount of

bypassed mass flow (4-4).
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Figure 4-1: Gas turbine expander tip clearance simulation
GT Filter Clogging

The air inlet filter of the gas turbine is modeled by a pipe component. This structural
element provides the possibility to define a nominal pressure drop (DP12RN) in a stream. In
off-design mode, a pressure drop that depends on DP12RN and the actual mass and volume
flow is calculated. By manipulating the nominal pressure drop, the increased pressure drop

due to filter clogging is simulated (4-5).
DP12RN = DP12RN - (1 + FI - 2) (4-5)

Steam Turbine HP Bowl to IP Bowl Leakage

For the simulation of the HP bowl to IP bowl leakage (also called N2 leakage) of the steam
turbine, a seal-system has been implemented. Shaft sealing components (labyrinth seals)
determine the amount of leakage mass flow. In desigh mode, the desired mass flow is set
and the seal characteristics, like the nominal free cross-section (CAN), are calculated. In off-
design mode, the seal characteristics and the pressure difference between the inlet and the
outlet of the sealing determine the leakage quantity. To simulate the failure, the CAN value

is manipulated in the off-design mode (4-6).
CAN = CAN - (1 + FI-10) (4-6)

The leakage mass flow is directly proportional to the CAN value. Therefore, the leakage
guantity is varied from 1 to 11 times of the nominal mass flow, depending on the failure

impact. In normal mode (FI=0) leakage by design occurs.
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Figure 4-2: Steam turbine HP bowl to IP bowl leakage simulation
HRSG Fouling

The process of fouling directly affects the heat transfer coefficient (k) of the heat exchangers
in the HRSG. In the design mode, the heat transfer coefficient and the heat transfer area (A)
are calculated, resulting in the nominal heat transfer factor (KAN = k*A). This factor is

manipulated in the off-design mode to simulate the failure (4-7).
KAN = KAN - (1 —=FI-0.2) (4-7)

Let-down Leakage

For the leakage simulation, a shaft sealing component is utilized. The underlying
mathematics of a labyrinth seal enables a physical correct modulation (see Steam Turbine
HP Bowl to IP bowl leakage). The leakage mass flow depends on the present inlet pressure
and the sealing characteristics. Manipulation of the nominal free cross-section leads to a
variation of the leakage quantity (4-8). In Normal mode, no leakage occurs and therefore the

CAN value is set to zero.
CAN = CAN - (FI -10) (4-8)

The letdown steam is directly lead to the connected steam paths. Hence the implementation
of a spraying system is necessary to avoid temperature excursions in the downstream plant

sections.
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Figure 4-3: Letdown leakage simulation, shown on the example of the bypass for the LP section of the ST

Evaporator Blowdown Leakage

For the simulation of the evaporator blowdown leakage, a system that replicates the
physical characteristics of a shaft sealing was implemented. The above-described shaft
sealing component (see HP Bowl to IP Bowl Leakage) couldn't be used because of
convergence issues in the simulation process. Instead, a piping element was deployed. In the
design run, a nominal mass flow M1N was set. According to the nominal mass flow and the
appearing pressure drop between the drum and the ambient pressure, a mass flow in the
off-design simulation is calculated. By manipulating the M1N value the simulated leakage

mass flow can be changed (4-9).

M1N = M1N - (1 + FI - 1.5) (4-9)

—-I‘

Evaporator

Figure 4-4: Evaporator blowdown leakage simulation

ST Blade Erosion and Fouling

Blade erosion and fouling result in a degradation of the steam turbine efficiency. This
reduction is simulated by decreasing the performance factor on efficiency (PFETA) of the

turbine component (4-10).
PFETA = PFETA- (1 —FI-0.2) (4-10)
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ST Tip Clearance

An increasing tip clearance affects the flow conditions in the steam turbine and leads to an
increased flow capacity. The mass flow through a turbine is determined by its design
characteristics and the given pressure at the inlet and outlet. This relationship between
pressure and mass flow is manipulated in the off-design simulation by varying the
performance factor on flow (PFFLOW) of the turbine component (4-11). An increased

PFFLOW leads to a higher mass flow at the same pressure difference.
PFFLOW = PFFLOW - (1 + FI-0.2) (4-11)

ST LP Exhaust Loss

In the off-design mode, the exhaust loss of the LP steam turbine is a function of the annulus
exhaust velocity as the design characteristics are already set. The internal calculation of the
exhaust loss can be manipulated to simulate a change in the characteristic exhaust loss
behavior of the turbine (4-12). Eexnoss describes the calculated exhaust loss before the

manipulation.
Erxhross = Egxhioss * (1+FI-02)+FI-5 (4-12)

It should be noted that this modification can’t replicate an exact modulation of the exhaust
loss change through degradation. The applied manipulation simplifies a change in the

exhaust loss behavior which further shall be detected by the neural network.
Condenser Incondensable Gas Accumulation

Accumulation of incondensable gases in the condenser leads to an increase in LP turbine
back pressure. A separator component divides the stream coming from the LP turbine to the
condenser. The separator provides the option to have two independent pressure levels,
before and after that component. The value transmitter transfers the pressure level of the
condenser, passing the separator, to the LP output stream. Within the transmitter, the offset
pressure poffset can be defined. This offset represents the turbine back pressure increase (4-
13).

Poffser = FI-0.04 (4-13)

The unit of measurement for the pressure offset is bar. Therefore, the maximum offset to
the “faultless” condenser pressure equals 0.04 bar. Both the separator and the value
transmitter are turned off in design mode and only affect the off-design simulation if the

failure mode is activated.
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Figure 4-5: Condenser incondensable gas accumulation and hotwell subcooling simulation
Condenser Fouling and Scaling

Fouling affects the heat transfer coefficient of the condenser. The influence of this failure
mode is modeled like the HRSG fouling, by manipulation of the KAN value in the off-design
simulation (4-14).

KAN = KAN - (1 — FI - 0.4) (4-14)

Condenser Hotwell Subcooling

The method of simulation for hotwell subcooling is similar to the incondensable gas
accumulation (see Figure 4-5). But in this case, the temperature value is manipulated. A
separator divides the stream from the hotwell to the feedwater pump and a value
transmitter transfers the temperature of the hotwell, with an added offset, to the feedwater

stream.
TOffset = FI : 5 (4'15)

The unit of measurement for the offset is degrees Celsius. Therefore, Tofiset ranges from 0 °C
to 5 °C (4-15), and the failure mode Condenser Hotwll Subcooling will thus produce
condensate return temperatures that are lower by this offset compared to the operation of

the “faultless” equipment.

As some of the presented failure modes occur on all three pressure levels of the HRSG
components, their impact is simulated separately. Table 4-1 provides an overview of all

simulated failure modes and their assigned numbers for the simulation.

PAGE | 34



MODEL DESIGN

Table 4-1: Failure modes

Number Failure Mode EBSILON Label

0 Normal Mode Normal Mode

1 ST HP Bowl to IP Bowl Leakage N2 Leakage

2 Evaporator Blowdown Leakage Blowdown Leakage HP

3 Evaporator Blowdown Leakage Blowdown Leakage IP

4 Evaporator Blowdown Leakage Blowdown Leakage LP

5 HRSG Fouling HRSG Fouling HP

6 HRSG Fouling HRSG Fouling IP

7 HRSG Fouling HRSG Fouling LP

8 Let-down Leakage Letdown Leakage HP-CRH

9 Let-down Leakage Letdown Leakage HRH-Cond

10 Let-down Leakage Letdown Leakage LP-Cond

11 ST Blade Erosion and Fouling ST Blade Erosion/Fouling HP

12 ST Blade Erosion and Fouling ST Blade Erosion/Fouling IP

13 ST Blade Erosion and Fouling ST Blade Erosion/Fouling LP

14 ST Tip Clearance ST Tip Clearance HP

15 ST Tip Clearance ST Tip Clearance IP

16 ST Tip Clearance ST Tip Clearance LP

17 Condenser Incondensable Gas Cond Gas Accumulation
Accumulation

18 Condenser Fouling and Scaling Cond Fouling/Scaling

19 Condenser Hotwell Subcooling Cond Hotwell Subcooling
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20 ST LP Exhaust Loss ST LP Exhaust Loss

21 GT Compressor Fouling GT Compressor Fouling

22 GT Compressor Tip Clearance GT Compressor Tip Clearance
23 GT Expander Fouling GT Turbine Fouling

24 GT Expander Tip Clearance GT Turbine Tip Clearance

25 GT Filter Clogging GT Filter Clogging

4.4 Data Generation

Training the neural network to predict failure modes in CCPPs requires a large amount of

data, that represents the operation characteristics of the power plant over the entire range

of load and ambient conditions. The following listing represents the established workflow for

data generation:

l.
Il.
[l
V.
V.

VI.
VII.
VIII.

Implementation of the failure modes in the EBSILON model

Definition of the specification and result parameters in an Excel-file

Defining the minimum and maximum values for the specifications

Import of the models' input and output configurations in a Python Script

Creating equally distributed random values for the specification parameters within
the set boundaries

Creating normally distributed failure impact values

Transmission of the EBSILON model and the specifications to the ENEXSA server
Downloading the simulation results from the server and labeling the data with the

corresponding failure mode

Table 4-2 shows a listing of the specification parameters and simulation results. The gray

shaded values represent the input for the neural network. While the failure mode and failure

impact are specification values (i.e. inputs) in the Ebsilon simulation, the NN shall determine

the failure modes as results by “recognizing” a specific pattern in the simulated process data.
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Table 4-2: Model parameters

Name Type Unit Description
Ambient_Temp Specification °C Ambient temperature
Ambient_Pressure Specification Bar Ambient pressure
Ambient_Rel Hum Specification unitless Relative ambient humidity
Cool_Water _Temp Specification °C Condenser cooling water
temperature
P_Target GT Specification MW Gas turbine target power
Failure_Mode Specification unitless Chosen failure mode
Failure_Impact Specification unitless Failure Impact value
Gas_Massflow Result kg/s Inlet gas mass flow
GT_Gen_Power Result MW Gas turbine power generation
GT_FG_Temp Result °C Gas turbine flue gas exhaust
temperature
Comp_Out_Temp Result °C Compressor output temperature
Comp_Out_Pressure  Result °C Compressor output pressure
HRSG_HP_Temp Result °C HRSG HP stream temperature
HRSG_HP_Pressure Result bar HRSG HP stream pressure
HRSG_HP_ Massflow  Result kg/s HRSG HP mass flow
HRSG_HRH_Pressure  Result bar HRSG HRH stream pressure
HRSG_CRH_Temp Result °C HRSG CRH stream temperature
HRSG_CRH_Pressure  Result bar HRSG CRH stream pressure
HRSG_IP_Temp Result °C HRSG IP stream temperature
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HRSG_IP_Pressure

HRSG_LP_Temp

HRSG_LP_Pressure

ST_LP_OUT_Pressure

ST _Gen_Power

CW_OUT Temp

Cond_OUT_Temp

Result bar HRSG IP stream pressure

Result °C HRSG LP stream temperature

Result bar HRSG LP stream pressure

Result bar LP steam turbine output
pressure

Result MW Total generated power by the

steam turbines (HP, IP, LP)
Result °C Cooling water temperature after
the condenser
Result °C Condenser output condensate

temperature

Failure Impact Distribution

As degradation failures built up over time, detecting them at an early stage is beneficial.

Therefore, the NN was trained on an overweight of simulation runs with low failure impacts.

The failure impact values are normally distributed with a mean p of 0.3 and a standard

deviation o of 0.3 (Figure 4-6). Additionally, the absolute value of all results was calculated

and negatives were changed into positives. The resulting failure impacts above 1 were

assigned with a new value. This ensures that the majority of the data sets contain low failure

impacts, leading to high accuracy in this area.
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Figure 4-6: Histogram of failure impact distribution for 10,000 generated values
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Target Power Correction

The baseload capability of a gas turbine depends on ambient conditions and performance
level and thus is a result of the model simulation. Depending on the input for a target power
output the model decides whether the target can be achieved at current conditions or if the
target is beyond capabilities. Therefore, targeting to achieve the same ratio of part-load and
baseload simulations at different conditions requires a dependency of the target power
input and ambient conditions. Numerous calculations at baseload operation with varying
ambient specifications were processed to derive linear correlations which were then applied

as limits for the target power input for the data generation process.

4.4.1 Data Validation

The performance of neural networks depends on the quality of the underlying training data.
Hence data validation is a critical point before building a NN. The simulated data have thus
been validated to assure that the implemented failure modes on specific equipment impact

the power output of the turbines and the overall plant efficiency as expected.

For the validation process, data sets with a variation of the failure impact between 0 and 100
percent were generated. All other specification parameters were held constant. Figure 4-7
shows for instance the impact of the accumulation of incondensable gases in the condenser
on the power output of the steam turbines. The back pressure of the LP steam turbine
increases and reduces the pressure difference between turbine section inlet and exit that
can be utilized in the expansion process. Similarly, all failure modes have been investigated
on their impact either on the steam turbine power or the gas turbine power and the overall

plant efficiency.

134
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Figure 4-7: Effect of condenser incondensable gas accumulation on the power output of the steam turbines
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Further, the influence of the failure modes on all measured process parameters, which are
input values of the NN, was investigated. It was found that for example, condenser fouling
has a strong impact on the LP steam turbine outlet pressure and the condenser outlet
temperature (see Figure Appendix 2). For this analysis, all specification values were held
constant and only the failure impact was varied. The difference between the maximum and
the minimum value of each input parameter was calculated. The maximum relative impacts
of the failure modes were computed and merged into a heatmap (see Figure Appendix 1 and
Figure Appendix 2). This plot shows the characteristic pattern of each failure mode and its

influence on the power plant process measurements.

4.4.2 Data Preparation

Before the simulated data sets could be processed by the NN, certain preparation was
necessary. Each data set consists of over 30000 simulation runs (one run for every 15
minutes in a year with 8760 hours), representing the impact of one failure mode under
various ambient conditions. In total 25 failure modes have been implemented, resulting in
26 data sets (including one set for normal mode). These data sets were split into training and
testing sets. Afterward, the 26 training and 26 test sets were assembled into one large
training and one large test set. Each set contains input and output values for the NN. As the
units of measurements and the corresponding values differ among the input values, they
needed to be normalized. Each input value was divided by a defined maximum value, leading
to a data set of numbers between 0 and 1. The maximum values were set by searching for

the highest occurring values in the dataset for each input and rounding them up.

Each column of the data sets represents one simulation run and therefore one sample of NN
inputs plus the corresponding label for the simulated failure mode. After normalization, the
columns were shuffled to mix the failure modes and equally distribute them across the

whole set.

Subsequently, the data sets were utilized to build the failure mode predicting network. The
NN learned certain patterns by processing the training data set. Evaluation of the achieved

performance was carried out by feeding the test data set to the NN (see 4.5.2).

4.4.3 Measurement Noise Integration

EBSILON models deliver so-called clean data. The simulation follows mathematical
expressions and solves equation systems by iterating until a defined deviation limit is
reached. However, real-world measurements come with systematic and random errors.
Therefore, the applied methods of failure mode detection were tested and trained using

clean as well as noisy data.
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Random errors embody an unpredictable variation of the measurement value. They occur in
normally distributed patterns and can be minimized by taking the average of repeated
measurements over a certain period. Random errors were simulated by adding noise to the

input values of the network.

The noise was applied to the data sets after the normalization process. Each input value
received a random normally distributed deviation within defined 3-c intervals. Random
values outside the 3-o interval got a new value assigned. The 3-o limits of the distribution
were set according to measurement accuracies in CCPPs shown in Table 4-1. These values

are based on the long-term experience and knowledge of the experts of ENEXSA.

To test the influence of different levels of noise on the network performance, a noise factor
was introduced. The defined measurement accuracies were multiplied with the noise factor
and the applied error values changed accordingly. For example, a noise factor of 2.0 results
in a 2-times bigger maximum random error. The model in 5.1.3 was trained on data with an

applied noise factor of 1.0 and evaluated on data with noise factors between zero and 2.0.

Table 4-3: Measurement tolerances

Measured quantity Noise Factor Measurement Tolerance/

Max. Random Error

Temperature 1.0 +0.5%
Pressure 1.0 +0.5%
Mass flow 1.0 +1.5%
Power 1.0 +0.2%
Humidity 1.0 +1.0%

Systematic errors cause a constant bias from the true value. They can't be minimized with
statistical methods and have to be detected and corrected for affected measurements by
qualified engineers. This work assumes that systematic errors are identified and corrected in
measurement data preprocessing and evaluation. Hence systematic errors were not

implemented in the simulated data.
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4.5 Neural Network

Tensorflow and Keras provide access to an immense library of machine learning tools. The
library contains functions and classes for the required structures to build, train and test a
neural network. The following sub-chapters explain the utilized methods to construct the

failure mode predicting NN.

4.5.1 Building of the NN

The network itself is embodied by the so-called model. Inside the model, the structure of the
NN is defined. It contains all layers, neurons, connections, and the internal variables of the

network.
Input Layer

The input layer is the first layer of every network. It consists of one neuron for each input
value that is passed to the NN. Therefore, the shape of the input layer is equal to the length
of the input data vector. In this case, the first layer had 24 input values (gray shaded lines in

Table 4-2). In the first layer, no activation function was applied to the data.
Hidden Layers

From the input layer, the input values are multiplied with the weights and passed to the first
hidden layer. Keras provides various layer types that can be utilized as hidden layers. The

following list names just a few of them:

e Dense layers
e Convolution layers
e Pooling layers

e Recurrent layers

In this research work, only dense layers were employed. Convolutional and pooling layers
are used for computer vision applications and recurrent layers are an important component
for forecasting programs. However, the term “dense” relates to the connection method of
the neurons. A dense layer connects each neuron of the previous layer with each of its

neurons.

Within the hidden layer, the number of neurons and the applied activation function were

chosen. Defining a suitable number of hidden layers and neurons is discussed in 5.1.1.
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Activation Functions

For each hidden layer and the output layer, an activation function has to be chosen. The
activation function is applied to the weighted sum of each neuron (see 3.2.1). In the hidden

layers, the rectified linear activation function (ReLU) was used.

The RelLU function results in 0 if the input x is negative, otherwise, its output freLu(x) equals

the input (4-16). This was function was applied in all hidden layers.
freru (%) = max (0, x) (4-16)

In the output layer, the normalized exponential function (called Softmax) was used. The
output layer consists of N values, one value for each predicted class. As the investigated
classification problem for failure modes in CCPPs consists of 26 different failure modes
(including failure mode 0), the output vector has 26 output values. Each value z of the
output vector is exponentiated and normalized according to (4-17). [36]

e (4-17)
fSoftmax (z) = W
]

The Softmax function results in a vector representing the probability distribution among the
predicted classes. Each value of the vector ranges between 0 and 1, summing up to 1 in

total. The class with the highest probability represents the predicted class.

4.5.2 Training of the NN

After defining the NN structure with all layers, neurons and activation functions, the training

of the NN followed. The training process itself required the following settings:

The number of epochs defines how often the whole training dataset is passed through the
network before the training is finished. This number was set to 100,000 and above because
the implemented callbacks, which measure the progress of the fit, prevent the NN from

overfitting. The training was continued until no further improvement was measured.

The batch size was varied between 2000 and 4000. A smaller batch size decreases the
computing speed, but increases the training progress per epoch. A larger batch size leads to

faster computing but a decrease in progress per epoch.

The learning rate (LR) defines the step size in which the internal variables of the network are
adjusted in the backpropagation process. Setting an appropriate LR is critical for training a
NN. A high LR leads to unstable learning behavior, while a low LR slows down the training

process significantly. Keras provides a very useful tool to set a suitable learning rate, the
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learning rate scheduler (LRS). This scheduler was used to vary the learning rate during the
training process and to monitor the response of the training loss. The LR was slowly
increased in small steps after every epoch. Figure 4-8 shows that the learning rate reached a
point where the training process got unstable. Therefore, the LR was set slightly below the

unstable operation point to ensure a stable training process at a good training speed.
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Figure 4-8: Effect of the learning rate on the validation loss

The loss function calculates the difference between the predicted output and the actual
value. The goal of training the NN is to minimize this loss by adapting the internal variables
of the network. To compute a loss value for this multilabel classification problem, the
Sparse-Categorical-Crossentropy function was utilized. This function calculates the
difference between two probability distributions. In this work, the predicted probabilities
from the Softmax activation function of the output layer and the actual class were

calculated.

Before the training, the training data set was split up into a training set and a validation set.
The ratio between the number of training examples and validation examples was defined in
the validation split parameter. The network was trained on the training set and the
validation set was only used to check if the network still improves during the training
process. The calculated training loss was utilized by the optimizer to adjust weights and
biases, while the validation loss was used to monitor the progress of the training process. If

the training loss still decreases while the validation loss rises, overfitting occurs.

The optimizer is the applied algorithm for adjusting the internal weights and biases. In this
work, the adam optimizer is utilized. Besides weights and biases, this algorithm also adopts

the learning rate during the training process leading to an efficient learning process.
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Callbacks represent functions that are executed during the training process. These functions
can either be self-written scripts or certain library implementations. The above-mentioned
learning rate scheduler is one of them. The LRS was used in the first approach to find an
appropriate learning rate. In the training process, the EarlyStopping (ES) and
ModelCheckpoint (MC) functions were used. The ES algorithm compares the validation loss
of the current epoch with the best value achieved so far. If no improvement of the model
was achieved for a defined number of epochs, the training process stops and is finished.
Additionally, the MC algorithm saves the new model weights and biases if an improvement
occurs. With these two methods, the possibility of overfitting gets very low. Therefore, the
number of training epochs doesn’t have a huge impact on the model performance, because

the training stops before overfitting happens.

The parameters and settings mentioned above were initialized before the training itself

started. The training process was activated by applying the fit function to the model.

4.5.3 Performance Evaluation Process

As mentioned before, the initial simulation data sets for every failure mode were divided
into training sets and test sets and further merged into one large training and one large test
set. This enables the evaluation of the network with data it has never seen before.
Otherwise, the NN could just “remember” the training data without learning the
interdependencies between the input parameters and their resulting failure modes. The test

set was utilized for the following analyzing methods.

In the first approach, the performance of the neural network was evaluated concerning its
accuracy. This provided a quick insight if the trained network reaches acceptable accuracies
or if fundamental problems occur. An accuracy test was carried out by calling the evaluate
function for Keras models. The evaluate function simply processes the test data set and
returns the overall accuracy of the NN. For further investigation on the performance, the

confusion matrix for the NN was set up.
Confusion Matrix

To get predictions from the network the predict function from the Keras model was utilized.
The test data was passed to the model that returns a prediction matrix. Every column of the
matrix contains the probability values for one test example, visualized in Figure 4-9. As
mentioned before, the class with the highest probability represents the predicted failure
mode. The predicted result was compared to the actual value and the corresponding

confusion matrix entry was added. All test examples were passed through this procedure
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resulting in a complete confusion matrix. From this matrix, the precision and recall for the

individual classes and the whole network were derived following the equations in 3.2.2.

Threshold

The influence of a threshold on classification problems was shortly discussed in 3.2.2. The

following explanation provides a more detailed description of the threshold and its impact.

In Figure 4-9 an example of a probability distribution for a test sample is shown. Each bulk
represents the probability of the corresponding failure mode, listed in Table 4-1. In this case,
the threshold was set to 15 percent. Two values exceed this border and of course, the

highest value represents the predicted failure mode 15.
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Figure 4-9: Example of a prediction from the NN with applied threshold

If none of the probability values is high enough to pass the defined threshold, the predicted
output is set to failure mode 0. Failure mode O represents the normal operation mode. In
other classification problems, this mapping of all weak results (results with a probability
output below the threshold) on one defined other class wouldn't make sense. For example,
if we try to classify different animals and every time a weak result occurs we say the animal
is @ mouse. But in this case of failure mode prediction, the mapping of a weak result to
failure mode 0 has no impact on the real-life operation of the power plant. Because if no
failure mode occurs (= failure mode 0) or if the network predicts a failure mode with low
probability the result will be the same. The plant operator won't interfere. Therefore, every

weak result is mapped on failure mode 0.
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The second option of dealing with weak results would be to say the network can’t predict an
output with a high enough probability and therefore no classification is made at all. This
approach would lead to a biased representation of the network performance because only

simulation examples with a high output probability would be evaluated.

Setting a threshold directly affects the predictions of the network and therefore the resulting
confusion matrix for the classification task. With the change of false positive, true positive,
false negative and true negative results, also the performance parameters of the network
vary. Hence the accuracy, precision and recall of the NN are functions of the threshold. The
direct impact of the threshold on the results is explained by the following example. Failure
mode 12 was the actual class and the threshold was set to 60 percent. Figure 4-10 shows a
histogram of classifications in which any other failure than failure mode 12 was predicted.
Figure 4-11 shows a histogram of classifications in which failure mode 12 was predicted

correctly.
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Figure 4-10: Influence of the threshold on false predictions of the NN for FM 12

Impact on false (false negative) predictions: Every other prediction than failure mode 12
causes a false-positive result in another class. For example, if failure mode 10 is predicted
while failure mode 12 is present, failure mode 10 gets a false-positive result in the confusion
matrix. With the specified threshold, all false-positive predictions that showed an output
probability of less than 60 percent are mapped to failure mode 0. Because every prediction
with a weak result gets mapped to normal mode. This leads to a reduction in false positives
at all failure mode classes except for failure mode 0. All predictions with a probability above
the threshold (FM XY in Figure 4-10) still cause false-positive results at the predicted failure

modes.
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Figure 4-11: Influence of the threshold on correct predictions of the NN for FM 12

Impact on correct (true positive) predictions: All true positives which were predicted with a
probability below the threshold are mapped to failure mode 0, causing a small decrease of
true positives for failure mode 12. The results above the threshold still represent true
positive predictions for failure mode 12. The optimum threshold value is thus a compromise
between false positives for failure modes other than the actual and false negatives for this

failure mode.
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5 RESULTS

In this chapter, the results of the different network configurations are evaluated. The
influence of the training data and the hyperparameters on the model performance is shown.
The optimized model was tested on clean and noisy test data. Finally, the performance on

two active failure modes was evaluated.

5.1 NN Model

All models were initially trained on datasets with an equal number of training examples for
each failure mode. The upper and lower limits for the specification values of all simulation

runs are shown in Table 5-1.

Table 5-1: Specification limits

Specification Unit Lower Limit Upper Limit
Ambient_Temp °C 5.0 45.0
Ambient_Pressure bar 0.95 1.05
Ambient_Rel Hum unitless 0.0 1.0
Cool_Water Temp  °C 10.0 20.0
P_Target GT MW 100 450
Failure_Mode unitless 0 25
Failure_Impact unitless 0.0 1.0

In a first attempt, a model with three hidden layers (128 Neurons, 64 Neurons and 32
Neurons) and RelU activation functions was trained. This model reached an overall accuracy
of 84 % until no further progress could be achieved. This result served as the benchmark for

further improvements.
First Evaluation

To find areas in which the model performed poorly, the predictions for every failure mode

were investigated. The model was tested on the test data set which contains 5000 samples
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for each failure mode. The number of correct and false predictions for every failure mode

showed in which cases the network didn't perform well.

After the identification of classes with low prediction accuracy, the reason for the
underperformance was evaluated. Figure 5-1 shows the prediction for the active failure
mode 7. This failure mode was often mistaken for failure mode 4, because these two failure
modes have similar impacts on the measurements in the power plant. They both affect the
low-pressure section of the HRSG. Their influence as well as the impact of all other failure
modes on the process parameters of the CCPP can be seen in the heatmap (Figure Appendix
1 and Figure Appendix 2). This confusion between FM 4 and FM 7 reveals one limitation for
the failure mode predictions with NNs. If failures have nearly the same impact and the
relative impact is low, the NN may not be able to differentiate between them with high
accuracy. Nevertheless, the NN could predict that one of the similar failures was present and

hence the location of the failure was limited.
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Figure 5-1: Predicted failure modes in 5000 examples for the actual active failure mode 7

The heatmap also shows that some of the failures have a higher impact on the plant
operation than others. Failures with a severe influence were detected with higher accuracy
and the result vector showed higher probability values. Cases with low impact also lead to
weaker probability results and more false predictions. For example, gas turbine filter
clogging (failure mode 25) leads to more false predictions than condenser gas accumulation

(failure mode 17) which has a greater impact on the input values of the NN.

5.1.1 Optimization

After the first round of training and testing the model, areas of underperformance and the

reasons were identified. Subsequently, methods for performance optimization were applied.
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These methods were divided into two categories: Data Structure Optimization and

Hyperparameter Tuning.
Data Structure Optimization

The neural network highly depends on the quality of the training data. As mentioned before,
each failure mode was represented by the same amount of examples in the training data set.
In the above-described evaluation, the failure modes with low prediction accuracy were
identified. To increase the model performance particularly on these failure modes, more
training data with these failures were generated. The new examples were mixed with the old
training set. Therefore, a surplus of hard-to-predict failure mode samples was created, to

train the model specifically in these areas.

The specification values for all false predictions were plotted (see Figure Appendix 3). An
interface in which the investigated failure mode can be chosen was programmed. For the
desired failure mode all false predictions under the specification values are displayed.
Hence, circumstances that lead to a higher number of false predictions could be identified.
The overhead on training data was then created in exactly these areas. For example: If one
failure mode showed more false predictions on higher temperatures, then training examples

for high temperatures were generated.
Hyperparameter Tuning

Besides the training data for the classification problem, the structure of the neural network
and its corresponding hyperparameters were optimized. The performance of combinations
of different batch sizes, activation functions, number of hidden layers and neurons within
them was evaluated. As it would take enormous amounts of time to configure each
combination of hyperparameters per hand and evaluate them afterward, the Scikit-learn
library (see [44]) was utilized. This library provides the GridSearchCV class which enables the
automated training and testing of all defined hyperparameters and their possible

combinations. Table 5-2 shows the tested hyperparameters.

Table 5-2: Hyperparameter test configurations

Hyperparameter Tested Configurations
Batch Size 1000, 2000, 3000
Activation Functions RelLU, Sigmoid

One Hidden Layer (128); (256); (512);
(Neurons) (1024)
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Two Hidden Layers
(Neurons)
Three Hidden Layers

(Neurons)

Four Hidden Layers

(Neurons)

(256, 128); (512, 64);
(512, 128); (512, 256);
(64, 64, 64); (128, 64,
32); (128, 64, 64);
(128, 128, 128); (100,
80, 50); (512, 256,
128)

(64, 64, 64,64)

The GridSearchCV function divided the training data set into five subsets and trained the

model in each step on four of the subsets. The remaining set was used to test the

performance. This procedure was continued until each set had been used as the test set. For

each combination of sets, a test score was calculated. The five test scores were then used to

calculate the mean test score for the investigated model. The mean test score is equal to the

mean overall accuracy of the model. This procedure was carried out for all mentioned

combinations of hyperparameters. Then, the different models were ranked by the mean test

score which measures the achieved prediction performance. The five best combinations of

hyperparameters are documented in Table 5-3. Each model was trained for 2000 epochs.

Table 5-3: Best hyperparameter combinations

Rank Hidden Batch Size Activation Mean Test Score
Layers Function

1 (512) 2000 ReLU 0.742

2 (1024) 1000 ReLU 0.736

3 (512) 1000 ReLU 0.734

4 (1024) 2000 ReLU 0.731

5 (256) 1000 ReLU 0.721

The best configuration of hyperparameters ranked on number one (One hidden layer with

512 neurons, batch size of 2000 and the RelLU activation function), was used for all further
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models. It should be noted that neural networks are probabilistic models and the weights
are initialized randomly at the beginning of the training process. Therefore, a variation in the
achieved performance occurs after every new training process, even if the same

hyperparameters are applied.

With the above-described methods of data structure optimization and hyperparameter

tuning the following performance of clean data and noisy data models was achieved.

5.1.2 Clean Data Model

The above-mentioned methods were utilized to build a model that was trained and
optimized on clean data. This clean data model was created to evaluate the efficiency of the

performance-enhancing methods and to see which prediction performance can be reached.

The neural network structure was set up according to the best-ranked model found with
hyperparameter tuning. It was trained on the optimized training data. As the model name
indicates, no noise was added to the training data. However, the performance evaluation

was carried out on clean and noisy test data with 5000 examples for each failure mode.
Performance on Clean Test Data

Figure 5-2 shows the prediction results of the clean data model on the clean data test set.
For every failure mode, the correct predictions (blue bulks) and the false predictions (orange

bulks on top of the blue bulks) were plotted as the percentage of the test examples.
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Figure 5-2: Correct(blue) and False(orange) predictions for every class; Clean data model and clean test data

The model achieved an overall accuracy of 93.4 %, an overall precision of 94.9 % and an
overall sensitivity of 93.4 %. Table Appendix 1 shows the precision and sensitivity values for

each failure mode. The model performed very well at most classifications, except for failure
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mode 0 (normal mode). Although failure mode 0 was predicted correctly in 98.5 % of the
cases, its precision only reached 53.1 % (see Table Appendix 1). The low precision value is
caused by test examples of other failure modes with a low failure impact. These examples
lead to a high number of false positives for failure mode 0 (see 4.5.3). This result indicates
that failure modes are more effectively detected when they reach a higher level of impact on
the power plant operation and therefore on the input values of the NN. To prove this
assumption, the model was tested again on 5000 examples for each class, but with failure
impact values from 5.0 % to 100 %. The resulting correct and false predictions are shown in

Figure 5-3.
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Figure 5-3: Correct(blue) and False(orange) predictions for every class; Clean data model and clean test data
with FI > 5%
As expected the precision for failure mode 0 increased. It grew from the previously achieved
53.1 % to 86.3 %, because of fewer false positives for this class caused by excluding samples
with a Fl greater than 5 %. Samples with a low Fl are more often mistaken for a plant
operation without any failure and hence lead to false positives for failure mode 0. Besides
the precision for failure mode 0, the overall accuracy (97.1 %), overall precision (97.2 %) and
the overall sensitivity (97.1 %) were improved. Table Appendix 2 shows the results of the

test with failure impact values above 5.0 %.

The improvement in performance parameters shows that the probability to detect a failure

mode increases with its failure impact.
Performance on Noisy Test Data

It could be shown that the clean data model performs well on clean test data. Subsequently,

this model was tested on noisy test data, to simulate conditions under real-life applications
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with random measurement errors. The noise factor was set to 1.0, hence errors in the range
of Table 4-3 have been applied to the test data. Figure 5-4 shows the prediction results for

each failure mode of the noisy test data set.
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Figure 5-4: Correct(blue) and False(orange) predictions for every class; Clean data model and noisy test data

The model achieved an overall accuracy of 55.2 %, an overall precision of 51.5 % and an
overall sensitivity of 55.2 %. This means a decrease in accuracy of 38.2 %, a decrease in
precision of 43.4 % and a decrease in sensitivity of 38.2 % regarding the results on clean test
data. The performance parameters for each class are documented in Table Appendix 3. This
result shows that the clean data model was fit perfectly to the clean training data, but
couldn’t handle noisy measurements. For example, failure mode 0 wasn't even correctly
identified once because the model is very sensitive to the small deviations in the input data
created by the noise. Therefore, failures were predicted when failure mode 0 was the actual

class. Figure 5-5 shows the predicted classes when failure mode 0 was present.
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Figure 5-5: Predictions for an actual failure mode 0
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In conclusion, the clean data model can't be used for real-life applications because of the
occurring measurement errors and the overfitting of the model on clean data. Hence, the

noisy data model was built.

5.1.3 Noisy Data Model

The noisy data model was trained on a data set with an applied noise factor of 1.0. The
network structure was set up according to the best model found with hyperparameter
tuning (see 5.1.1). The following results were achieved on a test data set with a noise factor
of 1.0, except for the evaluation regarding the influence of different noise factors on the
precision of the model. Figure 5-6 shows the correct and false predictions for each failure

mode.
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Figure 5-6: Correct(blue) and False(orange) predictions for every class; Noisy data model and noisy test data

An overall accuracy of 71.3 %, an overall precision of 71.2 % and an overall sensitivity of
71.3 % was achieved. The noisy data model performed much better on the noisy data set
than the clean data model, showing an increase in accuracy of 16.1 %, an increase in
precision of 19.7 % and an increase in sensitivity of 16.1 %. This model was more tolerant of
random errors because it was already trained on data with noise. Nevertheless, failure
modes with a small impact on the plant operation, like FM 1, 2, 3, 4, 20 and 25, were still
detected with low precision and sensitivity. This was caused by the noise which leads to
deviations near the maximum impact of these failure modes. Hence confusion in the
prediction between the mentioned failure modes occurred. For example, failure mode 1 was
often mistaken for others (Figure 5-7), because of its small relative impact on the input

values of the network.
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Figure 5-7: Predictions for an actual failure mode 1

Effect of Setting a Prediction Threshold

For further improvements, a threshold for the prediction probabilities was introduced. It
should be noted that for the previously shown results, the threshold was set globally at the
same level for every failure mode classification. Every result with a probability below the
threshold value was mapped to failure mode 0, as explained in 4.5.3. The performance
parameters were directly affected by the threshold. The resulting impact on the precision
and sensitivity is shown in Figure 5-8 on the example of failure mode 6. The threshold
reduced the number of true positive predictions but decreased the number of false-positive

predictions stronger, leading to increased precision and a decreased sensitivity.
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Figure 5-8: Dependence of sensitivity and precision on the threshold value
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As mentioned before, the goal was to build a network with high precision for detecting
failures. Therefore, the threshold value was tuned to achieve high precision for the cost of
lower sensitivity. A precision value of 80.0 % and above, while keeping the number of TP
predictions also over 80.0 % of the level with no threshold and hence providing good

sensitivity, embodies an acceptable network performance.

The mapping of results below the threshold towards FM 0 reduced the precision for
detecting FM 0 and the overall accuracy. The decreased precision for the FM 0 class is not a
problem because the goal is to predict failures and not the normal plant operation. Hence

the performance of the model was measured on the overall precision, excluding FM 0.

The increased precision for FM 6, shown in Figure 5-8 is caused by a reduction in false-
positive results for this class. But with a higher threshold value, the true-positive results also
decline (see Figure 5-9). Therefore, the threshold shouldn't be set too high, to keep the

number of true positive predictions at an acceptable level.
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Figure 5-9: Number of TP predictions for failure mode 6 as a function of the threshold

A high precision value doesn’t indicate good performance if the number of true positive
values falls to near zero. This shows the importance of observing the declining number of

true-positives together with the improvement in precision to find a suitable threshold value.

To evaluate the influence of the threshold on the model performance, the precision of the
model was plotted as a function of the threshold value for test data with a noise factor of 1.0

(see Figure 5-10). Results for FM 0 were excluded.
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Figure 5-10: Overall precision without FM 0 for a noise factor of 1.0

It was found that precision can be significantly improved by setting the threshold high
enough. This leads to the conclusion that predictions with high probability values also result
more likely in true positives. Therefore the probability output of the model is not only a
numerical result but also an indicator for the actual probability for the occurrence of a

failure.

The small drop at a threshold of 0.4 is caused by the fewer number of true positives. The
reduction of true positive predictions mainly affects the failure modes with a low impact on
the input values of the NN. Additionally to the overall precision the total number of true
positive predictions for all failure modes, excluding failure mode 0, is plotted (see Figure
5-11). This graphic shows the discussed effect of a higher threshold on the true positive

predictions for all classes.
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Figure 5-11: Number of overall TP predictions as a function of the threshold without FM0O
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Impact of Different Noise Levels

The noisy data model was tested on different noise levels to investigate the influence of

measurement accuracy on the models' precision. Figure 5-12 shows the precision for a noise

factor of 0.5 and Figure 5-13 the precision for a noise factor of 2.0.

A higher noise factor leads to more false-positive predictions between the failure modes and

therefore to less precise results. With the high noise factor, failure modes with a small

impact on the plant operation couldn’t be predicted well. Hence a decrease in the overall

precision occurred. Failures with a severe impact on the power plant and a high probability

results were still predicted precisely, which lead to increasing overall precision at higher

threshold values.
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Figure 5-12: Overall precision without FM 0 for a noise factor of 0.5
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Figure 5-13: Overall precision without FM 0 for a noise factor of 2.0
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5.1.4 Test on Two Active Failure Modes

The results above showed the performance of the model for detecting one activated failure
mode at a time. The following evaluation deals with the response of the noisy data model on
two activated failures. The possibility to detect more failures at once with a model that was
trained only on single failures was tested. For this evaluation certain combinations of failure
modes were chosen, as it was impossible to test all combinations of the 26 classes in a

reasonable time.

The performance of the model on two failure modes is shown in the example of GT
compressor fouling (FM 21) and GT turbine fouling (FM 23). These two specific failure modes
were chosen because they have a similar impact on the plant operation (see Figure Appendix
1). This test should show if the network can detect both failure modes simultaneously or if
the network only predicts one of them. The specification values for the generated test data
set were set according to Table 5-1. The only difference to the examples above was the
activation of a second failure mode and a corresponding failure impact. The failure impacts

for the two failures were set according to the distribution explained in 4.4.
Performance on Clean Test Data

Initially, the model was tested on clean data. Figure 5-14 shows the results of a prediction
with a failure impact of 9.73 % for FM 21 and a failure impact of 14.43 % for FM 23.
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Figure 5-14: Predicted probabilities for the actual active classes FM 21 (FI = 9.73%) and FM 23 (Fl = 14.43%)

Although the failure impacts were set to a low level, the two active failures were predicted
correctly. The failure with the higher Fl value was predicted with a higher probability, which

presents a beneficial behavior since the failure with the highest impact should be detected
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first to enable a fast intervention in real-life applications. Besides the active failure modes,

FM 25 and FM 24 were incorrectly predicted, but with a small probability.

Figure 5-15 shows that higher failure impacts values (FI 21 = 17.91 % and Fl 23 = 40.12 %)
lead to more precise predictions. In this case, the probability values for other classes were

negligible.
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Figure 5-15: Predicted probabilities for the actual active classes FM 21 (FI = 17.91%) and FM 23 (FI = 40.12%)

In Figure 5-16 the total number of predictions for each failure mode for all 5000 test
examples is plotted. The majority of predictions resulted in the actual classes FM 21 or FM
23. Besides the actuals failure modes, FM 25 was predicted in a few cases in which both

failure impacts FI 21 and FI 23 were on a low level.
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Figure 5-16: Predicted failure modes for the actual active classes FM 21 and FM 23 on clean test data

Additional to the combination of FM 21 and FM 23 which show similar impacts on the input

value of the NN, the following combinations were tested:
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e FM 5 (HRSG Fouling HP) and FM 18 (Condenser Fouling/Scaling)
e FM 9 (Letdown Leakage HRH-Condenser) and FM 22 (GT Compressor Tip Clearance)
e FM 17 (Condenser Gas Accumulation) and FM 21 (GT Compressor Fouling)

The total number of predictions for these combinations is shown in Figure Appendix 4,
Figure Appendix 5 and Figure Appendix 6. The failure modes which were predicted with
more precision in the single failure mode evaluation were also detected more often when

two failure mode were activated.
Performance on Noisy Test Data

Additionally to the clean test data results, the performance of the model was tested on a
noisy test data set with a noise factor of 1.0. Again FM 21 and FM 23 were chosen to enable
a direct comparison with the results on clean test data. The noise for all measurements was
applied randomly as discussed in 4.4.3. Therefore, only the total number of predictions for

all examples was plotted (see Figure 5-17).
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Figure 5-17: Predicted failure modes for the actual active classes FM 21 and FM 23 on noisy test data

The evaluation of single prediction examples wouldn't show the overall impact of noise on

the model performance, because the value of noise differs between all test samples.

Additionally to the total number of predictions, the overall predicted probability for the
failure modes was investigated. Figure 5-18 shows that the actual failure modes 21 and 23

were predicted with a high probability.
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Figure 5-18: Mean overall probability for every failure mode for actual active classes FM 21 and FM 23 on
noisy test data
The applied noise on the data set only showed a small effect on the performance of the
model. The activated failure modes were predicted in most cases correctly and the number
of false predictions only slightly increased. This leads to the conclusion that the combined

effect of the two failure modes on the plant operation outweighs the disruption of the
applied noise to a certain extend.

This evaluation of the noisy data model on two failure modes indicates that a network that

was trained on single activated failure modes is also able to predict at least two failure
modes at a time.
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6 CONCLUSIONS

In this work, a failure detecting neural network for a CCPP was created based on simulated
process data. The model shows the potential of automated failure prediction from process
parameters in CCPPs. The trained neural network is capable of recognizing various
degradation failure modes by identifying their characteristical impact on the measured

process parameters in the plant.

The utilized performance-enhancing methods showed a significant impact on the models'
prediction capabilities and thus represent a valuable tool for optimizing neural networks.
The resulting model achieved high prediction precision for the majority of the investigated
failure modes. Degradation failures with a high impact on process parameters were

expectedly recognized with higher precision than low impact failures.

Additionally, limitations in prediction accuracy caused by measurement noise were analyzed
to evaluate the potential of an application of neural networks derived from “clean”
simulated data in real-life applications. The applied random errors lowered the prediction
capabilities especially for failures that have a low impact on the plant operation. In
conclusion, the measurement noise of sensors in real-life applications requires applying
noise to the simulated training data as well. Otherwise, overfitting to clean simulated data

occurs which decreases the prediction performance.

Although the neural network was trained on examples with one activated failure mode at a
time only, the model was also able to detect multiple simultaneously activated failures. Its
capability to perceive at least two present failure modes was demonstrated for

combinations of two selected failure modes.

In conclusion, neural networks based on simulated process data provide a promising

opportunity for automated failure predicting systems in the future.
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7 OUTLOOK

The introduced workflow using Python scripts and the described methods in the field of
artificial neural networks may serve as a basis for the future development of applications for
failure identification and detection under real plant operating conditions. The statistical
evaluation methods of the NN model performance are suitable for benchmarking upcoming

failure mode predicting neural networks in CCPP applications.

As the next stage of development, the presented methods shall be tested on existing power
plants. This requires the generation of thermodynamical models of selected plants which
must be capable to reflect the plants operating characteristics. Although the process of
modeling real plants, failure modes, generating training data and creating neural networks
follows the steps described in this work, several additional steps of preprocessing online
measured plant data will be necessary before such data can be successfully used for failure
detection. For example, systematic measurement errors need to be taken care of, e.g.
through data reconciliation techniques and steady-state criteria which must be defined to
assure stable plant operation during evaluation periods. Additionally, random errors shall be
minimized by applying adequate averaging and outlier treatment processes for every

measurement.

For further improvement of the prediction accuracy, an individual threshold for every
investigated failure mode may be applied. Optimal threshold values for every class will help

operators to recognize the right moment of intervention to initiate maintenance activities.
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Figure Appendix 1: Heatmap for the relative impact (scale up to 2%) of every failure mode on the process

parameters
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Figure Appendix 2: Heatmap for the relative impact (scale up to 15%) of every failure mode on the process

parameters
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Table Appendix 1: Result of clean data model and clean test data

Failure Mode Precision Sensitivity
0 0.531 0.985
1 0.987 0.894
2 0.986 0.870
3 0.917 0.866
4 0.774 0.790
5 0.999 0.986
6 0.997 0.965
7 0.901 0.821
8 0.999 0.979
9 1.000 0.991
10 1.000 0.986
11 0.996 0.983
12 1.000 0.984
13 0.976 0.881
14 0.998 0.985
15 1.000 0.994
16 1.000 0.985
17 1.000 0.996
18 1.000 0.989
19 1.000 0.989
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20

21

22

23

24

25

Overall

0.885

0.967

0.974

0.997

0.993

0.806

0.949

0.892

0.808

0.854

0.956

0.962

0.892

0.934

Table Appendix 2: Result of clean data model and clean test data (FI>5%)

Failure Mode  Precision Sensitivity
0 0.863 0.984
1 0.998 0.973
2 0.989 0.933
3 0.925 0.944
4 0.845 0.841
5 0.999 1.000
6 1.000 1.000
7 0.880 0.886
8 1.000 1.000
9 1.000 1.000
10 1.000 1.000
11 1.000 1.000
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12 1.000 1.000
13 0.969 0.961
14 1.000 1.000
15 1.000 1.000
16 0.999 1.000
17 1.000 1.000
18 1.000 1.000
19 1.000 1.000
20 0.958 0.954
21 0.962 0.893
22 0.981 0.923
23 0.998 0.998
24 0.997 0.999
25 0.897 0.951
Overall 0.972 0.971

Table Appendix 3: Result of clean data model and noisy test data

Failure Mode Precision Sensitivity
0 0.000 0.000
1 0.175 0.099
2 0.197 0.196
3 0.137 0.045
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0.117

0.409

0.479

0.383

0.640

0.493

0.639

0.786

0.517

0.967

0.458

0.645

0.607

1.000

0.797

0.822

0.490

0.672

0.966

0.401

0.375

0.209

0.004

0.798

0.491

0.371

0.785

0.950

0.901

0.797

0.846

0.800

0.788

0.963

0.936

0.961

0.860

0.901

0.063

0.588

0.119

0.492

0.468

0.123
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Overall

0.515

0.552

Table Appendix 4: Result of noisy data model and noisy test data

Failure Mode  Precision Sensitivity
0 0.192 0.318
1 0.273 0.252
2 0.359 0.425
3 0.218 0.075
4 0.177 0.108
5 0.778 0.836
6 0.665 0.703
7 0.571 0.660
8 0.897 0.871
9 0.953 0.955
10 0.956 0.921
11 0.881 0.885
12 0.835 0.855
13 0.977 0.872
14 0.816 0.905
15 0.967 0.962
16 0.956 0.946
17 0.996 0.989
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Overall

0.940

0.975

0.448

0.870

0.848

0.721
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0.445

0.712
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Figure Appendix 4: Predicted failure modes for the actual active classes FM 17 and FM 21 on clean test data
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Figure Appendix 5: Predicted failure modes for the actual active classes FM 5 and FM 18 on clean test data
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Figure Appendix 6: Predicted failure modes for the actual active classes FM 9 and FM 22 on clean test data
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