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Abstract 

Hierarchically structured materials, found in nature in various forms, often exhibit a complex 

profile of properties even though they only consist of a rather small spectrum of chemical 

elements. The variations in their macroscopic properties can be attributed to the structure of 

the materials and therefore various measuring techniques are required for the 

characterization of the structure on all levels to be able to exploit the materials’ full potential. 

In this work composites made from cellulose nanocrystals (CNC) and polyethylene glycol (PEG) 

were synthesized and characterized using UV-vis spectroscopy as well as small-angle x-ray 

scattering. The main task of this work was the characterization of the photonic structure of 

the CNC/PEG composites depending on the polyethylene glycol content in order to gain a 

better understanding of the optical properties of these films. For this purpose, CNC/PEG 

composite films with different PEG contents ranging from 0 to 40 weight percent were 

synthesized and characterized with small-angle x-ray scattering at several angles. It was shown 

that with increasing amount of PEG the layer spacing of the cholesteric structure increased 

resulting in a shift of the reflected colour of the films towards red. Further, small-angle x-ray 

scattering experiments were performed at elevated relative humidity levels to get a deeper 

insight into the reversible change of the chiral nematic structure of the CNC/PEG composite 

films on the nanoscale when subjected to humidity. 

The subsequent evaluation of the SAXS data in the form of a two-dimensional indirect Fourier 

transformation (IFT) yielded one-dimensional as well as two-dimensional real space functions 

out of which structural parameters of the CNC/PEG composite films could be qualitatively 

extracted. 

 

 

 

 



 

Kurzfassung 

Hierarchisch strukturierte Materialien, wie sie in der Natur in vielfältigster Form vorkommen, 

weisen oft komplexe Eigenschaftsprofile auf obwohl sie sich nur aus einem geringen Spektrum 

an chemischen Elementen zusammensetzen. Die Unterschiede in den makroskopischen 

Eigenschaften sind auf den strukturellen Aufbau zurückzuführen und um das Potential dieser 

Materialien voll ausschöpfen zu können bedarf es oft mehrerer Messmethoden zur 

Charakterisierung der Struktur auf allen Ebenen. 

In der vorliegenden Arbeit wurden auf Nanozellulose (CNC) und Polyethylenglykol (PEG) 

basierende Verbundwerkstoffe synthetisiert und anschließend mit UV/VIS-Spektroskopie 

sowie Röntgen-Kleinwinkelstreuung charakterisiert. Die zentrale Aufgabe dieser Arbeit lag 

darin den Aufbau der photonischen Struktur der Verbundwerkstoffe in Abhängigkeit vom 

Polyethylenglykol-Gehalt zu analysieren, um die optischen Eigenschaften dieser Filme besser 

zu verstehen. Dazu wurden Nanozellulose-Polyethylengykol-Filme mit PEG-Gehalten von 0 bis 

40 Gewichtsprozent hergestellt und die Filme unter verschiedenen Winkeln mit Röntgen-

Kleinwinkelstreuung untersucht. Es konnte gezeigt werden, dass mit zunehmendem 

Polyethylenglykol-Gehalt der Abstand zwischen den einzelnen Lagen der cholesterischen 

Struktur zunahm was zu einer Verschiebung der reflektierten Farbe der Filme in Richtung Rot 

führte. Um einen besseren Einblick in die reversible Änderung der chiral-nematischen Struktur 

der CNC/PEG-Filme im Nanometerbereich in feuchter Atmosphäre zu erhalten wurden ebenso 

Streuexperimente bei erhöhter Luftfeuchtigkeit durchgeführt. 

Die anschließende Auswertung der SAXS-Daten in Form einer zweidimensionalen indirekten 

Fourier-Transformation (IFT) lieferte eindimensionale als auch zweidimensionale 

Realraumfunktionen aus denen strukturelle Parameter der CNC/PEG-Filme qualitativ 

erarbeitet werden konnten. 
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1. Introduction 

1.1 Relevance of hierarchically structured materials 

Hierarchical structures can be found in numerous forms throughout nature with bone, wood 
and nacre just being a few examples. These hierarchically structured materials exhibit a wide 
range of unique properties which are mainly related to their structure. [1] The key to 
successfully synthesize a material with the desired properties therefore lies amongst other 
things in the control and modification of a materials structure. [2] 

 

Figure 1: The hierarchical structural levels of bone [2] 

The principle of such a hierarchical material can be illustrated for example by human compact 
bone shown in Figure 1 having several hierarchical levels from the nanometre to the 
micrometre-range and eventually on to macroscopic dimensions which lead to its 
multifunctional profile. At the nanoscale small fibres consisting of collagen and hydroxyapatite 
are responsible for bones stiffness while the interactions between those two components give 
bone part of its toughness with cement lines acting as weak interfaces. At larger scales the 
porous structure plays a vital role in hosting osteocytes, living cells that remodel the bone 
according to the predominant stresses, while smaller pores containing blood vessels ensure 
the delivery of nutrients to the tissue. [2] [3] 

No other iconic landmark than the Eiffel Tower in Paris has been inspired by the hierarchical 
structure of bone as Gustav Eiffel was influenced by the work of anatomy professor Hermann 
von Meyer who had studied how the structure of the thigh bone (femur) enables it to 
efficiently carry loads. (see Figure 2) The mathematical translation of these findings by Karl 
Cullman then lead to the design of the Eiffel Tower as we know it today. 
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Owing to its distinctive structure the 324-meter-tall Eiffel Tower only has a relative density of 

1.2 ∙ 10-3 that of iron making it rather lightweight in comparison. [2] [3] [4] 

 

 

↔ 

 

Figure 2: The hierarchical structures of the femur and the Eiffel Tower [2] [3] 

 

The synthesis of multifunctional materials has been ever since of scientific interest and so 

nanoscopic biological building blocks have also been used to create hierarchical structures. 

The potential of cellulose based building blocks for hierarchically structured materials was 

already recognised in the second half of the 20th century as the concentration-dependent 

hierarchical self-assembly of cellulose microfibrils in aqueous suspensions was detected 

though understanding of these structures remained limited. [5] 

With recent advances in this field several nanocellulose-based composites have been 

synthesized and functionalized yielding composites with remarkable properties and 

applications ranging from transparent or conductive paper and flame-retardant devices to 

incorporation in organic light emitting diodes (OLEDs) or colorimetric sensors. [6] [7] Cellulose 

nanocrystals seem to be one of the most promising sustainable materials in this context due 

to their natural abundance and low cost. Furthermore, their ability to self-assemble into 

photonic structures and their inherent biocompatibility and -degradability makes them ideal 

for bio-based photonic applications. [7] [8] [9] 
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1.2 Scope of this thesis 

In this work composite films based on cellulose nanocrystals and polyethylene glycol were 

synthesized and characterized using UV-vis spectroscopy as well as small angle scattering 

(SAS) or to be more precise small-angle x-ray scattering (SAXS). In order to obtain a better 

understanding of the change in photonic structure of these films depending on the 

polyethylene glycol content, films with different PEG contents were characterized with small-

angle x-ray scattering at several angles. To get a deeper insight into the reversible change of 

the chiral nematic structure of the CNC/PEG composites, scattering experiments at elevated 

relative humidity levels were also performed. 
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2. Fundamentals 

2.1 Interaction of matter with light 

At the heart of any scattering technique lies the interaction of an incoming particle like an 

electron, photon or neutron with the matter to be analysed. As schematically shown in 

Figure 3 for a photon of an x-ray beam the interaction can range from absorption, reflection 

and transmission to the elastic and inelastic scattering of the photon. The type of interaction 

is dependent on numerous factors including but not limited to the type of material and its 

thickness as well as beam characteristics. [10] [11] [12] 

  

Figure 3: Schematic representation of the different interactions of matter with light: 
(a) reflection (b) absorption (c) transmission (d) elastic scattering (Es = Ei) (e) inelastic 

scattering (Es ≠ Ei). Figure adapted and redrawn from [16]. 

Ultimately all emitted radiation from the analysed material holds some information on the 

chemical composition or the internal structure of the material but as small angle x-ray 

scattering experiments were carried out only the theory of elastic scattering of x-rays will be 

described in the following. 
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2.2 Scattering theory 

2.2.1 Basics 

According to the particle-wave dualism x-rays can either be seen as particles (photons) or as 

electromagnetic waves with wavelengths in the Ångström range and thus x-ray scattering 

techniques can inherently resolve structures down to the atomic level. Those electromagnetic 

waves consist of an alternating electric E and magnetic field H which are perpendicular to the 

direction of propagation. Omitting the magnetic field for the sake of simplicity leads to the 

following mathematical description of the electric field in its complex form. [10, 12, 13, 16] 

𝑨(𝒓, 𝑡) = 𝐴𝑖 ∙ 𝑒𝑖(𝒌∙𝒓−𝜔𝑡)  (1) 

Ai = initial amplitude of the electric field E [V/m] 

k = wavevector (k=2π/λ) [m-1] 

ω = angular frequency [s-1] 

As already illustrated in Figure 3 the photon can now mainly interact with matter in one of 

two ways, it can either be absorbed, which is the case for lower x-ray energies, or it can be 

scattered. Scattering can take place with or without preservation of energy while the 

propagation direction is altered containing information about the structure of the material. In 

the case of an elastic scattering event the electromagnetic wave changes its direction of 

propagation while conserving its energy, which is defined in the following. [10] [12] [16] 

𝐸 = ℎ𝜈 = ℏ𝜔  (2) 

h = Planck constant [Js] 

ℏ = reduced Planck constant [Js] 

ν = frequency [s-1] 

This change in the direction of propagation can be expressed by the aforementioned 

wavevector k which changes as well in the direction of propagation usually denoted by the 

scattering angle 2θ. This can be seen in Figure 4a and leads to the definition of the scattering 

vector q. [10, 12, 14, 16] 

𝒒 =  𝒌𝒔 − 𝒌𝒊  (3) 

ki = wavevector of the initial wave [m-1] 

ks = wavevector of the scattered wave [m-1] 

Compared to an elastic scattering event the absolute values of the wavevectors differ from 

each other in the case of inelastic scattering (|𝒌𝒊| ≠ |𝒌𝒔|) while they are otherwise unaffected 

(|𝒌𝒊| = |𝒌𝒔|). [12] [14] [16] 
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For simplicity, the kinematical approximation is assumed in the following, which states that 

the x-ray is only scattered once assuming that the impinging x-rays are only weakly interacting 

with the crystal leaving no possibility for the wave to be scattered again before leaving the 

sample. This assumption is also known as the Born approximation. [12] 

a) b) 

 

Figure 4: (a) Schematic depiction of the scattering event of an incoming beam ki which is 
scattered by an angle 2θ and the scattered beam ks including the momentum transfer which 
is also known as the scattering vector q. (b) Interference of two waves originating from the 
origin O and a position O + r depending on the phase difference between the two scattering 
centres. Figures adapted and redrawn from [12] and [16]. 

Using a purely classical model, the electron density can be expressed by a number density ρ(r) 

with the vector r referring to the position of an individual charge (scattering centre). (see 

Figure 4b) The whole scattering can then simply be described by the superposition of all the 

waves scattered at different volume elements of this electron distribution ρ(r). As already 

mentioned though, this depends on the phase difference of the scattered waves, which in the 

case of Figure 4b for the scattering centres at positions O and O + r can be expressed by 

equation 4. [12] [15] Whether the scattered waves interfere constructively (in phase) or 

destructively (out of phase) is not only dependent on the scattering angle 2θ then but also on 

the orientation as well as the distance of the scattering centres as seen from equation 4. [10] 

∆𝜑(𝒓) = (𝒌𝒊 − 𝒌𝒔) ∙ 𝒓 = 𝒒 ∙ 𝒓 (4) 

If the wavelength λ is known, the scattering vector q can be described by the scattering 

angle 2θ as depicted in the triangle in Figure 4b leading to the following expression for its 

magnitude. [12] [14] 

|𝒒| = 2|𝒌| sin θ =
4𝜋

𝜆
∙ sin θ (5) 

This is commonly done in small-angle x-ray scattering experiments as scattering patterns 

(intensity I) are commonly plotted as a function of the scattering vector q thus eliminating the 

wavelength. [10] [14] 
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The amplitude of the scattered wave can be expressed by the Fourier transform of the 

electron density distribution 

𝐴(𝒒) = ∫ 𝜌(𝒓)
𝑉

0

∙ 𝑒(−𝑖∙𝒒∙𝒓)𝑑𝑟 (6) 

and vice versa the electron density can be obtained from the inverse Fourier transform of the 

scattering amplitude. [14] [15] 

𝜌(𝒓) =
1

(2𝜋)3
∫ 𝐴(𝒒) ∙ 𝑒(𝑖∙𝒒∙𝒓)𝑑𝑞 (7) 

The intensity I(q) can then be calculated by squaring the amplitude A(q) of the scattered wave 

leading to the following definition in reciprocal space (also called q space). [14] [15] 

𝐼(𝒒) = 𝐴(𝒒) ∙ 𝐴(𝒒)∗ = ∫ ∫ 𝜌(𝒓𝟏) ∙ 𝜌(𝒓𝟐) ∙ 𝑒−𝑖𝒒(𝒓𝟏−𝒓𝟐)𝑑𝑟1𝑑𝑟2 (8) 
 

I(q) = intensity [a.u.] 

A(q) = amplitude of the scattered wave [V/m] 

A(q)* = complex conjugate of A(q) [V/m] 

Integrating equation 8 in a two-step process, starting with the summary of all the pairs of 

scattering centres with equal relative distance and then integrating over all possible relative 

distances comprising the phase factor clearly illustrates the reciprocal relationship between 

ordinary and reciprocal space. The integration over all the possible relative distances 

consequently yields the intensity distribution in reciprocal space which is a Fourier transform. 

𝐼(𝒒) =  ∫ 𝜌̃2(𝒓) ∙ 𝑒−𝑖∙𝒒∙𝒓𝑑𝑟 (9) 

𝜌̃2(𝒓) = density of all electron pairs with the same relative distance r [e-/m3] 

The electron density of all the electron pairs with the same relative distance 𝜌̃2(𝒓) can then 

be expressed vice versa by the inverse Fourier transform of I(q). 

𝜌̃2(𝒓) = (
1

2𝜋
)

3

∫ 𝐼(𝒒) ∙ 𝑒𝑖∙𝒒∙𝒓𝑑𝑞 (10) 

Assuming a statistically isotropic system further simplifies equation 9 by taking the spherical 

average over all directions of r for the phase factor. 

〈𝑒−𝑖∙𝒒∙𝒓〉 =
sin(𝑞 ∙ 𝑟)

𝑞 ∙ 𝑟
 (11) 
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This orientational average, first derived by Debye in 1915 [17], is represented here by angle 

brackets 〈… 〉 and yields in combination with equation 9. [12] [15] 

𝐼(𝑞) = ∫ 4𝜋𝑟2 ∙ 𝜌̃2(𝑟) ∙
sin 𝑞 ∙ 𝑟

𝑞 ∙ 𝑟
𝑑𝑟 (12) 

As implied by the previous equations reciprocal and real space are simply connected by the 

phase q∙r meaning that the result is the same whether r is large and q is small or the other way 

round. This is of great importance as it shows that small particles (smaller r) will give rise to 

diffraction patterns across the q-range (greater q) and larger particles (bigger r) on the other 

hand will lead to diffraction patterns situated at smaller angles (lesser q). [15] 

It has to be noted, that it is not the electron density that makes a contribution to the detected 

diffraction pattern in the end but rather the fluctuations around the mean electron density 

that lead to a signal. [10] [15] 

 

2.2.2 Small angle x-ray scattering 

Small angle x-ray scattering refers to an analytical non-destructive technique for the 

determination of structural features of a sample by elastic scattering of x-rays. X-rays are 

recorded at small angles, typically around 0.1° to 10°, giving SAXS its name. As already 

emphasized before larger particles or structural features give rise to scattering at smaller 

angles and so according to the reciprocity law typically structures between ∼0.5 nm and 

∼100 nm can be resolved in the angular range of SAXS depending on the experimental setup. 

As the beam itself illuminates more than one particle in the sample volume though the 

scattering patterns contain information about the average particle sizes or shapes in the 

sample. The resolution of these average structural parameters depends on several factors 

including but not limited to the pixel size of the detector, the sample-to-detector distance 

(SDD) as well as the size of the beam stop and the photon energy. Figure 5 shows such a 

schematic small angle x-ray scattering setup featuring a few of the aforementioned resolution 

limiting factors. [10] [14] [15] 
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Figure 5: Schematic representation of a small angle x-ray scattering setup. Figure adapted and 
redrawn from [16]. 

The total scattered intensity detected from a system of identical particles can be calculated as 

shown in the following [10] [16] [18] 

𝐼(𝒒) = 𝑁 ∙ 𝑉2 ∙ ∆𝜌2 ∙ 𝑃(𝒒) ∙ 𝑆(𝒒) (13) 
 

N = number of particles [-] 

V = volume of a particle [m3] 

Δρ = fluctuations of the scattering length density [m-2] 

P(q) = form factor [-] 

S(q) = structure factor [-] 

including two important factors, namely the form factor P(q) and the structure factor S(q), 

containing information about the inner structure of the sample. The form factor P(q) obviously 

comprises information about the morphology - size, shape and internal density distribution - 

of the particles while the structure factor S(q) holds information about inter-particle 

interactions like the degree of order as well as the distances between particles. In a dilute 

system particle-particle interactions can be neglected and equation 13 is simplified as the 

structure factor S(q) ≈ 1. It has to be kept in mind though that the information gained about 

the structure is only accurate for particles having a narrow size distribution as with increasing 

polydispersity an average scattering pattern is obtained due to the summary of the different 

form factors of all the particle sizes. [10] [12] This can lead to ambiguities, since for example 
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the scattering pattern of a non-spherical object can be identical to the one of polydisperse 

spheres. [20] 

An important thing to keep in mind as well is that in scattering experiments only the intensity 

can be measured while the amplitude cannot be obtained which leads to a loss of the phase 

of the electric field. Hence, knowledge about the structure from e.g. complementary 

experimental techniques is required beforehand for the unambiguous interpretation of the 

data. [10] 

 

2.3 SAXS analysis 

A proper analysis of a small angle x-ray scattering experiment starts with processing of the 

detected scattering data. As already mentioned before the intensity I is usually depicted as a 

function of the scattering vector q leading to a two-dimensional scattering pattern as shown 

in Figure 5. Before this data can be interpreted though any additional scattering not 

originating from the sample needs to be corrected. Basically, anything in the pathway of an 

x-ray beam leads to scattering and thus a background correction is necessary. To keep 

undesirable scattering to a minimum and reduce the influence of the primary beam tails the 

sample-to-detector distance should therefore ideally be in vacuum as even air produces 

scattering. 

Taking a closer look at the mathematical expression of the scattering intensity I(q) 

(equation 13) it is evident that it consists of three parts. 

∆𝐼𝑎𝑏𝑠(𝒒) = 𝐾 ∙ 𝑃(𝒒) ∙ 𝑆(𝒒) (14) 
 

ΔIabs(q) = background corrected intensity [cm-1] 

K = constant [cm-1] 

K contains all the constant terms, e.g. the number of the particles and their volume etc., while 

P(q) and S(q) represent the angle dependent form and structure factor. The information on 

the structural parameters of the particles consequently lies in the latter two factors. Figure 6 

shows the dependence of the form factor P(q) on the scattering vector q indicating what kind 

of information can be found over the q range with regimes each corresponding to a certain 

range of scattering vectors or taking equation 5 into account a spectrum of wavelengths. [10] 

However, only for the utmost simple cases the form factor P(q) can be calculated analytically. 

For a single particle it can be expressed in the following way. 

𝑃(𝒒) =
1

𝑉
∫ 𝑒𝑖∙𝒒∙𝒓𝑑𝑉

𝑉

 (15) 
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When analytical methods are not feasible anymore then numerical evaluation of the integrals 

is needed. [12] 

 

Figure 6: Dependence of the form factor P(q) on the scattering vector q for three basic particle 
shapes, namely a disc (red), a cylinder (green) and a sphere (blue). Furthermore, the division 
of the q range in the Guinier, Fourier and Porod regimes is included showing which 
information can be obtained from the corresponding domains. Figure adapted from [10] 

 

2.3.1 Guinier Analysis 

At smaller q or vice versa in the long-wavelength limit (𝑞𝑅 → 0) the form factor can be 

described by a Gaussian curve leading to the following expression for the scattering intensity 

of a single spherical particle. 

𝐼𝑃(𝑞) ≈ ∆𝜌2 ∙ 𝑉2 ∙ 𝑒−
𝑞2∙𝑅2

5  (16) 

 

R = radius of the particle [m] 

As can be clearly seen the radius of the particle can be obtained by plotting the logarithm of 

the scattering intensity log I(q) over the squared scattering vector q2. The radius can then be 

extracted from the slope of the linear function which is equal to −
𝑅2

5
. It has to be kept in mind 

though that this is only valid for a dilute system of spherical particles. For the analysis of a 

system with particles of a different shape a more general expression, the so-called radius of 
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gyration is used. It is defined as the quadratic mean distance from the centre of gravity of a 

particle and its mathematical expression is given in the following. [10] [12] 

𝑅𝐺
2 =

∫ 𝜌(𝑟𝑖) ⋅ 𝑟𝑖
2 𝑑𝑉𝑖𝑉

∫ 𝜌(𝑟𝑖) 𝑑𝑉𝑖𝑉

 (17) 

 

RG = radius of gyration [m] 

While the integrals typically have to be solved numerically, the radius of gyration of a sphere 

can be given directly by 𝑅𝐺
2 =

3

5
𝑅2  and using this expression equation 16 can be rewritten as 

shown below. 

𝐼𝑃(𝑞) ≈ ∆𝜌2 ∙ 𝑉2 ∙ 𝑒−
𝑞2∙𝑅𝐺

2

3  (18) 

As Guinier was the first to come up with the approximation of the form factor P(q) by a 

Gaussian curve leading to the derivation of equation 16 the analysis of this part of the q range 

was named after him. The corresponding Guinier regime can be seen on the left-hand side of 

Figure 6. [10] [12] [15] 

 

2.3.2 Porod Analysis 

At the other end of the q range or vice versa in the short-wavelength limit (𝑞𝑅 ≫ 1) the 

scattering intensity of a single spherical particle can be expressed by applying Porod’s law 

𝐼(𝑞) =
2𝜋∆𝜌2

𝑞4
∙ 𝑆 (19) 

 

S = surface of a sphere [m2] 

and so according to equation 19 the surface area of the particles can be investigated by looking 

at the scattering intensity at larger q. Similar to the lower end of the q range this regime at 

shorter wavelengths is named Porod regime referring to its analysis method and can be seen 

on the right-hand side of Figure 6. [12] [14] 
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2.3.3 Transformation techniques 

Last but not least the third regime situated between the Guinier and Porod domains provides 

information about the particles’ shape as well as their internal density distribution. This 

regime named after Fourier makes up the central part of Figure 6. 

A simple and quick estimation of the particles’ shape can be made by looking at the power law 

of the form factor P(q) in the middle part. As depicted in Figure 6 in a double logarithmic 

representation the initial slope holds information about the dimension and in consequence 

shape of a particle with a globular particle (zero-dimensional) displaying a slope of 0, a 

cylindrical particle (one-dimensional) having one of -1 and a lamellar particle (two-

dimensional) possessing a slope of -2. In addition, the slope in this q range also holds 

information about the resolution limit of the scattering experiment as a steeper slope of e.g. 

-4 indicates that the particles illuminated are too large to be resolved. [10] 

Further information can be extracted from the central part of the scattering intensity I(q) by 

its transformation into real space which in mathematical terms is similar to a Fourier 

transformation. [10] [19] [21] 

 

𝐼(𝑞) = 4𝜋 ∫ 𝑝(𝑟) ∙
sin 𝑞 ∙ 𝑟

𝑞 ∙ 𝑟

∞

0

𝑑𝑟 (20) 

 

p(r) = pair distance distribution function [m-3] 

This results in the so-called pair distance distribution function, or short PDDF, which in essence 

contains the same information as the scattering intensity I(q) with the major difference of 

being in real space. Consequently, structural information like the size and shape of a particle 

can be obtained directly from the PDDF. [22] As the pair distance distribution function can be 

interpreted as a histogram of all the inter-particle distances, particles with different shapes 

can be easily distinguished as shown in Figure 7. [10] [21] 
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Figure 7: Pair distance distribution functions for a globular, a cylindrical and a lamellar particle 
indicating which structural parameters can be directly obtained from the PDDFs. 
Corresponding scattering curves are shown in the preceding figure. [10] 

As can be seen in Figure 7 a bell-shaped peak is characteristic for spherical particles while an 

overshooting peak followed by a linear tail indicates a cylindrical particle shape. Lamellar 

particles on the other hand exhibit a different PDDF making a distinction easily possible. One 

thing that all PDDFs have in common though is their decay to 0 with increasing distance 

marking the largest dimension of the analysed particle. [10] [22] 

a) b) 

 

Figure 8: Pair distance distribution functions of dimers consisting of two elliptical monomers 
in a (a) parallel arrangement or in a (b) linear arrangement with the black curves depicting the 
dimers and the blue curves representing the PDDFs of the monomers as well as the difference 
between the aforementioned PDDFs. [10] [22] 

As illustrated in Figure 8 the analysis of PDDFs also proves useful in the investigation of 

aggregation as the PDDF of an aggregate can be recognized by the appearance of a second 

peak. It has to be taken care though as any PDDF can be made up of a distribution of 
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polydisperse particles of arbitrary shape and so complementary experiments should always 

be carried out additionally for the unambiguous determination of the structural parameters. 

[10] [22] 

The most common way of obtaining a pair distance distribution function is by applying the 

indirect Fourier transformation (IFT) technique developed by Glatter [19]. This single step 

procedure is well suited for the impartial interpretation of the scattering data as it not only 

requires minimum knowledge in advance but also does not make use of any models. Figure 9 

gives an overview on the indirect Fourier transformation technique. 

 

Figure 9: Schematic representation of how the indirect Fourier transformation works: After a 
set of cubic B-splines has been defined (bottom right), they are Fourier transformed 
(bottom centre) and smeared (bottom left). A subsequent approximation of these Fourier 
transformed and smeared splines to the experimental scattering curve yields the coefficients 
𝑐𝑣 which then can be used to calculate the PDDF (top right) owing to the linear nature of all 
the transformations involved. [21] 

The straightforward calculation of the PDDF from the experimental scattering curve by 

elimination of any instrument related broadening effects and the Fourier transformation is 

unfortunately not possible due to the limited q range experimentally available as well as the 

difficult calculation of the desmeared scattering curve. [21] 
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The elementary principle at the core of the indirect Fourier transformation is the 

representation of p(r) by a sum of N cubic B-splines as basis functions up to a limiting 

dimension Dmax. In a similar fashion to equation 20 the scattering intensity I(q), now expressed 

by the sum of the transformed functions 𝜓𝑣(𝑞), can be calculated by Fourier transformation 

of the basis functions 𝜑𝑣(𝑟). [15] [21] [26] 

𝜓𝑣(𝑞) = 4𝜋 ∫ 𝜑𝑣(𝑟) ∙
sin 𝑞 ∙ 𝑟

𝑞 ∙ 𝑟
𝑑𝑟

∞

0

 (21) 

Comparing equation 20 and 21 the representation of p(r) by the sum of basis functions 𝜑𝑣(𝑟) 

can be clearly seen. As a perfect instrument is assumed in this case, the Fourier transformed 

functions 𝜓𝑣(𝑞) need to be smeared accounting for any instrument related broadening effects 

leading to the new functions 𝜒𝑣(𝑞). The experimental scattering curve Iexp(q) can then be 

expressed by the sum of the smeared functions 𝐼(𝑞) yielding the following. [21] 

𝑝(𝑟) = ∑ 𝑐𝑣 ∙ 𝜑𝑣(𝑟)

𝑁

𝜈=1

 𝐼(𝑞) = ∑ 𝑐𝑣 ∙ 𝜓𝑣(𝑞)

𝑁

𝜈=1

 𝐼𝑒𝑥𝑝(𝑞) ≈ 𝐼(𝑞) = ∑ 𝑐𝑣 ∙ 𝜒𝑣(𝑞)

𝑁

𝜈=1

 

(22) (23) (24) 

Fitting of the sum of the smeared basis functions 𝜒𝑣(𝑞) to the experimental scattering data is 

usually done in a least-squares approximation but as the least-squares problem is itself 

unstable due to experimental uncertainties and the limited q range experimentally available 

the equation system needs to be stabilised. This is done in the form of stabilisation matrices 

with parameters, the so-called Lagrange multipliers, which are measures for the strength of 

the stabilisation and are varied in order to determine the correct stabilisation parameter. The 

equivalence of the factors 𝑐𝑣 is guaranteed by the linear nature of all the transformations 

involved and at last after stabilisation these factors 𝑐𝑣 can be used to directly obtain the PDDFs 

as well as the scattering curve I(q) free of any instrument related broadening effects. [21] [23] 

[31] 

It should be pointed out that the indirect Fourier transformation as described above can not 

only be performed in one dimension but also in two dimensions as was first presented by 

Gerhard Fritz-Popovski using two-dimensional basis functions. These basis functions in real 

space are usually expressed in circular coordinates by two sets of cubic B-splines, one along 

the radial r scale and the other one along the angular χ scale. The third dimension is neglected 

at smaller angles, however, as the component of q in the beam direction is rather small 

compared to the other components. Thus, the resulting two-dimensional real space functions 
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obtained by the 2D IFT are nothing else than the two-dimensional projections of the three-
dimensional real space functions. [23] 

Another real space function commonly used in the analysis of the scattering curve is the 
(radial) autocorrelation function γ(r) also known as the correlation function or simply γ(r). Just 
as the pair distance distribution function it contains information on the structural parameters 
of the particles and the two are even related to each other as shown in the following with 
X = 2 in the three-dimensional and X = 1 in the two-dimensional case. [15] [19] [23] 

 (25) 

The correlation function can be interpreted as the overlap of the volume of the particle and a 
copy of the volume of the particle, displaced by the vector r, weighted by the scattering length 
density fluctuations at every point in the two volumes of the particle and its “ghost” as 
schematically shown in Figure 10. To put it more simply, γ(r) can be understood as the 
averaged probability of finding oneself in the same particle again after having started in the 
particle and then having “jumped” a distance described by the vector r. [15] [24] 

 

Figure 10: Interpretation of the autocorrelation function represented by the overlap of the 
particle and its “ghost”. Figure adapted and redrawn from [25]. 

While structural parameters of particles can sometimes be found easily in real space or 
reciprocal space, at the same time they might not even be visible in the other one. 
Consequently, for a proper analysis of the scattering data it is necessary to compare the curves 
from both real and reciprocal space for a more thorough interpretation of the results. [23] 
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3. Experimental 

3.1 Synthesis of the CNC/PEG composites 

All CNC/PEG composite samples used in this thesis were synthesized at the KTH Royal Institute 

of Technology in Stockholm, Sweden in a cooperation with the Montanuniversität Leoben in 

Austria and the synthesis was based on the processing conditions given in [7], [27] or [28] 

respectively. 

 

3.1.1 Preparation of the cellulose nanocrystal suspension 

Avicel microcrystalline cellulose (MCC) PH-200 provided by FMC BioPolymer was used as a 

starting material for the synthesis of the cellulose nanocrystals. 

For the subsequent sulphuric acid hydrolysis of the microcrystalline cellulose a sulfuric acid 

solution of 64 wt% was prepared by mixing 95-98% sulphuric acid from VWR with ultrapure 

water. In this way 270 ml of the sulphuric acid solution were prepared by slowly pouring the 

sulphuric acid into the ultrapure water while continously mixing the two components. 

Extreme caution had to be exercised though as the reaction of sulphuric acid and water is 

highly exothermic [29] and thus the beaker was set into a box of dry ice to ensure optimal 

cooling during mixing. In the following 30 g of MCC were taken and gradually added to the 

270 ml of sulfuric acid solution while stirring corresponding to an acid-to-MCC ratio of ~ 9 ml 

per gram. The mixture was then stirred for around 35 minutes at a temperature of 45°C 

enabling the adjustment of the sulphur content of the cellulose nanocrystals and in further 

consequence the surface charge density. If done correctly the suspension exhibited an ivory 

colour and displayed a slight yellow shimmer at the end of mixing. 

The hydrolysis was then stopped by diluting it 15-fold with deionized water and afterwards 

the solution was left to settle for at least 12 hours so precipitation of the nanocellulose could 

occur. In order to concentrate the CNC and remove any aqueous acid left the suspension was 

centrifuged at 4300 rpm for 10 min at room temperature. After the centrifugation the 

remaining solution was poured away and only cellulose nanocrystal precipitates remained 

which were stirred for ~30 min to ensure homogeneity. 

Next the precipitated cellulose nanocrystals were dialyzed against deionized water for seven 

days to remove any solutes having a small molecular weight from the CNC precipitate. For that 

the CNC was filled in dialysis tubes that were clamped shut at each end and submerged in a 

bucket filled with deionized water. Only a third of the bags was filled with the CNC precipitate 
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allowing a little deionized water to flow through the dialysis tubes over time. In order to 

disperse the CNCs after the dialysis the suspension was sonicated at 60% output until it turned 

transparent. For the sonification of ~ 300 ml each a Branson Sonifier Model 250 ultrasonic 

cell disruptor/homogenizer or a Sonics Vibra-Cell VCX 750 ultrasonic processor was used with 

a tip diameter of 12 or 13 mm respectively while the suspension was cooled by a surrounding 

water bath. Finally the aqueous CNC suspension was concentrated to 3 wt% by letting it 

evaporate at room temperature. 

 

3.1.2 Preparation of the polyethylene glycol suspension 

As a starting material PEG with a molecular mass of ~ 20 kDa produced by Merck was used. 

For the synthesis of 150 ml of a 10 wt% PEG suspension 15 g of polyethylene glycol were taken 

and gradually added to 135 ml of ultrapure water while the suspension was continously stirred 

at 60°C. After PEG had been gradually added and it had dissolved, the solution was further 

mixed for at least 12 hours to ensure homogenity. 

 

3.1.3 CNC suspension + PEG suspension → CNC/PEG composite films 

The desired amounts of the prepared aqueous CNC (3 wt%) and PEG (10%) solutions were 

measured and mixed together for several minutes. In this way composites with varying weight 

ratios of CNC and PEG ranging from 100/0 to 60/40 were prepared using different amounts of 

CNC and PEG solution. The mixed solution was subsequently sonicated for 30 seconds at 40% 

output and stirred for another 24 hours to ensure a homogenous mixture. 

Finally the CNC/PEG suspension was cast into a petri dish with a diameter of 9 cm and was 

then dried at room temperature until all water had evaporated which could take up to several 

days yielding a colourful film as exemplary shown in Figure 11. While drying close attention 

had to be paid to the surrounding environment as already a small air flow could cause a 

disturbance in the self-assembly of the cellulose nanocrystals. Ideally the drying CNC/PEG 

suspensions were therefore put into a closed ventilated cabinet for the entire duration to 

minimize the effect of any disturbances. To guarantuee uniform drying of the CNC/PEG 

suspensions the petri dishes were elevated to ensure air flow underneath as well. As a 

reference value a total dry mass of ~ 400 mg was taken for a CNC/PEG composite film with a 

diameter of 9 cm. 
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Figure 11: Photograph of a CNC/PEG (90/10) composite film illuminated by white light 

 

3.2 Characterisation of the CNC/PEG composites 

3.2.1 UV-vis spectroscopy 

To characterize the shift in reflectance of the CNC/PEG composite films with the addition of 

polyethylene glycol UV-vis spectroscopy was carried out at the KTH Royal Institute of 

Technology in Stockholm using a Varian Cary 50 Bio UV–visible spectrophotometer. The films 

were mounted perpendicular to the beam and transmission spectra were collected in dual 

beam mode in the wavelength range of 200 – 800 nm. 

 

3.2.2 Small angle x-ray scattering 

All small angle x-ray scattering experiments were carried out at the Montanuniversität Leoben 

in Austria on a NANO-STAR laboratory instrument by Bruker AXS with an Incoatec IµS 

microsource using Cu-Kα radiation with a wavelength of ~ 1.5418 Å. The beam was collimated 

by 300 µm SCATEX pinholes and the obtained scattering patterns were detected using a 

VÅNTEC-2000 detector (2048 x 2048 pixels) by Bruker AXS at sample-to-detector distances of 

675 mm and 1052 mm. For the calibration of the sample-to-detector distances silver behenate 

was used due its set of well-defined and evenly distributed diffraction peaks at low angles. [30] 

The SAXS experiments of the CNC/PEG composite films were performed in transmission 

geometry while the sample holder was mounted on a precision rotation stage PI M-116 

enabling measurements at various angles to the direction of the primary beam. As shown in 

Figure 12 a sample holder was specifically constructed for this so that the films could be 

measured free-standing. 
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Figure 12: Sample holder constructed for CNC/PEG composite films with a diameter of ~9 cm 

 

After evacuation of the sample chamber a 2D nanography was always performed first to locate 

a suitable position for the measurement and to ensure that the location chosen was 

representative for the sample, e.g. that no structural inhomogeneities were sampled. 

Transmission experiments were then carried out at 2 to 6 different positions on each specimen 

at different angles to the sample varying from 0° to 85° whereas 0° referred to the sample 

being perpendicular to the beam direction and 90° corresponded to the film standing parallel 

to the beam direction. To ensure that the same position was measured at each angle a 

positional correction was implemented and in the same way the exposure time was also 

corrected as at higher angles the beam travelled a longer distance through the sample. 

Measurement times therefore ranged between 0.5 hours and 1.5 hours. 

Moreover, transmission experiments were also carried out at elevated relative humidity levels 

under ambient pressure. This was achieved by putting an open container filled with water into 

the sample chamber and performing the measurement after equilibrium had been reached. 

These transmission experiments were performed at the longer SDD of 1052 mm as compared 

to the scattering experiments of the dry samples described above which were carried out at a 

sample-to-detector distance of 675 mm. 

In addition to the scattering of the samples at each measuring point the scattering of the 

samples plus glassy carbon and of glassy carbon without the samples were determined as well 

for the subsequent correction of absorption effects of the scattering data. 
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3.3 SAXS data evaluation 

In this thesis several software, e. g. MULIP SAXS 2D, PCG Tools, PCG GIFT, PCG IFT2D and 

PCG Viewer 2D which were all developed by my supervisor Gerhard Fritz-Popovski, were used 

for the processing of the SAXS data. 

 

3.3.1 MULIP SAXS 2D 

The 2D SAXS data of the CNC/PEG composite films was first corrected in MULIP SAXS 2D 

starting with an adjustment of the beam centre and calibration of the sample-to-detector 

distance with the help of silver behenate. Afterwards any transmission effects of the CNC/PEG 

composite films were accounted for by using the scattering of glassy carbon which is often 

used as an intensity calibration standard in small angle scattering due to its long-term stability 

during use and significant scattering. [32] The transmission of the CNC/PEG composite films 

could then be determined by division of the integrated intensities of the film and glassy carbon 

and the one of glassy carbon itself. [11] At last the background scattering pattern which had 

been detected without the sample was subtracted completing the correction of the acquired 

scattering patterns of the CNC/PEG composite films. 

After the scattering data had been corrected one dimensional scattering curves I(q) were 

obtained by cake integration. In this way 180 radial integrations were computed for each 

measuring point from 0° to 180° over most of the q range available from approx. 0.1 nm-1 to 

3.17 nm-1 for the dry samples and from approx. 0.04 nm-1 to 2.04 nm-1 for the samples at 

increased relative humidity in accordance with the chosen SDDs. It has to be noted in this 

context that due to the centrosymmetry of the scattering patterns it was sufficient to only 

perform cake integrations from 0° to 180° corresponding to a semicircle. Only the scattering 

patterns measured at 0° to the primary beam were radially integrated from 0° to 360° yielding 

one dimensional scattering curves I(q) which were further processed in PCG Tools and PCG 

GIFT. 

 

3.3.2 PCG Tools 

The one dimensional scattering curves I(q) measured at 0° to the primary beam were then 

normalized to the same area and afterwards the scattering curves from each measuring point 

were averaged in PCG Tools. 
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3.3.3 PCG GIFT 

The averaged one dimensional scattering curves I(q) computed in PCG Tools were then further 

processed in PCG GIFT where they were used for the indirect Fourier transformation yielding 

one dimensional pair distance distribution functions p(r). For the approximation of the PDDFs 

25 splines discretized into 300 points were split non-equidistantly with 10 splines up to 10 nm 

and the remaining 15 splines covering the range up to r = 55 nm. For stabilisation the Lagrange 

multipliers were varied in the range from 1010 down to 10-5 in steps of 101 and the best 

Lagrange multipliers were chosen for each scattering curve I(q) respectively. 

 

3.3.4 PCG IFT 2D 

The 180 scattering curves obtained in MULIP SAXS 2D were processed in PCG IFT 2D where 

they provided the basis for the indirect Fourier transformation in two dimensions. For the IFT 

of the scattering pattern made up of the 180 radial integrations a set of basis functions with 

36 splines in azimuthal and 20 splines in radial direction was used whereas the radial direction 

was discretized into 100 points and the azimuthal one into 4 points per spline. The radial 

splines were split in a non-uniform way with 10 of these splines in the range r < 10 nm and the 

remaining radial splines covered the range up to r = 50 nm. Lagrange multiplier variation was 

done in the range from 104 down to 100 for the azimuthal stabilisation as well as from 102 

down to 10-2 for the radial stabilisation in steps of 100.5 (~ 3.16) for each direction. Ultimately 

the following Lagrange multipliers were chosen for processing of all scattering data as they 

generally seemed to yield the best results. 

Table 1: Lagrange multipliers chosen for the stabilisation of the IFT 

Lagrange multiplier for radial stabilisation Lagrange multiplier for azimuthal stabilisation 

λR = 100 λA = 102.5 

In this way the two-dimensional real space functions, namely the pair distance distribution 

function p(r) as well as the autocorrelation function γ(r), were obtained from the 2D indirect 

Fourier transformation as well as the approximated scattering patterns in two dimensions. 

 

3.3.5 PCG Viewer 2D 

Lastly the two-dimensional PDDFs obtained in PCG IFT 2D were cut along and perpendicular 

to the orientations of the axes (if present) in PCG Viewer 2D. 
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4. Results 

4.1 UV-vis spectroscopy 

The transmittance spectra of the neat CNC and the CNC/PEG composite films are shown in 

Figure 13a and predominantly a red shift of the reflectance peaks can be seen with increasing 

PEG content which is confirmed by the corresponding photographs under white light 

illumination which are depicted in Figure 13b showing a slight shift towards green. 

 

 

Figure 13: (a) Comparison of the reflection spectra of neat CNC and CNC/PEG composite films 
showing the range of the reflection peaks over the entire visible spectrum and into the 
ultraviolet. (b) Photographs of the whole series of CNC/PEG composite films with a diameter 
of 9 cm including the neat CNC film. All photographs were taken in white light. 

a) 

 

 

 

 

 

 

 

 

 

b) 
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4.2 Small angle x-ray scattering 

4.2.1 Data obtained from reciprocal space 

As already mentioned, the scattering patterns (intensity I) obtained in SAXS experiments are 

usually plotted as a function of the scattering vector q and thus data from reciprocal space is 

readily available after detection of the scattering patterns. In Figure 14 the evolution of the 

detected two-dimensional scattering patterns measured at different angles can be seen for 

three CNC/PEG composite films whereas the transition from isotropic to anisotropic scattering 

at larger angles is quite distinct. 

 CNC/PEG (80/20) CNC/PEG (70/30) CNC/PEG (60/40) 

0° 

   

20° 

   

60° 

   

80° 

   
Figure 14: The evolution of the scattering patterns measured at various angles from 0° to 80° 
for three CNC/PEG composite films, namely CNC/PEG (80/20), CNC/PEG (70/30) and 
CNC/PEG (60/40) showing the gradual change of the scattering with larger angles. 
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For the consecutive evaluation of the scattering data by the indirect Fourier transformation in 

two dimensions 180 scattering curves were obtained from every scattering pattern (see i.a. 

Figure 14) between 0° and 180° by radial integration. 

In addition, scattering curves measured at 0° to the primary beam direction were obtained as 

well by radially integrating the scattering patterns from 0° to 360°. Subsequently these 

scattering curves were then normalized and averaged as representatively shown in Figure 15 

for the CNC/PEG (80/20) composite film and eventually used for the evaluation of the 

scattering data by the one-dimensional IFT. 

 

Figure 15: The averaged scattering curve of the CNC/PEG (80/20) composite film measured at 
0° to the primary beam direction and further used for the one-dimensional indirect Fourier 
transformation of the scattering pattern. 
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4.2.2 Data obtained from real space 

Based on the 180 scattering curves the indirect Fourier transformation in two dimensions was 

carried out yielding real space functions like the two-dimensional pair distance distribution 

function p(r) as well as the two-dimensional autocorrelation function γ(r). For the 

characterization of the chiral nematic structure of the CNC/PEG composite films γ(r) in two 

dimensions was examined as seen for three CNC/PEG composite films in Figure 16. 

 

 CNC/PEG (80/20) CNC/PEG (70/30) CNC/PEG (60/40) 
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Figure 16: The evolution of the autocorrelation function γ(r) computed at various angles from 
0° to 80° for three CNC/PEG composite films, namely CNC/PEG (80/20), CNC/PEG (70/30) and 
CNC/PEG (60/40) showing the gradual change of the “probability of finding oneself in the 
structure” with larger angles. The corresponding scattering patterns are shown in Figure 14. 
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To gain further information on the nanostructure of the CNC/PEG composite films the two-

dimensional PDDFs were cut along as well as perpendicular to the orientations of the axes of 

the PDDFs yielding one-dimensional pair distance distribution functions. As can be seen in 

Figure 16 this was only feasible at larger angles though as the correlation functions and as a 

consequence the PDDFs were mostly isotropic at lower angles exhibiting no preferential 

orientation. Therefore, only the PDDF cuts at larger angles are shown in Figure 17 of all four 

CNC/PEG composite films with χ denoting the angle to the orientation of the long axis. 

 

 40° 60° 80° 

CNC/PEG 
(90/10) 

   

CNC/PEG 
(80/20) 

   

CNC/PEG 
(70/30) 

   

CNC/PEG 
(60/40) 

   
Figure 17: Cuts through the two-dimensional pair distance distribution functions along and 
perpendicular to the orientations of the present axes of the 2D PDDFs for four CNC/PEG 
composite films, namely CNC/PEG (90/10), CNC/PEG (80/20), CNC/PEG (70/30) and 
CNC/PEG (60/40) revealing structural details of the CNC/PEG composite films. The angle to 
the present axes is denoted by χ whereas χS refers to a cut shifted relative to the centre. 
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To understand the negative values of the PDDFs in Figure 17 it has to be kept in mind that the 

PDDFs are histograms of connections weighted by the product of the electron density 

differences to the mean electron density at the two end-points. Negative contributions to the 

PDDFs therefore are no mere artefacts and rather correspond to many distances from areas 

with a positive electron density difference (e.g. cellulose) to areas with a negative electron 

density difference (e.g. polyethylene glycol). This effect is most pronounced close to a 50/50 

volume distribution, since then the mean electron density will be right in between the two 

electron densities of the components. 

It is worth mentioning that the SAXS results of the neat CNC film (100/0) were not included in 

the analysis as the purely crystalline CNC film did not exhibit any of the characteristics of the 

other films and could therefore not be compared with any CNC/PEG composites as it didn’t 

contain any polyethylene glycol to begin with. 
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5. Discussion 

5.1 Interpretation of the UV-vis spectrum 

As can be clearly seen in Figure 13a the reflectance peaks of the CNC/PEG composite films 

shift from ~307 nm in the ultraviolet to longer wavelengths to ~ 467 nm in the visible 

spectrum (blue/green) with an increasing PEG content from 0 to 30 wt% supporting the 

assumption that polyethylene glycol is intercalated between the cellulose nanocrystals 

leading to an increase in pitch size. The CNC/PEG (60/40) film on the other hand does not fit 

into this trend and exhibits a blue shift compared to the CNC/PEG (70/30) film due to the 

crystallisation of PEG which effectively leads to a lower amount of PEG available for 

intercalation. [7] The synthesis of the CNC/PEG composites with the resulting structural 

arrangement of CNC and PEG due to the self-assembly of the CNCs is schematically illustrated 

in Figure 18 wherein 𝑃

2
 denotes half of the helical pitch. 

 

 

Figure 18: Schematic representation of the synthesis of the CNC/PEG composites displaying a 

chiral nematic (cholesteric) structure responsible for the photonic properties of the CNC/PEG 

composite films. CNCs are represented by the green rods while the PEG makes up the light 

blue matrix. [7] 

To verify the assumed nanostructure as given in Figure 18 one-dimensional as well as two-

dimensional real space functions obtained via an indirect Fourier transformation were 

consulted. 
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5.2 Evaluation of the IFT results 

5.2.1 One-dimensional pair distance distribution functions p(r) 

In order to confirm the nematic ordering of the cellulose nanocrystals in layers as depicted in 
Figure 18 the one-dimensional PDDFs measured at 0° to the primary beam were compared 
with simulations as shown in Figure 19 for the CNC/PEG (60/40) composite film. 

 

a)   b) 

 

Figure 19: (a) The one-dimensional PDDF of the CNC/PEG (60/40) composite film obtained by 
radial integration from 0° to 360° of the corresponding isotropic scattering pattern measured 
at 0° to the primary beam. (b) Simulation of the PDDF of two or three cylinders adjacent to 
each other with similar orientation averaged from a hundred different configurations of two 
(65%) or three (35%) cylinders. [33] 

While the PDDF of a single cylinder typically displays a characteristic overshooting peak at 
small r (see Figure 7) the PDDF of multiple cylinders located next to each other with similar tilt 
is rather blown up at smaller distances as can be seen in Figure 19b. [33] Thus treating the 
cellulose nanocrystals as cylinders and assuming a nematic ordering of the CNCs the behaviour 
of the PDDF depicted in Figure 19a can be interpreted in an analogous way to the simulation. 
The interpretation is supported by comparing the characteristic features of the measured and 
simulated PDDF in Figure 19a and Figure 19b respectively as both for example display a 
shoulder at lower r containing information about the diameter of the cylinders (CNCs). As the 
position of the shoulder is around  2-3 nm as indicated by the vertical line in Figure 19a the 
diameter of the cellulose nanocrystals can roughly be estimated to be around 3.5-5 nm which 
is in accordance with the expected size of the CNCs of a few nanometres (5-7 nm) under the 
used hydrolysis conditions. [7] [22] Next to the similar overall shape of the PDDFs another 
feature the measured and the simulated PDDFs have in common is the flat peak located at 
larger r further confirming the nematic ordering of the CNCs in layers in the CNC/PEG 
composites.  
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5.2.2 Two-dimensional correlation functions γ(r,χ) 

From the investigation of the two-dimensional correlation functions as depicted in Figure 16 

it can be seen that γ(r,χ) and consequently the probability of being located in the CNC/PEG 

nanostructure is getting more anisotropic with larger angles in all samples. This can be 

understood by treating the helicoidal structure of the CNC/PEG composite films given in 

Figure 18 as lamellar. This means that at larger angles to the director the beam only 

illuminates part of the helicoidal structure, namely a layer of the cholesteric structure, while 

additionally cellulose nanocrystals parallel to the beam vanish. The broadening of the 

correlation function along a direction with higher angles can therefore simply be interpreted 

as looking at the helicoidal structure from the side and illuminating a CNC/PEG layer of the 

cholesteric structure. The orientation of the anisotropic γ(r,χ) then corresponds to the 

orientation of the illuminated layer with γ(r,χ) representing a projection of the layer thickness. 

For a better understanding this is visualized in Figure 20 for the CNC/PEG (60/40) composite 

film. 

 0° 20° 60° 80° 

a) 

    

b) 

    

Figure 20: The two-dimensional autocorrelation functions (a) with the corresponding views 
on the chiral nematic structure (b) of the CNC/PEG (60/40) composite film at different angles. 
For better visualisation, the different CNC/PEG layers of the chiral nematic structure are 
shown separately in (b). 

 

5.2.3 One-dimensional correlation functions γ’(r,χ) 

By cutting the anisotropic 2D correlation functions perpendicularly to the long axes the 

dimensions of the single layers could be qualitatively determined and even neighbouring 

layers could be distinguished as seen in Figure 21a by the slight increase of γ’(r,χ) around 

± 45 nm for the CNC/PEG (60/40) at 80° to the primary beam. 
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Further information about the dimensions of the next layer could not be extracted from the 

one-dimensional correlation functions as the resolution was limited to the maximum 

Dmax~50 nm at a SDD of 675 mm according to the sampling theorem of the Fourier 

transformation which is given in the following. [10] [15] 

𝐷𝑚𝑎𝑥 ≈
𝜋

𝑞𝑚𝑖𝑛
 (26) 

Comparing the one-dimensional correlation functions obtained from the CNC/PEG (60/40) 

composite film at 80° with the one-dimensional γ(r) of the ideal lamellar model after Vonk and 

Kortleve [34] further supports the arrangement of the CNC and PEG in layers. The 

corresponding correlation functions calculated for different distribution functions of the 

thicknesses of the crystalline and amorphous layers are shown in Figure 21b whereas curve c 

is most similar to the one of CNC/PEG (60/40) at 80° indicating a broad distribution of the 

crystalline and amorphous layers in the CNC/PEG composites. Treating the CNC/PEG 

nanostructure hence as a lamellar structure the layer thickness could be estimated to be 

~ 10 nm and the distance to the next layer ~ 45 nm for the CNC/PEG 60/40 composite film. 

 

↔ 

 

Figure 21: (a) One dimensional autocorrelation functions obtained by cutting the 2D γ(r, χ) of 
the CNC/PEG (60/40) composite film measured at 80°. The angle to the present axes is 
denoted by χ whereas χS refers to a cut shifted relative to the centre. (b) One-dimensional 
autocorrelation functions according to the ideal lamellar model for three different widths of 
the thickness distribution functions of the crystalline and amorphous layers with curves (a) to 
(c) referring to increasing widths of the distributions. [15] 

To verify the arrangement of the CNCs in layers indicating a chiral nematic ordering the two-

dimensional γ(r,χ) were cut another time perpendicularly but shifted relative to the centre up 

to ± 15 nm which is illustrated in Figure 21a by the red line labelled χS. As can be seen this led 

to the same one-dimensional γ’(r, χ) as beforehand as expected for the nematic ordering of 

the CNCs in the layers. After all the thickness of the layers should stay constant and therefore 

yield the same one-dimensional γ’(r, χ) along the layer. 
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5.3 Impact of increasing polyethylene glycol content 

In a similar fashion the shift of spacing between the layers with an increasing amount of PEG 

was investigated by looking at the cuts perpendicular to the long axes of the two-dimensional 

pair distance distribution functions p’(r,χ) measured at 60° to the primary beam as shown in 

the following in Figure 22. 

 
Figure 22: Comparison of the one-dimensional PDDFs p’(r,χ) perpendicular to the long axes of 
the corresponding 2D PDDFs of the whole series of CNC/PEG composite films. A clear trend 
towards larger distances between the layers with increasing PEG content is evident and the 
accompanying shift of the shoulder of the PDDFs with higher amounts of PEG is indicated by 
the vertical lines. 

A trend towards larger spacing between the layers from ~ 23 nm for the CNC/PEG (80/20) 

composite film to ~ 48 nm for the CNC/PEG (60/40) composite film can be seen with 

increasing PEG content in Figure 22 as the shoulder of the PDDF corresponding to the 

neighbouring layer moves to larger r indicated by the vertical lines for the different amounts 

of PEG in Figure 22. First visible as the overshooting peak of the CNC/PEG (90/10) at smaller r 

the peak slowly shifts into the peak located around 50 nm of the CNC/PEG (60/40) composite 

film confirming the intercalating effect of PEG leading to greater spacing between the layers. 
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5.4 Investigation of the influence of humidity 

To better understand the influence of humidity on the CNC/PEG nanostructure, tests at 
elevated relative humidity levels were performed. For this a sample-to-detector distance of 
1052 mm compared to the previously used SDD of 675 mm was chosen yielding a comparably 
higher resolution of up to 80 nm to obtain a better overview of the structural changes of the 
CNC/PEG nanostructure in response to humidity. Due to polyethylene glycols hygroscopic 
nature an increase in humidity lead to swelling of the chiral nematic structure and subsequent 
increase in layer spacing. This can be seen in Figure 23 in which the one-dimensional PDDFs 
of the CNC/PEG (60/40) at 60° in the dry state and the humid state are compared. 

 

Figure 23: Comparison of the one-dimensional pair distance distribution functions of the 
CNC/PEG (60/40) composite film at 60° in the dry and in the humid state showing the shift of 
the PDDFs’ minima as well as the displacement of the peak corresponding to the neighbouring 
layer to larger distances. The 1D PDDFs were obtained by cutting the two-dimensional PDDFs 
perpendicularly to the long axes. 

In order to understand this change of the PDDF in response to humidity the previously 
introduced ideal lamellar model after Vonk and Kortleve can be used again for interpretation: 
As shown in Figure 21b the size of the minimum is proportional to the volume content of the 
smaller phase, PEG in the case of the CNC/PEG composites, meaning that an increase in said 
phase will consequently also yield a more pronounced minimum. As polyethylene glycol is 
mainly taking up the water thereby increasing its volume content in the overall nanostructure 
the change of the PDDFs minima can therefore be ascribed to the water uptake of PEG as 
indicated by the downward facing arrow in Figure 23. 
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The cellulose nanocrystals on the other hand remain unaltered due to their resistance to water 

penetration [35] and thus the water absorption solely effects PEG leading to the observed 

colour change of the CNC/PEG composite films confirming the intercalation of PEG between 

the CNCs. This intercalating effect of PEG is further supported by the displacement of the peak 

corresponding to the neighbouring layer to larger distances as indicated by the rightward 

pointing arrow in Figure 23. 
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6. Conclusion 

In the present thesis nanocellulose based composite films with different amounts of 

polyethylene glycol ranging from 0 to 40 wt% were synthesized at the KTH Royal Institute of 

Technology in Stockholm, Sweden and then further investigated by small angle x-ray 

scattering at the Montanuniversität Leoben in Austria. 

The main objective of this thesis was to obtain a better understanding of the photonic 

structure of the CNC/PEG composites depending on the polyethylene glycol content or more 

specifically how the PEG integration into the chiral nematic structure of the CNCs takes place 

affecting the consequent photonic properties. For this purpose, a series of CNC/PEG 

composite films with weight ratios of CNC and PEG varying from 100/0 to 60/40 were 

synthesized and then investigated by small angle x-ray scattering at different angles to the 

primary beam. The analysis of the scattering data in the form of a one-dimensional indirect 

Fourier transformation already confirmed the nematic ordering of the cellulose nanocrystals 

in layers when comparing the measured PDDFs with simulations. 

From the subsequent evaluation of the scattering data in the form of a two-dimensional 

indirect Fourier transformation other structural parameters could be qualitatively extracted 

as well. It could be shown that by assuming an ideal lamellar model for the CNC/PEG 

composites information about the nanostructure could be obtained directly from real space 

functions like the pair distance distribution function p(r,χ) as well as the radial autocorrelation 

function γ(r,χ). In this way the change in layer spacing with corresponding PEG contents could 

be qualitatively determined as shown in Figure 24 in accordance with the macroscopically 

visible structural colour change with varying amounts of PEG. As the nematic layers were 

illuminated by the x-ray beam at an angle the layer spacing shown in Figure 24 was corrected 

accounting for the respective viewing angle. 
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Figure 24: Angle-corrected layer spacing as a function of the polyethylene glycol content 
shown for two different angles to the primary beam. It has to be noted that only 
measurements at higher angles to the primary beam were taken into account as then the layer 
spacing was best visible. 

Consistent with the ideal lamellar model the characteristic swelling of the chiral nematic 

structure of the CNC/PEG composite films at elevated relative humidity levels could be 

identified as well by looking at the one-dimensional cuts through the two-dimensional real 

space functions indicating an increase of the volume content of PEG with water uptake. 

Complementing this qualitative analysis, GISAXS in transmission mode [36] on a smooth 

substrate at the synchrotron as well as the modification of the parameters of the IFT might 

improve the qualitative analysis of the nanostructure of the CNC/PEG composites given here. 

In summary, the combination of small angle x-ray scattering with the two-dimensional indirect 

Fourier transformation has proven to be a very powerful tool in analysing nanostructured 

composites even as complex as the CNC/PEG composite films synthesized in this thesis. 
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