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The fundamental question

We write n in base 2:
n:€o20+8121+6222+"' R

where ¢; € {0,1}. The vector (gj);>0 is the binary expansion of n.
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The fundamental question

We write n in base 2:
n:5020+5121+5222+--- ,

where ¢; € {0,1}. The vector (gj);>0 is the binary expansion of n.

What happens to the binary expansion of n when a constant t is
added?
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The fundamental question

We write n in base 2:
n:5020+5121+5222+--- ,

where ¢; € {0,1}. The vector (gj);>0 is the binary expansion of n.

What happens to the binary expansion of n when a constant t is
added?

Complementary to Sakarovitch's talk four weeks ago:

Adding 1 in general numeration systems vs. Adding t in base 2
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Addition of 1

The (possibly empty) block of 1s on the right of the binary expansion of n
is replaced by 0Os, and the 0 to the left of the block is replaced by 1.

%011---1 %100---0 (1)

10 20 30 40 50 60

Figure: The number of carries in the addition n+1

This is the ruler sequence n+— va(n+ 1), given by the exponent of two in
the prime factorization of n+ 1.
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The following picture is well known in countries using imperial units.

0

12

14 3/4

e 3/8 5/8 7/8

/16 3/16 5/16 7/16 916 11/16 13/16 15/16

t = 2 is similar: g is unchanged and (1) is applied for the

10 20 30 40
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The case t > 3

The fun begins. For t = 3 we have the following cases:

¥00 — x11; x01501 — x10%00:
%0110 +— *10%01: x01511 — x10%10.
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The case t > 3

The fun begins. For t = 3 we have the following cases:
%00 > *11; ¥01X01 — x10%00:;

%0110 +— *10%01: x01511 — x10%10.

» Of course, we can find such a case distinction for each t in a
straightforward way. This describes the situation for any given t
completely.
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The case t > 3

The fun begins. For t = 3 we have the following cases:

%00 > *11; x01501 — x10%00:
%0110 +— *10%01: x01511 — x10%10.

» Of course, we can find such a case distinction for each t in a
straightforward way. This describes the situation for any given t
completely.

» However: for growing t, we obtain long case distinctions. A structural
principle describing these cases is unavailable.
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The case t > 3

The fun begins. For t = 3 we have the following cases:

%00 > *11; x01501 — x10%00:
%0110 +— *10%01: x01511 — x10%10.

» Of course, we can find such a case distinction for each t in a
straightforward way. This describes the situation for any given t
completely.

» However: for growing t, we obtain long case distinctions. A structural
principle describing these cases is unavailable.

» This is of course due to carry propagation. Carries can propagate
through many blocks of 1, and many cases occur.

11101001110110011
+ 10110001001101
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An observation

We do not fully understand addition in base 2.

It is difficult enough to consider the sum-of-digits function sy(n). We have
the formula (Legendre)

s(n+ t) = s2(n) + 52(t) — v ((” j t)) .

The function s can be used to count the number of carries in n+ t: a
well-known relation due to Kummer is

12 <(n—: t>> = #carries(n, t).

We forget the carry structure and only keep the number of carries.
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An observation

We do not fully understand addition in base 2.

It is difficult enough to consider the sum-of-digits function sy(n). We have
the formula (Legendre)

sp(n+ t) = 53(n) + 52(t) — v <(”j t)) .

The function s, can be used to count the number of carries in n+ t: a
well-known relation due to Kummer is

v <<” j t)) — dcarries(n, t).
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An observation

We do not fully understand addition in base 2.

It is difficult enough to consider the sum-of-digits function sy(n). We have
the formula (Legendre)

sp(n+ t) = 53(n) + 52(t) — v <(”j t)) .

The function s, can be used to count the number of carries in n+ t: a
well-known relation due to Kummer is

v <<” j t)) — dcarries(n, t).

We forget the carry structure and only keep the number of carries.
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The 2-valuation of binomial coefficients
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Two examples
We have sp(n +1) s(n) =1—1p(n+1):




What proportion of the graph is above the x-axis?

An apparently simple, unsolved conjecture is due to T. W. Cusick. Let
t > 0 be an integer.

Is it true that, more often than not, we have s;(n+ t) > s3(n)?

In symbols, we seek to prove ¢; > 1/2, where
1

cr = NIinOONHO <n<N:s(n+t)>s(n)}
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What proportion of the graph is above the x-axis?

An apparently simple, unsolved conjecture is due to T. W. Cusick. Let
t > 0 be an integer.

Is it true that, more often than not, we have s;(n+ t) > sy(n)?

In symbols, we seek to prove ¢; > 1/2, where

¢ = lim %{{0 <n< N:s(n+t) > s(n)}

N—oo
For example,

= 3/4, Cr1 = 5/8, Cgg9 — 37561/216,
min ¢; = 18169025645289/2*°> = 0.516. . ..

t§230
The latter minimum is attained at
t=(111101111011110111101111011111)5 and

th = (111110111101111011110111101111)5.
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Densities for Cusick’'s conjecture
More generally, for integers t > 0 and j we define

0(,t) = lim %HO <n< N:s(n+t)—s(n) =}

N—oo
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Densities for Cusick’'s conjecture

More generally, for integers t > 0 and j we define

0(,t) = lim %HO <n< N:s(n+t)—s(n) =}

N—oo

» The densities d(J, t) give us a probability distribution on Z for each t.

5 4 3 2 1 1 2 3 4 5 s 4 3 2 -1 1 2 3 4 5
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A two-dimensional recurrence

The array § satisfies the recurrence
for k > 2;
for k < 1;
6(j,2t) =

5(12t+1)— 0j—1,t)+ 5(j+1t+1)

This permits to compute 6(J, t) efficiently. In particular, ¢; > 1/2 for
t <230 (=~ 2 CPU hours, using a C program)
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The first theorem

Let M = M(t) be the number of blocks of 1s in the binary expansion of t.

Theorem (S.—Wallner 2020+)
Set Ax(1) =1, and for t > 1 let Ax(2t) = Ax(t), and

Ax(t) + Ax(t +1) + 1

Ax(2t+1) = 5

If M is larger than some absolute, effective constant My, we have
: 1 J? > <(Iog M)4>
0(j,t) = ——=exp| ——= | + O | ———
e ( 4A5(1) M
for all integers j. The implied constant is absolute.

This improves on a theorem by Emme and Hubert (2018).
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A corollary

The number M of blocks of 1s in t satisfies M =< Ay(t), the width of the
normal distribution is therefore = /M. We obtain the following result.

Corollary

There exists an absolute constant C > 0 with the following property. For
all t > 1 we have

¢t > 1/2 — C(log M)°M~1/2,

where M is the number of blocks of 1s in t.
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The second theorem
Again, let M = M(t) be the number of blocks of 1s in t.

Theorem (S.—Wallner 2020+)

Let t > 1. If M(t) is larger than some absolute, effective constant My,
then ¢, > 1/2.
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The second theorem
Again, let M = M(t) be the number of blocks of 1s in t.

Theorem (S.—Wallner 2020+)

Let t > 1. If M(t) is larger than some absolute, effective constant My,
then ¢, > 1/2.

Cusick: "“Your paper reduces my conjecture to what | will call the ‘hard

2%
cases' [...]". — more work to do! P
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The second theorem
Again, let M = M(t) be the number of blocks of 1s in t.

Theorem (S.—Wallner 2020+)

Let t > 1. If M(t) is larger than some absolute, effective constant My,
then ¢, > 1/2.

Cusick: "“Your paper reduces my conjecture to what | will call the ‘hard

2%
cases' [...]". — more work to do! P

5 4 3 2 1 1 2 3 4 5

hard easier
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Method of proof of the theorems

Consider the characteristic function (writing e(x) = exp(2mix))

1
(V) = fim D e(¥sa(n+t) = Isy(n
o<n<N

= 50, t)e

For each 19, we have the one-dimensional recurrence

)

7(

Y2t (V)

Yorr1(V) =

Lukas Spiegelhofer (TU Wien/MU Leoben)

)=

JEZ
e(¥) .
2—e(—v)’
= %(19);
e(219) V() + e(;UQ) Yer1(0).
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Method of proof of the theorems

Consider the characteristic function (writing e(x) = exp(2mix))

1
(V) = fim D e(¥sa(n+t) = Isy(n)) =D 4(j, t)e

N—oo
0<n<N jez

For each 19, we have the one-dimensional recurrence

71(9) = 2_623(9)_19)?
Y2 (V) = 7 (V);
o) = D)+ 0

Note that 7+(0) = 1; it follows that Re~y:(x) > 0 in a disk D¢(0), and we
can consider logv:(x) on Dy (— “cumulant generating function”.)
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Method of proof of the theorems
We have 7:(9) = 1 + O(¥?), therefore

(V) = exp Z Ai( 271'19
j>2

for some A;(t) € C and all ¥ € Ds.

> Up to multiplication by i, the values A;(t) are the cumulants of

o(-, t).
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Method of proof of the theorems
We have 7:(9) = 1 + O(¥?), therefore

(V) = exp Z Ai( 271'19
j>2

for some A;(t) € C and all ¥ € Ds.
> Up to multiplication by i, the values A;(t) are the cumulants of
o(-, t).
» We abbreviate a; = Aj(t), bj = Aj(t +1), ¢; = Aj(2t + 1). The
recurrence for 7; gives

( i19—32192—33193—---)

exp(—? — 3 — -+ ) = S exp
exp(—i 0 — byt? — byt® —---),

+

M\l—i I\)M—l

valid for 9 in a certain disk.
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Comparing coefficients

We obtain a recurrence for the cumulants:

a+ b 1
C = 2; 2-1-5;
C3:a3-;b3+i32;b2;
_ Ry
C4:a472Lb4+l_a32b3_(32 8b2) %;
C5:3542—/35_‘_1.34;/34_(az—bzlr(%—bs)_i_iaz;bz.
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Comparing coefficients

We obtain a recurrence for the cumulants:

a+ b 1
C = 2; 2-1-5;
C3233;b3+i32;b2;
_ Ry
C4:a4:b4+ia32b3_(ag 8b2) %;
C5:3542—/35_‘_,.34;/34_(az—bzlr(%—bs)_i_iangz.

For the normal distribution result, we only have to consider A; for
Cusick’s conjecture, we also have to take As, Ag, As into account.
This precision is necessary since the case ¢; < 1/2 + M—3/2 can occur!
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Proof of the first theorem, 1
We define the approximation

7(9) = exp(—Aa(t)(2m0)?)
as well as the error
Ye(9) = 7 () — 72(79)-
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Proof of the first theorem, 1
We define the approximation

7(9) = exp(—Aa(t)(2m0)?)
as well as the error
Ye(9) = 7 () — ’Yé(ﬂ)-

Proposition

There exists an absolute constant C such that for all t having M
blocks of 1s and || < min(M~1/3,1/(47)) we have

7e(9)| < CM3.
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Proof of the first theorem, 1
We define the approximation

7(9) = exp(—Aa(t)(2m0)?)
as well as the error

Fe(9) = 7e(9) — ’Yé(ﬂ)-

Proposition

There exists an absolute constant C such that for all t having M
blocks of 1s and || < min(M~1/3,1/(47)) we have

7e(9)| < CM3.

Proposition
Assume that t > 1 has at least M blocks of 1s. Then for || < 1/2,

[7e(9)| < exp (—W> :

4
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Proof of the first theorem, 11

0.4 0.2 0.2 4

Figure: Illustrating the propositions for t = 123.

We combine these facts with the formula

1/2

3, t) :/ ¢ (9) e(—j9) dv.
-1/2

After extending to a complete Gauss integral we obtain the statement of

the theorem (with /7 and everything).
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Recapturing the first theorem

Theorem (S.—Wallner 2020+)
Set Ax(1) =1, and for t > 1 let Ax(2t) = Ax(t), and

Ax(t)+ Ax(t+1) + 1'

A2(2t+1): 5

If M is larger than some absolute, effective constant My, we have

for all integers j. The implied constant is absolute.
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Proof of the second theorem

For ¢; we need a more precise asymptotic expansion, involving the

cumulants Ax(t), As(t), Aa(t), and As(t) — we study a distorted normal
distribution.

We use the approximation

and the error

As above, we have
Fe(9)] < CMY® for [9] < min(M~Y/°,1/(4n))

with an absolute constant C.
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Reconstructing ¢;

» The values ¢; = (0, t) +0(1,t) +---

the formula

’ t) 1 /1/2
+ —
2 2J 1)

Im 7y () cot(md)dd.

-
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Reconstructing ¢;

» The values ¢; = 6(0,t) + d(1,t) + - - - are related to the CF ~.(¢) by
the formula

1 t) 1 [1?
2 5 + 2/1/2 Im ’}/t(’l9) COt(7T19)d19.

» Note that the third summand is zero if §(—j, t) = 6(j, t) for all j, and
¢t > 1/2 follows in this case.

K -
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Reconstructing ¢;

» In this identity, we will replace ; by ;. We expand the exponential:

Y(9) = exp(—Ax(t)(T9)?) x (1—A3(t)(ﬂ9)3—A4(t)(ﬂ9)4—A5(T19)5
+ %A3(t)2(m9)6 + As(t)Ag(t)(m9)" — %A3(t)3(7'19)9> + O(E),

where 7 = 27 and E is a certain error.
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Reconstructing ¢;

» Introducing complete Gauss integrals, this leads to an approximation

of Ct.
1 1 ~1/2 | . ,-3/2 3 .-5/2 (4 i A3
=+ (A AP As+ 2 A -2
15 75 (A 5. _
5 A2 2 (23 - 2/A4> As + ‘%6/A2 9/2A§> +O(E).
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Reconstructing ¢;

» Introducing complete Gauss integrals, this leads to an approximation
of Ct.

1 1 1/2 3/2 3 52 (,. i Az

= ot (AP A A (20 A — A 2
Ct 2+4f( + + I As 4 6

+185A‘7/2 (23 - 2/A4) As + ‘1’6/'A2‘9/2A§> +O(E).

» The red terms sometimes almost cancel. Therefore we need more
cumulants!
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Reconstructing ¢;

» Introducing complete Gauss integrals, this leads to an approximation
of Ct.

1 1 1/2 3/2 3 52 (,. i Az
=4+ — | A A, 7" A3 A 21 A — Ay — —
Ct 2+4\/»( + + I As 4 6

15 —7/2 As 3 —9/2 ,3
+8A (2 2/A4>A3+16/A A3 +O(E).

» The red terms sometimes almost cancel. Therefore we need more
cumulants!

» A closer look at the recurrences for A; finishes the proof: for ¢; > 1/2
it is sufficient to have many blocks of 1s in the binary expansion of t.
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The message

1. Adding a constant usually changes the binary sum of
digits according to a normal law.

2. The sum of digits (weakly) increases more often
than not under addition of a constant.
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Moments and cumulants

» In a recently accepted paper | proved the following result.
Theorem (S. 2020+)

Let € > 0. There exists an My = My(c) such that for t > 0 having at least
Mo blocks of 1s, we have ¢; > 1/2 — €.
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Moments and cumulants

» In a recently accepted paper | proved the following result.

Theorem (S. 2020+)

Let € > 0. There exists an My = My(c) such that for t > 0 having at least
Mo blocks of 1s, we have ¢; > 1/2 — €.

P This is weaker than the corollary to our normal distribution-result!
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Moments and cumulants

» In a recently accepted paper | proved the following result.

Theorem (S. 2020+)

Let € > 0. There exists an My = My(c) such that for t > 0 having at least
Mo blocks of 1s, we have ¢; > 1/2 — €.

P This is weaker than the corollary to our normal distribution-result!
» The proof uses estimates for the moments of §(j, t),

me(t) = 3 60 )5
JEZ

Depending on g, an increasing number of moments is used.
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Moments and cumulants

» In a recently accepted paper | proved the following result.

Theorem (S. 2020+)

Let € > 0. There exists an My = My(c) such that for t > 0 having at least
Mo blocks of 1s, we have ¢; > 1/2 — €.

P This is weaker than the corollary to our normal distribution-result!
» The proof uses estimates for the moments of §(j, t),

me(t) = 3 60 )5

JEZ
Depending on g, an increasing number of moments is used.

» Introducing the logarithm of the CF, we only need the variance for

proving the above theorem, and only four cumulants for the new
result.
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Rows in Pascal’s triangle

The densities §(j, t) are concerned with columns in Pascal's triangle. The
rows behave similar with respect to p-valuation (the picture is invariant
under rotation by 27/3), but they are finite.

Let j and t be nonnegative integers and set

@(j,t):’{Ee{O,...,t}:?*lf(2)}‘.

For brevity, we extend O(+, t) to R by setting ©(j,t) = 0 for j < 0 and
O(x, t) = O([x],t).
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Rows in Pascal’s triangle

The densities §(j, t) are concerned with columns in Pascal's triangle. The
rows behave similar with respect to p-valuation (the picture is invariant
under rotation by 27/3), but they are finite.

Let j and t be nonnegative integers and set

@(j,t):’{Ee{O,...,t}:?*lf(2)}‘.

For brevity, we extend O(+, t) to R by setting ©(j,t) = 0 for j < 0 and
O(x, t) = O([x],t).

Theorem (S.—Wallner 2018)
Assume that € > 0 and X > 0 is an integer. We set Iy = [2*,2 ). Then

sptin o)) -0 %)

where the implied constant may depend on €.

Hte Iy : sup
ueR
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SW2018 in a nutshell

The normal distribution appears in Pascal’s triangle — not
only in the size of the coefficients, but also in their 2-
valuation.

Lukas Spiegelhofer (TU Wien/MU Leoben) The digits of n + ¢ December 15, 2020 28/32



Possible extensions

» We hope to prove a sharpening of this theorem by means of
bhé
cumulants too. L2
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Possible extensions

» We hope to prove a sharpening of this theorem by means of
féd
cumulants too. L2
» Cusick proposed his conjecture when he was working on the related
Tu—Deng conjecture relevant in cryptography. Let k be a positive
integer and 1 < t < 2X — 1. Then the conjecture states that

H(a,b)e{O,...,2k—2}2 a+b=tmod2K—1,
sz(a)+52(b)<k}’ < k-1

and is open. Together with Wallner we proved that this conjecture is
true in an asymptotic sense, and that it implies Cusick’s conjecture.

IRE
— We want to transfer our method to this situation. "0
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Possible extensions

What about adding t repeatedly? Together with T. Stoll we proved the
following theorem.

Theorem (S.=Stoll 2020)
Assume that ki, ..., ky, € Z. There exist n and t such that for1 < { < m,

ke = sa(n+ £t) — sp(n).

— Every finite sequence of integers, modulo a shift o € Z, appears as an
arithmetic subsequence of s;.
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Possible extensions
What about adding t repeatedly? Together with T. Stoll we proved the

following theorem.

Theorem (S.=Stoll 2020)
Assume that ki, ..., ky, € Z. There exist n and t such that for1 < { < m,

ke = sa(n+ £t) — sp(n).

— Every finite sequence of integers, modulo a shift o € Z, appears as an
arithmetic subsequence of s;.

This generalizes the theorem “The Thue—Morse sequence has full
arithmetic complexity”: any finite sequence of Os and 1s appears as an
arithmetic subsequence of the Thue—Morse sequence (proved by
Avgustinovich, Fon-Der-Flaass, and Frid (2000)).
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Possible extensions

2%
L2 Study the asymptotic densities

O(kiy ..oy kmyt) = dens‘{n csa(n+Lt) —sp(n) = kg for 1 <0< m}‘

and prove multidimensional generalizations of Cusick’s conjecture and the
limit law.

Possible conjectures involve multidimensional Gaussians and tuples
(s2(n+ £t))o<e<m in certain quadrants, octants,. .. (see [S.=Stoll 2020]).
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Thank you!

! Supported by the Austrian Science Fund (FWF), Projects F55 and MuDeRa (jointly with ANR).
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