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Chapter 1

Fractured Reservoirs and Their Properties

1.1. Introduction

1.1.1 Importance and Limitations

Fractured reservoirs are becoming a major issue throughout the entire world for both old and 
new fields. Many newly discovered oil and gas fields happen to be fractured and their 
development constitutes a real challenge for the E&P industry. Naturally Fractured Reservoirs 
often abbreviated as NFRs - have been the subject of extensive studies during the past decades. 

The goal of a reservoir engineer should be estimating the reserves, forecasting the production 
and understanding how fractures could be used to positively affect production and, last but not 
least, estimating the range of uncertainty. In dealing with conventional reservoirs, engineers can 
generally provide a reasonable assessment of the reservoir performance by combining 
information on the reservoir’s geologic framework, the rock and fluid properties, and results 
from well logs, rock mechanic tests and formation evaluation tests. Furthermore, in the recent 
past, reservoir-scale seismic information has greatly aided reservoir characterization. However, 
for fractured reservoirs, obtaining the right data and forecasting the reservoir performance is 
much more difficult than for conventional reservoirs. To design an appropriate plan of 
development, one needs a credible reservoir description that includes fracture maps in terms of 
size, orientation, connectivity, conductivity, and frequency distribution and then turning this 
information into a reliable fracture network characterization. Due to the complexity of NFR, it 
may appear to be rather hopeless to get a unique answer. But instead the question should be “can 
we estimate the range of uncertainty?” 

Natural fractures exist practically in all reservoirs, dividing the reservoir rock in pieces, called 
matrix blocks. In this case one must distinguish between matrix and fracture porosity and 
permeabilities. The reservoir is a single porosity one which does not need special consideration 
and the reservoir rock can be regarded as a single continuum if:

• No fractures exist or they are isolated. The fractures contribute merely to the local 
pore volume and the local conductivity. 

• The matrix is tight, containing no hydrocarbon or the stored hydrocarbon is not 
accessible, due to lack of matrix permeability. The matrix do not contribute to the 
hydrocarbon production.
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If the matrix has reservoir quality and the fractures are interconnected, building more or less 
extended networks, then the reservoir can not be modeled as a single continuum anymore. This 
led to the multiple continua concept where typically two continua, matrix and fracture, overlap 
each other. The main problem is then to find the right description of the fluid exchange between 
them while modeling a recovery process. Mathematically, this leads to the extension of the 
material balance equation by the so-called transfer term. It can consider some or all acting 
forces as the force of compression, chemical potential (diffusion), gravitational force, capillary 
forces and viscous forces with or without hysteresis or alteration of the properties (e.g.: 
wettability). The relative importances of these forces (mechanisms) strongly depend on the 
geometry of the fracture-matrix system and its petrophysical properties. All formulations have 
their own advantages, but also show deficiencies in describing specific issues of fractured 
reservoirs and in the computational efficiency.

In most cases not the entire reservoir must be described by dual (or multiple) continua, it is 
enough to apply them for limited areas were (1) a fracture network exists, (2) the matrix contains 
hydrocarbons and is permeable, (3) the interaction between fracture and matrix is not 
instantaneous. No dual continuum description is necessary for a one phase area, e.g.: in the 
aquifer or in a gas bubble (gas reservoir or gas cap) before water intrudes or until condensate 
drops out. On the other hand the mechanisms of the mass transfer can be quite different in some 
parts of the reservoir and can change in time. In favor of the most appropriate but also economic 
handling of fractured reservoir Bremaier, Fink and Heinemann[15] promoted the general 
purpose and mixed model concept, in which black oil and compositional formulation, single and 
dual continuum solutions and the transfer term were applied on a block by block bases. The first 
simulation software based on this adaptive or mixed model concept was SURE Version 3.1[41]. 

The reservoir characterization part is mostly based on the publication of Ahmed Ouenes, Feng 
Shen[63] and Abdel M. Zellou[99]. The general numerical model for the simulation of
three-dimensional, multi phase flow in naturally fractured reservoirs presented in this chapter is 
based on a compositional approach. The formulation is taken, with small modifications from the 
work of Bremeier, Fink and Heinemann[15]. Most of the discussion of practical aspects originate 
from Jim Gilman’s work[33]. 

1.1.2 Reservoir Modeling Approaches

When facing a problem of modeling a fractured reservoir, oil and gas companies have three 
available approaches:

The first one is the geomechanical approach where an attempt is made to reconstruct the 
tectonic history of the fractured reservoir. Unfortunately, all the existing tools based on this 
approach use overly simplistic models where the complex geology of the reservoir is ignored 
and homogenous and isotropic rock properties are assumed in the calculations. Furthermore, the 
end result of this approach is a strain map which is most of the time very similar to a simple 
curvature map easily derived from the current structural surfaces. In addition to the inability of 
this approach to account for the complex and heterogeneous geology of all fractured reservoirs, 



3

there is no room to incorporate any 3D seismic attribute in the geomechanical process.

The second approach commonly used to model fractured reservoirs is the Discrete Fracture 
Network (DFN) where the reservoir volume is filled with fractures represented by planes or 
disks. For many years the DFN models lacked geologic realism since they were randomly 
distributed in the reservoir, ignoring the fact that fracture density at any point is affected by the 
thickness of the reservoir at that point, its lithology and porosity, its proximity to faults and 
numerous other geologic drivers. Since the introduction of DFN models, there was a need for 
constraining the realizations to some geologic input. Attempts have been made to control the 
fracture generation with some indicator. However, these attempts used a single geologic driver 
and ignored the others, and most importantly did not account for the complex interplay of the 
drivers. Ouenes and Hartley[64] introduced the concept of conditioned DFN whereas a large 
effort is spent in integrating all the geologic drivers in a continuous fracture model which is then 
used to constrain the DFN models. A recent field example illustrating this approach is given by 
Zellou et al.[100]. 

Finally, the third approach uses a continuous framework where many geologic drivers could be 
incorporated in creating an integrated fracture model. These continuous fracture models stem 
from the simple observation that fracture intensity depends on many geologic drivers (the most 
commonly known being structural setting, proximity to a fault, lithology, porosity and 
thickness). Because all these drivers and their complex interaction must be accounted for during 
the modeling process, Ouenes et al.[65] use a regular 3D grid model similar to the one used in 
geologic modeling or in seismic cubes along with a collection of artificial intelligence tools to 
create truly integrated fractured reservoirs. The approach described in detail by Ouenes et al.[64]

was successfully used in various fields and basins and one of its most striking advantage is its 
ability to integrate seismic data in the modeling process. 

1.1.3 Classification of Naturally Fractured Reservoirs

Naturally fractured reservoirs can be classified in different types, depending on the storage 
capacities or porosity and permeability of the matrix and the fractures. Different definitions for 
these types can be found in literature. Aguilera[5] classified the naturally fractured reservoirs in 
types A, B and C (see Figure 1.1). In reservoirs of type A most fluid is stored in the matrix; the 
fractures provide only a very small storage capacity. Typically the matrix rock tends to have a 
low permeability, whereas the fractures exhibit a much larger permeability. In type B reservoirs 
approximately half of the hydrocarbon storage is in the matrix and half in the fractures. The 
fractures provide the storage capacity of type C reservoirs, without contribution of the matrix.
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.

Figure 1.1:  Porosity distribution in fractured rocks (after McNaughton and Garb[56])

Another classification of fractured reservoirs is given by Nelson[61], which is based on percent 
of total porosity and permeability (Figure 1.2). The parameters range in percent due to matrix 
versus percent due to fracture. In reservoirs of type I fractures dominate porosity and 
permeability. In type II reservoirs the fractures control essential permeability, and in a type III 
reservoir, fractures assist permeability. In reservoirs of type IV the fractures provide no 
additional porosity or permeability, but can create anisotropic barriers.

Figure 1.2:  Classification of fractured reservoirs after Nelson[61]

1.2. Fractured Rocks Properties

Different fracture properties affect the reservoir performance of a naturally fractured reservoir. 
The fluid flow properties of the fractures include fracture porosity, fracture permeability, or the 
fluid saturation within the fracture system. Another important factor is the wettability of the 
rock and possible wettability changes during the production time of the reservoir.

Type A: High storage capacity in the 
matrix, low storage capacity in the 
fractures.

Type B: Approx.equal storage 
capacity in the fractures and in the 
matrix

Type C: All storage capacity in the 
fractures, thight matrix
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1.2.1 Porosity

Porosity can be classified as primary or secondary. Primary porosity forms during deposition of 
sediments and includes interparticle and intraparticle porosities. Secondary porosity forms after 
deposition and develops during diagenesis by dissolution, dolomitization and through 
production of fractures in the rock. The matrix porosity, also often called fabric porosity, can be 
both primary and secondary. The fracture porosity is always a secondary one and generally 
refers to porosity that occurs along breaks in a sediment or rock body where there has been little 
mutual displacement along the fracture.

Figure 1.3:  Fractured rock outcrop in Mali by courtesy of John Scott

Fracture porosity grades into breccia porosity with increasing dislocation. The fractures enable 
fluid movement and as a consequence solution of minerals. Depending on the extent of solution, 
the resulting pores are classified as molds, solution enlarged molds or vugs. Vuggy porosity is 
a non-fabric selective porosity caused by selective removal (solution) of grains in a rock. If vugs 
and molds are connected by fractures then their volume become part of the fracture porosity. In 
carbonate rocks, fracture porosity may originate from collapse related to solution, slumping, or 
tectonic deformation. Fractures can be observed on cores, and can be characterized as filled, 
semi-filled and open fractures. Filled fractures do not contribute to the porosity. The fractures 
are described by their orientation as horizontal, vertical or oblique fractures.

The significance of the fracture porosity depends on the type of the fractured reservoir. In 
reservoirs where the fractures provide the essential porosity and permeability to the reservoir it 
is important to have a knowledge on the storage volume of the fracture network as early as 
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possible, to evaluate the reservoir and to design a proper development plan. In fractured 
reservoirs where the fractures have little storage volume and where the fractures provide 
basically permeability, the knowledge of the fracture porosity is not that important, if not 
negligible. In such systems the matrix porosity is usually several magnitudes of order greater 
than the fracture porosity, which makes an early estimation of the fracture porosity unimportant. 
Because of the great difference concerning the importance of the fracture porosity, the type of 
the reservoir should be estimated as early as possible. 

Let  be the fracture porosity and  the matrix porosity, then the storativity dimensionless 
parameter

, (1.1)

expresses the ratio between the storage capacity of the fracture network and the total storage 
capacity.

1.2.2 Permeability

The permeability of a porous rock is a measure of the ability to transmit fluids. A reservoir can 
have primary and secondary permeability. The primary permeability is referred to as matrix 
permeability, the secondary permeability can be either called fracture permeability or solution 
vugs permeability. Matrix- and fracture permeability are other important parameters that have 
to be known for an estimate of the influence of the fractures on the overall reservoir 
performance. Solution vug permeability refers to an increased permeability in matrix rocks 
(especially in carbonate reservoirs) where the natural permeability of the matrix is increased by 
percolation of acid waters that dissolve the matrix rock. The permeability in these flow channels 
can be calculated by combining Darcy’s law for fluid flow and Poiseuille’s law for capillary 
flow[61]. Open fractures in Naturally Fractured Reservoirs generally have a higher permeability 
than the matrix, building the flow channels of the system. The flow rate through a narrow 
cleavage can be calculated by Lamb’s law: 

, (1.2)

where W is the effective fracture aperture (fracture width). The fracture cross section A is the 
product of the fracture width W and the breadth b:

,. (1.3)

 is the viscosity, and dp/dx is the pressure gradient. The flow rate can also be expressed by the 
Darcy equations:

φf φm

ω
φfcf

φfcf φmcm+
-----------------------------=

q W2

12
-------– A

μ
---dp

dx
------=

A W b⋅=

μ
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, (1.4)

Both Equation 1.2 and Equation 1.4 are valid for laminar flow. So it is evident that the 
permeability of a single fracture is:

. (1.5)

According to Aziz[7], a fracture with 10-5 m width (i.e.: 0.1 mm) has a permeability of 844
Darcy. As a consequence of Equation 1.2 and Equation 1.3, between two flat plates, the flow 
rate is proportional to the cube of the aperture W. This is naturally not valid for natural fractures
because they are rough as shown in Figure 1.5

Figure 1.4:  Parallel fractures in flow direction 

The effective permeability in a fractured solid cube, shown in Figure 1.4 is: 

, (1.6)

where 

(1.7)

is the fracture porosity. Inserting Equation 1.7 in Equation 1.6 results in

. (1.8)

Note that as a consequence of the Equation 1.5 and Equation 1.6 the effective permeability is 
proportional to the cube of the aperture W:

. (1.9)

If the matrix is also permeable, then the overall effective permeability is: 

. (1.10)

The approximation is valid if .

q kA
μ
---dp

dx
------–=

k W2

12
-------=

kef kf
W
a
-----=

W
a
----- φ=

kef φfkf=

kef W3∝

ke kef 1 φf–( )km kef km+≈+=

φf 1«
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Figure 1.5:  Sandstone fracture (average aperture 0.4 mm) (from Jones[44])

Note, that Equation 1.5 and Equation 1.6 cannot be used for real fractures in porous rocks, 
because it is derived for steady state, isothermal, laminar flow between parallel glass plates. 
Fracture permeability is, similarly to the fracture porosity, highly scale-dependent[5]. A fracture 
of width W expressed in inches has a permeability of: 

(1.11)

The resultant intrinsic permeability of a fracture of 0.01 in. would be 5400 darcys. The intrinsic 
permeability of Equation 1.11 is valid for a single point. The formulation can be extended for 
the bulk properties of the system for one set of parallel fractures[5]:

(1.12)

where D is the distance between the fractures.

1.2.3 Compressibility

The stress on the reservoir rock is determined by the confining and the pore pressures. The 
confining (or overburden) pressure, caused by the weight of overlying rock is partially 
compensated by the pressure of the fluids in the pores. The net confining pressure, pe, is the 
difference of the two pressures:

. (1.13)

A number of investigations indicate that the effect of varying the confining and pore pressure 
on porosity and permeability is mainly governed by the net confining pressure and is not greatly 
dependent on the absolute values of either total confining pressure or pore fluid pressure. 

kf 54 106 W2 Darcys[ ]⋅ ⋅=

k2
kf wo⋅

D
---------------=

pe σ p–=
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Figure 1.6 shows a typical stress-strain curve manifesting three regions. The linear region of 
elastic deformation exists up to a stress called yield stress. Beyond that, the material shows 
plastic behavior. Increase in stress causes a non-linear increase of strain and if the strain is 
relaxed, the response curve does not retrace the original load path but rather follows an elastic 
path typical of a more consolidated rock. Ultimately, if enough stress is applied, the rock 
becomes fully compacted and the stress/strain relation regains linearity. For consolidated 
sandstone the yield point may exceed 1380 bara (20,000 psia), while for soft chalk it can be as 
low as 60-70 bara (800 to 1,000 psia). 

Figure 1.6:  Typical rock stress/strain curve showing three regions of behavior: elastic, 
plastic pore collapse, and compacted work-hardening (after Ruddy et al.[81])

Note, that also if often pore collapse and compaction will be modelled by increased 
compressibility factor, the following discussion is valid only for the elastic state of the reservoir 
rocks. Dealing with deep carbonate reservoirs, the first step must always be to estimate or better 
yet, to measure the yield point.

The isothermal compressibility factor, in general, is defined as the specific volume change 
caused by change of pressure:

. (1.14)

The volume V may refer to the bulk volume (Vb), the solid volume (Vs) or the fluid, e.g. the oil 
volume (Vo).

The pore volume and therefore, the porosity have no compressibility; they change because the 
solid phase is compressible. Excluding a possible compaction (i.e.: below the yield point), the 
solid phase of an intergranular porous medium can be expanded towards the voids (pores) only, 
therefore, the apparent pore compressibility factor has to be defined as:

c 1
V
--- ∂V

∂p
------

T
–=
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, (1.15)

where cs is the compressibility factor of the solid phase. The matrix block, tight or porous, 
surrounded by fractures will expand towards the fractures, therefore the compressibility of the 
fracture porosity is determined by the compressibility of the matrix bulk volume:

. (1.16)

If the matrix is tight, then

(1.17)

Based on Equation 1.9 a simple relation exists between fracture porosity and permeability, given 
by:

. (1.18)

Equation 1.18 is rigorously valid only for a tight matrix, where the subscript i denotes the value 
of the variable at the initial condition. The normalization in Equation 1.18 generalizes the 
expression deduced from the planar model. Since the geometry of the fractured medium should 
remain relatively constant during compression, it is reasonable to assume that Equation 1.18 
might apply to the real, general case where fractures are non-uniform, tortuous, and intersect.

The fracture porosity has a considerably greater compressibility than the intergranular one. 
Moreover, the fracture compressibility factor cannot be regarded as a constant over the entire 
range of the reservoir pressure decline. Jones[44] suggested to use the following relation:

, (1.19)

where pe is the net confining (overburden) pressure and ph is the apparent healing pressure. The 
last one is the pressure at which the fractures would be closed. The behavior of fractures in 
limestone, dolomite and marble is sufficient similar to be represented by the same expression, 
all having an apparent healing pressure of approximately 40,000 psia (2700 bara). 

The fracture compressibility in a 20,000 ft deep dense carbonate reservoir is estimated by 
Jones[44] for 96.10-6 psi-1 at initial pressure, that decreases to about 72.10-6 psi-1 at depletion. 
Intergranular porosity compressibility factors usually range between 2.10-6 and 15.10-6 psi-1.

cφ
1
φ
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φ
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1.2.4 Compaction - Example on the Valhall Field

The Valhall field[73],[81] is an overpressured, undersaturated Upper Cretaceous chalk reservoir 
located approximately 180 miles (~290 km) offshore of southern Norway. The reservoir has 2.0
billion barrels of OOIP in approximate depth interval of 7870-8530 ft (~2400-2600 m) The 
reservoir rock is a relatively pure high porosity (30-50%) chalk with high initial oil saturation 
(> 90%). Original matrix permeability ranges from 1 to 10 mD, while fracture permeability goes 
up to 350 mD. At discovery, the reservoir pressure was only 500 psi less than the 7000 psia 
overburden weight indicating only minor formation compaction during burial. Rock 
compressibility is the major primary drive mechanism in Valhall. Figure 1.7 gives the 
compressibility factor curves versus reservoir pressure for different initial porosities. Here, 15%
pore volume reduction occurs in 50% porosity rock if the pressure is reduced from 6500 to 3500
psia.

Figure 1.7:  Type curves for compressibility factor for Valhall field (after Powley et 
al.[73])

The matrix permeability was correlated based on the porosity determined by density log and 
corrected to the actual pressure across the field. In this way it was possible to estimate the 
fracture permeability values as the difference between pressure transient (PTA) total 
permeabilities at the time of the PTA test. The result is shown in Figure 1.8. It should be 
emphasized that this is valid for the Valhall field and can not be applied to other cases.
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Figure 1.8:  Fracture permeability, determined by transient pressure analysis (PTA) 
versus reservoir pressure in Valhall field (after Powley et al.[73])

1.3. Rock and Fluid Interaction 

1.3.1 Wettability

Dealing with dual-porosity fractured reservoirs, the wettability is one of the most decisive 
factors. Wettability plays an important role in the production of oil and gas as it not only 
determines the initial fluid distributions, but also is a major factor in the flow processes taking 
place within the reservoir rock. It has a fundamental influence on the fracture-matrix interaction 
and therefore the ultimate recovery factor.

Wettability of a reservoir-rock fluid system is the ability of one fluid in the presence of another 
to spread on the surface of the rock. The degree of wetting of solids by liquids is usually 
measured by the contact angle that a liquid-liquid interface makes with a solid.

A fluid drop on a plane, solid surface can take various shapes. The respective shape (either flat 
or shaped like a pearl) depends on the wettability of the considered solid. Figure 1.9 illustrates 
that property. In case of air and water, the water is the wetting fluid, for air and mercury, the air 
is the wetting fluid.
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Figure 1.9:  Comparison of wetting and non-wetting fluid

The contact angle, θ, is used as a measure of wettability. In case of a wetting fluid, the contact 
angle is smaller than 90°. If the contact angle is larger than 90°, then the fluid is referred to as 
non-wetting.

Interfacial tensions  between the fluids p and p’, and thus the contact angle, θ, are
temperature-dependent. At room temperature, the interfacial tension between water and air is 
0.073 N/m and between oil and water about 0.03 N/m. 

The wettability of a reservoir rock system depends on many factors:

• reservoir rock material
• pore geometry
• geological mechanisms 
• composition and amount of oil and brine
• pressure and temperature
• changes in saturation, pressure and composition during production.

When regarding oil reservoirs it is necessary to consider the specific rock and fluid properties 
in order to determine whether the reservoir rock is water- or oil-wet. Rocks which are neither 
water- nor oil-wet are called intermediate- or neutral-wet. The data published by Treiber et 
al.[91] (Table 1.1) show that most of the carbonate reservoirs are oil-wet, while the sandstone 
reservoirs can be equally water- or oil-wet.

Table 1.1: Reservoir wettability based on contact angle measurements (Treiber et al.[91])

The internal surface of a reservoir rock is composed of many minerals with different surface 
chemistry and adsorption properties, which may lead to variations in wettability. The concept 
of fractional wettability, also called heterogeneous or spotted wettability, was proposed by many 
authors. Note that the fractional wettability conceptually differs from the intermediate 
wettability, which assumes that all portions of the rock surface have a slight but equal preference 
to being wetted by water or oil.

σpp'

Wet tability Contact  Angle [°] Number  of Reservoir  Invest iga ted
Sand Carbona te Tota l

wa ter  wet 0-75 13 2 15
in termedia te wet  75-105 2 1 3
oil wet 105-180 15 22 37
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Mixed wettability is a special type of fractional wettability where the oil-wet surface forms 
continuous paths through the larger pores. The smaller pores remain water-wet and contain no 
oil. Salathiel[84] explained the situation when oil invades an originally water-wet reservoir it 
displaces water from the larger pores, while the smaller pores remain water-filled. A 
mixed-wettability condition occurs if in the oil deposits a film of oil-wet organic material only 
on those solid surfaces that are in direct contact with the oil but not on the surfaces covered by 
water.

1.3.2 Capillary Pressure

Figure 1.10 shows regular capillary functions for primary drainage, imbibition and secondary 
drainage. They are applicable to the inter- and intra-granular matrix. Two of these functions are 
used to determine the wettability by the USBM (U.S. Bureau of Mines) method developed by 
Donaldson[26].

Figure 1.10:  Typical capillary pressure curves and the relationships of wettability 
measurements by Amott and USBM tests to Pc (see Torsaeter[90]) 

The imbibition curve: Displacement of the oil by brine, starting at the irreducible water 
saturation and end up with the residual oil saturation.

The secondary drainage curve: Displacement of oil in the reverse direction.
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The USBM test compares the work necessary for one fluid to displace the other. The work 
required for the wetting fluid to displace the non-wetting fluid from the core is less than the 
work required in the opposite direction. The work required is proportional to the area under the 
capillary pressure curve. In other words, when a core is water-wet, the area under the brine-drive 
capillary pressure curve (when the water displaces the oil) is smaller than the area under the 
capillary pressure curve for the reverse displacement. 

Before the test is run, the plug is prepared by centrifugation at high speed and submersed in oil 
to achieve irreducible water saturation, respectively maximum oil saturation. In the first step of 
the measurement the core is placed in brine and centrifuged at incrementally increasing speeds 
until a capillary pressure of -10 psi. This step is called the brine drive because brine displaces 
oil from the core. At each incremental capillary pressure the average saturation of the plug is 
calculated from the volume of expelled oil.

In the second step the core is placed in oil and centrifuged. During this oil drive step, oil 
displaces brine from the core. The capillary pressures and average saturations are measured 
until a capillary pressure of 10 psi is reached.

The USBM method uses the ratio of areas under the two capillary pressure curves to calculate 
a wettability index:

(1.20)

where A1 and A2 are the areas under the oil- and brine-drive curves, respectively. 

Regarding the multiphase flow the matrix and fracture behave fundamentally different. It is 
commonly accepted that fracture capillary pressure is zero or negligible for the fractures. These 
are assumed physically correct fracture properties. 

There is no doubt above it that capillary forces can act also in the fracture. Between two plates 
the meniscus of the wetting fluid rises similar as in a capillary tube. The capillary pressure can 
be calculated from the Laplace equation in which one of the main curvature radii is infinite:

, ;   (1.21)

where d is the fracture width, and  the wetting angel. In such an ideal case, a fracture aperture 
(distance between the two plates) of 0.1 mm (10-4 m) would produce a water oil capillary 
pressure ( =0.03 N/m and =0°) not more than 

Pc = 0.03/10-4 = 300 Pa = 0.003 bara. (1.22)

A fissure with 0.1 mm cannot be continuos and if it exists then manifests solely a contribution 
to the intergranular pore space of the matrix. Discontinuities in the rock, characterized as 
fractures, have greater apertures and also smaller capillary pressures, without any relevance for 

W
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practical application. It should also be mentioned that the fracture capillary pressure cannot be 
measured on a natural rock sample. The fracture cannot be extracted from a sample for the sake 
of measurements and from broken cores the in-situ fracture cannot be restored.

The question whether the fracture capillary pressure has an influence on the fluid exchange 
between matrix and fracture is therefore solely a theoretical question without any practical 
importance. Commercial simulation software normally offers possibilities to define capillary 
pressures for the fracture domain too. However, it is not recommend to apply it. The fracture 
capillary pressure should be regarded as zero.

1.3.3 Fracture Relative Permeabilities

It is commonly believed that the immobile saturations (Swc, Sor, Sgc) are zero in the fracture and 
the relative permeability are linear functions as is shown in Figure 1.11. This is certainly true 
for a single fracture, but questionable in the case of a fracture network. In this respect the 
fracture orientation will also play a decisive role. This is demonstrated on the Figure 1.12. Also 
the history matching practices suggest that relative permeability in the fractures is not a linear 
function of phase saturations. This may be because the relative permeability for a fracture 
network is not the same as for an individual fracture. 

In high-permeability fractures the segregation of the phases is a possible assumption. Under this 
condition in lateral fracture-fracture and in fracture-matrix connection, the relative permeability 
could be equal with the phase saturation. This is certainly not valid in the vertical direction 
where in the multiphase case on the top, the lighter phase’s relative permeability becomes 1 and 
the heavier 0. On the bottom, the opposite is true.

It should be understood that there is no real chance to predict the fracture’s relative permeability 
for an actual field. The practical approach could be using the well-established model for the 
water and oil relative permeability function: Nonlinear fracture relative permeability will affect 
the interblock flow as well as the matrix-fracture transfer (upstream values). Therefore, the 
water-oil capillary pressure will favor the imbibition of water into the matrix blocks while the 
gas-oil capillary pressure will prevent gas from entering the matrix block. Without proper 
treatment for the transfer, gas is not able to displace the oil from matrix blocks (see Section 4.1.2
for more details). 

The Corey-exponent representation is a well-established model for the water and oil relative 
permeability functions:

(1.23)
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Where:
krw@Sor and kro@Swi…end-point relative permeabilities, usually both are 1.
Nw and No …Corey exponents for water and oil,
Sw…water saturation,
Swi…connate water saturation, usually 0.
Sor…residual oil saturation, usually 0.

Typical Corey exponents for intergranular porosity are summarized in Table 1.1. The exponents 
Nw = No = 1 result in straight line functions. Until now, no serious suggestions were published 
which values would have to be used for fracture networks. 

PRS applies the exponents Nw = 1 and No = 2 as default values. Analogously an exponent of Ng
= 2 is used for the gas relative permeability. Moreover, the immobile phase saturations (Swir, 
Sgc, Sor) are not 0 but 0.01. Figure 1.11 displays such functions.

Table 1-1: Typical values for Corey exponents No and Nw

Figure 1.11:  Relative permeabilities for: a) cores with fractures non parallel to the flow, 
b) cores with fractures parallel to the flow.

Wettability No Nw
water-wet 2-4 5-8
intermediate-wet 4-6 3-5
oil-wet 6-8 2-3
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Figure 1.12:  PRS default fracture relative permeability functions (calculated from 
Corey equation Nw = 1 and No = 2).

1.4. Characterization of Fractured Reservoirs

1.4.1 Definitions

In the Textbook “Fluid Flow in Porous Media”, Section 1.1 [38]the porous rocks were already 
categorized as intergranular, fractured and dual porous ones. Following the single continuum 
approach the medium can be decomposed to Representative Elementary Volumes (REV), which 
serve for the definition of relevant properties. The size of the REV depends on the rock type, 
the defined property, the method of measurement and the application of the quantity. Typical for 
the continuum approach is that for a REV only one value (or function) exists for each property. 
Under certain conditions, all mentioned rock types can be handled as a single continuum, 
therefore no differences were made so far in this respect. The basic properties were porosity, 
rock compressibility, permeability tensor, capillary and relative permeability functions. The 
state variables, describing the actual state of REV were pressure, temperature, fluid saturations 
and fluid composition.

Diagenesis can alter the permeability and porosity of open fractures to the extent that they would 
not behave like fractures, and fully mineralized fractures could, potentially, even become baffles 
or barriers to flow. Thus, the mere presence of fractures does not require 
dual-porosity/dual-permeability modeling. Also, a reservoir needs not to be modeled entirely as 
a dual-porosity or single-porosity system; different parts of the reservoir may be characterized 
differently.
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However, for fractured reservoirs, obtaining the right data and forecasting the reservoir 
performance is much more difficult than for single continuum type reservoirs. Figure 1.13 
shows some naturally fractured rock. Intuitively, one can distinguish between two continua, 
namely between the (1) fracture network and (2) the blocks of rock separated and connected by 
the fractures. The second is called the matrix. It is evident that many different fracture-matrix 
patterns could exist and it will be difficult to find one single way to describe the geometry and 
the flow process in such a system. Note, that the matrix can also be tight, without effective 
porosity and without storing any fluids. In this case the entire pore volume is formed by the 
fractures. Also if the porosity is very low, such a reservoir can store a considerable amount of 
hydrocarbons. The main difference between the first continuum (fractures) and the second one 
(matrix) is the size of the Representative Elementary Volume (REV), or in other words, the bulk 
volume VT necessary to define average properties as the porosity ( ). This can be of 
greater magnitudes for the fractures.

Figure 1.13:  Fractures and Matrices

To design an appropriate development plan (dynamic reservoir model), one needs a credible 
reservoir description that includes all fracture related properties as:

• Size of the fractures,
• Number of fractures per length (called fracture count),
• Fracture orientation,
• Fracture aperture,

φ Vp VT⁄=
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• Fracture porosity,
• Conductivity,
• Fracture connectivity,
• Fracture relative permeabilities.

Characterization of Naturally Fracture Systems can be made from analysis of cores and logs for 
the subsurface and from surface outcrops. Harstad et al.[37] performed an outcrop study on the 
Frontier sandstone (Green River Basin, Wyoming, US.). Three of them are presented in Figure 
1.14 through Figure 1.16.

Permeability tensor deduced from fracture description. Harstad et al[37], references a paper from Oda[62]. This should be understand and referenced.

Figure 1.14:  Fracture network map at Scullys Gap outcrop, Bed thickness 0.2 m. (after 
Harstad et al.[37])

Figure 1.15:  Fracture network map at Bridger Gap outcrop, Bed thickness 2 m. (after 
Harstad et al.[37])
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Figure 1.16:  Fracture network map for Fronitier Sandstone at Muddy Gap outcrop, Bed 
thickness 6 m. (after Harstad et al.[37])

1.4.2 Characterization Methods

1.4.2.1 Direct sources of information

Direct sources of information include core, outcrop analysis and image logs. Core analysis
provides valuable information for the fracture characterization process. Figure 1.17 shows a 
core taken from a fractured reservoir. The relationship between specific fractures and the 
reservoir rock can be analyzed in cores. Cores provide the material for routine and advanced 
reservoir engineering analysis as well as information about the geomechanical modification to 
the fractures, such as timing of the fracture development relative to the digenesis of the 
reservoir[59]. Important parameters for the development of a fracture model are gained from 
core analysis, including single- and multi-fracture parameters. Single-fracture parameters such 
as fracture width, size and orientation are analyzed from thin sections of the core. A fracture 
description should be done from the whole core before the core is sliced. There is also 
information about the nature of the fractures. The fracture morphology (open, filled, 
partially-open fractures) has to be combined with the fracture size and fracture orientation. The 
fracture orientation gives information about the fracture’s induced anisotropy. Measuring the 
fracture aperture and height is essential to compute the fracture density, fracture porosity and 
other fracture characteristics. The areal fracture density is a multi-fracture parameter that can be 
inferred from thin-section analysis of cores[97]:

(1.25)

The linear fracture density is obtained from the intersection of fractures along a vertical line. 

Afd
number of fractures length in thin section⋅

area of the thin section
------------------------------------------------------------------------------------------------------=
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The main problem with core analysis is that most of the cores are drilled from vertical wells 
which will seldom intersect the vertical fractures parallel to the well.

Figure 1.17:  Fractured core[97]

Outcrop studies involve the collection of various information about the fracture system and can 
provide an understanding of how the fractures relate to the lithology or stratigraphy of the 
reservoir rock. Observations are made either on the reservoir rock formation or on a rock chosen 
on the basis of similarity to the reservoir in lithology, stratigraphic setting, rock properties, age,
structure, etc[59]. Figure 1.18 shows an impressive photograph of an outcrop of a fracture 
network in Zagros Mountains in Iran. The main problem with outcrops is that the same stress 
history cannot be assumed at the surface and at a depth of thousands of meters subsurface. If a 
rock is uplifted to the surface, the overburden is removed, it has been eroded and also the 
tectonic stress is reduced. Furthermore, the temperature at the surface is cooler than subsurface 
and the pore fluid pressure will change significantly[27],[59]. All these processes are capable of 
changing the properties of the fractured rock at surface from the down-hole properties.
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Figure 1.18:  Parallel sets of fractures in steeply dipping marly limestone, Zagros 
Mountains, Iran[96] (for scale see the pick, on the left in the center).

Another source of direct information about the fracture system are image logs, which create 
images of the interior of the bore-hole. There are two basic measurement methods in use for the 
fracture characterization: acoustic imaging logs and resistivity based image logs. Figure 1.19 
shows an example of the visualization of fractures using a resistivity image log tool. The 
fractures can be clearly distinguished from the matrix. Resistivity-based image log tools 
measure the resistivity of minerals and produce high resolution resistivity images of the 
bore-hole wall. Arrays of electrodes are dragged along the bore-hole wall to generate the image. 
Acoustic imaging logs use an acoustic pulse to image the shape of the bore-hole wall. The 
bore-hole wall is scanned with a narrow pulse acoustic beam from rotating transducers while 
the logging tool is pulled out of the hole. The Amplitude and travel time of the acoustic signals 
reflected from the bore-hole wall is measured with the same transducer that generates the 
acoustic beam. The images are oriented using a magnetic sensor. Location, size and orientation 
of fractures intersecting the bore-hole can be diagnosed from image logs, which provide a 360°
view of the bore-hole wall. Some limitations of these logging tools is that they are not applicable 
to oil-based mud. In water-based mud it is possible to distinguish open fractures filled with mud 
filtrate from filled fractures if resistivity tools are used. Fracture aperture, which is an essential
parameter in determining the fracture porosity, can be calculated from resistivity image logs.



24

Figure 1.19:  Borehole image from a Formation Micro-Imager (Schlumberger)[14]

1.4.2.2 Indirect sources of information

As mentioned before, core and image log analysis provide the most precise data about the 
presence of fractures and the fracture geometry, but may not indicate the effectiveness of the 
fractures if used alone. Combining the observed fractures from cores and image logs with the 
information from other sources increases the knowledge about the fracture system. The indirect 
sources of information include the drilling and production history, log analysis and well tests. 
The indirect fracture indicators can provide information about fracture network properties, the 
transmissivity (connectivity, conductivity or intensity), the fracture storativity (size, aperture 
and frequency), the anisotropy (stress field) or the areal and vertical heterogeneity.

Lost circulation during drilling is an indication of natural fractures, underground caverns, or 
induced fractures. An increase in the rate of penetration might occur while drilling through a 
formation with secondary porosity. Tracer testing provides an inexpensive, direct indication of 
fracture connection and directional tendencies. A distinct tracer is injected into a well and 
surrounding wells are monitored for presence of the tracer. Limitations might be long response 
times and well interference tendencies. 

Different well logging tools can provide valuable information in combination with the already 
discussed image logs. Only a few examples are shortly discussed here. Porosity logs can be used 
in conjunction with image logs to recognize open fractures. If barite mud is used, a photoelectric 
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effect log (PEF) can be used to recognize open fractures. The mud filled fracture will induce a 
spike on the PEF log, thereby showing that the fracture is open. The spontaneous-potential log 
(SP) might show anomalies which can be associated with a fractured zone. Temperature logs 
measure the temperature gradient in the bore-hole. The circulation of cooler mud reduces the 
temperature gradient throughout the well depth, with more cooling in permeable zones. The 
presence of fractures can lead to mus losses to the fractures, which will cause a modification of 
the temperature gradient in the fractured zone. 

Well test analysis can also provide valuable information about the fracture system. Pressure 
analysis is used to evaluate fracture, matrix and combined permeability and porosity. Basically, 
the same parameters as for well test interpretation in conventional reservoirs can be gathered, 
such as kh. Two important parameters describing the storativity of the fracture system, ω and λ, 
can be determined from pressure transient testing: 

(1.26)

In Equation 1.26, ω is a dimensionless parameter relating the storage of the secondary porosity 
to that of the combined system and λ is a dimensionless parameter governing the inter-porosity 
flow. Furthermore, the effective permeability can be determined with the help of pressure 
transient testing. Ideal well tests show both, fracture and matrix flow in the transient flow 
period. This results in two straight lines with a transition zone in between, on the semilog plot 
of time versus pressure. The earlier time line corresponds to the flow in the fractures and the 
second to the flow in the matrix. The first straight line is, because of well-bore storage effects, 
often difficult to detect. Figure 1.20 shows ideal examples of a pressure drawdown and a 
pressure buildup test. Both plots show the characteristic straight lines and the transition zone in 
between. The location of the transition relative to the time axis relates to the inter-porosity flow 
quantified by the inter-porosity flow coefficient λ (Equation 1.26). The separation between the 
two straight lines represents the storage capacity ω (Equation 1.26).

Figure 1.20:  Pressure response in a naturally fractured reservoir showing ideal dual 
porosity behavior

ω
φct( )f

φct( )f φct( )m+
-------------------------------------,          λ

σkmrw
2

kfe
----------------= =

Horner time (t+♦t)/♦tHorner time (t+♦t)/♦t

Fl
ow

in
g 

P
re

ss
ur

e

♦p

slope = m

end of early straight line
(fracture system)

begin of late straight line
(total system behavior)

S
hu

t-I
n 

P
re

ss
ur

e

♦p

slope = m

end of early straight line
(fracture system)

begin of late straight line
(total system behavior)

Ideal Drawdown Test Ideal Buildup Test



26

Well test analysis should not be used as a single indicator for a Naturally Fractured Reservoir, 
since the dual porosity response is limited. Many Naturally Fractured Reservoirs do not show 
dual porosity behavior in well tests. The transition between the fracture and entire system flow 
is often reached very quickly, so that it is utterly masked by well-bore storage effects. 
Interference testing, during which a pressure pulse is created in one well and its response is 
measured in another, can be used as a direct indication of fracture connection and gives a 
measure of the permeability anisotropy. These are some important parameters, because fracture 
systems have a strongly preferred orientation.
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Chapter 2

Formulation of the Fluid Flow Equations

2.1. Integral Formulation of the Fluid Flow Equations

This chapter only deals with isothermal flow models, therefore no entalphy balance will be 
considered. For the sake of generality and future extensibility the temperature will be handled 
as an independent variable.

2.1.1 Single Continuum Model

The porous material has a porosity , which is a function of the pressure (and temperature). The 
pore space is occupied by fluids and separated by phase surfaces. The proportion of one phase 
in the pore volume is defined as the phase saturation Sp. It is evident that

(2.1)

where P is the number of phases. Equation 2.1 is called “saturation constraint”.

The fluid system is composed of C components. The composition of the pth phase is given by 
the mole fractions xpc:

(2.2)

Equation 2.2 is called “mole constraint”. 
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The continuity equation in a single continuum space can be written for component c in k-moles:

(2.3)

The first term on the left-hand side in Equation 2.3 is the convection term or flow term. It gives 
the mass of component c flowing through the unit surface per unit time (mass velocity). The 
summation over all phases is necessary, because the particular component may be present in 
several phases. The second term is the diffusion term. It gives the mass of the component c
moving through the unit of surface per unit time, driven by the concentration gradient. The third 
term is the volumetric source/sink term. It determines how much of component c will be taken 
out, or is supplied to the unit volume per time unit. The right-hand side is the accumulation term. 
It contains SpDpxpc moles and SpDpxpcMc mass of the component c. The summation over all 
phases and the integral over the whole control volume gives the accumulation of component c
within this control volume.

2.1.2 Convection and Diffusion

Equation 2.3 assumes that two transport mechanisms have an influence on the mass flow rate 
for which the driving forces and parameters have to be specified:

• Convection, described by Darcy’s law and
• Diffusion, defined by Fick’s law.

The total molar flux [kmole.s-1.m-2] for the component c, in general, is:

. (2.4)

  is the filtration velocity of the phase p, and is given by Darcy's law (for the multi-phase 
case):

, (2.5)

where the permeability , in general, is a symmetrical tensor (see Section 2.1.2.1 for more 
details).
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. (2.6)

. , is the phase mobility, and (2.7)

 , the potential gradient, (2.8)

, is the specific molar density (2.9)

where xpc is the mole fraction of the component c in phase p. If Mc is the mole mass of the 
component c, we can also calculate the phase densities, ρp as:

. (2.10)

The differences between the phase pressures is the capillary pressure:

 . (2.11)

Jpc [kmol.m-2.s-1] is the molar flux of the component c in phase p, which can be expressed by 
Fick’s law:

, (2.12)

where [m²/s] is the diffusion coefficient. The diffusion coefficient is specific for the 
compound (solute) and depends on the composition of the system (solvent) and on the 
temperature. 

2.1.2.1 The Permeability Tensor

The permeability tensor is symmetrical per definition. Some upscaling methods can produce a 
non-symmetrical permeability tensor, which would mean that Darcy flow shows shear effects. 
For such an effect no physical evidence exists. The asymmetric permeability tensor is solely the 
product of the upscaling method.

The permeability tensor from Equation 2.6 can be split into a normalized tensorial part and an 

k

k11 k12 k13
k21 k22 k23
k31 k32 k33

, where kij kji==

λp
krp
μp
-------=

Φp∇ pp∇ ρpg–=

Dp Dp pp, Tp, xpc( )=

ρp Dp Mcxpc

c 1=

C
=

pp pp′– Pcpp′= p p′≠ p p' 1 … P, ,{ }∈,

Jpc φSpDp– Dpc∇xpc=

Dpc



30

effective scalar permeability ka. Therefore, the permeability tensor of Equation 2.6 can be 
rewritten as:

. (2.13)

ka can be any number to calculate the new tensor values as . This step is to 
separate the apparent permeability which is locally more variant, and the anisotropy tensor 
which tends to be the same in larger scales. However, as shown in Equation 2.37, when 
calculating the matrix-fracture inter-flow, this value will be multiplied again in the tensor to 
result in the actual kij permeability values. Mathematically speaking, this takes effect as a simple 
factorization of the value ka from the tensor. It has been tried over the years to give physical 
definitions for ka and k’ij tensor values, all suggest that for the matrix apparent permeability ka

the following inequality should be true:[18],[23],[54]:

 , (2.14)

where b is the harmonic mean and a is the arithmetic mean of kij’s in Equation 2.6. But as 
mentioned previously, this number can be any value greater than zero theoretically. It is 
suggested to use the maximum principle permeability value kx or the equivalent isotropic 
permeability after Muskat[59]:

  or    , (2.15)

where kx, ky, kz are the permeability values in x-, y- and z- principle permeability directions 
respectively.

2.1.3 Dual Continua Model

It will be assumed that two continua exist in the same space, both fill the space completely 
without gaps and overlaps. One continuum represents the fractures and the other one the matrix. 
Both porous materials have the same type of properties and their own variables. The matrix 
properties and variables are signed by the subscript m and the fracture by f. For example the 
porosities are , and  which are functions of the pressure pm and pf, respectively. The pore 
space is occupied by fluids and separated by phase surfaces. The proportion of one phase in the 
pore volumes are defined as the phase saturations Spm and Spf. Consequently, Equation 2.1 
through Equation 2.3 shall be duplicated once with the subscript m and once with the subscript f. 
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Figure 2.1:  Dual porosity - dual permeability dual permeability concept

The balance equation for the fracture continuum:

(2.16)

The balance equation for the matrix continuum: 

(2.17)

Note, that the third term in the left side of the Equation 2.3 is split into two terms. The 
source/sink term qcm and qcf represent are the wells, while is the matrix-fracture transfer 
term. The Equation 2.16 and Equation 2.17 can be rewritten in terms of mole balance rather than 
mass balance by using Equation 2.5 and Equation 2.12 in Equation 2.16, to get the fracture mole 
balance equation,

(2.18)

and using Equation 2.5 and Equation 2.12 in Equation 2.17, to give the matrix mole balance 
equation.

(2.19)

Equation 2.16 and Equation 2.17 describe a dual-porosity-dual-permeability case in which the 
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fluids can flow within both domains as shown in Figure 2.1. 

Figure 2.2:  Dual porosity (single permeability) concept, only the fractures are 
continuous

Very often the permeability of the matrix is of less magnitudes than the permeability of the 
fractures and/or is not continuous (i.e. it is broken into discontinuous chunks). The matrix serves 
just as volume source or sink for the continuous fracture system, as shown in Figure 2.2. 
Therefore, production is only possible from the fractures but not from the matrix. In this case 
Equation 2.17 simplifies to

, (2.20)

where the matrix-fracture transfer  term includes convective and diffusive material 
transport as well. Figure 2.3 shows a schematic of a dual continuum model, including the 
transfer term.

Figure 2.3:  Illustration of a dual continuum model.
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2.1.4 Application of Green Divergence Theorem

In order to being able to discretize the differential equations on a generalized grid, the control 
volume finite difference (CVFD) method should be applied. This will be explained here just for 
one of the domains without using the subscript m or f but the same equations are valid for both 
continua. The Equation 2.17 can be integrated over an arbitrary control volume Vi, leading to

, (2.21)

Figure 2.4:  Control volume around grid point

where the diffusion and production terms were disregarded for the sake of simplicity. Vi is a 
finite control volume around the grid point i.

The flow term can be rewritten using the GREEN divergence theorem:

(2.22)

where  denotes the integration over the total surface Ai of Vi and  is normal vector (the 

outward pointing unit vector) to the surface Ai. The same theorem can be applied to the diffusion 
term in the same manner. Inserting into Equation 2.21 yields

. (2.23)

Equation 2.23 is a mass balance. But it is obvious that mass and mole balances are equivalent 
when cancelling the constant mole mass Mc from both sides. This leads to a mole balance 
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equation:

. (2.24)

Substituting the velocity according to Darcy's law and splitting up the double integral  into 

a sum over all surfaces Aij connecting the block i with its neighbors j, yields for the flow term:

, (2.25)

 where already the component mobility and the normalized permeability tensor 

    and    (2.26)

were substituted. A similar expression can be written for the diffusion term:

. (2.27)

Now the fluid flow equation in integral formulation has the following form:

(2.28)

where qc is the discrete sink/source term for the component c acting in the volume Vi. 

2.1.5 Matrix-fracture transfer term

2.1.5.1 A historical review

In numerical modeling of dual porosity reservoirs the matrix-fracture fluid transfer has ever 
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been and still is an area of extensive research and discussion. Warren and Root[95] gave the first 
definition of the shape factor when they introduced their idealized sugar cube model (Figure 
2.6) of fractured porous rocks. One of the most accepted and widely implemented (e.g. in 
ECLIPSE[87]) shape factor definitions used in numerical modeling was given by Kazemi et 
al.[47]. 

, (2.29)

Coats[20] recommended a shape factor that is twice the value of Kazemi et al.[47]. All mentioned 
authors assumed the mass transfer between matrix and fracture to be pseudo-steady state. 
Numerous other authors proposed shape factors based on numerical and/or laboratory 
experiments. Vicarious Thomas et al.[89] and Ueda et al.[92] are mentioned. Gilman[33] claims 
that the shape factor is a function of fracture spacing (or intensity), and is not inherently a 
time-dependent parameter.

To the knowledge of the author, Barker[9] presented the most general formulation of the 
matrix-fracture transport equations so far. In his phraseology the matrix block has an arbitrary 
shape with a volume to surface ratio of a. The boundary value problem leads to a solution 
containing the time depending non-dimensional Block-Geometry Function (BGF). The BGF
depends on the geometry of the characteristic matrix block but not on its absolute size. The 
volume to area ratio of the blocks captures the block shape. Assuming pseudo- (quasi-)steady 
state conditions, the BGF becomes time independent and leads to a definition of the shape 
factor. The shape factor after Barker[9] is:

, (2.30)

where Vm is the volume, Am is the surface of the matrix block and  is a non-dimensional
parameter. Consequently, the assumption of pseudo-steady flow between matrix and fracture 
always leads to a constant parameter called “shape factor”. Otherwise, the time depending 
Block-Geometry Function must be considered and a function should not be titled a factor. 
Nevertheless, some authors (Penuela[67], Rangel-German and Kovscek[77]) published such 
functions calling them time-dependent shape factors.

The supposition that the exchange term for all possible physical situations will depend on the 
geometry of the discontinuous element (the matrix) of the model, was postulated from the 
beginning onwards by Warren and Root[95]. It should be also mentioned that their sugar cube
model and the resulting shape factor are already based on discretization and homogenization. 
The weakness of the concept was that the shape factor was defined for specified geometries. In 
reality, the matrix blocks are neither cubes nor spheres; therefore, it was necessary to find a 
general applicable geometrical measure.

Based on water imbibition experiments of Mattax and Kyte[55], Kazemi et al.[45] introduced a 
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generalized shape factor given by Equation 2.43. It is easy to show that for idealized cases this 
equation becomes identical to the Warren and Root[95] expression given in Equation 2.48. 
Despite of this asymptotic accordance and its widely acceptance, its general validity was shown 
first by Heinemann and Mittermeir[43]. The derivation of Heinemann and Mittermeir will be 
elaborated on in the next section. 

Also Gerke and van Genuchten[30] tried to find a generalized geometrical factor, and found that 
such a factor must contain the relation of the surface to the matrix volume as given in Equation 
2.30. Their geometry factor still contains, similar to Barker[9], an inaccurate-defined 
non-dimensional geometry-dependent coefficient. It should be emphasized, that the dual 
continuum concept is one but not the only method to describe flow in heterogenous porous 
media. On the other hand, the dual continuum approach is still the most accepted one and a very 
successful method in describing oil and gas recovery from naturally fractured dual porosity 
reservoirs. Lewandowska et al.[51] claims to have found a more general approach. Their work 
contains interesting ideas but does not give any experimental evidence or demonstrates its 
practical applicability.

2.1.5.2 Derivation of the generalized shape factor

Consider a single matrix block surrounded by fractures. The matrix block is a porous permeable 
piece of rock containing the multi-component multi-phase fluid system. The state of the fluids 
and its movement is described by the Equation 2.1 through Equation 2.16. Consequently, the 
Equation 2.28 is applicable for a single matrix block having an arbitrary shape as shown in 
Figure 2.5. 

Figure 2.5:  General 3D grid block

The dual continua approach handles the matrix-fracture transfer term as a discrete term, 
expressed as the rate of a volume source. This rate can be derived from Equation 2.28 by 
discretizing it in time and space of the matrix block. The matrix block is then the control volume 
on which the flow term is integrated. By neglecting the diffusion term and replacing the right 
side of the Equation 2.31 by the average values
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, (2.31)

results in the equation

. (2.32)

The equation was already divided by Vmi.. The permeability in Equation 2.32 is the effective 
matrix-fracture permeability which, if the fracture block volume can be neglected, compared to 
the matrix block volume, is equivalent to the matrix permeability. T  is the time step and  
the time difference operator 

. (2.33)

Assuming bilinear distribution of pressure, the density and the porosity depend on the average 
pressure, calculated from the matrix grid point and the fracture. It is evident, that the left side of
the Equation 2.32 is the specific matrix fracture flow rate

, (2.34)

To be able to introduce this value in Equation 2.28 the right hand side of Equation 2.34 has to 
be discretized. This means that the surface integral will be replaced by multiplication with the 
surface, the mobility will be determined from the average of the block state variables and the 
potential gradient by its component effective on the block sides. Therefore one has to 
approximate

• the surface Aij facing the matrix block i to the fracture side j,
• the component mobility ,

• the scalar product .

The surfaces Aij and the orientation of the unit normal vector  are determined by the shape 
of the matrix block. Once the matrix block is identified, as in Figure 2.4, the area and the 
orientation can be calculated by means of geometry.

The mass mobility , is required on Aij. To get an approximate value for , some sort of 
averaging is necessary. For multi-phase flow, upstream-weighting has shown to converge to the 
physically correct solution. The simplest way is to take one of the values, which leads to 
one-point upstream-weighting.
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For the approximation of the scalar product  imaginary grid points must be set into 

the surrounding fracture network to every block faces . The fracture width is 
negligeable compared to the matrix block volume, therefore they are situated within the plane 
of the block sides. The fracture cells, containing a greater number of matrix blocks according 
the Warren-Root concept (see Figure 2.6) is represented by average pressure and saturation. 
Consequently all of the neighboring fracture grid points have the same potential and can be set 
anywhere into the matrix block sides. 

The vector  measuring the distance must be k-orthogonal on the surface Aij. to between grid 
the point i and its neighbor j, therefore: 

. (2.35)

 In analogy to the derivation of Equation 2.36,

(2.36)

Inserting Equation 2.34 into Equation 2.34 and

. (2.37)

The first term of Equation 2.37 contains only quantities depending on the geometry of the 
matrix block and its orientation in the coordinate system built by the principal permeability 
direction. These terms can be united as one constant called, according to the Warren-Root 
concept, shape factor: 

. (2.38)

which has to be seen as a characteristic value of the fractured dual continuum and has a 
dimension L-2. The shape factor as expected semantically, has to be a factor representing the 
effects of the shape of the system in the matrix-fracture transfer function and obviously it is 
expected that as long as the shape of the system (matrix shape, orientation etc.) has not changed, 
the shape factor should remain constant. The expression ‘time-dependent shape factor’ 
proposed and used by some authors is self-contradictory. 

The resulting matrix-fracture transfer rate for a component is then:

(2.39)
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The shape factor , defined by Equation 2.38, is a characteristic of the fractured rock, 
proportional to the specific surface of the matrix block. 

The expression given in Equation 2.38, derived by Heinemann and Mittermeir[43] in year 2006, 
is the most general definition of the shape factor. It is easy to show that this expression contains 
all other forms of the shape factor introduced earlier. 

2.1.5.3 The Kazemi-Gilman-ElSharkawy generalized shape 
factor.

In an isotropic medium the scaled permeability tensor  is a unit tensor and can be discarded. 
The fracture grid point j should be set in such a way that the connection line to point i is 
orthogonal to the surface Aij. In this case the following approximation is applicable:

. (2.40)

where dij is the distance of the point i from the side Aij. Applying Equation 2.40 to Equation 2.37 
yields to 

. (2.41)

The comparison of Equation 2.39 and Equation 2.41 results in the definition:

(2.42)

Based on water imbibition experiments Kazemi et al.[45] suggested a general definition for the 
shape factor

, (2.43)

where Vmi is the volume of the matrix block, A is a surface and d is the orthogonal distance of 
the point of gravity to this surface. Equation 2.42 is identical to the general definition for the 
shape factor by Kazemi et al.[45]. For this reason both the Kazemi-Gilman-El Sharkawy[45] and 
the more general Heinemann-Mittermeir[43] definition can be considered as theoretically well 
funded and experimentally verified. 
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2.1.5.4 The Warren and Root model

Figure 2.6:  Idealization of fractured reservoirs (after Warren and Root[95])

Figure 2.7:  Size of an idealized matrix block

Figure 2.6 and Figure 2.7 show the Warren-Root[95] idealized concept of a fractured rock. Let 
pm be the pressure in the matrix block and pf the uniform pressure in the surrounding fracture. 
The total matrix-fracture exchange flow rate can then be calculated using Darcy law:

(2.44)

or

. (2.45)

q is negative if the fluid is flowing from the matrix into the fracture. 

Assuming isotropic permeability, :

. (2.46)
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The volume of the matrix block is

, (2.47)

therefore, compared with the shape factor is: 

(2.48)

2.1.5.5 Additional Remarks

The shape factor as expected semantically, has to be a factor representing the effects of the shape 
of the system in the matrix-fracture transfer function and as long as the shape of the system 
(matrix shape, orientation etc.) has not changed, the shape factor should remain constant. The 
expression ‘time-dependent shape factor’ proposed and used by some authors is 
self-contradictory. 

Furthermore, it must be recognized that the shape of the matrix block has an influence on the 
driving forces. Two blocks of different shape can have the same shape factor; but block shape, 
especially the aspect ratio, can be different. The aspect ratio influences the gravitational and 
viscous forces and thus has a dominant impact on reservoir performance. These effects must be 
considered separately from the shape factor. It is also not true that the shape factor looses its 
validity for anisotropic matrices. The expression, given in Equation 2.38 considers properly the 
anisotropy.

2.2. Boundary Conditions (BC)

Boundaries can be divided into inner- or outer-boundaries. Outer boundaries are the top and 
bottom of the domain as outer delimitation lines (surfaces). Examples of inner boundaries are 
discontinuity lines (surfaces) such as faults. 

Generally, two types of boundary conditions (BCs) can be defined:

I. DIRICHLET type BC.             - The potential is known at the boundary:

,       . (2.49)

II. VON NEUMANN type BC.   - The flow rate across the boundary is known:

,    . (2.50)

If the boundary is sealing (no-flow boundary) then:
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(2.51)

The top and bottom of the domain are sealing (no-flow) boundaries. 

At the outer delimitations of the domain all kind of boundary conditions can be applied:

• In case of a grid aquifer this boundary is sealing. 
• The flow rate as function of time is defined if an analytical aquifer model is used. 
• Constant potential can be set for special cases.

At the well surfaces both BCs can be set. The flow rate or the potential at this boundary must 
be determined by a well model which considers the type of the well operation (constant rate, 
constant bottom-hole or wellhead pressure, etc.) and the pressure-drop within the well-bore. 
Such a well model can be analytical, numerical or semi-analytical. 

An inner boundary separates and/or connects two continua. At any point i of the this boundary 
the flux must be continuous:

, (2.52)

where ir and il denote the right and left sides of the discontinuity surface,  is the potential of 

the phase p and  is the normal vector to the surface. The flow through the inner boundary can 
cause an additional pressure-drop (the choke effect), therefore, the potential is not continuous 
at this boundary: 

, (2.53)

where  is rather a function of the potential difference  than a constant. The filtration 
velocity of phase p can be calculated from both sides of the boundary:

. (2.54)

2.3. Discretized Mathematical Model

2.3.1 Discretized Mole Balance Equations

The discretization of the mole balances for dual continuum models, given by Equation 2.55 
through Equation 2.56, follows the same scheme as for single-porosity ones, leading to the 
following expressions: 
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a) The balance equation for the fracture continuum:

(2.55)

b) The balance equation for the matrix continuum: 

(2.56)

where qcmf is matrix-fracture transfer term.

Equation 2.56 is valid, if the matrix grid system is continuous (i.e. the matrix block has matrix 
neighbors, ). This is the case in a dual-porosity dual-permeability approach, but it is not 
the case for dual-porosity models. In the dual-porosity model, the matrix cell forms a 
noncontinuous medium and act solely as the source or sink term for the fractures (no wells 
perforated in the matrix and ). Thus, for a dual porosity system the matrix mole 
balance equation is reduced to Equation 2.57, or in a discretized form to:

, (2.57)

where the indices m and f are for matrix and fracture respectively. The terms are defined as 
follows:

- number of neighboring blocks 
- interblock transmissibility, [m3]
- mole fraction of component c in phase p, [-]
- mobility of the phase p, [1/cp] 
- specific mole density, [kmol/m3]
- phase potential, [bar]
- source/sink term for phase, [m3/day]
- time step, [day]
- grid block volume, [m3]
- porosity, [-]
- phase saturation, [-]
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- time difference operator,  
n - subscript, denoting the time step, [-]
n+1 - subscript, new time step, [-]

2.3.2 Discretized Transfer Term

The discretized inter-porosity molar flux of component c for one cell is:

, (2.58)

where 

(2.59)

is the matrix-fracture transmissivity and

(2.60)

is the matrix-fracture diffusivity. The expression diffusivity is analogous to the transmissivity, 
but the permeability is replaced by the porosity. Note that V is the volume of the grid cell, means 
the control volume of the discretization and not the volume of the matrix block (see Section 5.2.
for more details). It will be assumed that the grid block is identical for the fracture and matrix 
continua. The potential difference of phase p, between the matrix and the fracture grid block is:

, (2.61)

where z is the depth of grid points. The difference,

., (2.62)

if not otherwise defined, will be zero , as the two grid systems representing matrix 
and fractures are overlapping. Therefore, Equation 2.61 reduces to

. (2.63)

An additional potential difference can be created by the capillary force (see Section 4.1.2 for 
more details), the difference in the fluid density in the matrix blocks and the surrounding 
fractures (see Section 4.1.3 for more details) or by the pressure drop along the fractures caused 
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by the flow and the static matrix (see Section 4.1.4 for more details).

2.3.3 Component Mobility

The component mobility is evaluated from single-point upstream weighting, based on the phase 
potentials, resulting in

. (2.64)

In general, single-point upstream weighting is used to evaluate the phase mobilities. Hence, 
when the flow goes from the matrix into the fracture, the relative permeability of the matrix is 
used for the calculation. When the flow goes from the fracture into the matrix, the flow is 
essentially also governed by the matrix properties. Therefore, options should be provided to 
combine matrix and fracture variables while calculating the phase mobility, even if the fracture 
is upstream. The following solutions could be imagined: 

1. The matrix relative permeability is calculated for the fracture saturation.
2. Both the fracture-to-fracture flow and the fracture-to-matrix flow use the fracture 

relative permeability functions. Typically, they are straight lines with maximum 
values of 1.0, whereas the relative permeabilities in the matrix at the residual 
saturation of the displaced phase are considerably smaller. Therefore, the fracture 
relative permeability should be scaled up to using the maximum function values 
from the matrix. For the water phase the relative permeability is scaled as follows:

, (2.65)

where. 

 is the fracture relative permeability looked up from the laboratory curves’ 
table. 

 are the maximum relative permeability values for matrix and 
fracture respectively.

The relative permeabilities for other phases (gas and oil) will be scaled in the same 
way. For the gas case the relative permeability is scaled to the matrix value at Sg = 
1-Sorg and for the oil to So = 1-max(Sorw,Sorg).

3. Using direction-dependent relative permeability functions. In addition to the relative 
permeability curves for matrix-matrix flow (laboratory curves) and fracture-fracture 
flow (usually straight lines), this option enables the treatment of matrix-fracture and 
fracture-matrix flow (pseudo-curves) and will therefore, always use the saturations 
from the upstream block.
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2.4. The MINC method

Note: since it is not practically used, the following method is just explained here briefly to 
inform the reader about its existence and will not be referred to in any other section of this script.

In 1985 Pruess and Narasimhan[74] proposed the Multiple INteracting Continua (MINC) 
method for numerical simulations of heat and multiphase fluid flow in multidimensional 
fractured media. The MINC method is able to handle the transient flow of heat and fluids 
between matrix and fractures numerically. This is in contrast to the standard dual porosity model 
which uses an analytical expression, under the assumption of pseudo-steady state flow, for 
coupling the flow between matrix and fractures. Thus, the MINC model can be regarded as a 
generalization of the Barrenblatt et al.[8] and the Warren and Root[95] models. For most cases 
the pseudo-steady state flow description is sufficient. Only for some cases, such as a well test 
in a dual porosity system, the transient nature of the matrix-fracture flow is of importance for 
reservoir simulation.

The traditional dual porosity approach assumes that the matrix cell, within the fracture network, 
can be regarded as a single cell. But in the MINC approach it is different since two kinds of grid 
can be found:

1. A primary grid, which is the discretization of the reservoir volume into grid blocks.
2. A secondary grid, which is formed by nested sub-cells representing the matrix.

Such a MINC grid is illustrated in Figure 2.8. Figuratively speaking, each matrix grid cell could 
be regarded as a “Russian Doll” of nested sub-cells.

Even the MINC method, as a generalization of the dual-porosity models, it is based on some 
assumptions, namely:

1. The fractured reservoir is represented by uniform cubes, representing the matrix, 
which are bounded by fracture planes on all faces. A generalization to arbitrary 
fracture geometries is available, using a proximity function.

2. The depletion process is influenced by two aspects: First of all by the global 
movement of fluid and heat through the reservoir mainly taking place in the fracture 
system. Secondly by the fluid and heat flow between the matrix and the fracture. 
Thermodynamic conditions, such as temperatures, pressures, vapor saturations, in 
the matrix depend primarily on the distance from the nearest fracture. This leads to a 
discretization of the matrix into sub-volumes, where the interfaces between the 
matrix volume elements are parallel to the nearest fracture.

3. The equipotential surfaces of pressure, temperature and other thermodynamic state 
variables are assumed to be planes parallel to the nearest fracture. This assumption 
will hardly be the case for real flow problems. Nonetheless, some conditions can be 
imagined where a “distance-only” approximation leads to an accurate prediction of 
interporosity flow: 
3.1 Initial thermodynamic conditions in the matrix depend approximately only on 

the distance from the fracture. This includes the special case of uniform initial 
conditions in the matrix blocks.
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3.2 The boundary conditions for the matrix blocks have to stay approximately 
constant at all times. If the transient conditions taking place in the fractures 
occur in a certain way, this condition will be satisfied.

However, the MINC method can be applied correctly to more than the latter 
conditions. As soon as the pressure, respectively the temperature gradient, 
calculated with the distance-only approximation leads to correct total flow rates 
over an sub-cell interface area, the MINC method can be regarded as accurate. With 
the distance-only approximation of MINC pressure, viscous and capillary force can 
be handled properly, but gravity forces, because of its directional dependency, 
would be problematic.

Figure 2.8:  The MINC discretization

The grid generation for the MINC method can be described in three steps: 
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1. Firstly, the primary mesh has to be defined. This may be done by considering global 
reservoir geometry, global variations of reservoir properties and the desired spatial 
grid resolution. The global mesh will divide the reservoir into N elemental volumes 
Vn, where the subscript n ranges from 1 to N.

2. In the second step, the geometric parameters of the nested volume elements, Vj, 
within the primary volumes, Vn, have to be determined. In order to being able to do 
this, the volume fraction, fj, of each individual sub-cell has to be known up front. 
The variable j is valid from 1 to J, where 1 refers to the fracture and J corresponds to 
the innermost matrix sub-cell. The volume fraction f1 can easily be derived from the 
fracture spacing, L, and the fracture aperture, δ. Thus leading to:

. (2.66)

 The other volume fractions can be chosen arbitrarily, only the constraint of 

 has to be fulfilled. Of special interest is the region closest to the 

fractures. As a consequence, the outer matrix cub-cells having the indices j = 2,3,...
will be more tightly-spaced than the elements far away from the fracture with the 
indices j = J, J-1,.... This can be also seen in Figure 2.9.

Figure 2.9:  Nested matrix sub-cells with different spacing
Based on the fracture spacing, L, and the volume fraction of the jth continuum, fj, the 
sub-cell volume can be calculated by

. (2.67)

Details on how the nodal distances and the interface areas are defined, as well as the 
used discretization scheme, integral finite difference formulation, for the MINC 
method can be found in the publication by Pruess and Narasimhan[74].

3. Usually the fracture spacing, L, is much smaller than the size of the grid cells of the 
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primary grid. Thus, Pruess and Narasimhan[74] formulated scaling laws on how to 
partition the volume elements, Vn, of the primary grid into a sequence of interacting 
continua elements, Vnj, where j is indexing a continuum within Vn.

In a simulation grid cell with nested volume elements as outlined above, only one flow direction 
will be possible. This will be an outward flow from the matrix to the fracture, as production of 
reservoir fluids causing a pressure decline in the fracture system. This imposes a limitation to 
the MINC method. For instance, compositional problems arising in EOR operations require a 
modification of the method, which would allow flow through the matrix.

ECLIPSE[87] offers a method similar to the MINC method. Three different geometry options 
with increasing dimensional complexity are available. A linear (1D), a cylindrical (2D) and a 
spherical (3D) one. The cylindrical and the spherical geometries are respectively approximated 
by square cylinders and cubes
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Chapter 3

Single Phase Flow in Naturally Fractured 
Rocks 

3.1. The Warren-Root Model

The equation of continuity describes the law of mass conservation. For one phase flow in porous 
media the equation of mass conservation is written in the following form:

, (3.1)

where u is the filtration velocity, the porosity and  the fluid density. For a dual continua, 
Barenblatt et al.[8] introduced the term of interflow as a volume source and sink, and so 
Equation 3.1 can be written for matrix (subscript m) and fracture (subscript f) separately as:

. (3.2)

(3.3)

The interflow rate will be expressed as a linear relationship of the fracture-matrix pressure 
difference, assuming a pseudo-steady state flow from the matrix to the fracture:

, (3.4)

where  is called shape factor.  is a characteristic coefficient of the fractured rock, 
proportional to the specific surface of the matrix block (see Section 2.1.5 for more details). Note 
that the interflow rate has a dimension of [m.t-1.L-3], and therefore, the dimension of  is [L-2]. 
The Barenblatt[8]’s assumption was proved by Kazemi et al.[45], concluding that in the 
practically interesting range of parameters the pseudo-steady state is reached quickly and, 

therefore, this assumption is reasonable. Note also that for the sake of convenience  is the 
fluid density at the reference pressure and therefore is constant.
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Then the total compressibility for the matrix is:

, (3.5)

where c is the fluid compressibility and  the pore compressibility. Assuming low and constant 
compressibility for liquid and pores then the following approximation hold:

, (3.6)

where the superscript, o, is for the reference state, preferably equal to the initial reservoir 
pressure pi. Similarly for the fracture continuum:

(3.7)

and 

. (3.8)

The filtration velocity will be calculated using Darcy’s law:

. (3.9)

Inserting Equation 3.9 and Equation 3.4 into Equation 3.2 results: 

, (3.10)

where the term  was already neglected. Warren and Root[95] assumed no flow between 
the matrix blocks, therefore  and the Equation 3.2 is reduced to the following: 

. (3.11)

Considering one dimensional radial symmetrical flow and using the relation given by Equation 
3.11, Equation 3.10 becomes the following form:

. (3.12)

Note that here the special form of Laplace operator for radial symmetrical case as in Equation 
3.13 is used. 
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         (3.13)

3.1.1 Pressure Draw-Down in the Infinite Acting Case 

Consider the following conditions:

Initially the pressure is uniform:

(3.14)

The outer boundary is in infinitum, therefore:

(3.15)

The well with radius rw produces with constant rate:

(3.16)

Warren and Root[95] applied the following dimensionless variables and parameters:

Dimensionless radius:

(3.17)

Dimensionless time:

(3.18)

Dimensionless pressure:

, (3.19)

The dimensionless matrix-fracture transfer capacity  is proportional to the ratio of the fracture 
and the matrix permeabilities:

. (3.20)
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The dimensionless parameter

(3.21)

is called storativity ratio and expresses the ratio between the storage capacity of the fracture 
network and the total storage capacity.

Using the dimensionless variables of Equation 3.17 through Equation 3.21, in Equation 3.11 and 
Equation 3.12, with the conditions Equation 3.14 through Equation 3.16, gives: 

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

The solution of the boundary condition problem Equation 3.22 through Equation 3.26, similar 
to the solutions of the Hurst-van Everdingen problems, can be obtained by a Laplace 
transformation. For rD =1, i.e. for the well bottom pressure:

, (3.27)

where 

(3.28)

The inversion L-1 leads to an expression with infinite series containing K0 and K1, the second 
kind modified Bessel’s functions of order zero and one. However, an asymptotic solution can 
be obtained if

 if    or (3.29)

   if . (3.30)

These useful assumptions lead to the following approximation:
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(3.31)

or 

     (3.32)

where  is the difference between Equation 3.31 and the single-porosity infinite acting solution 
(given also by Equation 3.37):

. (3.33)

Equation 3.31 is plotted on Figure 3.1 while Equation 3.33 on Figure 3.2. 

Figure 3.1:  PDfw(tD) for pressure draw-down, infinite case, according Equation 3.31 
(after Warren and Root[95]).
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Figure 3.2:  Difference curves PDfw(tD)-1/2(0.80907+lntD) for pressure drowdawn, 
infinite case according Equation 3.33 (after Warren and Root[95]).

Both plots show three periods: 

• The first period corresponds to the early stage of the production during which the 
liquid is produced mainly from the fracture system. For that first period, 
corresponding to a small argument of the Ei function, the logarithmic approximation:

 (3.34)

can be used (  is the Euler’s number), leading to:

. (3.35)

• The second period is the transition between the first and third period and represents 
the interaction between . Characteristic for this period is that the fracture 
pressure remains approximately constant. This corresponds to the concept that the 
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large matrix pore volume has still the initial pressure and feeds the fracture system by 
quasi constant rate. Because  the argument of the first Ei expression is of a 
magnitude greater than that of the second, therefore Equation 3.33:

(3.36)

• The third period is for a large tD, when the two Ei expressions in Equation 3.31 
become the same and . Equation 3.31 becomes identical to that of the single 
porosity case:

(3.37)

In this period the matrix-fracture system communicates under pseudo-steady state 
conditions and the whole system produces as an equivalent homogeneous one. Since 
no flow exists between the matrix blocks the pressure drop of the equivalent 
homogenous reservoirs equals the permeability of the fractures.

The system parameters  can be easily determined from Equation 3.31 and Figure 3.2. 
At small tD the difference , which is the difference between the first and third period are 
straight lines in Figure 3.1, and therefore the index 13 is used:

. (3.38)

If tD is small, which is the case for the transition (second) period, the logaritmical approximation 
(see Equation 3.31) can be applied to Equation 3.36:

(3.39)

Note that the transition section of the difference curves has an average slope of -1.15/cycle, so 
a tangent drown through the inflection point which intersects the coordinate line at tD = 1 at:

(3.40)

gives the basis to calculate the parameter .

3.1.2 Pressure Draw-Down in a Finite Reservoir

The domain is closed at the outer radius rDe. The equations and conditions are the same as for 
the infinite case, given by Equation 3.22 through Equation 3.26, except for the boundary 
condition of Equation 3.25, which must be modified to:
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. (3.41)

The asymptotic solution valid at the conditions given by Equation 3.29 or Equation 3.30 is:

, (3.42)

where the dimensionless skin factor is already added. Remember that the solution for the single 
porosity case is:

. (3.43)

3.1.3 Pressure Build-Up, Infinite Case

The well’s shut-in pressure, may be directly obtained by superposition:

(3.44)

 By inserting the function according of Equation 3.31:

, (3.45)

For a large production time the Ei terms containing tD will converge rapidly to zero and thus, 
the asymptotic solution of Equation 3.45 is reduced to:

. (3.46)

The limitation given by Equation 3.29 and Equation 3.30 are still valid.

Figure 3.4 shows some theoretical pressure build-up curves for constant  and different . 
Note that the difference function to the single porosity case is the same as for pressure 
draw-down, given by Equation 3.33 and Figure 3.2. The same three periods as with pressure 
draw-down may be observed, and the parameters  and  can be determined in a similar way 
as by pressure draw-down, using the Equation 3.38 and Equation 3.40.
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Figure 3.3:  Theoretical pressure build-up curves (after Warren and Root[95])

Figure 3.4 shows the pressure build-up data for a naturally fractured reservoir. If both semilog 
straight lines develop, analysis of the total permeability-thickness product is estimated from the 
slope m of either straight line, for SI units: 

 or in field units (3.47)

Bourdet and Gringarten[11] showed that by drawing a horizontal line through the middle of the 
transition line (which is theoretically the inflexion point) to intersect with both semilog straight 
lines, as shown in Figure 3.5, the interporosity flow coefficient  can be determined by reading 
the corresponding time at the intersection of either of the two straight lines, e.g. t1 or t2 and 
applying one of the following relationships:
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a) For pressure draw-down:

(3.48)

Figure 3.4:  Typical dual porosity pressure buildup curve (after Warren and Root[95]) 

Figure 3.5:     Horner plot of the buildup test data (after Sabet[82])

λ ω
1 ω–
-------------

φhct( )mμrw
2

1.781kft1
----------------------------- 1

1 ω–
-------------

φhct( )mμrw
2

1.781kft2
-----------------------------==

5700

5800

5900

6000

6100

6200

6300

6400

6500

105 104 103 102 10
(t + t)/p Δ Δt

S
hu

t-i
n

pr
es

su
re

,p
,P

SI
G

w
s

Slope = -m = -213 PSIG/Cycle
δp = 200 PSIG

Δp

Extrapolate to p*

Extrapolate to p  hr1

6750

6725

6700

6675

6650

6625

6600
105104103102

(t+ t)/Δ Δt

p
ps

i
f, 

w
s

106 107

(1)(2)

m
= 32 psi/cycle

m
= 32 psi/cycle

Δp = 25 psi



61

b) For pressure build-up:

, (3.49)

where tp is the production time before shut-in. Equation 3.48 and Equation 3.49 are given in 
field units.

3.1.4 Remarks to Well Testing

Typical values of  are

                            and     . 

The determination of the parameters  and  from well test is delicate and gives manifold 
possibilities for misinterpretation. Some of them should be mentioned here:

1. The initial pressure (or p*) will be determined by extrapolation to Horner time = 1. 
If only the early portion of the pressure build-up curve were recorded, the value 
would be erroneously high by the quantity  and the value of skin would be 
higher by [1].

2. Dual-porosity fractured reservoirs exhibit double-slope type pressure draw-down 
and build-up performances. Unfortunately, this is characteristic of stratified 
reservoirs as well, so the evaluation of such data may be uncertain. If no other 
evidence for a fractured system exists, then it can be postulated only that the 
existence of pressure lag indicates the presence of macroscopic heterogeneity.

3. In cases of smaller values of  (~ 10-8-10-9) the build-up gives results that suggest 
the existence of a closed boundary. 

4. Often significant parts of the pressure build-up curve is masked by the wellbore 
storage effect.

The two straight lines may or may not be present on the semilog plot, depending on the 
condition of the well and the duration of the test. Gringarten[35] concluded that the semilog plot 
is not an efficient or sufficient tool for identifying dual-porosity behavior. Log-log analysis 
represents a significant improvement over the conventional semilog analysis. In the log-log plot 
as shown in Figure 3.6, the dual-porosity behavior yields an S-shaped curve. The initial portion 
of the curve represents the homogeneous behavior resulting from depletion in the most 
permeable medium, i.e. fractures. A transition period follows and corresponds to the 
interporosity flow. Finally, the last portion represents the homogeneous behavior of both media 
when recharge from the least permeable medium (i.e.: matrix) is fully established and the 
pressures are equalized.
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However, the S-shape behavior is difficult to see in highly-damaged wells and similar S-shape 
behavior may be found in irregularly-bounded well drainage systems.

Perhaps the most efficient means for identifying dual-porosity systems is to use pressure 
derivative plots. In Figure 3.6 the derivative shows a minimum between two pseudo-horizontal 
lines. The first represents the radial flow controlled by the fracture system and the second 
describes the stabilized behavior of the entire pore system. At an early time the typical wellbore 
storage effect can be seen also with the usual 45° straight line.

Figure 3.6:  Dual-porosity behavior shows as two parallel semilog straight lines on a 
semilog plot, as a minimum on the derivative plot (from Ahmed and McKinney[1]).
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3.2. Type Curve Matching

Based on the Warren and Root[95] theory, Bourdet and Gringarten[11] extended the method of 
type curve matching to dual porosity reservoirs, controlled by the variables of pD, tD/CD and the 

parameters of . They developed two sets of pressure derivative type 
curves. The first set, given in Figure 3.7 is based on the assumption, that the interporosity flow 
is a pseudo-steady state one. The second set in Figure 3.8 is for transient flow conditions. The 
type curves are available in various books, company charts and special well test software. 
Detailed explanations and examples are given, among others, by Ahmed and McKinnley[1].

Figure 3.7:  Type curves for dual porosity reservoirs, 1st set. (Bourdet at al.[11])

Figure 3.8:  Type curves for dual porosity reservoirs, 2nd set. (Bourdet at al.[11])
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3.3. Well Test Examples

The evaluation of well testing results is not really the topic of this section. The Warren-Root[95]

model was presented because it provides the basis for the simulation models and it is suitable to 
introduce the dual continuum concept, explaining basic behaviors of dual porosity systems. The 
application to transient well tests should give the first link between the single phase and multi 
phase, multi component model descriptions. Practical examples are given, among others, by 
Ahmed and McKinnley[1].

3.3.1 Pressure build-up test

In the following the evaluation of a pressure build-up test is presented. The example shows the 
workflow of evaluating dual porosity reservoirs with a semi-log plot. The example is based on 
the example presented by Ahmed and McKinnely[1].

The task is to calculate estimates for the storativity ratio , the matrix-fracture transfer capacity 
 and the shape factor  based on the evaluation of a semi-log plot using pressure build-up data 

given in Table 3.1 and the general reservoir data given in Table 3.2.

Table 3.1: Pressure build-up data

ω
λ σ

Δt pws pws (tp+Δt)/Δt
[s] [bar] [Pa] [ - ]

10.8 456.2 4.562E+07 2870334.3
61.2 457.3 4.573E+07 506530.4

118.8 458.1 4.581E+07 260940.4
241.2 458.5 4.585E+07 128523.4
478.8 458.8 4.588E+07 64745.4
961.2 459.3 4.593E+07 32251.9

1918.8 459.6 4.596E+07 16156.7
3841.2 459.8 4.598E+07 8071.3
7678.8 460.4 4.604E+07 4038.0

15361.2 460.9 4.609E+07 2019.0
30718.8 461.7 4.617E+07 1010.1
61441.2 462.2 4.622E+07 505.5

122878.8 462.8 4.628E+07 253.3



65

Table 3.2: Reservoir and fluid data

1. At first the Horner time, , has to be calculated based on the time tp, the 

time of production before shut in and Δt, the time intervals after shut-in, where the 
well shut-in pressures, pws, where recorded. The calculated Horner times can be 

found in Table 3.1. Then a semi-log plot of pws versus  can be drawn. This 

plot is displaced in Figure 3.9.

Figure 3.9:  Semilog plot of pressure build-up test in NFR (from Ahmed and 
McKinney[1])
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2. On the plot two parallel semi-log straight lines (1) and (2), with a slope of m = 
2.2E+05 Pa/cycle can be identified. Applying Equation 3.47 the 
permeability-thickness product can be calculated:

 or 

3. From the plot in Figure 3.9 the vertical distance, Δp, between the two parallel lines 

can be read to be . Based on this value and the slope, m, of the 
parallel lines the storativity ratio, ω, can be calculated.

4. To determine the Horner time , necessary for the calculation of the 

matrix-fracture transfer capacity , a horizontal line has to be drawn through the 
middle of the transition region. The intersection point of this horizontal line with the 
straight line (2) gives the reading of

 .

5. The matrix-fracture transfer capacity  can be calculated now by Equation 3.49, 
where the constant 1.781, valid for field units, has to be replace by 2.059E+03 to 
account for SI units. Thus,

.

6. The last step of this example is to calculate the shape factor σ using a rearranged 
form of Equation 3.20:

.

hkf
162.6qoBoμo

m
-------------------------------- 162.6 4.7 10 3– m3 s⁄[ ] 2.3 rm3 s⁄ m3[ ] 0.001 Pa s⋅[ ]⋅⋅⋅ ⋅

2.2 105 Pa cycle⁄[ ]⋅
-----------------------------------------------------------------------------------------------------------------------------------------= =

hkf 8.966 10 12– m3[ ]⋅=

kf
8.97 10 12– m3[ ]⋅

5.2 m[ ]
----------------------------------------- 1.730 10 12– m2[ ]⋅= =

Δp 1.7 105 Pa[ ]⋅=

ω 10

Δp
m
-------–

10

1.7 105 Pa[ ]⋅

2.2 105 Pa cycle⁄[ ]⋅
--------------------------------------------------–

0.165= = =
tp tΔ+

tΔ
----------------

2

λ

tp tΔ+
tΔ

----------------
2

2 104⋅=

λ

λ 1
1 ω–
-------------

φhct( )mμorw
2

2.059 103kf tp⋅ ⋅
----------------------------------------

tp tΔ+
tΔ

----------------
2

=

λ 1
1 0.165–
---------------------- 0.21 5.2 m[ ] 1.184 1 Pa⁄[ ] 0.001 Pa s⋅[ ] 0.1143 m[ ]( )2⋅⋅ ⋅ ⋅

2.059 103 m[ ] 1.730 10 12– m2[ ] 30999600 s[ ]⋅⋅ ⋅⋅
------------------------------------------------------------------------------------------------------------------------------------------------ 2 104⋅( )=

λ 3.655 10 9–⋅=

σ
λkf

kmrw
2

------------ 3.655 10 9– 1.730 10 12– m2[ ]⋅ ⋅ ⋅

9.87 10 17– m2[ ] 0.1143 m[ ]( )2⋅( )⋅
------------------------------------------------------------------------------------ 4.905 10 3– 1 m2⁄[ ]⋅= = =



67

Chapter 4

Depletion of Matrices in Fractured 
Reservoirs

Initially, it is necessary to clarify some ambiguities in nomenclature and distinguish between 
matrix blocks and simulation cells. Figure 4.1 is the two-dimensional outcrop of a naturally 
fractured formation. In order to model it numerically, the space has to be discretized. The red 
squares in Figure 4.1 (or cubes in 3D) represent the control volumes, in other words, the 
“simulation cells”. The dual continuum approach considers two simulation cells at each location 
(i.e. at the place of each red square), one is the “matrix cell” and the other is the “fracture cell”. 
This will divide the space into two identically-shaped overlapping domains: the “matrix 
domain” and the “fracture domain”. The fracture domain, consisting of fracture cells, usually 
has a much higher permeability and less porosity than the matrix domain. This means that the 
fracture cells, can exchange fluids easily with their neighboring fracture cells (along the black 
arrows in Figure 4.1). Matrix cells, may or may not be able to exchange fluids with their matrix 
neighbors resulting in dual permeability or dual porosity models respectively. The matrix cell 
and the fracture cell coexisting in the same location, are considered as neighbors which 
exchange fluids; this is called the matrix-fracture transfer term (explained in  Section 2.1.5)

Figure 4.1:  Matrix cell vs. matrix block, (by courtesy of Roxar training)[80]
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In conventional models of fractured reservoirs, only one common averaged value is assigned to 
each property (e.g. porosity, pressure, saturation) of the whole simulation cell of the matrix and 
fracture domain respectively. It is equivalent with the assumption that the property is the same 
all over the simulation cell. For instance, in Figure 4.1, if each red square is a simulation cell 
(which makes a total of eight simulation cells: four matrix cells overlapping four fracture cells), 
it is assumed that each of these cells, has one common value for porosity, permeability, shape 
factor etc. which is obviously a wrong estimate: as it is clear from Figure 4.1 each cell consists 
of numerous small “matrix blocks” (e.g. the two marked purple blocks) of different shapes and 
sizes surrounded by fractures. Averaging some properties, such as the shape factor, over the 
entire simulation cell, results in an inherent error that will be cumulated for all the simulation 
cells that ultimately makes the conventional method of simulating fractured reservoirs 
inaccurate and uncertain.

Full field, sector/cross-section and single well model investigations usually are based on the 
dual continuum concept, using two co-located grid models, in which a greater number of matrix 
blocks is represented by a single simulation cell. The communication between the fracture 
system and the matrix is usually described using the Warren and Root[95] concept. Seldom the 
MINC[74] concept, presented in Section 2.4., is applied. The task of both (W&R and MINC) 
concepts is to establish the mass transfer between the two continua, namely the matrix and the 
fracture. None of them is really suitable to investigate the matrix depletion process itself. It can 
be recommended to perform detailed investigations, both laboratory and numerical, in this 
respect. 

4.1. Recovery Processes in Fractured Reservoirs

The same processes that are active in non-fractured, single porosity systems are important in 
fractured reservoirs. These include rock compaction, fluid expansion, viscous drive, gravity 
displacement, capillary imbibition and diffusion. However, the majority of the oil is contained 
in the high porosity but low permeability matrix system while the wells drain the fluids directly 
from the high permeability fractures. Therefore, the degree of importance of the physical 
mechanisms may be quite different in the two systems. 

Production from the matrix blocks can be associated with various physical mechanisms 
including:

• Rock compressibility and compaction,
• Single phase fluid expansion,
• Solution gas drive,
• Gravity drainage,
• Capillary Imbibition,
• Diffusion,
• Viscous displacement.
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4.1.1 Expansion and Solution Gas Drive

As the pressure drops in the fracture system, as a consequence of production, fluid expands and 
flows out from the matrix to equilibrate the matrix pressure with the surrounding fracture 
pressure. Also the compressibility of rock or the secondary compaction can gain importance 
especially in the case of low fluid compressibility or low porosity. The pore compressibility for 
matrix and fracture are in most of the cases quite different. 

Below bubble point pressure the solution gas liberates and expands. The efficiency of the matrix 
recovery under solution gas displacement can be calculated in a standalone way, using the 
well-known Muskat[57] or Pirson[72] methods. According to Pirson, the equations that describe 
the performance of the reservoir in case of solution gas drive can be written in finite difference 
form of the material balance:

. (4.1)

The instantaneous gas-oil ratio is

. (4.2)

The oil saturation is

. (4.3)

Muskat[57] used also a differential form of the material balance equation to evaluate the 
performance of a reservoir with solution gas drive. The change in the oil saturation is:

(4.4)

Where λ(p), ε(p), η(p) and ω(p,So) are special Muskat functions[57]:
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(4.6)

(4.7)

(4.8)

The cumulative amount of produced oil is then:

(4.9)

The method proposed by Muskat[57] is advantageous if a larger number of calculations is 
required. The Muskat functions (Equation 4.5 - Equation 4.8) are readily available in tables and 
in form of curves (see Figure 4.2).

Figure 4.2:  Muskat functions
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matrix-fracture system as well. Note that in the first case the reservoir pressure and the recovery 
factor is valid for the matrix, and not for the entire porosity system including the fractures.

The numerical calculations of expansion mechanism are very accurate on every scale (also in 
full field models), while it is free of time truncation, numerical dispersion and grid orientation 
errors.

Figure 4.3:  Pressure and gas oil ratio histories of solution gas-drive reservoirs producing 
oil of different viscosities (after Muskat and Taylor[57])
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from the same side where oil is expelled. Depending on the fracture configuration, the 
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Now let’s consider a core sealed on all sides except the bottom surface, as shown in Figure 4.4. 
The core is saturated by oil and the initial water saturation is equal with the connate water 
saturation Swm. At the bottom side the core is contacted with the wetting phase. Due to capillary 
forces the wetting phase - in our case the water - tends to intrude at the bottom side and thus 
displaces the nonwetting phase - in our case the oil - in counter flow. 

Figure 4.4:  Countercurrent imbibition 

To calculate the displacement process the following assumptions will be made:

1. The rock is homogenous.
2. The displacement is one dimensional.
3. The two phases are incompressible and immiscible.
4. Multiphase Darcy’s equation is valid.

As consequence of these assumptions the overall fluid velocity must be everywhere zero: 

, (4.10)

where:

(4.11)

and:

(4.12)

The difference of the phase pressures is the capillary pressure: 
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. (4.13)

The continuity equation for the water and oil are:

(4.14)

(4.15)

The saturation constraint is:

. (4.16)

Then Equation 4.11 is divided by krw/μw and Equation 4.12 by kro/μo. Afterwards they are 
subtracted one from another: 

(4.17)

or written it in a more compact form:

, (4.18)

where: 

(4.19)

. (4.20)

Substituting of Equation 4.18 into Equation 4.14 leads to: 

(4.21)
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(4.22)
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The boundary conditions are: 

At the outlet x = L:

(4.23)

At the inlet x = 0, the capillary pressure is zero, thus: 

(4.24)

where Sor is the residual oil saturation and SwM is the maximum possible water saturation. The 
solution of the above boundary value problem (Equation 4.22 – Equation 4.24) is the saturation 
as a function of the location and time:

, (4.25)

which can be found by applying numerical methods only.

Figure 4.5:  Capillary pressure and relative permeability functions used in the calculations (Blair[10])

Blair[10] presented numerical solution for the model defined by Figure 4.4. Figure 4.5 shows the 
capillary pressure and relative permeability curves used in the calculations. The results showed 
similarity to a concurrent linear displacement, which means that a relative narrow transition 
zone, interpreted as water front, was formed between the displacing and displaced phases. 

Figure 4.6 shows the pressure and saturation profile when the water front has reached 
approximately half the length of the sample. The water saturation is high at the open end of the 
core, but decreases then abruptly. The pressure gradient in the water phase is highest near the 
front. The greatest pressure gradient in the oil phase occurs near the open end of the core, 
because of the fact that with the maximum oil flow rate the oil relative permeability is the 
minimum. In case of strongly water wet rock the process of spontaneous imbibition lasts 
theoretically until the oil saturation in the matrix reaches its residual value. The results of the 
calculations showed that the rate of imbibition depends strongly on rock and fluid properties. 
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Figure 4.6:  Distribution of pressure and saturation after 6.6 hours. (by Blair[10]) 

The numerical results from Blair[10] were verified by experiments of Graham and 
Richardson[34]. They measured the oil production as function of the time. One result is shown 
in Figure 4.7 where all parameters, except the core lengths, were constant. The results give a 
feeling to the time dependence of the imbibition process.

The results presented above are strictly valid for one dimensional displacement of two 
incompressible fluids. The matrix recovery processes under real conditions are more 
complicated, and therefore the applicability of the Blair[10] model is limited. General 
mathematical models, as used in reservoir simulation practise, make it possible to investigate 
the mechanisms in fully complexity. Such an approach will be presented in Section 5.3.

Figure 4.7:  Recovery in case of linear counterflowing imbibition and the experimental 
determination of the influence of a certain in core-length. (by Graham and Richardson[34]) 
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Mattax and Kyte[55] demonstrated that the recovery behavior of a large reservoir matrix block 
can be predicted from an imbibition test on a small core sample. The oil recovery can be scaled 
for a given rock type and oil-to-water ratio by a dimensionless rate parameter:

(4.26)

where t is the imbibition time, k is the permeability, φ is the porosity, σow is the interfacial 
tension, μw is the water viscosity and L is a characteristic length for a matrix block. From 
Equation 4.26 can be concluded that in an imbibition displacement the time of recovery is 
proportional to the square of the block height, L. Mattax and Kyte[55] showed that if the 
imbibition oil recovery is plotted against the dimensionless scaling parameter the same recovery 
curve will be obtained for the model and all reservoir matrix blocks of the same rock type and 
geometry:

(4.27)

Figure 4.8 shows the results of the verification of the scaling parameter. 

Figure 4.8:  Verification of imbibition scaling[55]
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4.1.3 Gravity Drainage

When the fluid contents of the matrix and fracture are not the same (e.g. fracture is filled with 
gas or water), a difference in the hydrostatic head due to gravitational force exists between the 
matrix and the fracture. This additional potential difference, may force water or gas from the 
fracture into the matrix and expel the oil out of the matrix; this process is called gravity 
drainage. 

4.1.3.1 Gravity drainage assuming homogenous vertical 
saturation 

Regard a matrix block surrounded by vertical fractures. The matrix is saturated by oil and the 
fracture is filled by (a) water or (b) by gas. In absence of capillary forces there would be no 
difference between the phase pressures: p = po = pg = pw. The pressures at the middle depth of 
the matrix block and in the fracture are in a pseudo-steady state situation equal. During a 
transient process such as well testing, the pressures could be different at this point but then they 
will be equalized within a short time. The different hydrostatical gradients create a pressure 
difference above and bellow the midpoint as it is shown in Figure 4.9. 

Figure 4.9:  Vertical pressure distributions in matrix and in fracture (a) filled with water, 
(b) filled with gas

In the case that the fracture is filled by water the water will enter in the matrix at the lower half 
and the oil will be expelled at the upper one. The average hydrostatic pressure difference 
between the matrix and the fracture are the same for both phases: 

(4.28)

where hm is the vertical extension of the matrix block. This pressure difference acts on the half 
length of the matrix block which has to be considered while calculating the effective potential 
differences for the water and for the oil phases:

Phwof
1
2
---hm ρw ρo–( )g=
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(4.29)

(4.30)

Similar for the gas filled fracture case:

(4.31)

and the potential differences for the gas and for the oil phases:

(4.32)

(4.33)

The gas enter at the upper half of the matrix and the oil expels at the lower one. 

Above it was assumed that the fracture is entirely filled by water or gas. In this case the fracture 
capillary pressures are zero per definition:

(4.34)

This remains valid also if not 100% water or gas but a homogeneous vertical fluid saturation in 
the fracture is assumed. As it was shown in  Section 1.3.2 Equation 4.34 remains valid in this 
case too.

4.1.3.2 Gravity drainage assuming phase segregation

4.1.3.2.1 Two phase water-oil case

Figure 4.10:  Matrix block partially merged in water
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Figure 4.10 illustrates an idealized matrix block surrounded by fractures. Both the matrix and 
corresponding fractures contain oil and water. Assuming perfect phase separation both in the 
fracture and in the matrix, the hydrostatic pressure difference can be calculated for the matrix 
and for the fracture: 

, (4.35)

. (4.36)

The difference in the hydrostatic head is a supplementary driving force for the interporosity 
flow and must be incorporated in Equation 4.35.

(4.37)

(4.38)

The hydrostatic heads hf and hm can be expressed using the saturations. For the fracture:

, (4.39)

and for the matrix:

(4.40)

Inserting Equation 4.39 and Equation 4.40 into Equation 4.36 and Equation 4.35 the 
hydrostatical pressure differences become functions of the saturation too, and so they are 
formally similar to the well-understood capillary pressure: 

(4.41)

(4.42)

For this reason, the hydrostatic pressure difference usually is referred to as pseudo-capillary 
pressure and the fluid exchange induced by the gravitation as gravity imbibition and drainage.

4.1.3.2.2 Two phase gas-oil case 

Figure 4.11 illustrates an idealized matrix block surrounded by fractures. Both the matrix and 
corresponding fractures contain oil and gas.
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Figure 4.11:  Matrix block partially invaded by gas

Similarly to the water/oil case, the following is valid for oil and gas:

(4.43)

(4.44)

and

(4.45)

(4.46)

4.1.3.2.3 Three phase case 

The three phase case with segregated fluid saturation model can be handled as a combination of 
the two-phase cases described in the previous two sections. Note that the gravity term 
(pseudo-capillary pressure) depends on the calculated free fluid level and thus on the saturation 
distribution model. Figure 4.12 shows one example for a three phase case.

The segregated flow assumption is also commonly applied to single porosity models. The 
methods to determine the relative permeabilities used there are applicable for dual porosity 
systems without any modifications.

The saturation distribution in the matrix can be naturally more complicated, especially if 
different displacement mechanisms act one after the other. For instance, a solution gas drive 
followed by water displacement and then gas displacement.
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Figure 4.12:  A possible three phase saturation distribution in the matrix, assuming 
segregated flow (SF) 

4.1.3.3 Quandalle and Sabathier Gravity Drainage Model

An alternative gravity drainage model was suggested by Quandalle and Sabathier[66]. The 
matrix-fracture flow is taken to be the sum of three flows from the center of the matrix to the 
fractures: one horizontal one vertical upwards and one vertically downwards[87] as shown in 
Figure 4.13. Theoretically this model has the following advantages:

• The shape factor can be different in vertical and horizontal directions,
• The vertical anisotropy can be considered,
• The gravity force (in vertical direction) can be considered,
• The relative permeability depends on the direction. 

Figure 4.13:  Modified gravity drainage model (after Quandalle and Sabatier[66])

Nevertheless the practical advantage of this method is questionable. There is no way to 
determine the necessary parameters for the Quandalle and Sabatier[66] approach in a reliable 
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arrows in Figure 4.13) requires an estimate for the apparent fluid density in the fracture. While 
this can be done explicitly[66], the numerical stability of method is reduced and therefore the 
applicable time step length is limited. 

4.1.3.4 The Matrix Column

Fractures open to fluid flow are mostly vertical. The matrix blocks, also if horizontal fractures 
exist, are pressed to each other by the overburden pressure and if no tight (styololites) intervals 
exists then they are in capillary contact. This means that the vertical extension of the matrix 
blocks can be assumed equal to those of the simulation cell. Therefore, the previous sections 
assumed that the matrix column heights are equal to those of the simulation cells (Lz = h). 
However, this is the case if the gridding strictly follows the geological layering and changes in 
rock quality or discontinuities caused by interbeddings or erosion surfaces are represented by 
layers or layer boundaries. Additionally, two situations must be considered:

1. The matrix column (more accurately, the matrix tranche) height is greater than the 
simulation cell thickness. In this case the column is represented by more than one 
simulation cell. The matrix-matrix fluid exchange is then possible which can be 
described by dual-porosity dual-permeability model rather than by the usual 
dual-porosity single-permeability one. Equation 4.35 through Equation 4.46 remain 
valid.

2. The matrix column height is less than the block thickness. This can be caused 
typically by building styololites, hampering the vertical fluid movement. Styololites 
can even reduce the vertical permeability practically to zero. In such a layer splitting 
(Lz < h), the saturation distribution is more or less homogenous within the matrix 
slices and the gravitational drainage cannot act. No gravitational drainage is 
possible if the capillary threshold pressure is greater than then maximum possible 
hydrostatical pressure head:

(4.47)

The gravity drainage process strongly depends on the height of the matrix block but also on the 
density contrast between the phases and the interfacial tension between the wetting and the 
nonwetting phase. Gravity drainage is an important recovery mechanism if the gravitational 
head can overcome the capillary restraining forces of the rock. The ultimate recovery depends 
on the balance between gravity forces and capillary forces. To displace the oil in a gas/oil 
system, the gas pressure must exceed the threshold pressure to enter the matrix. The ratio of 
capillary forces to gravitational forces for a single matrix block can be written[59] as:

(4.48)

In Equation 4.48, σpp’cosθ accounts for the capillary force of the system and the wettability of 
the rock surface, whereas the gravity forces of the denser hydrocarbon across the rock surface 
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is Δρghf. It is obvious that for CGR<1, the gravity drainage process from the matrix block can 
start (i.e. the capillary force effect is less than the gravity drainage effect) as discussed by 
Schechter et al.[85] in more details. 

4.1.3.5 Oil Displacement by Water 

The phase potential difference between matrix and fracture is given by Equation 4.35. Note that 
Equation 4.35 is valid for homogenous saturation distribution only, and does not take any 
gravitational force into account. This is a consequence of the dual continuum concept and the 
discretisation method in use. The fracture grid point is in the same location as the grid point of 
the corresponding matrix cell, therefore the depth difference between the two cells . 
The saturations within the cells are not uniform but they are determined by the gravitational, 
capillary and viscous forces. The distribution in the fracture and matrix columns are 
fundamentally different from the following reasons:

• The vertical extension of the fractures can be considerable. They can also connect 
permeable intervals trough compact and impermeable interbeddings. The fracture 
permeability is high, the capillary pressure is there zero and the residual saturations 
are also near to zero. A complete phase segregation in the fracture system is a 
reasonable assumption.

• The permeable parts of matrix can be separated by interbeddings or styololites. The 
matrix permeability is normally by magnitudes less than the permeability of the 
fractures. The wettability, the capillary pressures and the residual saturations have 
considerable influence on the phase distribution. If the oil viscosity is not unusually 
high (e.g. < 10 cP) and the permeability not extremely low (> 0.1 md), then the 
saturation distribution will be near to the one corresponding to the 
capillary-gravitational equilibrium. Figure 4.14 show some possible cases with and 
without vertical capillary continuity. 

Figure 4.14:  Vertical saturation distribution within the matrix column: a) complete 
vertical communication, b) the vertical communication is hampered by interbeddings, 

c) the vertical permeability is zero. 
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Under certain conditions and by excluding case c) in Figure 4.14 phase segregation can also be 
assumed within the matrix cells. Figure 4.10 illustrates such an idealized situation. Note that the 
catch shows a possible simulation cell and not a matrix block. The later ones are smaller than 
the simulation cell, but it is assumed that they are vertically in capillary contact to each other. 
In the first approach the matrix column should have the same height (Lz) as the simulation block 
(h) and it is surrounded by vertical fractures. Both the matrix and corresponding fractures 
contain oil and water. 

4.1.3.6 Pseudocapillary Pressure Model

When using the pseudo-functions the standard transfer Equation 4.37 can be used, where the 
phase potential differences are entered as

(4.49)

(4.50)

(4.51)

where  and  are the gas-oil and oil-water pseudocapillary pressures, respectively.

Assuming instantaneous vertical gravity-capillary equilibrium, the pseudocapillary pressure 
can be derived as proposed by Coats[20] with:

(4.52)

and

(4.53)

4.1.3.7 Modified Pseudocapillary Pressure Model

Assuming that the matrix-fracture transfer term can be split into (1) a convective term, and (2) 
a separate contribution accounting for the drainage, then:

(4.54)
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The drainage term can be derived under the assumption that capillary-gravity equilibrium is 
instantaneously reached within the matrix block and the gas drains into the matrix block from 
the top and from the part of the four sides of the ideal matrix block filled with gas Figure 4.15.

Figure 4.15:  Single Matrix Block

In this case the matrix-fracture transmissibility, calculated in Equation 4.53 can be modified to:

(4.55)

where Sg is the matrix block gas saturation and the equation refers to a phase-segregated block 
model description. Following Equation 4.52, the matrix-fracture transfer term is given by:

(4.56)

where for the gas potential difference:

(4.57)

and: 

(4.58)

,  are the gas-oil pseudocapillary pressures in the matrix and the fracture 
respectively.

Using a similar analysis, the matrix transfer function for the water, draining from the bottom of 
the matrix block can be derived. In this case the water potential difference should be:
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(4.59)

4.1.4 Viscous Displacement

4.1.4.1 Unstructured Grid

Consider a representative matrix block as shown in Figure 4.16. The average pressure in the 
matrix cell and in the fracture will equalize due to the capillary and gravitational forces. In the 
isolated matrix cell the fluid does not move therefore, the pressure is uniform. Contrary, there 
is a pressure gradient in the fracture system while the fluid is moving towards the production 
wells (and away from the injection wells). Therefore, there is a pressure difference  between 
the two edges of the block.

Figure 4.16:  Schematic of the viscous effect in fluid exchange between the matrix 
block (in the center) and the surrounding fracture
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downstream half of the matrix block. Consequently, fluid enters from the fracture into the 
matrix at the upstream half and flows out from the matrix to the fracture at the downstream half. 
This additional driving force can contribute to the matrix recovery process. 

The pressure gradient for the phase p at the grid point i is

, (4.60)

where are the partial derivatives. The potential difference between the grid point i and the 
neighbor j is given by the scalar product of the neighbor’s position vector

  (4.61)

and the potential gradient. In the case of N neighboring grid points a linear equation system of 
N equations with 3 unknowns can be created: 

, (4.62)

To achieve the three components of the potential gradient  the Gauss normal 
equations have to be created and solved:

(4.63)

The summation is over the neighbors j=1,...,N. Assuming that the matrix block has the size of 
Lx,Ly,Lz, the potential difference between matrix and fracture at the two sides of the matrix block 
is:

(4.64)

The potential difference at the grid point is

. (4.65)

If 

(4.66)

have the same sign then at both halves of the matrix block either the matrix or the fracture is the 
upstream side and the term will be cancelled out in the flow equation, consequently the 

viscous force has no effect. If both  and  then the phase 
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p enters the matrix block at the upstream side (if ) and expels at the downstream one. 
Finally, the matrix fracture fluid exchange rate for the phase p with considering of the viscous 
force is:

. (4.67)

Note that the Equation 4.67 is applicable only if the mentioned inequalities are valid.

In the derivation above, no restriction regarding the positions of the neighboring grid point were 
made, so the approach can be applied on unstructured grid too. The disadvantage is that the 
calculation time is very high. A simpler approach can be applied only on a structured grid as it 
is used by ECLIPSE[87] using a viscous displacement model, based on a technique described by 
Gilman and Kazemi[31] is described in the following section.

4.1.4.2 Structured Grid

A viscous displacement of fluid takes place when the fluid movement is caused by a pressure 
differential. In a dual porosity system the moving of the fluids towards the production wells will 
cause a pressure gradient within the fractures. Usually the fracture has a very high effective 
permeability and thus the pressure gradient inside the fractures will be small. As a consequence 
the viscous forces acting between the fracture and the matrix can be neglected. If the fracture 
system has a permeability of moderate magnitude, then fluid flow between matrix and fractures 
will be affected significantly by viscous forces. The following paragraphs describe the 
ECLIPSE[87] viscous displacement model.

Consider a representative matrix block, with known dimensions, that is surrounded by fractures, 
such as the block illustrated in Figure 4.17, where fluid movement takes place from the left to 
the right side. Then the fracture pressure will be higher at the inlet (p1) and lower at the outlet 
(p2) than the average fracture pressure (pf), therefore fluid enters from the fracture into the 
matrix at the inlet and fluid enters from the matrix into the fracture at the outlet. If water is 
flowing in the fracture then a greater pressure gradient can help to recover oil from the matrix.

Figure 4.17:  Explanation of the effect of viscous force

λpf 0>

qmfp
τmf
2

--------λpf Φpmf ΦpvΔ+Δ( )
τmf
2

--------λpm Φpmf ΦpvΔ–Δ( )–=

pf
p1

p2

pm ,1

pm ,2

pm ,3



89

Three distinct cases of pressure inside the matrix can be considered:

1. The pressure in the matrix, pm1, is greater than the pressures in the fracture p1 and 
p2. As a consequence flow will take place from the matrix to the fracture at the inlet 
and at the outlet if we consider the 1D case of Figure 4.17. Then the matrix-fracture 
flow, qmf, can be expressed by:

, (4.68)

where λm is the matrix mobility.
Usually the pressures, p1 and p2, at the inlet and at the outlet of a matrix block are 
not known, but the average fracture pressure which is:

. (4.69)

Using Equation 4.69 Equation 4.68 can be simplified to:

. (4.70)

2. The pressure in the matrix, pm2, is smaller than the fracture pressure at the inlet p1
and larger than the fracture pressure at the outlet p2. Expressed in mathematical 
terms this means . As a consequence fluid flows from the fracture to 
the matrix at the inlet and from the matrix to the fracture at the outlet. The overall 
matrix-fracture flow, qmf, will be then:

, (4.71)

where λf is the fracture mobility.
Inserting the average fracture pressure, pf, defined in Equation 4.69, Equation 4.71 
can be modified to:

. (4.72)

The unknown pressure difference between the inlet and the outlet of the matrix 
block can be expressed by a pressure gradient G along the fracture spacing L,

(4.73)

For our simple example presented in Figure 4.17 two neighboring blocks one on the 
left and the other on the right side will be introduced, as shown in Figure 4.18.

qmf
τmf
2

--------λm pm1 p1–( )
τmf
2

--------λm pm1 p2–( )+=

pf
p1 p2+

2
-----------------=

qmf τmfλm pm1 pf–( )=

p1 pm2 p2> >

qmf
τmf
2

--------λf p1 pm2–( )
τmf
2

--------λm pm2 p2–( )–=

qmf
τmf
2

--------λf pf
p1 p2–

2
----------------- pm2–+

τmf
2

--------λm pm2 pf–
p1 p2–

2
-----------------+–=

p1 p2– G L⋅=



90

Figure 4.18:  Neigboring grid blocks to the representative

Then the fracture pressure gradient can be estimated from the fracture block 
pressure,pl, of the left and the fracture block pressure, pr, of the right neighbor of 
our central block having a fracture block pressure pf. Dl and Dr are the distances 
between the grid points.

(4.74)

Finally the matrix-fracture flow taking into consideration viscous forces can be 
written as:

, (4.75)

for the case that the condition  is fulfilled.
3. Both pressures p1 and p2, valid at the inlet and the outlet of the representative matrix 

block, are higher than the pressure in the matrix, pm3. As a consequence flow will be 
directed from the fracture to the matrix. For such a case the matrix-fracture flow 
term is:

. (4.76)

For a three dimensional case, the matrix-fracture flow terms can be derived in a similar fashion.

4.1.5 Treatment of Molecular Diffusion

In naturally-fractured reservoirs, as opposed to unfractured reservoirs, molecular diffusion may 
be very important, because the dispersive flux through fractures rapidly increases the contact 
area for diffusion. Similarly, Fick’s molecular diffusion potential may even override viscous 
forces when hydrocarbon or inert gases are injected and the fracture spacing is small. 

The following method is used to calculate the diffusion between fracture and matrix blocks. 
However, it is not used for grid blocks within the same grid system. The method can also be 
used to calculate gas-gas and gas-liquid diffusion rates. This approach was described by Da 
Silva and Belery[24].
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When hydrocarbon gas is injected at pressures below the oil bubble point pressure, two-phase 
diffusion can take place. For example, the injected gas dispersed throughout the fractures may 
contact large areas with two-phase saturated matrix blocks. Due to concentration differences, 
the injected gas tends to diffuse through both hydrocarbon phases, which simultaneously cause 
counter flow to the fractures. However, the gas-gas diffusion is approximately ten times faster 
than the gas-liquid diffusion.

The mixing process observed during multicomponent fluid displacements in porous media is 
typically of convection-diffusion type. Convection arises from the heterogeneity of the medium 
inducing local bulk velocity differences, while diffusion refers to the random motion of the 
molecules. The combination of the two types of molecular motion causes dispersion (i.e., a 
mechanism which will tend to abrogate any spatial concentration differences). 

In principle, the dispersive flux of a particular fluid component depends upon the concentration 
gradients of all other components. The use of effective coefficients eliminates all the cross 
terms. The following simulation approach can be proposed based on the work described by 
Coats[20] and Da Silva[24]:

Diffusion is only calculated between matrix and fracture blocks (and not between blocks that 
are lying in the same grid system). Only the gas-gas diffusion or the gas-liquid diffusion is taken 
into consideration (if both are taken into consideration, an equilibrium-state dilemma arises 
which would require all matrix component K-values to be equal). Furthermore, the effective 
diffusion coefficient must be known for each component. The diffusion coefficients are 
calculated from a static variable group as reservoir temperature, component molecular weights 
and critical properties of the components and from dynamic variables as pressure and 
composition. When dealing with black-oil models it is only possible to calculate the liquid-gas 
diffusion rate since the gas phase consists of a single component. In compositional simulation 
more components exist for the gas phase, therefore the gas-gas diffusion rate can also be 
calculated. If, for example, gas with a different composition than the reservoir gas is injected 
into a reservoir the gas-gas diffusion should be taken into account. Figure 4.19 shows a 
schematic of gas-gas and liquid-gas diffusion between a matrix and a fracture grid block.

Figure 4.19:  Schematic of gas-gas and liquid-gas diffusion

The matrix-fracture diffusion transfer is given for gas-gas diffusion as

Matrix
gas + oil

Fracture
gas + oil

qDc,g-g

qDc,l-g
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(4.77)

and for the gas-liquid diffusion as

, (4.78)

with

(4.79)

where

- gas-gas diffusion rate for component c, [mol/d]
 - liquid-gas diffusion rate for component c, [mol/d]

- diffusion’transmissibility’, [m]
- effective gas diffusion coefficient for component c, [m2/d]
- effective liquid diffusion coefficient for component c, [m2/d]

 - tortuosity (porous medium correction factor), [-]

The multiplication by (1-Swf) (Equation 4.77 and Equation 4.78) is performed to prevent the 
requirement for a diffusion calculation for immersed matrix blocks by water. The contribution 
of the diffusion will be added to the matrix-fracture transfer term. 

4.2. Transfer Functions

The transfer function and the so-called dual continuum concept were formulated initially by 
Barenblatt et al (1960) assuming single phase flow under pseudo steady state conditions. 
Kazemi et al. (1976) extended it to multiphase flow. Gilman and Kazemi (1883), Gilman (1986) 
and Sonier et al. (1988) continued improving this model by adding a gravity term and making 
it saturation depended. However, all the six matrix faces of the Warren and Root sugar cubes 
were considered, which overestimate the speed of recovery, when gravity is the dominant 
mechanism. Quandalle and Sabathier (1989) corrected it by separating the horizontal and 
vertical flows. They also added a viscous recovery term. 

,  (4.80)

where p stands for oil, water and free gas. ka is the apparent matrix permeability, μ the viscosity,                 
B the formation volume factor, kr the relative permeability and Φ the phase potential in the 
fracture (f) and in the matrix (m). The shape factor, Σ, is a characteristic value of the matrix 
block. It will be calculated based on the size and form of the individual matrix blocks. The most 
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complete version is the generalized Kazemi-Gilman-ElSharkawy (1992) shape factor as derived 
by Heinemann and Mittermeir (2012).

4.3. Numerical Investigation of Matrix Depletion 
Processes

4.3.1 Objectives

The approaches and investigations regarding fracture-matrix fluid transfer presented in the 
previous Section have the weakness that, among other issues, they do not account for an 
inhomogeneous fluid distribution within the matrix. Calculating numerically the same 
processes on fine gridded single porosity models promise more appropriate solutions. Such a 
calculation can be done for small scale laboratory measurement on cores, but also for imaginary 
matrix blocks situated in the reservoir. The comparison with laboratory data is necessary to 
increase for the conclusions the level of confidence.

Different applications of matrix block models can be found in the literature 
e.g[19],[28],[36],[50],[79]. These publications deal with recovery mechanism in fractured reservoirs, 
primarily with water/oil countercurrent imbibition and gas/oil drainage, and the matrix-fracture 
transfer. In all cases the internal grid cells build the matrix, surrounded by the high permeable 
fracture cells or connected to a boundary. The first solution is the only posibility while using 
commercial simulators, placing production and injection wells in fracture cells. Such a 
workaround is impractical, CPU intensive and often numerically instable. In the second case 
constant pressure or constant flux is set at the outer boundary (Mora and Wattenbarger (2009a). 

In Pirker[71] approach the fracture cells represent the boundary with defined pressure and 
saturations. These cells inject fluids into the matrix and adsorb the fluids expelled from the 
matrix without altering its pressures and its saturation. The fracture cells will be re-initialized 
anyway at the beginning of every time step. Along these boundaries, i.e. in the fracture no fluid 
is flowing, but setting the cell pressures accordingly, a pressure gradient caused by moving fluid 
can be emulated. In our opinion this is the right and practical solution operating a single matrix 
block model. 

Also Abushaikha and Gosselin (2008) used standard (single porosity) commercial flow 
simulators (Eclipse and Athos) in which the matrix block and the surrounded fractures are 
explicitly represented. They set constant fluid saturation and pressure in the large fractures 
surrounding the matrix. Unfortunately they did not explained how the fine gridded model was 
operated.
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4.3.2 Model Building 

4.3.2.1 The SMB Grid

In the first guess, to get reliable results, both the volume and the shape of the of the investigated 
matrix block should be identical with the real one. Heinemann and Mittermeir[43] showed that 
in the case of uniform boundary conditions not the shape itself but the shape factor is decisive. 
Consequently any arbitrarily-shaped matrix block can be mapped to any other shape as long the 
shape factors remain the same. The shape factor depends on the matrix-fracture connection 
surfaces, its distances from the point of gravity, the orientation of principle permeability axes 
(see  Section ) and the surface to volume ratio. For isotropic rock this means that the 
surface-to-volume ratios have to be identical. The boundary conditions are uniform when the 
pressure and the saturations are identical at every open side of the of the matrix block and the 
driving forces are limited to compression and capillary forces. Mora and Wattenbarger (2009a) 
conducted numerical experiences with irregularly shaped single matrix block using fine-grid 
simulation with constant pressure boundary conditions. From these various results they derived 
an expression for the shape factor depending solely on the block’s volume V and the outer 
surface area S. For all the cases analyzed the numerical derived shape factors were within a limit 
of +/-10% difference. They concluded that the general expression for estimating the shape 
factor of irregularly shaped matrix blocks would be formed by the intersection of realistic, 
non-orthogonal fracture networks. The conclusions of Mora and Wattenbarger are neither 
surprising nor new.    

In cases where also gravitational and/or viscose forces are considered the boundary conditions 
cannot be uniform and therefore, the equivalency is given only if the matrix block lengths in 
given directions are also the same. By accounting only for the gravitational force, this direction 
is vertical, and the condition reduces to claiming the same matrix block heights. Regarding the 
viscous force the potential gradient in the flow direction is decisive. These driving forces were 
discussed in  Section 4.1.3 and in  Section 4.1.4 respectively. These classical approaches suggest 
that in case of similarity, investigations can be performed on a simpler geometry, irrespective of 
the matrix block shape. All geometries, shown in Figure 4.20, should show the same 
matrix-fracture fluid transfer behavior. 

Figure 4.20:  Simplifying the irregular matrix block shapes to a vertical cuboid 
with the same transfer behavior (same shape factor and height).

Nevertheless it is impossible to elicit the individual shapes of all native matrix block, therefore 
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the question addressing second order differences has no practical importance. We accept two 
matrix blocks as being similar (in point of view of the fluid transfer) if their shape factor and 
height are identical. 

Note that non of the principal permeability direction are necessarily vertical. It should be seen 
that all parameters in the single matrix examination are highly hypothetical. Nevertheless, in 
order to keep it simple, it is advisable to have the model vertical and assume that the 
permeability coordinate axes are identical with the geometrical ones.

The matrix block model is discretized into grid cells. Fracture planes are added to the sides of 
the matrix block. The simple geometrical shapes of the cubic single matrix block models do not 
require any special gridding technique, therefore simple Cartesian grids are used to discretize 
the matrix block and the surrounding fracture planes.These fracture planes can be set up in 
different combinations. They can surround the entire matrix block or only the (vertical) sides. 
Figure 4.21 shows a quarter of the model for the two patterns of possible fracture constellations. 
Fracture cells are marked in green and matrix cells in red. On the left vertical fractures are set 
along x- and y-planes, on the right also horizontal fractures exist at the top and the bottom 

Figure 4.21:  Single matrix blocks with different fracture constellations.

Due to the symmetry of the block model it is sufficient to calculate only one quarter of the 
model, therefore the side length of the cube is reduced in x- and y-direction to Lx/2 and Ly/2
respectively. The dimension in z-direction remains the same as in the vertical direction the 
gravity is in action making it not feasible to halve the block height. Figure 4.21 shows a single 
matrix block model as used in the further investigations with two- and three-dimensional 
fracture networks (2D or 3D). 

Pirker[71] recommends the 9x9x36 grid cells for the quarter model as generally applicable. 
However her investigations were limited to solution gas and linear water drive without phase 
separation. Gharsalla (2015) performed more extended investigations. The question was not 
only the limit beyond that the grid resolution has no more influence on the results but also which 
is the overall optimum by considering the CPU time too. The investigated x/y/z grids were 
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6x6x11, 7x7x21, 9x9x37 and 12x12x51. The Figure 4.22 compare the recovery curves for water 
drive, the Figure 4.23 for gas drive. The results show that the conclusions of Pirker where right, 
but also a more coarse grid could offer applicable result with considerable CPU time saving. A 
resolution of 7x7x21 is certainly satisfactory for most of the practical cases.

Figure 4.22:  Sensitivity analysis on grid cell number, water drive. 

Figure 4.23:  Sensitivity analysis on grid cell number, gas drive. 
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4.3.2.2 Grid Cell Properties and Parameters

The matrix domain is considered being homogeneous. The usual properties have to be assigned 
to the grid model: porosity, pore compressibility, permeability values in x-, y- and z-direction: 
(kx, ky, kz ). The net-to-gross ratio is considered to be 1.0 for obvious reasons. 

The capillary and relative permeability functions in the matrix domain have to originate from 
the object under investigation. There are no restrictions regarding the PVT data, except that the 
PVT data for both the matrix and the fracture domains have to be the same. In our 
implementation both black-oil as well as compositional fluid models can be used. 

As already mentioned. it is assumed that the permeability coordinate axes are identical with the 
geometrical ones. The permeability is defined by the apparent permeability ka and the 
anisotropy coefficients k’x, k’y, k’z . In isotropic case the values of the last ones are uniformly 

equal to 1.  The equivalent isotropic permeability[59] , would give the actual 

directional matrix permeability values (of kx=ka*k’x, ky=ka*k’y and kz=ka*k’z) in x-, y- and 
z-direction in the principle Cartesian coordinate system. In the case where the vertical 

permeability kz=0, the equivalent isotropic permeability[59] is .

The fracture cells represents a boundary therefore their properties do not effect the matrix 
displacement process. A fracture cell communicates with a single matrix cell but not with the 
neighboring fracture cells. That means that no flow take place within the fracture plans. From 
technical reason parameters are defaulted to the fracture cells: E.g.: extension in direction of the 
matrix neighbor 0.001 m and pore volume 10000- times of a matrix cell. In this case the 
matrix-fracture transmissibility is determined by the matrix side only and fluid expelling from 
the matrix does not change the saturation in the fracture cell. The fracture cells will be 
re-initialized anyway at the beginning every time step. 

4.3.2.3 Shape Factor

Note that the shape factor is not used in the course of calculations in the single matrix block 
model. However, the apparent matrix permeability, ka, and the normalized permeability 
anisotropy tensor are related to each other through the shape factor, as it is evident from 
Equation 4.81 and Equation 4.82.   Here, the shape factor is used to determine the geometry and 
size of the studied matrix block (as described in Section 4.3.2.4) as well as for outputting 
purposes and for further analysis. This means that when creating the model with 2D or 3D
fracture network (i.e. without and with horizontal fracture planes respectively), the matrix block 
size is calculated from the correct simplification of Equation 2.38, as for the 3D case:

ka kxkyk
z

3=

ka kxky=
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 (4.81)

and for the 2D case:

 (4.82)

In this way, the effect of different fracture constellations will be considered in the matrix block 
size. Note that if the shape factor after Kazemi et al.[45] is used instead of Heinemann and 
Mittermeir[43] shape factor, the values of k’x, k’y and k’z are equal to 1 in Equation 4.81 and 
Equation 4.82 as the model is considered to be isotropic.

The vertical cuboid can also be created by specifying the matrix block side lengths, Lx, Ly and 
Lz (note that Lz is here also the effective matrix block height in the direction of the gravitational 
force). The shape factor can be calculated from Equation 4.81. 

4.3.2.4 Model Operation 

The initial saturation in the matrix is homogenous. The master phase can be oil, gas or water. 
The saturations of the other phases are equal to the critical one or are zero. The initial pressure 
is assigned to the middle layer (there the pressure will be the same for both, the matrix and the 
fracture) and vertically corresponds to the particular hydrostatic gradient of the matrix, 
respectively the fracture. In most of the cases the matrix will be fully oil-saturated with connate 
water saturation.

The fracture is filled with a single fluid, water, gas or oil, depending on the investigated 
displacement scenario. 

The fracture inject the displacement fluid into the matrix and adsorbs those fluids expelled from 
the matrix. Due to the huge volumes of the fracture cells neither the pressure nor the saturation 
changes over a time step. The pressure and the saturation (equal to 1.0 for the displacing fluid) 
will be reset. 

In depletion drive the fracture is filled with slightly undersaturated oil and the pressure will be 
lowered according a predefined rate. The expanding oil flows out from the matrix. Bellow the 
bubble point pressure gas will be deliberated and when exceeding the critical gas saturation it 
will also flow out into the fracture. 

In case of water drive the fracture is filled with water, in case of gas drive with gas. Both of them 
can be combined with depletion, this means by gradually decreasing fracture pressure. 
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For investigations of oil re-saturation, the matrix is filled initially by gas and the oil saturation 
within the matrix equals the residual one. Due to the gravitational force the oil of the fracture 
will displace the gas modelling the well known oil re-saturation process.

The different displacement mechanisms can be combined as desired. E.g: Depletion followed 
by water drive and finally by gas drive and oil re-saturation.

4.3.3 Recovery Curve

In two recovery curves calculated with single matrix block models are displayed. The 
underlying single matrix block models are identical (PVT and SCAL data, initial pressure, drive 
mechanism, permeability, porosity and shape factor). The only difference is that for one model 
only vertical fractures are considered and for the second model also horizontal, this top and 
bottom fracture planes are considered. As was shown in Equation 4.81and Equation 4.82 the 
block dimensions will be consequently different.

Figure 4.24:  Recovery curves of a 2D and 3D single matrix block model
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Figure 4.25:  Single matrix block model showing water saturation distribution with 
vertical fractures only

Figure 4.26:  Single matrix block model showing water saturation distribution with 
vertical and horizontal fractures
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4.3.4  Matrix Displacement - Basic Mechanisms

4.3.4.1 Expansion and solution gas drive

Without phase separation
With phase separation

4.3.4.2 Water drive

• Oil wet case
Without phase separation
With phase separation

• Water wet case
Without phase separation
With phase separation

4.3.4.3 Gas drive

Without phase separation
With phase separation

4.3.4.4 Oil re-saturation

4.3.5 Combined driving mechanisms

4.3.5.1 Water drive with depletion

4.3.5.2 Gas drive with depletion

4.3.5.3 Water drive followed by gas drive
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4.3.5.4 Gas drive followed by water drive

4.4. Comparison of the SMB results with the transfer 
functions. 

4.4.1 Calculating the Shape Factor

The shape factor can be calculated at every time step (n) by solving the transfer function for :

. (4.83)

where, 
,

P  is the number of phases,
 mole rate of the component c is the apparent permeability [kmol/s],

 is the apparent permeability [m2],

 is the mass mobility of component c in phase p [(Pa.s)-1],

Dp  is the specific molar density [kmol/m3],
xpc  is the mole fraction of component c in phase p [-],

 is the potential difference of phase p between fracture and matrix [Pa].

Writing for oil phase:

. (4.84)

Replacing,  and expanding the potential difference between 

σ

σ
qcmf

Vcellka Λpc Φpf Φpm–( )

p 1=

P
------------------------------------------------------------------------=

σ kmol s 1–⋅

Vcellm
2 kmol m 3– Pa 1– s 1– Pa⋅ ⋅ ⋅

p 1=

P
------------------------------------------------------------------------------------------------=

Λpc λpDpxpc=

qcmf

ka

λp

Φpf Φpm–( )

σ
qomf Vb⁄

kaΛoc Φof Φom–( )
----------------------------------------------=

qomf OOIP RFn RFn 1––( )×=



103

the matrix and fracture we have, for the water drive case:

, (4.85)

, (4.86)

, (4.87)

and for the gas drive:

, (4.88)

, (4.89)

, (4.90)
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Chapter 5

Material Balance Calculation for Dual 
Porosity Reservoirs

5.1. Introduction

The material balance (MB) calculation is one of the oldest reservoir engineering methods which 
made it possible to understand the natural recovery procedure of oil and gas reservoir. The first 
formulation was published by Schilthuis (1936), followed by Tarner (1944) and Muskat and 
Tayor (1946). The most comprehensive discussion of the MB method is given by Pirson 
(1950,1957). Initially the MB was applied to determine the oil in place, but due to introducing 
more sophisticated analytical aquifer models by van Everdingen and Hurst (1949), Carter and 
Tracy (1960), and Fetkovich (1971) the MB method could be used increasingly for production 
forecast too. 

In classical Material Balance (MB) calculations the reservoir is treated as a single barrel 
analogue. The dual porosity nature of the reservoir could be preserved by creating two barrels, 
one representing the fracture and the other the matrix pore volume. Assigning different 
pressures to both volumes (matrix and fracture) and calculating the mass transfer between the 
two systems is not possible for two reasons: First, the pressure of the matrix cannot be measured 
and second, the mass transfer is governed by capillary, gravitational and viscous forces rather 
than by the force of compression. Penuela et al. (2001), Sandoval et al. (2009) and Bashiri and 
Kasiri (2011) distinguished between the matrix and fracture systems but considered only the 
difference in the pore compressibility. Such an approach differs only slightly from a single 
porosity model using averaged pore compressibility and therefore cannot be regarded as a valid 
extension of MB calculation to dual porosity reservoirs. This could probably be the reason why 
no petroleum software provider offers material balance tools especially suited for dual porosity 
reservoirs.

Since the work of Buckley and Leverett (1942), recovery curves are used to describe the 
efficiency of any displacement process. A recovery curve displays the recovery factor either 
versus time, injected pore volume or boundary pressure. Figure 5.1 shows the recovery curve as 
function of injected pore volumes for a Buckley-Leverett (1942) type linear displacement with 
constant injection rate. In a dual porosity reservoir the fracture system provides the local 
boundary condition for any individual matrix block, injects the displacing phase into the matrix, 
and the matrix block feeds the fracture system. Heinemann (2003) suggested to elaborate 
recovery curves for the matrix blocks and to use those curves directly in numerical modeling 
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(simulation) of NFRs. Instead of considering individual properties for calculation of the 
matrix-fracture transfer terms, the recovery curves should be predefined and assigned to 
simulation cells directly. Heinemann (2013) showed the applicability and advantages of this 
approach in comparison to the classical dual porosity/permeability methods. The concept of the 
recovery curve method was adapted by Mittermeir (2015) to MB calculations and so 80 years 
after Schilthuis (1936) a comprehensive MB method for naturally fractured dual porosity 
reservoirs was borne. This method fully accounts for the fracture-matrix mass transfer, 
governed by the capillary, gravitational and viscous forces. No similar approach has been 
published up to date. 

Figure 5.1:   Recovery curve of Buckley-Leverett type linear displacement

Material balance calculation is a proxy method offering fast results and does not replace 
numerical simulation models. For both, conventional (single porosity) material balance 
calculation and the herein introduced dual porosity method, certain limitations exist: The MB 
model operates on homogenized reservoir data. This is true for all kind of data (PVT, rock, 
production, etc.). Furthermore, MB calculations apply only one average reservoir pressure as a 
function of time. MB models cannot predict individual well performances and thus, cannot be 
used to optimize production strategies on well level. Naturally, so called multi-tank MB 
calculations allow to consider areal variations. But the data of a single tank is homogenized 
nevertheless. For capturing the (apparent entire) heterogeneity of a reservoir and for modeling 
individual well performances numerical reservoir simulation has to be applied.

On the other hand MB calculation has also its merits. It is a rapid screening tool, especially 
applicable to an early stage of a reservoir engineering project. Moreover, MB calculations can 
be used to reduce the uncertainty of original hydrocarbons in place determinations. In addition 
MB calculations are required for determining analytical aquifer models. Those can be either 
used for predicting future field (not well) performance with MB calculations or for providing 
the required water influx in subsequent reservoir simulation. The herein introduced dual 
porosity MB approach allows additionally the matching of phase contact movements and 
recovery curves, which describe the matrix-fracture transfer. Those recovery curves can be used 
to replace the classical Warren-Root transfer term in the reservoir simulation model.
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5.2. The Twin Barrels

Both – simulation models and MB calculations – are based on a geocellular model that usually 
contains millions of cells. Such a model is initialized by assigning pressures, saturations and 
mole fractions (for compositional fluid description) to each grid cell. Based on this model, the 
original fluids (oil; free and dissolved gas; water) in place for each cell are calculated. The term 
“tranche” is used in the following to distinguish between the subdivision of an aggregate and a 
slice, which has geometric connotations. Starting at the initial Oil Water Contact (OWC) 
horizontal tranches of unit thickness are set throughout the geocellular model. Alternatively, the 
tranches could be also of arbitrary thickness. Summing up the fluid contents of the tranches 
results in two columns of barrels. One column represents the matrix and the second the fracture 
continuum. This is illustrated in Figure 5.2. As a consequence of the vertical resolution, the 
distribution of the fluids and the position of the initial OWC and the Oil Gas Contact (OGC) are 
known.

Figure 5.2:  The twin barrel for dual porosity material balance calculation

The reservoir model for the dual porosity material balance calculation is built by two columns, 
one representing the fracture, the other one the matrix continuum. The columns are divided in 
tranches, which are numbered (k=1, 2, .., M) starting from the initial OWC upwards. M
corresponds to the top of the reservoir. The vertical distributions of oil in place and other 
properties and variables (e.g.: pore volume, initial water saturation, etc.) are obtained similarly. 
The extensive values (e.g.: OOIP, pore volume) are the sum of the horizontal tranches 
throughout the reservoir. The intensive values (e.g. Swi, which is the initial water saturation) are 
the averaged sum of them. The fracture column defines the boundary condition for the matrix 
column.

In the following different indices will be used:
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• o, g, w denote the phases oil, gas and water,
• i is the initial value,
• m and f denote the matrix and fracture respectively, 
• k is the serial number of the unit tranches, measured from the original OWC upwards,
• j is the time step counter, tj is the production time.

In the geocellular model every cell has its own pressure, whereas In the MB model only one 
average pressure is considered. Besides the fluids in place, also the pore volume within the 
individual tranches can be summed up. It has to be corrected accordingly, taking into account 
the reservoir volume of the fluids at the average pressure. The fluid in a tranche k has to be 
flashed at the average pressure giving the pore volume (Vk ):

(5.1)

where Nk ,Gk ,Wk are original amounts of oil, free gas and water in the tranche k. Bo, Bg and Bw,
are the formation volume factors for the three phases oil, gas and water, pi is the average initial 
pressure and Rsi the average solution gas/oil ratio (GOR). Index i denotes the initial state. It 
should be noted that the initial pressure pi corresponds to the entire MB model and not only to
one tranche. Equation 5.1 has to be applied to both the matrix (index m) and the fracture (f) 
continuum.

5.2.1 Pressure Match and Water Encroachment

As stated previously, it is not possible to determine different average pressures for the fracture 
and the matrix domain. The overall material balance (as it was already presented by Tarner 
(1944)) has to consider both domains in one common barrel. From Equation 5.30 in Appendix 
A the water influx can be expressed as a function of time, calculated for every time step by 
inserting the cumulative production/injection of oil, gas and water and by calculating the PVT 
values at the actual average reservoir pressure pj.

(5.2)

It has to be emphasized that N is the overall OOIP of the fracture and the matrix. Based on the 
function We(tj) one of the well-known analytical aquifer models, such as Fetkovich (1971), Van 
Everdingen and Hurst (1949) or Carter and Tracy (1960), can be identified as the best fitting one 
and their parameters can be determined. The Fetkovich model has two governing parameters, 
the other two models have three of them. 

Such models can be used to predict the future water inflow and pressure development. It is clear 
that the water enters in the fracture system and subsequently invades parts of the matrix. 
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Equation 5.2 does not provide any information about the fluid transfer between the two 
continua or distinguishes between its actual fluid contents.

5.2.2 Application of the Recovery Curve in Material Balance 
Calculation

After production startup the average pressure of the reservoir will drop. Water encroachment at 
the bottom and expansion of a (primary or secondary) gas cap will cause a movement of the 
phase contacts (OWC and OGC). The pressure and saturation changes in the fracture will alter 
the boundary conditions at any elementary matrix tranche. Depending on the governing 
recovery mechanism, the recovery increment is either determined by the pressure change 
(depletion – single phase expansion and solution gas drive) or the elapsed time (water 
imbibition and gas drainage – water and gas drive). 

5.2.2.1 Assumptions

The herein introduced dual porosity material balance method is based on the following 
assumptions:

• The model is based on the dual porosity – single permeability approach; the fluid 
distribution is balanced vertically in the fracture but not in the matrix column.

• The matrix permeability is large enough so that the fracture-matrix pressures can 
equalize. In other words the matrix permeability is greater than 0.01 mD and the 
pressure differences are less than 1 bar (14.7 psia).

• Full phase segregation is considered in the fracture column.
• Three matrix recovery mechanism are considered:

1. Depletion (single phase expansion, solution gas drive). This drive mechanism is 
active in the entire model. Those parts of the model, in which depletion is the sole 
drive mechanism are referred to Zone 1 in the following.

2. Water displacement. Water drive is active only for those portions of the matrix 
where the belonging fracture is water filled. This water zone – later also referred to 
Zone 3 – is below the dynamic OWC.

3. Gas displacement. Analogously to the water drive, this drive mechanism is active 
only for those matrix cells in which the belonging fracture contains free gas only. 
This gas zone is above the dynamic OGC and is referred to Zone 2.

• The phenomenon of oil re-saturation is handled by the recovery method analogously. 
The oil former displaced by gas at a structural higher position descents in the fracture 
and gets into contact with the matrix blocks which are already depleted. The fracture 
cell injects now oil instead of gas or water into the matrix.

• Production occurs from the fracture domain and the rates are defined for oil, gas and 
water independently. No outside production constraints (maximum water cut, 
maximum GOR, minimum pressure, etc.) are applied. Naturally, the phase conditions 



110

inside the fracture must fit to the imposed target production, leading to inherent 
production constraints. Considering the production GOR two cases must be 
considered. First, it cannot be less than the solution GOR and second, it cannot be 
greater than the solution GOR in absence of free gas in the fracture. The water cut 
(WC) has to be zero as long as no water exists in the fracture.

Figure 5.3:  Schematics of an initially saturated reservoir and how the phase 
contacts will move due to production

A saturated reservoir with an initial gas cap is considered. Figure 5.3 sketches this reservoir at 
initial state where tj = 0, and at a state of elapsed production time tj > 0. For tj > 0 the average 
pressure has dropped from pi to pj. Three zones can be distinguished. They are determined by 
the phase contacts in the fracture system. The corresponding dual porosity MB model is 
sketched in Figure 5.4.

At the time point j the actual state of any tranche k is defined by the uniform pressure pj, the 
recovery factor Ekj and concerning the water invaded zone eventually also by the gas saturation 
Sgkj. The recovery factor itself determines the oil saturation for all tranche k = 1, M:

(5.3)

where Swik is the initial water saturation, considered also as irreducible. It should be noted that 
the initial water saturation resulting from the geocellular model will not be uniform for the 
tranche  k = 1, M.

(1 ) (1 ) /okj wki kj oj oiS S E B B= − ⋅ −



111

Figure 5.4:  Dual porosity MB model with moving phase contacts

5.2.2.2 Oil recovery from the matrix in Zone 1

For Zone 1 depletion drive is active only. As long as the oil of the matrix is undersaturated 
(above bubblepoint) the expansion of rock and liquid phases (consisting of the irreducible initial 
water and oil saturation) expels the oil. Afterwards, the oil is recovered by solution gas drive. 
In this zone the water is regarded as immobile. The recovery factor is solely a function of 
pressure and therefore it is uniform for the entire Zone 1. It can be calculated using the finite 
difference material balance introduced by Pirson (1958, 508, his Eq. 10-45). The derivation and 
its adoption for the current publication can be found in Appendix A, Equation 5.39
respectively. The matrix tranche has no gas cap (m=0), neither water influx (we = 0), nor water 
production (wp = 0) nor water and gas injection (wI = 0 and gI = 0) take place. For one time step 
Δt=tj+1-tj the pressure change is Δp=pj+1-pj. Applying those assumptions to Equation 5.41the 
recovery factor increment of one matrix tranche is given by:

(5.4)

Where Δj+1 denotes the change of the subsequent entity during the time interval Δt=tj+1-tj. In 
the undersaturated case (pj > pb), Rs will be constant (Rsj = Rsj+1 = Rsi) and no free gas will be 
flowing between the matrix and the fracture, therefore the average production gas/oil ratio will 
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be equal to the initial solution gas/oil ratio ( ). In the saturated case (pj < pbi), the 
apparent pore compressibility can be neglected. Therefore Equation 5.4 simplifies to:

(5.5)

The recovery values Ek can be different for the tranches of Zone 1 because the initial water 
saturations Swki resulting from the geocellular model will not be uniform and so the numerical 
values of apparent pore compressibility and relative permeability can be slightly different. 
Those differences have no practical importance. The oil saturation Sokj is given in Equation 5.3
and the gas saturation is:

(5.6)

As result of the fluid expansion and the gas liberation only oil will expel from the matrix until 
the critical gas saturation is reached. Then gas is flowing from the matrix to the fracture 
additionally. It is assumed that the water content in the matrix remains unchanged, thus we = wI
= wp = 0 in Equation 5.41. The gas transfer from the matrix to the fracture is governed by the 
GOR, which is determined by the relative permeability and so by the gas saturation: 

(5.7)

The relative permeability values are calculated based on the saturations. The average outflow 

gas-oil-ratio for the time interval  is

(5.8)

5.2.2.3 Oil recovery from the matrix in Zone 2

Zone 2 is directly located above Zone 1. Now the fracture is invaded by gas. Oil recovery from 
the matrix happens also due to expansion drive, but it is overloaded by gas displacement. τgk is 
the moving OGC arrival time for the tranche k, which is measured as the vertical distance from 
the original OWC. At this date the recovery factor equals Ekj. From this time onwards the 
fracture can inject gas into the matrix as soon as the gravitational force exceeds the capillary 
threshold. With the presence of free gas the oil is saturated. The water content in the matrix 
remains, thus we = wI = wp = 0 in Equation 5.41. The material balance given in Equation 5.5 
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has to be extended by the injected gas amount, Δj+1gk: 

(5.9)

Figure 5.5:  Determination of gas recovery increment based on apparent time

The increment of gas flowing from the fracture into the matrix, Δj+1gk, has to be obtained from 
the gas displacement recovery curve in a nomogram-like manner as it is shown in Figure 5.5

Figure 5.5 represents a schematic normalized gas recovery curve. The curves for water and gas 
drive are usually different. Each of them is elaborated by individual numerical single matrix 
block investigations setting the appropriate boundary conditions. Ekj is the actual recovery from 

tranche k at time j. The normalized recovery factor values of  correspond to the virtual time 

on the normalized gas recovery curve. Adding an arbitrary time step Δj+1t and reading the 
normalized recovery factor at the new virtual time yield:

results in the recovery factor increment:

Such an increase in the recovery factor causes a change of the in situ gas volume (i.e. gas 
saturation) which can be converted to standard volume at the actual reservoir pressure:

(5.10)

(5.11)

. (5.12)
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Inserting Equation 5.12 into Equation 5.9 provides the recovery increment considering the 
combination of depletion and gas drive:

5.2.2.4 Oil recovery from the matrix in Zone 3

In this zone the fracture injects water into the matrix. The oil can be both either undersaturated 
or saturated. The undersaturated case is similar to the gas displacement described beforehand in 
Zone 2 since only two mobile phases (oil and water) exist in the matrix. Applying the 
appropriate conditions (m=0, gI = 0, wp = 0 and we = 0) to Equation 5.41 the material balance 
for tranche k is:

It is assumed that the amount of injected water can be estimated from the water drive recovery 

curve which was elaborated for a two phase water displacement. is the oil recovery 
increment of the water drive case for the time step interval Δt=tj+1-tj. The specific water inflow 

during the same time is then:

In the saturated case (below the initial bubblepoint pressure) a free gas saturation exists already 
in the matrix. The water injected by the fracture into the matrix tranche is also displacing the 
free gas flowing from the matrix to the fracture. 

(5.13)

.(5.14)

. (5.15)

. (5.16)
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The production GOR is calculated using Equation 5.8.

For the calculation of relative permeability the gas saturation in the matrix has to be estimated 
based on the known oil saturation and cumulative intruded water: 

The cumulative intruded water is the sum of all increments:

The applicability of Equation 5.16 is unfortunately limited. The reason is that small 
inaccuracies have already a great impact on the gas saturation value and the error propagates via 
Equation 5.7 and Equation 5.17 exponentially. It is better to create a composite recovery curve 
by modeling water displacement in single matrix blocks with predefined pressure decline. Such 
a calculation will produce not only the recovery curve but also an estimate of the gas saturation 
over a period of time. 

5.3. Monitoring of Phase Contacts

Having the recovery factor Ekj the cumulative transferred oil from the matrix into the fracture 
can be easily calculated:

The actual amount of the oil in the fracture is:

where Qo is the cumulative oil production and Nfi is the original amount of oil in the fracture 
situated between the initial water and gas oil contacts (OWC and OGC).

In the fracture system complete phase segregation is assumed. If the vertical distribution of the 
fracture volume Vfk with k = 1, M is known then also the positions of the phase contacts can be 
determined. The volume of the oil column between the actual phase contacts is given by the 
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following relation:

For the presented approach the tranche thickness equals 1m. Due to this resolution a maximum 
deviation of ±1m between the physical phase contact and the one of the model located at tranche 
k can be identified. This is expressed by the  sign. The fracture oil column is situated in the 
interval Kowc and Kogc. Above the Kogc level the fracture column is filled with free gas. Below 
Kowc the fracture column contains only water. For reasons of simplicity it is assumed that the 
connate and residual saturations of the fracture equal zero. In absence of water inflow the same 
is valid for the OGC determination. If both free gas and water inflow exist, then the position will 
be more uncertain and will need supplementary considerations, which will be explained later.

5.3.1 Undersaturated Reservoirs

Determining the position of the OWC is easy in the case of no free gas. Therefore, in an 
undersaturated case the position of the actual OWC is defined by the following relation:

The actual OWC is then situated between the depth Kowc and Kowc+1, measured upwards from 
the original OWC. k=0 corresponds to the depth of the original OWC and M to the top depth of 
the reservoir.

5.3.2 Absence of Aquifer/Water Encroachment

The determination of the OGC position in absence of water influx is similarly simple:

The actual OGC is then situated between the depth Kogc and Kogc-1, measured upwards from 
the original OWC. 

5.3.3 Three Phase Case

Concerning the three phase case – gas on top of the fracture column (Zone 2), oil in the middle 
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(Zone1) and water at the bottom (Zone3) – placement of the phase contacts (OWC and OGC) 
is no longer trivial. For evaluating the OWC it is necessary to consider Equation 5.16 for the 
calculation of the water amount intruding into the matrix. As already explained, this is burdened 
by the uncertainty of the gas saturation estimation. Summing up Equation 5.16 for the interval 
between the first tranche above the initial OWC and the actual OWC (Kowc), the cumulative 
water intrusion in the matrix system is given by:

The cumulative water influx (Wej) of the entire reservoir (matrix and fracture) is calculated from 
Equation 5.1 similar to the single porosity case according to the pressure history. The aquifer, 
being the source of the water encroachment We, is only connected to the fracture system. 
Therefore, the amount of water residing within the fracture pore volume at the time j is:

The following relation has to be satisfied:

The actual OWC is then situated between the depth Kowc and Kowc+1, measured upwards from 
the original OWC. 

The amount of gas in the matrix is the sum of the free and dissolved gas: 

Gi is the original gas amount in the entire model. The actual amount of free gas in the fracture 
is then:

Naturally, between the estimated OWC and OGC the fracture volume must be equal to the 
volume of the oil column given by Equation 5.21. Satisfying this requirement is a difficult 
matter and it needs a careful and critical estimation of the relative permeability functions.
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5.4. Nomenclature

Symbols:
B formation volume factor, L³/L³, STB/res bbl
c compressibility, Lt²/m, 1/psia
E efficiency/recovery factor
G gas amount, L³, scf
GI cumulative injected gas, L³, scf
g specific gas amount, scaled to unit oil in place
Jw aquifer productivity index, L4t/m 
Kogc tranche containing the actual OGC
Kowc tranche containing the actual OWC
k permeability, L², m² 
kr relative permeability 
L characteristic dimension, L, m
m gas cap factor 
N original oil in place, L³, STB
Np cumulative oil production, L³, STB
p pressure, m/L³, psia
Q cumulative production, L³, STB
Qmf cumulative matrix-fracture oil transfer, L³, STB
R gas/oil ratio, L³/L³, scf/STB
t time, t, day
S saturation
SF shape factor, 1/L², 1/m²
V pore volume, L³, res bbl
WI cumulative injected in place, L³, STB
We water encroachment, L³, STB
Wei maximum encroachable water, L³, STB
Wp cumulative water production, L³, STB
w specific water amount, scaled to unit oil in place

Greek symbols:
α reciprocal of ultimate recovery
β time scaling factor
Δ difference operator
φ porosity
μ viscosity, m/Lt, cp
τ arrival time, t, d
σ interfacial tension, m/t², N/m
ω weighting factor

Subscripts:
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a apparent
b bubblepoint
f fracture
g gas phase
i initial
j time point index
k tranche index
m matrix
M tranche for top of reservoir
N time index for end of history
o oil phase
p production
R recovery
r residual
s solution
w water phase

Greek Subscripts:
φ pore

Superscripts:
a analytical
g gas
n normalized
w water
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Appendix A – Material Balance (MB)

The Material Balance (MB) given in Equation 5.30 is valid for saturated and undersaturated oil 
reservoirs, for gas reservoirs with and without water influx from an aquifer considering the 
compressibility of the rock and the connate water and possible water and gas injections.

Usually the constant term for the rock and water compressibility is replaced by an apparent pore 
volume compressibility factor cφa given by: 
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The initial free gas volume G can be also expressed by the gas cap factor m, the original oil in place 
N and the formation volume factors of oil (Boi) and gas (Bgi).

Inserting the relations of Equation 5.31 and Equation 5.32 in Equation 5.30:

Dividing Equation 5.33 by the gas formation volume factor Bg gives: 

Equation 5.34 can now be written for time points j and j+1. Writing Equation 5.34 for time point j
will lead to:

For writing Equation 5.34 at time point j+1 the index j of Equation 5.35 simply has to be replaced 
by j+1. Please note that for variables of cumulative production/injection (Np for produced oil, WI for 
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injected water, etc.) the increment Δj+1 of the production/injection for the time step will be written.

(5.36)

It should be noted that for time point j the cumulative gas production Gpj could be expressed by the 
cumulative oil production Npj and the overall production gas/oil ratio Rpj. This means:

Therefore at time point j+1 the cumulative gas production Gp is equal to:

where Rp is the average production gas/oil ratio for the time period tj, tj+1. Subtracting Equation 
5.35 from Equation 5.36 results in the differential form of the material balance:

(5.39)

(5.37)

(5.38)
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FromEquation 5.39 the incremental oil production ΔNp for the time period tj, tj+1 is expressed as:

(5.40)

For the sake of easier explanations in the main part of this work Equation 5.40 will be written for a 
unit initial oil volume. In this case the cumulative oil production Np becomes the recovery factor E
itself. The terms for the produced water (Wp), the water encroachment (We) and the injected 
cumulative amounts of water (WI) and gas (GI) have to be scaled to unit oil in place. In the applied 
notation those scaled amounts will be expressed by lower case symbols w for water and g for gas. 

Finally the increase in recovery factor during a single time step is 
given by Equation 5.41.
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(5.41)

Conversion Factors
acre x 4.046873E+03 = m²
bar x 1.0* E+05 = Pa
bbl x 1.589 873E-01 = m³
cp x 1.0* E-03 = Pa.s
ft x 3.048* E-01 = m
ft³ x 2.831685E-02 = m³
lbm x 4.535924E-01 = kg
psi x 6.894757E+00 = kPa

*Conversion factor is exact.

( ) ( )

+−

Δ
+

+−

Δ+Δ+Δ−Δ+Δ−Δ

+

+−

Δ+Δ−−Δ+−Δ−

=Δ

+

+

+

+

++

+

+

+

+++

+

++++

+

p

j

s
g

o

Ij

p

j

s
g

o

jg

w
Ij

g

w
jIj

jg

w
pj

jg

w
ej

g

w
jpj

g

w
jej

p

j

s
g

o

g
joi

g
jaoiai

g
jois

g

o
j

j

RR
B
B

g

RR
B
B

B
B

w
B
B

w
B
B

w
B
B

w
B
B

w
B
B

w

RR
B
B

B
mB

B
pcBcp

B
BR

B
BE

E

1

1

1

1

11

1

1

1

111

1

1111

1

1111 φφ



126



127

Chapter 6

Nomenclature

Symbols

A - area, cross section, [m²]
a - fracture spacing, [m]
b - fracture breadth, [m]
cp - compressibility factor of phase p [1/bar]
ct - total compressibility factor [1/bar]
cφ - apparent pore compressibility factor [1/bar]
Dp - specific mole density, [kmol/m³]
Dpc - diffusion coefficient, [m²/s] 

- gravity acceleration vector, [m/s²]
- molar flux of component c in phase p, [kmol/m² s]
- permeability tensor

k - permeability, [m²]
krp - relative permeability, [-]
Mc - molar mass of component c, [kg/mol]

- normal unit vector
- capillary pressure between phase p and p’, [bar]

pe - net confining pressure, [bar]
ph - healing pressure, [bar]
pp - phase pressure, [bar]
qp - flow rate of phase p, [m³/s]
qp - source/sink term for phase p, [kmol/day]
qcmf - matrix-fracture transfer term, [kmol/day]
rw - wellbore radius, [m]
Sp - phase saturation, [-]
T - temperature, [K]

- filtration velocity, [m/day]
VI - Volume of gridblock I, [m²]
Vp - Pore volume, [m³]
Vp1 - Volume of phase p produced during phase p’ imbibition, [m³]
Vp2 - Volume of phase p produced during phase p’ flooding, [m³]
VT - Bulk volume, [m³]
W - Effective fracture aperture (fracture width), [m]
WI - Wettability index (Amott-Harvey wettability index), [-]
xpc - mole fraction of component c in phase p, [-]
z - depth, [m]

g
Jpc
k

n
Pcpp'

up
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Greek Symbols

φ - porosity, [-]
Φp - phase potential, [bar]
λp - phase mobility, [1/cp]
μp - phase viscosity, [cp]
ρp - phase density, [kg/m³]
ρs - rock density, [kg/m³]

- interfacial tension between phase p and p’, [N/m]
θ - contact angle, [°]
σ - shape factor, [m-2]

- stress, [bar]
δp - displacement with phase p ratio (Amott wettability) [-]
ε - supplementary pressure drop function across an inner boundary [kg/m³]
τIJ - interblock transmissibility, [m³]

- time difference operator,  
λ - interporosity flow coefficient, [-]
ω - storativity ratio [-]
Γ - boundary

Subscripts

a - apparent / average
c - component
e - effective
f - fracture
g - gas
i - initial conditions
i - point index
ir - irreducible
l - left
m - matrix
n - old time level
n+1 - new time level
o - oil
p - phase
r - relative
r - residual
r - right
w - water
x,y,z - coordinate directions

Superscripts

Nc - total number of components
Np - total number of phases
ν - old iteration level
ν+1 - new iteration level

σpp'

σ

Δt ΔtΓ Γn 1+ Γn–=
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Conversion Factors

bar  = psia*0.06894757
m  = ft*0.3048
kg  = lb*0.453592
1000m3 = MMSCF*26.795
kg/m3  = lb/ft3*16.01846
°F  = °R - 459.67

°C  =

°API  =

°F - 32( )
1.8

---------------------

141.5
Spec. Gravity-131.5
------------------------------------------------
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