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Abstract

Fine-fragments (or fines) are an unavoidable result of rock blasting and the subse-
quent comminution process. They are often less valuable than larger fragments or
even unsellable and hence have economic and environmental impacts. Thus, under-
standing the source mechanisms forming the fines has high industrial and research
interest.

Two mechanisms are responsible for the creation of the fines: compressive crushing-
shearing and branching-merging of tensile cracks. In this work the focus is put on
numerical modeling of blast-induced fragmentation and its mathematical formula-
tion in order to investigate the role of branching-merging in blasting fragmentation
and fines generation.

In the first part, two numerical methods, i.e. finite element method (FEM),
Abaqus/Explicit, and discrete element method, HiDEM code, are used for simulat-
ing quasi-brittle material response to civil blast loads. The dynamic crack propaga-
tion, branching-merging and the resultant mass passing fraction (MPF) in lab-scale
cylindrical specimens are analyzed. The 2D FEM simulations produce reasonable
post-mortem end-face fracture patterns, while the HiDEM simulations produce 3D
crack networks and MPF curves similar to experimental results.

The second part deals with 3D HiDEM modeling of lab-scale cylinders of mag-
netite mortar (�140 mm × 280 mm). The computed Fragment Size Distributions
(FSDs) in an s-n(s) description of fragmentation are compared with those of the
experiments which are confined by a cylindrical layer of pre-stressed aggregate. An
FSD function with three terms is proposed. Both the experimental and the nu-
merical FSDs are composed of the three parts, i.e. fine-fragments, intermediate
size fragments, each described by a separate fragmentation mechanism and ditto
power-law exponent, and boulders. Here, the fines arise as a result of the crushing-
shearing mechanism. The branching-mergings of tensile cracks are responsible for
the creation of the intermediate size fragments. Major tensile cracks delineate the
boulders.

Furthermore, the spatial location of the fines with respect to a blast-hole is
studied using the HiDEM code. The absolute mass of the fines is calculated as
a function of their distance to the blast-hole. The HiDEM results supported by
experiments show that the major amount of fines is not created at or around the
blast-hole as the Crush Zone Model assumes.

In the third part, 24 FSDs from controlled blasting tests, which were either
unconfined or confined by momentum traps are reported. High-resolution HiDEM
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simulations of a pressurized crack propagating in a heterogeneous brittle medium
are performed, and the FSDs are computed. The pressurized crack is subjected
to different external lateral stresses in tension and compression to mimic different
scenarios that may arise in blasting tests. In the simulations, the power-law exponent
of the size distribution in the fines region depends on the external stress states.
That means, the fines power-law exponent at high compressive lateral stresses has a
crushing-shearing origin of fragmentation, while at low compressive or tensile lateral
stresses the exponent has a branching-merging origin of fragmentation. In the tests,
the FSDs consist of two branching-merging terms in the fines and intermediate
size fragments regions, and a boulders term, i.e. the previous crushing-shearing
mechanism acting in the fines region is replaced by a second branching-merging one.

In conclusion, the main mechanism forming the fines is a function of external
stresses or confinement conditions. At high external compressive stresses the major-
ity of fines are formed by compressive crushing-shearing. The branching-merging,
on the other hand, is the main mechanism at tensile and low compressive external
stresses.
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Zusammenfassung

Feinstpartikel sind ein unvermeidbares Resultat des Spreng- sowie des nachfolgenden
Zerkleinerungsprozesses. Meist erzielen sie aber einen geringeren Marktpreis oder
sind sogar unverkäuflich und erzeugen daher wirtschaftliche und ökologische Fol-
gewirkungen. Das Verständnis der Mechanismen, die zu diesen Feinanteilen führen,
ist daher von hohem industriellen und wissenschaftlichen Interesse.

Für die Entstehung von Feinmaterial sind im Wesentlichen zwei Mechanismen
verantwortlich: Zermahlen bzw. Abscheren unter Druck („crushing-shearing“) sowie
das Verzweigen und die Vereinigung („branching-merging“) von Rissen unter Zug.
In dieser Arbeit liegt der Schwerpunkt auf der mathematischen Beschreibung sowie
der numerischen Modellierung von Fragmentierungsprozessen mit dem Ziel, die Rolle
von branching-merging beim sprengtechnischen Zerkleinern und bei der Entstehung
von Feinmaterial zu untersuchen.

Im ersten Teil werden zunächst mit der Finite Elemente Methode (FEM) (Abaqus/-
Explicit), sowie der Diskreten Elemente Methode (DEM) (HiDEM) zwei numerische
Methoden verwendet, um das quasi-spröde Verhalten des Materials beim Sprengen
zu untersuchen. Speziell wird dabei die dynamische Rissausbreitung, das branching-
merging Verhalten sowie die resultierenden Mass Passing Fraction (MPF) Kur-
ven mit Hilfe von Laborversuchen an zylindrischen Proben analysiert. Die 2D-
Simulationen produzieren dabei vernünftige post-mortem Strukturen an den End-
flächen, wohingegen die HiDEM Simulationen 3D-Rissnetzwerke und MPF-Kurven
produzieren, die den experimentellen Beobachtungen sehr ähnlich sind.

Der zweite Teil handelt von 3D HiDEM Simulationen der Laborversuche an zylin-
drischen Proben aus Magnetit Beton (� 140 mm × 280 mm). Die berechneten und
mit Hilfe von s-n(s) Kurven dargestellten Korngrößenverteilungen (KGV) werden
mit Daten aus Experimenten verglichen, bei denen die Zylinder von einer vorgespan-
nten Manschette umschlossen waren. Eine KGV-Funktion mit drei Komponenten
wird vorgeschlagen. Sowohl experimentelle als auch numerische KGV bestehen aus:
Feinmaterial, Übergangsmaterial (beide können mit eigenem Zerkleinerungsmech-
anismus und zugehörigen Exponenten beschrieben werden), sowie Blöcken. Dabei
ist das Feinmaterial eine Folge von crushing-shearing, während das Übergangsma-
terial aus branching-merging resultiert. Die größeren Blöcke entstehen nach dem
Auftreten großer Zugrisse.

Des Weiteren wird die räumliche Verteilung des Feinmaterials um das Bohrloch
mit Hilfe von HiDEM untersucht. Dabei wird die Masse der Feinfraktion als Funk-
tion des Abstandes zum Bohrloch dargestellt. Die Berechnungen sowie die Exper-
imente beweisen, dass der überwiegende Anteil der Feinfraktion nicht in der Nähe
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des Bohrlochs entsteht (wie es das „Crush Zone Model“ nahelegen würde).

Im dritten Teil werden 24 KGV aus experimentellen Tests analysiert. Hochau-
flösende HiDEM Simulationen der Rissausbreitung werden in einem heterogenen,
spröden Material durchgeführt und deren KGV dargestellt. Die zylindrischen Mod-
elle werden unterschiedlichen externen Umfangsspannungen ausgesetzt, um ver-
schiedene realitätsnahe Umgebungsszenarien nachzustellen. Dabei zeigt sich, dass
der Exponent des Potenzgesetzes der KGV für die Feinfraktion von den externen
Spannungen abhängt. Das heißt, dass bei hohem lateralen Druck crushing-shearing
und bei geringem lateralen Druck oder Zug „branching-merging“ als Ursache iden-
tifiziert werden können.

Zusammenfassend kann gesagt werden, dass die Menge an Feinfraktion eine
Funktion von externem Druck und den Einschlussbedingungen ist. Bei hohem
äußeren Druck entsteht der Hauptanteil des Feinmaterials zufolge von „crushing-
shearing“, wohingegen „branching-merging“ die Hauptursache für die Bildung der
Feinanteile bei Vorherrschen von Zugspannungen oder geringem Druck darstellt.
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List of symbols and abbreviations

List of symbols and abbreviations

α 1) branching-merging power-law exponent
2) a dimensionless material constant in CDP

A cross sectional areal of beam
A(x) surface area of fragments generated per unit mass measured by Michaux [2]
b undulation parameter in Swebrec c© function
β crushing power-law exponent
β(ε̃pl) a function in CDP
bt attenuation factor
C damping matrix
γ a dimensionless material constant in CDP
C3D8R three dimensional linear hexahedral stress elements with reduced integration

points used in Abaqus/Explicit
CDP Concrete Damage Plasticity
CIN3D8 three dimensional linear brick infinite elements used in Abaqus/Explicit
CZM Crush Zone Model
d damage parameter
DDDel

0 initial undamaged elastic stiffness matrix in CDP
dc compressive damage parameter in CDP
DDDel degraded elastic stiffness matrix in CDP
DEM Discrete Element Method
dt tensile damage parameter in CDP
∆t time step
ε eccentricity in CDP
E Young’s modulus
ε̇εε strain rate tensor
ε̇εεel elastic strain rate tensor
ε̇εεpl plastic strain rate tensor
ε̃pl equivalent plastic strain
ε̃plc compressive equivalent plastic strain
ε̃plt tensile equivalent plastic strain
ˆ̇εεεpl tensor of the eigenvalues of the plastic strain rate tensor
ˆ̇ε1, ˆ̇ε2, ˆ̇ε3 eigenvalues of the plastic strain rate tensor
˙̃εpl equivalent plastic strain dot
˙̃εplc compressive equivalent plastic strain rate
˙̃εplt tensile equivalent plastic strain rate
E0 initial undamaged elastic stiffness in uniaxial loading
εc total compressive strain in uniaxial loading
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EFEM Embedded Finite Element Method
EoS Equation of State
εt total tensile strain in uniaxial loading
F yield function in CDP
f(s/s1) an exponential function that acts on fragments larger than s1

FEM Finite Element Method
Fi sum of other forces acting on particle i
fi field variable in CDP
FSD Fragment Size Distribution
FWF Austrian Science Fund
G 1) flow potential in CDP

2) shear modulus
HiDEM Helsinki Discrete Element Model code released under GNU GPL V3.0.
HJC Holmquist-Johnson-Cook constitutive material model
I moment of inertia of the cross section of a rectangular beam with respect

to its either of symmetry axes x or y
Ic moment of inertia of the cross section of a rectangular beam with respect

to its center point
JH-1 Johanson-Holmquist-1 constitutive material model
JH-2 Johanson-Holmquist-2 constitutive material model
JHB Johnson-Holmquist-Beissel constitutive material model
K stiffness matrix
Kc a constant that controls shape of yield function in CDP
KGV Korngrößenverteilung [in English: Fragment Size Distribution]
L length of beam
λ̇ a nonnegative plastic multiplier in CDP
M mass matrix
MM Magnetite Mortar
MPF Mass Passing Fraction
MT Momentum traps
MUL Montanuniversität Leoben
ν Poisson’s ratio
n(s) number of fragments of size s
N(x) cumulative number of fragments retained on sieve in Michaux [2] data
NBC Natural Breakage Characteristic
NIB No Identified Boulders
nb(s) size distribution for boulders
nbm(s) size distribution of the number of fragments of size s formed in a branching-
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merging process
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shearing process
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p(v) pressure as a function of blast-hole volume
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ρc specific acoustic impedance of host rock
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σ̄σσ effective stress tensor
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σσσ Cauchy stress tensor
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2) measure of mesh size or limits of mesh interval (bin width); usually upper
or lower limit or arithmetic mean of these in [2]

x50 the median fragment size (50% passing size)
xd distance to blast-hole
XFEM Extended Finite Element Method
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Glossary of Terms

Glossary of Terms

blast test one blasting case with a defined blast setup.

blast set a series of blast tests where usually one parameter, i.e. load
level, confinement, etc., is varying between them

code computer program in general.

discontinuity displacement- or strain discontinuity in XFEM or EFEM
formulations stands for cracks or failures in the material
domain.

fine-fragments 1) small fragments that are usually less valuable.
2) in s−n(s) formulation: the fragments which are forming
the first term of the equations.

model 1) a code with defined geometry, material properties and
initial and boundary conditions; i.e. code ready to run
2) assembly of elements that define the geometry being
studied.

momentum traps a confinement setup that is designed such that upon trans-
mission of stress waves from the blasted medium into the
confinement segments, the segments move away from the
blasted medium to avoid reflection of stress waves on the
outer boundary.

quasi-brittle material failure in these materials are caused by brittle fracture
rather than plastic yield.

simulation running the code for a specific model.

stiff confinement a mantel or an outer boundary condition which confines the
volume of interest with a layer of pre-stressed aggregate.

universal exponent of
branching-merging

repeatable exponent under different boundary and initial
conditions, while the mechanism, i.e. branching- merging,
stays the same.
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1 Introduction
1.1 Thesis organisation

The thesis starts with a review on experimental research of blast induced fracture
and fragmentation. Further in this part, fragmentation characteristics and predic-
tion equations, and the numerical methods suitable for simulating brittle dynamic
fracture and fragmentation are reviewed. The motivation section names current
fragmentation prediction equations describing the theories on the source of blast-
induced fine-fragments followed by the research tasks of the thesis.

The following chapter provides the theoretical backgrounds of the numerical tools
that are used in this study. Initially, the theoretical backgrounds of the constitutive
theory that is used to describe the behavior of concrete which is implemented in
Abaqus/Explicit and then the formulation of the discrete element method (HiDEM
code) are provided.

The main part of the thesis is presented as a compilation of a number of peer
reviewed research articles which have been completed during the PhD program at the
chair of Mining Engineering and Mineral Economics of Montanuniversität Leoben
(MUL) and funded by an Austrian Science Fund (FWF) research project: P27594-
N29.

The first paper investigates the blast-induced damage and fragmentation of mor-
tar cylinders using two numerical methods: Finite and Discrete Element Methods
(FEM and DEM), respectively. They are Abaqus/Explicit coupled with a damage
plasticity constitutive material model and the HiDEM discrete element code. Here,
the pros and cons of these numerical methods for simulating the blast-induced dam-
age and fragmentation are demonstrated. In FEM a disk and in HiDEM a cylindrical
specimen are subjected to a blast load that is applied at their centrally located blast-
hole. The FEM results are qualitatively compared with the post-mortem end-face
fracture patterns of our own experimental results [3] at three explosive loading levels.
Next, in HiDEM the resultant Mass Passing Fraction (MPF) curves are qualitatively
compared to those of the experiments and in general with Swebrec c© function like
ones.

The second paper treats the transformation of the MPFs of some lab-scale blasted
cylinders of magnetite mortar into the s − n(s) Fragment Size Distribution (FSD).
The s−n(s) representation simplifies the mathematical description of the whole size
range of the FSDs. The n(s) equation consists of three terms describing in turn
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Chapter 1. Introduction 1.1. Thesis organisation

the fine-fragments, the intermediate size ones, and the boulders. The results from
HiDEM simulations are reported and compared with the experimental results.

The third paper reviews two well-known theories on the source of fine-fragments,
i.e. the Crush Zone Model (CZM) and its development, the star-shape model.
HiDEM simulations of the lab-scale cylindrical specimen at three explosive loading
levels are carried out. The simulation results are supported by experimental data,
and they demonstrate some contradictions in the existing theories concerning the
source of fine-fragments.

The fourth paper modifies the fine-fragments region of the n(s) equation intro-
duced in the second paper to describe the FSDs of a series of blasted cylinders. The
experiments were made either unconfined or confined by momentum traps (MT).
Twenty eight experimental results which were either obtained at MUL [3] or from
the literature are analyzed. High resolution HiDEM simulations of dynamic crack
propagation in a brittle medium are made and the resultant FSDs are compared
with the experimental results.
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Chapter 1. Introduction 1.2. Literature review

1.2 Literature review

1.2.1 Experiments

Much experimental work has been carried out to enhance the knowledge of the blast
induced fracture and fragmentation. Here we summarize the work done by Svahn
[4], Michaux [2, 5], Banadaki [6], and Chi [7] among others.

Svahn [4] blasted three cylinders (� 300 mm × 600 mm) whose inner material
was given three different colors in the radial direction by adding iron oxide pigment
to the mortar, i.e. �outer = 120 mm, 200 mm and 300 mm for black, yellow and
green. The colored layers were concentric and the core black layer was centrally
charged, see the inset of Fig. 1.1.

The resultant mass passing distributions gave a whole range of fragment sizes
for the core layer with the same general character as those for the outer layers.
The results had no tendency either for the core material to consist only of the fine-
fragments or for the outer layers to contain no fine-fragments, see Fig. 1.1. All three
regions produced a whole range of fragment sizes. The core layer contained even
fewer fragments smaller than 2 mm in absolute terms than the other layers together,
see Fig. 1.1.

Figure 1.1: Average mass passing distribution curves for three blasted cylinders of Svahn [4],
comparing black core with the sum of the two outer layers. �outer = 120mm, 200mm and 300mm
for black, yellow and green. The figure is taken from [8]. The inset of the figure illustrates the
multilayered setup of the blasted cylinders.
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Chapter 1. Introduction 1.2. Literature review

Michaux [2] blasted 85 unconfined samples of lumps and cylinders. The cylinders
were made of grout and the lumps were made of four different rock types: granodior-
ite, monzonite, phylitte and banded iron ore. Three explosives with different velocity
of detonation (VOD) and specific charge were used.

The resulting fragmentation was collected and sieved down to 38 µm. The x,
y and z dimensions of each fragment were measured manually for fragments larger
than 6.3 mm. For fragments smaller than 6.3 mm down to 38 µm Michaux used
image analysis and a “z dimension prediction code” to quantify the dimensions. The
density, average fragment volume and mass, surface area, and number of fragments
in each sieve size fraction were then estimated.

He [2, 5] plotted his data in several ways; e.g. as inverted energy register curves
[9], as x−MPF(x) curves, as the surface area generated per unit mass A(x) (m2/kg),
as cumulative number of fragments retained on each sieve size fraction N(x), etc.

The x − A(x) data sets were plotted in a log-normal scale for all the 85 blast
tests. Here x denotes the arithmetic mean value of the lower and the upper limits
of each sieve size fraction bins (m). The curves had poly-line character with three
different slopes. The two kinks connecting the three regions were at 100 µm and
1 mm, see Fig. 1.2(a).

The x − N(x) data sets were plotted in a log-log scale [5]. They were plotted
for three samples each from a different material, namely granodiorite, phyllite and
grout. In these plots, three fixed regions of 38 µm ≤ x < 0.106 mm, 0.106 mm ≤
x < 37.5 mm and x ≥ 37.5 mm were defined, see Fig. 1.2(b).

The different regions of x −A(x) and x −N(x) curves were postulated to corre-
spond to different fragmentation mechanisms [2, 5]. In both the data representation
methods, the slopes of each region varied somewhat with the material and the test
type.

Banadaki [6] studied blast-induced fracture in Laurentian and Barre granite. He
measured their mechanical properties, i.e. static and dynamic elastic and strength
values. The blast samples were either cubic or cylindrical in shape. He used three
types of detonating cord with different strength values of 1.2 g/m, 3 g/m and
5.3 g/m.

Using dye impregnation, the crack patterns were identified at three planes along
the axis of the cylinders. The cracks longer than 2.5 mm were manually mapped.
Then, the crack density values were calculated at three cylindrical concentric zones
around the blast-hole such that the total length of the cracks in each zone was
divided by the corresponding surface area of the zone. He [6] showed that the
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average density of the cracks (longer than 2.5 mm) at the three depths for the core
layer is larger than for the other two layers.

Chi [7] blasted 26 lab-scale cylinders and cubes of granite. He studied pres-
sure and attenuation of blast-induced shock waves and fragmentation and fractures
around a blast-hole.

The pressure and attenuation of shock waves were measured at four different
distances in the axial direction from the explosive charge. He [7] described the rela-
tion between the measured peak pressures (Ppeak) and the corresponding distances
to the explosive charges (xd) by an exponential function Ppeak = A exp(−bt xd) [10]
with the attenuation of bt = 0.04.

Figure 1.2: Michaux [2] plots of x−A(x) and x−N(x) . a) The plot of x−A(x) in a log-normal
scale, the fragments sub-population of monzonite has three regions with different gradients. The
thresholds are indicated with θ ∼ 100 µm and φ ∼ 1 mm. b) The plot of x − N(x) in a log-log
scale, the grout data set has three regions with different gradients. The size ranges are fixed and
are indicated in the figure.
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Chapter 1. Introduction 1.2. Literature review

Different explosive specific charges, decoupling ratios and three different confin-
ing conditions were used to study fragmentation and fracture around blast-holes.
The outer boundary confinements were either free, a ring filled with gravel or filled
with cement grout. In the experiments blasted with small-weight charges, the num-
ber of radial cracks in the cylinders confined by gravel was higher than that of the
cylinders confined by cement grout. Chi [7] also noted that both the length and
the opening of cracks were also larger in the cylinders confined by gravel. The
unconfined cylinders blasted with large-weight charges were fragmented into small
pieces while the cylinders confined by cement fill were broken into large fragments
in addition to small size fragments.

He [7] also used strain gauges and digital image correlation analysis to correlate
the fracture patterns observed on each of the blasted specimen to the location of
the maximum concentration of strain. He noted that the maximum concentration of
strain obtained from the digital image correlation analysis corresponded well to the
position of the dominant cracks and the fracture patterns. Furthermore, he added
that the dominant cracks were initiated from or around the outer surface rather
than close to blast-hole.

1.2.2 Fragmentation characteristics and prediction equations

In fragmentation, a particular material body breaks into smaller pieces. This may
occur at any length scale such as asteroid collisions, geological and industrial appli-
cations, and atomic scale. Fragmentation is the basis for industrial processes such
as mining and mineral recovery, where initially the rock containing the minerals is
broken into smaller pieces to achieve e.g. transportable material fragments. The
fragments are then further broken in the subsequent crushing and milling steps to
the desired sizes suitable for the processing units where the valuable minerals are
separated from the waste rock materials. The fragments that are too large or too
small become economic and environmental liabilities. Therefore, reducing these li-
abilities are an important objective in such industries. One way to achieve this,
is by recognizing the responsible dynamic fragmentation mechanisms forming the
fine-fragments. Recently, many researches have focused on understanding the frag-
mentation characteristics.

One of the first and the most important characteristics of the fragmentation is
that the FSDs in number-frequency [11] representation , i.e. s− n(s), has a power-
law behavior [12, 13, 14, 15, 16, 17] which is sometimes combined with exponential
cut-offs. It was shown that there is a threshold in the amount of imparted energy
to the material body where the transition from damage to fragmentation occurs
[18, 19, 20]. At low levels of imparted energy, the size distribution has two distinct
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Figure 1.3: a) Schematic representation of a 2D crack branching and merging fragments formation
on both sides of a propagating crack. Thick line in the middle is the main crack and the thin lines
are side branches [15]. b) A branching and merging mechanism and the resultant fragmentation
in granite blasted with 20 g/m of PETN. The figure is taken by scanning electron microscope [3].

parts which are separated with a gap, i.e. one consisting of a few very large fragments
and one for a few small fragments having a fast decaying power-law distribution [20].
In blasting, this type of fragment size distribution is called dust and boulders [21].
As the imparted energy increases, the gap gradually disappears and a continuous
distribution forms [20], see e.g. Fig. 4 in [20].

At this critical point, the continuous distribution has two parts with different
characteristics. The first part, i.e. roughly the range of small fragments, has a power-
law distribution with an exponential cut-off [12, 13, 14, 15, 17, 19, 22]. Åström et
al. [13, 15] studied the branching-merging of unstable crack tips in brittle materi-
als and associated a universal power-law exponent in the size distribution to this
term, Fig. 1.3. Kun et al. [22] reported a higher value for the exponent valid for
crushing-shearing than that for the branching-merging. Equation 1.1 shows such a
function where τ is the power-law exponent of the size distribution and f(s/s1) is an
exponential function that acts on the fragments with size s when s > s1.

n(s) ∝ s−τf(s/s1), (1.1)

The second part, i.e. the size distribution for large fragments, has been repre-
sented by an exponential cut-off of the power-law, Eq. 1.2 below, [12, 15, 23] or a
two-parameter Weibull distribution [18].

n(s) ∝ exp(−s
s0

), (1.2)

Aggregate products are, on the other hand, often defined in terms of their MPF
distribution. The MPF(x) is defined as the fraction of mass for a collection of
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fragments that passes through sieves with different mesh-sizes x. That is, for a
mesh-size x = 0, MPF(x = 0.0, and MPF(x > xmax) = 1.0 or 100%, where xmax ∼
largest-possible-fragment.

Several fragmentation prediction equations have been developed to correlate the
blasting configuration with the final mass passing fraction such as the Kuz-Ram
model, the Crush Zone Model (CZM) [24] and the Two-Component Model (TCM)
[25] which is a development of the CZM. These models, however, have weaknesses
when describing the experimental MPF curves [8]. In practice, the MPFs of blasted
and crushed rocks are quite well described by the 3- or 5-parameter Swebrec c© func-
tions [26]. They read,

P (x) = 1/[1 + f(x)], (1.3)

where f(x) of the 3- and 5-parameter Swebrec c© function respectively read,

f(x) = [ln(xmax
x

)/ln(xmax
x50

)]b, (1.4)

f(x) = a[ln(xmax
x

)/ln(xmax
x50

)]b + (1− a)[(xmax
x

)− 1/(xmax
x50

)− 1]c, (1.5)

P(x) denotes the relative mass amount passing a rectangular mesh of size x. The
3-parameter version contains parameters x50, xmax and b which are the median frag-
ment size (50% passing size), the upper fragment limit, and the curve undulation
parameter, respectively. The 5-parameter version contains also parameters a and c
giving a Gates-Gaudin-Schuhman type or a power-law function with exponent of 1
when the mesh size approaches zero, x→ 0. Experience says that the coefficient of
determination r2 > 0.995 in 95% of the cases tested [26, 27, 28]. In these fragment
size distribution functions, however, unlike in the s− n(s) description of fragmenta-
tion the parameters are not correlated to any specific fragmentation mechanisms.

1.2.3 Numerical methods for simulating fracture and fragmentation

By the advancement of computation power and numerical tools, many researchers
have started to investigate dynamic brittle fracture and fragmentation through nu-
merical methods. There are two common types of methods; one based on a con-
tinuum mechanics formulation i.e. the Finite Element Method (FEM), and the
other one based on discrete particles, i.e. the Discrete Element Method (DEM) and
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Smooth Particle Hydrodynamics (SPH) [29].

Continuous methods

Simulation of crack propagation in classical FEM has limitations. The limitations
arise because the material in FEM is fundamentally considered as a continuum.
Therefore, once the continuity of the displacement field is broken due to crack nu-
cleation or propagation, re-meshing is a necessity to not only distinguish generated
surfaces but also to update the boundary conditions [30].

Application of damage- or fracture mechanics concepts have overcome this issue.
The former belongs to the category of continuous descriptions and describes fracture
as a process of strain accumulation and damage growth. The latter belongs to
the category of discontinuous descriptions, and explicitly introduces displacement
discontinuities along the flanks of propagating cracks.

The two FEM classes, the Extended and Embedded Finite Element Methods
(XFEM and EFEM) allow the crack (discontinuity) to propagate through individual
finite elements. To do so, an additional set of parameters is introduced to describe
the discontinuity within the finite elements. The main difference between XFEM
and EFEM is how these new parameters are introduced. XFEM increases the total
number of global degrees of freedom [31]. Alternatively, EFEM stores the additional
degrees of freedom locally on the element level to avoid increasing the total size of
system [31]. These classes are, however, limited in their application once the dy-
namics of several cracks existing in one system have to be simultaneously calculated
[29, 32].

Constitutive models based on damage mechanics are more suitable when a system
contains several cracks/failures, see e.g. [32, 33]. These models define the correlation
between the damaged and undamaged medium using a damage variable d or D. This
can be made using one or several scalar variables [34, 35] or using a tensor of different
orders [34, 36, 37]. The damage models are often coupled with elastic constitutive
models [38, 39, 40, 41] or with plasticity [42, 43, 44, 45, 46, 47].

Depending on the mechanical properties of the material, the choice of a damage
criterion may change [48]. Brittle and quasi-brittle materials, i.e. concrete and rock-
like materials, require different damage thresholds in tension and compression. This
is related to the fact that damage can be active or inactive. In tensile failure, material
stiffness degrades due to nucleation and propagation of microcracks, voids, etc.
However, upon load reversal the tensile crack closes and consequently compressive
stiffness recovers to carry load in compression [48]. A similar stiffness recovery from
compression to tension does not occur.
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Figure 1.4: Failure mechanisms due to a) tension, b) bending, c) shearing, and d) compression,
particles come into contact experiencing repulsive force.

The damage models have been used extensively to study the induced damage
and dynamic crack propagation in concrete and rock-like materials [49, 50, 51] at
high loading rates [6, 32, 33, 52] and to study the influence of different boundary
conditions on the resultant fracture pattern [53].

Discontinuous methods

The numerical methods based on continuum mechanics encounter limitations when
a large number of discontinuities in a system exist. They are, however, progress-
ing towards more sophisticated analysis of the propagation of discontinuities [32].
An alternative approach to study the dynamic brittle fracture is a particle-based
formulation such as DEM and SPH.

In DEM the material is represented as an assembly of independent rigid par-
ticles connected with each other within a predefined distance. The interactions
between the particles may be described by contact laws, i.e. elastic laws coupled
with Coulomb friction [54], Van der Waals forces [55], linear and Hertz contact mod-
els which are applied in three dimensional particle flow code (PFC3D), etc.; or by
using elastic strings or beams [56, 57]. Beams in 3D can account for tension, com-
pression, shearing, bending, and torsion of the contacts, see Fig. 1.4. They can also
have geometrical features, i.e. length and cross-sectional area. Due to the discrete
nature of each particle, the discontinuities nucleate and propagate by breakage of
the beams.

The DEM has been used in a variety of problems investigating fracture and frag-
mentation such as simulation of fracture and fragmentation induced by blast loads
[58, 59, 60], or induced by high loading rate impacts [20, 61, 62, 63, 64]; simulation
of single crack propagation in uniaxial tension and compression and mixed-mode
loading [65, 66]; and simulation of fracturing and calving of glaciers [56, 67, 68].
Coupled DEM-FEM [57, 69] and DEM-SPH [70] methods have also been developed
to analyze the dynamics of crack propagation and blast-induced fractures.
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In rock mechanics and related mining research, DEM codes are being used for
simulating geometrical configurations such as lab-scale cubes and cylinders [27, 4],
bench blasts [51, 71], tunnel rounds [69], and sub-level caving rounds [72]. Sim-
ulation of full scale blasting requires a coarse discretization of the geometries to
achieve results in an acceptable amount of calculation time. Hence, recognizing dif-
ferent source mechanisms creating the fine-fragments at full-scale becomes virtually
impossible.

1.3 Motivations and Objectives

The amount of mineral fine-fragments that are produced has practical and economic
consequences in the production of raw materials, especially for the sustainability of
raw material resources. In the European Union project Less Fines [73] the volume of
the waste fine-fragments is estimated to be 400-500 million tons annually in Europe
alone. Blasting and downstream crushing and milling are the major sources of fine-
fragments of rock [73]. The fine-fragments are essentially related to the amount of
input energy [74]. Most of the fracture area created resides in the fine-fragments
and this area determines the energy consumed [9]. A better knowledge of how the
fine-fragments are generated could help to improve blasting and crushing practices
by suppressing the amount of fine-fragments at the source rather than dealing with
them afterward.

One existing theory on the source of fine-fragments, the CZM, assumes that fine-
fragments originate from an annular compressive failure zone around a blast-hole
[24], see Fig. 1.5(a). The MPF of the CZM consists of two non-overlapping Rosin-
Rammler components, one for the coarse material and one for the fine material
of the crushed zone. The CZM may be interpreted so that the fragment size is
almost (solely) defined by the distance to a blast-hole. Alternatively, in the TCM
the connection between the distance and the fragment size is more diffuse [25]. The
TCM [25] defines the shear failure along the in situ joints and blast-induced cracks
as another important source of fine-fragments [75].

Additions to the CZM by Onederra et al. [76] assume that the fine-fragments
originate from a circular compressive failure zone around a blast-hole, as well as from
crushed and sheared material bounded by major blast-induced radial cracks. The
radial cracks are assumed to be evenly distributed around a blast-hole, to be planar,
and also to continue along the length of the explosive charge. This constitutes the
star-shaped crush zone model, see Fig. 1.5(b).

Another yet plausible mechanism by which most of the fine-fragments are gen-
erated involves dynamic crack branching and merging [8]. Hence, the objective of
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Figure 1.5: Schematic view of a) CZM [24], b) star shape model [76]. Figures are taken from [77]

this thesis is to use numerical methods and simulations to gain insight into the role
of branching-merging in blast fragmentation. This leads to the following tasks:

1. To create a three-dimensional numerical model that describes the fracturing
behavior of quasi-brittle materials, i.e. concrete or rock-like materials, when
subjected to a civil blast load.

2. To compute the FSDs of the numerical models, especially for the fine-fragments.

3. To compare the computed FSDs with the results from the experiments carried
out as a part of the FWF project [3] and from the literature.

4. To provide a scientific explanation of how these fine-fragments are generated.

The research tasks are answered in the four papers I-IV on which this thesis
is built. Figure 1.6 shows the relation between each paper and the research tasks.
Figure 1.7 shows how the papers are connected with each other.
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Figure 1.6: The relationships between research tasks (RT) and the appended papers
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Figure 1.7: The relationships between the contents of the appended papers
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2 Theoretical background
2.1 Constitutive theories to describe concrete behavior

The experimentally measured stress-strain curve of concrete during cyclic loading
has an unloading slope, it shows softening behavior, see Fig. 2.1(a)-(b) [78, 79].
Elastic-damage and elastic-plastic constitutive material models cannot describe this
behavior of concrete thoroughly [80].

An elastic damage model cannot capture irreversible strains, Fig. 2.1(c), and an
elastic-plastic model has unloading curves that follow the elastic slope, Fig. 2.1(d).

An elastic-plastic damage constitutive theory overcomes these issues. In this
constitutive model, the damage part accounts for both the softening behavior and
the decrease of the elastic modulus. The irreversible strains are captured by the
plasticity formulation, Fig. 2.1(e).

Figure 2.1: a) Compressive stress-strain loading-unloading curves for a concrete cylinder with
high-intensity repeated compressive loading, the figure is taken from [78]; b) Tensile stress-strain
curve in a post-peak cyclic test, the figure is taken from [79]; Schematic representation of the
loading-unloading behavior in c) an elastic-damage constitutive model, d) an elastic-plastic con-
stitutive model, and e) an elastic-plastic damage constitutive model.

17



Chapter 2. Theoretical background 2.1. Constitutive theories to describe . . .

2.1.1 Concrete damage plasticity formulation [1]

The constitutive theory aims to capture the effect of the irreversible damage associ-
ated with the failure mechanisms in concrete. It is based on the work of Hillerborg
et al. [81], Lubliner et al. [42] and Lee and Fenves [45]. The model uses an addi-
tive strain rate decomposition for the rate-independent model (ε̇εε = ε̇εεel + ε̇εεpl). The
stress-strain relations are governed by scalar damaged elasticity,

σσσ = (1− d)σ̄σσ, (2.1)

σ̄σσ
def= DDDel

0 : (εεε− εεεpl) (2.2)

where d is the scalar damage variable, DDDel
0 is the initial undamaged elastic stiffness,

σ̄σσ is the effective stress and σσσ is the Cauchy stress.

The equivalent plastic strain (ε̃pl) is used as the hardening variable. It controls
the evolution of the yield surface and the degradation of the elastic stiffness. The
hardening variable is decomposed in two components of tensile and compressive
equivalent plastic strain values (ε̃plt , ε̃plc ). Damaged states in tension and compression
(dt and dc, respectively) are characterized independently by these two hardening
variables and other field variables fi,

dt = dt(ε̃plt , fi); 0 ≤ dt ≤ 1, (2.3)

dc = dc(ε̃plc , fi); 0 ≤ dc ≤ 1 (2.4)

The evolution of the hardening variables are expressed as rate expressions of
equivalent tensile and compressive plastic strain ( ˙̃εplt , ˙̃εplc ). The evolution equation
for general multiaxial stress conditions can be expressed in the following matrix
form,

˙̃εεεpl =




˙̃εplt
˙̃εplc


 = ĥhh(ˆ̄σσσ, ε̃εεpl). ˆ̇εεεpl, (2.5)

where the tensor ˆ̄σσσ contains the eigenvalues of σ̄σσ, and ˆ̇εεεpl is a tensor containing the
eigenvalues of the plastic strain rate tensor such as,
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ˆ̇εεεpl =




ˆ̇ε1

ˆ̇ε2

ˆ̇ε3




(2.6)

and ĥ(ˆ̄σσσ, ε̃εεpl) is a tensor containing stress weight factor, r(ˆ̄σσσ). If the eigenvalues of
the plastic strain rate tensor are ordered such that ˆ̇ε1 ≥ ˆ̇ε2 ≥ ˆ̇ε3, then for general
multiaxial stress conditions

ĥhh(ˆ̄σσσ, ε̃εεpl) =



r(ˆ̄σσσ) 0 0

0 0 −(1− r(ˆ̄σσσ))


 , (2.7)

with

r(ˆ̄σσσ) def=
∑3
i=1 < ˆ̄σi >∑3
i=1 |ˆ̄σi|

(2.8)

where ˆ̄σi (i = 1, 2, 3) are the principal stresses. The Macauley bracket < . > is
defined by < x >= (1/2)(|x|+ x).

In multiaxial condition, the elastic stiffness degradation is isotropic and charac-
terized by a single scalar variable, d, such that,

DDDel = (1− d)DDDel
0 ; 0 ≤ d ≤ 1 (2.9)

For general multiaxial stress conditions the consistency of the scalar degradation
variable d with the tensile and compressive damage parameters dt and dc is met by,

(1− d) = (1− stdc)(1− scdt), 0 ≤ st ≤ 1, 0 ≤ sc ≤ 1 (2.10)

with

st = 1− wtr(ˆ̄σσσ), 0 ≤ wt ≤ 1, (2.11)

sc = 1− wc(1− r(ˆ̄σσσ)), 0 ≤ wc ≤ 1, (2.12)

where parameters wt and wc are weight factors which control the recovery of the
tensile and compressive stiffness values upon load reversal. The values for the weight
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Figure 2.2: Influence of the wc weight factor which controls the recovery of the tensile and
compressive stiffness upon load reversal. Figure is taken from [1].

factors wt = 0 and wc = 1 correspond to no stiffness recovery and full stiffness
recovery in tension and compression, respectively. Figure 2.2 illustrates the influence
of the value for wc weight factor upon load reversal. In uniaxial loading, the elastic
stiffness is different between tension and compression,

σt = (1− dt)E0(εt − ε̃plt ), (2.13)

σc = (1− dc)E0(εc − ε̃plc ), (2.14)

where E0 is the initial undamaged elastic stiffness in uni-axial loading. The yield
function [42, 45] of this constitutive theory is,

F (σ̄σσ, ε̃εεpl) = 1
1− α

(
q̄ − 3αp̄+ β(ε̃εεpl < ˆ̄σmax > −γ < −ˆ̄σmax >)

)
− σ̄c(ε̃plc ) ≤ 0,

(2.15)

where α and γ are dimensionless material constants, p̄ = −1
3σ̄σσ : III is the effective

hydrostatic pressure, q̄ =
√

3
2S̄SS : S̄SS is the Mises equivalent effective stress with S̄SS =

p̄III + σ̄σσ as the deviatoric part of the effective stress tensor σ̄σσ, and σ̄c is the effective
compressive cohesion stress. The value for α, γ, and β(ε̃εεpl) can be determined as,
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Figure 2.3: Shape of yield function in the deviatoric plane with different values of Kc. Figure is
taken from [1].

α = σb0 − σc0
2σb0 − σc0

, (2.16)

γ = 3(1−Kc)
2Kc − 1 , (2.17)

β(ε̃εεpl) = σ̄c(ε̃plc )
σ̄t(ε̃plt )

(1− α)− (1 + α), (2.18)

σb0 and σc0 are the biaxial and the uniaxial compressive stress at failure, respectively.
The value Kc controls the shape of the yield function. Kc = 2

3 is typical for concrete,
Fig. 2.3. The plastic flow is governed by a flow potential G, i.e. here a Drucker-
Prager hyperbolic function, according to the flow rule,

ε̇εεpl = λ̇
∂G(σ̄σσ)
∂σ̄σσ

(2.19)

where G is,

G =
√

(εσt0 tanψ)2 + q̄2 − p̄ tanψ (2.20)

where λ̇ is the nonnegative plastic multiplier, σt0 is the uniaxial tensile stress at
failure, ε is the eccentricity which defines the rate at which the function reaches
asymptote (the flow potential tends to a straight line as the eccentricity tends to
zero), and ψ is the dilation angle measured in the p-q plane at high confining pres-
sure.

21



Chapter 2. Theoretical background 2.2. HiDEM formulation

Finally, the elastic-plastic response is described in terms of the effective stresses
and the hardening variables,

σ̄σσ = DDDel
0 : (εεε− εεεpl) ∈ {σ̄σσ|F (σ̄σσ, ε̃εεpl) ≤ 0}, (2.21)

ˆ̇εεεpl = hhh(σ̄σσ, ε̃εεpl). ε̇εεpl, (2.22)

ε̇εεpl = λ̇
∂G(σ̄σσ)
∂σ̄σσ

(2.23)

where λ̇ and F obey the Kuhn-Tucker conditions,

λ̇F = 0; λ̇ ≥ 0; F ≤ 0 (2.24)

If F(σ̄σσ, ε̃εεpl) ≤ 0, i.e. the damage criterion is not met, then according to Eq.
2.24 λ̇ = 0, this yields ε̇pl = 0 which means no plastic flow occurs and therefore
no damage occurs. On the other hand, if λ̇ > 0 then further damage takes place.
According to Eq. 2.24, F(σ̄σσ, ε̃εεpl) = 0 yields to a new damage threshold.

2.2 HiDEM formulation

In HiDEM, the spatial location of particles (mass points) are initially read and
the connection between them is defined. The particles are connected via mass-less
beams. At the beginning of a simulation, initial and boundary conditions are set.
The displacement of the particles are computed using Newton’s equation of motion
[82, 56],

Mr̈i + Cṙi +
∑

j

Krij = Fi, (2.25)

where M is a mass matrix, r̈i, ṙi, ri are the acceleration, velocity and position vectors
of particle i including rotations. rij are the position vectors for all particles j that are
connected to particle i. C is a damping matrix, K is the stiffness matrix and Fi is
the sum of other forces acting on particle i. This is implemented in a time-discretized
form in the HiDEM code [83, 82, 56],

[ M
∆t2 + C

2∆t

]
r(t+ ∆t) =

[2M
∆t2 −K

]
r(t)−

[ M
∆t2 −

C
2∆t

]
r(t−∆t) + Fi, (2.26)
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where t is the time and ∆t is the time step.

Two particles are connected via Euler-Bernoulli beam. A beam bounded by two
particles can be deformed either by translational motions or the rotations. The
stiffness matrix K for a single beam between two particles is [82],

KKK =




α 0 0 0 0 0 −α 0 0 0 0 0
0 β 0 0 0 γ 0 −β 0 0 0 γ

0 0 β 0 −γ 0 0 0 −β 0 −γ 0
0 0 0 ζ 0 0 0 0 0 −ζ 0 0
0 0 −γ 0 η 0 0 0 γ 0 ω 0
0 γ 0 0 0 η 0 −γ 0 0 0 ω

−α 0 0 0 0 0 α 0 0 0 0 0
0 −β 0 0 0 −γ 0 β 0 0 0 −γ
0 0 −β 0 γ 0 0 0 β 0 γ 0
0 0 0 −ζ 0 0 0 0 0 ζ 0 0
0 0 −γ 0 ω 0 0 0 γ 0 η 0
0 γ 0 0 0 ω 0 −γ 0 0 0 η




(2.27)

with α = EA/L, β = 12EI/L3, γ = 6EI/L2, ζ = GIc/L, η = 4EI/L, ω = 2EI/L. E
is Young’s Modulus, A is the cross sectional area of beam, L is the length of beam,
I = bh3/12 is the moment of inertia of the cross section of beam with respect to its
either of symmetry axes x or y (rectangular shape with width of b and height of
h, here we have b=h), Ic = (1/12)bh(b2 + h2) is the moment of inertia of the cross
section of the beam with respect to its center point, and G is the shear modulus
G = 1/2(1 + ν). The vector containing nodal displacements and rotations corre-
sponding to the stiffness matrix K is
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rrr =




x1

y1

z1

θx1

θy1

θz1

x2

y2

z2

θx2

θy2

θz2




(2.28)

For a model that contains a large number of particles, the stiffness matrix K and
the vector containing nodal displacements and rotations r expand to contain all the
degrees of freedom in the model.
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3 Essential findings
3.1 Paper I

In this paper initially blast-induced dynamic crack propagation, branching and
merging in mortar are investigated using a FEM code with explicit time integra-
tion, namely Abaqus/Explicit [1]. The FE model is a cylindrical disk (�140 mm ×
1 mm) with a centralized blast-hole, see Fig. 3.1(a). It is discretized with three di-
mensional linear hexahedral stress elements with reduced integration points, labeled
“C3D8R” elements.

The blast-hole is loaded at three pressure levels equivalent to our own exper-
imental setup [3], i.e. 6 g/m, 12 g/m, and 20 g/m of pentaerythritol tetranitrate
(PETN) cords. The explosive pressure load is described by a pressure-time history
function [84] which is applied radially on the blast-hole wall, see Fig. 3.1(b) and
Eqs. 1-3 in Paper I.

On the outer boundary (cylinder periphery), a quiet boundary condition is de-
fined using 3D infinite elements (CIN3D8), Fig. 3.1(a). This allows the incident
shock wave that is propagating towards the outer boundary (cylinder periphery) to
pass through the boundary without reflecting back into the model. As a result, the
formation of spalling cracks due to the reflected tensile waves at the outer bound-
ary is prevented. This allows us to investigate the crack propagation, branching
and merging. Otherwise, the stress waves that reach the outer boundary reflect as
tensile waves developing rings of tensile damage preventing the propagating cracks

Figure 3.1: a) Top view of the FE model discretized using the C3D8R stress elements and a quiet
boundary condition formed using the 3D infinite elements (CIN3D8) b) Pressure-time explosive
loading history with three peak pressures of 35 MPa, 85 MPa, and 166 MPa used in the FE models.
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Figure 3.2: The fracture patterns developed a) with the application of the quiet boundary
condition, b) free boundary condition.

originating around the blast-hole from being distinguishable, see e.g. Fig. 3.2. In
the experimental setup [3] the MT is used at the outer boundary to prevent the
reflection of the stress waves into the blasted medium, see Figure 2 in [85].

The built-in damage-plasticity constitutive material model in Abaqus/Explicit
is used, namely Concrete Damage Plasticity (CDP), see Sec. 2.1.1. It lacks an
Equation of State (EoS) for the pressure-volume relation that includes the nonlinear
effects of compaction, see e.g. the works which have been completed by Holmquist,
Johnson and their colleagues such as the HJC, JH-1, JHB, and the JH-2 constitutive
material models [86, 87, 88, 89]. The EoS is a basic component in constitutive
material models used to analyze highly dynamical processes.

To compensate for this lack in our constitutive material model, the FE model
is calibrated by the use of linear and quadratic bulk viscosity parameters which
introduce damping associated with the volumetric straining, see Fig. 3.3; Rayleigh
damping coefficients; mass scaling to scale the mass of small finite elements that
are controlling or reducing the stable time increment; and an element-by-element
stable time increment estimate which is determined using the current dilatational
wave speed in each element [1].

In addition to the 2D FE models, lab-scale size 3D models of the cylinder (�140
mm × 280 mm) are simulated. In these, similar instabilities as in the 2D models
appear; in addition, they show unrealistic spiral shaped crack growth patterns. The
material model calibration become extremely difficult and time consuming. There-
fore, here the application of the FE models is limited to 2D. The 3D modeling is
addressed using a discrete element method (HiDEM code).

Next, three-dimensional discrete element models of cylinders of mortar (� 140
mm × 200 mm) are made. The simulations are made at the same three peak pressure
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Figure 3.3: Propagation of a shock wave through a one-dimensional mesh [1]

levels as for the FE models. The blast load is a pressure-time history which is
applied radially on the blast-hole wall for a duration of 1 µs. In addition a simplified
post-peak pressure drives all the particles outwards with a constant pressure. The
detonation front has a VOD of 6000 m/s. A Face Centered Cubic (FCC) lattice
structure is used to arrange the 3-mm diameter particles in the cylindrical shape with
the desired dimensions, and an elastic material constitutive model is used. At the
outer boundary a quiet boundary condition using the velocity damping configuration
is implemented.

In the FE models, the diameter of the crushed zone and the severely fractured
zone and the crack network at the three explosive load levels are studied and reported
in Tables 4 and 5 of Paper I. It is demonstrated that these quantities increase
in magnitude by increasing the peak pressure level. Next, the resultant fracture
patterns at the three load levels have been qualitatively compared with the end-
face fracture patterns from in-house tests made in the same project (FWF research
project: P27594-N29) [3]. It is shown that the FE models give realistic post-mortem
end-face fracture patterns, see Fig. 3.4.

For the 3D HiDEM models, the MPF curves are evaluated. A fragment is defined
by the number of connected particles it contains and the screen size of the fragment
is that of a volume equivalent sphere. The resultant MPF curves have a Swebrec c©

function like distribution, and they show the Natural Breakage Characteristic (NBC)
behavior postulated by Steiner [9] for the three consecutive increasing loading levels,
see Fig. 10 in Paper I.

In addition, 3D internal crack networks of the three blasted cylinders are analyzed
as a function of the explosive load level, see Fig. 8 in Paper I. It is shown that by
increasing the peak pressure level the number of the radial cracks, branchings and
mergings increase. The 3D crack networks show, however, a preferential direction of
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Figure 3.4: Experimental end-face fracture patterns of blasted mortar cylinders [3, 85] with
PETN cords of a) 6 g/m, b) 12 g/m, and c) 20 g/m. The FE simulation results of the 2D disks
blasted with the explosive load levels equivalent to e) 6 g/m of PETN, e) 12 g/m of PETN and
f) 20 g/m of PETN. The deleted elements in the simulation results of Figs. (d)-(f) are shown in
white.

crack propagation. This is probably associated with the FCC lattice structure used
to build the cylinders.

3.2 Paper II

In this paper, the HiDEM code is used to simulate the blast-induced FSDs of lab-
scale cylinders (� 140 mm × 280 mm) with a centralized blast-hole. The sim-
ulations have been performed at five different charge concentrations, i.e. 3 g/m,
5 g/m, 10 g/m, 20 g/m, and 40 g/m of PETN cord. The post-peak amplitude in
the pressure-time explosive loading function have to be calibrated to mimic the
experimental results, as shown in Fig. 3(b) of Paper II.

The 3-mm diameter particles are arranged in a FCC lattice structure, see Fig.
3.5(a). An elastic material constitutive model is used. The simulation results are
then compared to the experiments which were carried out at Luleå University of
Technology [27] with an identical geometrical size and explosive load levels. In
the experiments, the cylinders were confined by a cylindrical layer of pre-stressed
aggregate, Fig. 3.5(b).

The resultant experimental FSDs are found to consist of three parts based on
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Figure 3.5: a) The HiDEM cylinder used in Paper II which is blasted with the explosive load level
equivalent to 6 g/m of PETN, particles are arranged in a FCC lattice structure. b) The so-called
stiff test set-up with a layer of pre-stressed aggregate around the outer periphery of the cylinder
as the confining condition [90]. The pre-stressed level is determined by the torque used to tighten
the bolts.

the slope of the s − n(s) curve in log-log space, i.e. fine-fragments, intermediate
size fragments and boulders, see Fig. 3.6 below and also Fig. 2(b) in Paper II. An
s − n(s) FSD equation is developed that describes the first two FSD parts by two
power-law terms and an exponential cut-off for the second term. The third part of
the FSD is described by a single exponential cut-off. The whole FSD, or the number
of fragments in a size interval ds reads,

n(s)ds = C1s−βds + C2s−α exp(− s
C3

)ds + nb(s)ds, (3.1)

where s is a dimensionless parameter that expresses the number of DEM parti-
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dashed line. The three regions of the FSD are marked.
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cles forming a fragment, and n(s) defines number of fragments of size s. The first
term expresses the number of fragments in a size interval ds formed in a crushing-
shearing process, i.e ncrush(s)ds = C1s−βds. The value for β ∼ 1.8− 3.5 [15] can be
determined from grinding experiments. This is discussed in the Results section of
Paper II. Sometimes there appears also a large-size cut-off to this term which can
be approximated by multiplying this term with an exponential function.

The second term expresses the number of fragments in a size interval ds formed in
a branching-merging like process, i.e. nbm(s)ds = C2s−α exp(−s/C3)ds [15, 17, 91].
This process is inherently universal and leads to a characteristic FSD with a power-
law exponent α = (2D − 1)/D, where D is the dimension (i.e. D = 1, 2, 3 for
rods, membranes, and bulk objects, respectively) [15, 17, 91]. For three dimensional
objects α = 5/3, which is very nearly the case for the intermediate range of the
experimental FSDs in Fig. 3.6. C3 defines the initial point of the size range of the
boulders.

The third term, nb(s) ∼ exp(−s/sb) is the size distribution for boulders, and sb

is the characteristic size of the boulders governed by the density of induced tensile
cracks. C1, C2, C3 and β are non-universal constants, i.e. their values change from
test to test.

The values of the power-law exponents, i.e. β and α, indicate the responsible
fragmentation mechanisms. In this article, it is established that for the stiff blasting
setups, Fig. 3.5(b), the majority of the fine-fragments are generated as a result of
compressive crushing-shearing. The intermediate-size fragments are formed due to
unstable tensile crack propagation, branching and merging. And finally, the largest
fragments or the boulders are formed by seemingly intact volumes between the major
tensile cracks.

The HiDEMmodels used in this article overestimate the amount of fine-fragments
formed by crushing-shearing compared with the experiments, see Figs. 2(a) and 3(a)
in Paper II. This is caused by the resolution of the discretization. Figure 2(b) in Pa-
per II displays a more useful comparison: as this figure demonstrates, the crushing
part of s−n(s) data extend to the kink at about s ∼ 20–30 for both the experimental
and the numerical data. Since the grain size in the numerical model is xgrain = 3 mm,
and in the experimental model xgrain ∼ 0.1 mm, this means that the mass fraction
for crushing is much larger for the numerical data, and it indicates that numbers of
grains rather than fragments’ mass govern crushing.
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Figure 3.7: End-face fracture pattern of the HiDEM cylinder which is generated using the dy-
namic deposition algorithm.

3.3 Paper III

In this paper, we trace the origin of fine-fragments as a function of their distance to
the blast-hole. The blast-induced FSDs of the lab-scale cylinders (� 140 mm × 280
mm) with a centralized blast-hole are computed with HiDEM. The simulations are
performed at three different explosive load levels equivalent to the PETN cord with
the charge concentrations of 6 g/m, 12 g/m, and 20 g/m. The detonation front has
a VOD of 7300 m/s. At the outer boundary a quiet boundary condition is used.

In Paper I, it was shown that the 3D crack networks have a preferential direction
of crack propagation when the FCC lattice structure is used to create the desired
geometrical configuration. A disordered structure that does not create preferential
directions of crack growth would seem more appropriate for the materials like gran-
ite and magnetic mortar. This can be achieved by using a deposition algorithm for
the creation of the geometry. In deposition, the geometrical domain is filled with the
spherical particles. Each particle falls downwards until it collides with already exist-
ing particles or the pre-defined walls. The translation of the particles is determined
based on the dynamics of the problem.

In this paper, Paper III, a dynamic deposition algorithm was programmed and
it is used to generate cylinders consisting of 256091 spherical particles of 2 mm
and 3 mm diameter. The reason for choosing a combination of 2 mm and 3 mm
diameter is to induce more inhomogeneity in the material structure. The particles
are randomly positioned within the cylindrical domain. This has solved the problem
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Figure 3.8: a) HiDEM simulation results, absolute mass of fine-fragments, i.e. fragments formed
by one DEM particle, at three concentric cylinders with outer radii of router = 30 mm, 50 mm,
and 70 mm. Three cylinders blasted at three explosive load levels of 35 MPa, 85 MPa and 166
MPa equivalent to 6 g/m, 12 g/m and 20 g/m of PETN cord, b) Svahn [4] experimental data of
the fine fragments smaller than 2 mm at three concentric layers of black router < 60 mm, yellow
router < 100 mm and green router < 150 mm for three blasted cylinders with 40 g/m of PETN.

of the preferential direction of crack propagation, see Fig. 3.7.

The resultant MPF curves have a dust-and-boulders characteristic [21] for the
first two loading levels, see Fig. 14 in Paper III. The overestimation of the fine-
fragments formed by the crushing mechanism addressed in Paper II still persists.
The absolute masses of the fine-fragments are then computed at three concentric
cylinders with outer radii of router = 30 mm, 50 mm, and 70 mm. The inner radii
of the cylinders are rinner = 5 mm, 30 mm and 50 mm.

The simulation results show that the closest layer to the blast-hole contains fewer
fine-fragments in absolute term than the sum of the fine-fragments of the other two
layers, see Fig. 3.8(a). See Table-2 in Paper III for the calculated percentage mass
fraction of fragments formed by crushing, branching-merging and the mass contained
in the boulders. This agrees qualitatively with Svahn’s results [4], see Fig. 3.8(b).

3.4 Paper IV

Even the DEM models with particles of diameters of 2 mm and 3 mm used in Paper
II and Paper III were found to be too coarse to analyze the resultant fine-fragments
FSDs in greater detail. Hence, recognizing different source mechanisms that create
the fine-fragments become virtually impossible.

In this paper twenty-eight sets of experimental FSDs for lab-scale cylindrical
specimen are analyzed [3, 27, 92]. Four of them are confined with a cylindrical
layer of pre-stressed aggregate, i.e. the stiff confinement shown in Fig. 3.5(b), and
the remaining twenty-four cylinders are either unconfined or confined by MT. In
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Paper IV, Table-1 lists the experimental data sets analyzed and their configurations.
Appendix B below lists the corresponding MPF data.

The experimental FSDs of the unconfined cylinders or those confined by the MT
had to be changed somewhat from Eq. 3.1 above, because not only the intermediate
size fragments but also the fine-fragments had the branching-merging type of size
distributions with the power-law exponent of α ∼ 5/3, see Fig. 3.9 and also Fig.
1(b) in Paper IV. Hence, the first term, the crushing term in Eq. 3.1 above, is
replaced by a second branching-merging term,

n(s)ds = C1s−α exp(− s
sf

)ds + C2s−α exp(− s
si

)ds + C3 exp(− s
sb

)ds, (3.2)

where the first term describes the size distribution of the fine-fragments and the
second term describes the size distribution of the intermediate size fragments in
an interval ds both formed by the branching-merging like mechanism since α ∼
5/3. C1,C2 and C3 are constants that determine the relative weight of the different
fragment size regions. sf is the transition size between the fines and the intermediate
size fragments and si is the transition size between the intermediate size fragments
and the boulders.

The fine- and the intermediate fragments size regions of the FSD are parallel with
a power-law exponent of -5/3 but separated by a vertical offset which was found to
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be statistically significant for the sieving data that identified fragments even smaller
than 40 µm. The location of the vertical offset varies between different blast sets,
see Appendix E below. Appendix C and D below and Tables II-III in Paper IV list
the statistical analysis for all the experiments listed in Table-I of Paper IV.

With HiDEM, we simulate small scale cubes of size 3 mm × 3 mm × 3 mm
and 6 mm × 6 mm × 6 mm with a pre-defined pressurized edge crack in order
to study the conditions for which fine-fragments are created due to branching and
merging, see Fig. 4(a) and (b) in Paper IV. The smaller size cube is discretized
with particles of size 0.1 mm and the larger cube with 0.05 mm, 0.08 mm, 0.1 mm,
and 0.2 mm. The dynamic deposition algorithm is used to generate the geometrical
configuration. We focus on the dynamics of a pressurized propagating edge-crack
subjected to different lateral external stresses, both in tensile and in compressive
direction, and the resultant FSDs, see Pconf in Fig. 3.10. A total of nine different
lateral external stress levels are used.

At tensile or low compressive external stresses the FSD of the fine-fragments
follows a branching-merging type of size distribution just like the sieved fragments
from the experiments that are unconfined or confined by MT, i.e., the exponent of
the size distribution is close to −5/3, see Table-IV and Fig. 5(a) and (b) in Paper
IV.

Figure 5(d) in Paper IV shows the FSD for the large cube with the four different
particle sizes. The exponential cut-off for the fines, independent of the particle size,
appears at sf ∼ 10. This means a smaller fragment volume for the cube discretized
with smaller particles compared to the larger ones. This shows that the fragment
volume at the cross-over between fines and intermediate size scales with the grain
size D3

particle.

In addition, a simulation of a cube was made using the FCC lattice structure at
zero lateral external stress level, i.e. Pconf = 0 MPa. The resultant FSD, unlike the
other cubes formed by the deposition algorithm, had in the fine-fragment region a
crushing-shearing exponent of approximately −2.5.

3.5 Additional findings

We have extended the simulation results of the cube presented in Paper IV by
introducing stress waves moving parallel to the direction of crack propagation, see
Pfc and Prc in Fig. 3.10.

Blasting cylindrical holes creates a compressive shock wave traveling outward in
the radial direction. As the blast-hole expands outward, it will then induce tension in
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Figure 3.10: 2D schematic representation of the cube and the defined boundary conditions.

the tangential direction. The stress waves emanating from the blast-hole will sooner
or later face a boundary or an interface between two dissimilar materials. Here, the
specific acoustic impedance of the host rock, e.g. ρc, and the boundary material,
e.g. ρ′c′, plus the angle of wave incidence define the stress wave’s interaction at the
boundary such as transformation, transmission, reflection and refraction [93].

An effect of an outer periphery boundary confined by a higher impedance ma-
terial, i.e. ρc < ρ′c′, is a reflected, returning compressive wave, a lower impedance
interface generates a returning tensile wave.

The former is simulated by adding a delayed compressive stress wave with an
amplitude equal to the Papp = 5 MPa on the small cube’s front surface at 4 µs, see
Pfc in Fig. 3.10. Then the resultant fragmentation is computed at nine external
stress levels given in Table-IV of Paper IV.

The effect of the returning compressive wave is to widen the crack path and to
induce more crushing fines. One trivial reason is the sliding of the crack surfaces
upon each other and forming more fine fragments through shear deformation. This
occurs when the external compressive stresses are at a level to hold the two crack
flanks together. However, when the external stresses are tensile or mildly compres-
sive, the crushing effect of the returning compressive wave weakens. Consequently,
the fine-fragment region of the FSDs barely changes.

In our simulations, the first significant change in the power-law exponent of
the fine-fragment region emerges at Pconf = −0.1 Papp and it increases until where
at Pconf = −0.2 Papp the power-law exponent takes the crushing value of -2.5

35



Chapter 3. Essential findings 3.5. Additional findings

Figure 3.11: The FSDs of the dynamic crack propagation in the cube with a returning compressive
stress wave a) for Pconf = −0.2 Papp and b) for Pconf = +0.15 Papp; and for comparison, that of
the cube at the same boundary conditions without the returning compressive stress wave in blue.
The corresponding theoretical n(s) fits are shown by lines with the same color as the symbols.
The lines with slope -5/3, -2.5 and -2.35 are shown for comparison. The final fracture patterns for
Pconf = −0.1 Papp in c) without the returning compressive stress wave and in d) the same with the
returning compressive stress wave. The cube’s particles are shown with white points for visibility
of fragmentation. Red: single particle fragments, blue: fragments containing two particles, green:
fragments containing 3 to 10 particles, pink: fragments containing 11 to 100 particles.

which means higher degree of crushing, see Fig. 3.11(a). For the cubes with
Pconf ≥ −0.1 Papp the FSDs show slight variations compared to the ones with-
out the returning compressive wave, see Fig. 3.11(b) for Pconf = +0.15 Papp.

A possible consequence for the unstably propagating crack is to branch under the
influence of the returning compressive wave. This may occur when the anisotropic
biaxial compressive stress state surrounding the propagating crack tip become suffi-
ciently large that shearing remains the only possibility for crack growth [94]. Figures
3.11(c)-(d) compare the crack development when Pconf = −0.1 Papp.

Another source for the bifurcation of a propagating crack is a returning tensile
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Figure 3.12: The final fracture patterns for Pconf = +0.05Papp in a) the cube without the return-
ing tensile stress wave and in d) the same cube but with the returning tensile stress wave. Red:
single particle fragments, blue: fragments containing two particles, green: fragments containing 3
to 10 particles.

wave from a free surface boundary. In most blasting experiments the outer periphery
confinement has a lower impedance, which results in a returning tensile wave. This
is simulated by adding a compressive stress on the rear face acting for a duration
of 0.5 µs after t = 4 µs, see Prc in Fig. 3.10. The amplitude of the wave is chosen
at a level to avoid spalling fractures near the frontal face. The returning tensile
wave induces higher velocity of crack propagation and this could be a reason for
the branching of the propagating crack. We have observed this in the cubes with
Pconf = 0 and Pconf = +0.05 Papp, see Fig. 3.12.
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1 INTRODUCTION 

In mining and quarrying, blasting is the main meth-
od for rock excavation. The explosives are placed in 
series of boreholes with a predetermined amount and 
detonation delay time, aiming at achieving a man-
ageable muck pile and a desired fragment size dis-
tribution (FSD). An under- or over-charged bore-
holes are often a financial liability for the 
companies. That is, in addition to the time and re-
sources costs, the resultant fragment sizes might be 
smaller than the acceptable size for the processing 
(recovery) units. Even in well-designed blasting 
rounds fine particles are generated. For example, in 
EU quarries around 2.5 billion tons of rocks are an-
nually blasted of which 10 – 15 % is unsellable 
waste fine particles (Moser 2003). 

There are many theories on the source of fine par-
ticles due to rock blasting, e.g. the traditional 
crushed zone model (CZM) that assumes fines are 
originating from an annular crushed zone around the 
blast hole, the two component model (TCM) devel-
oped by Djordjevic (1999, 2002) and further im-
provements of the CZM by Onederra et al. (2004) 
who assumed that the fine particles are originating 
from a star-shaped crushed zone. Another yet plau-
sible one is that the fines are generated by a mecha-
nism involving dynamic crack branching and merg-
ing (Ouchterlony & Moser 2012).  

By the advancement of computation power and 
numerical tools, many researches have started to in-

vestigate blast induced damage, dynamic crack 
branching and merging and thus fragmentation 
through numerical simulations. Cho & Kaneko 
(2004) e.g. studied the dynamic fracture process of a 
two dimensional disk with a borehole at its center 
subjected to different dynamic wave forms, different 
rise time and decay time of the pressure function, 
peak value of the applied pressure and stress loading 
rates. Zhu et al. (2007) studied blast induced damage 
and dynamic crack propagation of a circular rock 
model with a centrally located borehole using the fi-
nite element method (FEM) code Autodyn 2D. Ma 
& An (2008) implemented a Johnson-Holmquist 
(JH) constitutive model into the commercial FEM 
code LS-Dyna and studied the borehole blast in-
duced rock fracture and fracture pattern under dif-
ferent circumstances i.e. different stress loading 
rates, effect of free surface and joint plane, pre-
existing compressive stress, notches, etc.. Wang & 
Alonso-Marroquín (2009) used the 3D discrete ele-
ment method (DEM) to model the fracture process 
and the size distribution in a sphere resulting from 
different impact rates. Banadaki & Mohanty (2010) 
investigated the crushed zone, radial and spalling 
cracks of cylindrical Barre and Laurentian granites 
subjected to blast load using the built-in JH2 materi-
al model in Autodyn with explicit time integration 
scheme, Nordendale (2013) studied the damage in-
duced in ultra-high strength concrete and ashcrete 
panels of size 305 mm × 305 mm × 27 mm by ballis-
tic impact. 

Modelling blast fragmentation of cylinders of mortar and rock 
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ABSTRACT: This paper investigates the blast fragmentation of a mortar cylinder by numerical simulations. 
The aim of the project is to understand the underlying mechanisms causing blast induced fines. Two numeri-
cal methods: Finite and Discrete Element Methods (FEM, DEM) with explicit time integration were used and 
the results were compared with the results of blasting tests. In FEM thin cylindrical disk (Ø140 mm) with 1 
layer of 3D continuum elements and in DEM a 3D cylinder with Ø140×200 mm were modelled. They were 
loaded by a pressure evolution acting on borehole wall. Both models reproduce realistic crack patterns con-
sisting of through-going radial cracks, with branching and interconnecting cracks, around a crushed zone at 
the borehole. The FEM models, however, for slight changes contain unrealistic areas of deleted elements, 
whereas the DEM models were more robust and delivered realistic fragment size distribution of the expected 
Swebrec function type. 
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Recently Yi & Johansson (2015) used DEM to 
simulate blast fragmentation of mortar cylinders 
with a central borehole. The effect of dynamic load-
ing on the response of rock-type materials was stud-
ied. Even if the simulated process as a whole is real-
istic the resulting blast induced damages and crack 
patterns are not. Examples of simplified behavior are 
i) radially straight symmetrical crack patterns, ii) 
crack propagation without deviation from the initial 
nucleated direction, iii) cracks without branching 
and merging, and iv) fragment size distributions 
(FSD) curves that do not quite look like real ones. In 
this paper we hope to improve on the work by Yi & 
Johansson (2015) by taking into account the nuclea-
tion, propagation and branching of cracks around the 
explosion cavity during a blasting event.  

We present results from numerical simulations of 
the blast loading of confined mortar cylinders. These 
are compared with post mortem CT scans and High 
Speed Video (HSV) images of dynamic cracks on 
the specimen’s end surface to judge how realistic the 
simulations are. The work is the first part of the 
FWF project P 27594-N29 ‘Fine particles generated 
by dynamic crack propagation, as in blasting of rock 
like materials’, which started July 1st, 2015, see the 
work presented by Kukolj et al. (2018). It has been 
suggested that branching-merging of growing cracks 
is a major source of such fines (Ouchterlony & 
Moser 2012) and before modeling of these local 
crack tip occurrences can take place, it is important 
to have a reliable overall model. 

2 TYPICAL EXPERIMENTAL RESULTS 

The experimental procedure includes blasting a 
PETN (pentaerythritol tetranitrate) cord of certain 
charge concentration, i.e. here 6 g/m, 12 g/m and 20 
g/m, inside the borehole of a mortar cylinder, which 
is radially surrounded by a damping layer inside a 
blasting chamber. 

The mortar cylinder production follows a recipe 
similar to the one from the researches of Johansson 
& Ouchterlony (2011) and Schimek et al. (2013). 
The mortar cylindrical structure were produced with 
dimensions of Ø140×280 mm and Ø150×300 mm 
and the borehole diameter of Øborehole = 10 mm. A 
plug was fitted at the frontal cylinder-face, 25-50 
mm deep inside the borehole, to hinder the blast-
generated gas to rush in-between the window and 
the cylinder and to protect the camera from the deto-
nation-caused flash inside the borehole. 

The blasting chamber includes four concrete 
segments and employs the "impulse trap" concept 
(Sun 2013). The damping layer, protective window 
and the four segments of the blasting chamber di-
rectly affect boundary conditions reducing the spall-
ing effect and circumferential counter-directed 
cracks, which could interfere and obscure cracks that 

propagate towards the cylinder's circumference 
(Rossmanith et al. 2005). The damping layer and the 
window are designed to impede radial and axial 
blast-induced expansion and, hence, provide more 
uniform radial crack propagation along the cylinder's 
axis. 

The blast tests used the HSI camera Imager HS 
4M (LA Vision) to capture the crack propagation at 
frame rates of 20,000-37,000 fps at image resolution 
of 256 × 256 pixels and 336 × 336 pixels. 
 
 

 
Figure 1. Post-mortem crack network at the front end face of 
the mortar cylinder blasted with 6 g/m, 12 g/m and 20 g/m of 
PETN from to left. 

3 MODEL SETUP 

3.1 Abaqus/Explicit and CDP 
The finite element method (FEM) code Abaqus 
(Simulia, 2014) using an explicit time integration 
scheme has been used, which is a suitable choice for 
high speed impact processes. The constitutive model 
used in this study is Concrete Damage Plasticity 
model (CDP) (Hillerborg et al. 1976, Lubliner et al. 
1989, Lee & Fenvas 1998), a built-in model in 
Abaqus. The detailed description of CDP is given in 
the Abaqus analysis user’s guide V. 6.14, section 
23.6.3. It requires six material constants to model the 
inelastic behavior of concrete/mortar in addition to 
rate dependent data in the dynamic range. They are 
an elastic modulus (E), a Poisson's ratio υ, a dilation 
angle ψ, a flow potential eccentricity ϵ, the ratio of 
initial equibiaxial compressive yield stress to that of 
the uniaxial compressive stress σb0/σc0, and the ratio 
of the second stress invariant on the tensile meridian 
to that on the compressive meridian at initial yield 
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for any given value of the pressure invariant Kc 
(Simulia, 2014). Jankowiak & Lodygowski (2005) 
have provided a set of calibrated data for the CDP 
model. These data have been used as the reference in 
the quasi-static regime. 

The mortar structure was modelled as a cylindri-
cal disk with thickness H = 1 mm, Øout = 140 mm 
and Øinside = 6 mm. On the periphery of the cylinder 
quiet boundary conditions were used. Three dimen-
sional linear hexahedral stress elements with re-
duced integration points (C3D8R) and 3D infinite 
elements (AC3D8R) were used for discretization of 
the mortar and the peripheral structure as the bound-
ary condition of the confined cylinder. A top view of 
the model setup and the mesh is illustrated in Figure 
2. A summary of the mesh details are given in Table 
1. 
 
Table 1. Model’s mesh information. 
Element 
type 

Element 
name 

Number of 
elements in 
the model 

Global mesh size 
mm 

Stress 
elements 

C3D8R 40448 1 

Infinite 
elements 

AC3D8R 628 Not applicable 

 
The strain-rate dependent failure surface of the CDP 
model has been developed on the basis of quasi-
static data. The Huh-Kang model (2002) was used as 
the rate form. The peripheral material enclosing the 
mortar structure was modelled in a simplified way 
with an elastic material representation called quiet 
boundary condition, for which the Young’s modulus 
and the Poisson’s ratio are identical to those of the 
mortar structure. This allows us to investigate the 
crack propagation, branching and merging. Other-
wise, the shock waves strike the outer boundary re-
flect as tensile waves developing rings of tensile 
damage preventing the propagating cracks originat-
ing around the borehole from being distinguishable. 
The shock waves passing through the finite elements 
degrade their elastic modulus including those on the 
periphery connected to the infinite elements. This 
breaks the initially defined impedance match be-
tween the mortar structure and the outer boundary. 
This could be observed as local reflections of stress 
waves on the periphery of the mortar structure. 

The blast load is of the type of pressure-time his-
tory which is applied radially on the borehole wall. 
The borehole pressure function of Trivino & Mohan-
ty (2009) was implemented: 

P(t) = Ppeak .  e−{[bu (t−tu)]2n} .  e−{[bd (t−td)]2}   (1) 

where bu, tu, n, bd, and td define the rising up and de-
caying down of the pressure function. The parameter 
bu is chosen as a fraction of bd: bu = bd/bratio with bra-

tio ≥ 2 (Trivino & Mohanty, 2009). Here, bd and bu 
are related to the maximum decay rate, md, and max- 

 
Figure 2. Top view of the model and the magnified discretiza-
tion around the borehole. 
 

Figure 3. Pressure time loading history with three peak pres-
sures of 35 MPa, 85 MPa and 166 MPa. 
 
 
imum raise rate, mu, respectively. Finally, the pa-
rameters tu and td are (Trivino & Mohanty, 2009): 

tu = [− ln(α1)]1/2n /bu            (2) 

td = {[− ln(α1)]1/2n − [− ln(1 − α2)]
1

2n}/bu   (3) 
where α1 and α2 are the approximate error at t = 0 
and t = tpeak-pressure. 

The peak pressures of 166 MPa, 85 MPa and 35 
MPa equivalent to 20 g/m, 12 g/m and 6 g/m of 
PETN were used (Sanchidrián, 2017). In all three 
loading levels, the pressure rise time to peak is ap-
proximately 1 µs. Figure 3 shows the pressure-time 
history of the loading levels. 

3.1.1 Continuum finite element models calibrations 
Application of the FEM in high speed dynamical 
processes consisting of large number of fractures has 
limitations (Nordendale 2013, Donzé et al. 2009). A 
material model with a strain softening behavior, here 
CDP, greatly increases the probability for an 
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unstable solution. The instability in these dynamical 
simulations show up as an elemental distortion 
before a mature simulation result is achieved. The 
elements experiencing large magnitudes of damage 
have lost almost all of their stiffness, becoming soft 
and extremely distortable even at negligible levels of 
external loading. These elements are the main source 
of unstable simulation results. Here, a solution-
dependent element deletion algorithm accompanies 
the 3D linear hexahedral elements. In CDP, as 
described in the Abaqus analysis user’s guide V. 
6.14, scalar damage grows by increasing values of 
accumulated plastic strain and is separated into 
tension and compression. The deletion algorithm 
was developed in the Abaqus VUSDFLD 
subroutine. The finite elements whose tensile 
equivalent plastic strain reaches a pre-determined 
value, here 98% of total damage (100%), cease to 
carry load using this subroutine. This, however, 
would cause an error when dealing with the 
conservation of the mass of the system. Nordendale 
(2013) has stated on this issue: “The removal of the 
elements would have to take place early in the 
analysis in order to show the appropriate failure 
scenario leading to model simulating a weaker 
target than in real life and significantly increase the 
computation time.” 

The use of the CDP model in a high speed 
dynamical process lacks an equation of state (EoS) 
to describe the pressure-volume relation. As a 
consequence, the volumetric strain of a finite 
element could increases extremely, i.e. there is no 
volumetric strain locking limit, as a result of 
enforcing a sudden large value of hydrostatic stress 
(first invariant of stress tensor) level (Nordendale 
2013). In Abaqus/Explicit, the linear and quadratic 
bulk viscosity parameters, Rayleigh material 
damping and mass scaling were used to compensate 
for these nonlinear effects of compaction.  

The linear and quadratic bulk viscosity damp 
oscillations associated with volumetric straining. 
The former damps transverse and the latter damps 
longitudinal oscillations (Simulia, 2014). The fixed- 
and the variable-mass scaling define an element 
stable time increment at the beginning and during 
the calculation (the detailed description is in the 
Abaqus analysis user’s guide V. 6.14, section 11.6). 
These calibration parameters not only help to 
stabilize the FEM results against the aforementioned 
issues, but also are a remedy for the results’ 
calibration of the explicit time integration. 

In addition to the 2D models with 
Abaqus/Explicit, complete 3D models of the 
cylinder, i.e. H = 280 mm, were simulated. In these, 
similar instabilities as in the 2D models appeared; in 
addition, they showed unrealistic crack growth 
patterns. The material model calibration became 
extremely difficult and time consuming. As an exa- 

Figure 4. Failure mechanisms due to (a) tension and (b) bend-
ing; (c) particles come into contact experiencing repulsive 
force (Åström et al. 2013) 
 
 
mple damping parameters that stabilized one model 
failed to stabilize models that were almost identical. 
Therefore, we have limited the application of FEM-
Abaqus to the 2D models and addressed the 3D 
modelling using a discrete element code described in 
the next section. The FEM models required 
approximately 6 minutes of calculation time using 
48 interconnected cores of Intel(R) Xeon(R) CPU 
E5-2667 v1 @ 2.90GHz. 

3.2 HiDEM 
The 3D modelling was made with the HiDEM 
discrete element code (Åström 2006, Åström et al. 
2013) for several reasons. Firstly the stability 
problems encountered with Abaqus made the 
progress toward the goal 3D modeling very slow. 
Secondly it could be said that a suitable DEM code 
will probably have less problems with highly 
dynamic processes (Hedjazi et al. 2012) and thirdly 
post-processing tools for visualizing e.g. internal 
cracking and fragmentation, adapted to our problem 
were already available. 

The particles in HiDEM are rigid spheres. They 
are arranged in a Face-Centered-Cubic (FCC) lattice. 
The contacts between the particles were modelled 
using massless beams. The interaction potential 
between two particles was defined by the Euler-
Bernoulli (EB) beam. Åström et al. (2013) gave the 
elastic energy of beams. The beams break because of 
tension, shear or bending beyond the fracture limit 
(Åström et al. 2013, Fig. 4). 

At time t = 0 s, the particles are arranged and 
packed to form the desired cylindrical specimen. 
Then, the connections between particles are defined 
using the elastic beams. The equation of motion can 
be represented by the simplified, mixed matrix and 
index notation form: 

𝑴𝑟̈𝑖 + 𝑪𝑟̇𝑖𝑗 + ∑ 𝑲𝑟𝑖𝑗𝑗 = 𝐹𝑖          (4) 

where M = mass-matrix containing the masses and 
the moments of inertia of the particles; ri, ṙi and r̈i = 
the position, velocity and acceleration vectors of the 
particle i including the rotation components; rij = the 
corresponding position vectors for all the particles j 
that are connected to the particle i; C = the damping 
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matrix; K = the stiffness matrix; and Fi = the sum of 
the other forces acting on the particle i. The stiffness 
matrix for linear elastic EB beams under small de-
formation is given by Åström et al. (2013). 

An elastic material model was used. The material 
parameters were identical to those used in the 
Abaqus/Explicit simulations. The mechanical behav-
ior of the granular disordered materials, e.g. mortar, 
was modelled here using beams with reduced stiff-
ness. At the beginning of the simulation, 10 per cent 
of the beams in the whole model were randomly se-
lected to have their stiffness reduced to 10 per cent 
of that of the originally defined normal stiffness. 

Åström (2006, 2013) has described the fracture 
criterion implemented in HiDEM code. Here, the 
fracture criterion was described by the elastic strain 
threshold; εcrit = 0.0003. The beams have no mass; 
thus, upon breakage no mass was lost in contrast to 
the FEM modelling described above. The particles 
whose connecting beams are all broken are able to 
move past each other and collide with the other par-
ticles (Åström et al. 2013). The collisions are inelas-
tic which is associated with a loss of kinetic energy 
upon collision (Åström et al. 2013). 

A cylindrical mortar structure with Øout = 140 
mm, Øinside = 10 mm and the height of H = 200 mm 
was modelled with the particles. The ratio H/D = 2 
used in the experiments was not respected. Johans-
son (2008) has shown that the fragmentation is quite 
independent of the H/D ratio. The diameter of the 
particles was 3 mm. The blast load was of the type 
of the pressure-time history which was applied radi-
ally on the borehole wall in addition a simplified 
post-peak pressure was driving all the particles out-
wards with a constant pressure. The three peak pres-
sures used in Abaqus/Explicit were used. In all the 
three loading levels, the active pressure front was 
moving with the velocity of detonation with tem-
poral duration of 1 µs. The detonation front had the 
velocity (VOD) of 6000 m/s. It began at the rear end 
face of the cylinder moving with the VOD towards 
the front end surface. In addition, 20 mm of stem-
ming was considered. On the outer periphery of the 
cylindrical structure, the mantle, quiet boundary 
conditions similar to those applied in FEM 
Abaqus/Explicit were used. Therefore, the shock 
waves hitting the outer periphery were initially not 
reflected back into the cylinder. In the initial work 
with HiDEM the goal was to find out if it could give 
realistic fragmentation and cracking results. A few 
details of the used version of HiDEM were not 
optimal for our modelling purpose such matters like 
the specimen H/D and the exact value of VOD e.g. 
were considered less important. The typical calcula-
tion time of the DEM models with 100 interconnect-
ed CPU cores (Intel(R) Xeon(R) CPU E5-2690 v4 
@ 2.60GHz) was 40 minutes. 

4 RESULTS 

4.1 FEM: Abaqus/Explicit  

4.1.1 Damage evolution 
Figure 5 shows snapshots of the finite element cy-
lindrical disks with centralized borehole subjected to 
the blast load. The loading function is of the pres-
sure vs. time type, acting on the borehole wall as 
shown in Figure 3 with peak pressure levels of Ppeak 
= 35 MPa, 85 MPa and 166 MPa in models A, B and 
C, respectively. The pressure function parameters 
are given in Table 2. The models have an initial time 
resolution of 1×10-8 s associated with an element by 
element time increment determination algorithm in 
addition to an element stable time increment (mass 
scaling) of 1×10-10 s that acts once at the beginning 
and then during the simulation run time. It accompa-
nies the finite elements of the cylindrical disk.  

Models A, B and C had to be calibrated individu-
ally to get stable results. The calibration parameters 
are given in Table 3. As soon as the simulations 
starts, at t = 0 s, the pressure rises up and the com-
pressive equivalent plastic strain accumulates around 
the borehole forming a crushed zone. The generated 
crushed zone has a diameter of Øcrushed zone = 12 mm, 
14 mm and 35 mm for models A, B and C, respec-
tively. Approximately 1 µs after the peak pressure, 
the tensile equivalent plastic strain begins accumu-
lating on a ring of finite elements close to but not at 
the borehole. This tensile zone is visible already at 
10 µs and we call it the severely fractured zone, 
compare models A, B and C in Figure 5 at t = 10 µs. 
The tensile stresses act on the already damaged ma-
terial around the borehole initiating the tensile 
cracks. About 3 to 5 µs after the peak pressure (has 
been reached), depending on the loading level, ten-
sile cracks appear around the borehole. The shock 
waves emanating from the borehole drive the cracks 
to the outer periphery, forming a crack network in 
between the inner and the outer boundary. 
 
Table 2. Parameters’ values of the pressure function. 
Parameter mu md bratio α1 α2 
value 45×105 25×103 2 10-7 10-2 

 
Table 3. Model calibration parameters. 

M
od

el
 

Pressure Linear 
bulk 
viscosity 

Quadratic 
bulk 
viscosity 

Rayleigh 
damping 
(ß) 

Mass 
scaling 
threshold 

 MPa    s 
A   35 0.13 1.16 Not 

necessary 
1×10-10 

B   85 0.12 1.2 2×10-10 1×10-10 

C 166 0.4 1.2 Not 
necessary 

1×10-10 

 
By increasing the peak pressure level, the distance of 
the severely fractured zone to the borehole wall, di-
ameter of the crushed zone, the number of nucleated  
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Time Model-A Model-B Model-C 

10 µs 

   

30 µs 

   

60 µs 

   

90 µs 

   
 
Figure 5. FE cylindrical disks with Ppeak = 35 MPa, 85 MPa and 166 MPa in models A, B and C. The tensile equivalent plastic strain 
(PEEQT) as a measure of tensile damage (fully damaged elements are removed so they appear white). 
 
cracks around the borehole wall and the number of 
cracks which reach the outer periphery of the cylin-
der increases. In model-C, the amount of the tensile 
damage occurring around the blast hole is so high 
that it is no longer possible to count distinguishable 
nucleated tensile cracks. The post-mortem result of 
the model has more than 8 radial cracks connecting 
the severely fractured zone to the outer mantle. A 
large number of crack branchings, nucleation of ten-
sile cracks not only near the outer periphery but in 
the whole model, short cracks meeting the outer 
boundary and the tensile cracks nucleating from the 
outer boundary converging towards the borehole are 
distinctive features of this model. A summary of the 
severely fractured zone is given in Table 4 and the 
crack network characterization in Table 5. 

The crack network characteristics associated with 
the three loading levels are qualitatively comparable 

to the post-mortem results of the in-situ mortar cyl-
inders shot with the same loading levels; compare 
Figure 1 with Figure 5 at 90 µs. 

4.1.2 Energy responses 
The issues accompanying the application of the ex-
plicit time integration have been discussed above. 
To understand the associated limitations, the energy 
responses of the models have been studied to identi-
fy the plausibility of the FEM results. Model-C was 
chosen to illustrate the influence of the four parame-
ter calibrations, see Table 3, on the energy responses 
and the post-mortem crack network. The calibration 
process has been performed in the following order: 
 Parameter set-1: Default values of bulk viscosi-

ties and automatic global time incrementation 
 Parameter set-2: Adjusted bulk viscosities, and 

automatic global time incrementation 
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 Parameter set-3: Use of mass scaling and ele-
ment-by-element time incrementation in addition 
to the Model-2’s setup 

Figure 6 illustrates the post-mortem crack network 
and Figure 7 shows the comparison of the energy re-
sponses after each of the calibration steps. After the 
step-1, both the post-mortem cracking network and 
the energy responses show unrealistic jumps; com-
pare step-1 and -2 in Figure 6 and Figure 7. The 
voids in the post-mortem image of the step-1 are the 
symptoms of a large amount of energy dissipated 
through viscous damping. The post-mortem cracking 
network does not change visibly between the second 
and the third calibration step. However, the energy 
responses illustrate further improvements; compare 
step-2 and -3 in Figure 7. The total energy for the 
whole model oscillates around zero for step-3 as it 
should. The behaviors of the plastic and viscous dis-
sipation energies of the system become smoother 
and more monotonic. 

As mentioned above finding calibration parame-
ter sets that stabilize the FEM simulations is ex-
tremely time consuming. This situation becomes 
more complicated in 3D, where not only the instabil-
ities as in 2D but also unrealistic crack growth pat-
terns are observed. Therefore, as an alternative the 
discrete element method (DEM) is employed for 3D 
modelling. 
 
Table 4. Crushed zone and severely fractured zone characteri-
zation of the models A, B and C. 
Model Diameter of crushed 

zone 
Diameter of severely 
fracture zone 

 mm mm 
A 12 13 
B 14 26 
C 36 44.5 
 
Table 5. Crack network characterization of the models A, B 
and C. 
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A 11 14 3 22 4   5 10 
B 13 16 4 21 9 15 13 
C too 

many 
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many 

too 
many 

>>10 >25 30 too 
many 

 

4.2 DEM: HiDEM 
Figure 8 shows the final 3D crack network of the 
three loading levels with Ppeak = 35 MPa, 85 MPa 
and 166 MPa at t = 400 µs. On the left hand side the 
crack network observable on the surface of the cyli- 

 
Figure 6. Post-mortem crack network of three steps of energy 
calibration at 90 µs (fully damaged elements are removed so 
they appear white). Note that Step-3 corresponds to model-C in 
Figure 5. 
 
nder and on the right hand side the corresponding in-
ternal crack network is displayed. By increasing the 
peak pressure level the number of the radial cracks, 
branchings and mergings are increasing. This is con-
forming to the results of FEM/Abaqus presented 
previously. The number of which, however, is great-
er than those obtained using FEM calculations. This 
can be associated with a simpler constitutive model 
implemented in HiDEM and the simplified method 
in which the post-peak pressure is implemented. The 
simplified post-peak pressure is a weakened driving 
force that drives all particles outwards with a con-
stant pressure on all particles. In reality, escaping 
gases would be concentrated in the open/opening 
cracks. The study on these assumptions will be ad-
dressed in future work. Comparing the end face 
post-mortem cracking network of the HiDEM results 
with those of the experiments also confirms the 
statements made on the higher number of radial 
cracks in DEM model above, compare Figure 1 and 
Figure 8. In Figure 9, the fracture energy curves of 
the three loading levels are presented. These curves 
are monotonically increasing and reach a plateau re-
sponse. The curves are smooth and without any un-
realistic jumps such as those often observed in our 
FEM/Abaqus simulations. 

The plausibility of the simulations can also be 
checked by evaluating the distribution of the debris 
size. This can also easily be determined in the exper-
iments using standard sieving methods. Such sieving 
is under way. 

Figure 10 shows a set of FSD curves obtained wi- 

              Step-1 

          Step-3 

         Step-2 
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Figure 7. Energy response of model-C to stepwise calibration; Red curves without symbols: Step-1; Orange curves with triangles: 
Step-2; Green curves with diamonds: Step-3. Top-row: comparison of the total energy output of the whole model for Step -1, -2 and 
-3. Top-right: magnified total energy output of the whole model for Step -2 and -3. Bottom-row: comparison of the plastic dissipa-
tion and the viscous dissipation for Step -2 and -3. 
 
th HiDEM. A fragment is defined by the number of 
connected spheres N and the screen size of the frag-
ment is that of a volume equivalent sphere. The up-
per red curve represents the mass passing fraction of 
the model with Ppeak = 166 MPa. It is smooth and 
continues connecting the fines region to the coarse 
one. The curve has Swebrec distribution behavior 
(Ouchterlony 2009) and is similar to the curves ob-
tained by Johansson (2008) who shot Ø140×280 mm 
cylinders of magnetic mortar with 20 g/m decouple 
PETN cord, also compare with Figure 11. Figure 10 
shows that the FSD curves, obtained from DEM 
simulations, of the cylinders of an identical size by 
increasing the amount of the explosive shift upward 
to contain larger fractions of fines. This behavior 
suggests the Natural Breakage Characteristics 
(NBC) of Steiner (1991, 1998) which is illustrated 
by Moser et al. (2003) using seven lab-scale blast 
experiments; see Figure 5 in Moser et al. (2003). In 
this figure, the position of the FSD curves along the 

mass passing axis shifts upwards by increasing the 
amount of specific change. In all the three curves il-
lustrated in Figure 10, the fine region starts at 3 mm 
of mesh size corresponding to the diameter of a sin-
gle discrete particle. In addition, the curves of the 
fines region up to 5 mm fragment size are parallel in 
all the three cases. This 3-5 mm tail is probably an 
artifact of the particle size used.  

By reducing the loading level to Ppeak = 85 MPa 
the discrete character of the data is more pronounced 
in the region x ≥ 40 mm. This behavior in the coarse 
region suggests a beginning ‘dust and boulders’ be-
havior and that the number of larger fragments is 
getting smaller. The blue curve representing the FSD 
of Ppeak = 35 MPa has the full ‘dust and boulder’ be-
havior expressing a combined discrete and continu-
ous distribution. This characteristic is the result of a 
blast load which is below the critical charge (Ouch-
terlony & Moser 2012). At this level, the cylinder 
just barely falls apart into large blocks , here one bl- 
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Figure 8. Three dimensional crack network of three blast load 
levels, left: fracture on surface, right: 3D internal crack net-
work, comparing (from top to bottom) Ppeak = 35 MPa, 85 MPa 
and 166 MPa. 
 
 
ock, in addition to small amounts of very fine mate-
rials (Johansson 2008), see Figure 11. In this frag-
ment, the crack network is developed inside the 
block; however, the required energy to drive the 
cracks to further propagate, branch or merge to split 
the body in smaller fragments was not available. 

5 DISCUSSION AND CONCLUSION 

Two numerical calculation methods, i.e. the finite 
element method (Abaqus) and the discrete element 
method (HiDEM), with explicit time integration for 
simulating quasi-brittle material response to civil 
blast load have been used to model the dynamic 
crack propagation, branching and merging and even-
tually to obtain the resultant FSD of blasted mortar 
cylinders.  

With the FEM simulations, the 2D crack propaga-
tion, branching, merging and the final cracking net-
work were studied, while the 3D behavior has been 
simulated with the DEM code. In addition to the 
cracking parameters, the fragment size distribution  

 
Figure 9. Fracture energy curves of the DEM models for the 
three loading levels. From bottom to top 35, 85, 166 MPa. 
 

 
Figure 10. Double logarithmic curves of mass passing, compar-
ing Ppeak = 35 MPa, 85 MPa and 166 MPa. From top 166 MPa. 
 
 
of three simulated blasted cylinders has been ob-
tained with the DEM code. Application of the FEM 
code brought to light a couple of stability issues 
which made the code difficult to use for our applica-
tion. They were overcome using model unique cali-
bration parameters associated with the material re-
sponse and the time integration scheme. This has 
been shown by monitoring the improvements in the 
energy responses of a model; the total energy and 
the two dissipative responses. The FEM results have 
shown that by increasing the loading level, the num-
ber of the total crack nucleations, branchings and 
mergings increases which consequently should be 
associated with the increase in the number of frag-
ments visible on the end face. The crack network is 
qualitatively comparable to the post-mortem HSV 
images of the mortar cylinder’s end surface. Moreo-
ver, the FEM results captured very well the stepwise 
change in the extent of the tensile damage outside 
the severely fracture zone between different loading 
levels which is comparable to those of the HSV im-
ages. In addition, the results have illustrated the 
growth in the diameter of the crushed zone and the 
severely fractured zone caused by increasing the 
loading levels. However, the large number of failed 

  

  

  

59



and hence deleted elements around the borehole 
over-estimated the sizes of the crushed zone and the 
severely fractured zone; thus, it would overestimate 
the amount of fines with the origin in this region. 
Moreover, some limitations in the 3D modelling, i.e. 
unrealistic crack growth pattern in addition to the 
stability issues encountered in 2D, have limited our 
use of this FEM method. 

The DEM code, however, showed no difficulty in 
simulating the 3D model. The 3D simulations were 
made with identical peak pressure levels as those of 
the FEM simulations. The 3D models showed a 
more complex crack network. They had a lower 
stiffness compared to the FEM models. This could 
be associated with the simpler constitutive model 
implemented in HiDEM and the simplified method 
in which the post-peak pressure is implemented. In 
addition, the fragment size distribution curves ob-
tained using the DEM code for the three loading lev-
els have illustrated the NBC character. Most notably, 
it is seldom that numerical blast simulations produce 
FSD curves that look like the ubiquitous Swebrec 
distribution, including dust and boulders. Future 
work will focus on the improvement of HiDEM 
code to allow for the simulations of more realistic 
crack networks. 
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Blasting with explosives and crushing with mills are two major processes for extracting ore minerals.
Longstanding problems with these processes are “fines” production in blasting and the related energy con-
sumption of mills. Here, we demonstrate, using numerical simulations and comparison with experiments,
that both problems emerge from two universal mechanisms: unstable tensile-crack propagation and com-
pressive impact crushing. These lead to a universal mass-passing-fraction function in sieving. Crushing
is limited to, and produces almost all the fines, and thereby inherently consumes a lot of fracture energy.
Tensile cracks also produce fines, but the majority of the mass is confined in larger fragments. The key
to resolving the fines and energy problem thus lies in minimizing crushing while inducing enough tensile
load to reach the breakage threshold.

DOI: 10.1103/PhysRevApplied.10.034001

I. INTRODUCTION

The extraction of metals from ore minerals is one of the
most important industrial processes. In a schematic sense,
the initial phase of mineral extraction is the blasting of
rock to break it, and then to crush large fragments in mills
to produce pieces of desired sizes. A similar procedure
is used in the production of construction aggregates for
civil-engineering purposes. The interplay between blasting
and crushing-milling fragments is quite complex [1]. Two
longstanding problems exist within these processes: (1) the
production of “fines” or dust in the blasting process, which
is an economic waste and an environmental hazard [2,3];
and (2) the huge energy consumption of grinders and mills
run by electric motors [4].

The energy consumption problem is, at least partly, a
consequence of fines produced in mills. The creation of
fines requires a lot of energy as the total created frac-
ture surface grows large. Consequently, the two problems
can be condensed into a “fines” problem. A better under-
standing of the origin of fines could help eliminate these
problems at an initial stage and improve the blasting and
crushing practices.

There are existing theories on the source of fine
particles, such as the crushed-zone model (CZM), which
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assumes that fines originate from an annular compressive
failure around the blasthole [5] consisting of two nonover-
lapping Rosin-Rammler components, one for the coarse
material and one for the fine material of the crushed zone.
The CZM may be interpreted so that the fragment size
is almost (solely) defined by the distance to a blasthole.
The two-component model (TCM) [6], in which the con-
nection between distance and size is more diffuse, has
defined the shear failure along the in situ joints and blast-
induced cracks as the other source of fines [7]. Additions
to the CZM by Onederra et al. [8] have assumed that the
fine particles originate from a circular compressive failure
zone around the borehole, as well as from crushed and/or
sheared material bounded by major blast-induced radial
cracks, which are assumed to be evenly distributed around
a blasthole, planar, and also to continue along the length
of the explosive charge. This constitutes the star-shaped
crushed-zone model [9].

The blast cylinders of Svahn [10] are ideal test models to
analyze the star-shaped model. The cylinders (� 300 mm
× length 600 mm), whose material is categorized using
three different colors in the radial direction, i.e., �outer =
120, 200, and 300 mm for black, yellow, and green, are
blasted. The colored layers are concentric and centrally
charged [see Fig. 2(a) in the Supplemental Material [9] ].
The fragment-size distribution (FSD) results illustrate a
whole range of fragment sizes for the core layer, with an
identical general character to that of the outer layers. The
results illustrated no tendency either for the core material
to consist only of fines or for the outer layers to contain
no fines. Both regions (black, yellow + green) produce the
whole range of fragment sizes. The black core contains
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even less fragments that are smaller than 2 mm fines
in absolute terms than the outer layers, bearing in mind
that there is no crushing inside the two outer layers [see
Fig. 2(b) in the Supplemental Material [9] ]. From the anal-
ysis of the star-shaped model, one realizes that the relative
amount of fines will always decrease with each successive
layer of materials. However, the absolute amount of fines
generated in the outermost layer is almost double that of
the middle layer. This would indicate that the fine particles
are generated by mechanisms other than crushing in the
outermost layer.

When blasting cylinders of a given size with decreasing
amounts of explosives, a critical charge size is reached. At
this stage, the cylinder barely falls apart into a few large
blocks plus small amounts of very fine materials [11,12].
In the cases referred to, the crushed zone and fragment col-
lisions do not exist. Åström [13] has addressed this issue
and declared the unstable rapidly propagating cracks as
a source of fines, the physical origin of which is rooted
in an intrinsic scale-invariant branching-merging process.
Yet another plausible theory is that the fines are generated
by a mechanism involving dynamic crack branching and
merging [14,15].

The fines problem can be characterized and quantified
by the so-called mass-passing-fraction (MPF) function,
which has characteristics that are universal for both blast-
ing and mill crushing under different loads [16]. In the
mining and construction industries, which handle vast
masses of rock and ore each year, productivity is related to
mass moved and crushed or milled (comminution), not to
numbers of fragments and/or mass for a given size. Aggre-
gate products are, for example, often further defined in
terms of their MPF; hence the industries’ preoccupation
with the MPF. The MPF(r) is defined as the fraction of
mass for a collection of fragments that pass through sieves
with different mesh sizes r. That is, for a mesh size r = 0,
MPF(r) = 0.0, and MPF(r > rmax) = 1.0 or 100%, where
rmax is approximately the largest possible fragment.

In most applications, oversize fragments that are too
large to handle are a larger liability than an excessive
amount of fines but respirable dust, slow leaching and ore
losses, etc., are important problems associated with fines.
An ongoing project [17] is trying to define the role of crack
branching and merging in the generation of fines by HSV
recording and modeling of dynamic cracks [11,18] (for the
expected use of the results beyond rock-fracture research,
see Sec. II in the Supplemental Material [9]).

II. THE MODEL

In this paper, we employ a discrete-element code
(HiDEM) to simulate blasting experiments of magnetic
mortar cylinders. The experiments were conducted by
Johansson [12] as a set of laboratory blasting fragmenta-
tions of magnetic mortar cylinders (� 140 mm × length

280 mm) with PETN (pentaerythritol tetranitrate) cord,
with charge concentrations varying from 3, 5, 10, and 20 to
40 g/m. Here, we use data from two set of blasting exper-
iments with different confining conditions, i.e., loose and
stiff confinement. The fragment data are collected as mass-
passing fractions in sieving with mesh sizes ranging from
0.063 to 90 mm.

In the HiDEM code, a brittle material is discretized as
a dense-packed face-centered cubic (fcc) lattice of inelas-
tic spheres connected by breakable beams. The model is
described in detail in Refs [13,19]. We model cylinders
with material properties that mimic those of magnetic mor-
tar, and use a time-dependent pressure pulse that crudely
replicates the blasting process [11]. That is, we apply an
initial pressure pulse with a value Ppeak proportional to
the charge density that lasts for about a microsecond, and
that travels through the sample with a velocity of det-
onation (VOD ∼ 6000 m/s). There is also a post-peak
pressure pulse (Ppost ∼ 0.02 Ppeak) that lasts for 30 μs, and
that acts on a larger region than the initial pulse. The
true blasting process is highly complex [20] and cannot
be modeled in any detail here. Regardless, it seems that
applying the pressure-pulse scheme with minor adjust-
ments of the post-peak pressure (0.4–6% of the peak
pressure) to mimic various experimental boundary condi-
tions is enough for the numerical model to replicate the
crack patterns and MPFs of the experiments. That is, we
use the slightly larger Ppost for looser confinement and vice
versa. This is simply an observation of how the model
works. We are not aware of the physical origin of this
behavior.

Before examining the simulation and experimental
results, we construct a theoretical estimate of MPF(r).
The blasting experiments create a compressive shock wave
traveling outward in the radial direction. As a cylinder
expands outward, it will induce tension in the tangen-
tial direction. This immediately indicates that the blasting
process will generate both tensile fracture and crushing.

Tensile fracture means crack propagation. Propagating
cracks easily become unstable and branch. Crack branches
easily merge again to form fragments, which means that
propagating cracks leave behind not smooth crack sur-
faces but fragment-filled fracture zones of finite widths.
This process is inherently universal and leads to a char-
acteristic FSD [13,21]. The number of fragments, nbm(s),
of size s in an interval ds can be written as nbm(s)ds =
C2s−α exp(−s/C3)ds, with α = (2D − 1)/D, where D is
dimension (i.e., D = 1, 2, 3 for rods, membranes, and bulk
objects, respectively) and C2, C3 are nonuniversal con-
stants [13,21,22]. The dimensionless size s is measured
as the number of grains composing a fragment (i.e., DEM
particles or mortar grains). The power-law part of the FSD
originates from branching and merging cracks, while the
exponential part introduces a cut-off at a finite width of
the fracture zone at which fragmentation locally runs out
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of energy. In nature, fragmentation processes of this kind
range in size from stellar fragments [23] through icebergs
[24] and meteorites [25] to fault gouge [26] and dust [27].

Crushing contains some induced tensile fracturing but
it—and especially grinding—are essentially compressive-
shear fracture and they are typically processes of contin-
ued fragmentation following an initial crack-propagation
phase. Such a process essentially modifies the FSD. When
tensile cracks have opened up, small-size debris-filled frac-
ture zones are formed. In compressive shear, this debris
will be crushed into decreasingly smaller fragments by
grinding and compaction. Grinding compaction can, in
a schematic fashion, be viewed as a hierarchical pro-
cess in which ever-smaller fragments are broken to fill
pore space that opens up in continuous shear deforma-
tion [28,29]. Such a process has a power-law FSD of the
form ncrush(s)ds = C1s−βds [13], where C1 is a constant
and β ∼ 1.8–3.5 for D = 3, depending on the degree of
grinding and/or crushing. The lower bound for β is deter-
mined by β > α, while the upper bound of 3.5 seems to be
more of a practical nature than a hard theoretical limit. A
value of β ≈ 3.5 means a very high degree of grinding.

For low blasting loads, the fragments formed by branch-
ing and merging in fracture zones amount to just a small
fraction of the total mass of a cylinder. Large more or
less undamaged “boulders” remain between the formed
fracture zones. Note that in our case “boulder” does not
mean oversize with respect to the available equipment but
merely fragments that are very large compared to the orig-
inal cylinder. At low loads, the mass fraction of these
boulders easily dominates the MPF. For increasing loads,
the mass fraction of the boulders decreases and eventu-
ally vanishes (cf., Fig. 1). As a first approximation, crack
paths far enough from each other for boulders to be formed
may be considered as independent. This will result in a
Poisson process, and an essentially exponential FSD for
boulders [30].

If n(s) describes the number density of fragments with
s grains, the FSD, or the number of fragments in a size
interval ds, can then be written as follows:

n(s)ds = C1s−βds + C2s−α exp
(

− s
C3

)
ds + nb(s)ds,

(1)

where the value for β can be determined from a grinding
experiment which is discussed later, (see Sec. III descrip-
tions regarding Fig. 4), C3 determines the typical size of
the boulders, nb(s) ∼ exp(−s/sb) is the size distribution
for the boulders, and sb is the characteristic size of a boul-
der, governed by the density of induced tensile cracks.
Sometimes a large-size cut-off to the crushing power law
also appears, which can be approximated by multiplying
that first term on the right-hand side by another exponential
function.

With the transformation ds ∝ r2dr for D = 3, the
MPF(r) ∼ (1/M0)

∫ r
rgrain

r3n(r)r2dr can be approximated

for fragments smaller than boulders, i.e., for r � rgrainC1/3
3 ,

using the function

MPF(r) = fcr

(
1.0 −

(
r

rgrain

)−3β+6
)

+ fbm

(
r

rmax

)−3α+6

,

(2)

where

fcr = mgrain

M0

−3C1

−3β + 6
, (3)

fbm = mgrain

M0

3C2r−3α+6
max

(r−3α+6
grain )(−3α + 6)

, (4)

in which M0 is the total mass; rgrain is the grain size of the
material; and, for D = 3, the value of 3α + 6 is equal to
1 and thus the first part on the right-hand side of Eq. (2)
is the empirical Gates-Gaudin-Schuhmann (GGS) [31] or
a simple power-law distribution with exponent m = 1, and
the second part represents the characteristic shape of MPFs
for the crushed fines. The parameters fbm, fcr thus determine
the mass fractions of fragments formed in the branching-
merging and crushing processes, respectively. The ratio
fcr/fbm ∼ C1rgrain/C2rmax determines the ratio of crushing
to branching-merging fragments. This could be used as
such to be the representative measure for the optimization
of blasting and the corresponding fragmentation. Finally,
the mass fraction of the boulders, absent from Eq. (2), can
then be written as 1.0 − ( fbm + fcr).

In the general case, the MPF can be written as a sum of
two incomplete Gamma functions and, if nb(r) is assumed
to be a Poisson process, an exponential function.

III. RESULTS AND DISCUSSION

Figure 2(a) shows an experimental MPF(r) for Ppeak =
160 MPa and Ppost = 0.06 Ppeak. The experimental data can
be fitted almost perfectly by the numerically integrated the-
oretical MPF(r) from the general case, except for the very
smallest fragments. The theoretical function is obtained by
an integral with an assumed constant material grain size
rgrain. For real materials, rgrain is not a constant, and the
small-size limit of the MPF(r) will reflect this grain-size
distribution. For simplicity, we may assume that the mortar
grains have a Gaussian size distribution and, as is evident
in Fig. 2(a), this fits the experimental data very well.

For comparison, a straight line that represents the
GGS(m = 1) function is also displayed in Fig. 2(a) to
demonstrate the range in which branching-merging frag-
ments dominate the MPF. Before reaching 100%, the
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FIG. 1. The numerically com-
puted fragmented cylinders, with
Ppeak = 35, 60, 80, and 160 MPa,
top left to bottom right, respec-
tively. Reconstructions with frag-
ments larger than s = 100 are
shown. The largest intact frag-
ment is shown in gray. Fragments
containing more than 100 DEM
particles are shown in yellow.
Smaller fragments are omitted.
The DEM-particle radius, rgrain =
3 mm.

experimental MPF also deviates from the GGS function.
This part contains the boulders, and in Fig. 2(a) an expo-
nential function for nb(s) is used.

The much shorter curve in Fig. 2(a) consists of the
numerical MPF and the corresponding fit to the the-
oretical MPF. The rather striking difference between
the experimental and numerical MPFs has the rather
trivial origin that the mortar grains are typically of size
rgrain ∼ 0.1 mm, while in the simulations rgrain ∼ 3 mm is
used. Figure 2(b) displays a more useful comparison: as
this figure demonstrates, the crushing part of n(s) extends
to the kink at about 20–30 grains for both the experimental

and the numerical data. Since the grain size in the numeri-
cal model is rgrain = 3 mm, and in the experimental model
rgrain ∼ 0.1 mm, this means that the mass fraction for
crushing is much larger for the numerical data, and it indi-
cates that numbers of grains rather than fragment mass
govern crushing.

The data points corresponding to the largest fragments
(approximately C3) in Fig. 2(b) are approximately 104

for the numerical data and approximately 108 for the
experimental [there are so few boulders that n(s) cannot
be determined and they are therefore left out of Fig. 2(b)].
This reflects the scaling C3 ∝ r−3

grain quite well, indicating

(a) (b)
,
,

,

,

,

FIG. 2. Experimentally and numerically obtained (a) MPFs and (b) values of n(s) for Ppeak ≈ 160 MPa. The experimental (Exp-
160) and numerical (Simu-160) data are fitted with the theoretical MPF. In (a) the GGS(m = 1) function (MPF ∝ r) is displayed for
comparison, and the grain-size distribution for the fines tail of the experimental MPF is compared to a Gaussian function (grains in
the size range r ∼ 0.1 mm). In (b), the power laws for crushing and branching-merging are displayed for comparison. The numerical
results are for rgrain = 2 and 3 mm. The large-fragment cut-off for the distributions (approximately C3) scales as C3 ∝ r−3

grain.
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(a) (b)

-
Crushing

B
B

FIG. 3. (a) The crushing, branching-merging, and boulder mass fractions as functions of Ppeak for numerical simulations with rgrain =
3 mm and Ppost = 0.004 Ppeak, and experiments with a stiff cylinder confinement. Filled symbols denote the experimental data and
unfilled symbols show the simulation data. The estimated errors of the numerical results compared with the experimental data are
illustrated by error bars. (b) The mass fraction of the largest fragment as a function of Ppeak for simulations with Ppost = 0.06 Ppeak and
experiments with a looser confinement: continuous line, simulation; broken line, experiments.

that while number of grains are important for the mass
fraction of the crushing fragments, this is not so for
the larger fragments. To confirm this, we also compute
n(s) for rgrain = 2 mm. The best fit to this data by the
theoretical n(s) is also displayed in Fig. 2(b). As is evi-
dent, the data in this case follow the data for rgrain = 3
mm, except that C3 moves to a larger value of s by an

amount roughly consistent with the expected scaling. Con-
sequently, as the observed scaling C3 ∝ r−3

grain entails, the
largest fragments formed by branching-merging have sizes
that are independent of rgrain.

Both Eqs. (1) and (2) can be used to define mass
fractions of fragments formed by crushing, branching-
merging, and boulders. It is an interesting exercise to plot

X
Z

Y

X
Z

Y

(a) (b)

(c) (d)

FIG. 4. (a) n(s) for inflation
fragmentation compared to the
branching-merging power law. (b)
Crack patterns formed during
inflation. (c) n(s) for grinding
fragmentation compared to the
crushing power law. (d) Crack pat-
terns formed during grinding: the
arrow shows the direction of rota-
tion. The blasting n(s) of Ppeak =
80 MPa is displayed for compar-
ison, and an exponential function
indicates boulders shown in (c).
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these mass fractions from the fitted functions as a function
of Ppeak for the numerical and experimental data. Another
useful plot is the mass fraction of the largest fragment as a
function of Ppeak.

Figure 3(a) displays the mass fractions for the three
categories as functions of Ppeak, for simulations with
Ppost = 0.004 Ppeak and experiments with a stiff confine-
ment [12]. The numerical data (rgrain = 3 mm) again con-
firm the significantly larger mass fraction for crushing
for the larger-grain-size numerical data as compared to
the experiments [Fig. 3(a)]. For the other categories, the
trend is, as expected, that the mass fraction of the boul-
ders decreases significantly with Ppeak, while those of
the smaller fragments created by branching-merging and
crushing increase, also as expected. It is obvious that the
numerical and experimental data match each other very
well, apart from the expected deviations due to differ-
ences in rgrain, which also explain the slight difference in
the branching-merging mass fraction for the highest Ppeak,
at which the crushing mass fraction grows large enough
to begin depleting the branching-merging fraction. The
estimated errors of the numerical results are measured
(using the standard error of estimate) and illustrated by
the error bars. The value for crushing is 13.5% and that
for branching-merging is 11.4%, while the value for the
boulders is 5.37%.

Figure 3(b) displays the mass fraction of the largest
fragment in the simulations compared to the difference in
the mass-passing fraction between the largest and second-
largest mesh-size sieves, which can be used as a proxy for
the largest fragment. These results are for loose experimen-
tal confinement and simulations with Ppost = 0.06 Ppeak.
Figure 3(b) demonstrates that a value of Ppeak ∼ 60–80
MPa or larger is needed to reach the breakage thresh-
old of the cylinder. This corresponds to the damage-
fragmentation transition [32,33]. At smaller Ppeak, the mass
fraction of the largest “fragment” is approximately 1.

To further demonstrate the difference between tensile
and compressive fragmentation, we apply two artificial
loading conditions that have no direct experimental coun-
terparts. These two loading conditions are chosen to either
maximize the tensile loading and minimize the compres-
sive crushing or vice versa. For tensile loading, we apply
a force on each DEM particle that increases linearly with
time in the outward radial direction, a so-called inflation.
For crushing, we apply a similar load on each particle
as a compression along the cylindrical axis, as well as a
tangential torsion force acting clockwise around the axis of
the cylinder; i.e., we choose loading conditions that mimic
either a slow “inflation” or a traditional grinding motion.

The results of this exercise are displayed in Fig. 4.
Figure 4(a) shows n(s) for the tensile loading condition
and, for comparison, the corresponding function for blast-
ing at Ppeak = 80 MPa and the branching-merging power-
law function s−5/3. This figure clearly demonstrates that,

in this case, n(s) consists of branching-merging fragments
and boulders, while crushing fragments are absent. The
cracks formed during inflation are displayed in Fig. 4(b).
Here, the branching and merging of cracks that form small
fragments in fracture zones along the major crack paths are
clearly visible. Also, the large boulders between the cracks
are easy to detect. This crack pattern largely mimics what
can be observed in the experiments, except for the crush-
ing zones near the borehole that can be seen in Fig. 1, for
which blasting is applied.

This particular case of inflation fragmentation produces
an FSD with ten boulders. The largest one contains 20%
of the mass and the smallest 1.3% of the mass. Together,
they make up 87% of the mass. The remaining mass is
contained in the branching-merging fragments. Also for
these, the majority of the mass is contained in the larger
fragments. This is easily demonstrated by the integral∫

s−5/3sds, which represents the total mass, and which gets
its major contribution from large values of s.

Figures 4(c) and 4(d) show the corresponding results for
the grinding-type loading condition. Figure 4(c) shows that
n(s) follows the crushing power law n(s) ∝ s−2.9 for frag-
ments of a size up to about s ∼ 100. It is worthwhile noting
that the number of fragments piles up at s = 1, indicating
that the grinding process attempts to break even these small
fragments—which, however, is not allowed in the numer-
ical model. A few boulders that are described well by an
exponential function can also be detected.

The crack pattern in Fig. 4(d) show rather obvious traces
of the grinding process, and it is distinctly different from
the tensile pattern in Fig. 4(b). The grinding process pro-
ceeds so that at first a few shear cracks are formed which
determine the boulders, and thereafter the grinding process
proceeds by crushing fragments within shear zones formed
along the shear cracks [13].

IV. SUMMARY AND CONCLUSION

In summary, the results in this paper clearly demonstrate
that blasting-fragmentation FSDs are composed of three
parts, all of which can be described separately by univer-
sal fragmentation mechanisms. The fines, or the smallest
dustlike particles, arise almost exclusively as a result of
compressive-shear fragmentation or crushing. Crushing
consumes a lot energy as the density of fracture surfaces
increases considerably in regions with very fine fragmen-
tation. The grain-size distribution of the material seems to
influence crushing significantly, in contrast to the larger
fragments. That is, the mass fraction of the crushing fines
decreases with smaller grains, at least for the particu-
lar fragmentation-process boundary conditions used here.
Thus DEM modeling will probably tend to overestimate
the amount of crushed material produced by blasting.

Fragments larger than fines are formed as a result
of tensile-crack propagation. Tensile cracks branch and
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merge to form smaller fragments, and the tensile cracks
delineate the largest fragments, called boulders.

Our results indicate two possible strategies for address-
ing the fines problem. (1) As the fraction of fines increases
monotonically with Ppeak and a minimum Ppeak is required
to reach the breakage threshold, the blasting process should
be designed with a minimum load to reach this thresh-
old, and with a suitable geometrical proximity of applied
charges to limit the resulting boulder size. (2) The blasting
itself should be designed so that it minimizes compres-
sive shear and maximizes tensile load. In full-scale blasting
rounds with a sequence of delayed holes, alternative (1)
would have to include a consideration of the effect of the
jointing of the rock mass. The delay sequence itself makes
it possible to extend alternative (2) to include consideration
of the interaction of tensile cracks from one blasthole with
the waves emanating from the next. When computer capac-
ity has grown sufficiently, a code such as HiDEM could
become a valuable tool in choosing the right combination
of blast parameters at full scale.
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Abstract: Waste fines from rock breakage often negatively

influence economics and environment. The Austrian Sci-

ence Fund (FWF) sponsors aproject to investigate the cause

of the fines by studying blast fragmentation throughout

small-scale blast tests andnumerical simulations. The tests

include blast-loading confined granite andmortar cylinders

by detonating cord with 6, 12, and 20g/m of PETN. The

blast-drivendynamiccrackingat theend faceof the cylinder

opposite to the initiation point is filmed with a high-speed

camera. The filming is followed up by an analysis of sur-

face and internal crack systems and sieving of the blasted

cylinders to quantify the amount of fine material created.

The numerical simulations cover the blast fragmentation

of a mortar cylinder. These simulations use Finite and Dis-

crete Element Methods (FEM, DEM) with explicit time inte-

gration. Themodel cylinders are loaded by a pressure evo-

lution acting on the borehole wall. Both methods produce

realistic crack patterns, consisting of through-going radial

cracks with crack intersections around a crushed zone at the

borehole. Furthermore, the DEMmodels have also yielded

realistic fragment size distributions (FSD). The paper cov-

ers the present progress of the ongoing project and related

future work.

Keywords: Blast-induced fines, Blast tests, High-speed

photography, FEM, DEM, Dynamic cracking, Blast

fragmentation

Untersuchungen zur Entstehung von sprenginduzierten

Feinanteilen anhand von kleinmaßstäblichen

Sprengversuchen und numerischer Modellierung

Zusammenfassung: Bei Gesteinssprengungen entstehen-

de, nicht verwertbare Feinanteile haben oft einen negativen

Einfluss auf Umwelt und Wirtschaftlichkeit. Der Österrei-

I. Kukolj, MSc (�)

Chair of Mining Engineering and Mineral Economics,

Montanuniversitaet Leoben,

Erzherzog-Johann-Str. 3,

8700 Leoben, Austria

ivan.kukolj@unileoben.ac.at

chische Wissenschaftsfonds (FWF) fördert ein Projekt zur

Untersuchung der Ursache von Feinanteilen durch Ana-

lyse der Zerkleinerung in kleinmaßstäblichen Sprengver-

suchen und numerische Modellierung. Die Tests umfas-

sen Sprengversuche an Granit- und Mörtelzylindern mit 6,

12 und 20g/m PETN Sprengschnur. Die dynamische Riss-

bildung an der dem Initiationspunkt gegenüberliegenden

Stirnseite des Zylinders wird mit einer Hochgeschwindig-

keitskamera aufgenommen. Im Anschluss an die Aufnah-

me erfolgt eine Analyse der oberflächlichen und inneren

Risssysteme sowie eine Siebanalyse des gesprengten Ma-

terials, um die Masse des entstehenden Feinmaterials zu

quantifizieren. Die numerischen Simulationenmodellieren

die Zerkleinerung eines Mörtelzylinders. Es werden Fini-

te- und Diskrete-Elemente-Methoden (FEM, DEM) mit ex-

pliziter Zeitintegration verwendet. Die Modellzylinder wer-

den durch eine, auf die Bohrlochwand wirkende, Druck-

entwicklung belastet. Beide Methoden produzieren realis-

tische Rissmuster, bestehend aus durchgehenden radialen

Rissenmit Rissübergängen (Vereinigung undUnterteilung)

rund um eine Zermalmungszone am Bohrloch. Darüber hi-

naus haben die DEM-Modelle auch eine realistische Korn-

größenverteilung geliefert. Der Beitrag behandelt den ak-

tuellen Fortschritt des laufenden Projekts sowie damit ver-

bundene zukünftige Arbeiten.

Schlüsselwörter: Sprenginduzierte Feinanteile,

Sprengversuche, Hochgeschwindigkeitsfotografie, FEM,

DEM, Dynamische Rissbildung, Sprengzerkleinerung

1. Introduction

The amounts of mineral fines that are associated with raw

materials extraction have practical consequences. One

concern is the sustainability of natural resources since

fines are often an unsellable liability or waste that has cost

money and energy to produce and in the end has to be

deposited. This reasoning lay behind the EU project Less

Fines [1]. The health aspects of mineral fines have again

come into focus, so sources of respirable dust and miti-
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Fig. 1: Volumeofcrushedma-
terial aroundanextended2D
blast-hole (Fig. 2 in [7]); the
crushed zonevolumeVc isan-
nular and thebreakagezone
volumeVb,whichalsogener-
ates crushedfines, ismadeup
of thenpartial volumesof the
star arms

Fig. 2: Sieving curves forblastedmultilayeredØ300×600-mmcylinders
ofmortar;comparisonofØ120-mmblack corewithyellow(Ø120–200mm)
+ green layers (Ø200–300mm) [8]

gation effects are studied in the ongoing EU Horizon 2020

project “Sustainable Low Impact Mining, SLIM” [2, 3].

Blasting is amajor producer ofwaste fines, crushing and

milling another. Blasting is a highly dynamic process and

the crack growth that defines breakage is a major source of

fines. Such crack-generated fines (CGF) are also produced

by crushing and grinding. Fines are inherently related to

the amount of energy required in comminution. Most of

the area created resides in the fines and this area then de-

termines the consumed comminution energy [4]. A better

knowledge of how CGF are generated may also help to im-

prove blasting and crushing practices and to suppress the

amount of CGF at the source rather than dealing with them

afterwards.

Blast generated fines are often considered to originate

mainly from the annular crushed zone around a blast hole,

which contains only –1mm material, and fragmentation

models were built around this; e.g. the CZM or crush zone

model [5, 6]. It implies that fragment size is (almost) solely

defined by the distance to the blast hole, the finest mate-

rial created at the borehole wall and fragment size, thus,

increasing with distance from the blast hole. The circu-

Fig. 3: Post-blast cross sec-
tion throughblasted confined
mortar cylinder [9]

Fig. 4: Preparedblast chamber (transversecross-section) (1—Blast
cylinder;2—Damping layer;3—Blast chamber)

lar crushed-zone model was extended to a star-shape one

(Fig. 1; [7]).

Blasting tests with layered cylinder specimens [8] con-

tradict the predictions of the star-shaped CZM (Fig. 2).

Firstly, the sieving curves for the layers are quite similar in

shape and the core region contains fragments well beyond

1mm in size. Secondly, there is a cross-over point (0.25mm

in Fig. 2) above which the outer layers contain more fine

material than the core. Consequently, more –1mm fines

are created outside the black core than inside it.

Post-mortem crack patterns are not as simple either as

the CZM (Fig. 3; [9]). Here the cracks have seemingly run

along crooked paths, branched, merged, and left debris

along the crack paths.

Statistical models of brittle fragmentation [10, 11] point

in the same direction, that instability of fast propagating

cracks leaves behind a trace of small fragments along their

propagation paths, but this has not been observed in rock

under blasting-like conditions. More arguments are pro-

vided in [12].

This led to the FWF-sponsored project P27594-N29:

“Fines generated by dynamic crack propagation, as in

blasting of rock-like materials,” which ends Dec 31, 2018.

428 Kukolj et al. © The Author(s) BHM (2018), 163. Jg., Heft 10
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TABLE 1

Measured material properties

Property Granite Mortar Damping

Mean St.dev Mean St.dev Mean St.dev

UCS [MPa] 171.50 9.00 27.70 1.10 – –

Brazilian tensile strength [MPa] 10.85 1.52 2.90 0.49 – –

Density [g/cm
3
] 2.70 0.01 1.66 0.01 2.12 0.08

Young’s modulus [GPa] 65.30 0.83 12.20 0.31 – –

Poisson’s ratio [–] 0.24 0.02 0.23 0.05 – –

P-wave velocity [m/s] 4908 111 3069 62 1210 274

S-wave velocity [m/s] 3212 150 2065 40 643 79

Two main project objectives are to: i) determine the im-

portance of the dynamic mechanism for CGF by capturing

images of branching at a moving crack tip and ii) compare

themeasured fragment size distribution (FSD) withmodels

based either on the mechanism of crack branching and

merging or other mechanisms. The first part of this project

is described in [13, 14], progress in numerical simulations

in [15], and the present state in this paper. It is divided into

an experimental part anda partwithnumerical simulations.

2. Methodology

2.1 Small-scale Blast Tests

Theblast tests [13] include controlledblast loading of a con-

fined hollow cylinder whilst the resulting dynamic cracking

is filmed at its frontal end face by means of high-speed

photography.

Thecylinder ismadeofmortar or granite,Ø150× 300mm

in size, with a Ø10-mm central axial borehole. The produc-

tion of the blast cylinders is described in [13].

The loading is achieved bydetonating adecoupled PETN

(Pentaerythritol tetranitrate) cord (6, 12, or 20g/m) inside

the borehole. The detonation propagates along the cord

towards a stemming plug at the frontal end face with the

velocity (VOD) of about 7300m/s [16].

The cylinder is radially confined by a 25-mm-thick damp-

ing layer inside a blast chamber (Fig. 4). The damping ma-

terial [13] is a commercial concrete mixture, cured for one

day. It improves the acoustic-impedance matching of prop-

agating shock waves and protects the chamber.

Table 1 shows measured material properties of the blast

cylinders and the damping layer.

The blast chamber (Fig. 5) includes four concrete seg-

ments, axially connected with two metal plates. The seg-

ments are designed to radiallymove about 5mmduring the

blast, acting as ‘impulse traps’ [17]. The rearmetal plate in-

cludes an opening for inserting the cord. The frontal metal

plate includes an opening, allowing filming of the frontal

end face through a protective polycarbonate window.

The filming [13] captures crack development at the end

face following the detonation. The cracking at the end face

starts about when the detonation front reaches the stem-

ming plug, which is seen as slight movement of the plug

and occasionally a dimmed detonation-flash around it.

The filming set-up (Fig. 6) records the dynamic crack de-

velopment, in most cases, with 24,656 fps at 336× 336 pix-

els.

2.2 Numerical Modelling

2.2.1 Modelling in Abaqus

Numerical modelling of blast fragmentation was done us-

ing the finite element method (FEM) and the discrete el-

ement method (DEM) [14]. The FEM approach (Abaqus)

is suitable for modelling blast-induced damage, though

presently quite limited for fragmentation analysis [14].

2.2.2 HiDEM Model

Blast cylinders are modelled with a 3D discrete element

code (HiDEM) [11, 18]. A dynamic sedimentationmethod is

used to generate the initial random structure of the model

composed of rigid spheres of 2-mm and 3-mm diameter.

Contacts between the particles are modelled using mass-

lessbeams. The interactionpotential between twoparticles

is defined by the Euler-Bernoulli (EB) beam model. Esti-

mates of the beam elastic energy are provided in [18]. The

beams break due to excerted tension, shear, or bending

beyond the fracture limit (Fig. 4 in [18]).

The particle-motion equation is given in [14]. Themodel

assumes elastic-material behaviour. The stiffness matrix

for linear-elastic EB beams under small deformation is

provided in [18]. The modelled material has an elastic

modulus of E=19.7 GPa and a Poisson’s ratio of ν= 0.19,

which is somewhat representative of the blast-test mortar.

The stochastic mechanical behaviour of granular disor-

dered materials was modelled using beams with reduced

stiffness. These beams were randomly selected to have

their stiffness reduced to 10% of the original value. Here,

the fracture criterion [11, 18] was described by the elastic-

strain threshold εcrit = 0.0003.

Themodelledmortar cylinders areØ140× 280mm in size

with a Ø10-mm borehole. The blast loading is radially ap-

plied onto the borehole wall according to a pressure-time

function [14]. The modelled VOD is the same as in the blast

tests. A simplified post-peak pressure drives all particles

outwardswith Ppost = 0.0025Ppeak. Themodelling uses three

peak pressures of 166MPa, 85MPa, and 35MPa, equiva-
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Fig. 5: Preparedblast chamber (axial cross-section) (1—Frontal end
metalplate;2—Protectivewindow;3—Boreholewithstemming;4—Blast
cylinder;5—Damping layer;6—Chamber segment;7—Rear-endmetal
plate)

lent to 20g/m, 12g/m, and 6g/m of PETN [14]. In addition,

20mm of stemming was included. Quiet boundary con-

ditions are applied to the mantle to avoid cracking due to

reflected tensile waves.

2.2.3 Simplified n(s) Model

When blasted, the cylinder expands radially, inducing tan-

gential tension and tensile cracks. In the crushing process,

fragments are broken by continual shear deformation [19].

Such a process has a power-law FSD ncrush(s)ds=C1s-βds

[11], where C1 is a constant and β indicates the degree of

crushing/grinding, being β~ 1.8–3.5 when dimension D= 3

[11, 15]. Dimensionless size s is measured in number of

grains composing a fragment [15].

The dynamic tensile cracks can easily become unstable,

branch, and further merge, forming fragments. This inher-

ently-universal process leads to a characteristic FSD [11,

20]. The number of fragments nbm(s) of size s in an inter-

val ds can be written as nbm(s)ds=C2s-α exp(-s/C3)ds with

α= (2D–1)/D, where C2 and C3 are non-universal constants

[11, 15].

If n(s) describes the number-density of fragments with

s number of grains, the FSD, or the number of fragments in

a size-interval ds, can then be written as [15]:

n(s)ds = C1s
–βds + C2s

–αexp(–s/C3)ds + nb(s)ds (1)

Fig. 6: High-speedfilmingset-up for theblast tests

where the boulder intensity nb is given by the characteristic

boulder size sb and

nb(s) = exp(–s/sb) (2)

With the proper transformation from s to r, i. e. ds ∝ r2 dr

for D=3, leaving the exponential part of the second term in

the n(s) formula and integrating the n(s), the mass passing

fraction at screen size r (MPF(r)) can be approximated for

fragments smaller than boulders [15]:

MPF(r) = fcr[1.0–(r/rgrain)(–3β+6)] + fbm(r/rmax)
(–2α+6) (3)

where fbm and fcr determine the mass fraction of fragments

formed in thebranching-mergingand thecrushingprocess,

rgrain is the approximated diameter of the material grain

size, and rmax is the approximated diameter of the largest

fragment.

3. Preliminary Results

3.1 Crack Patterns

The high-speed images (Fig. 7) showmore intensive crack-

ingwith the increase of charge. Similarly, crack patterns are

denser and develop earlier in granite than in mortar. The

high-speed images of both mortar and granite shots show

three phases of crack development [13].

Firstly, following the plug movement, initial cracks

emerge and propagate mainly in the radial direction. In
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Fig. 7: High-speedandpost-mortemend-face imagesof thecylinderswith respect to thechargeandmaterial

Fig. 8: Peakcrack speed inblast cylinderswith respect tomaterial, chargeamount, andelapsed time (aMortar curveset;bGranite curveset)
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Fig. 9: Post-mortemmantle image (aProcessing;b“Unfolded”mantle, cylinder #mb71)

Fig. 10: Topological representationof crack-pattern features

the second phase, the crack-propagation speed reaches

its peak and quickly drops with multiple cracks branching-

merging (Fig. 8). After the second phase, the main cracks

have reached the borehole and/or the mantle and end-face

spalling with fumes leakage may occur.

The post-mortem crack patterns are observed at the end

face (Fig. 7), on the mantle, and internally through com-

puter tomography (CT) [13].

The mantle crack patterns are firstly photographed and

then processed in Agisoft PhotoScan® to produce a 3D

model of the mantle, which is then projected onto a 2D

image for further analysis (Fig. 9).

So far the CT cross-sections and mantle images indi-

cated that the number of main cracks and the number of

main intersections basically do not change in the axial di-

rection [13].

The crack patterns in the high-speed and post-mortem

images are traced and topologically analysed, similarly as

in [21]. This includes decomposition of a crack network into

topological features (Fig. 10): branches, crack intersections

(Jint: X, Y, and TI), borehole intersections (TH), mantle inter-

sections (TM), and crack-end nodes (I).

The analysis quantifies the development of the features

in the imageswith respect to time, from40.56μs to 527.28μs
and finally to the post-mortem state (pm). The results are

presented in a ternary diagramwith respect to the percent-

age of the feature categories (Fig. 11).

The results show that the percentage of crack intersec-

tions rapidly increases and the percentage of end nodes

drops during the second phase, as the initial smaller cracks

coalesce.

The number of active end nodes (i. e. propagating crack

tips) and intersections both increase with the increase of

charge and more so in granite than in mortar.

Fig. 12 shows resulting 3D crack networks from themod-

elling with respect to the three loading levels at t= 400 µs.

By increasing the loading level, the internal damage in-

tensity increases. Accordingly, the crack system becomes

more complex, increasing in number of main radial cracks

and intersections.

3.2 Fragmentation Analysis of Blasted Cylinders

Fig. 13 shows sieving FSD curves of selected blast cylin-

ders. The curves shift upwards to contain larger fractions

of fines when the charge is increased, in accordance with

the Natural Breakage Characteristics (NBC) properties [4].

The curve-fitting procedure is ongoing.

3.3 Numerical Estimates of Fragmentation and

Fines Sources

Fig. 14 shows FSD curves obtained with HiDEMmodelling.

A fragment is defined by the number of connected parti-

cles N and the screen size is that of the diameter of a vol-

ume-equivalent sphere. The curves represent the mass-

passing fraction of the model for different blast-loading

levels. The curve with Ppeak= 166MPa is similar to the siev-

ing curves and well approximated by the Swebrec function

[22]. The FSD curves from the DEM simulations also show

an NBC-like relationship.
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Fig. 11: Results fromthe
topological analysis (cylinder
#mb75); thedatapoints relate
to crack-pattern statewith
respect to elapsed time

Fig. 12: Crackpatternsofmod-
elled cylinders

At 35MPa and 85MPa, the mass-passing curves indi-

cate the “dust and boulders” phenomenon. The curve with

Ppeak= 35MPa contains 94% of the cylinder mass in one

boulder. The curve with Ppeak= 85MPa contains a wider

range of fragment sizes and four boulders, with almost 50%

of the cylinder mass. This results from blasting below the

critical charge level [9, 12].

By using Eq. 3, the percentage mass fraction of frag-

ments formed by branching-merging and crushing [15] can

be determined for the results (Table 2). The size of the

branching-merging fragments ranges from a single DEM

particle to a maximum value, which depends on the ap-

plied loading level. Similar to the MPF, the size of these

fragments is approximated by the diameter of the volume

equivalent sphere.

Simulations have also been conducted with radially-lay-

ered mortar cylinders, like those in [8]. The cylinders are

banded at radii r= 30mm and r=50mm, creating three con-

centric regions. A routine calculates the absolute mass of

very fine particles containing only one DEM particle in each

region. Fig. 15 shows that the absolute mass of the fines

in region 3 (50mm< r<70mm) is larger than in region 1

(5mm<r<30mm), thus confirming the results from [8].

4. Conclusions

The ongoing project studies dynamic mechanisms behind

blast-induced fines.

The filming shows a three-phase crack-pattern develop-

ment. Themain cracks and intersections inmortar aremore

numerous and appear earlier with higher charge and the

same tendencies are observed in granite, but at a higher

level. They are detectable before the third phase and do
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Fig. 13: Selected sieving
curvesofblasted cylinders
(aMortar curveset;bGranite
curveset)

434 Kukolj et al. © The Author(s) BHM (2018), 163. Jg., Heft 10

82



Originalarbeit

Fig. 14: FSDcurvesofmodelled cylinders

TABLE 2

Percentage mass fraction of fragments formed by crushing, branching-merging, and in boulders

Ppeak

[MPa]
Fragment mass percentage [%] Max. diameter of branching-merging

fragments
rmax [mm]

Crushing Branching-merging Boulders Branching-merging
(<10 particles)

35 4.5 1.5 94 0.5 14.1

85 26.5 19.6 53.9 1.1 70.9

166 37.5 55.3 7.1 4.3 52.4

not significantly change in the axial direction. Although the

crack speed is higher in mortar [13], crack patterns develop

with more propagating crack tips in granite.

The numerical modelling has used the finite element

method (Abaqus) and the discrete element method (Hi-

DEM) with explicit time integration to model the dynamic

crack propagation, branching and merging, and blast frag-

mentation of mortar cylinders. The FEM simulations pro-

vided results on dynamic 2D crack propagation, whereas

the 3D behaviour has been more successfully simulated

with the DEM code (HiDEM).

TheHiDEMcode provides realistic FSD results of blasted

mortar cylinders, focusing on three major fragmentation

mechanisms: borehole crushing, branching-merging, and

secondary crushing of branching-merging fragments. The

modelling results are in general agreement with the lay-

ered-cylinder blast results [8].

The FSD sieving curves of both blasted and modelled

cylinders follow reasonably well the NBC parallel upward

shift with the charge increase.

Future work will include further topological analysis of

the images, analysis of blast-induced 3D crack patterns, de-

termining other possible fines-generatingmechanisms act-

ing in the high-speed images, and further fragmentation

analysis of the modelled and the blasted cylinders, includ-

ing laser diffractometry for the grain sizes below40μm. The

comparison of the simulation results with the blast-test re-

sults will take place after necessary calibrations. The final

Fig. 15: Absolutemassoffine-particleswith respect to the radius from
theborehole

results will determine the relative influence of observed

dynamic mechanisms on the fines generation and a dis-

cussion of how the fines could be suppressed.
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High-resolution numerical simulations of cracks driven by an internal pressure in a heterogeneous
and brittle granular medium produce fragment-size distributions with the same characteristics as
experiments on blasted cylinders of mortar and rock in both the fine- and the intermediate-size
fragment-regions. To mimic full-scale blasts used e.g. within the mining industry, the cracks prop-
agate in a medium that is either under compression, neutral or under tension. In a compressive
environment, shear fracture produce a large volume of fines, while in a neutral or tensile environ-
ment, unstable crack-branching is responsible for a much smaller volume of fines. The boundary
between the fines and the intermediate size fragments scales as the average grain size of the material.
The ultimate goal is to develop a blasting process that minimize the fines, which in mining are both
an environmental hazard and useless for further processing.

I. INTRODUCTION

A fundamental process within the mining industry is
the blasting of rock to extract minerals. This process cre-
ates a lot of dust that cannot be processed further and
that is also an environmental hazard. It would therefore
be of great significance to minimize the dust which is of-
ten called ’fines’. The blasting process is carried out by
drilling cylindrical holes and blasting them from within.
The blast creates a conical compressive shock wave that
travels outward in the radial direction of the cylinder. As
the hole expands outward, it will induce tension in the
tangential direction. The stress waves emanating from
the borehole will sooner or later reach a boundary or
an interface between two dissimilar materials. Here, the
specific acoustic impedance of the host rock plus the an-
gle of wave incidence define the stress waves interaction
at the boundary such as mode transformation, transmis-
sion, reflection and refraction [1]. Reflected waves often
meet cracks initiated by the primary wave. In this way,
propagating cracks may experience both compressive and
tensile environments that influence the fines production.

Well-known theories within mining engineering for
blast-induced fines typically postulate compressive
and/or shear failure as the main mechanism for fine frag-
ments production such as the crushed zone model (CZM)
[2], the two component model (TCM) [3] and the addi-
tions to CZM by Onederra et al. [4]. However, when
blasting cylinders of a given size with decreasing amount
of explosives, a critical charge size is eventually reached.
At this point, the cylinder barely falls apart into a few
large blocks plus a small volume of very fine fragments
[5, 6]. In such a case, a crushed zone around the borehole
and crushing due to fragment collisions normally do not
occur and the theories fail. An inspection of the outcome
of such experiments reveals that the fines originate along
the propagation paths of the cracks that create the large
blocks. This indicates that the key to understanding the
blast-induced fines production can be found in the de-

tailed modeling of cracks driven by the internal pressure
induced by the blast and propagating in a medium that
is under externally applied stresses that can be either
compressive or tensile.
Within the physics community, fragmentation research

has typically been concentrated around the possible uni-
versality of scale-invariant power-law FSDs. There seems
to be limited universality, but there are dependencies
on dimensions, and compressive or impact fragmentation
seems to behave differently than tensile fragmentation
[7–11].
In this article we report the results of blasting exper-

iments and numerical simulations of propagating cracks
driven by internal pressure and propagating under spe-
cific external stress-states that mimic realistic conditions
for full-scale blasting. The model materials are granular
both in the simulations and in the experiments with a
average granularity of the order of 0.1 mm. The main
difference between the experiments and the simulations
is that in the simulations the grains are indestructible,
while in the experiments the grains can fragment and
there is also an inter-granular matrix that can form frag-
ments much smaller than the typical grain size. Never-
theless, we are able to demonstrate that the FSDs for
experiments and simulations are very similar and that
they can be understood in terms of universal processes.
Here we find that the granularity length scale deter-

mines a boundary between fines- and intermediate-size
fragments. In the intermediate size-region, the FSD has
the universal form of the crack branching-merging pro-
cess, while in the fines region the FSD has the form in-
duced by shear crushing if the external stresses are com-
pressive, and a branching-merging process if the external
stresses are tensile or neutral. In the latter case, the
boundary between the two regions appear as an off-set
in the FSD. As a consequence we find that the total vol-
ume of fines in blasting are affected by the granularity
of the material that is blasted, the stress environment of
the propagating cracks, and the total charge used in the

87



2

blast.

II. FRAGMENTATION THEORY

The magnitude of the external compressive stresses
surrounding a pressurized crack has direct influence on
its speed of propagation. For example, a high compres-
sive stress that acts perpendicular to the crack flanks
reduces the propagating velocity of the crack tip. De-
pending on the magnitude of the compressive stress and
the crack’s driving force the velocity may eventually drop
below the critical branching velocity of the material Vc
[12]. This process may lead to crack closure and at
even higher compressive stresses cause crushing by com-
pressive shear. In compressive shear, the debris will be
crushed into decreasingly smaller fragments by grinding
and compaction. This process may perhaps be concep-
tualized as a hierarchical process in which ever smaller
fragments are broken to fill pore space that opens up in
continuous shear deformation [13, 14], or it may have sim-
ilarities with impact fragmentation [10, 11]. In both cases
the FSD can be approximated by a power-law fragment
size distribution of the form ncrush(s)ds∝ s−βds, where
the exponent β depends on the material and the specific
way it is fragmented, and may takes values roughly in
the range 1.8− 3.5 [7, 11]. Dimensionless size s is here
measured in number of grains in fragments of a granular
material.

In the absence of externally applied compressive
stresses suppressing the propagating crack, the velocity
of the crack propagation increases to a value close to Vc
where the crack begins to branch [12]. Crack branches
readily merge to form fines as can be seen in Fig. 3. This
branching-merging process is inherently universal and
leads to a characteristic FSD [7, 15]. This can be written
as nbm(s)ds ∝ s−α exp(−s/si)ds, with α = (2D− 1)/D,
where D is dimension (i.e. D = 2, 3 for membranes and
bulk objects, respectively) [7, 15, 16]. The branches prop-
agate for a short distance and are arrested in the stress
free wake region created by the main propagating crack
[12] inducing a size cut-off defined by si. The size cut-off
is here approximated by an exponential function [15].

At the scale of the grain size in a granular material we
expect that the processes for fines formation described
above are highly influenced by the granularity of the ma-
terial. At larger scales, we expect the material to behave
like a continuous material. It is thus reasonable to pos-
tulate that, in a granular material, there needs to be
separate terms in the FSD for fragments at and below
the grain sizes, sf , and for larger, intermediate-size frag-
ments, si. For the blasting scenarios investigated here
we expect that the fines are created by either crushing
or crack branching-merging, while the intermediate-size
fragments appear as a result of crack branching-merging
only. In principle, there could obviously be crushing also
at the intermediate-size scale, but within the context in-
vestigated here, this does not happen.

The largest fragments, often called boulders, are the
ones delineated by the main cracks. The main cracks
can typically be assumed to propagate independent of
each other and thereby to form a Poisson process [17],
which induces an exponential term at the largest sizes
of the FSD, nb(s)ds ∝ exp(−s/sb)ds, where sb sets the
characteristic size of the boulders.
This would give the following options for the FSDs,

with right-hand side terms describing fines, intermediate-
size fragments, and boulders, respectively:

n(s)ds= C1s
−βds+C2s

−α exp(− s

si
)ds

+C3 exp(− s

sb
)ds, (1)

which we would expect to appear for blasting under ex-
ternally applied compressive stress, while in a tensile en-
vironment we would expect:

n(s)ds= C1s
−α exp(− s

sf
)ds+C2s

−α exp(− s

si
)

+C3 exp(− s

sb
)ds, (2)

where C1, C2 and C3 are constants that determine the
relative weights of the different fragment size regions.
A good way to estimate the validity of Eqs. (1, 2) is

to relate them to the Mass Passing Fraction (MPF (x))
that is the common function used to characterize frag-
mentation results within the mining community [18]. The
MPF (x) is defined as the fraction of mass for a collec-
tion of fragments that passes through successive set of
sieves with decreasing mesh sizes x. That is, for a mesh
size x= 0,MPF (x) = 0.0, andMPF (x> xmax) = 1.0 or
100%, where xmax is the largest fragment.
With the transformation s ≈ (x/xgrain)3, ds =

3x2/x3
graindx for D = 3, the MPF (x) can be written:

MPF (x) = mgrain

M0

3
x3
grain

∫ x

xgrain

x′3n(s(x′))x′2dx′,

(3)
whereM0 is the total mass, xgrain is the grain-size of the
material, and mgrain the mass of a grain. This equation
can be written as a sum of two incomplete Gamma func-
tions. It is however more useful to examine Eq. (3) in the
case where nb(s) is neglected and the exponential parts of
the first two terms in Eqs. (1, 2) are replaced by limited
ranges of integration. That is, the first term is assumed
to be valid within the interval: [xgrain,xtrans], and the
second term within [xtrans,xmax], where xtrans ∝ s1/3

f

is the transition size between fines and intermediate-size
fragments (cf. Fig. 1(b)), and xmax ∝ s1/3

b is the maxi-
mum size of boulders. If we neglect the term of the order
xgrain/xmax, we get for the MPF (x):
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MPF (x) = ffp

(
( x

xgrain
)−3〈α,β〉+6−1.0

)

+fip(
x

xmax
)−3α+6, (4)

where 〈α,β〉 means either α or β depending on which
n(s) equation, i.e. Eqs. (1, 2), is used. The factors ffp,
and fip are constants:

ffp = mgrain

M0

3C1
−3〈α,β〉+6 , (5)

fip = mgrain

M0

3C2x−3α+6
max(

x−3α+6
grain

)
(−3α+6)

. (6)

For D = 3 the value of −3α+ 6 is equal to 1 and thus
the second part on the right hand side of Eq. (4) be-
comes the empirical Gates-Gaudin-Schuhmann distribu-
tion (GGS) [19] which is a power-law function with an
exponent m = 1, and the first part represents the char-
acteristic shape of MPFs for the fine fragments. This is
consistent with the typical functional forms observed for
MPFs: a non-universal shape for the fines, followed by
a wider or a narrower interval described by the GGS-
function, and finally a non-universal shape for the boul-
ders. Representative examples are displayed in Fig. 1(a).
A method of the reverse transformation from MPF (x)
to n(s) is given in Appendix A.

III. EXPERIMENTS

A. Experimental setup

We perform a set of blasting experiments and together
with data from earlier experiments we have fragmenta-
tion data for 28 controlled blasting experiments of cylin-
ders of sandstone [20], granite, mortar and magnetic mor-
tar (MM) [6]. The cylinders are blasted from within a
central borehole along the axis of the cylinder. There
are three different outer boundary conditions: (1) at the
outer boundary of the cylinders there is a layer of ag-
gregate under a 1 MPa pressure, a so-called pre-stressed
aggregate [6], (2) a momentum trap (MT) [21, 22] which
at the outer boundary absorbs much of the incident com-
pressive wave induced by the blast, and (3) an ‘uncon-
fined’ or a free outer boundary at which the initial com-
pressive wave is reflected as a tensile wave. The logic
behind studying these different outer boundary condi-
tions is to model different blasting scenarios with the
cracks forming in tensile, neutral and compressive envi-
ronments.

Details of the experiments are listed in Table I. The
table is sorted by the sieving technique. Initially the post-
mortem cylinders are mechanically sieved with minimum

mesh sizes of either 0.063 mm or 0.04 mm to a maximum
fragment size until a full MPF curve is formed. The fine
fragments of the experiments E1 and E2 were apart from
mechanical sieving also measured using a laser diffraction
method (LDM) with a resolution down to 0.4µm. The
results from LDM were then merged with the mechanical
sieving data thus forming a wider range FSD. These are
listed as E6 and E7. The fine fragments of the experiment
tests listed in E5 were also additionally measured using
a sedimentation method [20].

Table I: Experimental configurations

No. Material No. of
blasted
cylinders

Charge density/
Specific charge

Confinement Minimum
mesh
size

(g/m) / (kg/m3 ) (mm)
mechanical sieving

E1 Mortar 3 6, 12, 20 MT 0.04
E2 Granite 3 6, 12, 20 MT 0.04
E3 MM[6] 5 3, 5, 10, 20, 40 unconfined 0.063
E4 MM[6] 4 5, 10, 20, 40 pre-stressed

aggregate
0.063

+ sedimentation

E5 Sandstone[20] 6 0.46, 0.444, 0.431,
0.231, 0.218, 0.22

unconfined 0.002

+ laser diffraction

E6 Mortar 3 6, 12, 20 MT 0.0004
E7 Granite 4 6, 12, 20 MT 0.0004

B. Experimental results

A pre-stressed and a momentum trapMPF (x) are dis-
played in Fig. 1(a) together with fits to Eq. (3). The
theoretical MPF (x) functions are obtained by numeri-
cal integration and with a constant material grain size
xgrain. For real materials, xgrain is obviously not a con-
stant (cf. Fig. 3). The xgrain values used are listed in
the last column in Table I as the ‘Minimum mesh size’.
The deviation between the experimental and the theo-
retical MPFs for the smallest fragments is a result of
the theory assuming a minimum fragment size of a sin-
gle grain, while the experimental data lumps all masses
smaller than the resolution into a single point.
The same data in the n(s) form is displayed in Fig.

1(b). The difference between pre-stressed and MT
boundary conditions become evident when presented in
this form: (i) In the fine-fragments region of the pre-
stressed cylinder the FSD has a much steeper slope with
a power-exponent β ≈ 2.2 as indicated in the figure. For
the cylinder confined by MT the exponent is the ex-
pected α≈ 5/3. (ii) At a fragment size of s∼ 102 for the
pre-stressed case there is a cross-over to the branching-
merging power-law α≈ 5/3, while for the MT case there
appears the same power-exponent for both fines and in-
termediate fragment sizes but there is an off-set to lower
fragment number by about an order of magnitude at
s∼ 103. (iii) There are cross-overs to exponential FSDs
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Figure 1: a) Two sets of experimental MPFs: red squares and blue triangles, and the two corresponding theoretical
MPF (x)-fits: the solid and the dashed black lines. The data correspond to two blasted cylinders confined with MT (E1)
[21, 22] and pre-stressed (E4) [6] boundary conditions, respectively. b) The corresponding n(s) for the same data together

with fits to Eqs. (1, 2). Here, the first data point on the s axis refers to the smallest detectable fragment.

in both cases at the boulder size. There is a more pro-
nounced boulder part for the MT case and the boulders
are slightly bigger. In the intermediate fragment-size re-
gion, i.e. xtrans <x<xboulders, the power-exponents are
identical α ≈ 5/3, but there are more intermediate-size
fragments for the pre-stressed case.

With these results it becomes evident that the more in-
teresting case from a blasting technology point of view is
the MT boundary condition, as it produces significantly
less fines than the pre-stressed case.

In order to test the statistical significance of the off-set
in the FSD of the cylinders confined by MT we perform
statistical analysis to determine whether the slopes (gra-
dients) of the two fitted power-laws for the fine fragments
and the intermediate size fragments, are significantly dif-
ferent and whether the off-set between these lines is sig-
nificant [23].

Table II: Regression analysis, E7: 20 g/m and E5: 0.444
kg/m3

Fitting region Fine fragments region Intermediate size
fragments region

````````Parameter
Equation

ln(C1) +αln(s) ln(C3) +αln(s)

E7

ln(C1) 3.59± 0.25 -
ln(C3) - 2.04±0.69
α -1.695±0.021 -1.669±0.022

R-squared 0.9969 0.9977
Adj. R-squared 0.9967 0.9975

E5

ln(C1) 6.80± 0.19 -
ln(C3) - 5.49±1.24
α -1.687± 0.020 -1.742±0.045

R-squared 0.9991 0.9966
Adj. R-squared 0.9990 0.9959

For the analysis we first use two sets of data: 1) the

wider range FSD obtained by LDM for granite (E7)
blasted with 20 g/m of PETN with 23 data points form-
ing the fine fragments region, and 2) the data from sed-
imentation of fine fragments of sandstone (E5) blasted
with 0.444 kg/m3 with 8 data points forming the fine
fragments region. The reason for the choice of these two
data sets is to lessen the inherent systematic error of each
sieving technique on the resultant FSDs. Here, for the
analysis, the data points between the two lines, if any,
and also the ones forming the boulder part are not con-
sidered, see Fig. 2(a) and (b). The results of the linear
regression are given in Table II.

Table III: Statistical significance study of the fines and in-
termediate size fragments’ fitted lines, E7: 20 g/m and E5:
0.444 kg/m3

Test Fine fragments region Intermediate size
fragments region

E7

No. of data points 23 17
R -0.998 -0.998

p(R) 8.42E-28 1.09E-20

Residual variance F = 6.818 p(F) = 0.0002
Gradient F = 1.691 p(F) = 0.202
Intercept F = 4.556 p(F) = 0.039

E5

No. of data points 8 7
R -0.999 -0.998

p(R) 2.03E-10 2.28E-7

Residual variance F = 3.277 p(F) = 0.090
Gradient F = 1.439 p(F) = 0.255
Intercept F = 21.45 p(F) = 0.0005

The results of the statistical analysis for the signifi-
cance of the two fitted power-law lines are given in Table
III. The two large correlation coefficients (|R| ≈ 1) and
their highly significant p-values, i.e. p(R), indicate the
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Figure 2: Two fitted lines of fine fragments region and intermediate size fragment region shown as solid and dashed lines,
respectively. In a) the data points (square symbols) correspond to the experiment E7 with 20 g/m of PETN, and in b) the
data points (filled circles) correspond to the experiment E5 with 0.444 kg/m3, see Table I. The regression function and

parameters of these fits are listed in Table II.

existence of the two legitimate lines to compare. The p-
value of the residual variance for experiment (E7) illus-
trates a significant difference between the two variances.
Napier-Munn [23] suggests considering smaller value of
p(F) for gradient and intercept tests. The comparison
of the gradients with p(F) = 0.202 emphasizes that the
two lines are parallel, i.e. difference in the slope values is
statistically insignificant. The small p-value of the inter-
cept suggests that a real separation exists between the
two parallel lines.

We analyzed all available data sets, except those with
the pre-stressed boundary condition, in the same fashion
as above. In all the 24 data sets a significant off-set
between the fine- and intermediate- size fragment’s fitted
lines exists and in 22 of them the fine- and intermediate-
size fragment’s fitted lines are parallel. The two data
sets that have different gradients are E5: 0.46 kg/m3

and E5: 0.431 kg/m3. The exponent of the fine fragment
size distribution for both these sets is α ≈ 5/3, but the
intermediate-size one deviates slightly in these two cases.
Consequently, with all data considered the experimental
MPFs can be described by Eq. (2) unless the pre-stressed
boundary condition is applied.

The post-mortem fractures and crack flanks of the
blasted cylinders E1 and E2, see Table I, have been an-
alyzed by scanning electron microscope (SEM). Figure
3 shows two images of crack branching and merging in
granite (E2: 20 g/m) and mortar (E1: 12 g/m) both
with a similar field of view of 0.179 mm×0.785 mm. Fig-
ure 3(a) shows two radial cracks (radial in the sense of
propagating in an outwards radial direction of the cylin-
der from the central borehole where the blast took place)
that have propagated from the lower left corner (where
the borehole is) and merged in the upper middle part
of the image. This merging mechanism fragmented the
corner material, i.e. just below the merging point, most

likely due to the brittleness of the quartz grain located
there. The characteristic structure of the branching-
merging process leading to scale-invariance is clearly vis-
ible in this figure: a large number of very small frag-
ments are generated close to the main cracks, while larger
but fewer fragments are generated further from the main
cracks until the crack branches vanish at a characteristic
cut-off size.
Figure 3(b) shows a region of a main radial crack prop-

agated from the lower left (borehole) to the upper right
corner of the image. The crack path, in this case, has
fairly few microcracks compared to Fig. 3(a). However,
the middle part of the crack includes branching cracks
that follow grain boundaries that separate out some frag-
ments. This illustrates how granularity influence fines
formation.

IV. COMPUTATIONS

A. Numerical model

We use a customized version of the HiDEM code [24]
which has been developed for numerical simulation of
brittle fracture. In HiDEM, the materials are discretized
by in-elastic spheres that are connected by mass-less elas-
tic Euler-Bernoulli beams. In the version used here, the
DEM particles are randomly packed using a dynamic
deposition algorithm. The beams have square cross-
sections w2∼D2

particle, length l∼ 2Dparticle and Young’s
Modulus E = 19.7 GPa. Due to the random packing, the
number of beams connecting adjacent particles varies be-
tween 8 and 20. To mimic the experimental materials,
initially, ten percent of the beams are randomly chosen
to have their stiffness reduced to 10 percent of the value
of an intact beam.
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Figure 3: SEM pictures of the branching and merging
mechanism and fragment formation in a) granite blasted

with 20 g/m of PETN (E2) with quartz (Qtz), biotite (Bt)
and K-feldspar (Kfs) grains indicated on the image, and b)
mortar blasted with 12 g/m of PETN (E1) with quartz

(Qtz), cement (cem) and pores (p) indicated.

We have used a fracture criterion composed of two
parts: a) maximum strain criterion (L−L0)/L0, where
L0 is the original length of a beam, and L the length
of a stretched or compressed beam, and b) a pure bend-
ing part ABS(θ1− θ2), where θ1 and θ2 are rotations of
the end-points of a beam. A beam breaks if deforma-
tion exceeds a threshold value for: (L−L0)/L0 +const×
ABS(θ1− θ2). The threshold value used is ε = 0.0003,
i.e. typical tensile failure strain of mortar or concrete.
We have tested also several other criteria including one
in which we replace the rotation term with a shear term,
however, the fragmentation results with this criterion
match the experimental results best.

We do not have the computational resources to sim-
ulate the fragmentation of the full cylinders used in the
experiments at high resolutions. With a grain size of the

Figure 4: a) Schematic side view of the cube with a
predefined crack, H(t) is the Heaviside function. b), c) and
d) show the evolution of the fragmentation of the cube (3

mm×3 mm×3 mm) when p0 = 0 at t = 2 µs, 4 µs and 8 µs,
respectively. In b) the initial crack plane (1.5 mm×1 mm) is
shown in light blue. The cube’s particles are shown with

white points to improve the visibility of the fragments. Red:
single particle fragments, blue: fragments containing two

particles, green: fragments containing 3 to 10 particles, pink:
fragments containing 11 to 100 particles. d) Represents the

final stage of crack growth at t = 8 µs.

order of 0.1 mm and cylinders of size �140 mm×280 mm
they contain billions of particles. Instead, to capture the
dynamic fragmentation process along propagating cracks
we use the correct 0.1 mm resolution but compute frag-
mentation of small scale cubes. We use cubes of size 3
mm×3 mm×3 mm with particles of diameter 0.1 mm and
6 mm×6 mm×6 mm with particles of diameter 0.05 mm,
0.08 mm, 0.1 mm and 0.2 mm. We initiate cracks with a
predefined mid-plane edge crack. The initial crack is hor-
izontal and goes half way through the cube. To mimic
the blasting process, a dynamic pressure is applied on
the initial crack flanks with a value Papp = 5 MPa for
a duration of 8µs. To model the boundary conditions
in the experiments there is an additional external stress
Pconf = p0×Papp, with p0 a constant that is applied on
the top and bottom faces of the cube acting perpendicu-
lar to the crack flanks, see Fig. 4(a). As a representative
example Fig. 4(b)-(d) illustrate the time evolution of the
dynamic crack propagation and the fragmentation in the
small cube for an unstressed condition, Pconf = 0 MPa.
The sample breaks into a large number of small fragments
each composed of single or a few particles along the frac-
ture plane due to the unstable tensile crack propagation
induced by Papp, while the rest of the sample remains
intact. The degree of fine fragments generation depends
on the ratio p0 = Pconf/Papp that may be both negative
and positive for compression and tension, respectively.
We performed fragmentation computations of the

smaller cube with external stresses in the range Pconf =
−0.2Papp (compression) to +0.15Papp (tension), i.e. p0 =
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Table IV: Regression data for the fine region of FSD for cube with the nine levels of external stresses. The values after ±
sign are standard error of the mean. Regression equation: ln(C1) +α× ln(s) −s/sf

PPPPPconst.
p0 -0.2 -0.15 -0.1 -0.05 0 +0.05 +0.07 +0.1 +0.15

ln(C1) 6.32±0.15 6.76±0.28 7.10±0.18 7.50±0.15 7.68±0.12 7.68±0.20 7.78±0.14 8.00±0.087 8.14±0.082
α -2.357±0.082 -2.328±0.444 -1.969±0.227 -1.657±0.245 -1.694±0.263 -1.881±0.250 -1.782±0.220 -1.702±0.185 -1.524±0.175
sf 2.62E30±0.0 14.87±21.60 11.10±4.83 4.84±1.26 5.07±1.78 8.95±3.46 7.12±2.44 4.80±1.13 4.24±0.83

Adj. R-square 0.9893 0.9687 0.9862 0.9899 0.9918 0.9837 0.9907 0.9961 0.9963

−0.2 to +0.15 in steps of 0.05 plus p0 = +0.07, altogether
9 values. This models the dynamics of a nucleated crack
propagating in a heterogeneous medium with different
local crack tip region stresses, which occurs during the
dynamic crack propagation of blast induced cracks [25].
To average over several packing patterns, five different
densely packed cubes were generated and fragmented for
each external confinement pressure, i.e. external stresses,
and their FSDs were added to each other to form a sin-
gle FSD for each level of Pconf . We also computed FSDs
for four larger cubes (6 mm×6 mm×6 mm) with varying
resolution (particle size) and at p0 = +0.15 to investi-
gate the influence of the characteristic size of the model
cube, the DEM-particle size, and the influence of bound-
ary fragmentation [11].

B. Numerical results

Figure 5(a) shows the simulation results for the FSDs
obtained with the nine external stress levels described
above. In the figure, the theoretical n(s) are fitted to
the data using Eqs. (1, 2) with the second term on the
r.h.s. neglected. The fine fragments regions of the FSDs
behave in the same way as in the experiments: The fine
fragments power-law exponent is close to −5/3 for pos-
itive p0, and decreases to approximately −2.36 for the
smallest p0. The exponential cut-off for the fines appear
at sf ∼ 4− 15. The larger fragments can either be de-
scribed by an exponential or there are just a few separate
very large boulders.

In the simulations with the three highest external ten-
sile stresses, the fracture plane completely splits the cube,
creating two or three large boulders at t ≈ 7 µs. How-
ever, for the other stress levels a large number of fine
fragments are generated but the cubes retained their in-
tegrity as the single largest fragment.

Fig. 5(b) shows only FSDs for p0 = −0.2, 0.0, 0.15 to
highlight the change in the power-exponent for the fines.
Table IV lists the regression analysis results for the com-
puted data where the fine fragments region of these FSDs
are fitted with regression line ln(C1) +α× ln(s)− s/sf .
The average value for the exponents, for p0 ≥ −0.05, in
total six levels of external stresses, is −1.707± 0.0490.
A critical compressive external stress is reached at p0 ≈
−0.1, at which crushing becomes dominant over tensile
fracture.

Since, the power-law range for the fines in Fig. 5(a)

is extremely short, and the exponential cut-off begin to
influence the exponent value, we also tested fitting the
exponent using weights 1/

√
ln(s) in the fitting algorithm.

Then the average value of −α for p0≥−0.05 become, e.g.
−1.688±0.053, which is even closer to −5/3.
The reason the power-law range for the fines is so small

in the simulations compared to the experiments is that
the smallest possible fragment in the simulations is a sin-
gle grain. In the experiments fragments get several orders
of magnitude smaller. Notice, however, that sf corre-
sponds to fragments of linear size roughly in the range
(4− 20)×xgrain for both experiments and simulations,
indicating that it is indeed the grain size that determines
the cross-over between fines and intermediate size frag-
ments regions. Notice that, Dparticle ∼ xgrain.

Another discrepancy between experiments and simula-
tions with the small cubes is the lack of the intermediate
size range in the simulated FSDs. The reason for this
seems to be that almost all fragments larger than the
fines are boundary fragments which tend to have an ex-
ponential FSD [11].

In order to demonstrate both of the above, we com-
puted FSDs for larger cubes and for different Dparticle.
The FSDs for a larger cube (6 mm×6 mm×6 mm) with
the same particle size of xgrain =Dparticle = 0.1 mm at
external stress level p0 = +0.15 is compared to its coun-
terpart for the smaller cube in Fig. 5(c). Table V lists
the result of a significance study for the two fitted lines
of fines and intermediate size fragments for the larger
cube. The conclusion is the same as for the experiments:
The power exponent of the FSD for the fines and the
intermediate-size fragments are the same, and there is
an off-set between them.

Table V: Statistical significance study of the fine and inter-
mediate size fragments’ fitted lines for simulation of the large
cube (6 mm×6 mm×6 mm) with Dparticle = 0.1 mm

Test Fine-fragments region Intermediate fragment
size region

No. data points 3 10
R -0.997 -0.980

p(R) 4.90E-2 7.16E-7

Residual variance F = 15.047 p(F) = 0.197
Gradient F = 0.009 p(F) = 0.928
Intercept F = 21.961 p(F) = 8.500E-4

Figure 5(d) shows FSDs for the larger cube (6 mm×6
mm×6 mm) with the four different particle sizes of 0.2
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Figure 5: a) FSDs for dynamic crack propagation in the small cubes (3 mm×3 mm×3 mm) for the nine different external
stress levels and their n(s) fits shown by the lines with the same color as the symbols. b) FSDs for the unstressed and the two
extreme external stress conditions with p0 = +0.15 and p0 = −0.2. Two lines with slopes of −2.36 and −5/3 are shown for

comparison. c) FSD for the large cube (6 mm×6 mm×6 mm) with particle size 0.1 mm at p0 = +0.15 compared with that of
the small cube at the same external stress condition. d) FSDs for the large cube with four different particle sizes 0.2 mm, 0.1
mm, 0.08 mm and 0.05 mm at p0 = +0.15. The corresponding theoretical n(s) fits are shown by lines. Lines with slopes of

−5/3 are shown for comparison.

mm, 0.1 mm, 0.08 mm and 0.05 mm. The fine frag-
ment regions of the four simulations extend to roughly
the same sf ∼ 10. Notice that this means a 64 times
smaller fragment volume for the smallest particles com-
pared to the largest. This demonstrates that the frag-
ment volume at the cross-over between fines and inter-
mediate size scales as the grain size D3

particle.

V. SUMMARY AND CONCLUSION

Here we report 28 experimental FSDs, where 4 are con-
fined with pre-stressed aggregate and the rest are either
unconfined or confined using a momentum trap. The fine
fragments for 6 of them are sieved, apart from the stan-
dard mechanical sieving, with the sedimentation method
down to 0.002 mm. For an additional 7 of them the fine
fragments are estimated with laser diffraction with a res-
olution down to 0.4 µm. These experimental FSDs, ex-
cept the 4 that are confined with pre-stressed aggregate,

have two fragment-size regions in which branching and
merging of cracks generate a FSD of the universal scale-
invariant form. These are the fine and the intermediate-
size fragments regions. Both can be described with a
power-law exponent close to −5/3 with a statistically
significant off-set between them. If the blasted material
is under compression induced by the pre-stressed con-
finement, the fine fragments are described by a steeper
power-law.

Numerical simulations of the same effect can be
achieved using a detailed model of a pressurized crack
propagating within a cube with randomly packed spher-
ical elements and a midplane crack. Again, the FSD has
two regions with an approximate exponent of −5/3, un-
less the crack is under strong enough external compres-
sive stresses, in which case the fines region has a steeper
power-law.

In both cases, the conclusions are supported by a sta-
tistical significance analysis. By varying the resolution in
the numerical model, i.e. reducing the particle size, it is
shown that the cross-over between the two regions scales
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as the average grain size.
Within mining it is common that operations require

both blasting and ensuing crushing-grinding. The latter
may well be the major contributor to the fines gener-
ation [4]. If the blast fragmentation is made coarser to
reduce fines production by lowering the charge concentra-
tion, the need for increased crushing-grinding may quite
possibly results in more total fine material from the op-
eration. This makes the optimization of the process very
challenging.
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Appendix A: EXPERIMENTAL MPFS

The transformation from experimental x−MPF (x)
data to s-n(s) data uses the derivative of Eq. (3). Let
xmin denotes the smallest mesh then with s= (x/xmin)3:

n(s) = C
MPF ′(x)
sds/dx

= C
x3
minMPF ′(x)

3x2s(x) , (A1)

with the prefactor C = M0x
3
min

3mgrain
. The value of the pref-

actor in Eq. (A1) shifts the curve along the y-axis in
log(s)-log(n(s)) space but does not change its shape. In
our calculations the prefactor C = 1 was used. The differ-
ence quotient for two successive mesh sizes x(i+ 1) and
x(i) is used to calculate:

MPF ′(x(j))∼= MPF (x(i+1))−MPF (x(i))
x(i+1)−x(i) , (A2)

at x(j) =
√

(x(i+ 1)x(i)), the geometric mean (mid)
points of all bins except the first, j = 2, . . . n− 1. Two
points are added to this shifted data set; x(j = 1) =
xmin/2 and x(j = 0) = 0 for which MPF (0) = 0. The
equations s(j) = (x(j)/xmin)3 define the corresponding
s-values and Eqs. (A1, A2) the corresponding n(s(j))
values.
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Chapter 8. Paper IV: . . .

The MPF data of the experiments given in Table-1 of this paper are presented
in Appendix B. In Appendix C and D the corresponding regression data and the
statistical significance analysis, except for data set E4, are respectively given.
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9 Discussion
Yi and Johansson [59] used the bonded particle method implemented in the LS-
DYNA code to model the blasting of unconfined cylinders of mortar (140 mm ×
280 mm) with a centralized blast-hole. The explosive loading in the blast-hole
was modeled using the particle blast method which is also implemented in the LS-
DYNA code. Four simulations were performed for different explosive strength values.
They plotted x −MPF(x) curves and x50 and xmax versus the specific charge. The
simulation results were then compared to fragmentation data of experimental tests
with similar boundary and loading conditions.

They produced x −MPF(x) curves whose x50 and xmax values were close to the
ones of the experiments. However, the general behavior of the x −MPF(x) curves
were not conforming to the experimental MPF curves. They noted that: “Although
both results have similar x50 and xmax, the curve for the experimental results is
steeper than that for the numerical results. The fine fragments take a big proportion
of total fragments in the numerical results compared to those in the experimental
results”.

Our HiDEM simulation of the cylindrical specimens produced x−MPF(x) curves
which also were not completely conforming to the experimental ones. The mass
fraction of the fine-fragments made up a too large portion of the total mass, just
like reported by Yi and Johansson [59]. Unlike them we have transformed the data
for our x−MPF(x) curves to the s−n(s) FSD representation to compare our HiDEM
simulation results with the experiments. This has made it possible to more clearly
indicate the role of the fines generating mechanism.

Michaux [2, 5] studied the blast-induced fine-fragmentation in a similar way to
our study with a larger focus on experiments, see Sec. 1.2.1 above. His data plotting
x−A(x) and x−N(x) produced piece-wise straight lines (poly-lines) in log-normal
and log-log space. He postulated that the different slopes of these lines characterize
different fragmentation processes and that the kinks connecting these lines define
the size limits where the process of fragmentation changes.

Michaux [5] concluded from the poly-line character of his data that the fragmen-
tation is not truly fractal. He also notes that: “The generation of fine fragmentation
characterization has two fragment size thresholds of note, 10 mm and 1 mm, and
is self-similar in nature” and that:“It has been postulated that these different sub-
populations are generated by different mechanisms, which manifest as different micro
crack branching characteristics. It is further postulated that while fragmentation may
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Chapter 9. Discussion

not be a true fractal, the individual mechanisms that create it may possibly be."

The importance of this in relation to our work is that Michaux [2, 5] finds
many branching-merging mechanisms that operate over fixed size ranges. We on
the other hand have found that the power-law exponent in s − n(s) is either -5/3,
which is expected of branching-merging or some higher absolute value that shows
an increasing contribution of crushing-shearing. Using his logic we have come much
closer to showing that there is a universal branching-merging mechanism operating
during tensile crack growth. We arrived at our conclusions because we used the s -
n(s) formulation to represent both the experimental data and the simulation results.

Through transformation of the experimental x −MPF(x) data into the s− n(s)
space, we have found that the FSD consists of three regions. They are the fine-
fragments, the intermediate size fragments and the boulders. The fine-fragments
region and the intermediate size one are connected either by a kink or by a vertical
offset. The former takes place when the power-law exponent of the size distribution
for the fine-fragments is of the crushing-shearing type (β > α). The latter, however,
occurs when both the regions are formed by the branching-merging type of frag-
mentation. The location of the kink or the offset is found to be different between
different materials, and in the experiments it is located between 0.25 mm to 2 mm,
see Table E.I in Appendix E below.

We also have CT-micrographs that show that a macroscopic crack in granite or
mortar is associated with an irregular band of microscopic cracks, see Fig. 1.3(b)
above. It, however, shows the influence of the granularity to form fine-fragments.
We have also shown that by increasing the numerical model resolution in the HiDEM
the location of the offset, independent of the particle size, is at sf ∼ 10. However,
this means a smaller fragment volume for smaller particle sizes. In this figure, Fig.
1.3(b), this band of micro cracks does not look like the conceptual or simplified
branching-merging model used to derive the universal exponent α ≈ 5/3 [17], Fig.
1.3(a). However, apparently this model is a good description of what is happening
at the micro-scale. It is not the final and full description, though, because e.g. the
dynamics of crack formation is not included [95].
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10 Summary and Conclusions
The objective of this thesis is to use numerical methods and simulations to gain
insight into the role of branching-merging in blast fragmentation. The currently most
common theories on the source of blast-induced fines presume crushing-shearing as
the main mechanism generating the fines-particles and that the majority of the fines
is produced at or around a blast-hole, see Sec. 1.3. Dynamic crack branching and
merging at the tips of dynamically propagating cracks was suggested as another
plausible source of fine-fragments.

For this reason, following a review on experimental research of blast induced
fracture and fragmentation, the brittle fragmentation characteristics and prediction
equations have been reviewed. The FSDs, i.e. s − n(s) numerical results of frag-
mented specimens taken from the literature or mathematically derived, have been
found to have a power-law behavior with either a universal power-law exponent -5/3
corresponding to branching and merging or a higher value for crushing-shearing.

Next, a review of the most commonly used numerical methods for simulating
fracture and fragmentation of concrete and other rock-like materials subjected to
high-pressure loads has been made. The continuum mechanics based method (FEM)
coupled with a damage-plasticity constitutive material model and the discrete el-
ement based model code (HiDEM) have been found useful as simulation tools for
blast induced brittle fracture and fragmentation. Afterwards, the theoretical back-
grounds of the numerical tools, i.e. CDP constitutive theory and the HiDEM discrete
element code, that were used in this study were provided.

A comparison has been made between the FE code (Abaqus/Explicit) with the
CDP constitutive material model and the HiDEM code in which particles are con-
nected using beams with elastic material behavior. At the beginning, they were
tested for the resultant fracture pattern and fragmentation of mortar.

The simulation results of these numerical tools show that for three load levels the
simplified 2D FE models give more realistic post-mortem end-face fracture patterns
than HiDEM’s ones, Fig. 3.4. However, the 3D HiDEM models are superior in
producing the MPFs and the FSDs. The HiDEM models are numerically more
stable, whereas the FE models each require model-unique calibration parameters
and the calibration of a 3D FE model is more complicated and time consuming.

Next, using experimental FSDs and the HiDEM simulation results, an s − n(s)
equation, Eq. 3.1 was developed. It implicitly describes the blast induced frag-
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mentation mechanisms. The FSD equation consists of three terms describing: 1)
the fine-fragments, 2) the intermediate size fragments each with their correspond-
ing power-law exponent, and 3) the boulders. The results demonstrate that for a
stiffly confined cylinder the largest amount of the fine-fragments is created by the
crushing-shearing mechanism. The branching-merging of tensile cracks form inter-
mediate size fragments independent of the character of the confinement. The major
tensile cracks delineate the boulders, which may contain internal cracks, see Fig.
3.6.

The absolute mass of fine-fragments was calculated as a function of their distance
to the blast-hole. The HiDEM simulation results, supported by the experimental
results of Svahn [4] demonstrate that the largest amount of fine-fragments is not
even in the weak mortar solely created at or around the blast-hole as the original
CZM assumes. The mass of the fine-fragments around the blast-hole is in absolute
terms smaller than the mass of the fine-fragments formed outside the crushed zone.

In Paper IV simulations for a small scale cube model with a pre-defined pres-
surized edge crack were performed where the propagating crack was subjected to
different values of lateral external stresses, both compressive and tensile. At high
compressive external lateral stress levels, the majority of the fine-fragments were
formed by crushing-shearing. Whereas, when the external lateral stresses were ten-
sile or mildly compressive, the fine-fragments were formed by branching and merging
of the propagating tensile crack fronts.

The FSD results of the former external lateral stress condition were accurately
reproduced by the blast test setups of the stiffly confined cylinders. The ones of
the latter external lateral stress condition were in agreement with the experimental
FSDs of cylinders, which were either unconfined or confined using the MT concept.
Hence, the first term describing the fine-fragments in the s−n(s) equation, Eq. 3.1,
was modified to account for the branching-merging mechanism of fine-fragments
generation, Eq. 3.2.

In conclusion, it has been demonstrated that the blast-induced fine-fragments of
a brittle material like rock or mortar are formed not only by crushing-shearing but
also due to branching-merging at the tips of dynamically propagating cracks or some
similar mechanism. The active fine-fragments generating mechanism depends on the
external stress level surrounding the propagating crack. The further conclusions of
this thesis can be summarized after each research task:
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Conclusion 1: to create a three-dimensional numerical model that describes the
behavior of quasi-brittle materials, i.e. concrete or rock-like materials, fracturing
when subjected to a civil blast load

• a two-dimensional FEM analysis using Abaqus/Explicit with a CDP consti-
tutive material model produces a reasonable post-mortem end-face fracture
pattern,

• however, the CDP in FEM needed implementation of model-unique calibration
parameters, i.e. linear and quadratic bulk viscosity, Rayleigh material damp-
ing coefficients, mass scaling, and element-by-element time step estimation,
unfortunately these parameters are case specific,

• the three-dimensional DEM analysis using HiDEM produces MPFs and FSDs
that are similar to the experimental results,

• the use of a dynamic deposition method is more suitable than the FCC lattice
structure to build a geometrical model, because the FCC lattice favors both
preferential crack growth and crushing-shearing,

• on the outer periphery the quiet boundary condition in FEM and the velocity
damping in HiDEM made it possible to study a simplified fracture network
for a cylindrical specimen consisting of through-going cracks that connect the
crushed zone to the outer boundary or merge with the other surrounding
cracks,

• the pressure-time explosive loading function used is not realistic, but it made
it possible to obtain realistic simulation results, in the future the blast-hole
loading will have to incorporate the volume expansion of the explosive gases
[59],

• the post-peak amplitude in the pressure-time explosive loading function has to
be calibrated to mimic the experimental results, as used in Fig. 3(b) of Paper
II,

• the small scale HiDEM cubes with a pre-defined pressurized edge crack are
useful when studying under which stress conditions the branching-merging
mechanism switches to crushing-shearing;
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Conclusion 2: to compute the FSDs of the numerical model subjected to civil blast
load, especially for the fine-fragments

• in HiDEM, independent of the geometrical configuration, the FSDs are ex-
pressed using the s− n(s) representation with the parameter s being the num-
ber of particles forming a fragment and the n(s) being the number of fragments
each containing s particles,

• the computed FSDs consist of three distinct regions representing fine-fragments,
intermediate size fragments, and boulders,

• the fine and intermediate size fragments are connected by either a kink or an
offset,

• in the HiDEM simulations the former occurs when high compressive confine-
ment stresses surround the propagating cracks and the latter occurs when the
confinement is tensile or at low compressive levels,

• the location of the kink or the offset connecting the fine-fragments region and
the intermediate size region is governed by the granularity of the material
which is roughly in the range of sf ∼ 4− 20,

• the computed MPF of a blast cylinder is obtained from: a fragment is defined
by the number of connected rigid particles s it contains and the mesh size
(screen size) of the fragment is defined by the diameter of the volume equivalent
sphere;
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Conclusion 3: to compare the computed FSDs with the results from the experi-
ments carried out as a part of the FWF project [3] and from the literature

• the transformation of the x−MPF(x) data to s− n(s) i.e. FSD data is made,

• we have compared our numerical FSDs with experimental data sets from Jo-
hansson [27], Grimshaw [92], and from our own tests [3], i.e., in total for 32
data sets, where a good agreement was found between the experimental and
the numerical results,

• we have compared the absolute mass of fine-fragments as a function of their
distance to the blast-hole with the results from Svahn [4]. The results were
contrary to the classical CZM which presumes that the fine-fragments are
almost solely formed around the blast-hole,

• our blast cylinder tests with no or weak mantle confinement generate fines
fragments created by a branching-merging type of fragmentation, when the
confinement increases, more and more opposing the radial expansion of the
cylinder, the crushing-shearing mechanism takes over,

• numerical simulations of a pressurized crack subjected to external lateral stresses
show the same effect, when the external lateral stresses become compressive
the crushing-shearing mechanism forms the fine-fragments, when the external
lateral stresses become more tensile the branching-merging mechanism forms
the fine-fragments,

• in the cube model, an effect of a rigid boundary condition of the blast cylinder
tests is studied by adding a compressive stress wave that is moving against
the propagation direction of the pressurized crack corresponding to a returning
compressive stress wave. It widens the crack path and induces more crushing
fines when the external lateral stresses are compressive and are at a level to
hold two crack flanks together,

• the returning compressive stress wave may also cause the propagating crack
tip to branch due to shearing,

• an effect of a lower impedance boundary condition of the blast cylinder tests
is studied by adding a returning tensile stress wave. In the cube model, the
returning tensile wave induces branching of the propagating pressurized crack,
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Conclusion 4: to provide a scientific explanation of how these fine-fragments are
generated

• fragments formed by different mechanisms produce different power-law ex-
ponents in s − n(s) space, branching-merging gives the universal power-law
exponent of −5/3 and crushing produces a higher absolute value,

• the three terms of the FSD s − n(s) equation of the stiffly confined cylinders
indicate that the fine-fragments were formed by crushing, intermediate size
fragments by branching-merging, and the boulders are delineated by major
tensile cracks,

• the FSDs of the blast cylinders that are unconfined or confined by MT are
different from the FSDs of the stiffly confined blast cylinders in that not only
are the intermediate-size fragments created by branching-merging type of frag-
mentation but the fines-region ones are too.
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11 Outlook
This thesis performs a numerical analysis of blast induced fracture and fragmenta-
tion. To achieve meaningful results, a number of simplifications have been made in
the constitutive material model, in the internal boundary conditions, i.e. the explo-
sive pressure load in the blast-hole and in the outer boundary conditions. Despite
these simplifications, reasonably realistic FSDs have been obtained. To obtain a
better quantitative agreement, the following aspects will have to be considered:

• DEM models will become more realistic with the implementation of a more
sophisticated constitutive material model. Such a model should use two dif-
ferent strength values corresponding to the tensile and compressive strengths.
Moreover, it would also be useful to implement plastic hardening, softening
(see Sec. 2.1) and rate dependency [96, 97, 98].

• The pressure applied on the blast-hole wall has so far been a function of time,
p(t). Pressure as a function of specific volume, p(v) is more realistic.

• Once the new models work well for the type of cylinder tests made so far, a
further step would be to model high resolution lab-scale size cylinders or full
scale geometries.

• Other types of cementitious or rock-like materials subjected to civil blast load
should be analyzed.

• Boundary conditions play an important role in the results of the fragmentation,
see Table-IV and also Fig. 5(a) and (b) in Paper IV. Therefore, it would be
useful to study different boundary conditions in high resolution lab-scale size
cylinders to understand in greater detail when and under which circumstances
the crushing mechanism for creating fine-fragments will dominate over the
branching-merging mechanism, and vice versa.

• The MPF of the HiDEM simulation results were obtained such that the screen
size of a fragment is the diameter of the volume equivalent sphere, however,
calculating the major lengths of a fragment would provide the researcher with
the fragment’s shapes and a more accurately calculated MPF.
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12 Appendices
Appendix A: Abaqus/Explicit VUSDFLD

C ------------------------------------
C Element deletion using PEEQT values
C ------------------------------------

subroutine vusdfld(
c Read only -

* nblock , nstatev , nfieldv , nprops , ndir , nshr ,
* jElem , kIntPt , kLayer , kSecPt ,
* stepTime , totalTime , dt, cmname ,
* coordMp , direct , T, charLength , props ,
* stateOld ,

c Write only -
* stateNew , field )

include ’vaba_param.inc’

dimension jElem(nblock), coordMp(nblock ,*),
* direct(nblock ,3,3), T(nblock ,3,3),
* charLength(nblock), props(nprops),
* stateOld(nblock ,nstatev),
* stateNew(nblock ,nstatev),
* field(nblock ,nfieldv)
character *80 cmname

parameter( nrData =6 )
PARAMETER( ZERO = 0.D0 , ONE = 1.D0, TWO = 2.D0,

* THREE = 3.D0, THIRD = ONE/THREE , HALF = .5D0,
* TWOTHIRDS = TWO/THREE , THREEHALFS = 1.5D0 )

character *3 cData(maxblk*nrData)
dimension rData(maxblk*nrData), jData(maxblk*nrData)

c Define maximum PEEQT:
FS = 0.0011

jStatus = 1
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call vgetvrm( ’PEEQT ’, rData , jData , cData , jStatus )

if( jStatus .ne. 0 ) then
call xplb_abqerr(-2,’Utility␣routine␣VGETVRM␣’//

* ’failed␣to␣get␣variable.’,0,zero ,’␣’)
call xplb_exit

end if

call setField(nblock , nstatev , nfieldv , nrData ,
* rData , stateOld , stateNew , field , FS)

return
end

C------------------------------------
subroutine setField( nblock , nstatev , nfieldv ,

* nrData , PEEQT , stateOld , stateNew , field , FS)

include ’vaba_param.inc’

dimension stateOld(nblock ,nstatev),
* stateNew(nblock ,nstatev),
* field(nblock ,nfieldv), PEEQT(nblock ,nrData)
PARAMETER( ZERO = 0.D0 , ONE = 1.D0, TWO = 2.D0,

* THREE = 3.D0, THIRD = ONE/THREE , HALF = .5D0,
* TWOTHIRDS = TWO/THREE , THREEHALFS = 1.5D0 )

do k = 1, nblock
field(k,1)= PEEQT(k,1)
stateNew(k,1) = field(k,1)

c Failure criterion
if(StateNew(k,1) .gt. FS) then
StateNew(k,2) = 0.0
endif
enddo
return
end

C------------------------------------
C VUAMP: introducing pressure function profile
C------------------------------------
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C Pressure Function taken from Trivino & Mohanty
C "Seismic radiation patterns from cylinderical
C explosive charges by Analytical and combined FDEM"
C------------------------------------

SUBROUTINE VUAMP(
* ampName , time , ampValueOld , dt, nprops ,
* props , nSvars , svars , lFlagsInfo , nSensor ,
* sensorValues , sensorNames , jSensorLookUpTable ,
* AmpValueNew ,
* lFlagsDefine ,
* AmpDerivative , AmpSecDerivative , AmpIncIntegral)

INCLUDE ’VABA_PARAM.INC’

C time indices
parameter (iStepTime = 1,

* iTotalTime = 2,
* nTime = 2)

C flags passed in for information
parameter (iInitialization = 1,

* iRegularInc = 2,
* ikStep = 3,
* nFlagsInfo = 3)

C optional flags to be defined
parameter (iComputeDeriv = 1,

* iComputeSecDeriv = 2,
* iComputeInteg = 3,
* iStopAnalysis = 4,
* iConcludeStep = 5,
* nFlagsDefine = 5)
dimension time(nTime), lFlagsInfo(nFlagsInfo),

* lFlagsDefine(nFlagsDefine),
* sensorValues(nSensor),
* props(nprops),
* sVars(nSvars)

c Choose parameters M_u and M_d
c Rise Time 7.85 microsecond:
c parameter( mu = 5e5, md = 20e3)
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c Rise Time 1 microsecond:
c parameter( mu = 45e5, md = 15e3)

parameter( mu = 45e5 , md = 25e3)
parameter( m_ratio = mu/md , b_ratio = 2)
parameter( alpha1 = 10e-7, alpha2 = 10e-3)

character *80 ampName

if (ampName (1:7) .eq. ’USERAMP ’ ) then

if (lFlagsInfo(iInitialization) .eq. 1) then
ampValueNew = ampValueOld

else
ttim = time(iStepTime)
bd = (sqrt(real (2))/2) * exp (0.5) * md
bu = bd / b_ratio
nn = (sqrt(real (2))/2) * exp (0.5) * b_ratio

* * m_ratio
n = ANINT(real(nn))
tu = ((-log(alpha1 )) ** (0.5/n))/bu
td = (((-log(alpha1 )) ** (0.5/n)) -

* ((-log(1 - alpha2 )) ** (0.5/n)))/bu
Pu = exp(-(bu * (ttim - tu)) ** (2 * n))
Pd = exp(-(bd * (ttim - td)) ** (2) )
P = Pu * Pd
ampValueNew = P

endif
endif

return
end
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Appendix B: Experimental MPFs

Tables B.I to B.VI list the experimental MPF data of the experiments given in
Table-I of Paper IV given in Chapter 8.
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Table B.V: Experimental MPFs of E6 [3]

6 g/m 12 g/m 20 g/m
Mesh size MPF Mesh size MPF Mesh size MPF

[mm] [%] [mm] [%] [mm] [%]

125 58.34 125 100.00 100 100.00
100 58.34 100 73.68 80 93.51
80 44.20 80 73.68 63 54.77
63 10.01 63 28.02 50 22.32
50 8.10 50 12.78 40 15.83
40 4.88 40 8.12 31.5 8.67
31.5 3.57 31.5 5.87 25 7.36
25 1.77 25 4.75 20 4.63
20 1.48 20 3.20 18 4.12
18 1.44 18 3.03 16 3.50
16 1.20 16 2.46 14 3.32
14 1.08 14 2.14 12.5 2.95
12.5 0.979 12.5 1.95 10 2.35
10 0.776 10 1.70 8 2.01
8 0.613 8 1.47 6.3 1.74
6.3 0.532 6.3 1.32 5 1.46
5 0.433 5 1.14 4 1.25
4 0.362 4 1.028 3.15 1.12

3.15 0.320 3.15 0.936 2 0.914
2 0.252 2 0.804 1 0.693
1 0.186 1 0.656 0.5 0.445
0.5 0.118 0.5 0.293 0.25 0.310
0.25 0.0817 0.25 0.196 0.1 0.0674
0.1 0.0158 0.1 0.0440 0.04 0.0189
0.04 0.00363 0.04 0.0135 0.032 0.0145
0.032 0.00261 0.032 0.0109 0.025 0.0109
0.025 0.00183 0.025 0.00856 0.02 0.00844
0.02 0.00133 0.02 0.00692 0.015 0.00624
0.015 0.000941 0.015 0.00536 0.0125 0.00518
0.0125 0.000756 0.0125 0.00456 0.01 0.00416
0.01 0.000577 0.01 0.00376 0.0071 0.00314

0.0071 0.000392 0.0071 0.00289 0.0063 0.00288
0.0063 0.000349 0.0063 0.00265 0.005 0.00247
0.005 0.000285 0.005 0.00229 0.004 0.00214
0.004 0.000231 0.004 0.00199 0.003 0.00175
0.003 0.000181 0.003 0.00164 0.002 0.00126
0.002 0.000137 0.002 0.00121 0.0016 0.00103
0.0016 0.000109 0.0016 0.00100 0.001 0.000542
0.001 0.0000564 0.001 0.000613 0.00071 0.000201
0.00071 0.0000214 0.00071 0.000369 0.00063 0.0000998
0.00063 0.0000119 0.00063 0.000299 0.0005 0.0000025
0.0005 0.0000006 0.0005 0.000233

0.0004 0.000230
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Appendix C: Regression analysis

Tables C.I and C.II list the regression data of the experiments given in Table-I of
Paper IV given in Chapter 8, except for E4.

Table C.I: Regression analysis of experiments E1, E2 and E3

Fitting Region Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

E1: 6 g/m

ln(C1) 5.67±0.40 -
ln(C3) - 4.16 ± 0.43
α -1.695±0.021 -1.669±0.022

R-squared 0.9942 0.9977
Adj. R-squared 0.9922 0.9974

E1: 12 g/m

ln(C1) 6.64 ± 0.18 -
ln(C3) - 4.88 ± 0.65
α -1.643 ± 0.033 -1.651 ± 0.042

R-squared 0.9988 0.9937
Adj. R-squared 0.9984 0.9930

E1: 20 g/m

ln(C1) 7.11 ± 0.39 -
ln(C3) - 5.02 ± 0.62
α -1.711 ± 0.073 -1.630 ± 0.039

R-squared 0.9946 0.9937
Adj. R-squared 0.9927 0.9931

E2: 6 g/m

ln(C1) 5.18 ± 0.34 -
ln(C3) - 4.11 ± 0.66
α -1.677 ± 0.065 -1.674 ± 0.038

R-squared 0.9956 0.9927
Adj. R-squared 0.9941 0.9922

E2: 12 g/m

ln(C1) 6.95 ± 0.22 -
ln(C3) - 6.79 ± 0.27
α -1.659 ± 0.042 -1.727 ± 0.017

R-squared 0.9981 0.9989
Adj. R-squared 0.9975 0.9988

E2: 20 g/m

ln(C1) 7.85 ± 0.16 -
ln(C3) - 6.38 ± 0.36
α -1.683 ± 0.0310 -1.654 ± 0.021

R-squared 0.9990 0.9975
Adj. R-squared 0.9987 0.9973

Continued on Next Page. . .
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Table C.I – Continued

Fitting Region Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

E3: 3 g/m

ln(C1) 7.83 ± 0.03 -
ln(C3) - 5.88 ± 0.42
α -1.759 ± 0.012 -1.647 ± 0.030

R-squared 0.9999 0.9970
Adj. R-squared 0.9999 0.9966

E3: 5 g/m

ln(C1) 8.28 ± 0.01 -
ln(C3) - 6.34± 0.51
α -1.707 ± 0.006 -1.617 ± 0.0335

R-squared 0.9999 0.9953
Adj. R-squared 0.9999 0.9949

E3: 10 g/m

ln(C1) 9.35 ± 0.07 -
ln(C3) - 7.87 ± 0.25
α -1.707 ± 0.029 -1.644 ± 0.0176

R-squared 0.9997 0.9990
Adj. R-squared 0.9994 0.9989

E3: 20 g/m

ln(C1) 10.04 ± 0.03 -
ln(C3) - 9.16 ± 0.18
α -1.652 ± 0.014 -1.701 ± 0.013

R-squared 0.9999 0.9995
Adj. R-squared 0.9999 0.9994

E3: 40 g/m

ln(C1) 10.96 ± 0.24 -
ln(C3) - 10.92 ± 0.24
α -1.713 ± 0.075 -1.812 ± 0.017

R-squared 0.9962 0.9994
Adj. R-squared 0.9943 0.9993

Table C.II: Regression analysis of experiments E5, E6 and E7

Fitting Region Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

E5: 0.46 kg/m3

Continued on Next Page. . .
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Table C.II – Continued

Fitting Region Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

ln(C1) 6.81 ± 0.19 -
ln(C3) - 6.82 ± 0.48
α -1.675 ± 0.020 -1.785 ± 0.0176

R-squared 0.9999 0.9953
Adj. R-squared 0.9990 0.9994

E5: 0.444 kg/m3

ln(C1) 6.80 ± 0.19 -
ln(C3) - 5.49 ± 1.24
α -1.687 ± 0.020 -1.742 ± 0.045

R-squared 0.9991 0.9966
Adj. R-squared 0.9989 0.9959

E5: 0.431 kg/m3

ln(C1) 6.56 ± 0.22 -
ln(C3) - 6.78 ± 0.60
α -1.661 ± 0.024 -1.784 ± 0.022

R-squared 0.9987 0.9992
Adj. R-squared 0.9985 0.9991

E5: 0.231 kg/m3

ln(C1) 5.61 ± 0.20 -
ln(C3) - 4.03 ± 0.64
α -1.669 ± 0.022 -1.703 ± 0.023

R-squared 0.9990 0.9991
Adj. R-squared 0.9988 0.9989

E5: 0.218 kg/m3

ln(C1) 5.56 ± 0.17 -
ln(C3) - 3.69 ± 0.76
α -1.689 ± 0.0185 -1.691 ± 0.028

R-squared 0.9993 0.9987
Adj. R-squared 0.9992 0.9984

E5: 0.22 kg/m3

ln(C1) 3.87 ± 0.66 -
ln(C3) - 5.77 ± 0.16
α -1.663 ± 0.027 -1.633 ± 0.022

R-squared 0.9987 0.9991
Adj. R-squared 0.9984 0.9990

E6: 6 g/m

ln(C1) 0.093 ± 0.19 -
ln(C3) - 0.78 ± 2.39
α -1.634 ± 0.016 -1.693 ± 0.082

R-squared 0.9980 0.9793
Continued on Next Page. . .
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Table C.II – Continued

Fitting Region Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

Adj. R-squared 0.9980 0.9770

E6: 12 g/m

ln(C1) 0.40 ± 0.23 -
ln(C3) - 1.62 ± 0.31
α -1.765 ± 0.069 -1.676 ± 0.020

R-squared 0.9940 0.9978
Adj. R-squared 0.9925 0.9976

E6: 20 g/m

ln(C1) 2.03 ± 0.29 -
ln(C3) - 2.07 ± 2.45
α -1.671 ± 0.020 -1.701 ± 0.084

R-squared 0.9978 0.9854
Adj. R-squared 0.9977 0.9830

E7: 6 g/m

ln(C1) 0.05 ± 0.21 -
ln(C3) - -1.76 ± 1.61
α -1.651 ± 0.018 -1.619 ± 0.053

R-squared 0.9976 0.9863
Adj. R-squared 0.9975 0.9852

E7(bl24): 12 g/m

ln(C1) 1.95 ± 0.15 -
ln(C3) - -0.07 ± 0.61
α -1.653 ± 0.013 -1.610 ± 0.020

R-squared 0.9987 0.9982
Adj. R-squared 0.9987 0.9981

E7(bl25): 12 g/m

ln(C1) 2.4156 ± 0.15695 -
ln(C3) - 3.51168 ± 0.62946
α -1.668 ± 0.014 -1.729 ± 0.022

R-squared 0.9987 0.9983
Adj. R-squared 0.9986 0.9981

E7: 20 g/m

ln(C1) 3.59 ± 0.25 -
ln(C3) - 2.04 ± 0.69
α -1.695 ± 0.021 -1.669 ± 0.022

R-squared 0.9969 0.9977
Adj. R-squared 0.9967 0.9975
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Appendix D: Statistical significance analysis

Tables D.I and D.II list the statistical significance analysis of the experiments given
in Table-I of Paper IV given in Chapter 8, except for E4. Among all 24 data sets,
two of them, i.e. E5 : 0.46 kg/m3 and E5 : 0.431 kg/m3, do not have two parallel
lines. However, the exponent of fine-fragments size distribution is −5/3.

Table D.I: Statistical significance analysis for experiments E1, E2 and E3

Test Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

E1: 6 g/m

No. of data points 5 10
R -0.997 -0.999

p(R) 1.90E-4 8.34E-12

Residual variance F= 10.568 p(F)= 0.00371
Gradient F= 0.377 p(F)= 0.552
Intercept F= 6.550 p(F)= 0.0250

E1: 12 g/m

No. of data points 5 13
R -0.999 -0.997

p(R) 1.83E-05 1.92E-13

Residual variance F= 1.525 p(F)= 0.404
Gradient F= 0.215 p(F)= 0.650
Intercept F= 23.796 p(F)= 0.000201

E1: 20 g/m

No. of data points 5 12
R -0.997 -0.997

p(R) 1.71E-4 2.17E-12

Residual variance F= 3.400 0.062
Gradient F= 0.656 0.433
Intercept F= 6.470 0.023

E2: 6 g/m

No. of data points 5 15
R -0.998 -0.996

p(R) 1.25E-4 2.77E-15

Residual variance F= 1.723 p(F)= 0.211
Gradient F= 0.00125 p(F)= 0.972
Intercept F= 5.221 p(F)= 0.0354

E2: 12 g/m

No. of data points 5 13
Continued on Next Page. . .
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Table D.I – Continued

Fitting Region Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

R -0.999 -0.999
p(R) 3.50E-05 1.61E-17

Residual variance F= 5.185 p(F)= 0.0178
Gradient F= 2.826 p(F)= 0.115
Intercept F= 11.447 p(F)= 0.00410

E2: 20 g/m

No. of data points 5 18
R -0.999 -0.999

p(R) 1.37E-05 3.05E-22

Residual variance F= 1.151 p(F)= 0.522
Gradient F= 0.555 p(F)= 0.465
Intercept F= 21.473 p(F)= 0.00016

E3: 3 g/m

No. of data points 3 11
R -0.999 -0.999

p(R) 4.43E-3 1.23E-12

Residual variance F= 92.996 p(F)= 0.080
Gradient F= 0.942 p(F)= 0.355
Intercept F= 16.420 p(F)= 0.00191

E3: 5 g/m

No. of data points 3 13
R -0.999 -0.998

p(R) 2.27E-3 3.65E-14

Residual variance F= 672.673 p(F)= 0.030
Gradient F= 0.345 p(F)= 0.568
Intercept F= 11.247 p(F)= 0.00519

E3: 10 g/m

No. of data points 3 11
R -0.999 -0.999

p(R) 1.10E-2 9.43E-15

Residual variance F= 5.535 p(F)= 0.319
Gradient F= 0.859 p(F)= 0.376
Intercept F= 29.344 p(F)= 0.000211

E3: 20 g/m

No. of data points 3 10
R -0.999 -0.999

p(R) 5.5E-3 1.63E-14

Continued on Next Page. . .
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Table D.I – Continued

Fitting Region Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

Residual variance F= 10.626 p(F)= 0.233
Gradient F= 1.151 p(F)= 0.311
Intercept F= 27.608 p(F)= 0.000371

E3: 40 g/m

No. of data points 4 8
R -0.998 -0.999

p(R) 1.92E-3 1.83E-12

Residual variance F= 20.909 p(F)= 0.00198
Gradient F= 2.737 p(F)= 0.137
Intercept F= 5.215 p(F)= 0.0483

Table D.II: Statistical significance analysis for experiments E5, E6, and E7

Test Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

E5: 0.46 kg/m3

No. of data points 8 7
R -0.999 -0.999

p(R) 1.99E-10 1.78E-09

Residual variance F= 1.987 p(F)= 0.234
Gradient F= 15.164 p(F)= 0.00250
Intercept F= 21.181 p(F)= 0.000608

E5: 0.444 kg/m3

No. of data points 8 7
R -0.999 -0.998

p(R) 2.03E-10 2.28E-07

Residual variance F= 3.277 p(F)= 0.0903
Gradient F= 1.439 p(F)= 0.255
Intercept F= 21.451 p(F)= 0.000579

E5: 0.431 kg/m3

No. of data points 8 7
R -0.999 -0.999

p(R) 6.49E-10 5.51E-09

Residual variance F= 1.846 p(F)= 0.259
Continued on Next Page. . .
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Table D.II – Continued

Fitting Region Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

Gradient F= 12.723 p(F)= 0.00442
Intercept F= 16.079 p(F)= 0.00173

E5: 0.231 kg/m3

No. of data points 8 7
R -0.999 -0.999

p(R) 3.54E-10 9.19E-09

Residual variance F= 1.36 p(F)= 0.38
Gradient F= 1.033 p(F)= 0.331
Intercept F= 38.112 p(F)= 4.774E-05

E5: 0.218 kg/m3

No. of data points 8 7
R -0.999 -0.999

p(R) 1.15E-10 2.27E-08

Residual variance F=1.483 p(F)= 0.320
Gradient F=0.0184 p(F)= 0.894
Intercept F=33.476 p(F)= 8.663E-05

E5: 0.22 kg/m3

No. of data points 7 7
R -0.999 -0.999

p(R) 7.58E-09 2.10E-08

Residual variance F= 1.543 p(F)= 0.323
Gradient F= 0.772 p(F)= 0.400
Intercept F= 43.888 p(F)= 3.736E-05

E6: 6 g/m

No. of data points 22 12
R -0.999 -0.991

p(R) 1.59E-28 3.86E-10

Residual variance F= 1.012 p(F)= 0.516
Gradient F= 0.577 p(F)= 0.453
Intercept F= 7.562 p(F)= 0.00986

E6: 12 g/m

No. of data points 16 8
R -0.999 -0.999

p(R) 7.93E-20 1.83E-09

Residual variance F= 9.422 p(F)= 0.00568
Gradient F= 0.0529 p(F)= 0.820
Intercept F= 19.083 p(F)= 0.000269

Continued on Next Page. . .
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Table D.II – Continued

Fitting Region Fine-fragments region Intermediate size fragments region

XXXXXXXXXXXXParameter
Equation

ln(C1) + αln(s) ln(C3) + αln(s)

E6: 20 g/m

No. of data points 17 8
R -0.999 -0.993

p(R) 2.39E-21 9.74E-07

Residual variance F= 2.098 p(F)= 0.185
Gradient F= 0.0694 p(F)= 0.795
Intercept F= 5.646 p(F)= 0.0266

E7: 6 g/m

No. of data points 22 15
R -0.999 -0.993

p(R) 1.19E-27 1.73E-13

Residual variance F= 1.216 p(F)= 0.366
Gradient F= 0.300 p(F)= 0.587
Intercept F= 5.367 p(F)= 0.0267

E7 (bl24): 12 g/m

No. of data points 21 13
R -0.999 -0.999

p(R) 1.55E-28 1.71E-16

Residual variance F= 5.902 p(F)= 0.00222
Gradient F= 0.546 p(F)= 0.466
Intercept F= 16.477 p(F)= 0.00031

E7 (bl25): 12 g/m

No. of data points 21 13
R -0.999 -0.999

p(R) 7.10E-29 1.52E-16

Residual variance F= 5.800 p(F)= 0.00240
Gradient F= 1.849 p(F)= 0.184
Intercept F= 5.651 p(F)= 0.0238

E7: 20 g/m

No. of data points 23 17
R -0.998 -0.999

p(R) 8.42E-28 1.09E-20

Residual variance F= 6.818 p(F)= 0.000208
Gradient F= 1.691 p(F)= 0.202
Intercept F= 4.557 p(F)= 0.0395
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Appendix E: Fine- and intermediate fragment size range

Table E.I lists the fine- and the intermediate fragment size limits and the lower size
limit of the boulders region of the experiments given in Table-I of Paper IV given
in Chapter 8. Sandstone grain size 1/16 mm – 2 mm. Granite (quartz, K-feldspar,
mica) with x50 = 1 mm [99].
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