
Chair of Information Technology

Master's Thesis

Online Anticipatory Algorithms for
Scheduling Problems

Simon Erler, BSc
February 2021

Abstract

This work considers an online packet scheduling problem where packets arrive
independently over a discrete time horizon and the goal is to minimize the
cumulative weighted packet loss. The significant challenge of this problem is
that the arrival model is not known in advance and may underlie dynamic
changes. An important practical application of this setting is the scheduling
of arriving IP packets in computer networks.

The focus lies on the definition of online anticipatory algorithms that
achieve an improvement over the oblivious approach of the greedy algorithm
when scheduling requests in an uncertain, dynamic environment. The con-
cept of anticipation is developed in this context by incorporating information
of the environment’s history to predict certain aspects of the future.

Two distinct approaches are presented within the scope of this work:
reinforcement learning and online stochastic combinatorial optimization. The
theoretical background of both concepts is discussed in detail and the perfor-
mance of the developed algorithms is analysed on the online packet scheduling
problem.

The experimental analysis shows that online stochastic combinatorial
optimization yields the smallest cumulative weighted loss in any setting if the
input distribution is modelled by Markov chains. However, it also requires
the significantly largest runtime for each decision. To cope with a non-
Markovian environment, first a conservative approach for the Q-learning
algorithm is proposed that compared to the greedy algorithm achieves a
significant improvement for the 2-class and 3-class problem. When more
packet classes are present, the classical Q-learning algorithm has been found
to be the best approach. However, it was not able to outperform greedy for
the n-packet problem within the simulated time horizon, for n ≥ 4.

i

Kurzfassung

Diese Arbeit befasst sich mit einer Variante des Online-Packet-Scheduling-
Problems, wobei Pakete unabhängig voneinander über einen diskreten Zeit-
horizont eintreffen und das Ziel in der Minimierung des kumulierten ge-
wichteten Paketverlustes liegt. Die Herausforderung des Problems besteht
hauptsächlich darin, dass der Ankunftsprozess nicht bekannt ist und dynami-
schen Veränderungen unterliegen kann. Eine wichtige praktische Anwendung
ist die Allokation von eintreffenden IP-Paketen in Computernetzwerken.

Der Fokus liegt in der Untersuchung von Online-Anticipatory-Algorith-
men, die im Vergleich zum Greedy Algorithmus eine Verbesserung der Al-
lokation in einer unbekannten, dynamischen Umgebung erreichen. Beobach-
tungen aus der Vergangenheit werden dazu verwendet, Prognosen für die
Zukunft zu erstellen, um ein vorausschauendes Handeln zu ermöglichen.

Im Rahmen der Arbeit werden zwei Ansätze vorgestellt: Reinforcement
Learning und Online Stochastic Combinatorial Optimization. Der theoreti-
sche Hintergrund beider Konzepte wird genau erklärt und die Performance
der entwickelten Algorithmen wird anhand des Online-Packet-Scheduling-
Problems analysiert.

Die durchgeführten Experimente zeigen, dass Online Stochastic Combi-
natorial Optimization den geringsten gewichteten kumulierten Paketverlust
liefert, wenn der Ankunftsprozess durch Markov-Modelle beschrieben wird.
Allerdings benötigt dies auch die signifikant größte Laufzeit für jede Ent-
scheidung. Für den Fall, dass die Markov-Annahme nicht gilt, wird zuerst
eine konservative Q-Learning-Strategie vorgeschlagen, welche im Vergleich
zu Greedy eine deutliche Verbesserung für das 2-Klassen- und 3-Klassen-
Problem erreicht. Für mehr als drei Klassen ist der gewöhnliche Q-Learning-
Algorithmus besser geeignet. Jedoch konnte für diesen Fall keine Verbes-
serung gegenüber Greedy innerhalb des simulierten Zeithorizontes erreicht
werden.

ii

Acknowledgements

I wish to thank, first and foremost, the Chair of Information Technology and
my supervisor Dr. rer. nat. Ronald Ortner for his guidance and assistance.
Furthermore I want to thank Univ.-Prof. Dr. Peter Auer for his interesting
lecture in Machine Learning, which was very helpful when approaching the
topic of reinforcement learning.
At last I want to thank my parents for enabling my studies and for supporting
me in all my decisions.

Danksagung

Ich möchte mich an dieser Stelle als erstes am Lehrstuhl für Informations-
technologie bedanken, sowie bei meinen Betreuer Dr. rer. nat. Ronald Ortner
für seine Anleitung und Hilfestellung.
Weiters bedanke ich mich bei Univ.-Prof. Dr. Peter Auer für seine interessan-
te Lehrveranstaltung zum Thema Maschinelles Lernen, welche sehr hilfreich
beim Herangehen des Themas Reinforcement Learning war.
Zuletzt gilt mein besonderer Dank meinen Eltern, die mir mein Studium
ermöglichen und mich in all meinen Entscheidungen unterstützt haben.

iii

Contents

1 Introduction 1
1.1 Online Algorithms . 2

1.1.1 Competitive Ratio . 3
1.1.2 Regret Minimization 4

1.2 Online Scheduling . 4
1.3 Anticipation . 5

2 Online Stochastic Optimization 7
2.1 Stochastic Programming . 7
2.2 Stochastic Combinatorial Optimization 8

2.2.1 Sampling Future Tasks 9
2.2.2 Anticipativity Assumption 9

2.3 Online Anticipatory Algorithms 11

3 Reinforcement Learning 12
3.1 Finite Markov Decision Processes 13

3.1.1 Reward Signal and Return 14
3.1.2 Optimal Value Function 14

3.2 Q-Learning . 15
3.3 Exploration and Exploitation 16

3.3.1 Epsilon Greedy . 17
3.3.2 UCB-1 . 17

3.4 Non-Markovian Observations 18
3.4.1 Conservative Q-Learning 18
3.4.2 Belief States . 19

4 Online Packet Scheduling 20
4.1 Problem Definition . 20
4.2 Offline Optimization . 21

4.2.1 Postprocessing . 23
4.3 Oblivious Online Packet Scheduling 24

v

CONTENTS vi

4.3.1 Greedy Algorithm . 24
4.3.2 Local Optimization . 25

4.4 Anticipative Online Packet Scheduling 26
4.4.1 Expectation Algorithm 27
4.4.2 Consensus Algorithm 29
4.4.3 Regret Algorithm . 30
4.4.4 Q-Learning Algorithm 33
4.4.5 Conservative Q-Learning Algorithm 34
4.4.6 Q-Learning Algorithm with Belief States 35

5 Learning Input Distributions 37
5.1 Hidden Markov Models . 38

5.1.1 Forward and Backward Algorithm 39
5.1.2 Baum-Welch Algorithm 40
5.1.3 Precision Range and Scaling 43

5.2 Historical Averaging . 44
5.3 Historical Sampling . 45
5.4 Machine Learning . 46

6 Experimental Analysis 48
6.1 Experimental Setting . 49
6.2 Oblivious Algorithms . 50
6.3 Stochastic Optimization Algorithms 51
6.4 Reinforcement Learning Algorithms 54

7 Conclusion 57

List of Figures

1.1 Optimal Decision Sequence with Anticipative Behaviour . . . 5

3.1 Reinforcement Learning Scenario 12

4.1 Offline Optimization Algorithm O 22
4.2 Postprocessing Step of the Offline Optimal Solution 23
4.3 Online Greedy Algorithm G 25
4.4 Online Local Optimization Algorithm L 25
4.5 Generic Online Algorithm A 26
4.6 Expectation Algorithm E . 27
4.7 Consensus Algorithm C . 29
4.8 Regret Algorithm R . 30
4.9 Suboptimality Approximation Regret Calculation 32
4.10 Q-Learning Algorithm RL . 33
4.11 Conservative Q-Learning Algorithm RLC 35

5.1 Generic Online Algorithm A′ with Learning 38
5.2 Algorithm for Learning Hidden Markov Models 42
5.3 Implementation of Historical Averaging 45
5.4 Implementation of Historical Sampling 46

6.1 Experimental Model of the Packet Arrival 49
6.2 Comparison of Greedy G and Local Optimization L 50
6.3 Effect of the Postprocessing step in the Online Framework . . 51
6.4 Comparison of the Stochastic Optimization Algorithms 52
6.5 Sampling Methods for the Stochastic Optimization Algorithms 53
6.6 Initial Exploration Loss on the 3-Class Problem 54
6.7 Comparison of the Reinforcement Learning Algorithms 55

vii

Chapter 1

Introduction

Traditional optimization systems generally have focused on a priori optimiza-
tion and have therefore not been able to react to disturbances or unexpected
events. The progress in optimization over the last decades however enables
advanced optimization techniques that collect data in real time and adap-
tively improve their decisions [1]. Online algorithms represent a theoretical
framework for studying problems where the input in an interactive system
arrives as a sequence of input fragments and the system has to react respond-
ing to each incoming fragment, considering that all future fragments are
not known. Over the last years online algorithms have received substantial
attention and have been studied in many application areas, such as resource
management, data structuring, scheduling, or finance [2].

The process within the online framework, consisting in chronological
decisions for a dynamic problem, is also called dynamic decision process [3].
Multistage stochastic programs can be used to describe such a scenario,
but finding optimal policies for large-scale multistage stochastic optimization
problems is not feasible using existing methods [4]. Many large real-world
problems however are in fact dynamic, thus they change over time, whereby
the changes are generally not known beforehand. Therefore, since a priori
optimization cannot handle such unexpected changes, these problems must
be solved online.

In the online framework, at each time step a single decision is chosen
based on the current knowledge of the system and its environment. To further
improve a decision beyond this oblivious approach, the notion of anticipation
has been developed in this context. Anticipation has been largely discussed
in science and been given various definitions and interpretations. A possible
way of defining anticipation is by a system that contains a predictive model
of itself and/or its environment [5]. Also, the term anticipative behaviour,
which will be frequently used, is closely related to the notion of anticipation.

1

CHAPTER 1. INTRODUCTION 2

Anticipative behaviour means that decisions do not only depend on the
past and present, but also on predictions, expectations or beliefs about
the future [6]. In this work, anticipation is achieved by either predicting
future possible requests or by gathering experience from direct interaction
with the environment in the past. Technically, also predicting the future in
general relies on information learned throughout the history, so anticipation
is strongly related to learning from the experienced past. A learning system
improves its performance through experience gained over a period of time
without complete information about the environment in which it operates [7].

This work aims to define online anticipatory algorithms that can be
applied to scheduling problems. Online anticipatory algorithms are algo-
rithms that sustain the online framework and select their decisions such that
anticipative behaviour is incorporated. Scheduling problems are interesting
in this context, since they often arise in the online framework naturally.
The main issues in online scheduling are the management of uncertainty and
time restrictions of decision-making [8]. Incoming tasks, requests, or jobs
are usually not known beforehand and therefore a priori optimization is not
feasible. Furthermore, some structure and time dependency is expected in
the arrival sequence of most scheduling problems, which is a fundamental
requirement for obtaining reasonable results when applying online anticipa-
tory algorithms. If the input distribution of the arriving requests satisfies
this requirement, it can also be characterised as anticipative distribution.

In the scope of this work the developed algorithms are also studied ex-
perimentally for the packet scheduling problem. The considered variation of
the problem has been originally studied in [9] and further discussed in [1,
4, 10, 11]. The packet scheduling problem has many important practical
applications, mainly for the management of real-time multimedia traffic,
where the flow of packets across an IP network in communication networks
is optimized [11]. It is a common situation, that large data frames are
fragmented into smaller packets and sent individually through the network.
If only a few of these packets are dropped, the remaining fragments of the
entire data frame might be useless [12].

1.1 Online Algorithms

Traditional offline algorithms assume that the complete input is known.
Based on this entire input, the output is generated. However, in practice
this assumption often does not hold and one can observe only the revealed
input so far. That is, the input is only partially observable at the time of a
decision since information on future inputs is not revealed before their actual

CHAPTER 1. INTRODUCTION 3

arrival. These algorithmic problems are referred to as online problems.
Formulating this idea in a more mathematical way, online problems are

usually described by an input sequence I = (I(1), I(2), . . . , I(h)) that is pre-
sented to the online algorithm step by step over the horizon T = (1, 2, . . . , h).
When dealing with the input I(t), which is revealed at time t, no other
input I(t′) is certainly known to the algorithm for all t′ > t [13].

1.1.1 Competitive Ratio

Online algorithms need to generate decisions based on incomplete informa-
tion. The performance of such algorithms is in general assessed by using
competitive analysis. For that an offline optimization algorithm O must
be available, that given the entire input sequence from start produces an
optimal decision sequence. Optimal in this context means, that its solution
value w(O(I)) must be larger or equal to any other valid solution w(O′(I)),
given the same input. Competitive analysis then compares the solution of
the offline optimization algorithm on an input sequence I to the solution of
the online algorithm A on the same input sequence. For the comparison the
worst-case input sequence I is considered. Therefore, the performance can
be measured by the competitive ratio, the maximum ratio (over all possible
sequences I) between the value of the optimal solution w(O(I)) and the
solution value of the online algorithm w(A(I)), that is

max
I

w(O(I))

w(A(I))
. (1.1)

Similar to the performance measurement of approximation algorithms [14],
we can say algorithm A is c-competitive if

w(O(I)) ≤ cw(A(I))

holds for all possible sequences I of the problem instance. Note that this
definition is adequate for an online maximization problem, otherwise for an
online minimization problem the algorithms A and O need to be exchanged
in the definition above.

In practice, the bound provided by the competitive ratio is often very
pessimistic since the competitive ratio is determined by the worst-case input
sequence. It assumes that nothing at all is known about the distribution
of the input sequence and therefore, that every possible sequence is to be
expected. There are several alternative models, such as the diffuse adversary
model, which samples the input sequences from several possible distribu-
tions [15]. An extension to the competitive ratio can be found in the context

CHAPTER 1. INTRODUCTION 4

of randomized online algorithms, a probability distribution over deterministic
online algorithms. In this setting the solution on an input sequence must be
described through its expected value and the algorithm A is c-competitive if

w(O(I)) ≤ cE[w(A(I))],

where in this definition the expectation regards the randomization of the
algorithm, not the input sequences I [16].

1.1.2 Regret Minimization

The performance of online algorithms can also be analysed by regret mini-
mization. Regret minimization again incorporates the comparison between
the offline algorithm O and the online algorithm A by the definition of
the regret to be the difference of the objective function w of the two de-
cision sequences produced by either algorithm [17]. The effort here is of
course to minimize regret and eventually to achieve a vanishing average
regret which implies that the online algorithm attains the offline algorithm’s
performance [18]. This of course is not attainable in general, but e.g. when
input sequences are drawn from a certain distribution I. Given that the
distribution I is anticipative for the problem, the expected regret is small.
The definition of the anticipative distribution I can be found in Section 2.2.2.
For the assessment of an online algorithm against the offline algorithm the
average regret can be formulated as

L = EI [w(O(I))− w(A(I))], (1.2)

that is, the expected loss over all input sequences I drawn from the distri-
bution I [1]. This approach is less pessimistic than the competitive ratio by
the fact that it is not a worst-case scenario, but rather the consideration of
an average loss.

1.2 Online Scheduling

This section defines the class of problems that are discussed in the scope of
this work. In the following it is assumed that the problem to be solved is
a scheduling problem within the online framework. Optimal scheduling is a
significant field of operations research with wide-ranging practical applica-
tions [19], e.g. packet scheduling in network routers or machine scheduling
in manufacturing.

The scheduling problem considered in this work is characterized by an
input sequence that arrives over a finite horizon T = (1, 2, . . . , h). The input

CHAPTER 1. INTRODUCTION 5

is a sequence I = (R1, . . . , Rh) of request sets Rt, arriving at time t ∈ T . Each
request set Rt ∈ I can be empty or contain a finite number of requests r ∈ Rt.
However, at each time step only one request can be served. The solution to
the scheduling problem is a decision sequence γ that maximizes the problem
specific objective function w(γ) under some given constraints H(γ). The
decision sequence γ contains the request γt ∈ I that is scheduled at time t.

Note that throughout this work sequences are treated like sets and opera-
tions from set theory are applied to these sequences. This has the advantage
to be able to emphasize sequential behaviour, e.g. requests over time, while
keeping the notation simple. The notation Rt ∈ (R1, . . . , Rh) is therefore
defined as Rt ∈ {R1, . . . , Rh}.

1.3 Anticipation

The definition and analysis of algorithms that incorporate anticipative be-
haviour in the previously discussed online framework is the fundamental
objective of this work. The term anticipation is frequently used in the
following and this section tries to give an intuitive understanding of it. A way
of defining anticipative behaviour is that decisions do not only depend on the
past and present, but also on predictions, expectations or beliefs about the
future [6].

reward

tntn−1tn−2 tn+1 tn+3tn+2

past

time

optimal sequence
possible sequence

Figure 1.1: Optimal Decision Sequence with Anticipative Behaviour

Without any notion of the future, and therefore without any anticipative
behaviour, decisions at a specific time t might be suboptimal, since future
requests Rt′ with t′ > t are not observable. Therefore, this work considers
algorithms that base their decisions on beliefs about the future using sampled
possible requests. The reason why anticipative behaviour is useful in the
online framework is illustrated in Figure 1.1. Intuitively, a decision that

CHAPTER 1. INTRODUCTION 6

might seem to be optimal at a specific time t, might be suboptimal when
regarding the entire time horizon t ∈ T .

More precisely, a specific decision within a dynamic decision process
contributes two aspects to the overall objective. The immediate contribution,
meaning the immediate decision cost or reward, and the influence of the
decision on the future. This influence can be caused due to constraints, e.g.
deadlines, or a decision at a given time might exclude certain future decisions.
Note that these two decision aspects are also included in the definition of the
return (equation 3.1) in the reinforcement learning framework discussed in
Chapter 3. There, the immediate reward is extended by discounted, expected
future rewards. Anticipative algorithms aim to optimize the trade-off be-
tween these aspects in order to make optimal decisions over the entire horizon.
This leads to the statement that optimal decisions can be taken, assuming
perfect anticipation. This statement is discussed in detail throughout this
work but note that perfect anticipation may be hard to achieve. It implies a
tremendous number of iterations until convergence and significant memory
requirements [3].

Chapter 2

Online Stochastic Optimization

Practical optimization problems often include stochastic uncertainties in the
model parameters. In the procedure of decision-making they must be ex-
pressed using random variables having a certain probability distribution [20].
The uncertainty in online problems is mainly caused by the input sequences
that are only revealed over time whereby their underlying distribution is
either known a priori or must be learned over the time horizon.

Online stochastic optimization samples possible future requests from a
distribution and uses either predictive models or historical data if necessary.
If such models are available, the assumption of the availability of a distribu-
tion that can be sampled is reasonable in many contexts and the quality of
solutions can be improved by using stochastic information [21].

This chapter discusses the stochastic approach to describe the uncertain
inputs. The combination of stochastic programming and online algorithms
introduces the concept of online anticipatory algorithms for decision-making
under uncertainty [1].

2.1 Stochastic Programming

This section tries to give a brief introduction to stochastic programming,
more precisely it introduces multistage stochastic problems. These are com-
mon in planning processes where decisions need to be made during sub-
sequent instances of time, also called stages. These problems consist of a
sequence of decisions and include uncertainty in their relevant parameters.
In other words, a decision sequence needs to be taken without having full
information on some random events [22]. This is also the case in the online
framework, where at each time step a decision needs to be taken without
knowledge of the future inputs.

7

CHAPTER 2. ONLINE STOCHASTIC OPTIMIZATION 8

In stochastic programming, the decisions under uncertainty are called first-
stage decisions. Later, when full information on the actual realization of the
random event is available, corrective or second-stage actions can be taken.
For multistage stochastic problems, second-stage decisions can be taken at
several times. Therefore, the decision process in a multistage stochastic
program can be described by a sequence

x0 → ξ1 → x1 → . . .→ xh−1 → ξh → xh, (2.1)

where xt are decisions and ξt observations at a specific stage t. The multistage
problem can either terminate with a decision (as shown in the sequence 2.1)
or with an observation [23].

In this work stochastic combinatorial optimization is used to solve the
multistage stochastic problem. This is further discussed in the subsequent
sections. Note that stochastic programming is an a priori optimization
method and it is therefore unlikely to be scaled to large horizons and applied
in the online framework. But the most striking difference between stochastic
combinatorial optimization and multistage stochastic programs is that the
former does not incorporate second-stage actions. On the contrary, in the
online framework decisions are usually irrevocable and cannot be corrected
at later time steps [1].

2.2 Stochastic Combinatorial Optimization

As already stated in the first introductory paragraph of this chapter, the
additional stochastic information can significantly improve the quality of
solutions. Online anticipatory algorithms exploiting this information by
sampling possible future requests can produce results close to the optimal
a posteriori solution, assuming anticipativity. The anticipativity assumption
implies that the order of the input sequence is not too significant and it
can be shown experimentally that it holds for many applications [1]. This
is a fundamental property in order to be able to apply online stochastic
optimization to these problems.

Incorporating the stochastic information allows the online algorithm to
solve the optimization problem in a similar way to the generic offline algo-
rithm. A sequence of possible future requests is generated, which allows the
application of existing offline optimization methods. This approach is called
stochastic combinatorial optimization. However, in practical applications
time might be limited for making a decision and additional constraints on
the number of optimization steps at each time step might be given [10].

CHAPTER 2. ONLINE STOCHASTIC OPTIMIZATION 9

2.2.1 Sampling Future Tasks

Oblivious online algorithms try to optimize the problem specific cost function
without incorporating any stochastic information or anticipative concepts.
Implementations of such algorithms for the packet scheduling problem are
discussed in Section 4.3. The anticipatory algorithms presented in this work
extend this framework by incorporating anticipative behaviour by sampling
the previously mentioned anticipative distribution I to generate a sequence
of possible future inputs. This policy necessitates the implementation of a
function sample that generates an input sequence

sample(t, hs) = (ξt+1, . . . , ξt+hs),

based on the current time t and the sampling horizon hs. The set of possible
future inputs arriving at time t and sampled from the distribution I is
denoted by ξt. This notation is used to distinguish uncertain future request
sets ξt′ from certain request sets Rt′′ , that have already arrived at the current
time t, where t′′ ≤ t < t′. Note that the sample horizon hs needs to
be specified since it is unrealistic to sample the future for the entire time
horizon [1]. When optimizing a sampled scenario with the offline optimization
algorithm, the known revealed requests R need to be concatenated with the
sampled requests to produce a full input sequence

Iξt+1 = (R1, . . . , Rt, ξt+1, . . . , ξt+hs). (2.2)

Here and in the following the context makes it necessary to use the nota-
tion Iξt+1 to emphasize that the input sequence starting from time t + 1 is
based on sampled requests.

2.2.2 Anticipativity Assumption

The anticipativity assumption is the hypothesis that the distribution I is
anticipative for the problem. This section also discusses how the anticipatory
relaxation is used to solve the previously mentioned multistage stochastic
program. An intuitive interpretation of the anticipativity assumption is that
at each time step t ∈ T , there is a natural request r to select in order to
maximize the expected objective [1]. This request must be a feasible request,
meaning that it is a valid request to be processed at time t. Consistent with
the definitions in Section 1.1, γ denotes the decision sequence and H(γ)
are the problem specific constraints. For better readability, here and in the
following the notation Γt ≡ (γ1, . . . , γt) is used to represent the sequence of
past decisions made previously until the time step t. Before defining the set

CHAPTER 2. ONLINE STOCHASTIC OPTIMIZATION 10

of feasible requests, the definition of the set of all available requests at time
step t is given by ⋃

Ri∈I,i≤t

Ri \ Γt−1.

Of course, the feasible requests must be a subset of all available requests and
in addition to that, they also fulfil the problem specific constraints H(γ) that
define a valid solution. This allows us to define the set of feasible requests
at time t as

F(Γt−1, I) =

{
r ∈

⋃
Ri∈I,i≤t

Ri \ Γt−1

∣∣∣∣∣H(Γt−1 ∪ {r})

}
, (2.3)

where Γt−1 ∪ {r} denotes the concatenation of the past decisions with the
decision of selecting the request r at time t. Assuming the offline optimiza-
tion algorithm O′ is given, that solves problem P given a sequence of past
decisions, a distribution I is anticipative if

E
Iξt

[w(O′(Γt−1, Iξt))] = E
Iξt

[
max

γt∈F(Γt−1,Iξt)
E

Iξt+1

[
w(O′(Γt, Iξt+1))

]]
(2.4)

holds for all t ∈ T and realizations Rt of ξt [1]. The difference of the
offline optimization algorithm O′, further defined in Section 4.3.2, to the
algorithm O used previously, is that O′ considers already scheduled tasks
as a constraint. On the left side of this equation the offline optimization
algorithm is applied to the input sequence Iξt , defined in equation 2.2. On
the right side of equation 2.4 the input sequence Iξt is also drawn from the
distribution I, but it is used to calculate the set of feasible decisions. For each
such decision γt, the next input sequence Iξt+1 is then drawn from I, assuming
that the set of requests in time t is given by Rt = ξt. This information is then
used to optimize the scenario with the offline optimization algorithm O′.

The anticipativity assumption therefore states, that the expected value of
the solution ofO′ over all Iξt drawn from distribution I is equivalent to the ex-
pected value, over all Iξt drawn from I, of the maximum expected value (over
all feasible decisions γt based on the sequence Iξt and past decisions Γt−1)
of the solution of O′ over all Iξt+1 drawn from I under the assumption
that Rt = ξt. By induction on t this assumption can be extended to the time
horizon h requiring that, at each time step t, the anticipatory relaxation

max
γt∈F(Γt−1,I)

E
Iξt+1

[
max

γt+1∈F(Γt,Iξt+1
)
. . . max

γh∈F(Γh−1,Iξt+1
)
w(Γh)

]
(2.5)

is equivalent to the multistage stochastic program. This multistage problem
is typically very challenging and contains a large number of stages [1].

CHAPTER 2. ONLINE STOCHASTIC OPTIMIZATION 11

2.3 Online Anticipatory Algorithms

The introduction of online algorithms and the stochastic approach to gen-
erate possible future requests allows the combination of these concepts to
eventually define online anticipatory algorithms. It combines all the previous
aspects discussed in this chapter and makes decisions online based on samples
of the anticipative distribution I. The process of making a decision online
in these algorithms can be divided into three main steps [4]:

1. sample the available anticipative distribution I to generate possible
future scenarios;

2. compute the optimal decision for each scenario;

3. select a decision.

It can be noticed that the steps of the online anticipatory algorithms are
based on the anticipativity assumption. The steps shown above are derived
from the mathematical formulation of the right-hand side of the equation for
the anticipativity assumption defined in equation 2.4.

Note that step 1 corresponds to the idea discussed in Section 2.2.1 and
uses the function sample to obtain possible future scenarios. Step 2 uses the
offline optimization algorithm O′, constrained by the past decisions, which is
presented in Section 4.3.2 for the packet scheduling problem. In Section 4.4,
implementations of online anticipatory algorithms are presented. This work
discusses three different approaches to such algorithms in the context of the
packet scheduling problem. The first one is the expectation approach E , the
basic online anticipatory algorithm that considers each possible decision at
each step. As mentioned earlier, time might be constricted and only few
optimization steps might be feasible. Therefore, two approximations of E ,
the consensus approach C and the regret approach R, are also discussed in
Section 4.4.

A related concept to the approach presented in this chapter is evolutionary
online optimization [24, 25]. It considers the same idea of sampling the under-
lying distribution I, but instead of solving the optimization problem at each
time step by an offline optimization algorithm, a population of algorithms
is maintained and used for optimization. The best result of any algorithm
is used to choose the request at time t and afterwards genetic operators are
applied on the population to add new algorithms to the population. This
concept may be promising for problems that are NP-hard, where executing
an offline optimization algorithm might be infeasible [25]. However, this
approach is not further discussed in the scope of this work.

Chapter 3

Reinforcement Learning

In the previous chapter, an algorithmic framework to solve problems that in-
volve sequential decision-making in the online framework has been presented.
This chapter considers such problems by using a fundamentally different
approach. A common way to describe sequential decision-making settings
can be found in the framework of Markov decision processes [1, 26, 27]. A
standard approach to solve such problems offline is dynamic programming,
where the model must be known in advance.

System
(Environment)

Controller
(Agent)

Reward r̃t Action atState st

Figure 3.1: Reinforcement Learning Scenario

This section discusses how to solve the Markov decision process in an online
setting by using reinforcement learning [26]. Contrary to dynamic program-
ming, reinforcement learning does not require the knowledge of the model
in advance. It has already been shown that reinforcement learning can be
successfully applied to a wide range of real-world online stochastic problems,
e.g. vehicle routing, bin packing [28] and also several variants of the packet
scheduling problem [29].

Reinforcement learning is a learning setting where the goal is to maximise
some numerical value that represents the overall objective. The idea is to

12

CHAPTER 3. REINFORCEMENT LEARNING 13

learn through interaction with an environment, modelled by a Markov deci-
sion process, in a goal-oriented manner. Intuitively, reinforcement learning
can be described by learning what to do (mapping situations to actions) by
discovering what actions are most profitable in a given situation by actually
trying them when interacting with the system [30]. A typical reinforcement
learning scenario is depicted in Figure 3.1. An agent observes the state of the
environment together with a reward determined by the last state transition.
Based on this information, the agent must choose the current action which
is then sent to back to the system. Afterwards the cycle is repeated. In this
way, reinforcement learning algorithms by nature are online algorithms for
solving Markov decision processes [31] and can therefore be applied in the
online framework without the necessity of adaptations.

3.1 Finite Markov Decision Processes

This first section now discusses the Markov decision process in more de-
tail. As already mentioned, Markov decision processes describe sequential
decision-making settings. What makes this framework interesting in the con-
text of this work is that actions not only influence the immediate reward, but
also future situations and therefore future rewards. Thus, Markov decision
processes involve delayed reward [30]. The concepts discussed in this section
still regard the offline setting where the optimal policy π∗ is defined based on
the known model, including rewards and transition probabilities. A policy is
a strategy that defines how the agent behaves at a given time by mapping
states to actions.

Each Markov decision process consists of states s ∈ S, actions a ∈ A,
the transition function p and a reward function r̃. This work only considers
finite Markov decision processes, where the sets of states and actions are all
finite sets (and therefore contain only a finite number of elements). At each
time step t, the agent interacts with its environment and chooses an action a
in the observed state s. The transition function p(s, a, s′) then describes
the probability of arriving in state s′ after choosing action a in the previous
state s. For Markov decision processes the environment is Markovian and
therefore the result of an action only depends on the current state (and not
on previous actions or the state history), more precisely

P (st+1 | st, at, st−1, at−1, . . .) = P (st+1|st, at) = p(st, at, st+1).

This can also be viewed as a restriction on the states such that each state must
contain all information on the environment that could influence a possible
future state [27].

CHAPTER 3. REINFORCEMENT LEARNING 14

3.1.1 Reward Signal and Return

The idea to formulate the objective by using a reward signal is a key feature of
the online reinforcement learning task [30]. The reward signal is transmitted
from the environment to the agent after each action it has taken. It is a
simple number, but it is crucial that the reward signal precisely indicates
what is desired to be accomplished. The reward signal must not contain
any details on how to achieve a goal (e.g. rewards for achieving subgoals),
otherwise it might happen that the agent learns to cumulate reward without
even actually reaching the real goal. It is also important to note that in any
case the agent must aim to maximise the cumulative reward and not the
immediate reward. This idea is again fundamental to be able to incorporate
any anticipative behaviour as explained in Section 1.3. The reward signal
therefore evaluates an action taken in a specific state. However, despite the
term reward that might indicate a positive signal, the reward signal is scalar.
It can be also negative which indicates a punishment or cost for a certain
action.

In general, when selecting an action a at time step t, the action shall
be chosen such that the expected return is maximised. In a simple case the
return could be defined as the sum of the rewards, however, when there is no
terminal state the return could be infinite. To overcome this limitation the
concept of discounting can be used. By that, the action is chosen based on
maximising the expected discounted return

Gt = r̃t+1 + ρ r̃t+2 + ρ2r̃t+3 + . . . =
∞∑
k=0

ρkr̃t+k+1, (3.1)

where ρ is the discount rate. If ρ = 0 the agent only maximises the immediate
reward and as ρ gets closer to 1, future rewards are taken more and more
into account [30].

3.1.2 Optimal Value Function

Given a Markov decision process, an optimal policy π∗ that accumulates
maximum discounted return can be defined via value functions. The value
function vπ(s) calculates the expected return when starting in state s and
following policy π afterwards. It can be written as

vπ(s) = Eπ [Gt | st = s] = Eπ

[
∞∑
k=0

ρkr̃t+k+1

∣∣∣∣∣ st = s

]
(3.2)

CHAPTER 3. REINFORCEMENT LEARNING 15

for all s ∈ S. We can thus say, policy π is better than policy π′, if

∀s ∈ S : vπ(s) ≥ vπ′(s).

The optimal policy π∗ must therefore be better than all other policies, al-
though there might be more than one optimal policy. All optimal policies
must have the same optimal value function v∗, defined as

v∗(s) = max
π

vπ(s).

In addition, the action-value function qπ(s, a) for policy π is the value of
taking action a in state s and following policy π afterwards. It is defined as

qπ(s, a) = Eπ [Gt | st = s, at = a] = Eπ

[
∞∑
k=0

ρkr̃t+k+1

∣∣∣∣∣ st = s, at = a

]
,

that is, the expected return starting from state s with action a being taken
and then following policy π. Again, all optimal policies share the same
optimal action-value function q∗, defined as

q∗(s, a) = max
π

qπ(s, a)

for all s ∈ S and all a ∈ A. Note that the optimal action-value function for
a state-action pair (s, a) can be written as

q∗(s, a) = E [r̃t+1 + ρv∗(st+1) | st = s, at = a] , (3.3)

that is, the expected return for taking a specific action a in the state s and
afterwards following the optimal policy.

3.2 Q-Learning

This section now transfers the previously discussed framework of Markov
decision processes into the online framework. The Q-learning [32] algorithm
is presented, that can be used to solve a reinforcement learning task. Q-
learning is a basic and popular method, part of the larger class of model-
free temporal difference learning algorithms. That means, that contrary to
dynamic programming, these algorithms do not build a model of the Markov
decision process and are able to learn directly from the raw experience
without having any notion of the system they are applied on. Furthermore, a
key feature of temporal difference learning algorithms is the gradual update

CHAPTER 3. REINFORCEMENT LEARNING 16

of estimations, that themselves are based on other estimations (also called
bootstrapping) [27].

The basic idea of Q-learning is to gradually estimate the action-value
function Q and by that, directly approximating the optimal action value
function q∗. The update rule of the Q-learning algorithm is given by

Q(st, at) = Q(st, at) + λ
(
r̃t+1 + ρmax

a
Q(st+1, a)−Q(st, at)

)
, (3.4)

where λ is a learning parameter. This simple update rule also significantly
simplifies the analysis of the algorithm. It has been shown that with Q-
learning the learned action-value function Q converges with probability 1 to
the optimal action-value function q∗, under the assumption that all state-
action pairs continue to be visited (and therefore updated) [33]. In other
words, Q-learning converges when each state-action pair is visited infinitely
often.

3.3 Exploration and Exploitation

Q-learning allows us to approximate the optimal action-value function q∗
and it is guaranteed to converge, but only on the condition that each state-
action pair is visited infinitely often. However, it can happen that some
states stop being visited due to the current estimation of the Q-function,
therefore the algorithm can be stuck in a local optimum. Choosing actions
only based on Q (exploitation) is thus not always expedient. To handle
this problem, exploration is necessary. However, exploring too much will
accumulate a large loss over time and balancing exploration and exploitation
is a key problem in reinforcement learning, also known as the exploration-
exploitation dilemma [34].

The obvious conclusion is that exploration (choosing untested actions)
and exploitation (choosing actions that are known to be good) must happen
simultaneously. There are two types of exploration that can be distin-
guished: directed and undirected exploration. Undirected exploration is a
simple exploration based on randomness, e.g., ε-greedy [32] or Boltzmann
exploration [30]. Directed exploration on the other hand keeps track of some
additional information, e.g. how many times each state-action pair has been
visited. Bayesian Q-learning [35] or the UCB-1 algorithm [36] are examples
for incorporating directed exploration.

CHAPTER 3. REINFORCEMENT LEARNING 17

3.3.1 Epsilon Greedy

The directed exploration strategy ε-greedy is one of the most used meth-
ods [34]. It is also referred to as semi-uniform random distribution [35], where
with a specific probability ε a suboptimal (according to the current action-
value function Q) action is chosen. The parameter 0 ≤ ε ≤ 1 therefore indi-
cates how much exploration takes place and how often (with probability 1−ε)
the action with highest Q-value is chosen. It is common to gradually decrease
the parameter ε with increasing time to reduce the loss accumulated by the
exploration, once the function Q is expected to be a good approximation of
the optimal action-value function q∗.

3.3.2 UCB-1

The UCB-1 method was originally developed for the multi-armed bandit
problem [36] but can be adapted to be used for the general reinforcement
learning problem. For that, the algorithm UCRL2 has been defined to
use upper confidence bounds to choose an optimistic policy [37]. In this
work this approach is not discussed, rather simple steps are taken to use
upper confidence intervals directly with Q-learning [34]. The basic idea is to
estimate an upper confidence U(a) for each action value, such that with high
probability

q∗(st, at) ≤ Q(st, at) + U(at).

This can be done by keeping count of the number N(s, a) of times each
action a ∈ A has been chosen in state s. The action is then chosen such that
the upper confidence bound is maximised, that is,

at = arg max
a∈A

(
Q(st, a) +

√
c logN(st)

N(st, a)

)
, (3.5)

where c is a parameter to control exploration and N(s) is the number of
times that state s has been visited. It is given by

N(s) =
∑
a∈A

N(s, a).

Setting the parameter c larger leads to an increase in exploration. Also, a
small N(s, a) leads to a larger upper confidence value U(a), that means the
estimated value is uncertain [36, 34].

CHAPTER 3. REINFORCEMENT LEARNING 18

3.4 Non-Markovian Observations

Previously, in Section 3.1, Markov decision processes have been defined. A
key feature of them is their Markovian environment, where each state must
contain all information necessary to describe the environment. For the online
scheduling problems discussed in this work, the arriving input sequences can
be included in the state representation, however it cannot be assumed that
the Markov property is still satisfied. By that, the arriving input sequences
may be non-Markovian observations. Imagine the input distribution I to be
a simple Markov model with more than one state (different from the states of
the Markov decision process). Since the states of the Markov model cannot
be observed, they also cannot be included in the state representation of the
Markov decision process.

It is possible to simply ignore the violation of the Markov property, but it
is not guaranteed that the estimated Q-function will then lead to a reasonable
policy. Consider again the example above. If the fact that the input distribu-
tion has several states is ignored, the action-value function of the state-action
pair is calculated over all these states of the input distribution, which might
not be expedient. Another approach is to change the problem such that
the environment does not emit its states, but only the actual observations.
That is, the agent receives signals that depend on the current state, but only
provide partial information about it. In this case a simple option is to assume
that the reward function is a direct function of the observations, since the
actual states are not observable [30]. A more sophisticated approach would
be to work with partially observable Markov decision processes that were
introduced for that setting [38].

3.4.1 Conservative Q-Learning

The first approach to cope with the non-Markovian environment is the def-
inition of a conservative Q-learning strategy. The problem with the basic
update rule of the Q-learning algorithm (equation 3.4) in a non-Markovian
environment is that the state st+1 cannot be assumed to be inferred correctly.
Therefore, the term

max
a
Q(st+1, a)−Q(st, at) (3.6)

can also not be computed. A conservative Q-learning approach can be found
by establishing a lower bound on the term shown in equation 3.6, that is,
the right part of the Q-learning update rule for any state that could be
reached (equation 3.4). By that, an overestimation of the Q-value can be

CHAPTER 3. REINFORCEMENT LEARNING 19

prevented [39]. If we consider the scheduling problem, a state changes with
the arrival of a new request set. All other previously arrived requests however
remain also open to be scheduled at time t + 1, given they still meet the
constraint. These requests can be used to define the lower bound on the Q-
update, since it is certain that these requests will be available to be scheduled
in the next state. This allows to define the update rule of the conservative
Q-learning by

Q(st, at) = Q(st, at) + λ

(
r̃t+1 + ρ max

r∈Ft+1

w(r)

)
, (3.7)

where Ft+1 is the set of feasible requests at time t+1, defined in equation 2.3.
By this update rule, the algorithm only uses information that is completely
certain. Note, that the reward r̃t+1 is also independent of the arriving
requests at time t + 1. It only depends on the objective function of the
request scheduled at time t, reduced by the objective function of requests
that are lost in the next time step due to the constraints. It is important
that the loss is now explicitly modelled in the reward function, since no long-
term consequences are considered by the conservative Q-learning approach.

3.4.2 Belief States

The second approach presented in this work to deal with non-Markovian
observations is to use the environment’s history, that is, the input sequence I
observed until the current time t. Note that the state representation is a
function of the history, that is, st = f(I). By that, it is possible to use
the past to predict the missing information of the environment, that is, the
current state of the underlying distribution. For the case that the input
distribution I is described by a Markov model, the past can be used to
infer the current Markov state (note the difference between states in the
reinforcement learning algorithm and Markov states), which then can be
included in the state representation of the reinforcement learning algorithm.
The estimated Markov states of a Markov model are also called belief states.
Doing so will allow the system to meet the Markov property, assuming the
belief states are inferred correctly. A technique to estimate the current belief
state can be found in Section 5.1.

Chapter 4

Online Packet Scheduling

In this chapter the theoretical concept of online stochastic optimization from
the previous Chapter 2 is studied under the aspect of the online packet
scheduling problem. A convenient property of this problem is that its offline
version can be solved in polynomial time given fixed deadlines d and fixed
processing time. The more general packet scheduling problem with variable
deadlines and processing times is known to be NP-hard [40]. In practice,
online packet scheduling has an important application in communication
networks for optimizing the flow of packets across an IP network [11].

A detailed definition of the problem is given in the first section of this
chapter. The subsequent sections discuss algorithms for offline optimization
together with algorithms that can be applied in the online framework and
implement the concept of online anticipatory algorithms.

4.1 Problem Definition

Online packet scheduling considers the scheduling of a sequence of packets.
Several assumptions are made to simplify and further specify the problem.
It is assumed that each packet corresponds to a specific class c from a finite
set of classes c ∈ C. This class determines the packet’s reward wc > 0, also
referred to as its weight. Further it is assumed that each packet takes the
same processing time of one time step and time t is discrete over the time
horizon t ∈ T = {1, . . . , h}. It is also not allowed for multiple packets of the
same class to arrive at the same time. Therefore, each packet can uniquely
be identified by its class and arrival time. At last it is assumed that each
packet has the same deadline d relative to its arrival time [9]. The packets j
arrive as an input sequence of sets of packets I = (R1, . . . , Rh), where each
packet j ∈ Rt has arrival time a(j) = t. Each packet j must be scheduled

20

CHAPTER 4. ONLINE PACKET SCHEDULING 21

within its time window [a(j), a(j) + d] and not more than one packet can be
scheduled at each time t. In a more mathematical formulation, the objective
function w(γ) that needs to be maximized is the sum of the weights of all
scheduled packets, that is

w(γ) =
∑
t∈T

w(γt), (4.1)

where γt is the packet j which is scheduled at time t. The maximization is
constrained by the constraints H(γ) on γ = (γ1, . . . , γh), specified as

H(γ) ≡ ∀t ∈ T : a(γt) ≤ t ≤ a(γt) + d, (4.2)

that forces each packet to be scheduled within its time window [1].

4.2 Offline Optimization

Stochastic sampling generates possible future requests and allows us to solve
the online decision problem by optimization in an offline fashion. The offline
optimization algorithm O is shown in Figure 4.1 and implements step 2 of
online anticipatory algorithms presented in Section 2.3. However, the aspect
that in an offline setting several possible solutions might be optimal, must
receive attention. In an offline solution packages can be exchanged without
any cost changes but in an online setting these solutions are not equivalent.
High-weight packets should be scheduled early in order to avoid the risk of
losing these packets. Since in the offline framework these solutions are equiv-
alent, also their objective value is equivalent. Therefore, a postprocessing
step can be added to the offline algorithm to implement the early scheduling
of high-weight packets [1].

Algorithm O schedules the tasks starting with packets from the class c
of highest weight wc to the classes with lowest weight, where the packets j
with latest arrival a(j) are prioritized. If a packet cannot be added to the
schedule because there is no free slot during its time window, other packets
are shuffled to try to make room for the new packet if possible. The goal
of this process is generating a minimum loss schedule, that is scheduling the
packets such that the cumulative weight of all lost packets is minimized [9].

Therefore, O schedules each packet j greedily by the policy described
in the previous paragraph to a time step t∗ as late as possible before its
deadline a(j)+d (lines 7 and 9). If no time t ∈ T exists to schedule packet j,
it is ignored (line 8). Otherwise, if scheduling j at time t∗ satisfies the
constraints H, specified by equation 4.2, packet j is scheduled at t∗ (line 7).

CHAPTER 4. ONLINE PACKET SCHEDULING 22

In the case that t∗ < a(j) algorithm O tries to find the earliest packet k
scheduled at time t′ with w(k) ≥ w(j) that can be scheduled at time t∗

(lines 21 and 23). This is done by calling the function shuffle in line 13.

Algorithm O(I)

1: R← ∪Rt∈IRt

2: for t ∈ T do
3: γt ← null
4: end for
5: order R decreasing by w(j) and a(j)
6: for j ∈ R do
7: S ← {t ∈ T | t ≤ a(j) + d and γt = null}
8: if S 6= {} then
9: t∗ ← max(S)

10: if t∗ ≥ a(j) then
11: γt∗ ← j
12: else
13: γ ← shuffle(γ, j, t∗)
14: end if
15: end if
16: end for
17: return γ

shuffle(γ, j, t∗)

18: γ′ ← γ
19: γt∗ ← j
20: while t∗ < a(j) do
21: S ← {t′ ∈ T | t∗ + 1 ≤ t′ ≤ t∗ + d and a(γt′) ≤ t∗}
22: if S 6= {} then
23: t∗∗ ← min(S)
24: swap packets γt∗ and γt∗∗ in γ
25: t∗ ← t∗∗

26: else
27: return γ′

28: end if
29: end while
30: return γ

Figure 4.1: Offline Optimization Algorithm O

The requirement w(k) ≥ w(j) is already fulfilled due to the greedy schedul-

CHAPTER 4. ONLINE PACKET SCHEDULING 23

ing, so that each packet k that has been scheduled previously to packet j
must have at least weight w(j). If such a packet k originally scheduled at
time t∗∗ exists, it is scheduled at slot t∗ and packet j at slot t∗∗ (line 24). The
shuffling process is then repeated until either packet j is validly scheduled
after its arrival date a(j) or no further packet can be swapped. In the second
case the original, unaltered schedule is returned.

Algorithm O has a runtime with complexity O(h |C|), where h is the time
horizon and |C| the number of distinct classes [1].

4.2.1 Postprocessing

As mentioned in the beginning of this section, it is a good idea to add a
postprocessing step to the offline algorithm to force scheduling high-weight
packets early. Later in Chapter 6 it is shown that this can improve the
solutions of the local optimization L, presented in Figure 4.4 below, and the
solution of all online anticipatory algorithms defined in Section 4.4. The idea
is to take the optimal solution γ of the offline algorithm O and rearrange it
to produce an equivalent solution in the offline context, that is advantageous
in the online context.

Algorithm postprocess(γ)

1: for t ∈ T do
2: for t′ ∈ T | t < t′ do
3: if (a(γt) ≤ t′ ≤ a(γt) + d) ∧ (a(γt′) ≤ t ≤ a(γt′) + d) then
4: if w(γt) < w(γt′) then
5: swap packets γt and γt′ in γ
6: else if w(γt) = w(γt′) and a(γt) > a(γt′) then
7: swap packets γt and γt′ in γ
8: end if
9: end if

10: end for
11: end for
12: return γ

Figure 4.2: Postprocessing Step of the Offline Optimal Solution

The postprocessing algorithm shown above in Figure 4.2 iterates over each
pair (γt, γt′) with t < t′ and, if possible, swaps the two packets if γt has
a smaller weight (line 5) or the same weight and a later deadline (line 7).
A swap is possible if the resulting configuration doesn’t violate the con-

CHAPTER 4. ONLINE PACKET SCHEDULING 24

straints H(γ) (line 3), therefore if

(a(γt) ≤ t′ ≤ a(γt) + d) ∧ (a(γt′) ≤ t ≤ a(γt′) + d).

Since no packets are swapped if H is violated afterwards, no packet is lost
and that means the solution is equivalent in the offline context. However, the
new solution incorporates our effort to schedule high-weight packets early.
It can therefore be said that the postprocessed solution is better in the
online context since fewer high-weight packets are expected to be lost due to
uncertainty in the inputs [1].

4.3 Oblivious Online Packet Scheduling

Section 2.3 introduced the online anticipatory algorithms studied in this work
incorporating stochastic sampling in an online framework. These algorithms
fall into the category of adaptive algorithms, whereby oblivious algorithms are
the contrary approach. Oblivious algorithms do not include any anticipative
behaviour. They are attractive since they are easy to implement and usually
faster, however, their result is expected to be worse compared to adaptive
algorithms [41].

This section further pursues this topic by introducing two oblivious im-
plementations of online algorithms, the greedy algorithm G and the local
optimization algorithm L in the context of the packet scheduling problem.
These two algorithms implement the structure of the generic online algorithm
which is presented in the next section.

4.3.1 Greedy Algorithm

The basic concept of the greedy algorithm G is very simple and its implemen-
tation is presented below in Figure 4.3. A greedy algorithm always makes the
choice that looks best at the moment, which might however be a suboptimal
decision globally [42].

For the packet scheduling problem, the greedy algorithm always chooses
at each time step t the packet j with the highest weight from the set of avail-
able requests R to be scheduled at γt (line 8). However, the chosen request
must be a valid request and therefore be in the set of feasible requests j ∈ F
defined by equation 2.3 (line 7). Therefore, the information (γ1, . . . , γt−1) is
used to avoid scheduling the same packet twice in different time steps which
would result in an invalid solution. In this way, past decisions restrict the
scheduling at the current time t. The past decisions are therefore taken into

CHAPTER 4. ONLINE PACKET SCHEDULING 25

consideration, but there is any anticipative behaviour, rather this information
is only used to produce feasible solutions.

Algorithm G(I)

1: for t ∈ T do
2: γt ← null
3: end for
4: for t ∈ T do
5: R← ∪Rt′∈I,t′≤tRt′

6: Γt−1 ← {γ1, . . . , γt−1}
7: F ← {j ∈ R \ γ | H(Γt−1 ∪ {j})}
8: γt ← arg maxj∈F(w(j))
9: end for

10: return γ

Figure 4.3: Online Greedy Algorithm G

This implementation again illustrates that the oblivious algorithm does not
attempt to predict information on the future.

4.3.2 Local Optimization

Another oblivious online algorithm is the local optimization algorithm L
shown in Figure 4.4. Like the greedy algorithm it does not incorporate any
anticipative behaviour.

Algorithm L(I)

1: for t ∈ T do
2: γt ← null
3: end for
4: for t ∈ T do
5: R← ∪Rt′∈I,t′≤tRt′

6: γ∗ ← O′(γ, R)
7: γt ← γ∗t
8: end for
9: return γ

Figure 4.4: Online Local Optimization Algorithm L

However, algorithm L does not simply choose the packet with highest weight
at each time step t as the greedy algorithm does, rather it performs an

CHAPTER 4. ONLINE PACKET SCHEDULING 26

optimization on the known requests (R1, . . . , Rt) for each time step (line 6).
This optimization is a local optimization in the sense that it is applied on an
incomplete input sequence only consisting of the requests up to the current
time step t. In this way it chooses a locally optimal choice in each step hoping
that this will also result in a globally optimal decision strategy (line 7). Note
that the offline optimization algorithm O′ is slightly different to algorithm O
shown in Figure 4.1. It is again necessary to incorporate the information
on the past to produce valid solutions without scheduling the same packet
twice. Therefore, algorithm O′, besides the request sequence I (or R in
figure 4.4), also takes the current schedule γ as argument that contains all
scheduled packets up to this time step t, meaning that γt′ = null for all t′ ≥ t.
Algorithm O′ results from algorithm O, making the following two changes:

1. remove the for-loop that initializes γ starting at line 2 in Figure 4.1;

2. don’t consider the packages j ∈ γ already included in the latest sched-
ule when ordering the packages at line 5 in Figure 4.1.

4.4 Anticipative Online Packet Scheduling

In this section, several implementations of online anticipatory algorithms are
presented. They incorporate anticipative behaviour by learning information
from the experienced past when observing the input sequence I. An essential
part of this work is the analysis and assessment of these algorithms applied
to the packet scheduling problem. All online algorithms presented here have
a basic structure that is shown in Figure 4.5 below.

Algorithm A(I)

1: for t ∈ T do
2: γt ← null
3: end for
4: for t ∈ T do
5: R← ∪Rt′∈I,t′≤tRt′

6: γt ← select(γ, R, t)
7: end for
8: return γ

Figure 4.5: Generic Online Algorithm A

The algorithm iterates over time steps t (line 1) and uses the known requests
up to t (line 5) together with the past decisions to select the new packet to

CHAPTER 4. ONLINE PACKET SCHEDULING 27

be scheduled at t (line 6). When looking into the implementations of the
greedy algorithm G and the local optimization algorithm L, it can be noticed
that also these oblivious online algorithms inherit this generic structure. The
function select (line 6) specifies the algorithm and for online anticipatory
algorithms it implements the basic steps defined in Section 2.3. That means
it uses the function sample and the offline optimization algorithm O′ to
select the next packet to be scheduled at time t.

4.4.1 Expectation Algorithm

The first algorithm studied in this section is the expectation algorithm E . Its
implementation is shown below in Figure 4.6. Obviously it samples future
requests from the distribution I to generate possible future scenarios, but
its distinctive property is that it evaluates each feasible request against each
scenario. This is only reasonable when time is not considerably limited and
numerous optimization steps can be performed.

Algorithm E(I, n)

1: identical to algorithm A (see Figure 4.5) but select-E is used in line 6

select-E(γ, R, t, n)

2: Γt−1 ← {γ1, . . . , γt−1}
3: F ← {j ∈ R \ γ | H(Γt−1 ∪ {j})}
4: for j ∈ F do
5: f(j)← 0
6: end for
7: for i← 1 . . . bn/|F|c do
8: SF ← {R ∪ sample(t, hs)}
9: for j ∈ F do

10: γt ← j
11: f(j)← f(j) + w(O′(γ, SF))
12: γt ← null
13: end for
14: end for
15: return arg maxj∈F(f(j))

Figure 4.6: Expectation Algorithm E

The main iteration of E is identical to the generic online algorithm discussed
previously, so here and in the next sections only the function select is
discussed in detail for the respective algorithm. The basic idea of algorithm E

CHAPTER 4. ONLINE PACKET SCHEDULING 28

is to choose the packet which leads to the solution with highest weight over
the sampled scenarios. The first step to select the packet to be scheduled at
time t is to calculate the set of feasible requests F (line 3). The parameter n
is the total number of times the optimization algorithm O′ is performed
in line 11. Therefore, since each request j ∈ F is evaluated against each
scenario SF , exactly k = bn/|F|c scenarios are sampled (line 8), where |F|
is the number of feasible packets. Of course, |F| will be different for each
time step t and could also potentially be zero. This case needs to be treated
separately to avoid an undefined division. Each scenario is then evaluated for
each feasible request and the weight of the solution is added to the evaluation
function f (line 11). Note, that w(O′) is the objective function w(γ), since
the algorithm O′ returns an optimal schedule based on the sampled scenario
and considering the packets that already have been scheduled in the past.
The decision of the algorithm E is based on the request with the highest
evaluation function f(j) (line 15).

At time t the decision γt can be computed using the anticipatory relax-
ation defined in equation 2.5. E approximates this equation by sampling the
distribution I exactly k times to solve the deterministic problem

max
γt∈F(Γt−1,I)

w(O′(Γt, I1
ξt+1

) + . . .+ w(O′(Γt, Ikξt+1
)) = max

γt∈F(Γt−1,I)
f(γt),

where Ikξt+1
is the k-th sample of Iξt+1 drawn from the underlying distribution.

The sum shown on the left side of the upper equation is the exact sum that
algorithm E computes in line 11 for each feasible request j ∈ F . Algorithm E
might have a poor performance if n is small since the feasible decisions are
only evaluated on a small number of samples [1].

It is necessary to further investigate line 15 of algorithm E . Since the
iteration starting at this line is executed exactly bn/|F|c times, it is possible
that no iteration at all is performed, if |F| > n. Since the evaluation function
is initialized with zero for each feasible request, no reasonable choice is made
in this case. Setting n large enough will solve this issue, but since the
number of feasible requests is not fixed, an alternative solution is necessary.
Therefore, whenever ties in finding the maximum evaluation value occur, it
is advised to schedule the packet with highest weight from these tied packets.
In the described scenario this will lead to a greedy scheduling which is in fact
a reasonable choice. In an online framework this is preferred since it leads
to a higher immediate decision reward (in this case a higher packet weight)
with equivalent predicted influence on the future. This approach will lead to
an increase in anticipativity, as defined in Section 1.3, when the maximum
of the evaluation function is not unique.

Another specific case to consider is |F| = 1. It is immediately clear that

CHAPTER 4. ONLINE PACKET SCHEDULING 29

in this case the only reasonable option is to schedule the unique feasible
request. Obviously, this can be done without sampling and performing an
optimization over the n samples.

4.4.2 Consensus Algorithm

Consensus algorithms are usually used to analyse distributed systems and
deal with the agreement of a group of agents [43]. The consensus algorithm C
for our packet scheduling problem, shown in Figure 4.7, incorporates this idea
but in this case no agents are present, rather the agreement is strived over the
different sampled scenarios SF . Every time a packet is scheduled in a scenario
at the current time t it gets a vote through the agreement function fa. The
packet with the highest agreement is eventually scheduled.

Algorithm C(I, n)

1: identical to algorithm A (see Figure 4.5) but select-C is used in line 6

select-C(γ, R, t, n)

2: Γt−1 ← {γ1, . . . , γt−1}
3: F ← {j ∈ R \ γ | H(Γt−1 ∪ {j})}
4: for j ∈ F do
5: f(j)← 0
6: end for
7: for i← 1 . . . n do
8: SF ← {R ∪ sample(t, hs)}
9: γ∗ ← O′(γ, SF)
10: fa(γ

∗
t)← fa(γ

∗
t) + 1

11: end for
12: return arg maxj∈F(f(j))

Figure 4.7: Consensus Algorithm C

The algorithm itself is very similar to algorithm E but it doesn’t evaluate each
feasible request against each scenario. It again starts by calculating the set of
feasible requests F (line 3). Again, n is the number of performed optimization
steps. Algorithm C samples exactly n scenarios (line 7 and 8) and performs
an optimization only once for each scenario (line 9). In this case, instead
of n/|F| as in the case of algorithm E , n scenarios are sampled with the
same amount of performed optimization steps. Each packet j, scheduled
at γ∗t in the respective scenario, is credited with a constant reward (line 10).
All other packets scheduled in γ∗t′ at time t′ 6= t receive no reward. The

CHAPTER 4. ONLINE PACKET SCHEDULING 30

request j to be scheduled at γt is defined by the packet with the highest
reward fa(j) (line 12).

The consensus algorithm C is used when time is limited and not many
optimization steps n can be performed. In this case algorithm E has poor
performance and algorithm C is designed to address this problem. It outper-
forms algorithm E significantly when time is limited [44]. This comes from
the fact that a small n needs to be chosen for limited time which reduces the
number of iterations of the sampling and optimization procedure (Figure 4.6
line 7) performed by the expectation algorithm.

4.4.3 Regret Algorithm

The last online anticipative algorithm discussed in this work tries to combine
the properties of both algorithm E and algorithm C and is shown in Figure 4.8.
The regret algorithm R considers exactly n scenarios and still evaluates all
feasible requests on each of the n scenarios.

Algorithm R(I, n)

1: identical to algorithm A (see Figure 4.5) but select-R is used in line 6

select-R(γ, R, t, n)

2: Γt−1 ← {γ1, . . . , γt−1}
3: F ← {j ∈ R \ γ | H(Γt−1 ∪ {j})}
4: for j ∈ F do
5: f(j)← 0
6: end for
7: for i← 1 . . . n do
8: SF ← {R ∪ sample(t, hs)}
9: γ∗ ← O′(γ, SF)
10: f(γ∗t)← f(γ∗t) + w(γ∗)
11: for j ∈ F \ {γ∗t } do
12: γt ← j
13: f(j)← f(j) + w(γ∗)− regret(γ, SF ,γ

∗)
14: γt ← null
15: end for
16: end for
17: return arg maxj∈F(f(j))

Figure 4.8: Regret Algorithm R

The implementation is very similar to algorithm C, the only difference is

CHAPTER 4. ONLINE PACKET SCHEDULING 31

the segment starting in line 11 of algorithm R, inherited from algorithm E .
Similar to the consensus algorithm C, the regret algorithm R calculates the
optimal solution γ∗ based on each of the n sampled scenarios (line 9). In
order to incorporate suboptimal solutions γ̃, and therefore all suboptimal
packets j ∈ γ̃t scheduled at time t, it also evaluates each feasible request
against each scenario (line 11). For that it uses the function regret, shown
in Figure 4.9. The evaluation function f sums the weights of the solutions
(lines 10 and 13), similar to algorithm E . Again, also algorithm R chooses
the packet with the highest evaluation function to be scheduled at time t
(line 17).

Since time is still limited, the offline optimization algorithm O′ can’t
be used to evaluate each feasible request against each scenario to calcu-
late all suboptimal solutions. An efficient way to address this limitation
is to approximate the weight of the suboptimal solutions γ̃, based on the
already calculated optimal solution γ∗ (line 13). Such a problem is called a
suboptimality approximation problem [45] and it can be solved by using an
algorithm Õ which returns the following approximation for the weight of the
suboptimal solution:

w(O′(Γt, I)) ≤ αw(Õ(Γt, I,O′(Γt−1, I))). (4.3)

Besides the constant approximation with factor α, the approximation al-
gorithm Õ also needs to satisfy efficiency requirements, so that calling algo-
rithm Õ up to |F| times does not exceed the runtime of a single optimization
call.

In practice it is not necessary to calculate the suboptimality approxima-
tion since computing the suboptimality approximation regret is sufficient [1].
It is defined as an upper bound on the local loss L when scheduling a
suboptimal request j at time t, that is,

L ≡ w(O(Γt−1, I))− w(O(Γt, I)). (4.4)

The function regret calculates this approximation bound, that is,

regret(Γt, I,O(Γt−1, I)) ≥ w(O(Γt−1, I))− w(O(Γt, I)),

under the assumption that all other decisions at time t′ > t are optimal.
Since we already know the optimal solution γ∗ from the optimization step in
line 9, we can compute the regret of the suboptimality approximation, that
is

w(O′(Γt, I))− regret(Γt, I,O(Γt−1, I)). (4.5)

CHAPTER 4. ONLINE PACKET SCHEDULING 32

Equation 4.5 is implemented in line 13 of the regret algorithm R for evalu-
ating the suboptimal feasible requests against each scenario.

This paragraph now discusses the algorithm regret, used to imple-
ment the calculation of the suboptimality approximation regret (Figure 4.9).
The basic idea is to take the optimal solution γ∗, schedule the suboptimal
packet γ̃t at time t and calculate the regret that is caused by this premise.

Algorithm regret(γ̃, SF ,γ
∗)

1: R← SF \ γ∗
2: tc ← max{t ∈ T | γ̃t 6= null}
3: if γ̃tc /∈ γ∗ then
4: return min{w(γ∗t)− w(γ̃tc) | t ∈ T and tc ≤ t ≤ a(γ∗tc) + d}
5: else
6: t∗c ← t ∈ T | γ∗t = γ̃tc
7: if a(γ∗tc) ≤ t∗c ≤ a(γ∗tc) + d then
8: return 0
9: else

10: S ← {t ∈ T | tc + 1 ≤ t ≤ a(γ∗tc) + d and w(γ∗t) ≤ w(γ∗tc)}
11: if S 6= {} then
12: tr ← arg mint∈S(w(γ∗t))
13: wr ← max{w(r) | r ∈ R ∪ {γ∗tr} and a(r) ≤ t∗c ≤ a(r) + d}
14: return w(γ∗tr)− wr
15: else
16: wr ← max{w(r) | r ∈ R and a(r) ≤ t∗c ≤ a(r) + d}
17: return w(γ∗tc)− wr
18: end if
19: end if
20: end if

Figure 4.9: Suboptimality Approximation Regret Calculation

The algorithm starts by defining the set of available requests, being the
requests from the sampled scenario SF without the packets already scheduled
in the optimal solution γ∗ (line 1). If the suboptimal packet γ̃tc , scheduled at
the current time tc, is not scheduled in the optimal solution γ∗ (line 3), the
algorithm tries to reschedule the optimal packet γ∗tc to another time slot t,
such that as little cost as possible is lost (line 4). Otherwise, if packet γ̃tc
is already scheduled in the optimal solution γ∗ at some time t∗c (meaning
that γ̃tc = γ∗t∗c), it is first tried to swap those two packets in the optimal
schedule γ∗ (line 7) which would result in a cost-equivalent schedule with
zero regret (line 8). If these packets cannot be exchanged in the optimal

CHAPTER 4. ONLINE PACKET SCHEDULING 33

schedule γ∗, another packet needs to be found that can be scheduled at
time t∗c so that packet γ̃tc is not scheduled twice. Algorithm regret first
tries to reschedule γ∗tc in place of another packet scheduled at time tr, such
that w(γ∗tr) ≤ w(γ∗tc) (lines 10 and 12). Then the best possible packet from
the available requests is chosen to be scheduled at time t∗c (line 14). Note that
since packet w(γ∗tr) is dropped, also this packet can be chosen to be scheduled
at time t∗c . At last, if no such packet γ∗tr can be found, the algorithm simply
schedules the highest weighted available packet at time t∗c (line 17) and the
optimal packet γ∗tc is lost.

This implementation covers all possible scenarios so it will always return
a regret that corresponds to a valid suboptimal scheduling that has been
created from the optimal solution γ∗. Algorithm regret takes sublinear
time and is therefore computationally negligible for this application [1].

4.4.4 Q-Learning Algorithm

This section now discusses the implementation of the classical Q-learning
algorithm RL, shown in Figure 4.10. It starts by defining the set of feasible
requests F (line 3), which are then used to update the current state st. This
is done in line 5.

Algorithm RL(I)

1: identical to algorithm A (see Figure 4.5) but select-RL is used in line 6

select-RL(γ, R, t, Q,N, r̃t, at, st)

2: Γt−1 ← {γ1, . . . , γt−1}
3: F ← {j ∈ R \ γ | H(Γt−1 ∪ {j})}
4: st−1 ← st
5: st ← observe the new state
6: f ← 1/(1 +N(st−1, at))
7: Q(st−1, at)← (1− f)Q(st−1, at) + f(r̃t + ρmaxa∈AQ(st, a))
8: N(st−1, at)← N(st−1, at) + 1
9: at ← arg maxa∈A{Q(st, a) | a = w(r) and r ∈ F}
10: γt ← arg minr∈F{a(r) | w(r) = at}
11: r̃t ← w(at)

Figure 4.10: Q-Learning Algorithm RL

Afterwards, the Q-function is updated for the action chosen at time t − 1,
together with the function N (line 8). The function N keeps track on how
many times each state-action pair has been visited so far. The action at is

CHAPTER 4. ONLINE PACKET SCHEDULING 34

then chosen by the maximum Q-value for the state st. Note, that rather an
exploratory strategy should be used here as defined in Section 3.3, but for
simplicity such variants are not included in the implementation. The packet r
to be scheduled at time t is the feasible packet with earliest arrival time a(t),
given its weight w(r) matches the chosen action at. Therefore, the action a
always corresponds to the weight of a specific packet class. Note that the
functions Q and N need to be initialized at the start, together with the initial
action a0 = 0. For the function Q an optimistic initialisation is advised to
encourage early exploration and avoid getting stuck on suboptimal actions.
This means that the initialisation of each Q-entry is set higher than its true
value by using an appropriate upper bound [46].

Still left to define is the state representation for the packet scheduling
problem. The proposed approach in this work is to define a state as a vector
of integer values, where each value describes the currently available packet
quantity of a specific packet class Cw and the time left until expiration,
according to Table 4.1. This is based on the idea that the packet with earliest
arrival is most interesting to be described in more detail for each class. For
such a packet its main feature is the time until it expires.

Code Description

0 Cw = {}
1 |Cw| = 1 and t−minr∈Cw a(r) + d = 0
2 |Cw| ≥ 1 and t−minr∈Cw a(r) + d = 0
3 |Cw| = 1 and t−minr∈Cw a(r) + d = 1
4 |Cw| ≥ 1 and t−minr∈Cw a(r) + d = 1
5 |Cw| = 1 and t−minr∈Cw a(r) + d > 1
6 |Cw| ≥ 1 and t−minr∈Cw a(r) + d > 1

Table 4.1: State Encoding Scheme for the Reinforcement Learning

The vector created according to the described scheme can then easily be
converted to an integer and be used for hashing the Q-table. However, it
needs to be ensured that the structure used to represent the Q-function is
chosen large enough, such that the index is always in the desired range.

4.4.5 Conservative Q-Learning Algorithm

With a slightly different approach to the classical Q-learning algorithm, now
the conservative Q-learning algorithm RLC is presented in Figure 4.11. The
start of the algorithm is equivalent to the previously defined algorithm RL.

CHAPTER 4. ONLINE PACKET SCHEDULING 35

Also the state representation and the state updates remain unchanged. How-
ever, note the slightly different update rule of the Q-function in line 8. Now
the maximum weight wmax from the available packets is used as a lower
bound on the Q-update. The packet to be scheduled itself is again chosen
identical to the classical Q-learning algorithm, but the remaining part of the
algorithm RLC is now significantly different.

Algorithm RLC(I)

1: identical to algorithm A (see Figure 4.5) but select-RLC is used in
line 6

select-RLC(γ, R, t, Q,N, r̃t, at, st, wmax)
2: Γt−1 ← {γ1, . . . , γt−1}
3: F ← {j ∈ R \ γ | H(Γt−1 ∪ {j})}
4: wmax ← maxr∈F w(r)
5: st−1 ← st
6: st ← observe new state
7: f ← 1/(1 +N(st−1, at))
8: Q(st−1, at)← (1− f)Q(st−1, at) + f(r̃t + ρwmax)
9: N(st−1, at)← N(st−1, at) + 1

10: at ← arg maxa∈A{Q(st, a) | a = w(r) and r ∈ F}
11: γt ← arg minr∈F{a(r) | w(r) = at}
12: L = {r ∈ F \ {γt} | a(r) + d = t}
13: lt ←

∑
r∈Lw(r)

14: r̃t ← w(at)− lt

Figure 4.11: Conservative Q-Learning Algorithm RLC

First, the set L of packets that will be lost at the next time step is calculated
in line 12. This is used to calculate the explicit loss (line 13) which is then
used to reduce the reward function r̃.

4.4.6 Q-Learning Algorithm with Belief States

This section now applies the approach using belief states discussed in Sec-
tion 3.4.2 to the packet scheduling problem, by defining the Q-learning Algo-
rithm with Belief States RLB. The implementation of the algorithm itself is
almost identical to the classical Q-learning algorithm RL and therefore not
listed again. The only difference lies in the update of the states, that now is a
function of the entire observed history. Since now the states must encode the
traffic of each packet class together with the belief state of the distribution of

CHAPTER 4. ONLINE PACKET SCHEDULING 36

each packet class, it is advised to represent the states as two vectors of integer
values. The first is equivalent to the representation discussed previously in
Section 4.4.4 and the second vector contains the information on the belief
states, again one integer value for each packet class. When converting these
vectors into integer values, now two hash values are available. This however is
no limitation since the Q-function can easily be defined as a multidimensional
table. The only limitation here is the heap space that needs to be considered,
since the tables grow with the amount of different belief states and the
quantity of distinct packet classes.

The exact implementation of the procedure for updating the states st is
not shown in detail since it varies for each type of distribution the traffic is
modelled of.

Chapter 5

Learning Input Distributions

Previously in this work when discussing online anticipative algorithms, full
knowledge of the input distribution I has always been assumed. In practice
however this is rarely the case since either no information at all, or only
partial information is available for the underlying input distribution I. Still,
having a distribution to sample from is absolutely necessary to apply the
algorithmic framework discussed in Chapter 2. A reasonable approach is to
use the existing information of the past to learn the distribution I. There
might be already data available or the learning process needs to be performed
entirely during the online optimization effort.

In general the two main approaches to such a learning task are statistical
modelling and machine learning. Statistics emphasizes more on the aspect
of drawing population inferences from a sample, whereas the aim of machine
learning is to find generalizable predictive patterns. Furthermore, learning
statistical models requires some existing knowledge of the system to predefine
the model to be learned. Machine learning for the most part only requires
choosing the predictive algorithm [47].

The first section of this chapter discusses the case when some information
of the underlying distribution I is available. A hidden Markov model is
assumed, where transition probabilities are not known a priori and therefore
have to be estimated over time using a statistical approach. The second
and third section discuss the case where nothing at all is known about the
underlying distribution I and machine learning techniques are applied to
learn the model over the time horizon. Either approach is applied to the
online setting, where inputs are revealed over time. Therefore, information
on the distribution I is revealed step by step and can be used to infer the
state of the distribution or to train the partially defined model [1]. For the
implementation this requires to extend the generic online algorithm A to
incorporate an additional learning step at each time step t. This learning

37

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 38

step learn uses the information of the request set Rt, revealed at time t,
for continuous improvements of the existing predictive model. Of course, the
actual implementation of this step depends on the chosen predictive model,
but generally this step adjusts the predictor’s parameters to the new observed
data. The generic algorithm A′ is shown in Figure 5.1 below.

Algorithm A′(I)

1: for t ∈ T do
2: γt ← null
3: end for
4: for t ∈ T do
5: R← ∪Rt′∈I,t′≤tRt′

6: Ĩ ← learn(R)
7: γt ← select(γ, R, t, Ĩ)
8: end for
9: return γ

Figure 5.1: Generic Online Algorithm A′ with Learning

As time passes the quality of the predictive model is expected to improve
and therefore also the quality of the function sample should yield better
and better results throughout the online optimization effort. This effect is
investigated in Chapter 6.

5.1 Hidden Markov Models

In this chapter the underlying distribution I is assumed to be a set of Markov
models, for the reason that a Markov model is complex enough to describe a
variety of real-world time series [48]. Each Markov model in I describes the
arrival of a packet class, determined by its weight. A request at a specific
time t in the online framework can then be composed of the packets emitted
when performing a transition in each individual Markov model.

A Markov model can be described by using five attributes. Each model Λ
has a set of states S, a set of possible outputs O, a transition probability
function p, an output probability function b and an initial state distribution µ
at time t = 1 [49]. The transition probability function p(st, st+1) describes
the probability that the current state st is changed to the state st+1, while
the transmitted output ot+1 in the new state is described by b(st+1, ot+1). For
hidden Markov models the current state of the distribution and the transition

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 39

and output probabilities are not observable. In this way, they are models with
incomplete data that comprise unobserved random variables.

Since the state st ∈ S of the input distribution I is not known in the
hidden Markov model, the information on the past sequence of outputs
needs to be used to infer the current state. Therefore, the first problem
to solve is finding a state sequence s, that best explains the observed output
sequence o = (o1, . . . , oτ) given a specific model Λ, where τ is the current
time step of the online optimization procedure. This optimal state sequence
is not unique since several optimality criteria can be chosen. In this work the
individually most likely states st are chosen. This can be done by introducing
the variable

φ(s) = P (st = s | o,Λ),

which describes the probability of being in state s at time t, given the model
and the observations so far. In order to calculate φ, two algorithms need to
be introduced first. These algorithms constitute the core of the Baum-Welch
method [50], shown in Figure 5.2 below, that is used to adjust the parameters
of the hidden Markov model at each time step τ of the online optimization
effort.

5.1.1 Forward and Backward Algorithm

In the following the observation sequence o and an initial state s1 are fixed.
The forward algorithm calculates the forward variable

αt(s) = P ((o1, . . . , ot), st = s | Λ),

that is, the probability of being in state s at time t < τ , when starting from
state s1 and taking into consideration the observations (o1, . . . , ot). The
calculation of the forward variable is recursively defined as

αt+1(s) =

(∑
s′∈S

αt(s)p(s
′, s)

)
b(s, ot+1), (5.1)

with the initialisation

α1(s) = µ(s)b(s, o1). (5.2)

Since αt(s) is the probability that (o1, . . . , ot) is observed with eventually
reaching the final state st = s, ατ (s) is the probability of the entire observa-
tion sequence o given the last state sτ = s. It is therefore easy to see that

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 40

the probability P (o | Λ), the probability of the entire output sequence given
the model, is the sum

P (o | Λ) =
∑
s∈S

ατ (s). (5.3)

The property shown above in equation 5.3 will be important for the formu-
lation of a possible stopping criterion.

In a similar way the backward algorithm can be defined. It calculates the
backward variable

βt(s) = P ((ot+1, . . . , oτ) | st = s,Λ),

that is, the probability that (ot+1, . . . , oτ) is observed when starting from
state s at time t and given the model Λ. Here the recursion is defined as

βt(s) =
∑
s′∈S

p(s, s′)b(s′, ot+1)βt+1(s′), (5.4)

with the initialisation

βτ (s) = 1. (5.5)

Now we can express φt(s) in terms of the backward and forward variables
using the simple relation

φt(s) =
αt(s)βt(s)∑

s′∈S αt(s
′)βt(s′)

. (5.6)

Having the first problem solved, φt(s) can now be used to estimate the
most probable current state st for each time step. The immediate problem
following is how to describe the other unobserved random variables, the
transition and output probabilities.

5.1.2 Baum-Welch Algorithm

The second question to solve is how the model parametersmu, p and b need to
be adjusted in order to maximise the probability P (o | Λ). There is actually
no optimal way of estimating the model parameters, but the iterative Baum-
Welch method can be used to locally maximise the probability P (o | Λ) [51].
In order to be able to formulate the re-estimation of the model parameters
one more probability needs to be introduced. The variable

ξ(s, s′) = P (st = s, st+1 = s′ | o,Λ)

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 41

expresses the probability of being in state s at time t and in state s′ ∈ S at
time t + 1, again given the model and the observed output sequence. Also
for the calculation of this variable we will use the forward and backward
variables that have already been calculated and write it as

ξt(s, s
′) =

αt(s)p(s, s
′)b(s′, ot+1)βt+1(s′)∑

s′′∈S
∑

s′′′∈S αt(s
′′)p(s′′, s′′′)b(s′′′, ot+1)βt+1(s′′′)

. (5.7)

In order to re-estimate the model parameters, the properties of the calculated
probabilities φt(s) and ξt(s, s

′) need to be further investigated. Now, these
variables are summed over the time horizon [1, . . . , τ−1] for each state s ∈ S
individually. But even before that, a simple re-estimation of the initial state
distributions can be given by

µ̄s = φ1(s). (5.8)

The summation of φt(s) over time will then give an estimate on the number
of times the state s is visited, or more precisely the number of transitions
made from s. In a similar manner the summation of the variable ξt(s, s

′) over
time can be interpreted as the number of transitions from state s to state s′.
This knowledge on the transitions will allow us to re-estimate the transition
probabilities

p̄(s, s′) =

∑
t∈[1,...,τ−1] ξt(s, s

′)∑
t∈[1,...,τ−1] φt(s)

. (5.9)

For the re-estimation of the output probabilities a similar equation is used,
but in the nominator the summation of φt(s) over time is done only when the
output at that time corresponds to the output probability to be estimated.
This can be written as

b̄(s, o) =

∑
t∈[1,...,τ−1]|ot=o φt(s)∑
t∈[1,...,τ−1] φt(s)

, (5.10)

which corresponds to a re-estimation according to the actual output fre-
quency of each possible output o ∈ O for each state.

Since the equations defined above are an iterative process, a stopping cri-
terion needs to be defined. As already mentioned previously in this chapter,
the probability P (o | Λ) is used to formulate this criterion. More precisely,
the iterative procedure is continued until the probability P (o | Λ) does not
change much, or until ∣∣P (o | Λ)− P (o | Λ̄)

∣∣ ≤ ε, (5.11)

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 42

where Λ̄ are the re-estimated model parameters and ε is a precision param-
eter.

An implementation of the function learn for hidden Markov models
using the Baum-Welch algorithm is shown below in Figure 5.2. The pre-
sented implementation is suitable to be applied in an online framework
where the model parameters are optimized for each time step in the past
horizon [t− λ, . . . , t].

Algorithm learn-hmm(o, t, λ, p̄, b̄, φ)

1: ts ← max(0, t− λ)
2: for s ∈ S do
3: αts(s)← φts(s)b̄(s, ots)
4: βts(s)← 1
5: end for
6: repeat
7: p0 ← P ((ots , . . . , ot))
8: for t′ ← ts . . . t− 1 do
9: for s ∈ S do

10: αt′+1(s)←
(∑

s′∈S αt′(s)p̄(s
′, s)
)
b̄(s, ot′+1)

11: end for
12: end for
13: for t′ ← t− 1 . . . ts do
14: for s ∈ S do
15: βt′(s)←

∑
s′∈S p̄(s, s

′)b̄(s′, ot′+1)βt′+1(s′)
16: end for
17: end for
18: for t′ ← ts . . . t− 1 do
19: ∀(s ∈ S, s′ ∈ S): calculate ξt′(s, s

′) using equation 5.7
20: ∀s ∈ S: calculate φt′(s) using equation 5.6
21: end for
22: for s ∈ S do
23: φt(s)← αt(s)/

∑
s′∈S αt(s

′)
24: end for
25: for s ∈ S do
26: ∀o ∈ O: re-estimate b(s, o) using equation 5.10
27: ∀s′ ∈ S: re-estimate p(s, s′) using equation 5.9
28: end for
29: until |P ((ots , . . . , ot))− po| ≤ ε

Figure 5.2: Algorithm for Learning Hidden Markov Models

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 43

Of course, if t−λ ≤ 0, the past horizon interval starts from time t = 1 (line 1).
Note that in the implementation the model parameters (p̄, b̄, φ) ∈ Λ are given
to the function to be iteratively re-estimated. Starting from line 2 the base
cases of the forward and backward variables are initialised. Then, first the
forward algorithm starting in line 8 and afterwards the backward algorithm
starting in line 13 are implemented. Then the probability variables φt(s)
and ξt(s, s

′) are calculated (lines 18 to 24) and immediately afterwards the
parameters of the hidden Markov model are re-estimated starting in line 25.
This iteration is proceeded until the stopping criterion in line 29 is met. For
stability and runtime guarantee it is advisable to restrict the optimization
with an additional constraint on the number of maximum iterations.

At the start of the online optimization procedure τ = 1, an initial esti-
mation of the model parameters needs to be given to the algorithm since no
previous result is available. In general, it is not possible to define an initial
estimation that will certainly lead to a good local maximum of the Baum-
Welch algorithm. Experimental results have shown that either random or
uniform initial estimates can be used. However, good initial estimates for the
probability function b(s, o) can be helpful [51]. Recall that our framework is
an online problem. By that, the Baum-Welch algorithm is executed in each
time step and we can accept the model parameters adjusted at time t as initial
values for time t+ 1. In that manner the actual initialisation will only affect
the first execution of the Baum-Welch algorithm where not much information
is available yet. Therefore, initial estimations in an online framework might
not significantly influence the convergence. However, note that attention
needs to be paid to the case when some of the model parameters are estimated
to be zero. If that occurs, the zero estimated parameter will remain at
zero also after the re-estimation procedure [51]. At the start of the online
optimization where only little data is accessible this might happen frequently
and a simple solution is to set the zero estimated probabilities to a fixed small
value.

5.1.3 Precision Range and Scaling

When calculating the forward variables using their recursive definitions, the
computation of the sum of many terms of the form∏

t∈[1,...,τ−1]

p(st, st+1)
∏

t∈[1,...,τ]

b(st, ot)

is necessary. Since both terms are products of probabilities, that furthermore
are generally significantly less than one, each term exponentially heads to

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 44

zero. If the time horizon τ is large (e.g. τ > 100) the computation of the
forward variables will exceed the precision range of any machine, even in
double precision [51]. This of course also applies to the backward variable
that is calculated using a similar recursion. Therefore, scaling needs to be
incorporated in order to keep the variables within the precision range of the
machine.

The idea is to scale each αt(s) with a scaling factor ct, and then the scaled
forward variable ᾱt(s) is used to proceed the recursion. The scaling factor ct
is chosen such that the sum of ᾱt(s) at each time t is exactly 1, therefore

ct =
1∑

s∈S αt(s)
. (5.12)

The introduction of the scaled forward variable also slightly alters the recur-
sion defined in equation 5.1 and can now be written as

αt(s) =

(∑
s′∈S

ᾱt−1(s)p(s′, s)

)
b(s, ot). (5.13)

Since the recursion only considers scaled forward variables it is also necessary
to compute

ᾱt(s) = ctαt(s) =
αt(s)∑
s′∈S αt(s

′)
. (5.14)

It has already been mentioned that scaling also needs to be applied to the
backward variable. Since the magnitude of both variables is comparable, the
same scaling factor ct can be used to scale the backward variable at each
time step t, such that

β̄t(s) = ctβt(s). (5.15)

Note that now the computation of ξt(s, s
′) and γt(s) also needs to be ex-

pressed in terms of the scaled forward and backward variables. It can be
easily shown that multiplication with a term only depending on time (not
the possible states) does not alter the actual result of equation 5.6 and 5.7,
since the scaling factors cancel each other out [51]. For better readability, the
actual computational steps of the scaling within the Baum-Welch algorithm
are not included in the implementation shown in Figure 5.2.

5.2 Historical Averaging

This and the following sections now discuss the relaxation of the assumption
on the presence of any information on the underlying input distribution I.

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 45

This means that for the predictive mechanism only the already revealed input
sequences, also denoted the historical data, are available.

A very simple approach is historical averaging shown in Figure 5.3. The
idea is to observe the latest λ elements of the input sequence o and estimate
the arrival probability of each o ∈ O by simply considering their frequen-
cies [1]. That means that the occurrence of each possible output o ∈ O in
these recently observed requests is counted to estimate the probability P (o).
Then, for the time horizon to be sampled, the sequence (ot+1, . . . , ot+hs) is
generated by drawing a random request o ∈ O with probability P (o) at each
time step.

Algorithm learn-ha(o, t)

1: for o ∈ O do
2: C(o)← 0
3: end for
4: for i← t− λ+ 1 . . . t do
5: C(oi)← C(oi) + 1
6: end for
7: for o ∈ O do
8: P (o)← C(o)

λ

9: end for

Figure 5.3: Implementation of Historical Averaging

Incorporating only the latest λ elements is important, since the distribution I
is not expected to be independent and identically distributed. The expected
structure and temporal correlation of the data can be a reason why averaging
over the entire time horizon is not feasible.

5.3 Historical Sampling

If it is expected that the underlying distribution I inherits some sort of
structure, historical averaging might not be suitable because the structure
of the inputs is entirely ignored. An approach to incorporate structural
sequences in the data is historical sampling, presented in Figure 5.4. This
approach is especially useful if the distribution I can be described using a
Markov model, since in this case historical sampling represents a random walk
in the model. Of course, this approach also can be applied if the underlying
input distribution cannot be characterized by a Markov model. The basic
idea is to select a past instance and use the output sequence starting with

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 46

the same instance also as outputs for the time interval to be sampled. The
function random([a, b]) draws a random uniformly distributed value in the
specified interval. There is actually no learning procedure to be implemented
in this case, since the inputs are directly sampled from the past. The start of
the chosen past sequence t is random (line 1) and, starting from this point,
the sequence of outputs (ot′ , . . . , ot′+hs) is taken and used as possible future
outputs.

Algorithm sample-hs(o, t, hs)

1: t′ ← random([0, t− hs])
2: return (ot′+1, . . . , ot′+hs)

Figure 5.4: Implementation of Historical Sampling

A special case arises if t−hs < 0. In this case not enough past information is
available to be able to sample enough requests. There are several approaches
to handle this situation, one being the iterative concatenation of the observed
past until the sequence contains hs requests. Certainly, this is not optimal,
but at least it allows to extract any information out of the recent past.

5.4 Machine Learning

A general approach to predict future inputs is machine learning. It includes
all computational predicting methods that use only the information on the
past to improve their performance, that is in this case the observed past
input sequences. Many machine learning tools are generically deterministic,
meaning that the result is a specific prediction that can be repeated any
time if the model parameters and the input remain unchanged. However,
recall that the basic concept of the anticipatory algorithms discussed in
Chapter 2, is the optimization in different sampled possible scenarios. If the
prediction is deterministic, there is only one scenario that can be obtained,
hence optimizing only in this scenario is possible. So the correct approach
here would be to maximise the prediction accuracy and then just optimize in
this predicted deterministic scenario. However, note that from many of these
deterministic prediction tools a stochastic model can be obtained, e.g. by
considering the activation percentage of an output node in neural networks.

Another point to consider is that the performance of machine learning
tools strongly depends on the amount and quality of the training data [52].
Therefore, it might be necessary to have data accessible for pre-training,
or otherwise it might take considerable time until the predictor is able to

CHAPTER 5. LEARNING INPUT DISTRIBUTIONS 47

make reasonable statements about the future in the online framework. In
this framework, the machine learning algorithm is facing an online learning
environment, where the algorithm receives a training example in each time
step, makes a prediction, and then acquires a loss. The aim of the predictive
model is to train its parameters to minimize the cumulative loss over all time
steps t. Many online learning algorithms are used for adversarial scenarios
but they can also be used to derive accurate predictors for a distributional
scenario [53].

The machine learning model used in the context of online anticipatory
algorithms is however not just confronted with a generic classification prob-
lem, rather it needs to face a time series analysis problem. Such an anal-
ysis requires the extraction of statistical information from data arranged
in chronological order. Time series are interesting in this framework since
they can address causality and trends, and therefore better forecast the
future inputs. In time series data, the requests near in time are expected
to be strongly correlated with one another, but an overall aggregation of the
information without incorporation of the temporal correlations is usually not
efficient for predicting the future [54].

A suitable machine learning model for the framework described above
are deep neural networks, e.g. convolutional neural networks or multilayer
perceptrons. Deep learning is highly flexible and complex enough to be
advantageous for time series analysis. However, for the packet scheduling
problem discussed in this work, it might be necessary to use a distinct deep
network to model the arrival of each packet class separately.

Chapter 6

Experimental Analysis

The experimental analysis presented in this chapter was made to evaluate
the different online anticipatory algorithms on the packet scheduling prob-
lem. The analysis is based on studying the average regret L defined in
Section 1.1.2. To give more information on the actual behaviour of the
algorithms, the cumulative average regret L(t) at time t is considered. This
might give more insight on an initial learning curve or other details compared
to just analysing the overall regret within the time horizon. The function of
the time dependent average regret L(t) can be written as

L(t) = EI

[∑
i≤t

(w(γ∗i)− w(γi))

]
,

where γ∗ is the optimal decision sequence produced by the optimal offline
algorithm O and γ is the decision sequence produced by the respective
algorithm to be analysed. Note that at the end of the time horizon t = h this
value is equivalent to the definition of L given in equation 1.2.

Of course, due to the stochastic packet arrival the actual regret function
is different for each instance of the problem, but still the overall drift can be
noticed when averaging over several input sequences. For this analysis, the
average is taken over five different instances. Note that each algorithm is ap-
plied on the same input sequences. Further, to remove some of the stochastic
noise the average regret L(t) is smoothed using a Gaussian-weighted moving
average filter.

First, the greedy algorithm and the local optimization algorithm are com-
pared to find the better suited oblivious approach for the packet scheduling
problem. This approach will be then used in the following as a reference
when evaluating the different online anticipatory algorithms.

48

CHAPTER 6. EXPERIMENTAL ANALYSIS 49

6.1 Experimental Setting

This work considers the request arrival, that is, the underlying distribution I,
to be a set of hidden Markov models. This setting has already been used
in previous work [1, 9]. Each hidden Markov model Λ ∈ I then describes
the arrival of an individual packet class, characterized by its distinct weight.
The randomly generated input distribution I that has been used for each
experiment, is shown in Figure 6.1.

.28

.78.06

.95 .99

.96

.01

.04.05

weight: 772.36

.42

.74.08

.97 .95

.92

.05

.08.03

weight: 784.5

.37

.96.05

.91 .93

.94

.07

.06.09

weight: 665.97

.47

.99.08

.92 .96

.93

.04

.07.08

weight: 883.35

.43

.73.02

.93 .98

.98

.02

.02.07

weight: 236.71

.21

.78.03

.96 .92

.94

.08

.06.04

weight: 112.92

Figure 6.1: Experimental Model of the Packet Arrival

The hidden Markov models are created based on the previous research in [44].
All Markov models have three different states, corresponding to a low,
medium and high request arrival rate. Each state has a dominating self-
transition probability, drawn from the interval [0.9, 1.0). Further a state
can only change, apart from the self-transition, from either low to medium,
medium to high or high to low. The probability that a request is emitted in a
specific state of the hidden Markov model is drawn from the interval (0, 0.1]
for the low state, [0.2, 0.5] for the medium state, and [0.7, 1.0) for the high
state. The deadline for all packets has been set to d = 20 and problems
with up to six different packet classes are considered. The weights of the

CHAPTER 6. EXPERIMENTAL ANALYSIS 50

packets are also drawn randomly from the interval [0, 1000]. An instance
of an n-class problem always includes the first n classes (from left to right)
shown in Figure 6.1. To generate a specific input sequence, for each time
step every Markov model is sampled and if a packet is emitted, it is added
to the request set at the respective time step.

6.2 Oblivious Algorithms

In the following, the oblivious online algorithms presented in Section 4.3 will
be compared: the greedy algorithm G and the local optimization algorithm L.

(a) 2-Class Problem (b) 3-Class Problem

(c) 4-Class Problem (d) 6-Class Problem

Figure 6.2: Comparison of Greedy G and Local Optimization L

For the general n-class problem the greedy algorithm is the better approach.
This is shown in Figure 6.2. For the special case that only two packet classes

CHAPTER 6. EXPERIMENTAL ANALYSIS 51

are arriving, algorithm L has shown to be optimal in the experiments. With
increasing class quantity however, the typical behaviour of over-optimization
in online settings due to the absence of information on future requests [1]
can be observed and greedy is a much better approach. The optimality of
the local optimization algorithm is not extensively discussed in this work.

Remember, the local optimization algorithm executes the offline opti-
mization algorithm O′ at every time step. A postprocessing step has been
defined for the optimal offline algorithm in Section 4.2.1. This step schedules
high-weighted packets early and therefore improves the optimal solution in
the online context. Since it also schedules the packets with shortest deadline
early, this might be an optimal policy for the 2-packet case.

(a) 2-Class Problem (b) 6-Class Problem

Figure 6.3: Effect of the Postprocessing step in the Online Framework

Figure 6.3 studies this in more detail by analysing the benefit caused by
the postprocessing step. It shows clearly that the postprocessing step does
in fact significantly improve the optimization result in the online context.
It is therefore strongly advised to be incorporated and in the following
the offline algorithm O and its variation O′ will always include this exact
postprocessing step. Figure 6.3a also supports the assumption that the
optimality of the local optimization algorithm on the 2-class problem is a
result of the postprocessing step.

6.3 Stochastic Optimization Algorithms

Now a closer look is taken at the algorithms incorporating online stochastic
combinatorial optimization, defined in Chapter 2.2. When recalling the

CHAPTER 6. EXPERIMENTAL ANALYSIS 52

general definition of the algorithmic framework of stochastic optimization
algorithms, some parameters have been defined. These parameters include
the sample horizon hs and the number of optimization steps n. Recall that
the sample horizon hs defines how many future request sets are sampled from
the available distribution and n defines the number of overall executions of
algorithm O′ at each time step.

(a) 2-Class Problem (b) 3-Class Problem

(c) 4-Class Problem (d) 6-Class Problem

Figure 6.4: Comparison of the Stochastic Optimization Algorithms

The effect of changing both parameters has been extensively studied in [1]
and is therefore not repeated. As expected, increasing either parameter
improves the algorithms but according to the study there is not much benefit
setting the parameters n > 150 and hS > 100. In this work the parameters
are set to n = 100 and hs = 75. The stochastic optimization algorithms
incorporate sampling the underlying input distribution I. Figure 6.4 shows

CHAPTER 6. EXPERIMENTAL ANALYSIS 53

a comparison of the stochastic optimization algorithms under the assump-
tion that the underlying distribution is fully observable. This is a very
strong assumption but for only comparing the algorithmic behaviour it is
a reasonable choice. As expected, every algorithm can outperform greedy
and the consensus algorithm C has the worst performance in any setting.
The expectation algorithm E has a significantly better performance in any
setting compared to the consensus algorithm. Interesting is the behaviour
of the regret algorithm R. Its performance seems to be strongly dependent
on the problem. On the 2-class and 4-class problem algorithm R performs
better than algorithm E , on the 3-class problem and 6-class problem the
regret algorithm cannot outperform algorithm E . The analysis made in [1]
shows that algorithmR should always outperform the expectation algorithm,
however note that now in this work the packet weights are drawn randomly
(in [1] they have been chosen arbitrarily with considerable weight differences)
and the Markov models describing the packet arrival are not normalised (in [1]
the models have been normalised so that the expected number of packets per
time step is 1.5). Clearly, algorithm R can achieve significant improvements,
e.g. for the 2-class problem it is almost optimal, but it is necessary to
emphasize that its performance is less robust than that of other algorithms.

FO

H A

H S

Figure 6.5: Sampling Methods for the Stochastic Optimization Algorithms

In the scope of this work there have been presented some techniques to learn
the underlying distribution I or to cope with the fact that no knowledge at
all on the packet arrival can be assumed. Figure 6.5 shows the effect of the

CHAPTER 6. EXPERIMENTAL ANALYSIS 54

sampling method on the performance on the 6-class problem. It compares
the case of full observation (FO) with the two methods that assume no
knowledge on the input distribution: historical averaging (HA) and historical
sampling (HS). The learning horizon was set to λ = 500 for both methods.
Section 5.1 also discussed a way of learning the underlying distribution I
for the case that it can be assumed to be composed of Markov models (Fig-
ure 5.2). This approach can perform arbitrarily close to the method E-FO,
but note that this knowledge is also a very strong assumption. In this work
the packet arrival is in fact modelled using Markov models, however for the
analysis it is more interesting to not assume that this is known, especially
when comparing the stochastic optimization algorithms with the reinforce-
ment learning algorithms that do not make this assumption. As expected,
the historical sampling method is significantly better than simply taking an
average over the past λ arrivals. In this way the structural sequences in the
data are preserved and incorporated in the sampling procedure.

6.4 Reinforcement Learning Algorithms

For the reinforcement learning algorithms a key performance factor is efficient
exploration. For this, first the ε-greedy and the UCB-1 algorithms are
compared in Figure 6.6.

Figure 6.6: Initial Exploration Loss on the 3-Class Problem

For the ε-greedy algorithm also a strategy with decaying ε is considered in

CHAPTER 6. EXPERIMENTAL ANALYSIS 55

order to decrease exploration (and therefore also packet loss) as time passes.
This is reasonable since after an initial learning phase, the algorithm is
expected to have achieved a reasonable approximation of the optimal action
value function. From this point, exploration is advised to be reduced. For
the comparison, the conservative algorithm RLC is applied on instances of
the 3-class problem. The exploration parameters have been set to c = 2 for
the UCB-1 algorithm and ε = 0.05 for the ε-greedy strategy. The decaying ε-
greedy algorithm starts with ε = 0.25 and gradually reduces the exploration
parameter to ε = 0 within 5000 time steps.

(a) 2-Class Problem (b) 3-Class Problem

(c) 4-Class Problem (d) 6-Class Problem

Figure 6.7: Comparison of the Reinforcement Learning Algorithms

The comparison shows that the classical ε-greedy strategy is not suitable.
Also, for the decaying ε-greedy strategy the initial accumulated loss is large.
It eventually achieves a similar approximation of the action value function

CHAPTER 6. EXPERIMENTAL ANALYSIS 56

as the UCB-1 algorithm, but it cannot recover the initially accumulated loss.
UCB-1 obviously incorporates some exploration, but it converges very fast.
This shows that a directed exploration can perform significantly better than
random exploration.

In the following now the different variants of the proposed reinforcement
learning algorithms are compared. They all incorporate the UCB-1 strategy
with the exploration parameter set to c = 2. The analysis in Figure 6.7
shows that for the n-class problem with n < 4, the conservative Q-learning
algorithmRLC is the best approach. It significantly reduces the accumulated
regret over time. In any setting, the algorithm RLB that incorporates belief
states performs worst. Note that for the conducted experiments it was
assumed that the input distribution is fully observable. If in this case the
algorithm RLB does not achieve reasonable results, learning the belief states
over time will be even worse. It is conjectured that in this representation
the state space is too large and is therefore not able to converge within a
reasonable time horizon. The classical Q-learning algorithm performs very
similar to the greedy algorithm. In Figure 6.7b it is almost not visible, but at
the end it achieved a little improvement compared to greedy. However, for the
n-class problem with n ≥ 4, none of the proposed algorithms can outperform
the greedy algorithm. A possible reason might be that the state space gets
too large for more complex problems including more distinct packet classes.

Chapter 7

Conclusion

In this work several algorithms have been proposed to incorporate antic-
ipative behaviour for scheduling problems in the online framework. The
algorithms have been experimentally studied on a packet scheduling problem
with packet arrivals modelled by Markov models. The analysis showed
that algorithms using online stochastic combinatorial optimization yield the
smallest cumulative weighted packet loss over time in any setting. The regret
algorithm R can have the significantly best performance, however it is also
less robust compared to the expectation algorithm E and potentially sensitive
to specific problems or weight distributions. The consensus algorithm C
turned out to be the least suitable algorithm for the packet scheduling prob-
lem studied in this work. When no knowledge on the underlying distribution
is assumed, the method of historical sampling showed to be the best approach
to generate possible future requests.

The proposed reinforcement learning algorithms also achieved to outper-
form the greedy algorithm, however only slightly. The algorithm RLB, that
incorporates belief states in its state representation, turned out to be not
suitable and ineffective for the problem. When only a few distinct packet
classes are arriving, algorithm RLC is the best approach. However, when
more packet classes are present, none of the proposed reinforcement learning
algorithms converges within a reasonable time horizon and the classical Q-
learning algorithm RL showed to be the best approach.

When comparing the approaches discussed in this work, two main proper-
ties must be mentioned. First, the performance of stochastic optimization is
significantly better compared to reinforcement learning algorithms in any
problem setting. When using the stochastic optimization approach, the
cumulative weighted packet loss can be strongly reduced over time. However,
stochastic optimization requires also a significantly larger runtime to make a
decision at each time step since it requires to execute the offline optimization

57

CHAPTER 7. CONCLUSION 58

algorithm multiple times at each time step. Therefore, if low computing
power or severe time restrictions must be expected, reinforcement learning
might be better suitable. However, it must be mentioned that the comparison
of the two approaches is not completely fair. Because of the sampling
at each time step the stochastic optimization algorithms have much more
information available. To perform a conclusive comparison, the reinforcement
learning algorithm should also have all these sampled requests available
for learning. This would drastically reduce the time until the Q-learning
algorithm converges.

In the scope of this work the packet arrival has been only modelled using
Markov models. It might be also interesting to study the proposed algorithms
on instances generated using real network traffic data. It is open to study if
also in that case the sampling procedure, required when applying stochastic
optimization, is effective. Also, using machine learning to generate possible
future requests has not been further discussed. This could further improve
the performance of the stochastic optimization algorithms while still making
no assumptions on the model of the underlying distribution.

Also, only one possible state representation for the reinforcement learning
algorithm has been studied, which eventually showed not to be suitable for
more complex instances of the packet scheduling problem. Experimenting
with different representations could further improve the performance and
eventually make the reinforcement learning algorithms also applicable to
problems containing a larger class quantity.

Bibliography

[1] Pascal van Hentenryck and Russell Bent. Online stochastic combinato-
rial optimization. MIT Press, Cambridge, Mass, 2006.

[2] Susanne Albers. Online algorithms. In Dina Goldin, Scott A.
Smolka, and Peter Wegner, editors, Interactive Computation: The
New Paradigm, pages 143–164. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[3] Stephan Meisel. Anticipatory optimization for dynamic decision making,
volume 51 of Operations research/computer science interface series.
Springer, New York, NY, 2011.

[4] Luc Mercier and Pascal van Hentenryck. Performance analysis of online
anticipatory algorithms for large multistage stochastic integer programs.
In IJCAI, pages 1979–1984, 2007.

[5] Robert Rosen. Anticipatory systems: Philosophical, mathematical and
methodological foundations, volume 1 of IFSR international series on
systems science and engineering. Pergamon Press, Oxford u.a., 1985.

[6] Martin V. Butz, Olivier Sigaud, and Pierre Gérard. Anticipatory
Behavior in Adaptive Learning Systems: Foundations, Theories, and
Systems, volume 2684 of Lecture Notes in Computer Science. Springer,
Berlin and Heidelberg, 2003.

[7] M. A. L. Thathachar and P. S. Sastry. Networks of Learning Automata:
Techniques for Online Stochastic Optimization. Springer US, Boston,
MA, 2004.

[8] Haruhiko Suwa and Hiroaki Sandoh. Online scheduling in manufactur-
ing: A cumulative delay approach. Springer, London, 2013.

[9] Hyeong Soo Chang, Robert Givan, and Edwin K. P. Chong. On-
line scheduling via sampling. In Proceedings of the Fifth International

59

BIBLIOGRAPHY 60

Conference on Artificial Intelligence Planning Systems, AIPS’00, pages
62–71. AAAI Press, 2000.

[10] Russell Bent and Pascal van Hentenryck. Online stochastic and robust
optimization. In Annual Asian Computing Science Conference, pages
286–300, 2004.

[11] Martin Böhm, Marek Chrobak, Lukasz Jeż, Fei Li, Jǐŕı Sgall, and Pavel
Veselý. Online packet scheduling with bounded delay and lookahead.
Theoretical Computer Science, 776:95–113, 2019.

[12] Michael Markovitch and Gabriel Scalosub. Bounded delay scheduling
with packet dependencies. In 2014 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 257–262,
2014.

[13] Susanne Albers. Online algorithms: a survey. Mathematical Program-
ming, 97(1):3–26, 2003.

[14] Amos Fiat and Gerhard J. Woeginger. Online Algorithms: The State of
the Art, volume 1442 of Lecture Notes in Computer Science. Springer,
Berlin and Heidelberg, 1998.

[15] Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive
analysis. SIAM Journal on Computing, 30(1):300–317, 2000.

[16] S. Ben-David. On the power of randomization in online algorithms,
volume 90,23 of TR / International Computer Science Institute. Inter-
national Computer Science Inst, Berkeley, Calif., 1990.

[17] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin,
Adam Meyerson, Alan Roytman, and Adam Wierman. A tale of
two metrics: Simultaneous bounds on competitiveness and regret. In
Conference on Learning Theory, pages 741–763, 2013.

[18] Amit Daniely and Yishay Mansour. Competitive ratio vs regret mini-
mization: achieving the best of both worlds. In Aurélien Garivier and
Satyen Kale, editors, Proceedings of the 30th International Conference
on Algorithmic Learning Theory, volume 98 of Proceedings of Machine
Learning Research, pages 333–368, Chicago, Illinois, 2019. PMLR.

[19] Frank Werner, Larysa Burtseva, and Yuri Sotskov, editors. Algorithms
for scheduling problems. MDPI, Basel and Beijing and Wuhan and
Barcelona and Belgrade, 2018.

BIBLIOGRAPHY 61

[20] Kurt Marti. Stochastic optimization methods: Applications in engi-
neering and operations research. Springer Berlin Heidelberg, Berlin,
Heidelberg and s.l., 3rd ed. 2015 edition, 2015.

[21] Russell Bent and Pascal van Hentenryck. Online stochastic optimization
without distributions. In Proceedings of the 15th International Confer-
ence on Automated Planning and Scheduling, volume 5, pages 171–180.
AAAI Press, 2005.

[22] John R. Birge and François Louveaux. Introduction to stochastic
programming. Springer Series in Operations Research and Financial
Engineering. Springer, New York, NY, 2. ed. edition, 2011.

[23] Georg Ch Pflug and Alois Pichler. Multistage Stochastic Optimization.
Springer Series in Operations Research and Financial Engineering.
Springer International Publishing, Cham and s.l., 2014.

[24] Peter A. N. Bosman. Learning, anticipation and time-deception in
evolutionary online dynamic optimization. In Proceedings of the 7th
annual workshop on Genetic and evolutionary computation, pages 39–
47, 2005.

[25] Peter A. N. Bosman and Han La Poutre. Learning and anticipation
in online dynamic optimization with evolutionary algorithms: the
stochastic case. In Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 1165–1172, 2007.

[26] Csaba Szepesvári. Algorithms for Reinforcement Learning, volume #9
of Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool, San Rafael, 2010.

[27] Marco Wiering and Martijn van Otterlo. Reinforcement Learning:
State-of-the-Art, volume 12 of Adaptation, Learning, and Optimization.
Springer, Heidelberg, 2012.

[28] Bharathan Balaji, Jordan Bell-Masterson, Enes Bilgin, Andreas Dami-
anou, Pablo Moreno Garcia, Arpit Jain, Runfei Luo, Alvaro Maggiar,
Balakrishnan Narayanaswamy, and Chun Ye. Orl: Reinforcement
learning benchmarks for online stochastic optimization problems. arXiv
preprint arXiv:1911.10641, 2019.

[29] Herman L. Ferrá, Ken Lau, Christopher Leckie, and Anderson Tang.
Applying reinforcement learning to packet scheduling in routers. In

BIBLIOGRAPHY 62

Proceedings of the 15th Innovative Applications of Artificial Intelligence
Conference, pages 79–84. AAAI Press, 2003.

[30] Richard S. Sutton and Andrew Barto. Reinforcement learning: An
introduction. Adaptive computation and machine learning. The MIT
Press, Cambridge, MA and London, second edition edition, 2018.

[31] Stuart Russell. Learning agents for uncertain environments. In
Proceedings of the eleventh annual conference on Computational learning
theory, pages 101–103, 1998.

[32] Christopher John Cornish Hellaby Watkins. Learning from delayed
rewards: Ph.D.Thesis. King’s College, Cambridge, 1989.

[33] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

[34] Arryon D. Tijsma, Madalina M. Drugan, and Marco A. Wiering.
Comparing exploration strategies for q-learning in random stochastic
mazes. In 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 1–8, 2016.

[35] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-
learning. In Proceedings of the 15th National Conference on Artificial
Intelligence, pages 761–768. AAAI Press, 1998.

[36] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine learning, 47(2-3):235–256,
2002.

[37] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret
bounds for reinforcement learning. Journal of Machine Learning
Research, 11(4), 2010.

[38] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artificial
intelligence, 101(1-2):99–134, 1998.

[39] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Con-
servative Q-learning for offline reinforcement learning. arXiv preprint
arXiv:2006.04779, 2020.

[40] Jan Karel Lenstra, A. RinnooyH.G. Kan, and Peter Brucker. Complexity
of machine scheduling problems. In Annals of discrete mathematics,
volume 1, pages 343–362. Elsevier, 1977.

BIBLIOGRAPHY 63

[41] Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson.
Online oblivious routing. In Proceedings of the fifteenth annual ACM
symposium on Parallel algorithms and architectures, pages 44–49, 2003.

[42] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge, 2014.

[43] Elham Semsar-Kazerooni and Khashayar Khorasani. Team Cooperation
in a Network of Multi-Vehicle Unmanned Systems: Synthesis of Con-
sensus Algorithms. Springer, New York, NY, 2013.

[44] Russell Bent and Pascal van Hentenryck. The value of consensus in
online stochastic scheduling. In Proceedings of the 14th International
Conference on Automated Planning, volume 4, pages 219–226. AAAI
Press, 2004.

[45] Russell Bent, Irit Katriel, and Pascal van Hentenryck. Sub-optimality
approximations. In International Conference on Principles and Practice
of Constraint Programming, pages 122–136, 2005.

[46] Marlos C. Machado, Sriram Srinivasan, and Michael Bowling. Domain-
independent optimistic initialization for reinforcement learning. arXiv
preprint arXiv:1410.4604, 2014.

[47] Danilo Bzdok, Naomi Altman, and Martin Krzywinski. Statistics versus
machine learning. Nature Methods, 15, 2018.

[48] Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in hidden
Markov models. Springer series in statistics. Springer Science & Business
Media, 2005.

[49] Brigham Anderson and Andrew Moore. Active learning for hidden
markov models: Objective functions and algorithms. In Proceedings
of the 22nd international conference on Machine learning, pages 9–16,
2005.

[50] Leonard E. Baum et al. An inequality and associated maximization
technique in statistical estimation for probabilistic functions of markov
processes. Inequalities, 3(1):1–8, 1972.

[51] Lawrence R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–
286, 1989.

BIBLIOGRAPHY 64

[52] Achim G. Hoffmann et al. General limitations on machine learning. In
ECAI, pages 345–347, 1990.

[53] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Founda-
tions of machine learning. Adaptive computation and machine learning.
MIT Press, Cambridge, Mass, second edition edition, 2018.

[54] Aileen Nielsen. Practical time series analysis: Prediction with statistics
and machine learning. O’Reilly Media, Inc., Sebastopol, CA, first edition
edition, 2019.

	Introduction
	Online Algorithms
	Competitive Ratio
	Regret Minimization

	Online Scheduling
	Anticipation

	Online Stochastic Optimization
	Stochastic Programming
	Stochastic Combinatorial Optimization
	Sampling Future Tasks
	Anticipativity Assumption

	Online Anticipatory Algorithms

	Reinforcement Learning
	Finite Markov Decision Processes
	Reward Signal and Return
	Optimal Value Function

	Q-Learning
	Exploration and Exploitation
	Epsilon Greedy
	UCB-1

	Non-Markovian Observations
	Conservative Q-Learning
	Belief States

	Online Packet Scheduling
	Problem Definition
	Offline Optimization
	Postprocessing

	Oblivious Online Packet Scheduling
	Greedy Algorithm
	Local Optimization

	Anticipative Online Packet Scheduling
	Expectation Algorithm
	Consensus Algorithm
	Regret Algorithm
	Q-Learning Algorithm
	Conservative Q-Learning Algorithm
	Q-Learning Algorithm with Belief States

	Learning Input Distributions
	Hidden Markov Models
	Forward and Backward Algorithm
	Baum-Welch Algorithm
	Precision Range and Scaling

	Historical Averaging
	Historical Sampling
	Machine Learning

	Experimental Analysis
	Experimental Setting
	Oblivious Algorithms
	Stochastic Optimization Algorithms
	Reinforcement Learning Algorithms

	Conclusion

