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Abstract 

Darcy's law or other similar approaches are implemented to model the flow at the continuum 

scale. However, the accuracy of these models depends on porous media parameters such as 

porosity, relative permeability, capillary pressure relationships, etc (Bhattad et al., 2011). One 

option is to obtain these parameters experimentally, but in recent years, the development of 

rock imaging tools that image the porous rock and the fluids inside them has improved our 

understanding of the flow in porous media. In combination with publicly available numerical 

tools, it enables us to simulate the flow in these media (J. Blunt, 2017).  

Pore network modeling (PNM) is a widely used technique to simulate multiphase transport in 

porous materials, and one of the open-source available software packages to do so is OpenPNM. 

Several porous media research groups have developed it as a pore network modeling tool. In 

pore network modeling, a pore network is extracted from reconstructed microtomography 

images and the corresponding numerical calculations are done to predict the transport properties 

of the porous media (Gostick J. A., 2016).  

Pore network modeling leads to the calculation of the petrophysical and advanced rock flow 

properties. In this work, the OpenPNM python package is implemented and used to simulate 

the primary drainage capillary pressure and relative permeability from microtomography 

images of sandstone rocks. Pore networks are extracted using the Porespy python package 

which uses an algorithm named SNOW to extract pore network from segmented 

microtomography rock images.  

The model is validated using the experimental results of capillary pressure, absolute 

permeability, and primary drainage relative permeabilities from well-known rock samples. 

Simulation results have proved to match the experimentally obtained results within an 

acceptable range of uncertainty. A sensitivity analysis is then conducted to understand the 

influence of modeling parameters, interfacial tension, and contact angle on the results. Finally, 

a workflow is presented to predict the petrophysical and transport properties of unknown rock 

samples. The implementation of the workflow is then demonstrated on a sandstone rock of 

interest. 
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Zusammenfassung 

Darcy’s law und andere vergleichbare Methoden wurden zur Modellierung der Strömung auf 

Kontinuumsskala entwickelt. Die Genauigkeit dieser Modelle hängt von Parametern wie der 

Porosität, der relativen Permeabilität oder dem Kapillardruck ab (Bhattad et al., 2011). Eine 

Möglichkeit ist es diese Paramter experimentell zu bestimmen, in den letzten Jahren jedoch, 

hat die Entwicklung von Bildgebenden Verfahren, welche das poröse Gestein und die sich darin 

befindenden Flüssigkeiten abbilden, unser Verständniss von Strömungen in porösen Medien 

weiterentwichelt. In Verbindung mit öffentlich zugänglichen numerischen Werkzeugen 

ermöglicht dies die Simulation von Strömungsvorgängen in diesen Materialien (J. Blunt, 2017).   

Poren Netzwerk Modellierung (PNM) ist eine häufig eingesetzte Methode zur Simulation von 

mehrphasigem Transport in porösen Materialien. Ein open-source Software für derartige 

Simulationen ist OpenPNM. Es wurde von mehreren Forschungsgruppen zur Poren Netzwerk 

Modellierung entwickelt. Ein Poren Netzwerk wird dabei aus rekonstruierten 

Mikrotomographie Bildern extrahiert und die entsprechenden numerischen Berechnungen 

ermöglichen die Vorhersage von Transporteigenschaften der porösen Materialien (Gostick J. 

A., 2016). 

Poren Netzwerk Modellierung erlaubt die Berechnung von petrophysikalischen und komplexen 

Strömungseigenschaften im Gestein. Die vorliegende Arbeit nutzt das OpenPNM Python Paket 

zur Simulation des primären Kapillardrainage Druckes und der relativen Permeabilität von 

Mikrotomographie Daten eines Sandgesteines. Das Python Paket Porespy nutzt dabei den 

SNOW Algorithmus zur Extrahierung des Poren Netzwerkes aus segmentierten Micro-

tomographie Bildern.   

Das Modell wurde mit experimentellen Daten für Kapillardruck, Absolute Permeabilität und 

primäre Drainage relative Permeabilität von sehr bekannten Gesteinsproben validiert. 

Simulationsergebnisse haben, unter Einbezug eines aktzeptablen Ungenauigkeitsbereichs, eine 

gute Übereinstimmung mit den experimentellen Ergebnissen aufgewiesen. Des Weiteren wurde 

eine Sensitivitätsanalyse durchgeführt um ein besseres Verständnis des Einflusses der 

Modelparameter, wie Grenzflächenspannung und Kontaktwinkel, auf die Ergebnisse zu 

erhalten. Abschließend wird ein Arbeitsablauf zur Vorhersage von petrophysikalischen- und 

Transporteigenschaften von unbekannten Gesteinen präsentiert. Die Implementierung des 

Arbeitsablaufes wurde exemplarisch an einem Sandgestein durchgeführt. 
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Chapter 1  

Introduction 

Some of the main problems of our century are securing access to clean water for drinking and 

agriculture, providing enough energy for the growing human population, and tackling the issue 

of climate change at the same time. To be able to solve these problems, we need a 

comprehensive understanding of flow in porous media to quantify how fluids move through 

porous rock. This requirement is because most of the available freshwater lies within 

underground resources, and most of our energy comes from oil and gas resources, which also 

come from underground reservoirs (J. Blunt, 2017).  

To develop and produce from oil and gas reservoirs, we use the guidance of our reservoir 

models, and the accuracy of our reservoir models depend on the relative permeabilities and 

proper fluid modeling. One option to derive these relative permeabilities would be to use special 

core analysis in a laboratory. The alternative is to use the Digital Rock Physics (DRP) approach 

in which numerical core analysis is done on a computer. The advantage is that it saves us time 

and costs, and the same samples can be investigated under different scenarios (Geodict, 2020).  

Darcy's law or other similar approaches can be implemented to model the flow at the continuum 

scale. However, the accuracy of their models depends on porous media parameters such as 

porosity, relative permeability, capillary pressure relationships, etc. (Bhattad et al., 2011). 

These parameters are obtained experimentally, but in recent years, the development of rock 

imaging tools that image the porous rock and the fluids inside them has improved our 

understanding of the flow in porous media. This tool is combined with publicly available 

numerical tools which allow us to simulate the flow in these media (J. Blunt, 2017).  

There are two approaches available to model the flow in the pore scale. The first approach, 

which is called direct numerical simulation, solves the governing equations on the actual 

geometry of the pore space. The problem with this approach is that it is very computationally 

expensive. The other method is to use pore network modeling, in which the pore space is 
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represented with a network of balls and sticks. This kind of modeling is highly efficient at the 

expense of losing information and the accuracy of predictions (Geodict, 2020). 

Pore network modeling is a widely used technique to simulate multiphase transport in porous 

materials, and one of the available software packages is OpenPNM. Several porous media 

research groups have developed it as a pore network modeling tool. In pore network modeling, 

a pore network is extracted from reconstructed microtomography images and the corresponding 

numerical calculations are done to predict the transport properties of the porous media (Gostick 

J. A., 2016). 

The input for the model is a high-resolution segmented image of the rock's pore structure 

obtained by micro-computed tomography imaging tools. This leads to the digital twin from 

which the petrophysical and advanced flow properties can be calculated. Elementary fluid 

displacement processes and fluid phase distribution are obtained using micro-CT imaging and 

microfluidic flow experiments in combination with numerical flow simulations. 

Direct numerical simulations are mostly used in the case that porous media is considered as a 

volume averages continuum without the determination of the micro-scale features. Continuum 

models have some practical limitations because they are mathematically hard. For example, to 

describe the porous media's macroscopic transport properties, experiments have to be 

conducted to measure the appropriate relationships. These properties can be e.g., permeability 

coefficient or effective diffusivity, and they are not easy to measure, especially if there is 

multiphase flow. The second practical limitation is that, in a volume-averaged continuum 

modeling, the discrete pore-scale events are not determined; therefore, the model is calculating 

the average amount of fluids. As a result, the models that depend on extensions of Darcy's law 

for multiphase flow cannot predict the distribution of the fluids inside the continuum, and we 

need more comprehensive formulations for this. Pore network modeling tackles this issue; 

however, it takes away the challenging mathematical formulations (Gostick J. A., 2016). 

Pore network modeling (PNM) is an alternative for direct numerical simulation (DNS), which 

offers several advantages by making simplifying assumptions. PNM is much less 

computationally expensive than DNS, and it can manage millions of pores, whereas DNS can 

only handle thousands. Moreover, similar to DNS, static multiphase flow simulations can be 

easily done with PNM using, e.g., percolation theory (J. Gostick et al., 2017). In pore network 

modeling, the pore space is separated into pores and the throats which are connecting the pores. 

Then the flow in the pore throats is calculated by applying mass balance equations on each pore 

and solving Poiseuille-type equations. These types of simulations have been used to study 
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drainage, imbibition, single, and relative permeability processes in porous media (Bhattad et 

al., 2011). 

In this work, the OpenPNM python package, which is an open-source pore network modeling 

package presented by (Gostick J. A., 2016) is implemented to simulate the capillary pressure 

and relative permeabilities on models of microtomography images. The pore network extraction 

is done using the Porespy python package (J. Gostick et al., 2017), which is using an algorithm 

named SNOW to extract pore network from microtomography rock images. The reason for this 

choice is the features and flexibility of the algorithm in the framework work of OpenPNM 

package.  

As a result, it is needed to validate and understand the algorithms, which OpenPNM is using, 

to simulate and predict physical rock properties. Therefore, sensitivity analysis is run to 

investigate the effect of pore network extraction parameters and rock and fluid properties ,e.g. 

interfacial tension and contact angle, on the prediction results.  

In the end, based on the observations made, a workflow is proposed to predict the flow 

parameters of porous media using pore network modeling. Implementing this workflow, 

capillary pressure, absolute permeability, and relative permeability of the porous media can be 

predicted. The implementation of this workflow is then demonstrated on a sandstone rock of 

interest. 

 

 

 

 





 

 

 

Chapter 2  

State of the Art 

2.1 Pore Space Imaging 

Our ability to investigate transport in porous media has been transformed by the use of pore 

space imaging methods. Such methods produce a 2D image of the pore space using X-rays and 

then reconstruction software are used to construct 3D models of the pore space. The principle 

behind these imaging tools are the same as the computer tomography (CT) scanning devices 

which are used for medical examinations, and as a result, medical scanners are adapted to scan 

the cores that have a diameter in centimeters and are 1-2 meters long. However, if the images 

are taken from cores with such dimensions, then the image resolution is in the lower mm range, 

which is not sufficient enough to see the actual pore structure of the rock. Therefore, smaller 

samples have to be imaged at a closer distance to the X-ray source, which will produce images 

at the scale of micrometers (J. Blunt, 2017). 

Since the first micron-resolution image produced by Flannery in 1987, the technology has 

developed tremendously, and nowadays, universities and laboratories have their own imaging 

scanners and access to central synchrotron facilities. Different X-ray tomography schematics 

are illustrated in Figure 1 (J. Blunt, 2017). 
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Figure 1: Different X-ray tomography schematics (a) source, sample, and receiver at a synchrotron 

beam-line (b) micro-CT system with a fan-beam (c) cone-beam configuration (J. Blunt, 2017) 

After the X-rays are emitted from the X-ray source, the radiation is absorbed by the rock more 

strongly than the fluids or the air-filled pore space. Therefore, implementing the correct 

experimental design, the rock and pore structures are distinguishable. The resolution of the 

resulting image depends on sample size, beam quality, and detector specifications. In the case 

of a cone-beam setup, the resolution also depends on the sample distance to the beam source. 

Smaller samples can be brought closer to the source and therefore allow lower resolutions. As 

a result, based on the detector, the sample sizes at the scale of millimeters are typically scanned 

at micrometer resolutions, resulting in an image resolution of micrometers with 10003 to 20003 

voxels. It is also possible to image the rocks under high temperatures and pressure, which can 

simulate deep underground conditions (J. Blunt, 2017). A micro-CT image of Bentheimer 

sandstone is demonstrated in Figure 2 (Ramstad et al., 2012). 



State of the Art  

 

 

 

 

Figure 2: 3D reconstruction of micro-CT image of Bentheimer sandstone (Ramstad et al., 2012) 

2.1.1 Statistical and Process-Based Pore Networks 

Statistical and process-based methods have been implemented to create representations of the 

pore space and to derive the essential features of the porous medium, e.g., porosity and 

connectivity. The benefit of these models is that they do not have limitations in terms of 

resolution of size. Moreover, different realizations can be created to analyze the variation of 

properties. There are two types of process-based models (J. Blunt, 2017).  

In the first type of process-based modeling, the rock's pore network is constructed by mimicking 

the sedimentary and diagenetic processes. It was first developed by Bakke & Øren (1997). They 

tried to reconstruct a sandstone and compute the flow properties by analyzing the pore size 

distribution of two-dimensional thin sections. The flow properties which were derived from this 

approach were close to the ones derived from direct simulation on the images of the rock (Øren 

et at., 2007). 

In another approach, geo-statistics is implemented to create a discretized image of the pore 

space. In this method, single and two-point correlation functions of the pore space are made 

using a high-quality two-dimensional training image. The problem with this method is that the 

long-range connectivity of pore space is not well represented (J. Blunt, 2017; Adler, 1990).  

Other statistical measures have been implemented to preserve the connectivity of the pore 

space. Generally, to maintain the essential geometric and flow properties, any information can 



16 State of the Art 

 

 

 

 

be introduced into a statistical reconstruction. Moreover, three-dimensional images from micro-

CT scans can be used as a benchmark to condition the statistical reconstruction (J. Blunt, 2017). 

For example, Biswal et al. generated a synthetic representation of Fontainebleau sandstone 

using a model of grain packing Biswal et al. (1999). In this representation, the angular nature 

of some of the grains was lost, but the connectivity of the pore space was preserved. 

Furthermore, more complex shapes were produced, but then the connectivity was not preserved.  

Using this statistical reconstruction, images are produced with resolutions beyond the 

capabilities of the imaging techniques. This resolution is required to capture the geometry of 

pore space of different rocks from simple sandstone rocks to micro porosity in carbonates and 

shales. Although these reconstructions overcome some physical limitations, they require further 

simplification to quantify flow and transport in these models (J. Blunt, 2017). 

2.2 Pore network extraction and construction 

A pore network is extracted either from a micro-CT image or from a statistical reconstruction 

of the pore space. Such a network includes wider regions as pores, and narrower regions called 

throats, which connect the pores to each other. The goal of network construction is to 

characterize the pore space in a way that allows us to capture the critical features of flow and 

fluid displacement precisely (J. Blunt, 2017). 

The first representation of a pore space was constructed by Finney (1970) who equally sized 

sphere-shaped ball bearings in a balloon to create a random packing. In this construction, ball 

bearings represented the grains, and the regions with the highest distance from this grain centers 

were identified as pores, while the voids connecting these pores were identified as throats. After 

that, other researchers tried to develop this approach by accounting for compaction and 

diagenesis effects (Bryant & Blunt, 1992; Bryant et al., 1993a; Bryant, 1993b). To mimic the 

compaction, the grains were pushed closer together in a direction, and they swelled to mimic 

the diagenesis effects. Furthermore, Bakke and Øren extended the approach by developing 

numerical methods to perceive sedimentary and diagenetic effects (Bakke & Øren, 1997; Øren 

et al., 1998). In their model, after the construction of a network in the same way as Bryant in 

1993, numerical models were developed for settling, compaction, and sedimentation of the 

grains (Bryant, 1993b). Several networks were constructed using this approach, from which 

successful predictions were made. A synthetic pore space image of the Berea sandstone, with 

its corresponding extracted pore network, is demonstrated in Figure 3 (J. Blunt, 2017). 
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Figure 3: (a) Synthetic reconstruction of Berea sandstone using the process-based method (b) 

corresponding extracted pore network (Bakke & Øren, 1997) 

In the process-based method, pores and throats will have angular cross-sections which come 

from the structure of the pore space. This angularity is taken into consideration by implementing 

the shape factor from Mason & Marrow (1991). They defined the shape factor as G, which is 

the cross-sectional area A, divided by square perimeter P.  

 𝐺 = 
𝐴

𝑃2
 (2.1) 

Using this shape factor, the inscribed radius can be preserved for the calculation of threshold 

capillary pressure and the wetting phase, which lies at the corners as a wetting film. This method 

is limited to the cases when the formation of the rock itself can be simulated or when 

quantification of the grain geometries is available. This can be challenging for the rocks with 

the biogenic origin, which have undergone diagenesis processes like carbonates.  

Therefore, a more topological approach is required for general network extraction from the pore 

space. One of the early models is the Medial axis skeletonization model. In this model, the 

medial axis of the pore space, which had the greatest distance from the solid surface, was used 

to represent the pore space. This was done by an iterative process in which the pore space was 

shrunk by eliminating the voxels that were next to a solid and in the end the three-dimensional 

pore space was converted to a graph of medial voxels (Thovert et al., 1993; Spanne et al., 1994; 

Lindquist et al., 1996). While this model preserves the topology of the pore space, it has some 

disadvantages. For example, in real cases, the identification of the pores is dependent on the 

order that the pore space is shrunk, which can be a big problem since there is a trade-off between 

the image resolution and sample size. Moreover, some features that were not relevant for the 

flow were captured like dead ends, or the identification of the pores was less straight forward. 

Despite the limitations, the model was tested on several rock samples and demonstrated 
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accurate predictions of flow and transport properties (Prodanovi´c et al., 2007; Yang et al., 

2015). 

Due to the problems of the topological method, a robust alternative was proposed to identify 

the pores and put an emphasis on finding wide and narrow regions of the pore space. In this 

alternative, the pores were grown in pore space voxels until they hit the solid, which are called 

maximum balls. In a series of overlapping spheres, a pore is defined as the largest sphere, which 

is called an ancestor. Spheres that are completely contained in other spheres are ignored. 

Smaller maximum balls that have overlapped with an ancestor are assigned to the ancestor’s 

family. These assignments to the ancestor’s family will lead to a ball, which is called a child of 

two families, and then the throats are defined. Here also, the lines which connect the centers of 

maximum balls are the medial axis skeleton (Silin & Patzek, 2006). Figure 4 illustrates how the 

pores and throats are formed in the maximum ball method. 

 

Figure 4: Maximum ball method (Dong & Blunt, 2009) 

However, there are also problems existing in this method as well. Extracting a network using 

this method can cause the formation of small pore and throats which do not contribute to the 

flow, and it is limited by the ambiguities of the discrete nature of pore images. Also, problems 

exist in this method regarding the distinction between the pores and throats. Nevertheless, 

attempts were made to combine this method with simplifications of the pore space, using shape 

factors in equation (2.1), resulting in successful predictions of the flow behavior (Dong & 

Blunt, 2009). Since the maximum ball method has a better representation of the pores and the 

medial axis method has a better description of the throats, it is also possible to mix the two 

approaches to extract the pore network. This technique was implemented on unconsolidated 

media with the results matching the experimental data (Al-Raoush, 2005). 
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Another method to extract the pore network is based on image analysis. In this technique, at 

first, a distance map of the pore space is constructed, which is the distance of the pore voxels 

to the nearest solid surface. The maximums in this distance map are inserted into a seeded 

watershed algorithm to segment the pore space into pores and throats. These maximums 

represent the pores, and the distance to the nearest solid surface defines the pore radius, which 

is equivalent to the ancestor maximum ball in the previous method. The watershed algorithm is 

standard in hydrology to divide regions into different drainage basins and define where the 

water will eventually flow. The analogy here is that the distance in the distance map represents 

the depth. The pores will be located downhill where the distance is at its maximum, and the 

throats will be situated at minimums in the distance map which represent higher grounds 

(Wildenschild & Sheppard, 2013; Rabbani et al., 2014; Taylor et al., 2015; Prodanovi´c et al., 

2015).    

After segmentation of the image into different regions, all the volume of the pore space is 

assigned to pores and throats are defined at the boundaries between the regions. It is important 

to note that these boundaries between the regions are not necessarily planar surfaces. The 

problems with this technique are that in sheet-like pore space, the distance map is not a good 

representation of the segmented pore space. Moreover, the same two pores might be connected 

with more than one throat in between (J. Blunt, 2017). 

Bhattad et al. (2011) has done a comprehensive study to investigate the effect of different pore 

network structures on the modeling results. They conclude that even if the networks are having 

orders of magnitudes of difference in pore size distribution and pore connectivity, single-phase 

permeability predictions remain consistent due to the implementation of physically 

representative network models. Capillary pressure is, on the other hand, more sensitive to the 

network’s underlying structure. However, the pore size distribution obtained from these 

capillary pressures is again consistent in different networks.  

One of the difficulties in extracting a pore network model from a pore space image is the 

unclarity in the physical and geometrical definition of what is pore and what is pore throat. This 

uncertainty prevents the existence of a universal pore structure model for different materials. 

Therefore several network structures could be extracted from pore space data, and there is no 

straightforward way of identifying the correct one (Bhattad et al., 2011). 

Baychev (2019) also studied the performance of the most used algorithms, namely maximum 

ball (Dong & Blunt, 2009) and watershed segmentation (Rabbani et al., 2014). Their findings 

conclude that maximum ball can identify a larger number of features compared to the watershed 

segmentation algorithm, and over-segmentation is an important problem for the watershed 

segmentation algorithm. However, the maximum ball method may introduce conductive paths 
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that do not exist in the original image. In general, the maximum ball method is generating 

smaller features compared to the watershed segmentation algorithm. In both algorithms, the 

number of the pores and throats are overestimated, and the average coordination number is 

underestimated. Despite the underlying structural difference, permeability is predicted with 

acceptable accuracy by both algorithms, which is also in agreement with the findings of 

(Bhattad et al., 2011) (Baychev, 2019). 

(Rabbani et al., 2014) extraction method mainly had the problem that in materials with higher 

porosity, it resulted in many spurious peaks. This was due to the peaks in the distance transform 

map at plateaus and ridges along with the pore centers, which resulted in an over segmented 

image. J. Gostick et al. (2017) approached to improve this method by adding filters that find 

the spurious peaks and eliminate them. In this algorithm, at first, the over segmented image is 

created using the watershed algorithm, and then the number of peaks is ruled out progressively, 

resulting in a subnetwork of the over segmented watershed (SNOW).  

2.3 Direct Numerical Simulation  

In the direct numerical simulation approach, the governing flow equations are solved on the 

actual pore geometry, which is obtained through microtomography imaging (Geodict, 2020). 

The PNM is rule based whereas DNS solves differential equations which are based on physics. 

One of the available tools to perform direct numerical simulations in porous media is Geodict 

from Math2Market. Geodict can import microtomography scans and analyze the porous media 

using its PoroDict module. PoroDict can characterize the pore space by determining the 

geometric pore size distribution, pore size distribution by porosimetry, and percolation path.  

Geometric pore size distribution is a purely geometrical method in which pore radius is 

determined by fitting spheres into the pore volume. In this method, through pores, closed pores, 

and blind pores are not distinguished. The equivalent to experimental porosimetry methods, 

such as MICP is pore size distribution by porosimetry. In porosimetry, the volume of the non-

wetting fluid, which has invaded the porous media, is calculated. This method is similar to 

geometric pore size distribution, however, in porosimetry, the invading phase must be 

connected to the inlet, and the closed pores are also accounted for. The percolation path is 

calculated as the shortest path between the inlet and the outlet, in which a spherical particle 

with the maximum possible diameter can travel (Geodict, 2020). 

In porosimetery the connectivity of the pore space is considered because laboratory porosimetry 

tests e.g. MICP, the isolated pores are not measured. Figure 5 demonstrates how PoroDict 
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calculates porosimetry. On the left of this figure, the solid material is shown with white dots, 

and the pore space is black. On the right of this figure, pores with diameters more than 40 µm 

are shown in dark grey. The pores with diameters between 32-40 µm are shown in light grey 

(Planas & Rief, 2019).  

 

Figure 5: Computation of porosimetry in PoroDict (Planas & Rief, 2019) 

After the characterization of the pore space, the flow behavior of the pore space is predicted 

with the FlowDict module. FlowDict can predict the flow velocity and permeability of the pore 

space by simulating the flow experiments and process the simulation results. The module uses 

Darcy's law to predict the permeability of the pore space using flow velocity, pressure drop, 

fluid viscosity, and the length of the porous media. These calculations apply to the Stokes flow 

in which the flow velocity and Reynolds number are low (Geodict, 2020). 

 𝑢⃗ = −
𝐾

µ
(∇𝑝 − 𝑓 ) (2.2) 

The equation above demonstrates Darcy’s law, which is used in FlowDict. In this formulation 

𝑢⃗  is the fluid flow velocity, K is the permeability of the porous media, µ is the fluid viscosity, 

p is the pressure, f is a force density (Linden & Planas, 2019).  In this formulation, it is assumed 

that the fluid is incompressible, meaning it has a constant density, and Newtonian, meaning it 

has a constant viscosity. Darcy’s law only applies to Stokes flow, which is very slow and has a 

Reynolds number close to zero.  

 −µ∆𝑢⃗ + ∇𝑝 = 𝑓 (2.3) 

The equation above is the Stokes conservation of momentum is a simplification of Navier-

Stokes equations to describe the flow. In this simplification, the inertial term is dropped; 

therefore, the pressure drop and fluid velocity change linearly. Using appropriate solver to solve 

the partial differential equations describing the fluid flow, FlowDict predicts the porous media 
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permeability as a tensor, including the permeability in different directions (Linden & Planas, 

2019).  

The choice of the physical equation to solve is also dependent on the particular material. When 

the material is made of only empty and solid voxels, Stokes or Navier-Stokes equations are 

used. Figure 6 demonstrates the choice of physical equations and solvers available in FlowDict. 

 

Figure 6: The choice of physical equations and solvers available in FlowDict (Linden & Planas, 2019) 

Later on in this work, the results of pore network modeling using OpenPNM are compared with 

Geodict simulation results. This serves as a comparison between the pore network modeling 

approach and direct numerical simulations. 
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Chapter 3  

Simulation Model Development 

3.1 Pore Network Extraction Using Watershed 

Segmentation 

To be able to perform transport simulations using pore network modeling, we need to have a 

stick and ball network, which represents the pore space of the rock. To derive this network of 

sticks and ball, we use segmented micro-CT images of a rock, in which voxels with a value of 

one indicate the rock matrix and the voxels with a value of zero indicate the pore space. Having 

these segmented micro-CT images, we use the SNOW algorithm to derive a stick and ball 

network, which represents the pore space, and then we can start performing flow simulations 

on this network. 

The network extraction algorithm which is implemented in this work is presented by J. Gostick 

et al. (2017), which is an improved version of the watershed segmentation algorithm offered by 

Rabbani et al. (2014). They focused mostly on sandstone material, and the algorithm can 

provide many spurious peaks on the ridges and plateaus that can appear as local maximums in 

the distance transform map. J. Gostick et al. (2017) presented filters by which the over-

segmentation of the image can be prevented. The algorithm is called a subnet of the over 

segmented watershed (SNOW) because it finds all the peaks in the beginning and then tries to 

reduce the spurious peaks by ruling them out. The algorithm is also implemented in a Python 

package named Porespy, which is used in the simulation of our models.  

In the SNOW algorithm, the Euclidean distance transform map of the pore space is pre-filtered 

by a Gaussian blur filter to remove the plateaus, which are created in the case of two parallel 

solid walls. This Gaussian blur filter is represented by sigma, and the higher the sigma is, the 

lower the number of the peaks will be. Then the peaks at the distance map are identified using 

a spherical structuring element of R. If the R is small, then there will be a lot of spurious peaks 

on plateaus and ridges, and if the R is too big, then some information at small throats might be 

lost. In the end, peaks on the saddle points from the last steps are removed, and the nearby peaks 

are merged to eliminate the spurious peaks as much as possible (J. Gostick et al., 2017). 
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As demonstrated in Figure 7, after receiving the greyscale micro-CT image, the pore space is 

segmented from the matrix, which results in Figure 7 (b). This segmentation is out of the scope 

of this article, and the segmented image is the starting point of the SNOW network extraction 

algorithm. Then the distance transform algorithm is run in the pore space, which is indicated in 

the segmented image as in Figure 7 (c). In this distance transform, the brighter spots represent 

the pore space, which are further away from the matrix. To find the peaks of this distance 

transform, a spherical structuring element with a radius of R is then used, which can be specified 

during the network extraction. These peaks are defined by the red dots in Figure 7 (d). As can 

be seen, the points which are the brightest are chosen as the peaks since they have the largest 

distance to their surrounding rock matrix. Finally, the identified peaks are used as seeds for the 

watershed algorithm, and the pore space is separated into different regions. These regions are 

identified by random colors in Figure 7 (e) for illustration.  

 

Figure 7: Marker-based watershed segmentation of Berea sandstone (a) greyscale micro-CT image of 

Berea sandstone (Dong & Blunt, 2009) (b) Segmented image of Berea sandstone (please note that this 

segment does not correspond to (a)) (c) performing distance transform in the pore space (d) finding the 

peaks in the pore using a R max structural element (e) using watershed algorithm seeded with peaks to 

find the regions in the pore space 

(a) (b) (c) 

(d) (e) 
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3.1.1 Image preprocessing  

In a real image of a rock, The solid walls contain a lot of curvatures, which can cause problems 

for the distance transform algorithm, and it can result in many spurious peaks. Therefore, before 

running the distance transform J. Gostick et al. (2017) proposed to use a Gaussian blur filter to 

minimize these spurious peaks. This phenomenon might happen, e.g., in plateaus, where two 

parallel solid walls exist. This blur filter, which smooths the image, is represented by sigma in 

the extraction algorithm, and it is an adjustable parameter. The typical range of sigma is 

between 0 and 0.6, and as it increases, the number of local maximums in the distance map 

decreases. It is important to note that a large number of sigma can cause loss of data; therefore, 

an optimum number should be identified for sigma, to both prevent the over-segmentation and 

loss of data (J. Gostick et al., 2017). Later in this work, a workflow is presented to quality check 

for the optimum sigma by searching for the artifacts in the resulting primary drainage relative 

permeability curves. 

3.1.2 Euclidean Distance Transform and Removing Spurious Peaks 

In the Euclidean distance transform, the distance of a pore voxel is measured from the nearest 

voxel, which represents the rock. In case of a sphere pack as in Figure 5, the Euclidean distance 

of a pore voxel from the spheres can be calculated as:  

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥𝑣𝑜𝑥𝑒𝑙 − 𝑥𝑠𝑝ℎ𝑒𝑟𝑒)
2 + (𝑌𝑣𝑜𝑥𝑒𝑙 − 𝑌𝑠𝑝ℎ𝑒𝑟𝑒)

2 + (𝑍𝑣𝑜𝑥𝑒𝑙 − 𝑍𝑠ℎ𝑝𝑒𝑟𝑒)
2 − 𝑅𝑠𝑝ℎ𝑒𝑟𝑒 (3.1) 

This calculation can be computationally expensive and depends on the size of the image 

that it is being run on (Swanberg, 2012).  

Figure 8 demonstrates the distance transform in a cross-section of Berea sandstone and a 

magnification of a crop. In this figure, the bright green colors represent the pore space with 

further distance from the rock matrix. The further the distance of pore space from the rock 

matrix, the green color is brighter.  
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Figure 8: (Left)Euclidean distance transform demonstration in a cross section of Berea Sandstone 

(Right) magnification of a crop 

In the Porespy package, which is used in this work, the spim function of the Scipy.ndimage 

Python package is implemented. In this algorithm, a maximum filter with a spherical structuring 

element R is used to define the maximums in the distance map. In the maximum filter, the local 

peaks in the neighborhood of each voxel are determined by the structuring element, and while 

the local peaks keep their value, the value in other voxels is replaced by the maximum value. 

The peaks are then identified by locating the voxels, which have an equal value to the distance 

map. In this filter, increasing the R will reduce the number of peaks in plateaus and ridges. 

However, similar to sigma, if R is too big, then some peaks are lost, especially in the pores that 

are smaller than the structuring element (J. Gostick et al., 2017). 

Even with a proper choice of sigma and R, some spurious peaks can exist in the resulting peaks. 

That is why J. Gostick et al. (2017) presented two more filters to remove these spurious peaks. 

The first filter removes the peaks on the saddles, which are surrounded by several voxels with 

the same value in the distance transform map. These voxels can be connected to the voxel with 

higher values in the open pore space. The second filter merges nearby peaks, which is helpful 

in material with large and elongated pores, which causes over-segmentation of the large pore 

space. An illustration of how these filters work on a pore space is demonstrated in Figure 10.  

3.1.2.1 Removing peaks on saddles 

The aim of this filter is to remove peaks that are erroneously identified on the ridges since they 

are surrounded by several voxels which are having the same distance value, but they are 

connected to the open pore space with voxels with higher distance value. The algorithm 

proposed by J. Gostick et al. (2017) tackles this issue by using an iterative process. In the first 
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step of this dilation, the peak is dilated with a cubical structuring element, and then it is flooded 

by the maximum value. After the flooding, the resulting map is compared to the previous 

distance map, and where the values are equal, new peaks are identified. Figure 9 (a) shows a 

3D example of the saddle contour, and Figure 9 (b) demonstrates the corresponding distance 

map. Figure 9 (c-i)- (c-iii) demonstrates how the filter proceeds to find the erroneous points (J. 

Gostick et al., 2017). 

 

Figure 9: Removing peaks on saddles algorithm (J. Gostick et al., 2017) 

3.1.2.2  Merging nearby peaks 

As the existence of large pores in high porous materials can cause peaks that are too close to 

each other, this algorithm can help to identify and remove these peaks. This algorithm identifies 

these peaks by finding the distance between the peak and the distance of the peaks to the nearest 

solid surface. If a pair of peaks are found which are closer to each other than their distance from 

the solid surface, then the peak which is further away from solid is kept, and the other peak is 

removed (J. Gostick et al., 2017).  

The process of removing spurious and erroneous peaks, which are initially identified by the 

watershed segmentation algorithm is demonstrated in Figure 10. In Figure 10 (a), we have the 

initial distance transform, and after using the R max element, the initial number of peaks are 

identified to be 203 in the corresponding cross-section of a sandstone (Figure 10 (b)). In Figure 

10 (b), some of the spurious peaks are identified by red circles in the pictures, and these spurious 
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peaks are then eliminated by using a Gaussian blur filter. Furthermore, the spurious peaks on 

the saddle points and the ridges, which are identified by the red circles in Figure 10 (c), are 

eliminated using trimming saddle points filter. Finally, the erroneous peaks, which are too close 

to each other, are identified and eliminated by merging nearby filters as demonstrated in Figure 

10 (e). 

 

Figure 10: Illustration of filters existing in SNOW algorithm to remove spurious peaks of a sandstone 

rock. (a) the segmented micro-CT image of the sandstone and the corresponding distance transform 

map (the brighter spots represent the zones which have the largest distance from the rock matrix) (b) 

finding the initial number of peaks using structural spherical element R (c) usage of Gaussian blur 

filter to reduce the erroneous peaks (d) trimming saddle points filter to eliminate erroneous peaks on 

saddles and ridges (e) merging nearby peaks to eliminate the peaks that are too close together 

3.1.3 Watershed Segmentation Algorithm 

The watershed algorithm is a widely used method in image analysis used for image 

segmentation. It is based on hydrology in which it is used to divide the regions that water flows. 

In our context, the distance to the solid surface can be considered as depth in a topological map, 

and the largest distances, which are the pore centers are considered as downhills. In this 

analogy, when the water of a pore voxel flows towards a peak in the distance transform or a 

pore center, then it belongs to the region corresponding to that pore center (J. Blunt, 2017).  

Now since we have the peaks of the distance transform identified by a structuring element of a 

sphere with a radius of R, we can insert these peaks into the watershed algorithm as markers. 

These markers will represent the pore centers or downhills, which will then result in segmented 

pore space. This process is demonstrated in Figure 11. 
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In Figure 11 (b), the distance transform is performed on the geometry of two connected pores, 

and the darker color represents the regions where the distance is maximum. After choosing the 

maximum distance as the peak and the pore center, a fluid is set to grow from the pore center 

(Figure 11 (c)) and then the first contact between these two growing fluids will mark the border 

between the pores which represents the throat between them (Baychev, 2019).  

 

Figure 11: The illustration of the pore segmentation using the watershed algorithm. (a) geometry of 

two connected pores (b) distance transform perform on the pore space (c)growing fluid from pore 

centers (d) contact between the fluids causing the segmentation (Baychev, 2019) 

After the fluid growth is complete, then the pore space is segmented into two regions, as 

demonstrated in Figure 12. The black dots in Figure 12 represent the center of the pores, and 

the boundary between them represents the connecting throat, which connects the two pores 

together. 
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Figure 12: The pore centers which are identified as black dots and the boundary between the regions 

which represents the connecting throat (Baychev, 2019) 

3.1.4 Obtaining Geometrical Parameters 

After segmentation of the image into different regions, the geometrical properties are obtained 

using the fact that the pore centers are the maximums in the distance transform, and the throats 

are the space between these regions. A comprehensive explanation of the ways to obtain these 

geometrical parameters is presented in Porespy Python package documentation and Versatile 

and efficient pore network extraction method using marker-based watershed segmentation (J. 

Gostick et al., 2017).  

In the context of the geometrical parameters, it is important to differentiate the inscribed and 

equivalent throat diameters. Inscribed throat diameters are identified from the maxima of the 

global distance transform. These diameters are the default output of the SNOW algorithm, and 

they are used to perform capillary pressure simulations. Equivalent throat diameters, on the 

other hand, are the diameter of a circle with the same area as the throat cross-section (J. Gostick 

et al., 2017). The equivalent throat diameters are used as pore throat diameters to simulate 

absolute permeabilities and relative permeabilities. These diameters are used to calculate 

conductivities, and as stated by J. Gostick (2017), results in better simulation predictions.  

In Figure 13 it is demonstrated that after segmentation of the pore space of a sandstone, the 

network and regions ‘information can be used to define the connectivity and size of the pores 

and throats. In Figure 13 (left), the image is segmented into different regions, and a crop of the 
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image, which is identified by a red box, is magnified in Figure 13 (right). In this magnification, 

the pores are represented by spheres which are centered in the peaks of the distance transform 

map. The throats are represented by tubes which are connecting the spheres to each other. The 

colors in Figure 13 are randomly selected to distinguish different regions of the pore space. 

In terms of geometrical properties, it should be noted that there are two approaches to calculate 

the pore volumes. In the first approach pore volumes are the summations of the volumes of 

voxels, which are included in a region corresponding to a pore; however, these pores in most 

of the cases do not have a spherical shape. 

 In the second approach to have a network model consisting of balls and sticks, the geometrical 

properties which are extracted from SNOW might not be representative of our model. This 

means after the pore network is extracted using SNOW, some parameters must be recalculated 

to represent the desired model. In this approach, since a network model of balls and sticks is 

implemented, pore areas and throat conduit lengths are recalculated after the extraction to match 

the assumptions of a pore network with balls and sticks. This recalculation involves spherical 

pore area and pore volumes based on pore diameters. The choice of which approach to use for 

the pore volume calculations will affect the input pore late filling parameters which will be 

elaborated in the sensitivity analysis part of the Berea sandstone. 

 

Figure 13: (Left) Segmentation of the pore space of a sandstone into different regions using SNOW 

(Right) illustration on obtaining geometrical parameters  

3.2 Transport Predictions 

After obtaining a PNM consisting of sticks and balls, the algorithms based on the displacement 

physics are assigned to the network to predict petrophysical rock properties. In this section, the 

formulation used to derive the transport properties in our simulations will be explained. These 
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properties include primary drainage capillary pressure, absolute permeability, and primary 

drainage relative permeability.   

After extracting a pore network from a micro-CT image of a rock and deriving the 

corresponding geometrical properties, we want to derive the intrusion curve of the network and 

define the invasion state at each capillary pressure step. This is done using the percolation 

theory and the capillary pressure of the pores and throats of the network. It is important to note 

that, since in this thesis, we are only simulating the primary drainage process, the capillary 

pressures of the throats are the limiting factor, and the pore capillary pressure is set to zero in 

each simulation.   

The Young-Laplace formulation and the pore network from the SNOW extraction algorithm 

are used to calculate the capillary pressure of the throats in the network, as demonstrated further 

in this section. During the simulations, it was evident that using solely the pore network 

geometrical parameters extracted by the SNOW algorithm; the capillary pressure of the 

experimental data can not be matched. This is interpreted to be due to the resolution limitations 

of the micro-CT images, and the ball and stick geometrical simplification. To compensate for 

this limitation and simplification, a pore late filling model is implemented in the simulations of 

capillary pressure curves, which is also further discussed in the section. 

3.2.1 Capillary Pressure  

3.2.1.1 Capillary Pressure Young-Laplace Equation 

In our pore network modeling, we are assuming a pore network connection of cylindrical tubes. 

Therefore, to calculate the capillary pressure, we can use the analytical relationship derived by 

Young-Laplace for capillary pressure as (J. Blunt, 2017): 

 𝑃𝑐 = − 
2𝜎cos (𝜃)

𝑟
 (3.2) 

In this equation, r is the pore throat radius, Pc is the capillary pressure, σ is the interfacial 

tension, and θ is the contact angle between two immiscible phases and a solid surface. 

Typically, the contact angle is measured from the denser phase, as demonstrated in Figure 14. 

When two immiscible fluids are in contact with a solid surface, one fluid is usually attracted 

more strongly than the other fluid. The phase which is more strongly attracted is called the 

wetting phase. This definition further implies that in case of having a contact angle less than 90 

degrees, the denser phase is the wetting phase. Furthermore, having a contact angle of 90 

degrees means that the system is intermediate or neutral wet, and in the case of having a contact 

angle of more than 90 degrees, the less dense phase is the wetting phase (Tranter et al., 2007). 
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Figure 14: Demonstration of contact angle measurement and the effect on wettability (Gostick J. , 

2008) 

3.2.1.2 Late Pore Filling 

As stated above, the Young-Laplace equation alone is inadequate to match the simulated 

capillary pressure curve with the experimental data. This mismatch is due to the limitation in 

the micro-CT image resolution and the simplified ball and sticks geometry, which is used in 

pore network modeling. Therefore, a late pore filling modeling is proposed to compensate for 

the limitation.  

The pore late filling model is based on the concept of fractal geometry. In this concept, the 

fractal dimensions are the degree from which a curve, a surface, or a volume is different from 

its ideal topological shape (Y.-H. Lee et al., 1990). From the definition of a fractal surface in 

which the dimensions are fractal rather than integer we can have (Li, 2010): 

 𝑁(𝑟) ∝ 𝑟−𝐷𝑓  (3.3) 

In this formulation, r is the radius of the unit, which is chosen to fill the fractal object, N(r) is 

the number of the units with the radius r that can be filled in the object, and Df is the fractal 

dimensions. Furthermore, according to the capillary tube model, we can have (Li, 2010): 

 𝑁(𝑟) =  
𝑉𝐻𝑔

𝜋𝑟2𝑙
 (3.4) 

In which l is the length of the capillary tube, r is the radius of the capillary tube, and VHg is the 

cumulative volume of mercury, which has intruded the rock. Substitution of equation (3.4) into 

equation (3.3) yields:  

 
𝑉𝐻𝑔

𝜋𝑟2𝑙
∝  𝑟−𝐷𝑓 (3.5) 

 



34 Simulation Model Development 

 

 

 

 

And then we can reduce equation (3.5) to have: 

 𝑉𝐻𝐺 ∝ 𝑟2−𝐷𝑓 3.6) 

Substituting equation (3.6) into (3.2) results: 

 𝑉𝐻𝐺 ∝ 𝑃𝑐
−(2−𝐷𝑓) (3.7) 

In a real porous media of a rock, it is assumed that the rock interface is fractal, and it is so 

complex that an angular geometrical shape cannot describe it. In the pore space of a rock, the 

pores and throats extend over a wide range of lengths because of the limited resolution of the 

imaging techniques and inability to capture the complex geometry. (Tsakiroglou, , 1993) 

proposed a fractal model to compensate for this phenomenon (Jeff T. Gostick et al., 2007; 

Chang et al., 2002). Furthermore, (Chang et al., 2002) proposed a model to capture the pore 

structure, which is not resolved in the pore network as below: 

 
𝑆𝑤,𝑖

𝑆∗
𝑤

= (
𝑃∗

𝑐,𝑖

𝑃𝑐
)𝜂 (3.8) 

 

In this formula, the 𝑃∗
𝑐,𝑖 and 𝑆∗

𝑤 are the capillary pressure and wetting phase saturation of pore 

i, upon the first invasion, and 𝑆𝑤,𝑖 is the residual saturation of the wetting phase in the pore i. 

This means that when the nonwetting fluid is invading into the pore i at a capillary pressure of 

𝑃∗
𝑐,𝑖, the remaining fluid occupies a fraction of the pore volume, which is denoted as 𝑆∗

𝑤. 𝑆∗
𝑤

 

is the fraction of the pore space missing from smaller length scales, which is not represented in 

the network model due to micro-CT image resolution and PNM geometrical simplifications. 

Therefore, some of the pore space is missing the measured throat or pore size distribution, or 

because the measured volume of each pore is assigned to a regular geometric object. 𝑆∗
𝑤 is 

parameter that we need to input in our modeling to calculate the pore late filling parameters. 

 In this formulation, η is the fitting parameter that follows the fractal dimensions of the pore 

scale. In the case of the nonwetting phase drainage at 𝑃𝑐,𝑖 > 𝑃∗
𝑐,𝑖, it stands between zero and 

one for a fractal dimension of two to three. Following the derivation of (Sahouli et al., 1999) 

based on the definition of a fractal surface: 

 𝜂 = 𝐷𝑠 − 2  (3.9) 

In this formula, Ds is the fractional dimension of the pore space. The fractal dimensions of the 

rock pore can be computed from different methods based on the microtomography images of 

the rocks, e.g., using the FracLac plugin of ImageJ image processing software. (Peng et al., 

2011) used a box-counting method to identify the fractal dimensions of different rocks from 
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grayscale CT images. The fractal dimensions proved to increase by increasing the porosity and 

complexity of the structure of the pore space (Peng et al., 2011). It is also important to note that 

this fractal dimension of the rock is also dependent on the resolution of the image (Huang et 

at., 2019). (Krohn, 1988) identified the fractal dimensions of different sandstones by plotting 

the logarithm of the number of features (N(r)) versus the logarithm of the feature sizes (r), 

coming from SEM images of rocks with different magnifications and therefore different 

resolutions.  

In the modeling of this work, throats volumes are set to zero, and late pore filling is only 

implemented on the pore volumes. To find the 𝑃∗
𝑐,𝑖 of the pores in the network, 𝑃∗

𝑐,𝑖
  of the 

pores are adapted from the capillary pressure of the throats, which are connected to the pore. 

This adaptation is made in three different ways, which are also available in the OpenPNM 

package. 𝑃∗
𝑐,𝑖

 of a pore can be either the minimum, maximum, or arithmetic mean of the 

capillary pressures of the throats, which are connected to a pore. The sensitivity of this mode 

selection on capillary pressure and relative permeability curves are later presented in this work 

in Chapter 4. 

3.2.1.3 Drainage Simulations 

Since throats are always smaller than the pores, in the drainage process, the entering of throats 

requires higher capillary pressure. Therefore, after calculating the capillary pressures of the 

pore throats in the network, an algorithm is needed to perform a proper drainage simulation. 

This algorithm decides how the invading phase enters the pore network. 

One option to simulate the drainage simulations are using the quasi-static invasion percolation 

theory, which is already programmed in the OpenPNM package (Gostick J. A., 2016). In this 

algorithm, the path which has the least resistance to flow is identified by ranking the pore throats 

in front of the flow. Then, the invading phase invades the throats, which have the least resistance 

to the invasion, i.e., the throats with the least capillary pressure. On the other hand, the capillary 

pressure in the intrusion curve is defined by the highest capillary pressure that the invasion front 

has invaded. To explain in more detail, the algorithm stores all the accessible throats and then 

try to search for the throat with the least capillary pressure to invade next. This process can 

have a more accurate representation of the flow relative to ordinary percolation theory. 

However, the problem is that this algorithm is more computationally expensive and takes more 

time (Gostick J. A., 2016). The results will be the saturation of the nonwetting invading phase 

versus the pressure applied to the network. In Figure 15, this algorithm is demonstrated at 

different invasion sequences. The inlets are set at the left side of the cubical network, and the 

invasion sequence in increasing from left to right. Furthermore, throughout this work, unless 

otherwise stated, all the drainage simulations are conducted along the X-axis from left to right. 
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Figure 15: Invasion percolation algorithm demonstrated at an increasing invasion sequence from left 

to right in a synthetic cubical network 

A trapping mechanism could also be implemented into the invasion percolation algorithm with 

which one can model the hydraulic trapping of the wetting phase after the invasion of the 

nonwetting phase into the network. In this trapping mechanism, the defending phase can be 

trapped when it is surrounded by the invading phase, which means that the fluid in those pores 

is bypassed, and saturation of the non-wetting phase will not reach one. In the OpenPNM 

package, this mechanism is implemented by Gostick J. A. (2016) based on the algorithm 

proposed by (Masson, 2016). 

The intrusion curve, which is the result of applying the trapping mechanism on a synthetic pore 

network, is demonstrated in Figure 16. In this figure, the difference with the case in which the 

trapping mechanism is not implemented is evident, since the intrusion curve is not reaching a 

nonwetting phase saturation of one. In Figure 16, there are some minima observed in the 

intrusion curve. The reason for this behavior is the algorithm behind invasion percolation. At 

each step of the percolation, the algorithm might face throats that have capillary pressures less 

than the ones observed in the previous steps.  

For the invasion percolation shown here in Figure 16 the inlet for the invasion of the invading 

phase is set at the left side of the network and the outlets are set at the right side of the generic 

network.  
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Figure 16: Intrusion curve in case of trapping mechanism implementation curve on a synthetic cubical 

network 

3.2.1.4 Mixed Invasion Percolation 

Another percolation algorithm that exists in the OpenPNM package is the mixed invasion 

percolation algorithm. Mixed invasion percolation is a special case of invasion percolation 

algorithm in which the pores and throats can be invaded on an individual basis. In the case of 

running the mixed invasion algorithm in the bond mode, the entry pressure of the throats is used 

and the connected pores are invaded automatically.  

 In a pore network, throats are typically smaller than the pores and for the drainage process, the 

throats must be entered with a higher capillary pressure. Therefore, in this work to simulate the 

drainage process,  the mixed invasion percolation algorithm is used in the bond mode. To do 

so the pore entry pressures are set to zero so that the connected pores to the throats are invaded 

Residual Saturation 
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automatically. This convention can speed up the percolation algorithm since the throats are 

typically smaller than the pores.  

Furthermore, there are more options implemented in the mixed invasion percolation algorithm, 

and it is more flexible regarding the percolation results. In the mixed invasion percolation 

algorithm with the increase of the saturation of the invading phase, the capillary pressure is 

always increasing. The intrusion curve for the mixed invasion percolation algorithm is 

demonstrated in Figure 17. In this figure, it can be seen that there is a difference in the residual 

trapping resulting from the mixed invasion percolation algorithm and the invasion percolation 

algorithm due to the algorithms behind the two different percolations. 

 

Figure 17: Intrusion curve demonstration for mixed invasion percolation 
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3.2.2 Absolute Permeability 

Absolute permeability is an important physical property of a rock, which is defined as the ability 

of a rock to pass a fluid through its interconnected pores. This property can easily be derived 

from a pore network model. While absolute permeability is a measure of the conductance of a 

porous medium when pores are a 100% saturated with one fluid, effective permeability is a 

measure of the conductance when the medium is saturated with more than one fluid. The 

relative permeability is defined as the ratio of the effective permeability of one fluid in presence 

of another over the absolute permeability.  

After setting constant pressure boundary conditions on the inlet and the outlet of the pore 

network, the absolute permeability is calculated by solving for the flow rate, which is caused 

by the set pressure difference. To do so, we solve a steady-state transport problem by solving a 

linear series of equations. These series of equations consist of the mass balance for each pore 

in the network. Having the pressures of the pores inside the pore network, we can derive the 

flow rate of the fluid traveling inside the network from Hagen Poiseuille conductivities. Finally, 

using Darcy’s law, we can derive the absolute permeability of the pore network.  

After setting constant pressure boundary conditions on both ends of the pore network, the solver 

identifies the pressure of each pore in the pore network. Having the pressure of each pore in the 

network, the flow which is happening at one inlet of the pore network is calculated using 

equation (3.10). This flow rate is due to the pressure difference at the boundary of the network 

and the pores which are connected to this boundary. Absolute permeability is then calculated 

using Darcy’s law using the calculated flow rate and the constant pressure boundary conditions.  

The mass balance equation which is solved over each pore of the network is as (Jeff T. Gostick 

et al., 2007): 

 𝑞𝑖 = ∑ 𝑔ℎ,𝑖𝑗(𝑃𝑗 − 𝑃𝑖) = 0𝑛
𝑗=1   (3.10) 

Where i and j are the pore index and q stands for the net flow through the pore, n is the total 

number of the pores, g is hydraulic conductance of the throat, which is connecting the pore i to 

pore j, and P is the pore pressure. The hydraulic conductivity of the throats is defined based on 

Hagen Poiseuille formulation: 

 𝑔 =  
𝐴2∗𝑠ℎ𝑎𝑝𝑒 𝐹𝑎𝑐𝑡𝑜𝑟

8𝜋𝜇𝐿
  (3.11) 

Where A is the throat area, μ is the fluid viscosity, and L is the conduit throat length, and in 

case of a pore, it is the half pore length. The shape factor is derived from (Akbari et al., 2011) 

formulation to calculate the conduit shape factor for a network with spherical balls and sticks 

as throats. We use this shape factor to account for the flow, which is happening in a network 

consisting of sticks and ball. 
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/(

4

𝐷3𝜋2
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2𝐷𝐿

𝐷2 − 4𝐿2
+ 𝑡𝑎𝑛−1 (

2𝐿

𝐷
)))  

  
(3.12) 

In the shape factor formulation, L stands for throat conduit length, A is the pore or throat area, 

and D is the pore or throat diameter (Akbari et al., 2011). The conductance of a pore throat 

which connects a pore i to a pore j is calculated by a harmonic mean including shape factors as: 

 

1

𝑔ℎ,𝑖𝑗

=
𝑆𝐹𝑝𝑖

𝑔ℎ,𝑝𝑖

+
𝑆𝐹𝑡

𝑔ℎ,𝑡

+
𝑆𝐹𝑝𝑗

𝑔ℎ,𝑝𝑗

   

  

(3.13) 

In this formulation gh,ij is the conductance of the throat connecting the pore i to pore j, SFpi is 

the shape factor for pore i, and gh,pi is the conductance of pore. The other variables in the formula 

correspond to the same parameters while the indices, t stands for a throat, and pj is pore j. Figure 

18 demonstrates the kind of setting that the calculation of the throat hydraulic conductance 

applies to. 

 

Figure 18: Conductance of a throat connecting pore i to pore j (Valvatne, 2004) 

Equation (3.10) is solved using the steady-state transport solver for the Stokes flow in the 

OpenPNM package. In this algorithm, after defining the fluid properties, hydraulic 

conductance, and the inlet and outlet boundary conditions, the solver calculates in the pore 

pressure and the flow rate of the network. After obtaining the volumetric flow rate at the inlet 

of the sample, absolute permeability can be calculated using Darcy’s law: 

 
𝑄 =  

𝐾𝐴

𝜇𝐿
(𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡)   

  
(3.14) 

Q is the volumetric flow rate in the inlet, K is absolute permeability, μ is fluid viscosity, L is 

the porous medium length, Pin is the pressure at the inlet boundary, Pout is the pressure at the 
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outlet boundary, and A is the flow area available to flow. The Area available to flow can be 

derived for a cubical microtomography image as: 

 
𝐴 = (𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒)2   

  
(3.15) 

It is important to note that this can change regarding the direction of flow. In this work, unless 

otherwise stated, the flow is happening along the X-axis from left to right. Therefore, L is the 

sample length in the X direction, and A is the area of the sample in the YZ plane. 

3.2.3 Relative Permeability 

Since we have a multiphase system, to derive the petrophysical properties of a rock we need to 

acquire the relative permeability with PNM. In our simulations, primary drainage relative 

permeabilities of pore networks are calculated and then compared with experimental data to 

check the accuracy of the results.  

Relative permeability is calculated by modifying the conductivity of the individual throats that 

are invaded by the invading phase using invasion percolation theory. To determine the 

conductance of the throat conduits after the partial invasion of the network with a nonwetting 

phase, the conduits which are not available to a phase are closed. This closure means that the 

conductance of these throats is multiplied by a factor of 10-6. The reason that the throat 

conductances are not multiplied to zero is to prevent solver errors. This can be done in different 

modes, which define how aggressive the closure will be. There are three different modes 

included in the OpenPNM python package. First is ‘strict’ mode in which any pore or throat, 

which is unoccupied by the phase, is closed. The second mode is ‘medium’, which closes the 

conduit in case either the throat or pores are unoccupied by the corresponding phase. In the 

third mode, which is named ‘loose’ the conduit is closed only if the throats are unoccupied. 

Throughout this work, ‘medium’ mode is implemented for the calculations since it 

demonstrated to match the experimental results of the validation samples more accurately. 

After the network is partially invaded by the nonwetting phase, and the conductivities are 

recalculated, the effective permeability of each phase is calculated using the Stokes flow 

algorithm. Therefore, this effective permeability is then divided by the single-phase absolute 

permeability using equation (3.16).  The calculation of this effective permeability is done in the 

same way as for absolute permeability. However, here we are using the recalculated 

conductivities of the throats. Therefore, relative permeability can be obtained from the formula 

below: 

 
𝐾𝑟,𝑝(𝑠𝑝) =  𝐾 / 𝐾𝑒𝑓𝑓,𝑝(𝑠𝑝)    

  
(3.16) 
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In this equation, K is absolute permeability, Keff,p (sp) is the effective permeability of phase p at 

phase saturation of sp and Kr,p (sp) is the relative permeability of phase p at phase saturation of 

sp (Jeff T. Gostick et al., 2007).  

It is important to note that, as it is shown in the model validation chapter later in this article, 

using this formulation to derive relative permeabilities, results in erroneous results for the 

relative permeability before the breakthrough. The reason for this erroneous data is that, before 

the nonwetting phase breakthrough, the invading phase has not formed a connected pathway 

through the sample yet, which will result in extremely low relative permeabilities. 



 

 

 

Chapter 4  

Model Validation and Sensitivity Analysis 

For validating the models, segmented microtomography images of Berea and Bentheimer 

sandstones are used and the simulation results are compared with existing experimental data. 

4.1 Berea Sandstone 

Berea sandstone is a widely used material to study flow in porous media. It is found in Berea, 

Ohio, in Michigan basin and contains minor amounts of feldspar, dolomite, and clays. Here the 

upper unit of Berea sandstone is used since it is frequently used in core flooding experiments 

(Oak, 1990; Dong & Blunt, 2009), and there is plenty of data available for the rock sample to 

validate the models against which include absolute and relative permeability data (Oak, 1990) 

(Dong & Blunt, 2009). Moreover, Churcher et. al (1991) investigated the rock properties of 

Berea sandstone, including its capillary pressure, which we also used to validate our capillary 

pressure models. 

The microtomography image is a subsection with a porosity of 19.6% and a size of 4003, which 

is obtained from the imperial college website and used in other studies as well (London, n.d.; 

Dong & Blunt, 2009). The image resolution is 5.345 μm, and a cross-section of the micro CT 

image is demonstrated in Figure 19. 
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Figure 19: A cross-section of micro CT image of Berea Sandstone obtained from Imperial College 

website (Dong & Blunt, 2009) 

 

Figure 20: Pore network for Berea sandstone which is extracted using SNOW algorithm 

Boundary Pores 

400 Voxels  

Resolution: 5.346 µm 
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The extracted pore network from the micro CT image is shown in Figure 20. In this figure, the 

pores and throats are scaled and colored by the inscribed pore diameter and inscribed throat 

diameters, respectively. The difference between the colors of the pores are more evident than 

the throats since the pore diameter variations are higher. The blue space in the micro CT image 

represents the pore space, and the red space represents the solid phase. There are some small 

pores and throats around the network which account for the boundary pores. These pores are 

used to assign boundary conditions on the network during transport simulations. The boundary 

pores are created outside of the micro-CT image by the SNOW algorithm. 

Absolute permeability and residual saturation results of Berea sandstone are shown in Table 1. 

The input parameters to extract the network and run the simulations are demonstrated in Table 

2. The fluid properties which are used in the simulations are illustrated in  

Table 3. The fluid properties are based on the experiment carried out by Churcher et. al (1991) 

and Oak (1990).  

SNOW extraction parameters, which are shown in Table 2, are based on the workflow, which 

is later presented in this work in the discussion section. The optimum Sigma and R_max are 

selected based on simulation of relative permeability curves from networks with different sets 

of sigma and R_max and choosing the most appropriate curve. Then, the relative permeability 

curve with the least artifacts and the most reasonable shape is selected. Pore entry pressure is 

set to be zero since we are simulating primary relative permeability drainage using the mixed 

invasion percolation in the bond mode and the throats are providing the greatest resistance to 

flow. Throat volumes are also set to zero to neglect the error caused by them. The η parameter 

of 0.85 for the late pore filling model, as stated in equation (3.8), is taken from Krohn (1988). 

Later in this chapter, a sensitivity analysis is conducted by changing η in a range of 0.1 to see 

the changes of capillary pressure and relative permeability curves with respect to the parameter. 

Pc
* mode changes, which are the pore capillary pressure adaptations from throat capillary 

pressures, are also investigated. Here for the Berea sandstone simulations, it has been set to 

medium to match the experimental results. 

The Sw
* parameter of the pore late filling for Berea sandstone is obtained from Figure 21. The 

numbers indicated in this figure are derived from equation (4.1). Since the Berea sandstone 

image has a resolution of 5.345 μm, assuming a mercury surface tension of 0.48 N/m and a 

contact angle of 140 degrees, the highest values of capillary pressure the microtomography 

image shows is 2.75 bars. The connection between the capillary pressure and the image 

resolution lies within the fact that a capillary pressure represents a pore throat diameter, 

according to the Young-Laplace formulation. Therefore, as demonstrated by the red lines 
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illustrated in Figure 21, we are missing on 21.4 percentage of the pore volume due to resolution 

limitation. The calculation of 2.75 bars capillary pressure is shown in the equation below: 

 
2.75 ∗ 1𝐸5 =  −  

2 ∗ 0.48 𝑐𝑜𝑠 (140)

(𝟓. 𝟑𝟒𝟓 ∗ 1𝐸 − 6)/2
 

 

(4.1) 

 

Figure 21: Experimental capillary pressure curve of Berea sandstone (Tsakiroglou et al., 1993) 

Table 1: Prediction results of Berea sandstone 

Parameter Value 

Permeability from Lattice 

Boltzman (J. Gostick et al., 

2017) 

1280 mD 

Permeability from SNOW 1144 mD 

Permeability from Geodict 1877 mD 

Experimental Permeability 

(Dong & Blunt, 2009) 
650 mD 

Resolution 5.345 µm 

Porosity 0.196 

SNOW residual saturation 

from trapping mechanism 
0.243 

Experimental primary 

drainage residual saturation 
0.24 

Average Coordination 

Number 
3.7 
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As the absolute permeability results are shown in Table 1, the SNOW algorithm resulted in the 

permeability of 1144 mD, which is good agreement with the results of Lattice Boltzman 

predictions (J. Gostick et al., 2017). However, it is still double the experimental absolute 

permeability (Dong & Blunt, 2009).  

Here it is important to note that, as recommended by J. Gostick et al. (2017), equivalent throat 

diameters are used to derive the values of absolute permeability from SNOW simulations. The 

reason for this choice is to have a closer match to the Lattice Boltzman simulation results. Also 

in our simulations, using equivalent throats diameters were necessary to acquire acceptable 

relative permeability simulation results. Therefore, through our simulations we stick to the 

convention of using equivalent throat diameters for the absolute and relative permeability 

simulations.  

Using equivalent throat diameter means to use the diameter of a circle with the same area as 

the throat cross-section. The default settings in the Porespy package uses inscribe throat 

diameters, which uses the maximum of global distance transform to define the throat diameters. 

In this context, it is essential to mention that to simulate capillary pressures, the inscribed throat 

diameters are implemented, whereas to simulate relative permeability curves, equivalent throat 

diameters are also used with the reasoning mention before.  

The results of Geodict pore network software are also demonstrated here, which is less accurate 

than the SNOW prediction; however, this comparison is out of the scope of this article. One is 

for this loss of accuracy is the Geodict predictions were run using just the basic settings, and 

these predictions have room for improvement.  

The trapping mechanism implemented in OpenPNM results in a residual network saturation of 

0.243, which is in good agreement with the experimental residual saturation of primary 

drainage presented by Oak (1990). The average coordination number of the sample is 3.7, and 

the histogram of the pore coordination numbers is shown in Figure 22. Here again, It is 

important to note that for this comparison, the Geodict simulation was run on basic settings 

without the required modifications, which explains its deviations from the experimental results.  
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Figure 22: Pore coordination number histogram of Berea Sandstone 

The results of the capillary pressure simulation of the SNOW algorithm are shown in Figure 

23, along with the comparison with experimental and Geodict results. Please note that in this 

simulation, the trapping mechanism is activated for both capillary pressure and relative 

permeability simulations. The experimental capillary pressure curve is conducted by (Churcher 

et. al, 1991). For our comparison, Berea sandstone sample-3 is used to compare with the 

simulation results since it has an absolute permeability, which matches with the one stated by 

(Dong & Blunt, 2009). The SNOW results are matching the experimental results within an 

acceptable range of accuracy. The Geodict simulation results are matching the experimental 

results in low mercury saturation, but they deviate as the mercury saturation increases.   
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Table 2: Parameters used to extract the Berea sandstone network and predict transport properties 

Parameter Value 

SNOW R_max 10 

SNOW Sigma 0.6  

Pore entry pressure 0 

Throat volume 0 

η (Pore late filling) 0.85 

Sw
* 0.214 

Pc
* mode Mean 

Multiphase conductance 

mode 
Medium 

Trapping mechanism Activated 

 

Table 3: Fluid Properties used in Berea sandstone simulations 

Parameter Value 

Mercury Interfacial Tension 480 mN/m 

Mercury-Air Contact Angle 140 degrees  

Water-Oil Interfacial Tension 30 mN/m 

Water-Oil Contact Angle 8 degrees 

Water Viscosity 1.05 cp 

Oil Viscosity 1.39 cp 

 

The results of relative permeability simulation, along with the comparison with experimental 

results, are shown in Figure 24. In this figure, the regions of the relative permeability curve 

which deviate from the experimental results are denoted by red circles. It can be seen that in 

high water saturations since the oil is not forming a connected phase; therefore, the relative 

permeabilities have large errors compared to the experimental results. This error is the same in 

case of water relative permeabilities for low water saturations. However, around the middle of 

the water saturation axis, we can observe a good match between the results of SNOW 

simulations and experimental results. These results can be used to match a Corey relative 

permeability model with a water Corey exponent of 4 and an oil Corey exponent of 2.5, which 

is demonstrated in Figure 25. 
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Geodict and SNOW simulation results of relative permeability are compared in Figure 26. In 

this comparison the trapping mechanism is turned off therefore, the relative permeability curve 

is different from Figure 24 and Figure 25. As can be seen in Figure 26, the capillary pressure 

of SNOW is higher, which is due to the pore late filling model implemented, and for relative 

permeability curves, SNOW is demonstrating a more accurate representation of oil relative 

permeability than Geodict. However, Geodict is more accurate in lower water saturation for 

water relative permeability. 

 

Figure 23: Capillary pressure data comparison for Berea sandstone 
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Figure 24: Comparison of relative permeability for SNOW simulation and experimental results  

 

Figure 25: Corey match to relative permeability results of SNOW 
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Figure 26: Comparison of SNOW and Geodict relative permeability results for Berea Sandstone 

4.1.1 Sensitivity Analysis of Berea Sandstone 

In this section, the sensitivity of different parameters of the SNOW simulation, which have an 

underlying uncertainty, is investigated in the simulation results. The reason for conducting this 

sensitivity analysis is to understand how accurate our simulation results are. Understanding the 

parameters that influence this uncertainty, we can improve the accuracy of the simulation 

results. 

As can be seen in Figure 27 and Figure 28, the number of the pore and the number of the throats 

for Berea sandstone increase in the beginning and then decrease by increasing sigma and R max 

in the SNOW extraction algorithm. However, the results presented by J. Gostick (2017) state 

that the number of pore and throats should decrease when sigma and R max increase. The 

baseline for the number of the pores and the throats in the tornado charts are set to be the ones 

reported by J. Gostick (2017). In Figure 27 and Figure 28, the increase in the number of pores 

and the number of throats until R_max = 5 is interpreted to be artifacts. These artifacts can be 

a consequence of running the distance map in samples with resolution limitations. This means 

that for the case of Berea sandstone, a R_max > 5 should be chosen for further simulations. 
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In Figure 29, it can be seen that as reported by Bhattad (2011), the absolute permeability is less 

sensitive to the underlying structure, and the permeability variations with different sigma and 

R max parameters are a maximum of 10%. The mean variation in the absolute permeability is 

3%, and the baseline for absolute permeability is set to be the one reported by J. Gostick (2017) 

for Berea sandstone. 

The sensitivity of sigma and R max extraction parameters to the capillary pressure curve is 

shown in Figure 30. Although the extraction parameters are different, the capillary pressure 

curve is not very much different. In this figure experimental results are shown with red circles 

and different sets of R max and Sigma are shown with circles in random colors. Here it is 

important to mention that, comparing Figure 30 and Figure 31, we see different calculated 

points in the capillary pressure curve. This happens when we are having different R_max and 

Sigma extraction parameters, because each combination will result in different maximum points 

in the intrusion curve (Figure 17).  

The sensitivity of the capillary pressure curve of Berea sandstone to the η parameter in the pore 

late filling model is shown in Figure 31 varying in the range of 0.75 < 𝜂 < 0.95. The results 

demonstrate that there is a small shift to the right for bigger η values. The capillary pressure 

curve for three different values of Sw
* is shown in Figure 32, in which 𝑆∗

𝑤 is between 0.1 and 

0.3. As the results show, for bigger Sw
* values, the curve will shift to the left. However, the 

sensitivity of the results to Sw
* is more than the sensitivity to η and SNOW extraction 

parameters. 

The same set of sigma and R max, which was used in Figure 29, plus a variation of η parameter 

for late pore filling calculations in the range of 0.1, is used to derive the sensitivity of relative 

permeability curves, which are demonstrated in Figure 33 and Figure 34. It can be observed 

that the oil relative permeability has a more significant error compared to water relative 

permeability curves. The sensitivity of the relative permeability curves to the Sw
* parameter in 

the pore late filling model is demonstrated in Figure 35. It can be seen that bigger Sw
* values 

result in lower relative permeability values both for oil and water, and higher Sw
* values result 

in higher relative permeability values. The differences in relative permeability values are 

highlighted by a red circle in each relative permeability curve. 

Figure 36 shows the sensitivity of different modes of Pc
* model on the capillary pressure and 

relative permeability results. Please note that the points calculated in the capillary pressure 

curve are different from the calculated points in the relative permeability curve. This is because 

we are using inscribed throat diameters to calculate capillary pressure curves points and 

equivalent throat diameters to calculate the relative permeability curve points. As can be seen 

in the case of using the min and mean mode, the capillary pressure is underestimated, and in 
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the case of the max mode, the capillary pressure is fitting the experimental results. As for the 

relative permeability, there will be an underestimation of oil relative permeability in case of 

using the min mode. However, there will be an overestimation of oil relative permeability for 

the max mode. Nevertheless, since capillary pressure curves and relative permeability curves 

are connected, we have to be consistent in choosing a general mode to adapt our capillary 

pressure. This means that the same mode of capillary pressure adaptation has to be selected for 

both capillary pressure simulations and relative permeability simulations. For the Berea 

sandstone is was decided to use the mean mode as it can predict both capillary pressure and 

relative permeability within an acceptable error.  

 

Figure 27: Tornado chart representing the sensitivity of the number of the network pores based on 

sigma and R max parameters of SNOW for Berea sandstone 
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Figure 28: Tornado chart representing the sensitivity of the number of the network throats based on 

sigma and R max parameters of SNOW for Berea sandstone 

 

Figure 29: Tornado chart representing the sensitivity of the absolute permeability based on sigma and 

R max parameters of SNOW for Berea sandstone 
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Figure 30: Sensitivity of the capillary pressure curve on sigma and R max for SNOW for Berea 

sandstone (points are lying on each other) 

 

Figure 31: Sensitivity of Berea sandstone capillary pressure to η pore late filling parameter 
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Figure 32: Sensitivity of capillary pressure curve of Berea sandstone on Sw
* parameter of pore late 

filling model 

 

Figure 33: Sensitivity of relative permeability curve on sigma and r max and η parameter in pore late 

filling for Berea sandstone (linear scale)  
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Figure 34: Sensitivity of relative permeability curve on sigma and r max and η parameter in pore late 

filling for Berea sandstone (logarithmic scale) 

 

Figure 35: Sensitivity of relative permeability curves of Berea sandstone on Sw
* parameter of pore late 

filling model 
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Figure 36: Sensitivity of capillary pressure curves and relative permeability curves for different Pc
* 

mode in the pore late filling model of Berea sandstone, please note the different points in the relative 

permeability and capillary pressure curves due to different throat diameter implementation 

Until here, the simulations were conducted by making the assumption that the pore volumes 

are the summations of the volumes of voxels, which are included in a region corresponding to 

a pore. These regions are defined after the segmentation of the pore space using the SNOW 

algorithm. Therefore, pore late filling parameters were derived and implemented using the 

available fractal information of the rocks from the literature and the initial fraction from the 

MICP experimental data. 

Another method to calculate the pore volumes is to calculate the volume of spheres using the 

inscribed pore diameters calculated by the SNOW algorithm. In the case of using this method 

to calculate the pore volumes, a lot of porosity of the pore space will be lost. However, it was 

observed that still good results could be obtained from the simulator if we use the proper 
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parameters for the pore late filling model. The η, in this case, is one since we are dealing with 

three-dimensional spherical pore volumes, and the initial fraction is the amount of pore space 

lost during the calculations of the pore volumes in the last step. The advantage of this method 

is that when we want to simulate the rocks from which we do not have a lot of data available, 

we have an easier choice for pore late filling model parameters. This advantage is explained 

further in detail. 

In the case of Berea sandstone, only 9 % of the porosity is captured by calculating the 

summation of the volumes of the pores from the pore diameters. Therefore, we can use the 

initial fraction (Sw
*) of 0.91 in the pore late filling formula, which is the volume of the pore 

space not captured by the spherical pore geometry compared to the porosity obtained from 

voxel count method. Also, here η is one since we are assuming spherical shape for our pores. 

During this study, it was found that using this method of the simulation, the Pc
* mode of ‘min’ 

works best for all of the simulation samples. 

Figure 37 and Figure 38 demonstrate the capillary pressure and relative permeabilities derived 

from this simulation method for Berea sandstone. It can be seen that the capillary pressure curve 

has a closer match relative to the capillary pressure derived in Figure 23. Also, the relative 

permeabilities show results which are matching the experimental results as good as the ones 

reported in Figure 24. 

 

Figure 37: Capillary pressure of Berea sandstone using pore diameters to derive pore volumes 
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Figure 38: Relative permeability of Berea sandstone using pore diameters to derive pore volumes 

4.2 Bentheimer Sandstone 

As another sample to validate our model with the experimental results, Bentheimer sandstone 

is used. Bentheimer is a well-sorted and water-wet sandstone which is mainly made of quartz, 

feldspar, and authigenic clays. The Amott wettability index of the experimental results is 

between 0.08 and 0.1, which accounts for a water-wet state (Oren et al., 1998). The micro CT 

image of Bentheimer has a resolution of 3.0035 μm and a porosity of 0.21 and a size of 10003 

voxels. In this work, due to computational limitations, a crop of 5003 voxels was used, starting 

from the zero coordinate point of the main image (Muljadi, n.d.; Muljadi et al., 2015). Figure 

39 demonstrates a 2D cross-section of the Bentheimer micro CT image, and Figure 40 illustrates 

the pore network extracted using the SNOW algorithm from a crop of the main micro-CT 

image.  
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Figure 39: 2D cross-section of Bentheimer micro CT image (Muljadi et al., 2015) 

 

Figure 40:Pore network extracted from Bentheimer sandstone using SNOW algorithm 
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Figure 41: Obtaining Sw
* to implement in Bentheimer sandstone modeling (Oren et al., 1998) 

Table 4: Pore networking properties of Bentheimer sandstone 

Parameter Value 

Permeability from SNOW 2002 mD 

Permeability from Geodict 3516 mD 

Experimental Permeability 2840 mD 

Resolution 3.0035 µm 

Porosity 0.21 

SNOW residual saturation 0.213 

Average Coordination 

Number 
3.56 

 

As it can be seen in Table 4, SNOW predictions for absolute permeability are underestimating 

the experimental permeability reported by Øren et al. (1998) and the Geodict results are 

overestimating the absolute permeability. However, they are both in the same order of 

magnitude. Nevertheless, in the case of a rock sample with an absolute permeability of several 

Darcies, the same differences in measurements also appear in experimental results from the 

laboratory. 
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In the case of Bentheimer sandstone, Pc
* mode is set to min and the consequence of using this 

method is that, there is a better match with the experimental results and SNOW predictions. 

These parameters and SNOW network extraction parameters are demonstrated in Table 5. It is 

essential to mention that Sw
* is chosen from Figure 41. The calculations which are denoted on 

this figure are obtained from equation (4.2). In this figure, Pc = 0.35 represents the maximum 

observable capillary pressure due to the resolution limit of the image, which is 3.0035 μm. The 

η for Bentheimer sandstone is chosen based on the findings of Zhang et al. (2018), who 

calculated the fractal dimensions of Bentheimer sandstone based on the mercury injection 

experiment.  

 
0.35 ∗ 1𝐸5 =  −  

2 ∗ 0.035 𝑐𝑜𝑠 (140)

(𝟑. 𝟎𝟎𝟑𝟓 ∗ 1𝐸 − 6)/2
 

 

(4.2) 

Using the fluid properties, which are shown in Table 6, capillary pressure and relative 

permeability predictions of SNOW are compared with experimental results in Figure 42 and 

Figure 43. In the predictions of capillary pressure, the SNOW is generally underestimating the 

experimental capillary pressure, which can be due to the differences in the contact angles of the 

real rock sample. Also, in higher oil saturations, the results deviate from experimental results, 

which can be due to the inaccuracy in residual saturation predictions of the model from reality 

and errors rising from pore late filling model.  

As for the relative permeability curve shown in Figure 43, the relative permeabilities for oil are 

erroneous in low oil saturations since the oil has not formed a connected phase. For water 

relative permeability, the same phenomena are happening at low water saturations. Generally, 

the model has a better ability to predict the oil relative saturation at higher oil saturations and 

water relative permeability at higher water saturations. This behavior of the simulation results 

is also the same as observed in the Berea sandstone.  

The comparison of results between SNOW transport predictions and Geodict predictions is 

shown in Figure 44 and Figure 45. It can be seen that in both curves, the results are very close. 

However, for the higher mercury saturation in the capillary pressure curve, there is a mismatch 

between the results which is due to the implementation of pore late filling model in SNOW 

modeling.  
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Table 5: SNOW network extraction parameters for Bentheimer sandstone 

Parameter Value 

SNOW R_max 12 

SNOW Sigma 0.6  

Pore entry pressure 0 

Throat volume 0 

η (Pore late filling) 0.67 

Sw
* 0.081 

Pc
* mode Min 

Multiphase conductance 

mode 
Medium 

Trapping mechanism Deactivated 

 

Table 6: Fluid properties used to simulate the flow in Bentheimer sandstone 

Parameter Value 

Mercury Interfacial Tension 480 mN/m 

Mercury-Air Contact Angle 140 degrees  

Water-Oil Interfacial Tension 35 mN/m 

Water-Oil Contact Angle 40 degrees 

Water Viscosity 1.06 cp 

Oil Viscosity 1.4 cp 
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Figure 42: Capillary pressure comparison of SNOW predictions and experimental results of (Oren et 

al., 1998) for Bentheimer sandstone 

 

Figure 43: Relative permeability comparison of SNOW predictions and experimental results from 

(Oren et al., 1998) for Bentheimer sandstone 
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Figure 44: Capillary pressure comparison of SNOW predictions and Geodict results for Bentheimer 

sandstone 

 

Figure 45: Relative permeability comparison between SNOW predictions and Geodict results for 

Bentheimer sandstone 
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4.3 Interfacial Tension and Contact Angle 

In a rock sample, the contact angle and interfacial tension between the fluid phases are not just 

a constant value. In this part, the sensitivities of the primary drainage relative permeability with 

respect to interfacial tension and contact angle are investigated.  

In order to analyze the effect of changing the interfacial tension and the contact angle on the 

relative permeability curves, the underlying algorithm needs to be changed. This is because the 

primary drainage process in OpenPNM is modeled with the percolation theory, and in the 

framework of OpenPNM, we are dealing with invasion sequences at each percolation step. 

Later we use this invasion sequence to derive our relative permeability curves, and these curves 

only change if the invasion sequence is different. The invasion sequence is observed to be solely 

dependent on the structure of the pore network itself. Therefore, it changes if we use different 

extraction parameters to get a different pore network. 

Based on our observations, changing the values of the Young-Laplace equation in OpenPNM 

does not change the invasion sequence. Therefore, the capillary pressure curve is still having 

the same saturation points but with different capillary pressures. The difference in the capillary 

pressure is then dependent on the values of interfacial tension and the contact angle that were 

used in the Young-Laplace equation. This difference is depicted in Figure 46. 

 

Figure 46: Capillary pressure of Berea sandstone for mercury injection at different interfacial tensions 
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New Saturation 
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In the new algorithm of calculating the relative permeabilities, the saturation which is 

corresponding to an invasion state and a certain capillary pressure is shifted based on the shapes 

of the capillary pressure curves. For example, In Figure 46 it can be seen that in the case we 

change the IFT from 560 mN/m to 400 mN/m, the capillary pressure curve will move down 

based on the Young-Laplace equation. Therefore, if we have already calculated the relative 

permeability curve for an IFT of 560 mN/m, which represents in this example our base case, 

then by changing the IFT to 400 mN/m, we shift the saturation based on the red arrows indicated 

in Figure 46. A limited saturation shift physically makes sense because in reality, in the case of 

having less IFT then less snap offs occur and smaller pores are invaded more easily, resulting 

in a higher invading phase saturation.  

 In terms of the implementation, in the loop of calculating the relative permeabilities, after 

choosing the new parameters to calculate the Young-Laplace equation, the saturation of the 

new calculated capillary pressure is recalculated based on the capillary pressure curve of the 

base case. The base case for this sensitivity analysis is the case with which the simulation results 

were matching the experimental data. 

In this investigation, two Berea sandstone models from the same rock type, a Bentheimer 

sandstone and sandstone one, were investigated. In this analysis, the relative permeabilities 

under different conditions were matched with the extended Corey model for relative 

permeabilities. The match between the relative permeability curves and the Corey exponent for 

Berea sandstone is shown in the Appendix B. The code to simulate this sensitivity is shown in 

the Appendix A. The match between the relative permeability curves and the Corey exponents 

was done visually and based on our subjective decision and weighting on which simulation 

results are more accurate. The trapping mechanism for this simulation has been turned off to 

observe the match more clearly. 

Figure 47 and Figure 48 demonstrate the variations of the oil and water exponent in Corey 

extended relative permeability model for different rock samples versus different contact angles. 

The trend shows an increase in the oil exponent and a decrease in the water exponent with the 

increase in the contact angle. The changes of residual water saturations for the range of the 

investigated contact angles are shown in Figure 49. It can be seen that, as the contact angle 

increases the residual saturation decreases, which is a result of the model going towards a 

neutral wetting state. This is a correct trend since with the increase of the contact angle, the 

mobility of the wetting phase should be increasing and the mobility of the non-wetting phase 

should be decreasing.  
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 Figure 47: Variation of the oil exponent in Corey extended relative permeability model for different 

rock samples versus different contact angles 

 

Figure 48: Variation of the water exponent in Corey extended relative permeability model for different 

rock samples versus different contact angles 
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Figure 49: Variation of the residual water saturation  in Corey extended relative permeability model for 

different rock samples versus different contact angles 

Figure 50 and Figure 51 demonstrate the variation of the oil and water exponents in Corey’s 

extended relative permeability model for different rock samples versus different interfacial 

tensions. The trends show a decrease in the oil exponent and an increase in the water exponent 

with the increase of the interfacial tension.  

Figure 52 shows the sensitivity of the residual water saturation to the interfacial tension. It can 

be seen that as the interfacial tension increases, the residual water saturation also increases. The 

reason that the increase in the residual water saturation here is more evident compared to the 

variations of the contact angle is the Young-Laplace equation. In this equation, capillary 

pressure is having a linear relationship with the interfacial tension whereas, the relationship 

with the contact angle is given in the form of a cosine function.  

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70

R
es

id
u
al

 W
at

er
 S

at
u
ra

ti
o

n

Contact Angle (deg)

Residual Saturation

Berea 700 (Shell)

Plug 205

Bentheimer

Berea (Imperial College)



72 Model Validation and Sensitivity Analysis 

 

 

 

 

 

Figure 50: Variation of the oil exponent in Corey extended relative permeability model for different 

rock samples versus different interfacial tensions 

 

Figure 51: Variation of the water exponent in Corey extended relative permeability model for different 

rock samples versus different interfacial tensions 
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Figure 52: Variation of the residual water saturation  in Corey extended relative permeability model 

for different rock samples versus different interfacial tensions 
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Chapter 5  

Results and Discussion 

5.1 Application  

After validating our model using the validation samples, the model is used to predict the 

properties of a sandstone hereby and after called sandstone 1. The original image size is 650 * 

650 * 1200 voxels, and the voxel size is 3.82 μm. However, due to computational limitations, 

a cube with the size of 500 voxels was cropped from the main image, starting from the zero 

coordinate points. The voxel count porosity of the cropped image is 0.27. A cross-section of 

the sandstone 1 segmented micro-CT image is shown in Figure 53 in which the black color 

demonstrates the matrix, and white shows the pore space. The pore network extracted from the 

sandstone 1 micro-CT image is shown in Figure 54. 

 

Figure 53: The segmented micro-CT image of sandstone 1 
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Figure 54: Pore network extracted from sandstone 1 

Since the fractal dimension of sandstone 1 is undefined, we use our alternative pore volume, 

which is the pore volume derived from the inscribed pore diameter. In this calculation, the pore 

volumes are the volume of a sphere with inscribed pore diameters, whereas, in case of having 

more data, the pore volumes are calculated by summing the volumes of the voxels which fill 

the pore region after watershed segmentation by SNOW. Calculating the pore volumes of 

spheres in the pore space, pore volumes will be 16% of the total voxel count porosity. Therefore, 

we will have an initial fraction of 0.84 (1 – 0.16) and η = 1 for the pore late filling model. 

Moreover, as recommended before for this method of pore late filling model implementation, 

Pc
* mode of ‘min’ is used for the simulations.  

Using the network and fluid properties demonstrated in Table 8 and Table 9, the transport 

prediction of our modeling for sandstone 1 is shown in Table 9. It can be seen that absolute 

permeability is underestimated by approximately a factor of two in our modeling compared to 

the reported experimental results. However, in this case, Geodict is overestimating the absolute 

permeability but with better accuracy.  

 

 

 

 

 

 

1200 Voxels  

650 Voxels  

500 Voxels  

Resolution: 3.82 µm 
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Table 7: Transport prediction results for sandstone 1 

Parameter Value 

Permeability from SNOW 6360 mD 

Permeability from Geodict ~12000 mD 

Experimental Permeability 10995 mD 

Resolution 3.82 µm 

Porosity 0.27 

SNOW residual saturation 

from trapping mechanism 
0.19 

 

Table 8: Network parameters implemented for sandstone 1 simulations 

Parameter Value 

SNOW R_max 5 

SNOW Sigma 0.5  

Pore entry pressure 0 

Throat volume 0 

η (Pore late filling) 1 

Sw
* 0.84 

Pc
* mode Min 

Multiphase conductance 

mode 
Medium 

Trapping mechanism Activated 

 

Table 9: Fluid properties implemented for sandstone 1 simulations 

Parameter Value 

Mercury Interfacial Tension 485 mN/m 

Mercury-Air Contact Angle 130 degrees  

Water-Oil Interfacial Tension 30 mN/m 

Water-Oil Contact Angle 8 degrees 

Water Viscosity 1.05 cp 

Oil Viscosity 1.39 cp 
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Capillary pressure and relative permeability results are shown in Figure 55 and Figure 56. It 

can be seen that the capillary pressure curve has a good match with experimental results in the 

lower mercury saturation. However, it starts to deviate at higher mercury saturations. This 

behavior was observed and explained in validation samples as well. The relative permeability 

curve was fitted to a Corey relative permeability model with the Corey exponent of 4 for water 

and a Corey exponent of 2 for oil. The fit is better in this case for water, but for oil, the curve 

of the simulation results is different in the middle water saturations. 

 

Figure 55: Capillary pressure curve of sandstone 1, comparing SNOW simulation with experimental 

results 
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Figure 56: SNOW simulation results of relative permeability for sandstone 1, fitted with Corey relative 

permeabilities 

5.2 Discussion  

To derive the physical parameters of a rock sample using pore network modeling, we have 

started from the segmented micro-CT image of the rock. The segmented micro-CT image is 

input into an algorithm called SNOW to segment the pore space further into different regions 

corresponding to the pores of the network. After deriving the geometrical parameters of the 

network, physical formulas and phase properties are assigned to the network to calculate the 

desired physical properties. The simulations are in the end performed using invasion 

percolation theory and solving the mass balance over each pore to derive capillary pressure 

curves, absolute permeabilities, and relative permeabilities. The simulations were based only 

on the primary drainage process in which a nonwetting phase invades the pore network. 

The conducted model was then validated using Berea sandstone, and Bentheimer sandstone 

experimental data found in the literature. During this validation, the shortcomings and strengths 

of our modeling were observed. In terms of capillary pressure, the curves were fitting the 
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experimental data in the lower nonwetting phase saturation. However, the simulation results 

deviated from experimental data in higher nonwetting phase saturation due to the limitations in 

the imaging resolution. In the case of absolute permeability, the simulation results were higher 

by a factor of two in the case of Berea sandstone and lower by a factor of two third in the case 

of Bentheimer sandstone. However, such differences in the values of absolute permeabilities 

are also observed in experimental data, from one sample to another. Relative permeability 

observations indicated that the model fails at the endpoint relative permeabilities. This behavior 

is due to having an unconnected phase before the breakthrough at lower phase saturations. 

Nevertheless, the relative permeabilities have a good match with experimental data after the 

breakthrough and higher phase saturations. 

As another part of model validation, the modeling parameters which can cause uncertainty in 

the simulation results were identified. The network extraction parameters, namely Sigma, and 

R_max, demonstrated to have a strong influence on the relative permeability curve. Moreover, 

pore late filling parameters, which are η, the initial fraction, and the adaptation of the capillary 

pressure of the pores from the capillary pressure of throats, mainly had an influence on the 

capillary pressure curve. This influence was not limited to the capillary pressure curve, but the 

pore later filling model parameters also had an impact on the relative permeability curves as 

well. The uncertainty in the aforementioned parameters causes a range of uncertainty in the 

simulation results as well. Using a correct workflow, these uncertainties are minimized, and the 

best possible match with the experimental results is obtained. 

Based on these observations, a workflow is presented in Figure 57 to simulate capillary pressure 

and relative permeability curves using pore network modeling in the OpenPNM package and 

using the SNOW network extraction algorithm. 

This workflow begins by finding the fractal dimensions and initial fraction (Sw
*) of the rock 

image of interest. These parameters are mainly found from MICP experiments, but since the 

purpose of this workflow is to have a prediction of the capillary pressure curve before having 

experiments, other alternatives could be considered. (Krohn, 1988) presented a method to 

derive the fractal dimensions of different rock samples based on a log-log plot of SEM images 

with different resolutions. (Peng et al., 2011) used grayscale micro CT images and a box-

counting method to identify the fractal dimensions. (Zhang et al., 2018) calculated fractal 

dimensions of Bentheimer sandstone from petrophysical analysis using NMR and SIP 

measurements. The initial fraction (Sw
*) can be identified from the fraction of the pore space, 

which is missing from the pore or throat size distribution because of the image resolution 

limitations. 
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Another method to define the pore late filling model parameters is to calculate the pore volumes 

using the pore diameters. Then the initial fraction is defined as the fraction of the pore volume 

captured by this method over the voxel count pore space. In this method, η is one since we are 

considering spherical pores, and the Pc
* mode of ‘min’ is recommended for this implementation.  

The second step in the workflow is to identify the correct sigma and R max parameters for 

SNOW extraction. Since relative permeability curves are found to be the most sensitive to the 

network structure, this can be done by simulating the relative permeability curves for different 

extraction parameters and choosing the ones that have the least artifacts in the relative 

permeability curves. After choosing the correct sigma and R max parameters, the absolute 

permeability and capillary pressure curves are calculated for the network.  

Later on, in case of the availability of experimental data, the model is updated to match the 

experimental results by updating the parameters, e.g., Pc
* mode, η, Sw

*, Sigma, and R max. 

 

Figure 57: Workflow to simulate capillary pressure and relative permeability 

Based on our observations on the investigated sandstones, the proper value for Sigma is around 

0.5, and R_max is between 5 and 12. Based on the workflow presented in Figure 57, one can 

simulate capillary pressure and relative permeability of rock even when there is not a lot of data 

available from the rock. However, the simulation results suffer in this case in relative 

permeability endpoints and at higher nonwetting phase saturations for the capillary pressure 

curve.  

Our simulations were only conducted for primary drainage of sandstones, and it can fail in more 

complex transport processes, e.g., imbibition due to more complex transport phenomena. 

Moreover, in the case of other rock types, e.g., carbonates, it can result in more inaccuracies in 
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the results due to the presence of micropores in the rock, which are not implemented in our 

modeling. Further comprehensive modeling is required as a further study to include these 

complexities. 





 

 

 

Conclusion 

The pore network modeling using OpenPNM demonstrated the ability to predict transport 

properties and match the experimental data. However, the predictions possess inaccuracies in 

parts of its results. Based on the observations on the validation models and the sensitivity 

analysis, the pore late filling input parameters and their adaptation from the throats to the pores 

of the network has a great influence on the calculated capillary pressure curves. The changes in 

the capillary pressure curve also affects the relative permeability curves along with the SNOW 

extraction parameters which are R max and sigma. 

A workflow is presented to understand the uncertainties in the modeling parameters and derive 

the most accurate results possible. A further study on more validation samples should be 

conducted to improve this workflow and find correlations between different rock types and 

uncertain parameters. The simulations and the workflow are based on the SNOW network 

extraction algorithm and OpenPNM pore network modeling python package. 

Pore network modeling using OpenPNM provides a fast and flexible opensource tool to predict 

two-phase flow parameters using micro-CT images. The tool demonstrated promising results 

with errors existing in absolute permeability, capillary pressure at high nonwetting phase 

saturations, and endpoint relative permeabilities. Since it is an opensource tool, it can be 

extended to more complicated transport processes like imbibition and dynamic pore network 

modeling to improve the results. 
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𝐺  Shape factor [] 

𝐴  Area [m2] 

𝑃 Perimeter [m] 

𝑋 

 

Coordinates of a voxel in 

the X-axis 

[m] 

𝑌 Coordinates of a voxel in 

the Y-axis 

[m] 

𝑍 Coordinates of a voxel in 

the Z-axis 

[m] 

𝑅𝑠𝑝ℎ𝑒𝑟𝑒 Radius of a solid sphere [m] 

𝑃𝑐 Capillary pressure [pa] 

𝜎 Interfacial Tension [N/m] 

𝜃 Contact Angle [Radians] 

𝑟 Pore radius [m] 

𝑁(𝑟) Number of Units with 

radius r 

[] 

𝐷𝑓 Fractal Dimensions [] 

𝑉𝐻𝑔 Volume of Mercury [m3] 

𝑙 Capillary tube length [m] 

𝑆𝑤,𝑖 Wetting phase saturation [] 

𝑆∗
𝑤 Wetting phase initial 

fraction 

[] 

𝑃∗
𝑐 Capillary pressure at an 

initial fraction of wetting 

phase saturation 

[pa] 
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𝜂 Fitting parameter 

corresponding to fractal 

dimensions 

[] 

𝑞𝑖 Volumetric flow rate of 

pore i 

[m3/s] 

𝑔ℎ,𝑖𝑗 Hydraulic conductance of 

a throat connecting pore i 

to pore j  

[m3/pa.s] 

𝑃𝑖 Pressure of pore i [pa] 

𝑃𝑗 Pressure of pore j [pa] 

𝜇 Fluid viscosity [pa.s] 

𝑘 Hydraulic conductance [m3/pa.s] 

𝑆𝐹𝑝𝑖 Shape factor of pore i [] 

𝑆𝐹𝑡 Shape factor of a throat 

between pore i and j 

[] 

𝑆𝐹𝑝𝑗 Shape factor of pore j [] 

𝐷 Throat diameter [m] 

𝑄 Volumetric flow rate [m3/s] 

𝐾 Absolute permeability [m2] 

𝐿 Porous medium length [m] 

𝑃𝑖𝑛 Inlet pressure [pa] 

𝑃𝑜𝑢𝑡 Outlet pressure [pa] 

𝐾𝑒𝑓𝑓,𝑝 Effective permeability of 

phase p  

[m2] 

𝑆𝑝 Saturation of phase p [] 

𝐾𝑟,𝑝 Relative permeability of 

phase p 

[m2] 

𝑁𝑝 Number of pores [] 
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𝑁𝑡 Number of throats [] 
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Abbreviations 

PNM Pore Network Modeling 

DNS Direct Numerical Simulation 

SNOW Subnet of the Oversegmented Watershed 

CT Computer Tomography 

SF Shape Factor 

DRP Digital Rock Physics 

MICP Mercury Intrusion Porosimetry 
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Appendix A  

OpenPNM Simulation Codes 

A.1 SNOW network extraction 

1. import porespy as ps 

2. import matplotlib.pyplot as plt 

3. import openpnm as op 

4. import numpy as np 

5. import scipy as sp 

6. from porespy.networks import regions_to_network, add_boundary_regions 

7. from porespy.networks import _net_dict 

8. from porespy.networks import label_boundary_cells 

9. from porespy.tools import pad_faces 

10. from porespy.tools import make_contiguous 

11. from porespy.metrics import region_surface_areas, region_interface_areas 

12. from collections import namedtuple 

13. import scipy.ndimage as spim 

14. from porespy.filters import find_peaks, trim_saddle_points, trim_nearby_peaks 

15. from skimage.morphology import watershed 

16. from porespy.tools import randomize_colors 

 

17. for sigma in [0.6]: 

18. for r_max in [10]: 

19. def snow_partitioning(im, dt=None, r_max=4, sigma=0.4, return_all=False, 

i. mask=True, randomize=True): 

20. tup = namedtuple('results', field_names=['im', 'dt', 'peaks', 'regions']) 

21. print('_'*60) 

22. print("Beginning SNOW Algorithm") 

23. im_shape = sp.array(im.shape) 

24. if im.dtype is not bool: 

a. print('Converting supplied image (im) to boolean') 

b. im = im > 0 

25. if dt is None: 

a. print('Peforming Distance Transform') 

b. if sp.any(im_shape == 1): 

c. ax = sp.where(im_shape == 1)[0][0] 

d. dt = spim.distance_transform_edt(input=im.squeeze()) 

e. dt = sp.expand_dims(dt, ax) 
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f. else: 

g. dt = spim.distance_transform_edt(input=im) 

 

26. tup.im = im 

27. tup.dt = dt 

 

28. if sigma > 0: 

a. print('Applying Gaussian blur with sigma =', str(sigma)) 

b. dt = spim.gaussian_filter(input=dt, sigma=sigma) 

 

29. peaks = find_peaks(dt=dt, r_max=r_max) 

30. print('Initial number of peaks: ', spim.label(peaks)[1]) 

31. peaks = trim_saddle_points(peaks=peaks, dt=dt, max_iters=500) 

32. print('Peaks after trimming saddle points: ', spim.label(peaks)[1]) 

33. peaks = trim_nearby_peaks(peaks=peaks, dt=dt) 

34. peaks, N = spim.label(peaks) 

35. print('Peaks after trimming nearby peaks: ', N) 

36. tup.peaks = peaks 

37. if mask: 

a. mask_solid = im > 0 

38. else: 

a. mask_solid = None 

39. regions = watershed(image=-dt, markers=peaks, mask=mask_solid) 

40. if randomize: 

a. regions = randomize_colors(regions) 

41. if return_all: 

a. tup.regions = regions 

b. return tup 

42. else: 

a. return regions 

 

43. def snow(im, voxel_size=1, 

a. boundary_faces=['top', 'bottom', 'left', 'right', 'front', 'back'], 

b. marching_cubes_area=False): 

 

44. # ------------------------------------------------------------------------- 

45. # SNOW void phase 

46. regions = snow_partitioning(im=im,  r_max=r_max, sigma=sigma, return_all=True) 

47. im = regions.im 

48. dt = regions.dt 

49. regions = regions.regions 

50. b_num = sp.amax(regions) 

51. # ------------------------------------------------------------------------- 

52. # Boundary Conditions 

53. regions = add_boundary_regions(regions=regions, faces=boundary_faces) 

54. # ------------------------------------------------------------------------- 

55. # Padding distance transform and image to extract geometrical properties 

56. dt = pad_faces(im=dt, faces=boundary_faces) 

57. im = pad_faces(im=im, faces=boundary_faces) 

58. regions = regions*im 

59. regions = make_contiguous(regions) 

60. # ------------------------------------------------------------------------- 

61. # Extract void and throat information from image 

62. net = regions_to_network(im=regions, dt=dt, voxel_size=voxel_size) 

63. # ------------------------------------------------------------------------- 

64. # Extract marching cube surface area and interfacial area of regions 
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65. if marching_cubes_area: 

a. areas = region_surface_areas(regions=regions) 

b. interface_area = region_interface_areas(regions=regions, areas=areas, 

a. voxel_size=voxel_size) 

c. net['pore.surface_area'] = areas * voxel_size**2 

d. net['throat.area'] = interface_area.area 

66. # ------------------------------------------------------------------------- 

67. # Find void to void connections of boundary and internal voids 

68. boundary_labels = net['pore.label'] > b_num 

69. loc1 = net['throat.conns'][:, 0] < b_num 

70. loc2 = net['throat.conns'][:, 1] >= b_num 

71. pore_labels = net['pore.label'] <= b_num 

72. loc3 = net['throat.conns'][:, 0] < b_num 

73. loc4 = net['throat.conns'][:, 1] < b_num 

74. net['pore.boundary'] = boundary_labels 

75. net['throat.boundary'] = loc1 * loc2 

76. net['pore.internal'] = pore_labels 

77. net['throat.internal'] = loc3 * loc4 

78. # ------------------------------------------------------------------------- 

79. # label boundary cells 

80. net = label_boundary_cells(network=net, boundary_faces=boundary_faces) 

81. # ------------------------------------------------------------------------- 

82. # assign out values to dummy dict 

 

83. temp = _net_dict(net) 

84. temp.im = im.copy() 

85. temp.dt = dt 

86. temp.regions = regions 

87. return temp 

 

88. ws = op.Workspace() 

89. ws.clear() 

90. ws.keys() 

91. proj = ws.new_project() 

92. from skimage import io 

93. im = io.imread('Berea.tif') 

94. imtype=im.view() 

95. digits=np.prod(np.array(im.shape)) 

96. logi=(np.sum(im==0)+np.sum(im==1))==digits 

97. imtype=im.view() 

98. im = sp.array(im, dtype=bool) 

99. im = ~im 

 

 

100. net = snow(im, voxel_size=5.345e-6, 

a. boundary_faces=['top', 'bottom', 'left', 'right', 'front', 'back'], 

b. marching_cubes_area=False) # voxel size and marching cube can be changed for each specific 

sample 

101. pn = op.network.GenericNetwork() 

102. pn.update(net) 

 

 

103. a = pn.check_network_health() 

104. op.topotools.trim(network=pn,pores=a['trim_pores']) 
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105. mgr=op.Workspace() 

106. mgr.save_workspace('Berea_r'+str(r_max)+'_sigma'+str(sigma)+'.pnm') 

 

 

The presented code is used to extract a pore network from the Berea sandstone image using the 

SNOW extraction method. The required Python packages are imported until line 16, and then 

the intended sigma and r_max extraction parameters are defined in lines 17 and 18. Please note 

that a list of different sigma and r_max can be defined here to have different networks extracted. 

Line 19 till 42 marks a function that receives this sigma and r_max parameter and then segments 

the pore space image into different regions using the SNOW algorithm. Lines 43 till 87 are a 

function that receives this segmented image, and after adding boundary conditions and 

assigning geometrical parameters, it makes a pore network that is readable by the OpenPNM 

package.  

In lines 88 to 91, we initialize an OpenPNM project and then read the binary image inline 93. 

Lines 94 till 98 checks the quality of the image, and line 99 is necessary so that the extracted 

network matches the initial binary image. The SNOW extraction functions are called in code 

line 100 and assigned to the OpenPNM project in code line 102. The isolated pores are detected 

in code line 103 and removed by line 104. Then we can save this extracted network with lines 

105 and 106 and then import it into another code for further simulations. 

A.2 Capillary pressure simulations of Berea Sandstone 

1. import openpnm as op 

2. import numpy as np 

 

3. inlets = 'left' 

 

4. import matplotlib.pyplot as plt 

5. from matplotlib.font_manager import FontProperties 

6. #setting up subplots 

7. fig = plt.figure(figsize=(6, 10), dpi=80, facecolor='w', edgecolor='k') 

8. ax = fig.add_subplot(211)   #top 

9. ax.set_ylim([0,3]) 

10. ax.set_xlim([0,1]) 

11. ax.set_xlabel('Hg Saturation') 

12. ax.set_ylabel('Capillary Pressure (Pa) *1e5') 

 

13. fontP = FontProperties() 

14. fontP.set_size('small') 

 

15. j = 0 

16. sat_save=np.zeros((100,60)) 

17. sat_save2=np.zeros((100,60)) 

 



OpenPNM Simulation Codes  

 

 

 

18. for eta in [0.85]: 

19. for sigma in [0.6]: 

20. for r_max in [10]: 

21. print('*'*60) 

22. print('eta: ', eta, ' sigma: ', sigma, 'r_max: ', r_max) 

23. mgr = op.Workspace() 

24. mgr.clear() 

25. mgr.keys() 

26. mgr.load_workspace('Berea_r'+str(r_max)+'_sigma'+str(sigma)+'.pnm') 

27. pn=mgr['sim_02']['net_01'] 

28. project = pn.project 

 

29. del pn['pore.area'] 

30. del pn['throat.conduit_lengths.pore1'] 

31. del pn['throat.conduit_lengths.pore2'] 

32. del pn['throat.conduit_lengths.throat'] 

33. del pn['throat.endpoints.tail'] 

34. del pn['throat.endpoints.head'] 

35. del pn['throat.volume'] 

36. del pn['pore.volume'] 

 

 

37. pn['throat.volume'] = 0 

38. pn.add_model(propname='throat.endpoints', 

i. model=op.models.geometry.throat_endpoints.spherical_pores) 

39. pn.add_model(propname='pore.area', 

i. model=op.models.geometry.pore_area.sphere) 

40. pn.add_model(propname='pore.volume', 

i. model=op.models.geometry.pore_volume.sphere) 

41. pn.add_model(propname='throat.conduit_lengths', 

i. model=op.models.geometry.throat_length.conduit_lengths) 

42. pn.add_model(propname='pore.volume', 

i. model=op.models.geometry.pore_volume.sphere) 

 

 

43. geom = op.geometry.GenericGeometry(network=pn) 

44. geom['pore.volume'][pn.pores('left')] = 0 

45. hg = op.phases.GenericPhase(network=pn) 

46. hg['pore.surface_tension'] = 480e-3 

47. hg['pore.contact_angle'] = 140 

48. hg['throat.surface_tension'] = 480e-3 

49. hg['throat.contact_angle'] = 140 

50. phys = op.physics. GenericPhysics (network=pn, phase=hg, geometry=geom) 

51. phys['pore.entry_pressure'] = 0 

 

52. phys.add_model(propname='throat.entry_pressure', 

i. model=op.models.physics.capillary_pressure.washburn) 

53. phys.add_model(propname='pore.pc_star', 

i. model=op.models.misc.from_neighbor_throats, 

ii. throat_prop='throat.entry_pressure', 

iii. mode='min') 

54. phys.add_model(propname='pore.late_filling', 

i. model=op.models.physics.multiphase.late_filling, 

ii. pressure='pore.pressure', 

iii. Pc_star='pore.pc_star', 

iv. eta=eta, Swp_star=0.21, 



A-6 OpenPNM Simulation Codes 

 

 

 

v. regen_mode='deferred') 

55. # phys['throat.pc_star'] = phys['throat.entry_pressure'] 

56. # phys.add_model(propname='throat.late_filling', 

57. #                model=op.models.physics.multiphase.late_filling, 

58. #                pressure='throat.pressure', 

59. #                Pc_star='throat.pc_star', 

60. #                eta=eta, Swp_star=0.21, 

61. #                regen_mode='deferred') 

 

62. MP_1 = op.algorithms.MixedInvasionPercolation(network=pn) 

63. MP_1.setup(phase=hg, late_pore_filling='pore.late_filling') 

64. MP_1.set_inlets(pn.pores(inlets)) 

65. MP_1.run() 

66. #MP_1.set_outlets(pn.pores(['right'])) 

67. #MP_1.apply_trapping() 

68. #MP_1.plot_intrusion_curve(inv_points=range(40000,60000,100)) 

 

69. data = MP_1.get_intrusion_data()  

70. data2 = MP_1.get_intrusion_data(inv_points=[2e5,2.5e5,2.75e5])  

71. for x in range(len(data.S_tot)): 

a. sat_save[x,j] = data.S_tot[x] 

72. for x in range(len(data2.S_tot)): 

a. sat_save2[x,j] = data2.S_tot[x] 

73. j=j+1 

 

74. p1, = ax.plot(data.S_tot, data.Pcap/1e5,'bo') 

75. p3, = ax.plot(data2.S_tot, np.asarray(data2.Pcap)/1e5,'bo') 

76. lgd1 = ax.legend([p1, p2], 

i. ["SNOW",  

ii. "Experiment"], 

iii. #'Geodict', 

iv. loc='center left', bbox_to_anchor=(1, 0.5), prop = fontP) 

 

77. #title ='sigma_'+ str(sigma)+ '_r_max_'+str(r_max)+'_inlets_' +str(inlets)+'.png' 

78. #ax.set_title(title) 

79. #fig.savefig(title) 

 

80. plt.show()  

81. #op.io.VTK.save(network=pn, filename='Berea_r'+str(r_max)+'_sigma'+str(sigma)) 

 

In code lines 1 to 14, the necessary packages are imported, and the initial setup is done for 

further plotting through the program. Lines 15 to 17 define variables that are later implemented 

for saving parameters and further export from the program. Line 18 marks the beginning of a 

loop to define different etas in the pore late filling model. This can be changed to Sw
* also, but 

the variable must be set in line 54 of the program. Lines 19 and 20 mark the loops for importing 

different sets of pore networks with different sigma and different r_max. Here a list of 

parameters can be set for the loops. Please note the indentation required for each loop. 

Lines 21 to 28 mark the initialization of the project and clear any existing workspace. Since our 

networks are extracted using the SNOW extraction algorithm, we delete some of the parameters 
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that we would like to redefine through the program in lines 29 to 36. This redefinition is to 

make a model that complies with the assumptions of the physical formulas in our modeling. 

From lines 37 to 42, we redefine the properties of our network. 

In code line 43, we assign a generic geometry to our model and then set our inlets volumes to 

zero in code line 44. Then in code line 45, we define our phase as mercury and assign its 

properties until line 49. 

In code line 50, we define a generic physics for our modeling and set pore entry pressure to 

zero in code line 51. This is because we want our mixed invasion percolation algorithm to act 

as an invasion percolation for our drainage simulations.  

From lines 52 to 61, we define our pore late filling model. Lines 55 till 61 are commented out 

since we defined the throat volumes as zero, and therefore the pore late filling model of the 

throats will not affect our simulations. Line 53 marks the adaptation of the pc_star from the 

throats connected to a pore, and line 54 defines the pore late filling model based on that.  

Lines 62 to 68 represent the implementation of the mixed percolation algorithm to run capillary 

pressure simulations. The phase and the pore late filling model are assigned to the algorithm 

set up in code line 63, and the inlets are set at line 64. Lines 66 to 68 are optional in case of 

interest in using the trapping mechanism and plotting invasion points manually. Lines 69 to 73 

receives the simulation data and saves them in corresponding variables.  

Lines 74 till 79 are used for plotting the results, and using line 81; we can export the results to 

VTK format, which is readable by Paraview software. 

A.3 Permeability Simulation Code for Berea Sandstone 

1. import openpnm as op 

2. import numpy as np 

 

3. inlets='left' 

4. outlets= 'right' 

 

5. j = 0 

6. sat_save=np.zeros((100,60)) 

7. kro_save=np.zeros((100,60)) 

8. krw_save=np.zeros((100,60)) 

 

9. for eta in [0.85]: 

10. for sigma in [0.6]: 

11. for r_max in [10]: 

12. print('*'*60) 

13. print('eta: ', eta, ' sigma: ', sigma, 'r_max: ', r_max) 

14. mgr = op.Workspace() 

15. mgr.clear() 

16. mgr.keys() 
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17. mgr.load_workspace('Berea_r'+str(r_max)+'_sigma'+str(sigma)+'.pnm') 

18. pn=mgr['sim_02']['net_01'] 

19. project = pn.project 

 

20. del pn['pore.area'] 

21. del pn['throat.conduit_lengths.pore1'] 

22. del pn['throat.conduit_lengths.pore2'] 

23. del pn['throat.conduit_lengths.throat'] 

24. del pn['throat.endpoints.tail'] 

25. del pn['throat.endpoints.head'] 

26. del pn['throat.volume'] 

 

27. pn['throat.volume'] = 0 

28. pn['throat.diameter']=pn['throat.equivalent_diameter'] 

 

29. pn.add_model(propname='throat.endpoints', 

i. model=op.models.geometry.throat_endpoints.spherical_pores) 

30. pn.add_model(propname='pore.area', 

i. model=op.models.geometry.pore_area.sphere) 

31. pn.add_model(propname='pore.volume', 

i. model=op.models.geometry.pore_volume.sphere) 

32. pn.add_model(propname='throat.conduit_lengths', 

i. model=op.models.geometry.throat_length.conduit_lengths) 

 

33. geom = op.geometry.GenericGeometry(network=pn) 

 

34. hg = op.phases.Mercury(network=pn) 

35. phys = op.physics.Standard(network=pn, phase=hg, geometry=geom) 

36. phys['pore.entry_pressure'] = 0.0 

37. MP_0= op.algorithms.MixedInvasionPercolation(project=project) 

38. MP_0.setup(phase=hg) 

39. MP_0.set_inlets(pores=pn.pores(['left'])) 

40. MP_0.run()  

41. MP_0.set_outlets(pn.pores(['right'])) 

42. MP_0.apply_trapping() 

43. #MP_0.plot_intrusion_curve() 

44. data0 = MP_0.get_intrusion_data() 

45. max_pc = data0.Pcap[-1] 

46. hg['pore.occupancy'] = MP_0.resultsOmid(Pc=max_pc)['pore.occupancy'] 

47. #water['pore.occupancy'] = ~oil['pore.occupancy'] 

48. residual_sat = sum(pn['pore.volume'][~hg['pore.occupancy']])/sum(pn['pore.volume']) 

49. print('residual saturation:'); print(residual_sat) 

 

50. water = op.phases.GenericPhase(network=pn) 

51. water['throat.contact_angle'] = 172  

52. water['pore.contact_angle'] = 172 

53. water['throat.surface_tension'] = 30e-3 

54. water['pore.surface_tension'] = 30e-3 

55. water['pore.viscosity']=1.05e-3 

 

56. phys_water = op.physics.GenericPhysics(network=pn, phase=water, geometry=geom) 

57. phys_water.add_model(propname='throat.flow_shape_factors', 

i. model=op.models.physics.flow_shape_factors.ball_and_stick) 

58. phys_water.add_model(propname='throat.hydraulic_conductance', 

i. model=op.models.physics.hydraulic_conductance.hagen_poiseuille) 

59. phys_water.add_model(propname='throat.entry_pressure', 



OpenPNM Simulation Codes  

 

 

 

1. model=op.models.physics.capillary_pressure.washburn, 

2. diameter='throat.diameter') 

60. phys_water['pore.entry_pressure'] = 0.0 

61. phys_water.add_model(propname='pore.pc_star', 

i. model=op.models.misc.from_neighbor_throats, 

ii. throat_prop='throat.entry_pressure', 

iii. mode='max') 

62. phys_water.add_model(propname='pore.late_filling', 

i. model=op.models.physics.multiphase.late_filling, 

ii. pressure='pore.pressure', 

iii. Pc_star='pore.pc_star', 

iv. eta=0.85, Swp_star=0.21, 

v. regen_mode='deferred') 

63. phys_water['throat.pc_star'] = phys_water['throat.entry_pressure'] 

64. phys_water.add_model(propname='throat.late_filling', 

i. model=op.models.physics.multiphase.late_filling, 

ii. pressure='throat.pressure', 

iii. Pc_star='throat.pc_star', 

iv. eta=0.85, Swp_star=0.21, 

v. regen_mode='deferred') 

 

65. oil = op.phases.GenericPhase(network=pn) 

66. oil['pore.viscosity']=1.39e-3 

67. oil['throat.viscosity']=1.39e-3 

68. oil['throat.contact_angle'] =98 

69. oil['pore.contact_angle']=98 

70. oil['throat.surface_tension'] = 30e-3 

71. oil['pore.surface_tension']=30e-3 

72. phys_oil = op.physics.GenericPhysics(network=pn, phase=oil, geometry=geom) 

73. phys_oil.add_model(propname='throat.flow_shape_factors', 

i. model=op.models.physics.flow_shape_factors.ball_and_stick) 

74. phys_oil.add_model(propname='throat.hydraulic_conductance', 

1. model=op.models.physics.hydraulic_conductance.hagen_poiseuille) 

75. phys_oil.add_model(propname='throat.entry_pressure', 

1. model=op.models.physics.capillary_pressure.washburn, 

2. diameter='throat.diameter') 

76. phys_oil['pore.entry_pressure'] = 0.0 

77. phys_oil.add_model(propname='pore.pc_star', 

i. model=op.models.misc.from_neighbor_throats, 

ii. throat_prop='throat.entry_pressure', 

iii. mode='min') #important to change 

78. phys_oil.add_model(propname='pore.late_filling', 

i. model=op.models.physics.multiphase.late_filling, 

ii. pressure='pore.pressure', 

iii. Pc_star='pore.pc_star', 

iv. eta=eta, Swp_star=0.21, 

v. regen_mode='deferred') 

79. phys_oil['throat.pc_star'] = phys_oil['throat.entry_pressure'] 

80. phys_oil.add_model(propname='throat.late_filling', 

i. model=op.models.physics.multiphase.late_filling, 

ii. pressure='throat.pressure', 

iii. Pc_star='throat.pc_star', 

iv. eta=0.85, Swp_star=0.21, 

v. regen_mode='deferred') 
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81. flow = op.algorithms.StokesFlow(network=pn, phase=oil) 

82. flow.setup(conductance='throat.hydraulic_conductance') 

83. flow.set_value_BC(pores=pn.pores('left'), values=2e5) 

84. flow.set_value_BC(pores=pn.pores('right'), values=1e5) 

85. flow.run() 

86. area = (400*5.345e-6)**2 

87. length = 400*5.345e-6 

88. permeability = flow.calc_effective_permeability(domain_area=area, 

a. domain_length=length, 

b. inlets=pn.pores('left'), 

c. outlets=pn.pores('right')) 

89. project.purge_object(obj=flow) 

90. print('permeability is:'); print(permeability/9.869233e-13) 

 

 

91. MP_1 = op.algorithms.MixedInvasionPercolation(network=pn) 

92. MP_1.setup(phase=oil, late_pore_filling='pore.late_filling') 

93. MP_1.set_inlets(pn.pores(inlets)) 

94. MP_1.run() 

95. MP_1.set_outlets(pn.pores([outlets])) 

96. MP_1.apply_trapping() 

97. #MP_1.plot_intrusion_curve() 

 

 

98. data = MP_1.get_intrusion_data()#(inv_points=range(0,4000)) 

99. # Filter for evenly spaced sat inc. first and last 

100. filter_pc = [data.Pcap[0]] 

101. sat = [data.S_tot[0]] 

102. for i, pc in enumerate(data.Pcap): 

a. if  data.S_tot[i] - sat[-1] > 0.01: 

b. filter_pc.append(pc) 

c. sat.append(data.S_tot[i]) 

103. filter_pc.append(data.Pcap[-1]) 

104. sat.append(data.S_tot[-1]) 

 

 

105. def update_phase_and_phys(results): 

a. oil['pore.occupancy'] = results['pore.occupancy'] 

b. water['pore.occupancy'] = ~results['pore.occupancy'] 

c. oil['throat.occupancy'] = results['throat.occupancy'] 

d. water['throat.occupancy'] = ~results['throat.occupancy'] 

e. #adding multiphase conductances 

f. mode='medium' #important to change 

g. phys_oil.add_model(model=op.models.physics.multiphase.conduit_conductance, 

i. propname='throat.conduit_hydraulic_conductance', 

ii. throat_conductance='throat.hydraulic_conductance', 

iii. mode=mode) 

h. phys_water.add_model(model=op.models.physics.multiphase.conduit_conductanc, 

i. propname='throat.conduit_hydraulic_conductance', 

ii. throat_conductance='throat.hydraulic_conductance', 

iii. mode=mode) 

106. rel_perm_oil = [] 

107. rel_perm_water = [] 

 

108. for Pc in filter_pc: 

a. update_phase_and_phys(MP_1.resultsOmid(Pc=Pc)) 
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b. # Multiphase 

c. Stokes_alg_multi_phase_oil = op.algorithms.StokesFlow(network=pn,phase=oil) 

d. Stokes_alg_multi_phase_oil.setup(conductance='throat.conduit_hydraulic_conductance') 

e. Stokes_alg_multi_phase_water = op.algorithms.StokesFlow(network=pn,phase=water) 

f. Stokes_alg_multi_phase_water.setup(conductance='throat.conduit_hydraulic_conductance') 

 

g. #BC inlets 

h. Stokes_alg_multi_phase_oil.set_value_BC(values=2e5, pores=pn.pores(['left'])) 

i. Stokes_alg_multi_phase_water.set_value_BC(values=2e5, pores=pn.pores(['left'])) 

 

j. #BC outlets 

k. Stokes_alg_multi_phase_oil.set_value_BC(values=1e5, pores=pn.pores(['right'])) 

l. Stokes_alg_multi_phase_water.set_value_BC(values=1e5, pores=pn.pores(['right'])) 

 

m. # Run Multiphase algs 

n. Stokes_alg_multi_phase_oil.run() 

o. Stokes_alg_multi_phase_water.run() 

 

p. effective_permeability_oil_multi = 

Stokes_alg_multi_phase_oil.calc_effective_permeability(domain_area=area, 

a. domain_length=length, 

b. inlets=pn.pores(['left']),  

c. outlets=pn.pores(['right'])) 

q. effective_permeability_water_multi = 

Stokes_alg_multi_phase_water.calc_effective_permeability(domain_area=area, 

i. domain_length=length, 

ii. inlets=pn.pores(['left']),  

iii. outlets=pn.pores(['right'])) 

r. Stokes_alg_multi_phase_water.rate 

s. relative_eff_perm_oil = effective_permeability_oil_multi/permeability 

t. relative_eff_perm_water = effective_permeability_water_multi/permeability 

 

u. rel_perm_oil.append(relative_eff_perm_oil) 

v. rel_perm_water.append(relative_eff_perm_water) 

 

w. pn['pore.oil_occupacy@Pc='+str(Pc)] = oil['pore.occupancy'] 

x. pn['pore.water_occupacy@Pc='+str(Pc)] = water['pore.occupancy'] 

 

y. project.purge_object(obj=Stokes_alg_multi_phase_oil) 

z. project.purge_object(obj=Stokes_alg_multi_phase_water) 

 

109. # sat_save.append(1 - np.asarray(sat)) 

110. # kro_save.append(np.asarray(rel_perm_oil))    

111. # krw_save.append(np.asarray(rel_perm_water))            

112. # 

============================================================================= 

113. # plotting 

114. # 

============================================================================= 

 

115. import matplotlib.pyplot as plt 

116. from matplotlib.font_manager import FontProperties 

117. 'exec(%matplotlib inline)' 

 

118. fontP = FontProperties() 

119. fontP.set_size('small') 
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120. #setting up subplots 

121. fig = plt.figure(figsize=(6, 10), dpi=80, facecolor='w', edgecolor='k') 

122. ax1 = fig.add_subplot(211)   #top 

 

123. oak_sat=[0.995,0.996,0.975,0.96,0.955,0.932,0.912,0.875,0.839,0.793,0.754, 

0.716,0.671,0.623,0.583,0.548,0.511,0.48,0.446,0.42,0.391,0.361,0.33, 

0.304,0.266,0.264,] 

124. oak_kro=[1,0.992,0.973,0.867,0.896,0.802,0.616,0.489,0.378,0.278,0.203,0.135, 

0.0898,0.0549,0.033,0.0205,0.0126,0.00763,0.00461,0.00276,0.00163, 

0.000943,0.000519,0.00028,0,0,] 

125. oak_krw=[0,0.000704,0.00138,0.00246,0.00509,0.00911,0.014,0.0222,0.0344,0.056, 

0.0739,0.0982,0.131,0.16,0.192,0.239,0.292,0.355,0.429,0.514,0.607, 

0.702,0.772,0.834,0.887,0.9,] 

 

126. watersat = 1 - np.asarray(sat) 

127. corey_krw = ((watersat-residual_sat)/(1-residual_sat))**4 

128. corey_kro = ((1-watersat)/(1-residual_sat))**2.5 

 

129. #plots for subplot1 - strict permeability 

130. p2, = ax1.plot(oak_sat, oak_krw, 'ro') 

131. p5, = ax1.plot(oak_sat, oak_kro, 'r^') 

132. #p8, = ax1.plot(watersat, corey_kro, linestyle ='-' , color = 'r') 

133. #p9, = ax1.plot(watersat, corey_krw, linestyle ='-' , color = 'r') 

134. ax1.set_ylabel('relative permeability') 

135. ax1.set_xlabel("water saturation") 

136. ax1.set_ylim([1e-6,1]) 

137. ax1.set_xlim([0,1]) 

138. ax1.set_yscale('log') 

139. title ='sigma_'+ str(sigma)+ '_r_max_'+str(r_max)+'_inlets_' +str(inlets)+'.png' 

140. #ax1.set_title(title) 

 

141. fig.subplots_adjust(left=0.13, right=.7, top=0.95, bottom=0.05) 

 

142. sat = 1 - np.asarray(sat) 

143. p1, = ax1.plot(sat, rel_perm_water, 'bo') 

144. p4, = ax1.plot(sat, rel_perm_oil, 'k^') 

145. for x in range(len(sat)): 

a. sat_save[x,j] = sat[x] 

b. kro_save[x,j] = rel_perm_oil[x] 

c. krw_save[x,j] = rel_perm_water[x] 

146. j=j+1 

147. #need to work on legend to match up with the right things 

148. lgd1 = ax1.legend([p1, p2, p4,p5], 

i. ["SNOW KrWater,x", "Experimental krw", 

ii. "SNOW KrOil,x", "Experimental kro"],  

iii. #'Geodict KrOil', 'Geodict KrWater'], 

iv. #'Corey Oil', 'Corey Water'],  

v. loc='center left', bbox_to_anchor=(1, 0.5), prop = fontP) 

149. #fig.savefig(title) 

150. plt.show() 
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To run the permeability simulations, inlets and outlets are defined in lines 3 and 4, and then the 

variables to save the results of the simulations are defined in lines 5 to 8. The η parameter of 

the pore late filling model is defined in the first loop in code line 9. Sigma and R_max input 

parameters to construct the pore network are read in the second loop in code line 10 and the 

third loop in code line 11. Therefore, the corresponding network which was created using the 

SNOW extraction algorithm is then loaded using code lines 14 till 19. Some properties of the 

network are redefined the same as in capillary pressure simulations in lines 20 until line 32. 

Please note that as recommended by (J. Gostick et al., 2017), to simulate permeability data, 

equivalent throat diameters are used, which are assigned to the network in code line 28. 

The code implemented in lines 34 to 49 can define the residual saturation of the network using 

the trapping mechanism. This algorithm can define the pores that are hydraulically bypassed in 

the mixed percolation algorithm. The volume summation of these pores is then divided into the 

whole pore volume to find the residual saturation. 

Water properties and the physics of the phase are defined in lines 50 to 64. Please note that 

since in our drainage relative permeability simulations, we assume that the rock sample is 

initially water-saturated and then it is invaded by an oil phase, the pore late filling parameters 

of the water phase is not going to affect our results in such a simulation algorithm. The oil phase 

properties and physics are defined in lines 65 to 80 correspondingly. 

The absolute permeability is defined using the code in lines 81 to 90, which uses single-phase 

stokes flow to derive an absolute permeability. It is then later used in the code to derive relative 

permeabilities.  

The invasion of the oil phase into the water-filled sample is coded using a mixed percolation 

algorithm in lines 91 to 97, and the data are extracted in lines 98 and 99. These data are then 

spaced based on the spacing of the saturation points, having a distance of at least 0.01 through 

the code lines 100 to 104. 

The function, which is defined in 105, defines the oil and water fluid occupancies using the 

results coming from mixed invasion percolation and then uses these occupancies to define new 

hydraulic conductance. Using this new conductance, the relative permeability of each saturation 

step can be defined. The mode of this conductance change, which can affect the results heavily, 

is defined in code line f. The mode ‘medium’ is found to be matching the experimental results 

the best way. Please note that the results section of the OpenPNM source code is modified for 

this function to work. This modification is further explained through this document.  

The loop starting in line 108 calculates the relative permeabilities in different saturation steps, 

which are resulted from mixed invasion percolation. As can be seen in line a, there is a new 

class defined in OpenPNM source named “resultsOmid” and it is used as an input for the 
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function in code line 105. The code for this new class is demonstrated at the end of this 

appendix. The main difference here with the main result function of the OpenPNM is in line 26 

of the results code. In this code line, the multiplication with the volume is removed only to get 

the occupancy results. 

After calculating the relative permeability results, the numbers can be saved into predefined 

variables for export as in line 109 till 111. In case this method of saving the results appear 

cumbersome to the reader, one can use the method of saving results in capillary pressure 

simulations.  

The plotting of the results is done using the code lines 113 to 150. Here experimental results 

can also be added for the comparison purposes as in lines 123 to 125, in which (Oak, 1990) 

experimental results are used to compare with simulation results for Berea sandstone. 

1. def resultsOmid(self, Pc): 

2. r""" 

3. Places the results of the IP simulation into the Phase object. 

 

4. Parameters 

5. ---------- 

6. Pc : float 

7. Capillary Pressure at which phase configuration was reached 

 

8. """ 

9. if Pc is None: 

10. results = {'pore.invasion_sequence': 

i. self['pore.invasion_sequence'], 

ii. 'throat.invasion_sequence': 

iii. self['throat.invasion_sequence']} 

11. else: 

12. phase = self.project.find_phase(self) 

13. net = self.project.network 

14. inv_p = self['pore.invasion_pressure'].copy() 

15. inv_t = self['throat.invasion_pressure'].copy() 

16. # Handle trapped pores and throats by moving their pressure up 

17. # to be ignored 

18. if np.sum(self['pore.invasion_sequence'] == -1) > 0: 

a. inv_p[self['pore.invasion_sequence'] == -1] = Pc + 1 

19. if np.sum(self['throat.invasion_sequence'] == -1) > 0: 

a. inv_t[self['throat.invasion_sequence'] == -1] = Pc + 1 

20. p_inv = inv_p <= Pc 

21. t_inv = inv_t <= Pc 

 

22. if self.settings['late_pore_filling']: 

a. # Set pressure on phase to current capillary pressure 

b. phase['pore.pressure'] = Pc 

c. # Regenerate corresponding physics model 

d. for phys in self.project.find_physics(phase=phase): 

e. phys.regenerate_models(self.settings['late_pore_filling']) 

f. # Fetch partial filling fraction from phase object (0->1) 

g. frac = phase[self.settings['late_pore_filling']] 
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h. p_vol = net['pore.volume']*frac 

23. else: 

a. p_vol = net['pore.volume'] 

24. if self.settings['late_throat_filling']: 

a. # Set pressure on phase to current capillary pressure 

b. phase['throat.pressure'] = Pc 

c. # Regenerate corresponding physics model 

d. for phys in self.project.find_physics(phase=phase): 

e. phys.regenerate_models(self.settings['late_throat_filling']) 

f. # Fetch partial filling fraction from phase object (0->1) 

g. frac = phase[self.settings['late_throat_filling']] 

h. t_vol = net['throat.volume']*frac 

25. else: 

a. t_vol = net['throat.volume'] 

26. results = {'pore.occupancy': p_inv, 

i. 'throat.occupancy': t_inv} 

27. return results 

A.4 Relative Permeability Calculations for the Contact 

Angle and IFT sensitivity analysis 

The contact angle and IFT for the new relative permeability curves can be adjusted in lines two 

and three. 

1. for Pc in filter_pc:   
2.                 contact_angle = 8   
3.                 IFT = 30   
4.                 factor = IFT/30 * math.cos(math.radians(180-

contact_angle))/math.cos(math.radians(172))   
5.                 Pc = Pc*factor   
6.                    
7.                 update_phase_and_phys(MP_1.resultsOmid(Pc=Pc))   
8.                 # Multiphase   
9.                 Stokes_alg_multi_phase_oil = op.algorithms.StokesFlow(networ

k=pn,phase=oil)   
10.                 Stokes_alg_multi_phase_oil.setup(conductance='throat.conduit

_hydraulic_conductance')   
11.                 Stokes_alg_multi_phase_water = op.algorithms.StokesFlow(netw

ork=pn,phase=water)   
12.                 Stokes_alg_multi_phase_water.setup(conductance='throat.condu

it_hydraulic_conductance')   
13.                
14.                 #BC inlets   
15.                 Stokes_alg_multi_phase_oil.set_value_BC(values=2e5, pores=pn

.pores(['left']))   
16.                 Stokes_alg_multi_phase_water.set_value_BC(values=2e5, pores=

pn.pores(['left']))   
17.                
18.                 #BC outlets   
19.                 Stokes_alg_multi_phase_oil.set_value_BC(values=1e5, pores=pn

.pores(['right']))   
20.                 Stokes_alg_multi_phase_water.set_value_BC(values=1e5, pores=

pn.pores(['right']))   
21.                
22.                 # Run Multiphase algs   
23.                 Stokes_alg_multi_phase_oil.run()   
24.                 Stokes_alg_multi_phase_water.run()   
25.                
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26.                 effective_permeability_oil_multi = Stokes_alg_multi_phase_oi
l.calc_effective_permeability(domain_area=area,   

27.                                                                             
                              domain_length=length,   

28.                                                                             
                              inlets=pn.pores(['left']),    

29.                                                                             
                              outlets=pn.pores(['right']))   

30.                 effective_permeability_water_multi = Stokes_alg_multi_phase_
water.calc_effective_permeability(domain_area=area,   

31.                                                                             
                                  domain_length=length,   

32.                                                                             
                                  inlets=pn.pores(['left']),    

33.                                                                             
                                  outlets=pn.pores(['right']))   

34.                 Stokes_alg_multi_phase_water.rate   
35.                 relative_eff_perm_oil = effective_permeability_oil_multi/per

meability   
36.                 relative_eff_perm_water = effective_permeability_water_multi

/permeability   

 



Relative Permeability Match with Corey’s Model for Berea Sandstone  

 

 

 

Appendix B  

Relative Permeability Match with Corey’s 

Model for Berea Sandstone 

 

Figure 58: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 20 

mN/m and contact angle of 8 degrees 



B-18 Relative Permeability Match with Corey’s Model for Berea Sandstone 

 

 

 

 

Figure 59: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 25 

mN/m and contact angle of 8 degrees 

 

Figure 60: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 30 

mN/m and contact angle of 0 degrees 
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Figure 61: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 30 

mN/m and contact angle of 5 degrees 

 

Figure 62: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 30 

mN/m and contact angle of 8 degrees 
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Figure 63: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 30 

mN/m and contact angle of 15 degrees 

 

Figure 64: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 30 

mN/m and contact angle of 20 degrees 
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Figure 65: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 30 

mN/m and contact angle of 25 degrees 

 

Figure 66: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 30 

mN/m and contact angle of 30 degrees 
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Figure 67: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 30 

mN/m and contact angle of 35 degrees 

 

Figure 68: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 30 

mN/m and contact angle of 40 degrees 
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Figure 69: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 33 

mN/m and contact angle of 8 degrees 

 

Figure 70: Relative permeability of Berea sandstone and the corresponding Corey match for IFT = 35 

mN/m and contact angle of 8 degrees 





 

 

 

 


