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Abstract 
 

Material selection relies on the information of feasible materials, especially in 

nuclear applications, where material tests are complex and require special 

attention to safety. A more profound material selection decision one can make 

with the increasing availability of the information. Peer-reviewed scientific articles 

present a vital source with high quality.  

 

This thesis studies the possibilities of information extraction and information 

summarization of the properties of metallic alloys. The following challenges for 

this purpose were identified: Fully automated information extraction by machine 

learning algorithms will become possible with the creation of materials science 

related corpus for natural language processing. Also, an automated plot digitizer 

would excavate enormous amounts of material data. With the increasing size of 

the database, its clarity decreases. So, the contained information should be 

summarized comprehensibly. The approach presented in this thesis is a material 

mechanism map. Based on the idea of Ashby maps, material mechanism maps 

visualize areas of material property changes under specific environmental 

conditions. As an example, a material mechanism map for the austenitic steel 

SS316, serving as nuclear fuel-cladding material, was computed. The map 

contains information about material hardening, recovery, irradiation 

embrittlement, swelling, creep, and precipitation formation depending on the 

irradiation dose and the homologous temperature. 
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Kurzfassung 
 

Die Wahl eines Werkstoffes beruht auf den Informationen möglicher Materialien 

– insbesondere bei nuklearen Anwendungen, bei denen Materialprüfungen 

komplex sind und besondere Sicherheitsvorkehrungen erfordern. Mit 

zunehmender Verfügbarkeit der Informationen kann eine fundiertere 

Werkstoffwahl getroffen werden. Aufgrund des Begutachtungsprozesses stellen 

wissenschaftliche Artikel eine wichtige Informationsquelle mit hoher Qualität dar. 

 

Diese Masterarbeit untersucht Möglichkeiten die spezifischen Kennwerte von 

Metalllegierungen zu extrahieren und zusammenzufassen. Diesbezüglich 

wurden die folgenden Herausforderungen entdeckt: Eine vollautomatische 

Extraktion durch Machine-Learning-Algorithmen wird erst mit der Erstellung eines 

werkstoffwissenschaftlichen Text-Mining-Korpus möglich. Außerdem könnte ein 

vollautomatischer Plot-Digitalisierer enorme Mengen an Materialdaten erheben. 

Mit zunehmender Größe der Datenbank nimmt ihre Übersichtlichkeit ab. Daher 

ist das verständliche Zusammenfassen der enthaltenen Informationen essentiell. 

Der in dieser Arbeit vorgeschlagene Lösungsansatz ist ein 

Materialmechanismen-Plot. Basierend auf der Idee der Ashby-Plots, 

visualisieren Materialmechanismen-Plots Bereiche bestimmter 

Umgebungsbedingungen, in denen sich das Materialverhalten verändert. Als 

Beispiel wurde ein Materialmechanismen-Plot für den austenitischen Stahl 

SS316, welcher als Hüllrohr für Kernbrennstäbe dient, erstellt. Der Plot enthält, 

in Abhängigkeit von der Strahlendosis und der homologen Temperatur, 

Informationen zu Verfestigung, Erholung, Versprödung, Quellen, Kriechen und 

Ausscheidungsbildung. 
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1. Introduction and problem statement 
 

Material selection is a key step in the design process of a product. Its main 

objective is to choose the right material for a specific application with a specific 

set of tasks. These tasks vary widely, including bearing loads, conducting heat, 

resisting corrosion, and withstanding extreme temperatures. Because of the 

differences in the exposures’ nature, materials are described by figures reflecting 

their different properties. Material property values represent experience from the 

past in the form of former applications, measurements, and material tests. They 

are collected for every material of interest. Thus, material selection is the step 

where information about the chosen material, gathered in the past, meets the 

predicted loads caused by the application in the future [1].  

 

The collection of material properties is an essential aspect of material selection. 

The more types of materials and the more information about them are available, 

the better and more specific a selection one can make. Big databases are an 

essential medium of information collection and transportation. On the other hand, 

the amount of maintenance and support rises with the database size. 

Additionally, the essential step of information gathering is a tedious job during 

their setup. 

 

The quality of the collected information ensures reliability within the selection 

process. Articles published in academic journals are an excellent source for 

material databases. The system of academic peer-reviewing ensures the 

reasonability of the presented data and the quality of the text explaining it. 

Besides the field of material selection, researchers also may profit from 

databases. Keeping track of the newest insights in a research field becomes 

increasingly harder with the developing numbers of publications. 

 

Materials in nuclear applications have to resist extreme conditions over a long 

period. For example, reactor pressure vessels in nuclear power plants are 

designed to serve 40 to 60 years. Some of the more advanced Generation IV 

reactor designs are planned to serve even 80 years. In their lifetime, they have 

to cope with high pressures, high temperatures, corrosive environments, and 

radiation damage [2]–[4]. The material reliability is crucial to the safety of the 

plant, its workers, and its neighborhood. Further, the fuel-cladding material 

performance under these harsh radiation conditions is determining the time of the 

fuel serving in the reactor and the power plant’s efficiency consequently. Thus, 



1. Introduction and problem statement 2 

 

material selection for nuclear applications is a step full of responsibility. On the 

other hand, the next nuclear reactor generation pushes to higher operating 

temperatures and more radiation doses, as summarized in Fig. 1. Those 

conditions are a challenge to the established vessel and cladding alloys. 

Furthermore, material properties for nuclear applications are provided in 

databases rarely, while irradiated material tests require additional attention to the 

examiner’s safety [2]–[6]. 

 

Reactor type 
Max. design 
temperature 

[°C] 

Max. design 
pressure 
[MPa] 

End-of-
Life dose 
[dpa] 

Reported 
cladding 
material 

Generation III reactors 

Boiling Water Reactor  BWR 302 8.7 10 Zr-based alloy 

Pressurized Water Reactor PWR 351 17.7 100 Zr-based alloy 

Generation IV reactors 

Supercritical Water-cooled 
Reactor 

SCWR 550 27.5 67 Stainless steel 

Very High-Temperature 
gas-cooled Reactor  

VHTR 1000 10 10 TRISO 

Molten Salt Reactor MSR 700 0.5 200 
TRISO, 
Stainless steel 

Gas-cooled Fast Reactor GFR 850 15 200 Stainless steel 

Sodium-cooled Fast 
Reactor 

SFR 550 0.3 200 Martensitic steel 

Lead-cooled Fast Reactor LFR 500 0.1 200 Martensitic steel 

Fig. 1: Operating environments and considered fuel-cladding material of Gen. IV compared to 

Gen. III reactors, as reported in IAEA ARIS (after [2], [3]). 

 

This master’s thesis investigates the possibilities to gather information on the 

material properties in nuclear environments for three exemplary alloys. Fig. 1 

shows that stainless steel, martensitic steel, and Zr-based alloys are the most 

reported fuel-cladding materials. Thus, the alloys SS316, HT-9, and Zircaloly-4 

are chosen as representatives for the fuel-cladding material types, respectively. 

The data of the alloys should be retrieved from various scientific articles and 

papers in different journals. The gathered information should be merged into a 

publicly available database, and the different datasets should be computed to 

alloy specific materials property maps. 
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2. Fuel-cladding materials 
 

Often the material selection is a compromise of competing properties. In nuclear 

applications, materials have to resist irradiation damage, high pressure, elevated 

temperatures, and corrosive environments. 

 

Nuclear power plants use the energy from radioactive elements. The uranium-

oxide pellets have to be safely enclosed so that they can be manipulated and do 

not contaminate their environment. The primary task of nuclear fuel-cladding 

tubes is to keep the radioactive pellets and their fission products enclosed safely, 

so they are not released in the reactor and its coolant. A stack of fuel pallets 

enclosed in a fuel-cladding tube is called “fuel rod”.  Over two hundred fuel rods 

are tied into a fuel bundle. Boiling water or a pressurized water reactor may 

contain up to 256 or 289 fuel bundles, respectively. Each bundle serves between 

36 to 54 months in the reactor. 

 

When in service in the power plant, the fuel-cladding material should be as 

transparent as possible for neutrons to minimize neutron losses. That 

corresponds to a low neutron absorption cross-section of potential material. 

Meanwhile, the material should allow a high service temperature to enhance the 

thermal efficiency of the reactor. Fig. 2 is a scatter diagram of the element’s 

neutron absorption cross-section over the melting temperatures. Apart from 

carbon, the elements at the bottom of the point collection show a trend that, with 

increasing melting point, the neutron cross-section increases too. For fuel-

cladding applications, materials out of these elements are attractive candidates, 

but they exhibit the disadvantageous trend of increasing cross-section with 

increasing melting point [6]. 

 

Further, elevated service temperatures are a challenge to the material’s integrity 

due to creep effects. Because of the aggressive conditions inside the tube, full of 

fuel pallets and fission products, and the environment of the reactor’s coolant and 

moderator on the outside, the tube material should be corrosion resistant on both 

sides. Most important for a thermal power plant, the fuel-cladding tube should 

conduct heat from the inside fuel to the coolant as efficiently as possible [6].  

 

Based on the outlined considerations, martensitic steels, austenitic stainless 

steels, and zirconium-base alloys are primarily chosen as fuel-cladding materials.  

In this thesis, one alloy of each category is appointed exemplarily: 
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• UNS S31600, also known as EN 1.4401, X5CrNiMo17-12-2, or SAE grade 
316 steel (SS316), is one of the first stainless steels developed and often 

used in nuclear applications. 

• UNS S42100: The martensitic steel is more know under its trade name 
“Sandvik HT-9”. 

• UNS R60804: The zirconium-base alloy, called “Zircaloy-4”, is the most 
frequently used fuel-cladding tube material in conventional commercial 

reactors. 

The significant alloying elements of the enumerated materials are summarized in 

Fig. 3, according to the ASTM International specifications [7], [8]. 

 

 

Fig. 2: Melting temperature versus neutron absorption cross-section for pure elements [6]. 

 

Depending on the temperature, alloying elements, and production’s cooling rate, 

steel can exhibit different lattice structures. In the absence of other alloying 

elements, the austenitic configuration in steel is present only between 996 K and 

1766 K. One of the alloy elements that stabilizes the face-centered cubic lattice 

of steel down to room temperature is nickel. The high nickel content ensures that 

the SS316 alloy has a face-centered cubic structure at room temperature and is, 

therefore, austenitic steel. Because of its atomic lattice, this alloy is well-

malleable. The main strengthening contribution in austenitic alloys is based on 

cold-work hardening. 
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Elements 
[wt. %] 

UNS S31600 
“SS316” 

UNS S42100 
“HT-9” 

UNS R60804 
“Zircaloy-4” 

Carbon (C) 0.040 – 0.060 0.17 – 0.23  

Chromium (Cr) 17.0 – 18.0 11.0 – 12.5 0.07 – 0.13 

Nickel (Ni) 13.0 – 14.0 0.30 – 0.80  

Molybdenum (Mo) 2.00 – 3.00 0.80 – 1.20  

Tungsten (W)  0.40 – 0.60  

Vanadium (V) < 0.05 0.25 – 0.35  

Tin (Sn)   1.20 – 1.70 

Iron (Fe)   0.18 – 0.24 

Iron + Chromium   0.28 – 0.37 
Fig. 3: Significant alloying elements of the investigated alloys in wt.% [7], [8]. 

 

HT-9 is ferritic-martensitic steel, as a result of the low nickel amount and high 

cooling rates in the material’s heat treatment after forging and shaping. Like in a 

composite, the martensite is responsible for hard and brittle properties, while the 

ferrite is more ductile in the HT-9 structure. Until the 1970s, austenitic stainless 

steels were the primary fuel-cladding material. Ferritic-martensitic steels show 

higher thermal conductivity and lower expansion coefficients than austenites. 

Void swelling hinders the application of the high-swelling austenitic steels as 

cladding materials. On the other hand, the bcc-bct-structure and its large amount 

of interphases grants HT-9 excellent irradiation resistance to void swelling [9], 

[10], as described in Ch. 3.1. 

 

Due to the chromium content above 10.5 wt.%, SS316 and HT-9 form a thick 

chromium oxide passive layer that makes them corrosion-resistant in the 

atmosphere. The addition of molybdenum makes steels more resistant against 

corrosion attacks by chlorides and reducing acids. 

 

As shown in Fig. 2, pure zirconium has an over ten times smaller neutron 

absorption cross-section than iron. This excellent neutron transparency makes 

zirconium an interesting fuel-cladding material. Further, zirconium shows similar 

physical properties as iron but is more thermally stable and corrosion-resistant. 

Zirconium and its alloys have a hexagonal closed-packed (hcp) crystal structure. 

It forms a stable passive layer out of zirconium oxide on its surface, which is the 

reason behind the stainless property. In water, zirconium reacts to zirconium 

oxide under the release of hydrogen gas. This exothermic reaction is quite slow 
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at lower temperatures but speeds up exponentially with temperature increase. 

The formation of large amounts of hydrogen gas might lead to loss of contact 

between the cladding material and the reactor’s coolant. Moreover, hydrogen is 

explosive in contact with the oxygen, e.g., form the air. In power plants, this 

scenario must be avoided [11], [12]. 

 

Alloying elements are added to increase the strength and the corrosion 

resistance of zirconium. Tin, chromium, and iron provide the most significant 

strengthening, while the neutron transparency is barely reduced. Between 200 

°C and 400 °C, zirconium absorbs hydrogen, increasing the volume and 

embrittlement of the metal. Therefore, the amounts of nickel and iron in the 

Zircaloy have to be limited [11], [12]. 

 

All three described materials have in common that their corrosion and irradiation 

behavior are the limiting factors for fuel rods and fuel bundles used in power 

plants. Their swelling, corrosion, and embrittlement rates determine the service 

time of the fuel bundle in the reactor [13]. 
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3. Nuclear and elevated temperature environment 
 

Nuclear power plants make use of thermal energy from nuclear fission reactions 

to generate electricity. A bombardment of neutrons drives these fission reactions. 

A neutron can interact in different ways with the core of an atom: 

• When the incoming particle transfers its complete kinetic energy to the 
emitting particle, it is called “elastic scattering”.  

• When the emitted particle is the same as the captured one, but a loss of 
kinetic energy occurs during the particle transition, it is called “inelastic 

scattering”. 

• Reactions where two neutrons are released after the neutron capture by 

the nucleus are called “((, 2() reactions”. Because this reaction type 
produces additional neutrons, this reaction is essential to keep the chain 

reaction in the reactor core running. 

• Nuclear reactions where a photon (,), a proton (-), or an alpha particle (.) 
is emitted are called ((, ,), ((, -), or ((, .) reactions, respectively.  

Based on their kinetic energy, the two most important classes of neutrons are the 

fast neutrons (E > 1 MeV) and the slower thermal neutrons (E = 0.025 eV). The 

neutron energy influences how and with which atom the neutron will interact [14]. 

Although thermal reactors have a mixed neutron spectrum with a wide range of 

neutron energies, they have to slow many neutrons down to thermal neutrons for 

the upkeep of the nuclear chain reaction. Fast reactors, also called “breeders”, 

sustain their chain reaction by fast neutrons. Nowadays, most of the nuclear 

power plants use thermal reactors. However, half of the prospective Generation 

IV reactors are fast reactors [4]. 

 

So far, just metal alloys are used for reactor pressure vessels and fuel cladding 

materials. Hence, the interactions of neutron radiation with metals are of 

particular interest. The neutron, as an energetic projectile, strikes one or several 

atoms in the vessel or cladding material. If the energy of the incoming neutron is 

high enough, the interaction can lead to the displacement of the target atom from 

its lattice site. The vacant site left behind is called “vacancy”. The displaced atom 

could interact with other atoms, find another vacancy for occupying or embed 

itself between regular occupied lattice sites. Atoms embedded between lattice 

sites are called “interstitial” atoms. The pair of a vacancy and an interstitial atom 

is called “Frenkel Pair”, and it is the primary cause for physical and mechanical 

changes of the irradiated metal [14]. 
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The unit “displacements per atom” (dpa) was established in radiation materials 

science to describe the atomic damage within an alloy. It quantifies the number 

of displacements every atom went through statistically. The unit depends on the 

radiation flux /, the displacement cross-section 0!, the time the material was 
irradiated 1, and the maximum and minimum radiation energies 2"#$, 2"%&: 

#-3 = 	 6 /(2) ⋅ 0!(2) ⋅ 1 ⋅ #2
'!"#

'!$%

. Eq. 1 

The displacement cross-section 0! is an intrinsic property of the irradiated 
material at specific incoming radiation energy. It indicates how much energy is 

transferred from the particle to the atom at the collision and how many 

displacements the knocked-out atom will cause. It is important to emphasize that 

#-3 has no linear correlation with the radiation fluence because #-3 includes a 
material characteristic. More general, the unit can be described as a ratio: 

#-3 = 	 9: ⋅ 1, 
Eq. 2 

where 9 is the number of displacements per unit volume per unit time, 1 is the 
irradiation time, and : is the atom number density [14]. 
 

These ongoing displacements and the accompanied Frenkel Pairs result in 

physical changes of the material, such as swelling, growth, phase change, and 

segregation. Moreover, irradiation varies the mechanical properties such that 

materials perform much differently than their unirradiated equivalents. Some 

examples of material effects due to irradiation are swelling, hardening, 

embrittlement, loss of creep strength, accelerated corrosion, and intergranular 

cracking [14]. The following chapters describe some of these effects in more 

detail. 

 

 

3.1. Irradiation swelling 
 

Swelling is a dimensional instability, and it describes a change of the linear 

dimensions, whereas the volume of the component increases too. These 

dimensional changes impose a challenge on reactor engineers and designers. 

The volume change is caused by the formation and growth of voids and bubbles 

within the material. Bubbles are cavities filled with insoluble gas, which provides 
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internal pressure that stabilizes the cavity. Voids are empty cavities only stable 

under a flux of vacancies. So, voids are formed by the precipitation of irradiation-

induced vacancies [15]. The volume change ;< compared to the initial volume < 
can indicate swelling: 

;<
< = 4>

3 6 9( ⋅ @)(9) #9
*

+
, Eq. 3 

where @)(9) #9 is the number of voids per volume with radii between 9 and 
9 + #9. When the radius distribution is narrow, the integral can be simplified to: 

;<
< = 4>

3 ⋅ 9B( ⋅ @) , Eq. 4 

where 9B is the mean void radius [14]. Typically, the volume change ,))  is 
represented in percent. 

 

While the fast-moving interstitial atoms tend to migrate until the verge of the 

cascade, the slower-moving vacancies tend to form clusters nearby. So, 

vacancies need some mobility to cease as a void [15]. Brimhall et al. [16] showed 

that at low temperatures, the low defect mobility hinders void growth. High 

temperatures and the thermal motion of the atoms lead to vacancy annihilations, 

as described in Ch. 3.5. These two void destructive mechanisms result in a peak 

at an intermediate temperature, as shown in Fig. 4. So, the lower temperature 

limit for void formation is commonly set around 300 °C [17]–[19]. 

 

Garner and Gelles [20] describe a steady-state swelling rate in austenitic 

stainless steels around 1 %/dpa over a wide dose range between 427 °C and 

650 °C. Fig. 5 displays that an onset dose is needed to start void swelling and 

that just the incubation dose, which lies in between the onset dose and the 

steady-state swelling, increases with lower irradiation temperature. 

 

Alloy elements can affect the material’s irradiation swelling behavior. In Fe-Cr-Ni 

austenitic alloy, swelling drops with increasing nickel content and increases with 

rising chromium content. Minor elements can reduce the mobility of either 

vacancies or interstitials by binding them with sufficient strength. Precipitates can 

delay void growth or initiate vacancy-interstitial annihilation. Induced stress, e.g., 

by cold work, reduces the transient swelling period before reaching the steady-

state rate. Fig. 6 shows the difference in swelling behavior between SS316 and 



3. Nuclear and elevated temperature environment 10 

 

ferrites schematically. Just considering swelling, the figure also indicates the 

advantage of the ferritic-martensitic HT-9 alloy over SS316 as fuel-cladding 

material [9], [14], [21]. 

 

 

Fig. 4: Swelling (in %) in pure nickel depending on the 

irradiation temperature at a constant neutron fluence [16]. 

 

 

Fig. 5: Swelling as a function of neutron fluence and 

irradiation temperature for 20% cold-worked SS316 [20]. 
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Fig. 6: Schematic swelling behavior of SS316 and ferritic steels [21]. 

 

The mechanics of voids and bubbles affect the material besides the volumetric 

change. Gas bubbles modify the material’s physical and mechanical properties 

substantially. A major source for bubbles is the helium production within the alloy. 

Induced by thermal neutrons, boron and nickel decay emitting an alpha particle: 

C-+ ((, .) DE.
, 

:E/0 ((, ,) :E/1 ((, .) FG/2
. 

Eq. 5 

Eq. 6 

Despite the higher dose, the material’s helium swelling is lower in fast reactors 

than in thermal reactors. It is possible that hydrogen is generated in alloys in the 

same manner but by different reactions. Also, corrosion and decomposition of 

cooling water can produce hydrogen, which accumulates in the material’s cavities 

[14], [22]. 

 

 

3.2. Irradiation hardening 
 

The formation and mobility of dislocations determine the plasticity of a material. 

Thus, two types of hardening can be described [14]: 

• Source hardening is the increase in unpinning stress, required to unlock a 
dislocation from its source and set it in motion. 

• Friction hardening is the increase of flow stress, which a dislocation needs 
to stay in motion. 
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Irradiation can produce defect clusters close to Frank-Read sources. These 

clusters hinder the expansion of loops. Once the stress level is high enough for 

the loop to destroy the cluster, the dislocation can be released. So, irradiation 

can increase source hardening [14]. 

 

The motion of a dislocation can be hindered by obstacles in its slip plane or by 

other dislocations and their stress fields. Examples for obstacles are defect 

clusters, loops, precipitates, bubbles, or voids, and their interaction with 

dislocations is called “short-range stress”. The interaction of dislocations with 

each other or with dislocation networks is called “long-range stress” [14]. Fig. 7 

(a) shows the increasing network dislocation density over the dose in austenitic 

steels. The figure also indicates that, below 573 K, the dislocation density 

increases with rising temperature. This counterintuitive behavior is a result of the 

different dose and temperature dependencies of the dislocation density 

components, which are summarized in Fig. 8 [19], [23]. The exact contributions 

of the different hardening mechanisms are not fully understood yet, but Lucas 

[24] predicted the different proportions to yield stress increase of austenitic 

stainless steel, as shown in Fig. 7 (b).  

 

(a) 

 

(b) 

 

Fig. 7: (a) The network dislocation density rd at different doses and irradiation temperatures, 
and (b) the various contributions to yield stress change at 673K [14], [24]. 

 

From Fig. 7 (a), the saturation of irradiation hardening can be derived when the 

creation and the destruction of obstacles equilibrate by irradiation damage, other 

dislocations, or temperature. If this is taken into account, the yield stress 

increment due to irradiation hardening can be described by an exponential 

formula: 
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;03 = 	H ⋅ [1 − GL-(−C ⋅ / ⋅ 1)]&, Eq. 7 

where is / the radiation flux, 1 is the irradiation time, ( is an exponent to fit the 
model, and H and C are material-specific parameters depending on the 
temperature [14]. 

 

 

Fig. 8: Effect of irradiation temperature on the total 

dislocation density and its components in 25% cold-worked 

austenitic stainless steel at 7.4 dpa [19], [23]. 

 

Thus, irradiation hardening can be described by the increment of the metal’s 

mechanical properties, like yield strength or ultimate tensile strength. Commonly, 

this material behavior is investigated in a tensile test. In a tensile test, a metal 

specimen is loaded with a uniaxial tensile force, while the material’s elongation 

and the tensile force are recorded. The output can be plotted in a stress-strain 

curve. Fig. 9 shows two schematic stress-strain curves for fcc (a) and bcc (b) 

metals and the effect of irradiation with increasing dose [14]. 
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(a) 

 

(b) 

 

Fig. 9: Schematic stress-strain curves for fcc (a) and bcc (b) metals and the effect of irradiation 

with increasing dose [14]. 

 

 

3.3. Irradiation embrittlement and fracture 
 

Embrittlement is the material’s loss of resistance to cracking by decreasing plastic 

and creep deformation before fracture. Although the transition is smooth and 

arbitrary, two extreme types of fracture can be distinguished: 

• Ductile fracture shows significant plastic deformation before and during 
the crack propagation. 

• Brittle fracture exhibits no gross deformation, very little micro-deformation, 
and fast crack growth rates. 

Further, fractures can be classified by the path they take through a polycrystalline 

material: 

• Trans-granular cracks propagate through the grains. 

• Inter-granular cracks propagate along the grain boundaries between the 
grains. 

Depending on the alloy, temperature, state of stress, and loading rate, metals 

can show all these types of fractures [14]. 

 

Depending on the force propagating the crack, three basic modes of fracture can 

be defined, as depicted in Fig. 10: 

(a) Mode I describes a tensile load normal to the crack plane opening the 

crack. 

(b) In Mode II, the load shears the surfaces in-plane, normal to the crack 

front. 

(c) In Mode III, the load shears the surfaces out of the plane, parallel to the 

crack front. 
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Fig. 10: The three basic fracture modes: Mode I (a), Mode II (b), and Mode III (c) [14]. 

 

In practice, Mode I is the harshest to the material, and it is, therefore, the most 

examined one [14]. 

 

The stress big enough to advance the fracture is called fracture stress 04. The 
crack gets propagated based on the stress field around its tip. So, to define a 

stress intensity factor comes handy. Notably, the critical stress intensity where 

the crack propagation turns into an overload fracture is essential. Based on the 

work of Griffith, Irwin [25] found that the critical stress intensity for a crack with a 

length of 23 in an infinite plane, which is uniform uniaxial loaded (Mode I), can be 
defined as: 

N56 = 04 ⋅ √> ⋅ 3, Eq. 8 

where N56 is also called fracture toughness. Infinite plates are hard to realize in 
materials test. So, usually, a geometry correction coefficient is multiplied to Eq. 

8. 

 

The fracture toughness N56 assumes that the stress states do not change at the 
tip of the crack. So, loads above N56 lead to brittle fracture immediately. Indeed, 
ceramics and steel at low temperatures show such behavior. This linear-elastic 

fracture mechanics is valid at high yield strength, and the component thickness 

is big. However, most steels behave described by elastic-plastic fracture 

mechanics, which also considers plastic hardening around the crack tip. To 

convert the geometry dependent fracture toughness to a geometry independent 

material characteristic for elastic-plastic behavior, Cherepanov [26] and Rice [27] 

suggested the so-called J-integral: 
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P = 6 Q#R − " STUTLV#$
7

, Eq. 9 

where ! is a counterclockwise contour around the crack tip, Q is the strain energy 
density, " is the traction vector normal to an element #$, and U is the 
displacement vector, as shown in Fig. 11. 

 

 

Fig. 11: Definition of the J-integral at the crack tip with the counterclockwise contour ! and the 
traction vector ", normal to an element #$ [27]. 

 

Physically spoken, the J-integral quantifies the difference in potential energy of 

two equivalent specimens having slightly different crack lengths. For elastic-

plastic strain conditions, its correlation to the fracture toughness is: 

P56 =
1 − W8
2 ⋅ N568, Eq. 10 

where W is the Poisson’s ratio, and 2 is the elastic modulus [14]. 
 

The ASTM International standard E399 describes two sample designs to 

measure N56: the 3-point loaded notched beam and the compact tension 
specimen. Because the fracture toughness measurements rely on the validity of 

linear-elastic fracture mechanics, the specimens’ dimensions have to be 

regulated [28]. 

 

Particularly, in nuclear applications, sudden breakage of material could expose 

humans and the environment to danger. Thus, nuclear power plants follow the 

leak-before-brake concept [29]. It describes that a slowly ductile failing part 
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forming a leak, and warning the staff thereby, is preferable to an immediate, 

catastrophic breaking of the part. Accordingly, the transition from brittle to ductile 

behavior of the material is of particular interest. Fracture toughness tests also find 

the material’s transition temperature, but this approach is laborious. A notched 

bar impact test, also called the Charpy impact test, is much simpler therefor [30]. 

In a Charpy impact test, a pendulum swings through a notched bar made out of 

the investigated material. In the impact moment of the pendulum’s hammer in the 

bar, some kinetic energy is transferred to break the specimen. Because the 

weight of the pendulum is known, the height difference between the test start and 

after the impact quantifies the energy needed to break the material. As the 

geometry of the bar and the notch effect the fracture energy, they have to be 

standardized. 

 

The Charpy test can be repeated with various heated or cooled bars of the same 

alloy. The obtained impact energies can be plotted depending on the specimens’ 

temperatures in a Charpy impact curve, as shown in Fig. 12. 

 

 

Fig. 12: Schematic Charpy curves for different materials and effect of irradiation on the Charpy 

curve of carbon steels showing the upper-shelf energy shift (DUSE) and the transition 

temperature at 41 J shifted by DT41. 

 

Fig. 12 depicts the schematic Charpy curves for various types of materials. With 

increasing temperature, the carbon steel Charpy curve shows the transition from 

brittle behavior, called lower shelf energy, to ductile behavior, called upper shelf 

energy. Because the brittle-ductile transition is smooth, the transition temperature 

has to be defined by standardized aspects. It is common to define the transition 

temperature at a fixed impact energy level, for example, the transition 

temperature at 41J of impact energy (T41). The ASME BPVC III [30] and NRC 10 
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CFR part 50 [31] define a reference temperature of nil-ductility (RTNDT), at which 

the specimens initiate the fracture without any plastic deformation. Based on the 

Charpy impact test results, the RTNDT is defined by minimum impact energy and 

by a minimum of lateral expansion of the fractured specimens. Further, a ductile-

to-brittle transition temperature (DBTT) can be defined as the intersection point 

of the fracture stress curve and the yield stress curve over the temperature, as 

shown in Fig. 13 (a) [14]. 

 

(a) 

 

(b) 

 

Fig. 13: Schematic fracture stress sf and yield stress sy curves showing the ductile-to-brittle 
transition temperature (DBTT) (a) and the effect of irradiation on the DBTT (b) [15], [22]. 

 

The neutron environment, the exposure temperature, the steel composition, and 

the steel microstructure affect the degree of embrittlement. The schematic 

Charpy curve in Fig. 12 indicates the effect of irradiation. The irradiation damage 

decreases the upper shelf energy by a so-called upper shelf energy shift (DUSE), 

and the transition temperature is shifted by DT41. Irradiation can cause the 
formation of precipitates or the segregation of trace elements in the alloy, which 

both lead to a decrease of the fracture strength. Together with the yield strength 

increment by irradiation hardening, as described in Ch. 3.2., Fig. 13 (b) shows 

the transition temperature shift to higher values. 

 

As mentioned at the end of Ch. 3.1., hydrogen can enter an alloy by corrosion, 

diffusion, or nuclear reactions. Besides swelling, hydrogen causes embrittlement, 

additionally to the direct irradiation effects. Several theories are trying to explain 

how hydrogen does that, reaching from the weakening of the metal-metal bonds 

until the formation of stress increasing bubbles. In zirconium, hydrogen forms the 

brittle hydride ZrH2. Thus, hydrogen embrittlement is a crucial mechanism in 

ferritic steels, nickel-base, and zirconium-base alloys [14]. 



3. Nuclear and elevated temperature environment 19 

 

 

3.4. Irradiation creep 
 

Creep is a time-dependent dimensional instability, like swelling, but it describes 

a change of linear dimension at a constant volume of the component. Without 

irradiation effects, creep occurs under constant load just at high temperatures in 

metals. At temperatures lower than 30% of the alloy’s melting point (T/TM < 0.3), 

creep can generally be neglected. 

 

Depending on the stress and the temperature, creep is caused by two major 

deformation mechanisms. Ashby [32] suggested summarizing the different 

mechanisms in a single plot, called “deformation mechanism map”. Fig. 14 shows 

the very first published deformation map by Ashby. 

 

Fig. 14 illustrates that creep is the time, temperature, and stress-dependent 

component of plastic strain, indicated as “dislocation glide” on the map. At 

temperatures just above 200 °C, the field of dislocation creep emerges. Due to 

the high temperatures, dislocations have enough energy to climb, hindering 

obstacles like the ones explained in Ch. 3.2. The gliding of the so freed dislocation 

causes dimensional changes. Diffusional creep indicated as “diffusional flow” in 

Fig. 14 describes the migration of atoms in the one and vacancies in the opposite 

directions resulting in dimensional changes. The subfields “Coble creep” and 

“Nabarro-Herring creep” just indicate grain-boundary or bulk diffusion, 

respectively, as prevalent atom and vacancy diffusion mechanism [14], [32]. 

 

Compared to the thermal creep described so far, irradiation widens the creep 

domains to lower temperatures and increases the creep rate compared to thermal 

creep at the same temperature. As discussed in the previous chapters, irradiation 

influences the actions of dislocations. Thus, irradiation impacts dislocation and 

diffusional creep. Generally, the deformation caused by irradiation creep can be 

described as: 

% = ;X
X+
= H ⋅ Y1 − GL-	 S−/ ⋅ 1Z V[ ⋅ 0 + C+ ⋅ 0& ⋅ /" ⋅ 1, Eq. 11 

where X+ is the initial dimension, ;X is the dimension change, / is the neutron flux, 
1 is the irradiation time, 0 is the stress, ( and \ are proportionality exponents to 
stress and neutron fluence respectively, and H and Z are material depending 
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constants. The deformation % is called tensile strain or creep strain and is 
described dimensionless or as percent [14].  

 

 

Fig. 14: The very first published deformation-mechanism map by Ashby. It is the map for pure 

silver of grain size 32 µm and a critical strain rate %&̇ of 10-8 s-1 [32]. 
 

 

Fig. 15: Irradiation creep in 20% cold-worked SS316 loaded with 138 MPa at 454 °C [14]. 

 

Similarly to swelling, irradiation creep exhibits a transient regime, described by 

the first term in Eq. 11, and a steady-state regime, described by the second term. 

Usually, the creep strain rate depending on time %′ is of interest, but irradiation 
creep is often reported as an effective strain rate per dpa %9̇44 divided unit of 
effective stress 0944: 

%9̇44
0944

= C+, Eq. 12 
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where C+ is called “creep compliance”. If void swelling is considered too, Eq. 12 
can be extended to the following empirical equation: 

%9̇44
0944

= C+ + _ ⋅ `̇, Eq. 13 

where ̀ ̇ is the instantaneous volumetric swelling rate per dpa, and _ is the creep-
swelling coupling coefficient [14]. The irradiation creep mechanism can be added 

to Ashby’s deformation mechanism map, as shown for SS316 in Fig. 16 [33].  

 

(a) 

 

(b)  

 

Fig. 16: Constructed deformation mechanism maps for SS316 considering just thermal creep 

(a) and extended by irradiation creep mechanism (b) [33]. 
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3.5. Elevated temperature environment 
 

The principal part of the strength in austenitic alloys, like SS316, and in zirconium-

based alloys, like Zircaloy-4, is caused by what is called work-hardening. Plastic 

shaping of the material, e.g., bending or rolling, initiates new defects and 

dislocations in the crystal. In the case of a sufficient number of dislocations 

generated, they hinder each other mutually in their movement so that a strength 

improvement occurs. 

 

With increasing temperature, the atom vibrations and movement in the steel’s 

crystal lattice increase too. Above temperatures of 30% of the melting point (T/TM 

> 0.3), there is enough energy to heal point defects, like interstitials and 

vacancies, and anneal dislocations. These processes in the material are resumed 

as “recovery”, which results in a decrease of hardness and yield strength and in 

an increase of ductility. The enhanced atomic mobility causes grain growth, 

especially if the materials are exposed to even higher temperatures over a long 

period. According to the Hall-Petch equation [14], an increasing grain size lowers 

the material strength. 

 

Ferritic-martensitic alloys, like HT-9, are produced by quenching, starting from 

temperatures where the steel is still austenitic. Due to the rapid cooling rates, the 

austenite forms the metastable martensite (bct) structure. The alloy’s primary 

source of strength is the brittle martensite grains. These alloys also exhibit 

recovery, but more crucial are temperatures above the austenitic transformation 

temperature (approx. 700 °C). Then, the ferritic-martensitic structure 

recrystallizes, causing the material’s loss of hardness and strength. 

 

In alloys with high carbon content, chromium carbide precipitates above 

temperatures of 500 °C. These carbides impoverish the surrounding areas that 

then shall have no passivation corrosion protection due to the local lack of 

chromium. Moreover, the formed carbide precipitations lead to undesired 

embrittlement of the material.  
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4. Materials informatics 
 

Materials informatics is a research field combining practices of informatics, data 

science, materials science, and engineering to improve the discovery, 

development, selection, production, use, and recycling of materials. It analyses 

complex, multiscale information about material production, physical or chemical 

properties, measured, and collected before. Materials informatics can also be 

used to generate and manage material data, besides its utilization. The materials 

informatics’ objective is to compute statistically robust, physically, and chemically 

meaningful models to enhance one or more episodes in the material’s life cycle 

[34]–[37]. 

 

While developing a new consumer product takes two to five years, implementing 

new materials may take 15 to 20 years from invention till commercial launch [38]. 

Modern fabrication methods, like Additive Manufacturing, enable new degrees of 

freedom and rocketing speed of customization. These manufacturing 

opportunities equal challenges for traditional materials science approaches to 

determine material processes and performance limits [37], [39]. In 2011, the US 

government introduced a multi-agency initiative, called “Materials Genome 

Initiative” (MGI). According to the 2014 MGI Strategic Plan, three of the four MGI’s 

key challenges are within the materials informatics field [39]. 

 

One of the earliest examples of materials informatics is a thermodynamic 

database. Based on the elements of the periodic table, data about the 

thermodynamic contribution of every element were collected. Such databases 

were the fundament of thermochemical computations to map phase stabilities in 

binary and ternary alloys. As a result, computationally derived phase diagrams 

are well established in material development nowadays. Other examples of public 

databases in materials science are crystallographic databases, like the Inorganic 

Chemistry Structural Database (ICSD), or the Cambridge Structural Database 

(CSD) [34], [36]. It is striking that mainly digital databases with chemical 

information only on an atomic level were developed. Especially on the level of 

industrial materials and alloys, databases about corrosion behavior, processing 

properties, physical and mechanical properties, like yield strength or uniform 

elongation, are missing or just emerging [36], [37]. 

 

Materials informatics can fulfill several tasks in different steps of the material’s 

life cycle. Rickman et al. [36] enumerate in detail a couple of application examples 
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reaching from material discovery, ab initio calculations, multimodal imaging, 

phase characterization, material optimization, till application of density-functional 

theory.  

 

New material development is time-consuming, risky, and expansive. Not every 

new application needs a newly developed material. For example, the superalloy 

“Inconel 625” was initially developed as a structural material for supercritical 

steam power plants. It is famous for its high strength and corrosion resistance in 

highly acidic environments. However, the alloy found use in battery contacts of 

the Tesla Model S, due to its good stress response at extreme temperatures 

resulting from resistive heating of the contact at rapid acceleration [37], [40]. With 

more and more alloys invented, the range of available materials becomes 

unimaginable. So, selecting an optimal solution for a specific application turns 

tedious. Mulholland and Paradiso [37] explain how materials informatics can be 

used for material selection. Based on the application’s requirements and loads, 

machine learning tools can find an optimal candidate out of a material database.  

 

The following three subchapters describe general concepts and methods 

originating outside the field of materials informatics but become essential therein. 

 

 

4.1. Machine Learning  
 

In standard programming, one defines operating instructions step-by-step, 

resulting in an algorithm solving a specific problem. In machine learning (ML), the 

computer uses a set of statistical models to compute its own algorithm based on 

the data provided. Machine learning is a branch of artificial intelligence. It “learns” 

from situations from the past to estimate a model, which can fulfill different types 

of tasks, like classification, regression, or clustering [41]. 

 

In general, every machine learning process undergoes the following three 

iterative steps [41], as summarized in Fig. 17: 

(1) Representation: First, the task’s object or instance needs to be described 
so that the computer can understand it. The instance’s attribute together 

with its value is called “feature”, e.g. “pixels = 1200”, “diameter = 15.8”, or 

“yield strength = 230”. In the representation step, one has to choose which 

and how many features to include. Further, it has to be decided which 

mathematical model fits best for the task. Then the ML model can be 
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computed based on the input features. The input data teaching the ML 

model is called “training data”. 

(2) Evaluation: In this step, one has to define what criterion distinguishes a 
good from a bad ML model. 

(3) Optimization: Which changes will improve the model’s criterion? This 
question might be answered by changing the number of features, the 

mathematical model, or its parameters. 

 

 

Fig. 17: Basic ML model development steps. 

 

With the increasing number of tasks, many different systems of machine learning 

developed. So, it is useful to classify them in broad categories by different 

aspects. Just considering whether the ML model sees human supervision during 

its training, there are four major categories [41], [42]: 

• Supervised learning: In supervised learning, the input data already 
includes the desired output, called “label” or “target”. A typical example of 

that is an email spam filter where the user tells the program which emails 

are spam or not, and the filter classifies the new incoming emails then. 

• Unsupervised learning: As the exact opposite of supervised learning, the 
input data is missing information about the output totally. This approach 

might be used to detect clusters of voids in material or to detect anomalies. 

• Semi-supervised learning: Because labeling is often time-consuming 
and costly, semi-supervised learning lays between the two categories 

above, where just some instances are labeled. 

• Reinforcement learning: The ML model perceives the environment to 
select and perform an action then. Based on the action, the ML model gets 

rewards or penalties in return, and it tries to find the best strategy to 

maximize the rewards. Reinforcement learning is often used in robots to 

learn how to walk. 
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Jin et al. [43] used machine learning methods to predict the onset dose for void 

swelling  (shown in Fig. 5),  based on the alloy’s chemical composition. Zhang et 

al. [44] were able to apply machine learning to predict solid solubility based on 

the Hume-Rothery rules with decent precision. His machine learning algorithm 

derived similar rules like Hume-Rothery, but slightly different parameters. Jin’s 

and Zhang’s works are a vivid example of structure-property linkage in materials 

informatics. 

 

 

4.2. Data mining 
 

Data mining is a branch of machine learning, but it has several vague definitions. 

Some use it as a synonym for knowledge discovery from data (KDD); others see 

it as an essential step in the process of knowledge discovery. In general, data 

mining uses mathematical models to find patterns in large datasets. Then, these 

patterns can be used to detect clusters, associations, or anomalies. They also 

can be used to make predictions for new observations. Based on the Cross-

Industry Standard Process for Data Mining (CRISP-DM), the data mining 

workflow can be summarized as depicted in Fig. 18 [34], [45]–[47]. 

 

 

Fig. 18: Schematic workflow in supervised data mining. In the figure, the predictive model as the 

usage of the data mining result is just an example. 

 

Depending on the desired output, meaningful data in sufficient amounts has to 

be collected first. Often, data is collected in a deductive database consisting of 

one or several tables. Typically, each table exhibits a set of attributes as columns 

and a broad set of observations or measurements as rows. Then, the dataset has 

to be prepared to clear noisy and inconsistent data and to replace missing values. 

Especially in supervised learning, a subset of the observations has to be reserved 

for the later evaluation. This split is done randomly to assess the algorithm’s 

performance independently later.  The ML method is then trained by the training 
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data only. One can choose from numerous types of ML methods, all having pros 

and cons in precision, computational speed, and data amount handled. Fig. 19 

underlines the importance of choosing the appropriate method by showing how 

different patterns can be derived from the same training dataset conceptionally 

[45], [47]. 

 

 

Fig. 19: Four different patterns (a), (b), (c), and (d) derived from the same training data set 

(black dots) where the x-values represent features, and the y-values represent targets [42]. 

 

Depending on the ML task, there is a wide range of metrics to evaluate the 

performance of a trained ML algorithm. In supervised learning, the algorithm can 

be trailed with the features contained in the test data. Because it is unfamiliar with 

the test dataset, the algorithm predicts the target values, which one can compare 

with the known correct targets afterward. This insight can be used to optimize the 

algorithm’s parameters in an iterative process until the desired accuracy is 

reached [45]. 

 

 

4.3. Text mining 
 

Like data mining, text mining is also a branch of machine learning. It has a variety 

of definitions. Similarly, text mining can be seen as a process within KDD or as 

the extraction of information from written text. Further, a text itself can be 

represented by data, and methods of data mining might be applied to find text 

patterns. This application is often called “text data mining” [48].  
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This thesis focus on information extraction from the written text published in 

academic articles and papers. Therefore, it is important to understand the two 

different forms of how information is provided. Structured data describes the 

regular and predictable organized form of information, like tables or a set of lists. 

So, tables link pieces of information together, called “relation”. Formulated 

sentences adding up to text is unstructured data, like this master thesis 

containing much information spread over several paragraphs, chapters, and 

pages. Unstructured data cannot be processed digitally, however. Thus, the main 

goal of information extraction by text mining is to translate unstructured in 

machine-readable structured data, as summarized in the visual examples in Fig. 

20 [49]. 

 

 

Fig. 20: Two examples (a) and (b) for information extraction in text mining. 

 

In the generic example of Fig. 20 (a), one is interested in the cities the people live 

in. So, the information of the people’s names and their localization needs to be 

retrieved from the text. Along with this example, some essential aspects of the 

workflow of text mining information extraction can be outlined, as depicted in Fig. 

21.  

 

The text has to be broken into its individual sentences to make unstructured text 

processable for computers. Every sentence becomes an entry in a list. Then the 

sentences are split into the words they consist of, also called “tokens”. Now, the 

text is represented as a list of sentences, where every list element is a list of 

words itself [49].  
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Every word can be classified in word categories, like nouns, verbs, adjectives, 

adverbs, etc. This classification step is called “part-of-speech (POS) tagging” and 

is often done with the help of freely available online libraries, dictionaries, and 

programs. For a computer, this step is not trivial, as the word category is 

determined by context many times. Words like “current”, “list”, or “break” have 

different meanings and thus can be used as nouns, verbs, or adjectives. Because 

POS-tagging is a classification task, machine learning methods are applied to 

identify the correct word category [49]. 

 

Depending on the desired output, the information of interest, called “entities”, has 

to be found. Phrases like “New York” or “yield strength” consist out of two or more 

words but describe one entity. Their detection can be secured by libraries and 

dictionaries too [49]. In the example of Fig. 21, all the city names are detected by 

matching with an online library, and all the people’s names are determined as the 

other output class, e.g., simply by their capital letter.  

 

Finally, the relations described within the sentences have to be recognized as 

well to distinguish related entities from unrelated ones [49]. Fig. 21 shows that 

Clara is identified as an entity precisely because it is a name. However, her name 

is not incorporated in the database correctly because of the missing relation to a 

city. 

 

The example of Fig. 21 also clarifies that the first steps, namely sentence 

segmentation, tokenization, and POS-tagging, are quite standardized and 

universal in text mining. The logic of entity and relation recognition have to be 

customized to the information extraction task. 
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Fig. 21: Exemplary workflow of text mining information extraction (based on [49]). 
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5. Methods and computations 
 

The following chapters describe the methods considered and performed for 

information extraction from scientific articles. The algorithms were programmed 

in Python. The code and the computed spreadsheets are provided in Appendix 

A until Appendix D, and they are publicly available at [50]. 

 

 

5.1. Collecting files of scientific articles 
 

In many materials science research projects, material properties are determined. 

Then, the results are published in the relevant journals. Nowadays, their articles 

are accessed online. The reader retrieves a digital version of them, mostly in a 

Portable Document Format (PDF). With the evolution of text and data mining, the 

major publishers start to offer an Application Developer Interface (API), so 

researches can access the papers by programming code. Thereby, publishers 

turned into a very interesting source for gathering material properties. 

 

Scientific papers can have four parts containing information: the full-text field, 

tables, figures, and the paper’s metadata, thereunder the title, the abstract, the 

list of authors, or the publishing date. In 1993, Adobe Systems Incorporated 

developed the PDF with the goal “to enable users to exchange and view 

electronic documents easily and reliably, independent of the environment in 

which they were created or the environment in which they are viewed or printed” 

[51]. So, the PDF can be described as an electronic paper. It was never meant 

to transport or give access to datasets, but to represent them in a nice and 

readable way. Papers published before the internet are digitalized as PDFs 

mostly. Thus, the majority of scientific output from the last 40 years is distributed 

online in PDFs. On the other hand, HTML and XML-files provide data 

hierarchically structured, as shown in Fig. 22. Many papers of the last 15 years 

are available as such files where the paper’s parts, like the title, tables, and text 

body, are marked as such by a specific syntax. These file formats do not contain 

figures and might provide an online link to the figures instead. 
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Fig. 22: Simple example of an XML-file with the different document parts marked. 

 

For this thesis, the publishers Elsevier and Springer provided an API with full-text 

access to the articles available through the UC Berkeley library. Based on the 

query “Irradiation material test”, 13’641 and 12’571 full-text XML-files were 

retrieved from Elsevier and Springer, respectively. Because Taylor & Francis 

Online does not offer an API yet, 17’421 articles of their journals “Nuclear 

Technology”, “International Materials Reviews”, “Nuclear Science and 

Engineering”, and “Journal of Nuclear Science and Technology” were transferred 

after request. All articles were PDF-files, and their metadata was summarized in 

XML-files additionally. A minority of the XML-files even contained the paper’s full-

text. As four articles were found at Elsevier as well as at Springer, a total of 43’629 

XML-files, mostly containing full-texts of scientific papers, were gathered from the 

three mentioned publishers. 

 

In their work, Swain and Cole [52] have explained how to set up a program to 

extract chemical information automatically from the scientific literature. Their 

ChemDataExtractor yields chemical names, alphanumeric labels, spectroscopy 

attributes, and chemical properties out of HTML, XML, and PDF files. While 

processing the HTML and XML-files is working well and achieves stunning 

results, Swain reports limited support for PDFs. If at all, the extractor can process 

PDFs of a few subject relevant journals, and even then, the process seems to be 

unstable. Court and Cole [53] auto-generated a database of Curie and Néel 

temperatures of magnetic materials. Although their program is based on the 

ChemDataExtractor, PDF processing was disregarded totally. 

 

While the conversion of an XML to a clearly readable PDF is doable, the opposite 

way of PDFs into HTMLs or XMLs with marked document parts imposes big 

challenges to the informatics field. Because publishers use different layouts for 

their titles, graphs, figures, and tables as part of their corporate design, breaking 

up the PDF-document and marking the different parts correctly is the key issue.  
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Constantin et al. [54] tried to tackle this challenge with his converter “PDFX”. Also, 

PubGenius Inc. offers the payable program “Typeset” as a solution [55]. Both 

programs were tested by converting the PDF of [56], containing mathematic 

formulas, tables, and figures. Although Typeset was able to label metadata, 

headlines, text bodies, and figures correctly, both programs could not detect 

tables and convert formulas. Thus, just the XML-files were considered in the 

following steps for information extraction. 

 

 

5.2. Machine Learning approach 
 

Fig. 23 summarizes the natural language processing pipeline of the 

ChemDataExtractor [52] used to extract information out of the articles. For the 

steps of sentence splitting and tokenization, reliable algorithms are available. 

POS-tagging and entity recognition are crucial and challenging steps. POS-

taggers are ML algorithms trained on already manually tagged texts. The vast 

majority of POS-taggers have been trained on newspaper articles, like the Wall 

Street Journal (WSJ) corpus. Additional to the available WSJ corpus, the tagger 

of the ChemDataExtractor was trained on features of some chemistry articles and 

on the GENIA corpus, which contains tags of 2’000 Medline abstracts. This 

improves the performance of the tagger, especially in the biomedical and 

chemistry domain. Similarly, the entity recognizer is also a machine learning 

algorithm trained on the CHEMDNER corpus consisting of 10’000 PubMed 

abstracts with 84’355 manually annotated chemical entity mentions. 

 

 

Fig. 23: Natural language processing pipeline of the ChemDataExtractor [52]. 
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The available algorithms, especially for entity recognition, achieved unsatisfying 

scores for materials science and mechanical property entities. These results 

made clear that an ML text mining approach would be beyond the scope of this 

thesis, as materials science, particularly in the metal alloys field, is missing such 

essential corpora for this task. Thus, text mining on the full-text bodies of the 

papers became even more challenging. 

 

 

5.3. Classification of scientific articles 
 

The appearances of the three alloy names “SS316”, “HT9, and “Zircaloy-4” were 

searched in the full-texts of the 43’629 files to reduce processing times in the 

following steps. Therefore, the alloys, their abbreviations, and synonyms were 

described by Regular Expressions. Regular Expressions (Regex) enable defining 

a pattern out of a sequence of characters and syntactical rules. Fig. 24 visualizes 

an example of a Regex.  

 

Regular Expression: \bSS\s*[-]?\s*316\b 

Matches: Ignores: 

P SS316 
P SS 316 
P SS-316 

O pressure of 316 bar  
O more or less 316 
O STRESS 316 MPa 

Fig. 24: Example of a Regular Expression and its results. 

 

Such Regular Expressions are useful for search tasks of targeted entities 

because entities follow specific conventions usually. To mention the stainless-

steel alloy 316, for example, the entity used to name the alloy will often contain 

capital letters around the three digits “316”, like in “SS316”, “SS-316”, “316 SS”, 

or “AISI 316”. Regex can describe such syntactical conventions. Of course, 

several Regexes are necessary to cover the variety of entity synonyms and 

abbreviations. Meanwhile, the expression has to remain selective enough to 

reduce false matches. Accuracy of the Regular Expressions was ensured by a 

subset of articles that were traced throughout this classification step. The subset 

consisted of 100 randomly chosen papers, and for every alloy name, 20 manually 

chosen ones each. The Python code (Appendix A) found 5’137 papers with 

entities of “SS316”, “HT9, and “Zircaloy-4” in their texts. 
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5.4. Information extraction and consolidation 
 

As described in Ch. 4.3, text mining relies on POS-tagging and entity recognition. 

With the lack of corpora and thus trained machine learning algorithms, 

information extraction from the text bodies of the papers is not possible to 

implement. Of the other two scientific information containing parts of articles, 

namely figures and tables, just tables are included in XML-files. Subsequentially, 

the focus shifted to information extraction out of tables. The Python code found 

10’116 tables in the 5’137 files. 

 

Topic Entities 

Dose dose, dpa, neutron fluence, neutron flux 

Temperature temperature, °C, °F 

Mechanical properties yield strength, ultimate tensile strength, hardness 

Ductility properties uniform elongation, total elongation 

Toughness fracture toughness, J-integral 

Embrittlement upper shelf energy shift, transition temperature 

Creep creep strain, creep rate, creep compliance 

Swelling swelling rate, volume change 

Fig. 25: Overview of the entities considered to describe the topic of material mechanisms in 

nuclear fuel-cladding applications. 

 

Different entities relevant to material mechanisms in nuclear fuel-cladding 

applications were considered to be detected in order to record the content within 

the found tables. Fig. 25 gives an overview of the fields of material mechanisms 

and their entities to describe them. These entities were represented in different 

Regex to cover most of their synonyms, abbreviations, and unique units, while 

the code should provide enough selective accuracy. As in the classification 

before, the accuracy of this step was ensured by a subset of 100 randomly 

chosen papers and five manually chosen ones for every topic each. The number 

of appearances of the different entities in the 10’116 tables was counted and 

summarized in a spreadsheet. Fig. 26 outlines the structure of the spreadsheet 

containing the computed number of entity appearances. 285 tables contained at 

least one alloy and one material property entity. Strikingly, many articles in the 

nuclear design field were found because reactor designs are commonly 

summarized in tables containing information about chosen alloys, dose, 

temperature, and mechanical properties. 
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DOI Tab_nr Tab_text Alloys* Dose Temp Y
S 

U 
T 
S 

H
V 

U
E TE F_tough Embrit Creep Swelling 

10.1016/ 
j.jnucmat. 
2008.10.001 

Table 3 
Summary and 
literature 
comparison… 0 0 4 1 2 0 0 1 0 0 0 0 0 0 

10.1016/ 
j.nucengdes. 
2009.07.014 

Table 1 

Summary of 
design 
constraints for 
fast reactors. 0 0 0 4 14 0 0 0 0 0 0 0 0 0 

10.1016/ 
j.matchar. 
2017.12.038 

Table 2 

Hardness 
values 
reported in 
literature. 0 0 1 0 0 0 0 2 0 0 0 0 0 0 

Fig. 26: Outline of the actual 10’116 entries long spreadsheet containing the entity appearances 

within the corresponding table. Temp, YS, UTS, HV, UE, TE, F_tough, Embrit stand for 

temperature, yield strength, ultimate tensile strength, hardness, uniform elongation, total 

elongation, fracture toughness, and embrittlement, respectively. Alloys* is a placeholder for the 

actual “SS316”, “HT9”, and “Zr4” as column names. 

 

The ChemDataExtractor also retrieves chemical data from tables within the 

articles. In its information extraction step, it resorts to the trained entity recognizer 

to process the table layout. In this work, the information extraction had to be done 

manually, which increased the effort intensely. Thus, the information extraction 

was narrowed to the properties of SS316 only. 31 tables contained SS316, dose, 

and temperature entities. Especially the cited references of the found tables 

proved to be useful sources to build up a database of properties of SS316. 

Information about the purity level of the SS316 alloy or the pre-treatments, like 

annealed or cold-worked, were left disregarded. This reduced the dimension of 

the database. The material property values were gathered and occasionally 

converted to the units listed in Fig. 27. The resulting database contains 2’348 

entries in 391 instances. It is publicly available at [50]. 

 

To summarize the amount of information gathered in the database, regression 

analysis was performed to fit different function types by the method of least 

squares. Therefore, all data instances were converted, so they became 

dependent on the dose received (in dpa), and the homologous temperature (in 

K) based on the melting point of SS316 at 1400 °C [57]. Often the information of 

the energy profile of the neutron flux received by the material was missing. So, 

the dose was calculated based on the neutron fluence values (E > 0.1 MeV) 

multiplied with the rough estimate of 7.8·10-22 dpa·cm2 [14]. These fitted functions 

model the behavior of the SS316 alloy depending on irradiation temperature and 

dose. Then, the data points and the found functions were plotted. Based on these 

observations and insights from literature, a diagram mapping the material’s 

mechanisms were compiled. Similar to the deformation-mechanism map by 
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Ashby, this material map might give a better overview of the mechanisms to 

consider at a specific temperature and dose. 

 

Column name Unit Description 

fluence_0.1 n·cm-2 Reported neutron fluence with E > 0.1 MeV. 

fluence_1 n·cm-2 Reported neutron fluence with E > 1 MeV. 

fluence_total n·cm-2 Reported total neutron fluence. 

dose dpa Reported dose or dpa. 

irr_T °C Reported irradiation temperature. 

test_T °C Reported test temperature. 

YS MPa Reported yield strength. 

UTS MPa Reported ultimate tensile strength. 

UE % Reported uniform elongation or elongation at necking. 

TE % Reported total elongation. 

HV5 kg·mm-2 Reported Vickers hardness value with 5 kp test force. 

HV10 kg·mm-2 Reported Vickers hardness value with 10 kp test force. 

strain_rate s-1 Reported strain rate of the experiment. 

t_strain_range % Reported total strain range of fatigue experiments. 

N_fail 1 Reported load cycles until failure. 

N_crack 1 Reported load cycles until crack. 

J_integral kJ·m-2 Reported J-integral. 

rapture_life h Reported lifetime until rapture in creep experiments. 

creep_strain % Reported creep strain of creep experiments. 

density_decr % Reported density decrease in creep or swelling experiments. 

DOI - 
Digital Object Identifier (DOI) number of the source article of the 

instance. 

Fig. 27: Summary of the SS316 properties and their units gathered in the database. 
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6. Results and discussion 
 

The data collected in the database covers the field below 60 dpa and 0.65 

homologous temperature (T/TM) decently. Fig. 28 gives an overview of the dose 

and temperature values of the data instances. In general, data of material 

properties at high temperatures and doses above 100 dpa are sparse, as also 

reported by the NRC [58]. 

 

 

Fig. 28: Dose and temperature values of the data instances gathered. 

 

 

6.1. Hardening 
 

As explained in Ch. 3, the material mechanisms hardening, recovery, and 

recrystallization compete with each other when dose and temperature are 

elevated. Neglecting any dose, the yield strength (YS) of austenitic steels exhibits 

a severe drop above 0.4 T/TM. Different approaches are trying to model that 

behavior. While the NRC suggests a polynomial of the fourth order [58], the 

National Institute of Standards and Technology (NIST) advises in its technical 

note the following function [59]: 

03(") = 3 ⋅ GL- a−12 ⋅ S
"
b(
V
:'
− 12 ⋅ S

"
b;
V
:(
c + #	, Eq. 14 

where T is the temperature (in °C), and r1, r2, r3, r4, a, and d are fitting parameters. 

Several studies, e.g. [24], [56], [60]–[64], investigated the behavior of the YS at 

certain doses and elevated temperature. As shown in Fig. 29 (b), the YS exhibits 
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hardening which saturates after a specific dose at low temperatures. With 

increasing temperature, recovery can be measured. Noteworthy, some studies 

report initial hardening, although the temperatures are high enough for recovery. 

The influence of temperature on the dose-dependent recovery is challenging to 

model in a single function. An exponential function can describe the hardening 

and saturation behavior at lower temperatures [58]. However, a third-order 

polynomial was chosen, although it does not describe the saturation behavior 

because it fitted the recovery values at higher temperatures better. So, the dose 

dependence of the yield strength was modeled to be: 

03(#-3) = d + X ⋅ #-3 + \ ⋅ #-38 + ( ⋅ #-3(	, Eq. 15 

where k, l, m, and n are fitting parameters again. 

 

(a) 

 

(b) 

 

Fig. 29: Change of the yield strength by irradiation, showing initial hardening (a) and instant 

recovery (b) at elevated temperatures [24], [63]. 

 

Eq. 14 and Eq. 15 are then combined into the overall describing function: 

03(", #-3) = - ⋅ 03(") 	 ⋅ e ⋅ 03(#-3)	, Eq. 16 

where p and q are parameters, which need to be fitted to the dataset too. Thus, 

Eq. 16 is the combination of two 2D-models describing the influence of 

temperature and dose, respectively, on the yield strength. This approach aims to 

describe the experimentally measured material behavior as close as possible. All 

parameters in Eq. 14, Eq. 15 and Eq. 16 were computed by the Least Square 

method on the entire yield strength dataset. The fitted parameters of this and all 

the following functions are listed in Appendix E. 
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Fig. 30 shows the resulting yield strength function graphically. Physical 

reasonability of the resulting function is limited, as a second increase of yield 

strength above 50 dpa is unrealistic. Nevertheless, the adjusted R2-value of the 

function at 0.662 is quite substantial. Although present at lower temperatures 

already, recovery and re-irradiation become the dominating material mechanisms 

after the drop of the yield strength after its maximum. The function exhibits a slight 

shift of the maximum YS to lower dpa values with increasing temperature. 

 

 

Fig. 30: Yield strength (YS) data points (in black) and the 

computed yield strength function sy(T,dpa) in blue. 

 

Different than yield strength, a two-variate third order polynomial with 

temperature and dose as its variables (Appendix E) can describe the change of 

the ultimate tensile strength (UTS). Such a function describes the behavior 

reported in literature reasonably. Also, the adjusted R2-value of 0.632 is 

substantial. Yet, the negative values at very high temperatures and very high 

doses, and the second increase of the UTS at doses above 70 dpa, are again 

physically unrealistic. Publicly available UTS data at very high doses and 

temperatures would be necessary to model a more realistic material behavior. 
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A comparison of the obtained YS and UTS functions, shown in Fig. 31 (b), 

indicates that the UTS is not as sensitive to dose than the YS. Without recovery, 

YS and UTS will coincide with increasing dose in certain regions. This fact is also 

reported by others [62] and it results in unpredictable failures at low deformations. 

Between 2.5 and 25 dpa and below 0.4 T/TM, Fig. 31 (b) exhibits the region where 

the UTS is projected to be lower than the yield strength, which should be 

interpreted as the concurrence of YS and UTS. 

 

(a) 

 

(b) 

 

 

Fig. 31: (a) Ultimate tensile strength (UTS) data points and the fitted two-variant fourth-order 

polynomial. (b) Comparison of the two fitted functions of YS (in orange) and UTS (in blue) with 

each other. 

 

 

6.2. Embrittlement 
 

It was found that the best model to describe the decrease of the uniform 

elongation (UE) and the total elongation (TE), depending on the temperature and 

the dose, is a double polynomial function: 

%(") = 3 + f ⋅ " + & ⋅ "8 + # ⋅ "(	, 
%(#-3) = d + X ⋅ #-3 + \ ⋅ #-38 + ( ⋅ #-3(	, 

%(", #-3) = %(") ⋅ %(#-3)	, 

Eq. 17 

Eq. 18 

Eq. 19 

where % stands for the elongation in both cases, and a till n are fitting parameters. 
This double polynomial was chosen because it results in a reasonable description 

of the reported material behavior. Also, its adjusted R2-values of 0.581 and 0.461 

for UE and TE, respectively, are acceptable. Different than strength, the strain 
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does exhibit a plateau at medium doses and temperatures [65]. As seen in Fig. 

32, the function models the temperature dependence reasonably well, while it 

exaggerates the dose-dependent trend to another unrealistic increase. The data 

shows clearly that, in general, the loss of ductility, thus embrittlement, is present 

throughout the investigated field. 

 

(a) 

 

(b) 

 

Fig. 32: Uniform elongation (UE) (a) and total elongation (TE) (b) data points and the fitted 

double polynomial planes (in gray). 

 

Holmes et al. [65] summarized their work about the relationship of ductility, 

fluence, and temperature in a schematic diagram, as shown in Fig. 33. This figure 

was digitalized with the WebPlotDigitizer [66], such the boundary lines can be 

transferred into the material mechanism map (Fig. 38). 

 

 

Fig. 33: Schematic diagram of various ductility 

degradation processes [65]. 
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6.3. Creep and swelling 
 

Several studies, e.g. [65], [67]–[72],  investigated thermal and irradiation creep. 

Creep highly depends on the mechanical load or pressure acting on the material 

and not just on dose and temperature, as shown in Fig. 16 (b). However, 

irradiation creep is measurable at low doses and temperatures already. The 

irradiation and thermal portion on creep at high doses and high temperatures are 

often subject to research. Thus, the 0.4 T/TM-line was marked in the resulting 

material mechanism map (Fig. 38), because both creep contributions become 

significant from this point onward. 

 

Data of swelling, otherwise, often indicate an onset dose necessary, so the 

density decrease becomes noticeable. This behavior is also confirmed by the 

literature [68], [71]–[73], exemplarily shown in Fig. 34. Also, if a linear trend plane 

is fitted to the corresponding data in the database, an area without swelling is 

revealed, as seen in the contour plot Fig. 35 (b) clearly. So, the swelling boundary 

between 548 and 573 K in Fig. 34 was included in the material mechanism map 

(Fig. 38). 

 

 

Fig. 34: Calculated dose and temperature dependence of swelling [72]. 

 



6. Results and discussion 44 

 

(a) 

 

(b) 

 

Fig. 35: Density decrease data points (in black) with the fitted linear trend plane (in blue) as a 

3D-plot (a) and a contour plot (b). 

 

 

6.4. Precipitation formation 
 

Brager and Garner [71] summarized their findings of the irradiation-induced Ni3Si 

(g’) formation in a diagram shown in Fig. 36. Similarly, Brager and Straalsund [74] 
plotted their findings of defect developments in irradiated SS316 steel in one map 

(Fig. 37). Fig. 37 is a perfect example of a figure with high information density. 

Although the aim of their study was to examen the changes of voids and bubbles, 

their figure also depicts information about precipitation types and conditions for 

precipitation formation due to causal relationships. Data points of the depicted 

boundaries in Fig. 36 and Fig. 37 were taken with the WebPlotDigitizer [66], so 

an interpolation line can be added to the material mechanism map (Fig. 38).  

 

 

Fig. 36: Irradiation conditions for Ni3Si (g’) formation in SS316 [71]. 
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Fig. 37: Irradiation conditions for carbide and rod-shaped σ precipitation formations in SS316 

[74]. 

 

 

6.5. Materials mechanism map 
 

Fig. 38 is the resulting material mechanism map summarizing the information laid 

out in the chapters before. At the boundaries, the side of the description indicates 

the mechanism area where it is active. For example, swelling is present at higher 

temperatures and dose rates than the yellow boundary line.  

 

For the hardening-recovery boundary, the two extreme forms of the model are 

represented. The vertical dashed 0.3 T/TM-line represents instant recovery above 

the temperature (Model 1), while its alternative (Model 2) was constructed from 

the YS extreme values in [24]. Fig. 29 indicates that in both cases, the actual 

onset temperature for recovery is shifted by the dose anyway. The real boundary 

probably lies in between those two extremes. Further, the region where the YS 

coincides with the UTS in Fig. 31 (b) is indicated as the shaded “Brittle failure 

region”. 

 

Depending on the load, irradiation creep might be present within the whole 

depicted area. So, a place holder at 0.4 T/TM is added, marking roughly the 

moment of significant additional thermal creep. Both the trend of the data point 
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collection, as well as the literature, indicate a swelling onset boundary 

approximately in the same region. Thus, the boundary indicated in Fig. 34 was 

transferred into the map as well. The boundaries for carbide, σ and γ’ precipitation 

formation, Helium embrittlement, and embrittlement by matrix strengthening were 

digitalized from the scientific articles [65], [71], [74].  

 

 

Fig. 38: Material mechanism map for SS316, giving an overview of the different mechanisms to 

consider at specific doses and temperatures. For example, at 0.35 T/TM and 20 dpa (point A), 

one should consider swelling, hardening, the concurrence of YS and UTS, embrittlement, and 

irradiation creep and might neglect precipitation formations or Helium embrittlement. At 0.43 

T/TM and 55 dpa (point B), one should consider swelling, recovery and re-irradiation, 

embrittlement, thermal and irradiation creep, as well as the formation of carbide, σ, and γ’ 

precipitates. 

 

Of course, the indicated boundaries should be seen as guidelines, and exact 

scientific values should not be derived from them. For example, the hardening – 

recovery boundary comes with a big uncertainty due to contradictory models 

reported in the literature. Additionally, most of the indicated regions shift with 

parameters, which were not considered, like external load, pressure, cold-

working, strain rate, or reactions with the environment. Also, the information 

summarized in this map would become more robust with a more significant 

database. Especially adding more data instances at high temperatures and doses 

would enhance the fitted functions modeling the empiric material behavior. 
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7. Conclusions 
 

Material selection relies on the information of suitable materials, especially in 

nuclear applications, where material tests are complex and require special 

attention to safety. With their unseen service temperatures and much higher 

doses, the new generation of proposed nuclear reactors imposes new challenges 

to the known metal alloys. A more profound material selection one can make with 

the increasing amount and availability of the information. Peer-review scientific 

articles present an interesting source with high quality. Additionally, within the 

growing research community, it becomes increasingly harder to keep track of 

research progress in a specific field. Thus, the process of research and material 

selection could profit from automated information extraction. This thesis studies 

the possibilities of information extraction and information summarization of the 

properties of metallic alloys: 

• Information extraction from a large number of scientific articles is only 
possible by machine learning (ML) approaches, like natural language 

processing. 

• Those ML algorithms can process text and tables by splitting them up in 
smaller junks of words or word groups. These need to be characterized 

then, so a materials science entity, like “ultimate tensile strength” or “creep 

strain”, is detected as such. Therefore, the ML algorithm is trained on a 

collection of already labeled text, so-called corpora. For a reliable entity 

recognizer, several thousand articles need to be labeled manually and 

correctly. Such a corpus is missing in the materials science field for metal 

alloys properties. 

• In materials science, large amounts of data are typically presented 
graphically in a diagram. A fully automated plot digitizer would excavate 

enormous amounts of material data. 

• Big material databases enable the discovery of new correlations of 
material properties, which material scientists were not aware of yet. 

• With the increasing size of the database, its clarity declines. So, the 
information should be summarized, for example, in a material mechanism 

map. This material mechanism map depicts areas of material property 

changes one should consider under specific environmental conditions. 

• In this thesis, a material mechanism map for the austenitic steel SS316 
serving as nuclear fuel-cladding material was computed as an example for 

information summarization. 
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8. Outlook on information extraction 
 

Several databases contain information of elements, chemicals, or crystal 

structures, but databases of metallic alloys and steel grades are rare. Without the 

necessary corpora as fundaments for efficient natural language processing in the 

materials science field, the setup of big material databases remains laborious and 

unattractive. Fig. 39 summarizes the working principle and the identified 

challenges for fully automated information extraction. Additionally, some more 

challenges were identified during this thesis. 

 

In materials science articles, the data obtained in the research is typically 

presented in figures and graphics. Rarely, the results, e.g. of a tensile test, are 

listed in a table, but in most cases in a stress-strain curve. This practice is based 

on the fact that figures transport much more information on a smaller visual field. 

Thus, automatic digitalization of data points and curves, without manual 

reworking, would be valuable. However, this is a more informatics related 

research topic. On the other hand, making the corresponding raw dataset publicly 

available online, simultaneously with the paper publication, would improve 

scientific progress too. 

 

Noticeably, the majority of the data collected in this work was published in the 

1970s. Many other papers found by the algorithm cited those articles too. The 

XML-files of such articles are available, but the different article parts were not 

marked in their files. Even worse, some XML-files just contained the article’s 

metadata. Those are some of the reasons why the in this thesis elaborated 

algorithm could not find their tables automatically. Probably, these issues are 

consequences of scanning the paper original into a PDF and the missing 

sufficient converting programs. 

 

Notably, many articles containing material properties are published on ASTM 

Compass and International Nuclear Information System (INIS) of the IAEA. Both 

platforms do not offer an API yet, like Taylor and Francis Online. Their 

development of such service deserves to be fostered. 

 

The work of Swain and Cole [52] and the work of Court and Cole [75] are great 

examples, what could be possible based on the automated extraction of 

information. Court has been able to predict phase diagrams and transition 

temperatures of magnetic and superconducting materials. His extractor based on 
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the ChemDataExtractor can collect information form scientific articles for the 

calculation of phase diagrams of not considered compound combinations before 

their synthesis. 

 

 
Fig. 39: Overview of the working principle of the material data extractor based on the 

ChemDataExtractor [52]. Red fields represent the identified parts missing in materials science 

to achieve fully automated information extraction. 
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Appendix A: Python code collecting XML files 

1. import requests   
2. import numpy as np   
3. from bs4 import BeautifulSoup   
4. from elsapy.elssearch import ElsSearch   
5. from elsapy.elsclient import ElsClient   
6.    

7.    

8. def get_DOI_from_Springer(query: str, api_key: str) -> list:   
9.     springer_url = "http://api.springernature.com/metadata/pam"   

10.     page_step = 50   
11.     doi_list = []   
12.     url = springer_url + f"?q={query}&s=1&p=1&api_key={api_key}"   
13.     soup = BeautifulSoup(requests.get(url).text, "xml")   
14.     total = soup.find("total").get_text()   
15.     print("Total articles found: " + total)   
16.     for page in list(np.arange(1, int(total), page_step)):   
17.         url = springer_url + f"?q={query}&s={page}&p={page_step}&api_key={api_

key}"   

18.         soup = BeautifulSoup(requests.get(url).text, "xml")   
19.         doi_list.extend([doi.get_text() for doi in soup.find_all("dc:identifie

r")])   

20.     return doi_list   
21.    
22.    
23. def get_DOI_from_Elsevier(query: str, api_key: str) -> list:   
24.     config = {"apikey": api_key, "insttoken": ""}   
25.     client = ElsClient(config['apikey'])   
26.     client.inst_token = config['insttoken']   
27.     doc_srch = ElsSearch(query, 'sciencedirect')   
28.     doc_srch.execute(client, get_all=True)   
29.     doi_list = []   
30.     for element in doc_srch.results:   
31.         doi_list.append(element.get('dc:identifier'))   
32.     print("Total articles found: " + str(len(doi_list)))   
33.     return doi_list   
34.    
35.    
36. def download_XML(publisher: str, doi_list: list, dst_path: str, api_key: str):

   

37.     if not publisher == "Elsevier" or publisher == "Springer":   
38.         return print("Please choose the publisher correctly: 'Elsevier' or 'Sp

ringer'")   

39.     count = 0   
40.    
41.     for doi in doi_list:   
42.         file_path = doi.replace('/', '%')   
43.         if publisher == "Elsevier":   
44.             headers = {   
45.                 'Accept': 'application/xml',   
46.                 'X-ELS-APIKey': api_key   
47.             }   
48.             url = 'https://api.elsevier.com/content/article/doi/' + str(doi)   
49.             r = requests.get(url, stream=True, headers=headers)   
50.         else:   
51.             springer_url = 'https://spdi.public.springernature.app/xmldata'   
52.             r = requests.get(springer_url + f'/jats?q={doi}&api_key={api_key}'

)   

53.         with open(dst_path + f'/{file_path}.xml', 'wb') as path:   
54.             path.write(r.content)   
55.         count += 1   
56.         print(f"Downloaded: {count} of {len(doi_list)} XML files")   
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Appendix B: Python code classifying files 

1. import os, re   
2. import xml.etree.ElementTree as ET   
3. import pandas as pd   
4.    

5.    

6. def classify_file_by(directory_path: str, entities: dict):   
7.     data_frame = []   

8.     count = 0   

9.     file_list = os.listdir(directory_path)   

10.     for file in file_list:   
11.         print(f"File now being classified: {file}")   
12.         try:   
13.             tree = ET.parse(os.path.join(src, file))   
14.         except:   
15.             continue   
16.         root = tree.getroot()   
17.         xml_string = str(ET.tostring(root, encoding='utf8', method='xml'))   
18.         for expression in entities.values():   
19.             if re.search(expression, xml_string) and file not in data_frame:   
20.                 data_frame.append(file)   
21.                 count += 1   
22.                 print(f"Entities found in {count} papers")   
23.     df = pd.DataFrame(data_frame)   
24.     df.to_excel("Files_classifications.xlsx")   
25.     return print('Classifications exported to "Files_classifications.xlsx"')   
26.    
27.    
28. src = "/directory full of XMLs/path/"   
29. material_list = {   
30.     '316SS':    'SS\s*[-]?\s*316|316\w*\s*[-]?\s*SS|316\w*\s*[-

]?\s*(stainless)?\s*[-]?\s*steel|'   

31.                 '(stainless)?\s*[-]?\s*steel\s*[-]?\s*316|AISI\s*[-
]?\s*\w*\s*[-]?\s*316',   

32.     'HT9':      '(?:HT|Ht|ht)\s*[-]?\s*9',   
33.     'Zr4':      '([Zz]ircal{1,2}oy|[Zz]r)\s*[-]?\s*4',   
34.                  }   
35. classify_file_by(src, material_list)   
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Appendix C: Python code finding entities in tables 

1. import re, os   
2. from bs4 import BeautifulSoup   
3. import pandas as pd   
4. import numpy as np   
5.    

6. def find_entities_in_tables(dirctory_path: str, file_list, entities: dict):   
7.     data_frame = []   

8.     columns= ['DOI', 'Tab_nr', 'Tab_text'] + [key for key in entities.keys()] 
  

9.     count = 0   

10.     for file_name in file_list:   
11.         with open(os.path.join(dirctory_path, file_name)) as file:   
12.             soup = BeautifulSoup(file)   
13.         tables = []   
14.         tables.extend(soup.find_all("table-wrap"))   
15.         tables.extend(soup.find_all("ce:table"))   
16.         doi = file_name.replace('%', '/').replace('.xml', '')   
17.         print(f'File now being searched: {doi}')   
18.         for table in tables:   
19.             instance = [doi]   
20.             try:   
21.                 instance.append(table.find("ce:label").getText())   
22.             except:   
23.                 try:   
24.                     instance.append(table.find("label").getText())   
25.                 except:   
26.                     instance.append(np.NaN)   
27.             try:   
28.                 instance.append(table.find("ce:simple-para").getText())   
29.             except:   
30.                 try:   
31.                     instance.append(table.find("p").getText())   
32.                 except:   
33.                     instance.append(np.NaN)   
34.             table_string = str(table.text)   
35.             for expression in expressions.values():   
36.                 instance.append(len(re.findall(expression, table_string)))   
37.             data_frame.append(instance)   
38.         count += 1   
39.         print(f'file {count} of {len(file_list)} processed')   
40.     df = pd.DataFrame(data_frame, columns=columns)   
41.     df.to_excel("Entities_in_tables_v3_1.xlsx")   
42.    
43.    
44. file_list = pd.read_excel("Papers_containing_alloys.xlsx")   
45. src = "/Users/Rene/Dropbox/Master Thesis/Paper Population"   
46. expressions = {   
47.     '316SS':    'SS\s*[-]?\s*316|316\w*\s*[-]?\s*SS|316\w*\s*[-

]?\s*(stainless)?\s*[-]?\s*steel|(stainless)?\s*[-]?\s*steel\s*[-

]?\s*316|AISI\s*[-]?\s*\w*\s*[-]?\s*316',   

48.     'HT9':      '(?:HT|Ht|ht)\s*[-]?\s*9',   
49.     'Zr4':      '([Zz]ircal{1,2}oy|[Zz]r)\s*[-]?\s*4',   
50.     'Dose':     '\b[Dd]ose\b|\bdpa\b|\bDPA\b|n\/cm\^*(<sup loc="post">)*2|[Nn]

*(eutron)*\s*[-]?\s*([Ff]luence|[Ff]lux)|[Ff]luence|[Ff]lux',   

51.     'Temp':     '[Tt]emperature|[Tt]emp\.*|°C|°F|\bT\b|\bK\b',   
52.     'YS':       '[Yy]ield[–]?\s*[-]?\s*[Ss](?:trength|tress)|\bYS\b',   
53.     'UTS':      '(?:[Uu]ltimate\s*[-]?\s*(?:[Tt]ensile)*|[Tt]ensile)\s*[-

]?\s*[Ss](?:trength|tress)|\bUTS\b|\bTS\b',   

54.     'HV':       '[Hh]ardness|[Hh]ardening|\bHV\b|\bHRC?\b',   
55.     'UE':       '[Uu]niform\s*[-]?\s*(?:[Pp]lastic)?\s*[-

]?\s*(?:[Ee]longation|[Ss]train)|\bUE\b',   
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56.     'TE':       '(?:[Tt]otal|[Uu]ltimate)\s*[-]?\s*(?:[Pp]lastic)?\s*[-
]?\s*(?:[Ee]longation|[Ss]train)|(?:[Ee]longation|[Ss]train)\s*[-]?\s*at\s*[-

]?\s*(?:[Bb]reak|[Ff]racture)|\bTE\b',   

57.     'F_tough':  '[Ff]racture\s*[-]?\s*[Tt]oughness|[Jj]\s*[-
]?\s*[Ii]ntegral|k?J\/m\^*(<sup loc="post">)*2|MPa\s?.?\s?m\^*(<sup loc="post"

>)*1\/2|[Ff]racture',   

58.     'Embrit':   '(?:[Dd]uctile\s*[-]?\s*[Bb]rittle)?\s*[-
]?\s*[Tt]ransition\s*[-

]?\s*(?:[Tt]emperature|[Tt]emp\.*|\bΔT\b|\bTT\b)|(?:[Uu]pper\s*[-

]?\s*[Ss]helf\s*[-]?\s*[Ee]nergy|USE)\s*[-

]?\s*[Ss]hift|\bΔ?USE\b|[Ee]mbrittlement|[Ii]mpact\s*[-]?\s*[Tt]est|Charpy',   

59.     'Creep':    '[Cc]reep\s*[-
]?\s*(?:[Rr]ate|[Ss]train|[Cc]ompliance)|[Tt]ensile\s*[-

]?\s*[Ss]train|[Ss]train\s*[-]?\s*[Rr]ate|[Cc]reep',   

60.     'Swelling': '[Ss]welling\s*[-]?\s*[Rr]ate|[Ss]welling'   
61. }   
62. find_entities_in_tables(src, file_list.values, expressions)   
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Appendix D: Python code plotting the material 
mechanism map 

1. import matplotlib.pyplot as plt   
2. import numpy as np   
3.    

4.    

5. def linear_function(x, coeff, displ):   
6.     return coeff * x + displ   
7.    

8.    

9. def power_function(x, exp, coeff, displ):   
10.     return coeff * x ** exp + displ   
11.    
12.    
13. def gamma_precipitation(temperature):   
14.     params = [129811, -145706, 53297, -6270.4]   
15.     polynomial: float = 0   
16.     order = len(params) - 1   
17.     for i, p in enumerate(params):   
18.         polynomial += p * temperature ** (order - i)   
19.     return polynomial   
20.    
21.    
22. def carbide_precipitation(temperature):   
23.     params = [-3721.5, 7061.9, -4173, 796.32]   
24.     polynomial: float = 0   
25.     order = len(params) - 1   
26.     for i, p in enumerate(params):   
27.         polynomial += p * temperature ** (order - i)   
28.     return polynomial   
29.    
30.    
31. def hardening(temperature):   
32.     params = [-104.57, 70.463]   
33.     return linear_function(temperature, *params)   
34.    
35.    
36. def swelling(temperature):   
37.     params = [-1338.5, 458.4]   
38.     return linear_function(temperature, *params)   
39.    
40.    
41. def he_embrittlement(temperature):   
42.     params = [14.8, 2E6, 0]   
43.     return power_function(temperature, *params)   
44.    
45.    
46. def matrix_strengthening(temperature):   
47.     params = [32.665, 2E12, 0]   
48.     return power_function(temperature, *params)   
49.    
50.    
51. plt.rcParams.update({'font.size': 14})   
52. max_dpa = 60   
53. fig, ax = plt.subplots()   
54. ax.plot(np.linspace(.3, .8, 200), gamma_precipitation(np.linspace(.3, .8, 200)

), "#85d22e")   

55. ax.plot(np.linspace(.414, .606, 200), carbide_precipitation(np.linspace(.414, 
.606, 200)), "g-")   

56. ax.vlines(.414, 0, max_dpa, colors="g")  # lower sigma-precipitation limit   
57. ax.vlines(.606, 0, max_dpa, colors="g")  # upper sigma-precipitation limit   
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58. ax.plot(np.linspace(.3, .8, 200), hardening(np.linspace(.3, .8, 200)), "k-
")  # hardening (model 2) limit   

59. ax.vlines(.3, hardening(.3), max_dpa, colors="k")   
60. ax.vlines(.3, 0, max_dpa, colors="k", linestyles="dashed")  # hardening (model

 1) limit   

61. ax.fill_between(np.linspace(.15, .4, 200), 2.5, 25, facecolor='#CFCFCF')  # br
ittle failure region   

62. ax.plot(np.linspace(0, .8, 200), swelling(np.linspace(0, .8, 200)), "y-")   
63. ax.vlines(.4, 0, max_dpa, linestyles="dotted", colors="r")  # thermal creep li

mit   

64. ax.plot(np.linspace(.465, .8, 200), matrix_strengthening(np.linspace(.465, .8,
 200)), "b-")   

65. ax.plot(np.linspace(.44, .465, 200), matrix_strengthening(np.linspace(.44, .46
5, 200)), "b--")   

66. ax.plot(np.linspace(.465, .8, 200), he_embrittlement(np.linspace(.465, .8, 200
)), "c-")   

67. ax.set_title("Material mechanisms of SS316")   
68. ax.set_xlabel('homologous Temperature')   
69. ax.set_ylabel('Dose [dpa]')   
70. ax.set_xlim(.25, .65)   
71. ax.set_ylim(0, max_dpa)   
72. plt.show()   
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Appendix E: Parameters of the fitted functions 
 

Eq. 14 a r1 r2 r3 r4 d 

YS(T) 0.318876984 18.5265562 11.7588423   0.418179520 3.59603477 0.187349721 

 
 

Eq. 15 k l m n 

YS(dpa) 2.80000188e+03 5.61932706e+02 -2.35774901e+01   2.74088924e-01 

 
 

Eq. 16 p q 

YS(T,dpa)  5.10570844e-01 5.0573754e-01 

 
 

Eq. 17 a b c d 

UE(T) 8.49337847e-02 -4.85010749e-01   1.06781565e+00 -8.01985255e-01 

 
 

Eq. 18 k l m n 

UE(dpa) 1.92637231e+03  -2.41587712e+02   1.22918216e+01 -1.78411064e-01 

 
 

Eq. 17 a b c d 

TE(T) 6.28821166e-01  -3.29584472e+00   6.70478283e+00 -4.56338573e+00 

 
 

Eq. 18 k l m n 

TE(dpa) 2.73066196e+02  -2.89639199e+01   1.42399236e+00 -2.04339625e-02 

 
 

!"#(", &'() = ( + ,(") + -(&'() + &"! + .(")(&'() + /(&'()! + 
0(")" + ℎ(")!(&'() + 2(")(&'()! + 3(&'()" 

a b c d e 

1.23190167e+02 4.64797535e+03   1.30728828e+01 -1.18952194e+04 6.36538533e+01 

f g h i j 

-8.61480333e-01   7.81075997e+03 -1.20157338e+02 5.18521072e-01   7.08209060e-03 

 
 


