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1 Introduction

This volume is the fourth within the series of the reservoir engineering textbooks provided by 
the Association of Professor Heinemann Doctorate Group.

The accompanying lecture presumes that the reader possesses profound knowledge of reservoir 
engineering. A moderate level in applied mathematics and computer application will also be 
expected. However, this text book is written for petroleum engineers and not for scientists. 
Wherever if it is possible, application of higher mathematics will be avoided. On the other hand 
no relation will be made to any given commercial simulator and no special methods will be 
discussed. The task is to achieve profound understanding rather than to write a manual or a 
guide line for the simulation work.

This textbook is only one of the tools to teach the reservoir simulation techniques at the 
university and in post graduate courses efficiently. It is important to learn by doing. The readers 
have to work with a sophisticated reservoir simulator to deepen their theoretical knowledge too. 
A collection of exercises with growing complexity was worked out and will be used. The 
exercises are based on the simulator PRS, but they can easily be adapted to any other similar 
system.

1.1. What does Simulation mean

For developing an engine, a prototype of it will be built after some preliminary computation and 
examinations on different modules. The prototype will be tested and improved step by step. 
Knowledge about the already used product can be gathered and serves as basis for further 
improvements. This approach is not applicable to every real system, due to one of the following 
circumstances:

• the system is unique,
• it is inaccessible,
• its dimensions are too large or too small,
• its life cycle is long.

For hydrocarbon reservoirs all four limitations are valid. For such cases three principle 
possibilities for modeling are given: physical, analogous and numerical. The criteria for all of 
them is to be able to formulate every or a least the most important physical and chemical 
processes in a mathematical model. This makes it possible to deduce the similarity conditions 
for a physical model or to replace the real processes with analogous, but easy realizable 
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processes. When dealing with a hydrocarbon reservoir the possibilities for modeling would be 
a three dimensional sand pack laboratory model or an electrical model consisting of a network 
of resistivity and electrical capacities. Both were tried but without or with very limited success. 
The only remaining possibility is numerical modeling.

No mathematical model can be complete. The mathematical formulae are more or less 
approximations of the physical phenomena Furthermore, to be able to calculate with the 
formulae they have to be simplified. In most cases they reflect only the most important aspects 
of reality. With a particular mathematical model, only those processes formulated in this model 
can be examined.

The same mathematical model can be used in two modes:

• as modeling tool (analytical mode), 
• as simulation tool. 

Figure 1.1 shows this classification. The correctness of a computation in analytical mode is 
guaranteed when the basic equations are based on experimental evidence and when the 
calculations are mathematically correct. In the simulation mode the above is proved by 
matching the calculated results with the system behavior. The tuning of the model, even if it has 
no physical explanation, is allowed. 

Figure 1.1:  Use mathematical models in analytical and simulation mode

This classification is independent of the solving method which can be analytical or numerical. 
In this term a material balance calculation based on the production history to determine the 
water influx and OOIP is a simulation, the calculation of a steam flooding with a three 
dimensional non-isotherm numerical model before starting this process is a numerical modeling 
(in analytical mode). Nevertheless, the mathematical models used as simulation tools are so 
complex that only numerical solutions are possible. 
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The numerical models, which are mainly used in simulation techniques will be discussed in this 
volume. Commonly these models (and computer programs) will be called simulation models, 
eve if they are used for analytical purposes too. 

The nature of numerical simulation is demonstrated in Figure 1.2. It has two sides, a real and an 
imaginary one. The computer program, based on the mathematical model needs input. These 
data are measured on the object (e.g. reservoir), the parameters are matched so that one part of 
the output coincides with the observations on the object. A greater part of the output cannot be 
compared with observations, but gives valuable information about the object and can be 
regarded as serious in case the matching is successful. Without reliable data and serious 
comparison the model cannot solve real problems. No simulator can replace reliable data or the 
brain of the user.

Figure 1.2:  The nature of numerical simulation

1.2. What does Reservoir Simulation mean

The reservoir simulation technique makes it possible to gain insight into the recovery processes 
of a reservoir. To understand fluid flow and, by this, to evaluate the performance of oil and gas 
recovery methods, the petroleum engineer models the relevant physical and chemical processes 
by systems of partial differential equations. These equations account for mass and heat transfer. 
They include terms for gravity, capillary and viscous forces. Thermodynamic equilibrium 
conditions determine the number of existing phases, their composition and properties. Reservoir 
simulation involves the numerical solution of such systems with a computer, together with 

INPUT

OUTPUT
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appropriate boundary conditions as supplementary relationships.

A reservoir is a three-dimensional, heterogeneous, anisotropic rock body, filled up 
inhomogenously with fluids of different composition. It is evident that a reservoir model can 
only be constructed mathematically. As already mentioned, a reliable physical or analogous 
model is not possible.

The workflow when building a simulation model is shown in Figure 1.3.

Formulation of the Physical Model

Modeling

Partial Differential Equations

Discretization

Non-linear Algebraic Equations

Linearization

Linear Matrix Equation
Figure 1.3:  Workflow for building a simulation model

In the physical model all relevant processes and properties must be considered. The 
mathematical model consists of constitutive equations (e.g.: Darcy equation), balance 
equations, property functions and constraints.

The discretization method can be based
• on Taylor series, leading to finite difference method (FDM), 
• on integral formulation, leading to control volume difference method (CVDE) or
• on variational formulation resulting in finite element method (FEM). A special 

variant of FEM is the control volume finite element method (CVFE).

 The discretization involves two main steps: 
• Construction of an appropriate grid.
• Setup of proper algebraic equations.

The major requirements are:
• The discrete solution has to be a good approximation to the exact solution.
• The number of grid points has to be as small as possible.
• The structure of the matrix equation must ensure to be able to solve it economically.

The discretization scheme will be called convergent if the numerical solution approaches the 
exact solution of the mathematical model (i.e.: those of the partial differential equations) as the 
grid size and time step length tend to zero. All discretization methods, if applied correctly, will 
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lead to the same algebraic equation system. If this is not the case then one of them is erroneous. 
Therefore the question to use CVFD or to use CVFE method is practically irrelevant. 

The balance equations combined with Darcy's law yield highly non-linear, partial differential 
equations of mixed hyperbolic-parabolic type. In general, those equations cannot be solved 
analytically, but can be solved numerically by replacing the differential equations with 
difference equations. This process is called discretization.

Basically, there are two methods available for discretization: the finite difference and the finite 
element method. When dealing with mass transfer both methods need a definition of a control 
volume around a grid point. Consequently, they are called the Control Volume Finite Difference
(CVFD) and the Control Volume Finite Element (CVFE) method. Both methods reduce the 
differential equations to a finite-dimensional system of algebraic equations.

1.3. About the Contents

This volume gives a first theoretical insight into numerical reservoir simulation. All necessary 
concepts are addressed. The goal is to help the reader to achieve a fundamental understanding.

Chapter 2 deals with the conventional black oil formulation of the flow equations. At first a 
two-component, two-phase and two-dimensional black oil model will be formulated and the 
concept of Implicit-Pressure-Explicit-Saturation (IMPES) will be introduced. This model will 
be extended to three components, three phases and three dimensions. In this Chapter a simple 
Cartesian grid is used, explaining the difference between 2½ -dimensional and fully 
3-dimensional grids. The equations will be written in implicit form and the difference between 
IMPES and fully implicit solution will be explained. It will be shown that IMPES and 
fully-implicit solution can be combined within one model and time step, leading to the concept 
of adaptive implicitness. 

Chapter 3 mainly discusses the 2½D grid, usable for full-field simulation. Both isotropic and 
anisotropic cases will be considered. This Chapter introduces the Local Grid Refinement (LGR) 
and deals with the layering techniques. As special case the radial grid, applicable for single 
vertical wells, will be presented. Short discussions about corner-point and curvilinear grids 
complete this Chapter. 

Chapter 4 deals with the initialization of a grid model and which requirements and conditions 
have to be satisfied when calculating the initial vertical pressure and saturation distributions for 
a reservoir model. Benefits and limitations of different initialization methods will be elucidated. 
The chapter is closed by some practical remarks. 

Chapter 5 introduces the classical well models. Wells are handled as source/sink terms within 
the blocks in which they are perforated. The productivity indices are calculated for every 
perforation, which gives a linear relationship between the bottom-hole pressure, the rate and the 
average block pressure.
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2  Basic Concept of a Reservoir 
Simulator (IMPES Models)

2.1. Derivation of a Two-Dimensional Two-Phase 
Black Oil Model

A rectangular Cartesian mesh is laid over the structure map of the reservoir. Each block 
represents one part of the reservoir. The top depth, thickness, porosity, pressure, water and oil 
saturation of the blocks are chosen so that its position, the bulk and pore volumes and the oil-, 
gas- and water contents coincides with the values of the represented piece of the reservoir. In 
this way a block model is generated, which imitates, at least volumetrically, the real reservoir. 
Figure 2.1 shows a two dimensional block model. It becomes three dimensional if the blocks 
are vertically divided.

Each grid block has a point of gravity. In this case, we presume the geometric center as this 
point. Furthermore, we presume that the block contains only one phase (e.g.: oil). The phase 
potential for block I is:

, (2.1)

where p is the pressure,  is the density and zI is the vertical distance of the grid point to a 
reference depth.

Figure 2.2 shows a block, divided by a plane through the block center MI, perpendicular to the 
coordinate I2. The side abcd through MI has the potential  and the side efgh has the potential 

. Both sides have the same surface A and the distance between these two is H2
+. According 

to DARCY`S law, the oil flow rate in the coordinate direction I2 can be calculated by the 
following formula:

ΦoI poI gρoIzI–=

ρ

ΦoI

Φo
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Figure 2.1:  Two dimensional block model of a reservoir

, (2.2)

where k is the permeability in the coordinate direction I2 and  is the oil viscosity. The 
quantities are gathered in such a manner that the first group contains only constant properties of 
the block. This group gets the symbol  and it is called block half-transmissibility for the 
positive I2 direction. Equation 2.2 can be also written in a form:

(2.3)

Six block half-transmissibilities can be defined for each block in the same manner:

.

Qo2
A k

H+
--------

2

Φo ΦoI–

μo
-----------------------=

μo

τ2
+

Qo2
τ2I

+

μo
-------- Φo ΦoI–( ).=

τ1I
- τ1I

+ τ2I
- τ2I

+ τ3I
- τ3I

+, , , , ,
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Figure 2.2:  Block I is divided by a side through the block center

A block pair with serial number I and J shall now be considered, Figure 2.3. As the fluid flows 
from block I into block J, the following relations can be applied:

. (2.4)

 and  are the potentials in MI and MJ.  is the block pair transmissibility. From 

Equation 2.4 follows:

(2.5)

Two immiscible and compressible fluids (oil and water) shall be considered now. The following 
quantity of oil flows between block I and block J at multiphase saturation conditions:

. (2.6)

 is positive, if oil flows into block I and negative, if it flows out of it. The oil mobility

(2.7)

is a function of saturation and pressure. The values and  can be calculated from the 
saturations and pressure of block I and block J. The reason why one and not the average value 
of these functions has to be included in Equation 2.6 for calculating the rate can be easily 
explained.

Ι

Qo2
τ2I

+

μo
------- Φo ΦoI–( )

τ2J
-

μo
-------- ΦoJ Φo–( )

τIJ
μo
------- ΦoJ ΦoI–( )===

ΦoI ΦoJ τIJ

τIJ
τ2I

+ τ2J
-

τ2I
+ +τ2I

-
-------------------.=

QoIJ τIJ
kro

μoBo
------------ ΦoJ ΦoI–( )=

QoIJ

kro
μoBo
------------- λ∗ p S,( )=

λ*oI λ*oJ
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Figure 2.3:  The neighboring blocks I and J

If, for example, block I is saturated with oil and block J is saturated with water, the following 
applies:

. (2.8)

If the potential in block I is greater then in block J then oil will flow between both blocks, 
otherwise water will flow. Therefore:

(2.9)

Taking the mobility from the upstream block is called upstream weighting. The term

(2.10)

is called phase transmissibility. Now Equation 2.6 can be written in the following form:

(2.11)

or after substitution of Equation 2.1:

, (2.12)

where

. (2.13)

The individual oil densities were replaced with the average value:

λ*oI 0 λ*oJ 0=,>

λ
*

oIJ

λoI
* ,     if  ΦoI  ΦoJ>

λoJ
* ,      if  ΦoI  ΦoJ≤

=

KoIJ τIJλ*oIJ=

QoIJ KoIJ ΦoJ ΦoI–( )=

QoIJ KoIJ poJ poI–( )+r*oIJ=

r*oIJ KoIJg ρoJzJ ρoIzI–( ) KoIJgρoIJ zJ zI–( )–≈–=
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(2.14)

Both approximations can be used in Equation 2.13. 

In a two dimensional system, the block I has four neighbors, see Figure 2.4.

Figure 2.4:  Block with its neighbors in a two dimensional system

From a well situated in block I oil can be produced with the rate . The sum

(2.15)

is the difference of the oil quantities flowing in or out of the block during the time interval:

(2.16)

J1 to J4 are the serial numbers of the neighboring blocks. Index n designates the serial number 
of the time point. The initial time is to. The amount of oil in block I at the time tn is (in standard 
volume, sm3):

,                  , (2.17)

where Vp is the block pore volume (at reservoir conditions), So is the oil saturation, Bo is the 
formation volume factor of oil and its reciprocal bo is called shrinkage factor. The change 

during the time intervals  is:

. (2.18)

ρoIJ
ρoJ ρoI+

2
------------------------ ρo

poJ poI+

2
-----------------------≈=

qoI

QoIJ1 QoIJ2 QoIJ3 QoIJ4 qoI+ + + +[ ] tn 1+Δ

Δn 1+ t tn 1+ tn–=

VpI Sobo( )
I
n⋅ bo

1
Bo
------=

Δn 1+ t

VpI Sobo( )n 1+ Sobo( )n–
I

·
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If

,

then Equation 2.18 can be written in the following way:

(2.19)

If the changes are small, then the last term is very small compared with the first two terms, and 
can be neglected. Furthermore,  is a function of pressure. It follows that

, (2.20)

Equation 2.19 can be written also in the following form:

, (2.21)

where

and

.

Based on the law of mass conservation, the terms Equation 2.15 and Equation 2.21 must be 
equal:

(2.22)

Equation 2.22 is a volume balance. Both sides of the equation are written in standard m3 and 
due to the fact that the standard density is a constant, it is equivalent with a mass balance. This 
equation is valid for the time interval . Therefore QoIJ is the rate which is valid during the 
time interval . It is possible to calculate this rate explicitly, using the block pressures at time 

So
n 1+ So

n   +δSo=

bo
n 1+ bo

n δbo+=

VpI So
n δSo+( ) bo

n δbo+( ) So
nbo

n–[ ]I
VpI So

nδbo bo
nδSo δSoδbo+ +[ ]I=

bo

δbo
bo

n 1+ bo
n–

po
n 1+ po

n–
---------------------------- po

n 1+ po
n–( )

dbo
dpo
---------

n
δpo==

VpI So
n

dbo
dpo
---------

n
δpo bo

nδSo+
I

CoIδpoI+EoIδSoI=

CoI VpSo
n

dbo
dpo
---------

n

I
=

EoI Vpbo
n[ ]I=

QoIJ1 QoIJ2 QoIJ3 QoIJ4 qoI+ + + +[ ]Δt  CoIδpoI+EoIδSoI=

Δt
Δt
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point tn. In this case the unknowns  and  are only on the right hand side of the equation. 
It is easy to understand that in this case  may become very small. In other words, the 
numerical method becomes instable.

To demonstrate this stability problem we consider an isolated model consisting of two blocks 
only, containing one mobile phase (e.g.: oil). The initial pressure in block I should be higher 
than in block J. This fact causes a pressure adjustment with time. The pressure difference 
induces a flow between the two blocks. The pressure in block I will continuously diminish and 
it will rise in block J. After some time the block pressures becomes equal, as shown by the 
continuous line in Figure 2.5.

Using our numerical formulation, the flow rate can be calculated explicitly at the beginning of 
every time step  or implicitly at the end of ´s. This rate will be valid for the actual time 
step. If the flow rate is calculated explicitly and  is greater then a critical value then at the end 
of the time step the pressure becomes greater in block J as in block I. For the next time step the 
flow direction changes, leading to quick divergence of the calculated pressures. The calculation 
becomes instable.

Figure 2.5:  Demonstration of the instability in explicit methods

It is better to calculate the Qo-values with the transmissibility of time point tn, and the pressure 
difference at the time point tn+1. By that Equation 2.12 gets the form:

, (2.23)

or with gathering of known values:

. (2.24)

Inserting Equation 2.24 into Equation 2.22 it becomes:

δpoI δSoI

Δt

Δt Δt
Δt

QoIJ KoIJ
n poJ

n δpoJ poI
n δpoI––+( ) r*oIJ+=

QoIJ KoIJ δpoJ δpoI–( ) roIJ+=
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(2.25)

Dividing both sides by EoI and writing the equation in a shorter form:

(2.26)

where

Equation 2.26 contains six unknowns, five pressure changes and . 

The equation for water is written analogously to Equation 2.26:

(2.27)

Equation 2.27 also contains six unknowns. 

Confined to two phases, there is

, (2.28)

and

(2.29)

The capillary pressure is

(2.30)

and

(2.31)

KoIJ1 δpoJ1 δpoI–( ) roIJ1
KoIJ2 δpoJ2 δpoI–( ) roIJ2
KoIJ3 δpoJ3 δpoI–( ) roIJ3
KoIJ4 δpoJ4 δpoI–( ) roIJ4 qoI

+
+ +
+ +
+ + +

[

]Δt
CoIδpoI EoIδSoI+[ ]=

Δt
EoI
--------- KoIJk

CoI
Δt

---------+

k 1=

4

δpoI– Δt
EoI
--------- KoIJkδpoJk δSoI+doI=

k 1=

4
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----------+
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In practical cases often

(2.32)

and can be neglected. But herewith

. (2.33)

Adding Equation 2.26 and Equation 2.27

(2.34)

where

(2.35)

Equation 2.34 contains five unknowns.

Taking boundary conditions into account the following applies: The boundary of a reservoir 
(i.e.: the block model) may either be closed, that means no mass transfer across this boundary 
is possible, or the pressure is constant at this boundary. Figure 2.6 shows a simple model, in 
which both boundary conditions occur.

For blocks 12-14, the following applies:

(2.36)

δPcow δpo«

δpo δpw δp==

aIδpI bIJkδpJk eI=

k 1=

4
+

aI t 1
EoI
-------- KoIJk

CoI
tΔ

---------+

k 1=

4

1
EwI
---------- KwIJk

CwI
tΔ

----------+

k 1=

4
+

Δ–=

bIJk t
KoIJk

EoI
---------------+

KwIJk
EwI

----------------Δ=

eI doI dwI+( )=

δp12 δp13 δp14 0===
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Figure 2.6:  Block model with closed and constant pressure boundaries

With that, the system of Equation 2.34 contains 11 equations with 11 unknowns. The system of 
equations is written in detail to visualize it better:

Figure 2.7:  Equation system corresponding to Figure 2.6

It is simpler to write the system of equations system in Figure 2.7 in matrix form:

  1  a1 δ δ δp1 1,2 p2 1,3 p3                                                                                                                                                                              1+b +b,2 =e
  2  +a +bδ δ δp1 2 p2 2,4 p4                                                                                                                                                         2b2,1 =e,1 1,3 p3+b δ
  3  +b +bδ δ δp1 3,4 p4 3,5 p5                                                                                                                                    3b3,1 +a =e3 p3δ+a2,1 p2 ,1δ
  4  b +b +a +b +b4,2 p2 4,3 p3 4 p4 4,6 p6 4,7 p7                                                                                           4δ δ δ δ δa + +b1,2 p1 ,1 3,5 p5δ δ =e
  5  b +a +b +b5,3 p3 5 p5 5,7 p7 5,8 p8                                                                      5δ δ δ δa +b + +a +b1,2 p1 4,2 p2 4,1 p4 ,1 3,5 p5δ δ δ δ =e
  6  +b6,9 p9                                                 6δa +b +b + +a +b +b1,2 p1 4,2 p2 5,3 p3 5,1 p5 ,5 5,7 p7 5,8 p8δ δ δ δ δ δb +a =e6,4 p4 6 p6δ δ
  7  +b +b7,9 p9 7,10 p10                        7δ δa +b +b + +a +b1,2 p1 4,2 p2 5,3 p3 6,5 p6 ,5 5,8 p8δ δ δ δ δb +b +a =e7,4 p4 7,5 p5 7 p7δ δ δ
  8  +b +b8,10 p10 8,11 p11δ δa +b +b +b + +a +a +b1,2 p1 4,2 p2 5,3 p3 7,4 p4 6,5 p6 7,5 p7 ,5 7,9 p9δ δ δ δ δ δ δb +a =e8,5 p5 8 p8 8δ δ
  9  a +b +b +b +b + +a + +b +b1,2 p1 4,2 p2 5,3 p3 6,4 p4 8,5 p5 8,5 p8 ,5 8,10 p10 8,11 p11δ δ δ δ δ δ δ δb b9,6 p6 9,7δ δp7

10  a +b +b +b +b +a +a +b1,2 p1 4,2 p2 5,3 p3 7,4 p4 8,5 p5 6,5 p 6 9,5 p9 8,11 p11δ δ δ δ δ δ δ δb +b +a =e10,7 p7 10,8 p8 10 p10 10δ δ δ
11  a +b +b +b +b +a b + +a +a1,2 p1 4,2 p2 5,3 p3 7,4 p4 8,5 p5 6,5 p 6 10,7 p 7 9,5 p9 10 p10 ,8δ δ δ δ δ δ δ δ δb +a =e11,8 p8 11 p11 11δ δ
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(2.37)

or even shorter as 

(2.38)

where is the sparse matrix shown above in Figure 2.7.

The calculation is described as follows:

1. Pressure and saturations for the blocks are known for the time point tn = 0. This is the 
initial situation and n = 0.

2. We choose a time interval  and designate the production rates qo and qw
describing the average values for the time interval .

3. We designate the terms K, r, C, E and d of Equation 2.26, Equation 2.27 for block I.
4. We calculate the coefficients a, b and e of Equation 2.34.
5. We solve the linear equation system Equation 2.37 by a suitable method. The results 

are the pressure changes during the time interval . Therefore the pressures at 
the end of the time interval are:

(2.39)

6. We calculate the saturation changes  and  from Equation 2.26 and 

Equation 2.27:

(2.40)

(2.41)

7. We check the accuracy by a material balance calculation.

Steps 2 to 7 are repeated until the entire production time is calculated.

1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10 11
δp1 e1

e11

e2δp2

δp11
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eq
ua

tio
ns

=
Aδp= e

=
A

Δt
Δt

δp Δt

pn 1+ pn+ δp=

δSw δSo

So
n 1+ So

n + δSo=

Sw
n 1+ Sw

n  + δSw=
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2.2. The Gas Equation

Gas can be contained in a reservoir either as free gas or as dissolved gas. The pressure poI in 
block I can be higher or equal to the bubble point pressure pb. If the oil is saturated, the dissolved 
gas in oil ration  is a function of pressure for pressures :

(2.42)

The general case also taking into account the undersaturated state , will be considered in 
Chapter 2.7.. The change of the gas quantity in block I during the time interval  can be written 
analogously to Equation 2.18

. (2.43)

where bg is the gas shrinkage factor. Like in Equation 2.21 the following applies:

(2.44)

The difference between oil- and gas phase pressure is the gas-oil capillary pressure:

(2.45)

From experience, the change of  with time is small. Analogously to Equation 2.31 it follows 
that:

, (2.46)

and therefore with Equation 2.33 the following applies:

. (2.47)

Including Equation 2.46 into Equation 2.43:

(2.48)

Gas will be transported between two blocks in two phases, in the gas phase and in the oil phase. 
According to Equation 2.12 the gas rate is

RsI p pb<

RsI Rs poI( )=

p pb>

Δt

VpI Sgbg RsSobo+( )n 1+ Sgbg RsSobo+( )n–
I

VpI Sg
dbg
dp

---------
n

δpg bg
nδSg So

d Rsbo( )

dp
---------------------

n
δpo Rsbo( )nδSo+ + +

I

pg po Pcgo Sg( )=–

Pcgo

δpg δpo δPcgo Sg( ) 0==–

δpo δpw= δpg δp= =

      VpI Sg
dbg
dp

--------- So
d Rsbo( )

dp
---------------------+

n
δp Rsbo( )nδSo b+ g

nδSg+
I

CgIδpI EgIδSgI DgIδSoI+ +=
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, (2.49)

where

. (2.50)

RsIJ is the dissolved GOR of the oil flowing from one block to the other, and must be set equal 
to Rs of the upstream block, from the same reason as the phase mobility  (Equation 2.9):

(2.51)

Inserting

(2.52)

 into Equation 2.48 while taking Equation 2.46 into consideration, the following applies

(2.53)

where

and

(2.54)

Equation 2.24 and Equation 2.53 are formally equal, caused by the notation applied. 
Analogously to Equation 2.22, Equation 2.25 and Equation 2.26, the balance equation for gas 
follows as:

QgIJ KgIJ
* pgJ pgI–( ) RsKo( )

IJ
poJ poI–( ) rgIJ

*+ +=

rgIJ
* KgIJρgIJ RsKo( )

IJ
ρoIJ+[ ]g zJ zI–( )–=

λ

RsIJ

RsI,

RsJ,
                          

  if   ΦoI > ΦoJ,

   if   ΦoI  ΦoJ.≤
=

pgI
n 1         +    pgI

n δpI
poI

n 1+            poI
n δpI+=

+=

QgIJ KgIJ
* pgJ pgI–( )n RsKo( )

IJ
poJ poI–( )n

K( g
* RsKo )

IJ
δpJ δpI–( ) rgIJ

*

KgIJ δpJ δpI–( ) rgIJ+=

+

+ + +

=

KgIJ Kg
* RsKo+( )IJ,=

rgIJ rgIJ
* KgIJ

* pgJ pgI–( )n RsKo( )
IJ

poJ poI–( )n.+ +=
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(2.55)

After including Equation 2.53 into Equation 2.55

(2.56)

with

2.3. Cartesian Coordinate System

Although the rigid Cartesian coordinate system does not seem very suitable for the geometry 
and flow pattern of a real reservoir, this technique is widely applied for reservoir simulation. At 
first a two-dimensional Cartesian system - having the coordinates aligned to the I2 and I3 axes 
- is selected to assemble the block system for reservoir simulation.

Figure 2.8:  Cartesian coordinate system

The I1-axis is perpendicular to the I2-I3-plane and points downwards. The block system can be 
defined one-dimensionally, two-dimensionally or three-dimensionally. This orientation, as 

QgIJk qgIJk+

k 1=

4
Δt CgIδpI EgIδSgI DgIδSoI+ +=

Δt
EwI
---------- KgIJk

CgI
Δt

---------+
k

δpI– Δt
EgI
--------- KgIJkδpIJk

δSgI
DgI
EgI
---------δSoI dgI.+ +=

k 1=
+

dgI
Δt
EgI
-------- rgIJk qgI+

k
–=
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depicted in Figure 2.8, is not the usual one, but it has the advantage that the depth is measured 
and the layers are numbered in the same manner as in the geological representation. Then, a 
basic grid is constructed based on the geological structure. The grid can be defined in two ways:

• Block centered scheme: For the block centered grid the block sizes are selected at 
first and then the nodal points are centered between the boundaries. M is the 
geometrical center point of the block (Figure 2.9).

• Point distributed scheme: A basic grid is constructed by determining the nodal 
points, taking into consideration the concepts of geological structures. The block 
boundaries divide the distance between the nodes in halves. The margin boundary is 
determined by reflecting the last block boundary at the outmost nodal point (Figure 
2.10).

The block centered approach is very common in reservoir simulation.

Figure 2.9:  Construction of a block centered Cartesian grid

However from a practical point of view, there is not any additional difference when using one 
or the other type of grid. That means, the application of the point distributed grid is not more 
complicated than the using the block centered one. The only difference seems to be that a better 
consistency is provided for the point distributed grid by the mathematical error analysis. This is 
sufficient for us to give a recommendation for that type of grid, without refusing the 
applicability of the other one.
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Figure 2.10:  Construction of a point distributed Cartesian grid
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Figure 2.11:  Three-dimensional Cartesian grid

The same procedure of block construction can be applied in the vertical direction if the 
extension of the reservoir is comparable with the horizontal one (Figure 2.11). Most frequently 
however, the vertical extension is smaller in order of magnitude than the horizontal one and it 
is also layered, so that such a discretization cannot be used or requires very small grid spacing. 
Instead of doing so it is better to use a stream tube approach in the cross section, as shown in 
(Figure 2.12). We assume that the vertical component of the flow velocity as well as its 
components parallel to the layering can be calculated independently.

A 3D block system is shown in (Figure 2.13). It is evident that this grid is only Cartesian and 
orthogonal in the horizontal plane but not in the cross section.

Figure 2.12:  Steam tube approach in cross section

In practical application the geometrical torsions in the cross section are sometimes neglected 
and the block system will display as a system of rectangular horizontal blocks as shown in 
(Figure 2.14). The blocks are shifted vertically from each other, their surfaces are not the same 
for the neighbors and the overlapping is only partly. This is only a question of the graphical 
illustration and has no influence on the calculation of the transmissibilities.
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2.3.1 Transmissibilities

In Chapter 2.1. we already introduced the concept of block transmissibilities. A fundamental 
Cartesian grid has six of them, oriented from the grid point toward the six block sides. Those 
six transmissibilities are indicated with  (i= 1,2,3). They are calculated in a simple 
way, supposing a linear incompressible one-phase DARCY-flow, orthogonal on the block 
surface. From the DARCY law:

(2.57)

Figure 2.13:  Three dimensional Cartesian grid

Figure 2.14:  Dip correction of the transmissibilities

where  is the phase potential on the block surface. The transmissibility between two grid 
points will be calculated - based on the KIRCHOFF law - as the harmonic average of two block 
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transmissibilities

(2.58)

In this way, not only the permeabilities of the neighboring blocks but also the block surfaces are 
averaged. If the layer is not horizontal, then this approximation will not be correct, because the 
direction of the flow is parallel to the layer and not to the block edge. The true distance from the 
grid point to the communication surface and the true surface can be calculated easily, as shown 
in Figure 2.14:

, (2.59)

where  is the dip of the layer. Applying the definition after Equation 2.57

(2.60)

we get

. (2.61)

2.4. Three-Dimensional Three-Phase 
IMPES-Equation

The balance equation for oil (according Equation 2.26):

(2.62)

The balance equation for water (according Equation 2.27):

(2.63)

The balance equation for gas (according Equation 2.56):
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(2.64)

 is the summation over all neighboring blocks of block I. The summation from 1 to 4, done 

in Chapter 2.1., was not exactly correct. Inevitable, there are blocks with only 2 or 3 neighbors 
in a two dimensional model. The extension to the third dimension is simply made by taking the 
neighboring blocks of the third coordinate direction into account too. There are no differences 
between one-, two- and three dimensional models when applying this formalism. After 
multiplying Equation 2.62 by 

Equation 2.62, Equation 2.63 and Equation 2.64 will be added. For the saturations is valid: 

(2.65)

Consequently:

(2.66)

Therefore the resulting equation contains no saturation changes. The obtained equation has the 
same form as Equation 2.34:

(2.67)

where
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(2.68)

2.5. Formulation of a Fully Implicit Black Oil Model

2.5.1 The Balance Equations

The balance equations for the three components are:

Water:

; (2.69)

Oil:

(2.70)

Gas:

(2.71)

Differences between these equations and those in Chapter 2.1. exist, because not only the 
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potentials but also the  and the production rate q are described for the time point tn+1. 
Furthermore, the porosity is pressure dependent, that means changeable in time.

N(I) is the number of neighbors of block I. VI is the block bulk volume, therefore the pore 
volume is:

(2.72)

The potentials  are given through:

(2.73)

(2.74)

(2.75)

where z is the depth of the grid point. The differences between the phase pressures are the 
capillary pressures:

(2.76)

(2.77)

The component mobility  is defined by:

(2.78)

with bm = 1/Bm, which is the shrinkage factor. The mobility related to the gas dissolved in oil is:

(2.79)

For the PVT - and rock properties the following applies, if :

(2.80)

(2.81)
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Furthermore, the depth z, the thickness h and the porosity  have to be functions of place. The 
production rate of phase m in block I at time point tn+1 is given through the well equation:

(2.82)

with k being the serial number of the well. pwfk is the bottom hole flowing pressure of the kth

well in reference depth zref.  is the average density of the fluid, residing in the well between 
the top and the bottom of the perforation, corrected towards the reference depth.

WIIk is a productivity index for the perforation of the kth well in block I.

The total gas production rate is calculated with

(2.83)

The well production rates result from the summation of Equation 2.82 and Equation 2.83 
respectively, over the blocks I in which the well k is perforated.

The equations Equation 2.69 - Equation 2.71 and Equation 2.82 are not linear. An iterative 
solution method must be applied for these equations.

2.6. Generation and Linearization of the Equations

2.6.1 Notations

Let x be an unknown. The sequence of the iterated will be named with

(2.84)

Furthermore

(2.85)

and

(2.86)

v* depends on the break-off criteria for the iteration. For abbreviation, the following applies:

(2.87)
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or for sake of simplicity:

(2.88)

2.6.2 Linearization

Lets regard the following non-linear expression:

(2.89)

where the functions  can be unlimited derived and therefore they can be expanded in 
Taylor series. For : 

(2.90)

If  is small, than the higher terms can be neglected and 

, (2.91)

Similarly for :

. (2.92)

For the expression the linearized approximation is then:
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where the higher order terms with  are already neglected.
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can be solved by Newton-Raphson iteration. Let be the first approximation for the root, 
then we solve the linear equation 

(2.95)

for  and the next approximation for the unknown is

(2.96)

This value will be applied in Equation 2.95 again and again. The iteration converged if

. (2.97)

The Newton-Raphson iteration converges if  is monotone and 

. (2.98)

The Newton-Raphson iteration is widely used for solving non-linear equation systems too, but 
there is no theoretical prove for convergence. 

For the sake of simplicity the difference operator  for further 
notations.

2.6.3 Production Rate

The oil production rate emerges from equation Equation 2.82 with the TAYLOR series method:

 (2.99)
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The calculation of the flow terms is made with the component transmissibilities of the upstream 
blocks. That means that the kr-values are calculated with the saturations and the pressure of the 
dominant block. The dominance operator is introduced to describe this in a formalism:

;    m = w, o, g (2.101)

For the oil phase the upstream weighting can be symbolized as follows:

(2.102)

The TAYLOR series method provides:

(2.103)

The following applies for generating the potential difference:

(2.104)
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The generation of the potential difference for the water phase and the gas phase differ from that 
for the oil phase caused by the capillary pressure.

For water:

(2.105)

with

. (2.106)

The expression for the gas potential difference can be written analogously. The first term of 
Equation 2.70 can be generated in the following form, after having inserted Equation 2.103 and 
Equation 2.104, neglecting very small terms of second order:

ΦwJ ΦwI–( )ν 1+ poJ poI
1
2
--- ρwJ( ρwI )g zJ zI–( ) PcowJ– PcowI+ +––

ν 1+

                             poJ poI
1
2
--- ρwJ ρwI+( )gzIJ– PcowJ– PcowI+–

ν

                                 1 1
2
---gzJI

dρw
dpw
----------

J

ν
– δpoJ 1 1

2
---gzJI

dρw
dpw
----------

I

ν
+ δpoI

  

–

                                  + 
dPcow
dSw

---------------
J

ν
δSwJ

dPcow
dSw

---------------
I

ν
δSwI,–

+

=

=

zJI zJ zI–=



2-34 Basic Concept of a Reservoir Simulator (IMPES Models)

(2.107)

If I is the dominant block, the particular dom-term can added to the previous    term. 
With the abbreviations already used before, Equation 2.107 can be written in a shorter form. The 
expressions for ß’s can be written by the comparison of the two equations. The short symbolic 
forms are:
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(2.108)

 means, that the summation is only made with these neighbors which are dominant in regard 
to block J.

2.6.4 Accumulation Term

For the right hand side of Equation 2.70 - paying attention to

(2.109)

follows this description:

(2.110)
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By using symbolic writing, Equation 2.110 can be written as follows:

(2.111)

Finally, the linearized oil equation results from inserting Equation 2.100, Equation 2.108 and 
Equation 2.110 into Equation 2.70, taking Equation 2.88 into account and summarizing the 
coefficients.

(2.112)

The water equation follows analogously taking Equation 2.105 into account:

(2.113)

And also the gas equation:

(2.114)

The right sides of Equation 2.112 - Equation 2.114 allows estimation of the magnitude of the 

unknowns  and  as an example the left side of Equation 2.113 will be written 
in a more detailed form:
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(2.115)

The first term is the accumulation rate, the second one the influx or outflux rate and the third 
one the production rate of water. The dimension is standard m3/s. If  = 0, then the  

will be a smaller value because this is a proper function of other variables, mainly of . 

If  is greater then zero there is a strong uncompensated water in - or outflux from the block 
and greater changes of the water saturation must be expected. The quantity

(2.116)

shows how much is this water compared to the pore volume and can be used to estimate the 
magnitude of saturation changes for the next iteration step. In the same manner eo and eg can be 
determined. 

The total production rate of well k is the sum of the partial rates qmI. The summation of Equation 
2.99 - for those blocks I in which well k is perforated - provides:

(2.117)

A similar equation follows if the gross production rate is given. For gas wells the gas production 
rate, for water injection wells the injection rate is given.

It is also possible to fix the bottom hole flowing pressure instead of the production rate. The 
following applies:

(2.118)

and Equation 2.112 and Equation 2.114 can be reduced by this term.

dwI
ν γwI0

ν βwI0
ν– qwI

ν

VI
Δt
----- φSwbw( )ν φSwbw( )o–[ ]

τIJ domIJ
w krb

μ
--------

w
ΦwJ ΦwI–( )

ν
qwI

ν .–
J 1=

N I( )

–

=

–=

dwI
ν δν 1+ SwI

δν 1+ p′s

dwI
ν

ew
dwI

ν Δt
VIφI

--------------,=

δν 1+ pwfk αoI1
ν

I 1=

M k( )

αoI2
ν[

I 1=

M k( )

δν 1+ pI αoI3
ν δν 1+ SwI

αoI4
ν δν 1+ SgI αoI5

ν δν 1+ RsI ]

+ +

+ + dok
ν=

δν 1+ pwfk 0=



2-38 Basic Concept of a Reservoir Simulator (IMPES Models)

2.7. Variable Bubble Point

The oil in block I is undersaturated, if the following applies:

(2.119)

In that case

(2.120)

so  does not appear in Equation 2.112 - Equation 2.117 anymore.

If the gas saturation is larger than zero, Rs is a function of pressure:

(2.121)

and block I will be considered as saturated or undersaturated in Equation 2.112 and Equation 
2.114 at time point tn. After inserting either Equation 2.120 for undersaturated or Equation 
2.121 for saturated case, the equation system Equation 2.112 - Equation 2.117 can be reduced 
to one unknown.

A possible passover from one to the other state within one time step will not be considered yet. 
Therefore, an initial undersaturated block may become oversaturated:

(2.122)

In that case, the correction is made in the next time step:

(2.123)

In the opposite case, more gas than available dissolves in oil,

(2.124)

the following correction is made:

(2.125)

This corrected saturation and solution gas ratio gives the initial state for the next time step. The 
corrections Equation 2.123 and Equation 2.124 may cause significant material balance errors. 
These can be eliminated by mass correction.

Let block I be oversaturated at the timepoint tn before time n + 1. The oil- and gas content 
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follows as:

(2.126)

(2.127)

If this block is transferred into the saturated state, the following changes occur:

(2.128)

(2.129)

where

(2.130)

The differences

(2.131)

(2.132)

will be reinjected into this block if  is positive, or produced out of this block if    is 
negative during the time step n + 1.

If the oil is saturated (the bubble point is equal with the block pressure) but the gas saturation 
becomes negative, then the gas saturation will be set zero and the oil saturation will be 
adequately increased at the timepoint tn. In the next time step the oil quantity of 

(2.133)

must be produced out of this block and the gas quantity of

(2.134)

must be injected into this block.

2.8. Solution Methods

There are three possibilities to solve the Equation 2.112 - Equation 2.117:

• Fully implicit method. The iteration method given by Equation 2.112 - Equation 
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2.117 will be applied until the changes , ,  or  are 
smaller than the given limits.

• Semi-implicit method. The equation system will be solved only once ( ) per 
time step.

• IMPES-method. IMPES stands for Implicit Pressure Explicit Saturation.

The combination of these three methods is the adaptive implicitness. In a proper IMPES 
formulation the phase transmissibilities, the capillary pressures and the production rates at time 
point tn are taken. Therefore Equation 2.116 does not belong anymore to those equations being 
solved simultaneously. Because all coefficients in Equation 2.70, Equation 2.72 refer to the time 
point tn, the terms following the summation Σ∗ disappear from Equation 2.112 - Equation 2.114 
which can be written as follows:

(2.135)

(2.136)

(2.137)

At first one of the unknown  and  should be eliminated on the basis of 
Equation 2.118 or Equation 2.119. Afterwards these three equations are multiplied with the 
following factors and added:
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The unknowns ,  and  are eliminated by this procedure because 

the resulting equations only contains the pressure change  as unknown:

(2.138)

 and  or  can be calculated explicitly from Equation 2.35 and 
Equation 2.36, after having solved the linear equation system Equation 2.138.

Applying adaptive implicitness first at the residuals , i.e. the norm e, given by Equation 2.116 
have to be examined. If for a given block all of them are smaller than a given value (e.g.: 0.01, 
that means 1% of the pore volume) then this block will be taken as an IMPES block. All 
coefficients originating from the derivatives regarding the saturations or Rs will drop out. From 
the equations written for the neighboring blocks the terms containing the saturation changes 

(or ) will be cancelled. After that the three equations for the IMPES block can be 
reduced to one equation, similar to Equation 2.138. If this block has neighbors, which remained 

implicit then also saturation changes ( ) exist in the IMPES equation for 
those neighbors. 

The average degree of implicitness IGA is defined as the average number of implicitly 
calculated variables per block and time step:

(2.139)

where

N -  number of time steps

LL - number of blocks

- number of iteration steps for the time step

nI - number of implicit unknown for block I in an iteration step

K - number of wells

For a proper IMPES calculation IGA = 1 for the semi-implicit method slightly above 3 and for 
fully implicit 5 to 10. For field scale simulation the adaptive implicitness usually has a value 
between 1.2 and 1.6, without loosing stability performance compared to the fully implicit 
computation.

Although the IMPES method requires solving a fewer number of unknowns simultaneously, it 
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has lower performance than the semi- or fully-implicit solution methods because due to poor 
stability only smaller time steps can applied. The superiority of the adaptive implicitness is that 
larger time steps can applied. The superiority of the adaptive implicitness is unambiguous. (At 
least by scalar computing. On vector computers this advantage can be lost because the 
irregularity of the matrix equation impedes the vectorization). 
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3 2½ -Dimensional Grid Models

3.1. Cartesian Coordinate System

It should be noted, that Section 3.1. is to some part a repetition of Section 2.3., however some 
in-depth discussion is added.

Although the rigid Cartesian coordinate system does not seem very suitable for the geometry 
and flow pattern of a real reservoir, this technique has been widely applied for reservoir 
simulation. Other coordinate systems and grid construction methods were used only for special 
purposes. An exception is the radial cylindrical coordinate system for solving single well 
problems.

Figure 3.1:  Cartesian coordinate system

At first a two-dimensional Cartesian system - having the coordinates aligned to the I2 and I3
axes - is selected to assemble the block system for reservoir simulation. The I1-axis is 
perpendicular to the I2-I3-plane and points downwards. This orientation (as shown in Figure 
3.1) is not the usual one, but it has the advantage that the depth is measured and the layers are 
numbered in the same manner as in the geological representation. Then, a basic grid is 
constructed. The grid can be defined in two ways:
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Figure 3.2:  Construction of a block centered Cartesian grid

• Block centered scheme: For the block centered grid the block sizes are selected at 
first and then the nodal points are centered between the boundaries (Figure 3.2). 

• Point distributed scheme: The grid points are set at first and the block boundaries 
halve the distance between the nodes. The boundaries at the model margins are 
determined by reflecting the last block boundary at the outmost grid point, as shown 
in Figure 3.3.

The Cartesian grid is orthogonal per definition. Therefore the flow rate between two blocks can 
be approximated by two-point approximation. The point distributed scheme is a special kind of 
the perpendicular bisection (PEBI) grid while the block centered grid is not. 

Aziz and Settari[13] discussed the properties of the two grid types using differential formulation 
of the flow equation. Aziz and Settari calculated the potential gradient for the grid point and not 
at the block boundaries. For this case there is no difference between the two grids if the mobility 

 is a constant. When using integral formulation it becomes evident that the order of 
approximation of the potential gradient term remains different. The significance of the 
discretization error analysis is that the point-distributed approximation is consistent and 
therefore for any stable finite difference method it will be convergent. However, there is no a 
priori guarantee for convergence for the block centered grid.

λ
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Figure 3.3:  Construction of a point distributed Cartesian grid

It should be emphasized that inconsistency does not necessarily imply divergence as the block 
size goes to zero .The actual order of convergence depends on the manner or the 
irregularity of the grid spacing. Because the discretization errors act as error sources for the 
solution of the equations, their effects are smoothed out. Based on numerical experiments, we 
conclude that for any reasonably smooth variation of grid spacing the block centered difference 
scheme will also be convergent in the limit. However from a practical point of view, there is no 
additional difference when using one or the other type of Cartesian grid. That means, the 
application of the point distributed grid is not more complicated than the block centered one. 
The only difference seems to be that a better consistency is provided for the point distributed 
grid by the numerical error analysis. This is sufficient for us to give a recommendation for that 
type of grid, without refusing the applicability of the other one. From mathematical point of 
view the regular Cartesian grid provides the minimum time and spatial discretization errors 
therefore this grid should be used if no other reason exists for irregular grid spacing.

The same procedure for block construction can be applied in the vertical direction if the 
extension of the reservoir is comparable with the horizontal one (see Figure 3.4). Most 
frequently however, the vertical extension is smaller in order of magnitude than the horizontal 

h( 0 )→
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one and it is also layered, so that such a discretization cannot be used or requires very small grid 
spacing. Instead of doing so it is better to construct the grid in the horizontal plane and project 
it through the layers as shown in Figure 3.5. This is the 2½-dimensional grid.

In 3D and 2½D Cartesian block system a block has maximum six neighbors. It is evident that 
this grid is only Cartesian and orthogonal in the horizontal plane but not in the cross section. 
The basic idea is to use a stream tube approach in the cross section. We assume that the vertical 
component of flow velocity as well as its components parallel to layer can be de-coupled.

Figure 3.4:  3D Cartesian grid in cross section

Figure 3.5:  2½-dimensional Cartesian grid

In Chapter 2.1. we already introduced the concept of block transmissibilities. A fundamental 
Cartesian grid has six of them, oriented from the grid point toward the six block sides. Those 
six transmissibilities are indicated with  (i= 1,2,3). They are calculated in a simple 
way, supposing a linear incompressible one-phase DARCY-flow, orthogonal on the block 
surface. From the DARCY law:
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Therefore the block half-transmissibility has the form of 

. (3.2)

where A is the block surface, L the half-length of the block and k the permeability. 

Figure 3.6:  Dip correction of the transmissibilities (must be corrected, D should point 
to the middle of the block)

The transmissibility between two grid points, called block-pair transmissibility, will be 
calculated - based on the KIRCHOFF law - as the harmonical average of two half-block 
transmissibilities

(3.3)

In this way, not only the permeabilities of the neighboring blocks but also the block surfaces are 
averaged. If the layer is not horizontal, then this approximation will not be correct, because the 
direction of the flow is parallel to the layer and not to the block edge. The true distance from the 
grid point to the communication surface and the true surface can be calculated easily, as shown 
in Figure 3.6:

, (3.4)

where  is the dip of the layer. Applying Equation 3.4 to Equation 3.2 and considering Equation 
3.3 the right block-pair transmissibility is: 
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. (3.5)

In practical application the geometrical torsions in the cross section are sometimes neglected 
and the block system will be displayed as a system of rectangular horizontal blocks as shown in 
Figure 3.7. The blocks are shifted vertically from each other, their surfaces are not the same for 
the neighbors and the overlapping is only partly. This is only a question of the graphical 
illustration and has no influence on the calculation of the transmissibilities.

Figure 3.7:  Cross section of a Cartesian layered model
 a) discretization grid, b) visualized grid 

3.2. Local Grid Refinement

In most of the cases the Cartesian grid is not sufficient to provide the necessary resolution for 
particularly interesting areas, e.g. at the vicinity of wells. To achieve a high resolution in 
relevant areas, and at the same time to keep the overall number of blocks as small as possible, 
selected blocks can be subdivided. This subdivision is called local grid refinement (LGR). LGR 
was introduced by Heinemann et al.[58] in 1983 and it was discussed in many papers since then.

To distinguish between the original (coarse) and the resulting (fine) blocks the expressions 
"fundamental" and "refined" blocks will be used. Three divisor numbers (KI1, KI2, KI3) can be 
assigned to every fundamental block. They indicate the number of partial blocks into which the 
fundamental block is to be subdivided in the corresponding direction. In this way, 
sub-coordinates (I1T, I2T, I3T) are defined in every fundamental block, with the same orientation 
as the main coordinates (Figure 3.8).

τIJ
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In this way, each partial block can be addressed by specifying the coordinates (I1, I2, I3) of the 
fundamental block and the sub-coordinates (I1T, I2T, I3T). (For brevity, we refer fundamental 
blocks as F-blocks and the refinded blocks as R-blocks in the following).

Figure 3.8:  Determination of the sub-coordinates

The subdivision can be done on more levels, uniformly or irregularly. Possibilities which are 
not recommended are shown in Figure 3.9. All these types of LGR were discussed in the 
literature with contradicting results. Even if the advantage of a certain kind of LGR was 
demonstrated for a couple of problems, it was always possible to find a case in which the 
deviations from the equivalent, fully refined grid was unacceptable, or the coarse grid gives 
even more reliable results. To avoid these pitfalls the following requirements must be satisfied:   

• The grid must be point distributed and not block centered.
• The coarse blocks must be equally and uniformly divided in x- and y- directions.
• The coarse-fine grid transition must be smooth; the transition ratio between finer and 

coarser grid should be 1:2 or 1:3.
• The orthogonality at the transition zone must be assured. 
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Figure 3.9:  Not recommended Cartesian grid refinements. 

The necessity of the first requirement was demonstrated by Nacul et al.[98]. Most of the 
commercial simulators use block-centered grids. In such a case the LGR can be used for the area 
with square Cartesian blocks which are block-centered and point-distributed at the same time. 
No LGR can be recommended for corner point geometry. 

If the second requirement is not satisfied, thus a supplementary artificial orientation effect will 
be introduced if the main flow direction changes, leading to wrong conclusions. The third 
requirement is necessary to assure an acceptable accuracy in calculating the flow between 
refined and coarse regions as it was proved by Nacul et al.[98]. By disregarding the fourth 
requirement the two-point flux approximation is not applicable. When the refined block system 
is determined, the divided region should have as few corners as possible (Figure 3.10).

It is suggested to use 2x2, 4x4, 8x8 or 3x3 and 6x6 areal refinement only. The transition ratios 
1:2 or 1:3 between coarse and fine grids can be satisfied by extending the refined zone as shown 
in Figure 3.10b. There is no argument against a multilevel LGR in which the individual refined 
blocks are further refined, satisfying the same requirements. However, there is no practical need 
for such an option. It is better to exploit the possibilities offered by the windowing 
technique[32],[33].
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Figure 3.10:  Definition of the subdivided area. a) not recommended, b) recommended

The shortcoming of the classical LGR, as shown in Figure 3.10b, is that the transition between 
coarse and refined grid is not orthogonal, therefore the two point approximation cannot be used, 
or if it is used it leads to considerable discretization errors. To overcome this problem different 
approaches exist. One possibility is to make use of multi-point flux approximation. 
Alternatively Quandal et al. introduced pseudo-points along the transition boundaries. Both 
solutions are limited applicable and complicated. The right solution is to construct the grid by 
the PEBI method assuring orthogonal transition between the coarse and refined blocks as shown 
in Figure 3.11. It is easy to understand that this solution has also some limitations. It can be used 
only if the Cartesian grid is point-distributed and the grid spacing of the F-blocks does not 
change very much. For blocks with stretched shape it is not possible to construct such a 
geometry (Figure 3.12).
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Figure 3.11:  Incorrect and correct block interfaces for refined grid
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Figure 3.12:   No orthogonal refinement possible by stretched blocks

3.3. 2½ -Dimensional Full-Scale Grid Construction

We combine three kinds of independently constructed grids in one full field project: Productive 
Area grid (PA), Aquifer grid and Window grid. The PA and Aquifer grids are always (without 
exceptions) a 2½ dimensional (layered) grid. A window grid can be a 2½D or a fully 3D grid.

A 2½ D grid will be constructed in the horizontal plane. Laterally the grid points are set in the 
mid-surfaces of the layers and in the third dimension they are located on vertical lines. 

3.3.1 The Aquifer Grid

While the geological and petrophysical properties of the productive areas are known at the 
beginning of a simulation project, the aquifer is usually unknown. The size, the porosity, the 
permeability and their distributions around the productive area will be determined by matching 
reservoir pressure. The permeability is in areal extension isotropic, i.e.: does not depend on the 
direction. The History Match is a step-by-step procedure in which the aquifer model becomes 
more and more complex by re-sizing and re-parametrizing the aquifer without changing the 
productive area.

The aquifer grid is constructed from the global mesh outside the PA. At the boundary of the 
productive area the PEBI method is applied to obtain a correct transition between the different 
grids. Figure 3.14 shows the two-dimensional block model constructed from the global mesh in 
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Figure 3.13. Please note, that two productive areas are modelled within one common aquifer.

Figure 3.13:  Global mesh with two PA’s and different spacing in the aquifer

Figure 3.14:  Block model constructed from the global mesh
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3.3.2 Productive Area Grid

Figure 3.15:  Productive Area grid

The grid in the productive areas will be constructed independently from the aquifer. Figure 3.15 
shows one of the PA’s from the previous example. The grid is always a simple regular Cartesian 
mesh. It is assumed that the principal directions of the permeability tensor coincide with the 
lateral direction of the grid lines or that they are diagonal to it. This is a simplification but 
practical. The areal anisotropy is not or only poorly known. In the global view it is satisfactory 
to offer four possibilities for the highest permeability direction as shown in Figure 3.16 and 
Figure 3.17. The direction can be different for all quadrangles formed by four grid points. 
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Figure 3.16:  Possibilities offered for the highest permeability directions

Figure 3.17:  Definition of the areal anisotropy

Lets assume an anisotropic reservoir, where the permeability values are known. If the 
principal directions coincide with the coordinate directions, then the grid remains as shown in 
Figure 3.15. Figure 3.18 is a productive area grid for the case of partially diagonal permeability 
direction.
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Figure 3.18:  Cartesian grid with partially diagonal main permeability direction and 
increasing anisotropy ratio (from left to right)

Figure 3.19:  Productive area with channels

Channel structures can be characterized by the polygons built by segments in x, y and diagonal 
direction, approximating the principal axis of permeability. The corresponding PA grid is 
depicted in Figure 3.19. Note that the position of the grid points remained unchanged.

Figure 3.20 shows a PA with two refined zones for the isotropic case. In anisotropic cases the 
principal permeability directions (horizontal, vertical or diagonal) will not be parallel with the 
edges of the triangular grid elements in the transition zone, therefore the permeability ratio 
applicable for the kPEBI grid construction is limited. From a practical point of view this 
restrictions do not hamper the application of LGR. The refined area should be extended so that 
the conditions are satisfied in the transition zones. 
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Figure 3.20:  PA with two refined zones

3.4. Vertical Extension

In the isotropic case the vertical extension of the grid model can be done easily. The grid 
constructed for the top will be projected through all layers and sublayers. The same is valid for 
the anisotropic case, if the principal permeability directions are parallel to the x- and y-axis. The 
anisotropy ratio can be different in all vertically connected blocks. All features of the 
conventional layering such as vertical refinement, pinch-outs, discountinuities, etc. can be 
applied.

If the principal permeability direction is diagonal the shape of the blocks changes with the 
anisotropy ratio and the surfaces of the stacked blocks will not be identical and they will 
produce an apparent discrepancy in the overlapping as shown in Figure 3.21. In such a case a 
2D grid must be constructed for all layers individually. Note that the grid lines are always 
vertical. From the point of view of flow calculation this is not a serious problem. The vertical 
transmissibilities will be calculated as harmonic average of the block half-transmissibilities 
depending on the two block surfaces. 

We consider a quadrangle formed by 4 grid points on top of the reservoir (1st layer). If the 
principal permeability directions do not coincide with the coordinate axis then the block shape 
will be different to the Cartesian one as it was shown in Figure 3.18. The block shape depends 
on the direction and the permeability ratio as well. The 2D grid must be constructed now for all 
layers individually, producing an apparent discrepancy in the overlapping of the stacked blocks 
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as shown in Figure 3.21. One could conclude that the construction of a 2½D model is no longer 
possible. This is understandable from geometrical point of view, but the conclusion, based on 
the Control Volume Finite Discretization (CVFD) theory, is wrong. Theoretically it is not 
required that the communication surfaces must be identical from both sides. It is solely required 
that both blocks have one surface which is the unique communication surface with the 
neighboring grid block. As given by Equation 3.6, the block pair transmissibility  will be 

calculated as harmonic average from the so call half-block transmissibilities and  using 
properties of a single block only. As explained previously, the permeability and thickness of 
neighboring blocks can be different. Therefore, why it should be required that the surfaces must 
be equal?

(3.6)

In fact, such an apparent "discrepancy" is not new. The cross section of a simple layered grid 
looks as shown in Figure 3.7a. One grid block is apparently connected to more than one block 
in the neighboring column which is naturally not the case. Therefore it is usual to visualize the 
cross sections and also the 3D plots in a smoothed form as it is shown in Figure 3.7b.

As shown in Figure 3.21, the vertical coordinate line I1 remains vertical, which is a fundamental 
requirement for all kinds of 2½D grid models. 

Figure 3.21:  Vertical column of blocks if (a) anisotropy is uniform and (c) changes 
over the layers 

A fully three dimensional grid construction is not applicable for this kind of stretched blocks. 
The thickness of a layer is by magnitudes smaller than the horizontal extensions of the blocks 
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which can be easily over 1000 feet. Theoretically an alternative solution would be using 
Multi-Point Flux Approximation (MPFA) instead of a kPEBI grid, keeping the block shapes 
unchanged through the layers.

Until now no theoretical investigation or numerical experiences were made for comparing the 
two methods, namely the kPEBI layered model versus a Cartesian or general quadrilateral grid 
using MPFA. Based on sound engineering judgment the kPEBI solution may be applicable to 
most of the practical problems.

3.5. Cylindrical Coordinate System

For dealing with rotational-symmetric problems a cylindrical (r, z) coordinate system should be 
used. Such a grid is illustrated in Figure 3.22 and Figure 3.23.
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Figure 3.22:  Block-centered cylindrical block model
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3.5.1 Block Construction

In Figure 3.22 the grid is block-centered in the vertical direction, which means that the grid 
points are the midpoints of the layers. Figure 3.23 shows the point-distributed case. In radial 
direction the block boundaries (ri + 1/2, ri - 1/2) are specified by the user. The first ring is the well 
radius (r1/2 = RW) and the last one the outer boundary (rn + 1/2 = re). It is recommended to 
distribute the rings in such a way, that assuming steady-state radial flow, the pressure drop 
between two neighboring blocks is equal.

This is the case, if

(3.7)

Figure 3.23:  Point-distributed cylindrical block model

r = RW½ 

ri-½

ri

ri+½

r  = rn+½ e

z = Hn 

z = 01 

ln
ri 1 2⁄+
ri 1 2⁄–
----------------- c const= =



2½ -Dimensional Grid Models 3-63

and

(3.8)

n is the number of blocks in radial direction. The pressure distribution within the block 
boundaries  is different for steady-state or pseudo-steady state flow. For 
steady-state flow the dimensionless pressure may be expressed as

(3.9)

and for pseudo-steady state flow

(3.10)

The dimensionless variables are

(3.11)

(3.12)

(3.13)

The average dimensionless pressure for a block is:

(3.14)

The correct position of the grid points (ri) is where the pressure calculated from the steady-state 
(or pseudo-steady state, resp.) pressure distribution is equivalent with the volumetrically 
averaged pressure of the radial block. This radius can be calculated for the steady-state case by 
setting the right sides of Equation 3.9 and Equation 3.14 equal. The correct position of the grid 
point now is
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(3.15)

For the pseudo-steady state case Equation 3.10 and Equation 3.14 are set equal. The result is the 
following equation which must be solved iteratively for ri:

(3.16)

with

(3.17)

The correct grid point location is then calculated with

(3.18)

3.5.2 Transmissibilities

After the determination of the grid point radii, ri, the pore volumes and the transmissibilities can 
be calculated (j denotes the vertical direction, i the radial direction)

(3.19)

(3.20)

and

(3.21)

 is the permeability in the radial direction and  is the permeability in the axial 
direction. Both values are averaged from the permeability values of the two involved blocks.

(3.22)
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(3.23)

The z-direction corresponds to direction I1, and the radial direction to direction I3. A subdivision 
of the blocks is not possible.

The two gridding methods (for steady-state and pseudo-steady state flow respectively) give 
similar results in most of the cases. Calculating transient flow behaviors (well testing), the 
pseudo-steady state grid is more suitable.

For a generalized case the third dimension is the rotation angle , as shown in Figure 3.24.

Figure 3.24:  Three-dimensional radial coordinate system

3.6. Curvilinear Grid

3.6.1 Orthogonal Curvilinear Grid

A coordinate system is orthogonal if the coordinate lines are mutually orthogonal everywhere. 
In this case the inter-block flow term for one block surface can be calculated from two grid 
points and there are no cross derivative terms in the transformed flow equations. For any 
orthogonal block system, the inter-block transmissibilities can be calculated from intuitive 
geometrical concepts. This means in general:

(3.24)
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where

• - is the average permeability between block I and J,

• - is the cross-sectional area and,

• - is the distance between grid points,

• - is the angle hIJ on the surface AIJ. 

The only reason to use an orthogonal curvilinear grid system is to reduce grid orientation effects. 
From this reason the curvilinear grid system should be based upon a stream tube model, without 
neglecting the cross tube flow terms. The stream tube model coincides with physical reservoir 
stream lines. However they will change with time. Therefore such a grid is valid only for a 
prefixed situation.

Figure 3.25:  Streamlines and orthogonal streamtube grid after Mlacnik et al.

3.6.2 Stream Tube Grid

The stream-tube approximation was introduced by Higgins and Leighton[72]. They presented 
convincing evidence that the performance of a five-spot pattern waterflood can be calculated by 
holding the streamlines constant as the flood progresses. They calculated the fluid displacement 
along streamlines using the Buckley-Leverett[22] theory.

If the stream lines are known, the grid points can be distributed arbitrarily along them. The block 
boundaries are in one direction stream lines, forming the so called stream tubes, in the other 
direction they are arbitrary surfaces cutting the stream tubes into blocks.

Figure 3.26 shows a five-spot pattern grid. On one side the stream tubes are irregularly cut into 
grid blocks. On the other side an equivalent orthogonal grid was constructed via stream lines 
and equipotential surfaces. The two grids are equivalent so far in the sense that the stream lines 
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remain unchanged. The interblock transmissibilities have to be calculated with Equation 3.24 
for both cases, only the angle  is 90 degree for the orthogonal case and variable for the other 
one.

Figure 3.26:  Orthogonal and non-orthogonal stream tube grid for five-spot pattern

The applicability of the stream tube model is limited to simple patterns and favorable mobility 
ratio.

If the mobility ratio is adverse, the stream tubes will change significantly during displacement. 
Martin and Wegner[90] proposed a method to change the stream tubes over time. Such a way 
seems to be too complicated for general purpose applications.

The orthogonal stream tube grid has curved block boundaries and so it is a little bit complicated 
to calculate block volumes, surfaces etc. To overcome these difficulties Wadsley[136] suggested 
using non rectangular coordinate lines. The curvilinear edges of the blocks are approximated 
with straight lines. Such a grid is shown in Figure 3.27. The approximation of the flow problem 
is as good as the approximation of the geometry.

γ
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Figure 3.27:  Use of non-rectangular grid to approximate stream tube grid (after 
WADSLEY[136])

3.6.3 Corner Point Geometry

The way to this type of grid is a straight one: Beginning with the non-orthogonal stream tube 
grid which is correct, through the non-rectangular grid which is an approximation of the stream 
tube grid, to the free choosing of the corner points of the grid blocks. The latter is devoid of any 
theoretical background.

Figure 3.28 shows such a grid, taken from the advertising material of a commercial simulator. 
Such a freedom is naturally tempting but the outcome completely uncertain.

Figure 3.28:  Grid construction with corner point geometry



4-69

4 Initialization of a Grid Model

4.1. Initial Pressure and Saturation Distribution in a 
Reservoir

In a reservoir containing hydrocarbons and non-hydrocarbons, the initial phase distribution is 
determined by the equilibrium between capillary and gravitational forces. Capillary pressure is 
the pressure difference between two phases showing different properties, like oil and water or 
gas and liquids. For example, the capillary pressure for the oil-water system is given by:

, (4.1)

where po and pw are the oil and water phase pressures. Due to the phenomenon of capillary 
pressure the vertical saturation distribution is continuous, building a more or less extended 
transition zone between the phases. In equilibrium, the capillary pressure gradient must be equal 
with the gravitational one. Therefore, the following equation must be satisfied:

. (4.2)

The coordinate axes z represents the vertical direction and is oriented downwards. The phase 
densities are a function of the pressure, temperature and additionally of the composition. 

The capillary pressure is not only a function of the saturation, it depends on the direction of the 
saturation change, too (hysteresis effect). Therefore, the concept of initialization must be based 
on the assumed process of hydrocarbon accumulation and needs some further considerations.

4.1.1 Fluid Properties at Initial State

The compositions of the reservoir fluids at the initial state are not uniform. On one hand side the 
reservoir can be divided by sealing faults and interbeddings into more parts, called 
compartments, that communicate through a common aquifer only. Due to this communication 
they build one hydrodynamic unit, that must be integrated into one single block model. The 
reasons for different fluid compositions across a reservoir are manifold. The hydrocarbon 
accumulation could have happened at different time. Also geochemical processes, taking place 
after the accumulation, can lead to different compositions. This kind of differences are handled 
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by introducing PVT regions. The fluid properties are defined for each PVT region 
independently. A PVT region is, per definition, the part of the reservoir, for which the same fluid 
characterization is valid. 

On the other hand side the hydrocarbon phases are mixtures of many chemical compounds, and 
if they are in equilibrium, than their spatial distribution is determined mainly by the equilibrium 
of the chemical potential and the gravitational force. Due to the geothermal temperature 
gradient, also hydrodynamic convection can manifest in a reservoir, which tends to homogenize 
the composition of the phases. The vertical variation of fluid compositions is generally 
non-linear.

How a PVT region must be handled at the initial state depends on the fluid system, the size and 
the complexity of the reservoir. We discuss here black oil type fluid description only. The usual 
approaches are the following:

4.1.1.1 The most simple case

It will be assumed that the temperature and the composition of the phases are uniform in the 
PVT region. That means, that the water salinity and the bubble point pressure of the oil phase 
are uniform. Consequently initially all densities depend on the pressure, which means on depth 
only:

; ; (4.3)

In an oil reservoirs with gas cap, the oil must be saturated at the gas-oil-contact (GOC). Because 
the bubble-point-pressure (pb) is constant, the oil becomes bellow the GOC undersaturated. Due 
to the, with depth increasing phase pressures, all phase densities are increasing too. This is an 
important fact. If the densities would decrease with the depth then the fluid column becomes 
gravitational instable, inducing uncontrolled fluid movement in the model. 

4.1.1.2 Variation of Bubble Point Pressure with Depth

It will be assumed that the temperature is uniform but the bubble point pressure changes 
monotonic with the depth:

;     (4.4)

The vertical changes can be defined by the bubble-point pressure or directly by the solution 
GOR. The condition that the oil density cannot decrease with the depth must be satisfied. 
Therefore the assumption that the oil is saturated at every depth is not applicable. 

4.1.1.3 Variation of Salinity with Depth

ρw ρw pw( )= ρo ρo po( )= ρg ρg pg( )=

Rs Rs z( )= ρo ρo po Rs,( )=
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The water salinity can increase with the depth. The stability requirement is satisfied because the 
water density increases with the salinity:

(4.5)

where CNA is the salt concentration in kg/kg brine.

4.1.1.4 Variation of Temperature with Depth

If the vertical extension of the reservoir is considerable, than it is recommended to account for 
the geothermic temperature gradient. The PVT properties must be defined for two reference 
temperatures and will be interpolated for a given depth. The combination with variable bubble 
point pressure (Case B) and variable salinity (Case C) is naturally possible. For this case: 

;    ;    (4.6)

where T is the temperature. 

4.1.1.5 Variation of Oil Density with Depth

In many reservoirs the oil gravity increases with the depth. In such a case a special model 
formulation must be used, called API Tracking. After the gravity of oil in a block is determined, 
the appropriate fluid properties for this particular oil gravity, saturation pressure and reservoir 
pressure, may be interpolated on both pressure and oil gravity. For the oil density: 

(4.7)

The combination with variable bubble-point-pressure (pb) and salinity is possible but not with 
variable temperature. Assuming variable temperature it would be necessary to interpolate for 
both the API grade and for T, which could not be done practically.

4.1.2 Formation of Hydrocarbon Reservoirs

The porous rock of a hydrocarbon reservoir is assumed to be originally saturated with water 
(brine). During the migration of hydrocarbons (oil and gas) into the trap, the water phase, which 
is in most of the cases the wetting phase (w), is displaced by the non-wetting (nw) hydrocarbon 
phases. In the most simple case, the hydrocarbon mixture forms one single phase resulting in an 

ρw ρw pw CNA,( )=

ρw ρw pw T CNA, ,( )= ρo ρo po T R, s,( )= ρg ρg pg T,( )=

ρo ρo po API R, s,( )=
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undersaturated oil or in a gas reservoir, as it is shown in Figure 4.1

When talking about a reservoir containing oil and free gas (a saturated oil reservoir with a gas 
cap), the hydrocarbon accumulation may have occurred in different ways: 

1. Contemporary migration of the light and heavy HC components into the trap and 
separation of the phases within the trap (Figure 4.2).

2. The heavy components accumulated first and the gas formed during the later phase 
of the genesis and migrated through the oil body.

3. The gas accumulated at first and the oil became trapped later on.

For the cases 1 and 2 the non-wetting gas phase displaced the oil from the gas cap volume 
(drainage process) which is a similar process as the oil/water and gas/water drainage process. In 
the third case the oil entered into the gas cap through imbibition. Nevertheless, it is very 
difficult, maybe impossible to get evidence how the accumulation took place. Therefore, it is 
assumed that both for the oil/water and gas/oil phases the accumulation was a drainage process 
and the primary drainage capillary curves determine the initial phase distributions.

Figure 4.4 shows the water/oil and oil/gas capillary pressure functions for a primary drainage 
process. The saturation changes are ranging between 100% and residual wetting phase 
saturation. The drainage capillary pressure shows normally a threshold pressure. It must be 
exceeded so that the non-wetting phase can enter the pores of the rock.

Figure 4.1:  Formation of two phase reservoirs
 a) Water saturated formation; b) Accumulation of gas or oil

Figure 4.2:  Formation of oil reservoirs
 a) Water saturated formation; b) Migration of hydrocarbons into the trap; c) 

Separation of oil and gas
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4.1.3 Oil-Water and Gas-Oil Contacts

The Water-Oil-Contact (WOC) and analogous the Gas-Oil-Contact (GOC) can be defined in 
different ways. The possible interpretations are the following:

1. At the WOC the water-oil capillary pressure is equal to zero .

2. The oil saturation below the WOC is zero .
3. When opening a well above the WOC oil will be produced, below the WOC only 

water will be produced.

The definitions for the GOC are analogous. The contacts based on these three interpretations are 
shown in Figure 4.4. From the physical point of view the first definition is the only correct one. 
The surface where  is a horizontal plane. It is assumed that no water movement takes 

place in the bottom aquifer. The  surface is normally not a horizontal plane due to the 
different threshold pressure in different areas. The third kind of ‘phase contact’ is influenced by 
the relative permeabilities too. It can be useful from the practical point of view (especially for 
petroleum production engineers) but it is not applicable for reservoir modeling.

Figure 4.3:  Primary drainage capillary pressure curves for oil/water and 
gas/oil
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In the simulation technique always the first definition of the phase contacts must be used. It must 
be emphasized that even above the WOC the water saturation and above the GOC the oil 
saturation can be 1.0, due to the capillary threshold pressure.

4.1.4 Initial Vertical Pressure Distribution

Figure 4.5 shows the vertical distribution of the phase pressures in a reservoir. The vertical 
pressure distribution can be calculated as follows: The pressure of the water phase at a reference 
depth zref > zWOC is called pwref. The pressure at the level z is determined by:

(4.8)

Equation 4.8 is valid below and above the WOC until Sw becomes equal Swc at the depth zB.

The oil-water capillary pressure becomes zero Pcow= 0 at the WOC therefore, the oil-phase 
pressure above the WOC can be calculated as:

(4.9)

At the level zA the difference between the oil and water phase pressures exceeds the threshold 
pressure therefore, the oil saturation becomes greater than zero. At a level zB the water 
saturation becomes Swc and than the water phase pressure follows the oil phase pressure parallel.

Figure 4.4:  Different interpretations of the phase contact
 (1) Pcow = 0; (2) So = 0; (3) qo = 0
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The vertical phase pressure distributions beyond the GOC are similar to those at the WOC:

(4.10)

Due to the threshold pressure the gas saturation becomes greater than zero at the level zC<zGOC.

Equation 4.8 - Equation 4.10 are recursive for the pressures, which does not make any 
difficulties in the practical application.The following numerical solution can be applied for 
phase p:

(4.11)

4.1.5 Initial Vertical Saturation Distribution

After defining the vertical distribution of the phase pressures it is simple to determine the 
saturation distribution:

Figure 4.5:   Initial pressure distribution in the reservoir
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(4.12)

Figure 4.6 shows the vertical phase pressure and the corresponding vertical saturation 
distributions for a given set of capillary pressure and PVT functions. Taking two arbitrary 
depths zI and zJ on this curves, then the following relation must be valid:

(4.13)

Equation 4.13 becomes rigorous if ρj = ρi, which is practically true if the distance between the 
two points is not very large. If the reservoir is described using more rock and PVT regions then 
the vertical pressure and saturation distributions must be calculated for all combinations of the 
rock and PVT regions.

Figure 4.6:  Initial saturation distribution in the reservoir
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4.2. Assigning Pressure and Saturation Values to 
the Blocks

4.2.1 Equilibrium Based Initialization

The reservoir model is built - as result of the discretization of the flow equations - as a three 
dimensional system of blocks. Each block is representing one part of the reservoir rock and is 
characterized by the top depth, thickness, porosity and permeability. Initialization means to 
assign a pressure and the saturation value to each block. The initialization is correct if the 
following two requirements are satisfied:

1. No fluid movement takes place if the model is operated without 
production/injection.

2. The fluid content of every block is practically identical with those of the 
corresponding part of the reservoir.

Figure 4.7 shows a vertical column of blocks together with the vertical distribution of the 
pressure and the saturations. Two possibilities of initialization will be discussed:

INITM: Initialization at the middle-point,
INITD: Initialization based on fluid content.

INITM and INITD are not standardized abbreviations, they are used exclusively in this text for 
sake of brevity only! Use the full expressions “Block middle-point initialization” and 

Figure 4.7:  Initial saturation of the blocks using INITM option
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“Initialization by vertical integration of the fluid content” in daily communication.

INITM is the most simple initialization method and is used by most of the commercial 
simulators. The block pressure and saturations are taken from the vertical distributions at the 
grid point depths. Based on Equation 4.13, INITM satisfies the first requirement but fails 
regarding the second one. For blocks near to the phase contacts, the block saturation can be quite 
different to the real one. It may happen, that the middle-point of the block is situated just below 
of the WOC and the water saturation becomes 1.0. Contrary, point could be just slightly above 
of the WOC resulting in a considerable amount of oil in the block.

Using INITD, the saturation function will be vertically integrated between the top and the 
bottom of the block, determining the average water and oil or gas saturations. It’s easy to solve 
this integration by calculating the integral of the saturations over the height at first. For water 
this means:

(4.14)

where Γ(z) is a function of the rock and PVT properties.The average initial water saturation in 
a given block can be easily calculated by:

Figure 4.8:  Initial saturation of the blocks using INITD option

Saturation Saturation
0 1.0

zwoc

po

pw

1.00

So

Pressure

zref

z

zb

Sw

Sw

Γ z( ) Sw zd
zmin

zmax

=



Initialization of a Grid Model 4-79

(4.15)

Based on this average saturation, the position of the grid point zi will be chosen on the vertical 
saturation distribution function and the block pressure will be interpolated to this depth. This 
method satisfies the first requirement as good as INITM but gives the right fluid in place, too. 
Figure 4.8 demonstrates the result of the INITD method. The distance of two neighboring 
blocks will be determined for this new grid point location.

Aziz[13] uses a correction term to the capillary pressure for each block instead of vertical 
shifting of the grid points. The correction term is calculated based on the correct capillary 
pressure (which maintain the initial equilibrium) and those saturation which results in the 
correct fluid in place:

(4.16)

This correction term must be added to the capillary pressures calculated in each time step, 
resulting in greater storage and CPU time and can therefore not be recommended.

The depth of the grid point determined by INITD will not be very different from the middle 
point. Therefore, it is normally not necessary to recalculate the block-pair transmissibilities if 
they are already available. The difference between the midpoint transmissibility and the 
corrected one is negligible compared to the usual uncertainties of the reservoir parameters. 
Nevertheless the recalculation is an easy issue.

4.2.2 Non Equilibrium Initialization

For non equilibrium initialization pressure and saturation values are assigned for each grid 
block from maps. To achieve no fluid movement at initial conditions, this means before 
production startup, certain measures (e.g. a pseudo capillary pressure) have to be taken.

Such kind of initialization is required in certain circumstances only, such as a tilted phase 
contact at initial time. Especially in the Persian gulf, such reservoirs can be frequently found.

4.2.3 Stability Condition

To have a stable initialization means, that the velocities (or rates) of all phases are zero at each 
communication surface of neighboring grid blocks. It means, that the phases do not move and 
the reservoir is in equilibrium.

The rate of the phases p through connection ij is:

Swi
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(4.17)

where τij is the constant transmissibility between block i and j, krp is the relative permeability, 
μp is the viscosity and Φp is the potential of the phase p. The mobility λpij will be calculated by 
one point upstream weighting:

(4.18)

The rate between the two blocks is zero if (1) the phase potentials of the two blocks are equal 
or (2) λpij is zero. Based on Equation 4.13 the first condition must be satisfied if the saturation 
of the phase p is greater then the immobile saturation in both blocks. Consequently λpij is greater 
than zero, independent which of the blocks is the upstream one. If the mobility in the block j is 
zero but not in the block i, than the block j is already in the interval in which the (wetting) phase 
pressure gradient is parallel to the non-wetting ones (above the level zb in Figure 4.7) and 
therefore for the wetting phase the block j becomes the “upstream” block and

. (4.19)

It is easy to approve if the initialization is stable or not by calculating the model without 
production/injection. Some simulators provide so called uniforming options (see Aziz[13]) to 
counterbalance the instable initialization. This is not necessary if the method INITD will be 
used.

4.2.4 Segregated Flow

In important cases, especially for gas reservoirs, it is possible to use a simpler concept assuming 
a complete separation of the phases neglecting the capillary pressures. Figure 4.9 shows such a 
model.

Above the WOC or WGC the water saturation is immobile (Swc) and above the GOC the oil 
saturation is zero.The average block saturations can be calculated easily based on the position 
of the blocks and the phase contacts. This results in two classes of blocks: (1) The blocks which 
are not cut by phase contacts. They contain one mobile phase only. The block pressure can be 
assigned to the midpoints in the same manner as it is done with INITM. (2) The phase contact 
is cutting the block. In this case the grid point depth must be equal with the depth of the phase 
contact, otherwise the potential difference between two neighboring blocks will not be zero and 
will induce an uncontrolled fluid movement.

qp τij
krp
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ij
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4.3. Practical Remarks

1. The measured pressure p at a given depth will be equivalent with the pressure of 
those phase which is in contact with the pressure gauge. For the initial state we can 
assume that

(4.20)

Regarding the Equation 4.3 the phase densities are functions of their own phase 
pressure. This leads to the complication that they will not be a function of the 
measured pressure p only but based on the Equation 4.1 of the capillary pressures 
and the saturations, too. This does not effect the initialization but induces a more 
complicated and time consuming calculation of the coefficients of the flow 
equations which are required for all blocks and time steps. For the practical point of 
view it is enough to assume that the densities are functions of the measured pressure 
p (defined by Equation 4.20) only:

(4.21)

Figure 4.9:  Segregated flow initialization (INITSF option)
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2. For initialization the drainage type capillary pressure functions (see Figure 4.3), for 
calculating the displacement (simulation run) those for the imbibition types should 
be used. Although the drainage and imbibition curves are different in shape, they 
end up with equal values at the initial saturation for each individual block. Capillary 
pressure functions are not only a function of the saturation, they depend on the 
direction on saturation change, too. This phenomenon is called hysteresis. In many 
cases the hysteresis data are not available, therefore, one set of capillary (and 
relative permeability) functions will be used only. There is no doubt which type of 
relative permeabilities should be used during the simulation run because they are 
required for the dynamic calculation only. For an oil reservoir there will be the 
imbibition curve for kro and krw and the drainage curve for krg.
If using one set of the capillary pressure curves an error will be introduced either in 
the initialization (in case of imbibition functions) or in the calculation of 
displacement (in case of drainage functions). Which error is more serious depends 
on the actual project. E.g. imbibition functions should be used for modeling a single 
well conning problem while drainage curves in most of the full-field cases.
The drainage type capillary functions shows a jump at Sw=1, called threshold 
pressure. This cannot be handled mathematically, therefore, it is necessary to smear 
out the curve. The imbibition type capillary function has no values at Sw>(1.-Sor), 
still this interval must be defined when using the function for initialization, too. 
Therefore, the capillary functions must be given in a form when using for numerical 
calculation, that both

(4.22)

become unambiguous. This numerical ‘corrections‘ are shown in Figure 4.10

Figure 4.10:  Numerical representation of drainage and imbibition type capillary pressure 
curves
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5  Wells in Reservoir Simulation

5.1. The Well Models

To consider the wells in a numerical reservoir model to fundamental different approaches exist:

1. Using specialized grids (radial, unstructured, windows) that represent the well at its 
true scale.

2. Applying so called well models which relate the bottom hole flowing pressure to the 
pressure of the perforated grid cell.

The first approach is beyond the scope of this textbook. Therefore only the second one will be 
followed, which is the standard approach in commercial reservoir simulators.

In reservoir simulation models wells are usually defined as a  "source" (or "sink"), located in a 
grid block with dimensions considerably larger than the wellbore. No special gridding technique 
is used around the well. Because of this dimension difference between the well and its grid 
block, the numerically calculated block pressure is different from the well bottom hole flowing 
pressure. A well model is therefore needed to translate the block pressure into wellbore 
pressure. It is a relationship between wellbore pressure pwf, block pressure p0, and well 
production rate q. The model describing this relationship may be called well index, numerical 
productivity index, or simply well model.

Peaceman[105] introduced the basis for the most common well model. The Peaceman-type well 
model calculates an equivalent well block radius r0 which is defined as the radial distance from 
the well at which the numerically calculated block pressure equals the reservoir steady state 
pressure, hence 

(5.1)

where

pwf is the wellbore pressure,
p0 is the block pressure,
q is the well production rate,
k is the well block permeability,
h is the well block effective thickness,
r0 is the equivalent well block radius,

pwf p0
μq

2πkh
-------------

r0
rw
-----ln–=
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rw is the wellbore radius.

5.2. The Peaceman Well Model

Peaceman’s approach is based on the comparison of the analytical solution with the result of the 
numerical solution of a selected problem. He considers one phase flow in a two dimensional 
domain with constant pressure at the boundary. The wells have an arbitrary position (xk,yk) and 
produce with constant rate qk (positive for production and negative for injection). Muskat [97]

gave the analytical solution of this problem using the principle of superposition such that the 
pressure p(x,y) at any point (xy) is given by Equation 5.2:

, (5.2)

where rxyk is the distance of the well k to the point (x,y), and c is an arbitrary constant determined 
by the boundary condition. The boundary pressure pΓ(x,y) can be chosen in such a way that the 
constant c becomes equal to zero. In this case the following equation must be valid:

(5.3)

From Equation 5.2 and Equation 5.3 the bottom hole flowing pressure for a well m can be 
calculated as follows: 

(5.4)

where

qm is the well rate,
qk is the rate of offset wells,
rwm is the considered well radius,
rkm is the distance between the considered well m and offset well k.

The same problem can be solved numerically using the finite difference method. The region is 
overlain by a rectangular grid having a grid aspect ratio α = Δy/Δx. The pressure at the boundary 
nodes is set equal to the values given by Equation 5.3.

Using five point difference scheme, the finite difference equation is written as: 
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(5.5)

where qij is the sum of the production rates of all wells located within block (ij). The solution 
of the linear equation system Equation 5.5 gives the block pressure pijm. Inserting this pressure 
the well bottom hole flowing pressure pwfm can be calculated as follows:

(5.6)

By combining Equation 5.4 and Equation 5.6, and solving for the equivalent wellblock radius 
(r0m) 

(5.7)

where pijm is the wellblock pressure.

Equation 5.7 is a general equation for the equivalent wellblock radius for regular 2D grids.

When a single well lies on the boundary of two blocks, each block has a rate qij equals half the 
well rate. pijm will be the same for both blocks because of similarity, and qk will be 0 for k not 
equal to m (as no other wells exist when the well is considered isolated).

It should be emphasized that Equation 5.7 is valid only if the basic assumptions of Peaceman 
are satisfied. They are the following:

• the flow is two dimensional, 
• the well(s) is isolated, 
• regular grids (rectangular or square) are used, and 
• the blocks are uniform (i.e. Δy and Δx are constants and no grid refinement is used).

A well is regarded as isolated, if it is far enough from any reservoir boundary and other wells, 
such that it may not be influenced by them. A conservative rule that the well is isolated if rAB > 
10 max (Δy,Δx) where rAB is the distance to the nearest well and

(5.8)

where

u is the distance to the nearest boundary parallel to y direction.
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v is the distance to the nearest boundary parallel to x direction.
α is the grid aspect ratio (Δy/Δx).

The most important results from Peaceman are presented in the following.

5.3. Peaceman Results for Different Well Geometries

Peaceman[106] made calculations for a square domain using the solution given by Equation 5.7 
with the boundary condition defined by Equation 5.3. He found that the equivalent wellblock 
radius (r0) is a function of the block diagonal 

Ld = ((Δx)2+(Δy)2)0.5. (5.9)

For a well at the center of a rectangular block he found that 

(5.10)

This ratio is constant regardless the grid aspect ratio α = Δy/Δx. Peaceman[106] called the 
constant (0.14) as G. If the well is located within its block but off the center, the ratio (r0/Ld) is 
still constant. The conclusion that the equivalent wellblock radius is constant regardless the 
position of the well in its block is somehow surprising. 

In an anisotropic case Ld has to be calculated in the equivalent isotropic uv plane such that:

(5.11)

(5.12)

For example in the case of a single well centered in its block in an anisotropic reservoir the 
equivalent well block radius is:

(5.13)

For an isotropic reservoir, modelled with squared blocks of side length Δx Equation 5.13 
simplifies to: 
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(5.14)

5.4. Well Model for Horizontal Wells

For the simulation of a horizontal well parallel to y axis, Peaceman’s [108] Equation 5.13 can be 
used by replacing the y axis by z axis thus 

(5.15)

such that the well model is written as:

(5.16)

Peaceman[108] emphasized that Equation 5.15 should be used only if the assumptions of 
uniform grid and isolated well are satisfied. He explained that the horizontal well can be 
considered isolated if the following condition is true:

(5.17)

where zw represents the vertical distance between the lower boundary of the reservoir and the 
well

Δz is the vertical grid dimension
h is the reservoir thickness

This means that the scaled grid aspect ratio should be less than the number of blocks between 
the well and the nearest boundary.

If these conditions are satisfied then Equation 5.15 can be used with error less than 10%. If the 
condition in Equation 5.17 is not satisfied then Babu et al. [14] model should be used. However 
this well model is beyond the scope of the "Introduction to Reservoir Simulation" volume.

r0 0.14 2Δx2 0 2Δx,≈=

r0

0.14 Δx( )2 kz
kx
-----

0 5,
Δz( )2 kx

kz
-----

0 5,
+⋅

1
2
--- kz

kx
-----

0 25, kx
kz
-----

0 25,
+⋅

---------------------------------------------------------------------------------------------=

pwf p0
μq

2πΔy kz kx( )
----------------------------------

r0
rw
-----ln–=

Δx
Δz
------

kz
kx
-----

0.5
⋅

0.9 min zw h zw–,( )⋅
Δz

--------------------------------------------------<



5-88 Wells in Reservoir Simulation



6-89

6 References

1 Aavatsmark, I., Barkve, T., Boe, O. and Mannseth, T.: "Discretisation on Unstructured Grid for 
Inhomogeneous, Anisotropic Media, Part I: Derivation of the Methods," SIAM J.Sci. Comput. 
19 (1998), 1700-1716.

2 Aavatsmark, I., Barkve, T., Boe, O. and Mannseth, T.: "Discretisation on Unstructured Grid for 
Inhomogeneous, Anisotropic Media, Part II: Discussion and Numerical Results," SIAM J.Sci. 
Comput. 19 (1998), 1717-1736.

3 Aavatsmark, I., Barkve, T., Boe, O. and Mannseth, T.: "A Class of Discretisation Methods for 
Structured and Unstructured Grids for Anisotropic, Inhomogeneous Media,"  Proc. 5th 
European Conference on the Mathematics of Oil Recovery, Leoben/Austria, Sept. 3-6, 1996.

4 Aavatsmark, I., Reiso, E. and  Teigland, R.: "MPFA for Faults and Local Refinements in 3D 
Quadrilatereal Grids With Application to Field Simulation," paper SPE 66356, presented at the 
SPE 16th Reservoir Simulation Symposium held in Houston,TX, 11-14 February 2001.

5 Abbas, H. and Neda, J: "Rock Mechanics in Wellbore Construction," Chap. 6 in 
Economides,M.J. at al. "Petroleum Well Construction," J.Wiley & Sons, Chichester (1998).

6 Abdelmawla A.M.: "Numerical Well Test Modeling in a Full-Field Simulator Offers New 
Opportunities for Reservoir Characterization", paper presented at the 6th European Conference 
on Mathematics of Oil Recovery (ECMOR VI), Peebles, Scotland, September 7-11, 1998.

7 Abdou,M.K., Pham,H.D. and Al-Aqueeli,A.S.:"Impact of Grid Selection on Reservoir 
Simulation,"JPT(July 1993) 664-69.

8 Abou-Kassem J.H., Aziz K.: "Analytical Well Models for Reservoir Simulation", paper SPE 
11719, presented at 1985 SPE California Regional Meeting held in Ventura.

9 Afilaka, J. and Deimbacher, F.: ”Numerical Well Testing in Complex Reservoirs,” Petroleum 
Engineer International, June 1997, 21-28. 

10 Agarwal, R.G.:”A New Method to Account for Producing Time Effect when Drawdown Type 
Curves are Used to Analyze Pressure Buildup and Other Test Data,” SPE 9289, paper presented 
at the 1980 Annual Technical Conference and Exhibition, Dallas, September 21-24.

11 Akbar, A.M., Arnold, M.D. and Harvey, A.H.:”Numerical Simulation of Individual Wells in a 
Field Simulation Model,” Paper presented at the 1972 SPE Annual meeting, San Antonio, 
October 8-11.

12 Amado, L.C.N, Ganzer, L. and Heinemann, Z.E.: "Finite Volume Discretization of the Fluid 
Flow Equations on General Perpendicular Bisection Grids", paper presented at the 1994 Fifth 
Intl. Forum on Reservoir Simulation, Muscat, Oman, Dec. 10-14.

13 Aziz, K. and Settari, A.: Petroleum Reservoir Simulation, Applied Science Publishers, 1979.



6-90 References

14 Babu, D.K., Odeh, A.S., Al-Khalifa, A.J.A. and McCann, R.C.:”The Relation between 
Wellblock and Wellbore Pressures in Numerical Simulation of Horizontal Wells,” SPERE, 
August 1991, 324-328.

15 Babu, D.K. and Odeh, A.S.:”Productivity of a Horizontal Well,” SPERE, November 1989, 
417-421.

16 Beckner, B.L., Mutfilz, J.M., Ray, M.B. and Tomich, J.F.: “EMpower: New Reservoir Simulation 
System,” paper SPE 68116 presented at 2001 SPE Middle East Oil Show held in Bahrain, 17-20 
March 2001.

17 Bourdet, D., Ayoub, J. and Pirard, Y.:”Use of Pressure Derivative in Well Test Interpretation,” 
SPE Formation Evaluation, June 1989, 293-302.

18 Brand, C.W. and Heinemann, Z.E.: “A New Iterative Solution Technique for Reservoir 
Simulation Equations on Locally refined Grids,” SPE Reservoir Engineering, Nov.1990, 
p.555-560.

19 Brand, C.W. and Heinemann, Z.E.: “Fundamentals of Gridding Techniques in Reservoir 
Simulation,” paper presented at the Forth Intl. Forum on Reservoir Simulation, 
Salzburg/Austria, Aug. 31-Sept. 4, 1992.

20 Bremeier, M., Fink, G., and Heinmann, Z.E.: Simulation of Dual Porous and Permeable 
Hydrocarbon Reservoirs. Erdoel-Erdgas-Kohle, March, 110-117, 1991.

21 Bremeier, M. (1991): Numerical Simulation of Fractured Petroleum Reservoirs with 
Interchangeable Matrix-Fracture Transfer Terms and Optional Subdivision of the Matrix Grid 
Cells. Ph.D. Dissertation, Mining University, Leoben.

22 Buckley, S.E. and Leverett, M.C.: "Mechanism of Fluid Displacement in Sands," Trans.AIME 
146 (1942), p.107-116.

23 Chikhliwala, E.D. and Huang, A.B.: "Investigation on Viscous Fingering by Linear and Weakly 
Nonlinear Stability Analysis," SPERE (Nov.1988) p.1268-1278.

24 Chouke, R.L., van Meurs, P. and van der Poel, C.: "The Instability of Slow, Immiscible, Viscous 
Liquid-Liquid Displacements in Permeable Media," Trans.AIME 216, (1959) p.188-194.

25 Coats, K.H. and Modine, A.D.: "A Consistent Method for Calculating Transmissibilities in 
Nine-Point Difference Equations," paper SPE 12248 presented at the 1983 SPE Symposium on 
Reservoir Simulation, San Francisco.

26 Coats, K.H.: "Implicit Compositional Simulation of Single-Porosity and Dual-Porosity 
Reservoirs". Presented at the First International Forum on Reservoir Simulation, Alpbach, 
September 12-16, 1988 and SPE 18427.

27 Coats, K.H., Nielsen, R.L., Terhune, M.H., and Weber, A.G.: "Simulation of 
Three-Dimensional, Two-Phase Flow in Oil and Gas Reservoirs". SPEJ, December, 377-88, 
1967.

28 Collins D.A., Mourits F.M.: “Multigrid Methods Applied to Near-Wellbore Modeling in 
Reservoir Simulation", unconsolitied paper, SPE 23607, 1991.

29 Craft, B.C. and Hawkins, M.F.:”Applied Petroleum Reservoir Engineering,” Prentice Hall, 
November 1964, 314.



References 6-91

30 Da Silva, F.V., and Belery, P.: "Molecular Diffusion in Naturally Fractured Reservoirs: A 
Decisive Recovery Mechanism". SPE 19672, presented at the 64th Annual Technical 
Conference and Exhibition, San Antonio, Texas, October 8-11, 1989.

31 Dean, R.H., and Lo, L.L.: "Simulations of Naturally Fractured Reservoirs". SPERE, May, 
638-648, 1988.

32 Deimbacher, F.,X. and Heinemann, Z.E.: ”Time Dependent Incorporation of Locally Irregular 
Grids in Large Reservoir Simulation Models,” Paper presented at the 12th SPE Symposium on 
Reservoir Simulation, New Orleans, February 28 - March 3, 1993.

33 Deimbacher F.X., Komlosi F. and Heinemann Z.E.: “Fundamental Concepts and Potential 
Applications of the Windowing Technique in Reservoir Simulation”, SPE 29851, presented at 
1995 SPE Middle East Oil Show held in Bahrain, 17-20 March 1995.

34 Ding Y., (1996): “Well Modeling in Reservoir Simulation,” paper presented at the 5th European 
Conference on the Mathematics of Oil Recovery, Leoben.

35 Ding., Y.:”A Generalized 3D Well Model for Reservoir Simulation” Paper presented at SPE 
Annual Technical Conference, Dallas, October 1995, 227-242.

36 Douglas, J., Peaceman, D. W. and Rachford, H. H.: "A Method for Calculating 
Multi-Dimensional Immiscible Displacement," Society of Petroleum Engineers, 1959.

37 Durlofsky, J.L.: “Numerical calculation of Equivalent Grid Block Permeability Tensor for 
Heterogeneous Media,” Water Resources Research, Vol.27, No.5, (May 1991) 699-708.

38 Earlougher, R.:”Advances in Well Test Analysis,” SPE Monograph Series No. 5, 1977, 
22-23,42-45.

39 El-Mandouh, M.S., Betté, S., Heinemann, R.F., Ogiamien, E.B., Bhatia, S.K.: “An Integrated, 
Full-Field Compositional Simulation of the OSO Reservoir, Nigeria”, paper presented at the 
Forth Intl. Forum on Reservoir Simulation, Salzburg/Austria, Aug. 31-Sept. 4, 1992.

40 Ewing, R.E., Lazarov, R.D. and Vassilevski, P.S.: “Finite Difference Schemes on Grids with 
Local Refinement in Time and Space for Parabolic Problems I.Derivation, Stability, and Error 
Analysis,” Computing 45, 193-215.

41 Fleming,G.C.:"Modeling the Performance of Fractured Wells in Pattern Floods Using 
Orthogonal Curvilinear Grids", paper SPE 20744 presented at the 1990 Annual Technical 
Conference and Exhibition, New Orleans, Sept. 23-26.

42 Forsyth P.A. and Sammon P.H.: “Local Mesh Refinement and Modeling of Faults and 
Pinchouts”, SPE 13524, SPEFE (June 1986) 275-85.

43 Forsyth, P.A.: “A Control Volume Finite Element Method for Local Mesh Refinement,” paper 
SPE 18415 presented at 1989 SPE Symposium on Reservoir Simulation, Houston, TX, Feb. 6-8.

44 Fung, L.S.K., Hiebert, A.D. and Nghiem, L.: “Reservoir Simulation with a Control-Volume 
Finite-Element Method,” paper SPE 21224 presented at 1991 SPE Symposium on Reservoir 
Simulation, Anaheim, CA, Feb 17-20.

45 Fung, L.S.K.: "Simulation of Block-to-Block Processes in Naturally Fractured Reservoirs". 
SPE 20019, presented at the 60th California Regional Meeting, Ventura, California, April 4-6., 
1990.



6-92 References

46 Ganzer, L.:”A Novel Approach for Multi-Purpose Reservoir Simulators Using Mixed Models,” 
Paper presented at the 6th European Conference on Mathematics of Oil Recovery (ECMOR 
VI), Peebles, Scotland, September 7-11, 1998.

47 Ganzer, L.:”Petroleum Reservoir Simulation Using Mixed Models,” PhD. Dissertation at 
Mining University Leoben, September 1997.

48 Geoquest: “FlowGrid User Manual, Geoquest”, Abingdon U.K. (1998).

49 Geoquest: “Welltest 200 User Manual”, Geoquest, Abingdon U.K. (1997).

50 Gilman, G.R., and Kazemi, H.: "Improved Calculation for Viscous Gravity Displacement in 
Matrix Blocks in Dual-Porosity Simulators". SPE JPT, January, 60-70, 1988 and SPE16010.

51 Gunasekera, D., Cox, J and Lindsey, P.: “The Generation and Application of K-Orhogonal Grid 
Systems,” paper SPE 37998, presented at the SPE 14th Reservoir Simulation Symposium held 
in Dallas,TX,, Jun. 8-11, 1997.

52 Gosselin, O. and Thomas, J.H.: “Domain Decomposition Methods in Reservoir Simulation 
Coupling Well and Full-Field Models,” paper presented at the 1990 Second European 
Conference on the Mathematics of Oil Recovery, Arles, France, Sept. 11-14.

53 Gunasekara,D., Herring,J. and Cox,J.: “Segmented Coordinate Line Based Unstructured 
Grids”, 6th European Conference on the Mathematics of Oil Recovery, Peebles, 8-11 Sept.1998.

54 Gunasekera, D., Childs, P., Herring, J. and Cox, J.: “A Multi-Point Flux Discretization Scheme 
for General Polyhedral Grids,” paper SPE 48855, presented at the SPE 6th International 
Oil&Gas Conference and Exhibition held in China, Beijing, Nov. 2-6, 1998.

55 Hall, K.R. and Yarborough, L.: “New, Simple Correlation for Predicting Critical Volume,” 
Chem. Eng. (Nov. 1971) 76-77.

56 Hegre, T.M., Dalen, V. and Henriquez, A.: "Generalized Transmissibilities for Distored Grids 
in Reservoir Simulation",paper SPE 15622 presented at 1986 SPE 61st Annual Technical 
Conference and Exhibition held in New Orleans, LA October 5-8.

57 Heinemann Z.E., Gerken G., and Meister, S.: “Anwendung der lokalen Netzverfeinerung bei 
Lagerstättensimulation” paper presented at the 1982 27th DGMK Annual Meeting held 8. 
Oct.1982 in Achen, Erdöl-Erdgas 6. (Jun.1983), 199-204. 

58 Heinemann Z.E., Gerken G. and vonHantelmann G.: “Using Grid Refinement in a Multiple- 
Application Reservoir Simulator”, SPE 12255, presented at the 1983 SPE Symposium on 
Reservoir Simulation, San Francisco, Nov. 15-18.

59 Heinemann, Z. E., Brand, C. W.: “Gridding techniques in reservoir simulation, Proc. First Intl. 
Forum on Reservoir Simulation, Alpbach 1988, pp. 339-425.

60 Z.E.Heinemann et al.:”Modeling Reservoir Geometry with Irregular Grids,” Paper presented at 
the SPE Symposium on Reservoir Simulation, Houston, TX, February 6-8, 1989, 37-54. 

61 Heinemann, Z.E. and Brand, C.W.: “Gridding Techniques in Reservoir Simulation,” paper 
presented at the Second Intl. Forum on Reservoir Simulation, Alpbach/Austria, Sept. 4-8, 1989.

62 Heinemann, Z.E. and Deimbacher, F.X.: “Advances in Reservoir Simulation Gridding,” paper 
presented at the Forth Intl. Forum on Reservoir Simulation, Salzburg/Austria, Aug. 31-Sept. 4, 
1992.



References 6-93

63 Heinemann, Z.E.: “Interactive Generation of Irregular Simulation Grids and its Practical 
Applications” paper SPE paper SPE 27998 presented at the University of Tulsa Centennial 
Petroleum Engineering Symposium, Tulsa, OK, Aug. 29-31,1994.

64 Heinemann,Z.E.: “Advances in Gridding Techniques,” paper presented at the Fifth Intl. Forum 
on Reservoir Simulation, Muscat/Oman, Dec. 10-14, 1994.

65 Heinemann, Z.E., Heinemann, G.F. and Tranta B.M: “Modeling Heavily Faulted Reservoirs,” 
paper SPE 48998, presented at the SPE Annual Technical Conference and Exhibition held in 
New Orleans, Louisiana.,Dallas,TX, Sept. 27-30, 1998.

66 Heinemann G.F., Brockhauser S.: ”Implementation of Three-Dimensional KPEBI Grids for 
Slanted Wells in a Field-scale Reservoir Model,” Paper presented at the 6th European 
Conference on Mathematics of Oil Recovery (ECMOR VI), Peebles, Scotland, September 7-11, 
1998.

67 Heinemann, G. and Abdelmawla, A.:”Comparison of SURE Simulator 3D Window Horizontal 
Well to Horizontal Well Analytical Solutions,” Internal report, HOT Engineering, April 1998.

68 Heinemann, G.F., Ahmed Abdelmawla and Brockhauser, S.: “Modeling of Fluid Flow around 
and within Highly Deviated Horizontal Wells,” Proc. 7th European Conference on the 
Mathematics of Oil Recovery, Baveno/Italy, Sept. 5-8, 2000.

69 Heinrich, B.: "Finite Difference Methods on Irregular Networks," Verlag Birkhäuser, Basel, 
Boston, Stuttgart. 1987, p.206.

70 Herweijer, J.C. and Durbule, O.R.F.: ”Screening of Geostatistical Reservoir Models with 
Pressure Transients,” JPT, November 1995, 973-979.

71 Hickernell, F.J. and Yortsos, Y.C.: "Linear Stability of Miscible Process in Porous Media in 
Absence of Dispersion," Stud.Appl.Math.. 74, (1986) p.93-115. 

72 Higgins, R.V. and  Leighton, A,J.: " Computer prediction of Water Drive of Oil and Gas 
Mixtures Trough Irregulary Bounded Porous Media - Three phase Flow," JPT Sept. 1962, 
p.1048-54., Trans. AIME 255.

73 Hirasaki, G.J. and O’Dell, P.M.: “Representation of Reservoir Geometry for Numerical 
Simulation,” Trans.AIME, 249,(1970), 393-404.

74 Homsy, G.M.: "Viscous Fingering in Porous Media," Ann.Rev.Fluid Mech.. 19 (1987), 
p.271-311.

75 Horner, D.R.:” Pressure Buildup in Wells,” Proceedings of Third World Petroleum Congress, 
The Hague, 1951, 503-523.

76 http://www.posc.org/rescue/Rescue980615_doc/WhatsInRescue.htm, August 16, 2001.

77 Jahveri, B.S. and Youngren, G.K.: “Three-Parameter Modification of the Peng-Robinson 
Equation of State to Improve Volumetric Predictions,” paper SPE 13118 presented at the 1984 
Annual Meeting, Houston, Sept. 16-19.

78 Kamal, M., Freyder, D.G. and Murray, M.A.: ”Use of Transient Testing in Reservoir 
Management,” JPT, November 1995, 992-999.

79 Kazemi, H., Merril, L.S., Porterfield, K.L., and Zeman, P.R.: "Numerical Simulation of 
Water-Oil Flow in Naturally Fractured Reservoirs". SPEJ December, 317-326 and SPE Paper 



6-94 References

5719, 1976.

80 Kesler, M.G. and Lee, B.I.: “Improve Predictions of Enthalpy of Fractions,”     Hydro. Proc. 
(March 1976) 55, 153-158.

81 Kocberber, Sait.: “An Automatic, Unstructured Control Volume Generation System for 
Geologically Complex Reservoirs”, paper presented at the 1997 Reservoir Symposium held in 
Dallas, Texas, 8-11 June 1997.

82 Komlosi, F.:”Use of the Windowing Technique and a New Radial Grid for the Accurate 
Simulation of Transient Well Tests in a Field Scale Reservoir Model,” Master Thesis, Mining 
University Leoben, June 1994.

83 Krysl, P. and Oritz, M.: “Variational Delaunay Approach to the Generation of Tetrahedral Finite 
Element Meshes”. submitted on January 21, 1999 to the International Journal for Numerical 
Methods in Engineering.

84 Kunianski, J. and Hillestad, J.G.:”Reservoir Simulation using Bottomhole Pressure Boundary 
Conditions,” SPEJ, December 1980, 473-486.

85 Lee, J.:”Well Testing,” SPE Textbook Series, Vol. 1, 1982, 44.

86 Lee, S.H. and Milliken, W.J.:”The Productivity Index of an Inclined Well in Finite-Difference 
Reservoir Simulation,” Paper presented at the 12th SPE Symposium on Reservoir Simulation, 
New Orleans, February 28 - March 3, 1993.

87 Litvak, B.L.: "Simulation and Characterization of Naturally Fractured Reservoirs". Reservoir 
Characterization Conference, Dallas, Academic Press, New York City, 561-583, 1985

88 Lohrenz, J., Bray, B.G. and Clark, C.R.: “Calculating Viscosities of Reservoir Fluids From 
Their Compositions,” JPT (Oct. 1964) 1171-1176.

89 Manzocchi, T., Walsh, J.J., Nell, P. and Yielding, G.: “Fault Transmissibility Multiplier for 
Flow Simulation Models,” Petroleum Geoscience, Vol.5 1999, pp.53-63.

90 Martin, R.E. and Wegner, R.E.: "Two-Dimensional Incompressible Flow Using Stream-Tube 
Relationship," SPEJ Oct.1979, p.313-323.

91 Matijevic, P. and Deimbacher, F.X.: “Modeling Faults in Reservoir Simulation”, Proc. 4th 
European Conference on the Mathematics of Oil Recovery, Rørøs, Norway, June 7-10. 1994.

92 Matthews, C.S., Brons, F. and Hazebroek, P.:”A Method for Determination of Average Pressure 
in Bounded Reservoir,” Trans. AIME, 1954, 182-191.

93 Miller, C.C., Dyes, A.B. and Hutchinson, C.A., Jr.:”The Estimation of Permeability and 
Reservoir Pressure from Bottom Hole Pressure Build-up Characteristics,” Trans. AIME, 1950, 
189, 91-104.

94 Mlacnik M.J. and Heinemann Z.E. (2001): “Using Well Windows in Full Field Reservoir 
Simulation”. SPE 66371, paper presented at the SPE Reservoir Simulation Symposium held in 
Houston, Texas, 11-14 February 2001.

95 Mlacnik M.J., Harrer A. and Heinemann G.F. (2001): “State-of-the-Art in the Windowing 
Technique”. PAPER 2001-03, paper presented at the Petroleum Society’s Canadian 
International Petroleum Conference 2001, Calgary, Alberta, June 12 - 14, 2001.



References 6-95

96 Mrosovsky, I. and Ridings, R.L.:”Two-Dimensional Radial Treatment of Wells within a 
Three-Dimensional Reservoir Model,” SPEJ, April 1974, 127-131.

97 Muskat, M.:”The Flow of Homogeneous Fluids through Porous Media,” McGraw-Hill Book 
Co., New York City (1937); reprint edition, International Human Resources Development 
Corp., Boston (1982). 

98 Nacul E.C., Lepretre C. et al., (1990): “Efficient Use of Domain Decomposition and Local Grid 
Refinement in Reservoir Simulation”, SPE 20740, 65th Annual Conference and Exhibition of 
the Society of Petroleum Engineers, New Orleans.

99 Nghiem, L.X.: “An Integral Approach for Discretizing the Reservoir Fluid Equations,” SPERE 
(May 1988) 685-690.

100 Odeh,A. and Babu,D.:”Transient Flow Behavior of Horizontal Wells: Pressure Drawdown and 
Buildup Analysis,” SPE Formation Evaluation, March 1990, pp. 7-15.

101 Palagi, C. and Aziz, K.:”A Dual Timestepping Technique for Simulating Tracer Flow,” 
Unsolicited Paper, SPE 24220, September 1991.

102 Palagi, C.L., Aziz, K.:”The Modelling of Vertical and Horizontal Wells with Voronoi Grid,” 
Paper presented at Western Regional Meeting, California, March 1992, 435-452.

103 Patgawkar, A., Shinkhare, D., Mahapatra, S., Gopalsamy, S. and Mudur, S.P.: “Tetrahedral 
Discretization of Complex Volumetric Spaces”. National Center for Software Technology, 
India.

104 Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation, Elsevier Scientific 
Publishing Company, 1977.

105 Peaceman, D.W.:”Interpretation of Well-block Pressures in Numerical Reservoir Simulation,” 
SPEJ, June 1978, 183-194.

106 Peaceman, D.W.: “Interpretation of Well-Block Pressures in Numerical Reservoir Simulation. 
Part 3: Some Additional Well Geometries” paper SPE 16976 presented at SPE Annual 
Technical Conference, Dallas, TX.,27-30 Sept. 1987.

107 Peaceman, D.W.:”Interpretation of Well-block Pressures in Numerical Reservoir Simulation 
with Nonsquare Grid Blocks and Anisotropic Permeability,” SPEJ, June 1983, 531-543.

108 Peaceman, D.W.:”Representation of a Horizontal Well in Numerical Reservoir Simulation,” 
Paper presented at 11th. SPE Symposium on Reservoir Simulation, California, February 1991, 
153-162.

109 Pedrosa, Jr., O.A. and Aziz, K. “Use of Hybrid Grid in Reservoir Simulation,” SPERE (Nov. 
1986) 611-621.

110 Peery, J.H. and Herron, E.H.: "Three-Phase Reservoir Simulation," JPT 21 (1969), p.211-220., 
Trans AIME 246, p.211-220.

111 Peneloux, A., Rauzy, E. and Freze R.: “A Consistent Correction for Redlich-Kwong-Soave 
Volumes,” Fluid Phase Equilibria (1982) 7-23.

112 Peng, D.Y. and Robinson, D.B.: “A New Two-Constant Equation of State,” Ind. Eng. Chem. 
Fund. (1976) 59-64.



6-96 References

113 Perrine, R.L.: "The Development of Stability Theory for Miscible Liquid-Liquid 
Displacement," SPEJ, March 1961, p.17-25.

114 Petterson, O.: “Building, Mapping, and History Matching very large and Complex Grids - with 
examples from the Gullfaks Field”, paper presented at the 1994 Fourth European Conference 
on the Mathematics of Oil Recovery, Rørøs, Norway, June 7-10.

115 Pointing, D.K.: "Corner Point Geometry in Reservoir Simulation," Mathematics of Oil 
Recovery, King, P.R.(ed) Oxford, 1992.

116 Puchyr, P.J.:”A Numerical Well Test Model,” Paper presented at the SPE Rocky Mountain 
Regional Meeting held in Denver, Colorado, April 1991, 125-139.

117 Quandalle P., Besset P.: “The Use of Flexible Gridding for Improved Reservoir Modeling”, SPE 
12238, presented at the 1983 SPE Symposium on Reservoir Simulation, San Francisco, Nov. 
15-18.

118 Reid, R.C., Prausnitz, J.M. and Poling, B.E.: The Properties of Gases and Liquids, 4th Edition, 
McGraw-Hill Inc., New York (1987).

119 Rozon, B.J.:"A Generalized Finite Volume Discretization Method for Reservoir Simulation", 
paper SPE 20744 presented 1989 at the 10th SPE Symposium on Reservoir Simulation, Huston, 
Feb.6-8.

120 Rossen, R.H., and Shen, E.I.: "Simulation of Gas/Oil and Water/Oil Imbibition in Naturally 
Fractured Reservoirs". SPE 16892, presented at the 62nd Annual Fall Meeting, Dallas, Texas, 
September 27-30, 1987.

121 Schwarz, H.A.: “Über einige Abbildungsaufgaben,” Gesammelte Mathematische 
Abhandlungen (Nov. 1889) 65-83.

122 Sharpe, H.N. and Ramesh, B.A.:”Development and Validation of a Modified Well Model 
Equation for Nonuniform Grids with Application to Horizontal Well and Coning Problems,” 
Paper presented at the 67th Annual Technical Conference and Exhibition of SPE held in 
Washington, DC, October 4-7, 1992.

123 Shiralkar, G.S.:”Calculating of Flowing Well Pressures in Reservoir Simulation Using 
Nine-point Differencing,” Journal of Canadian Petroleum Technology, November-December 
1989, 73-82.

124 Snyder, L.J.: "two-Phase Reservoir Flow Calculation," SPEJ 9. (1969) p.170-182.

125 Soave, G.: “Equilibrium Constants from a Modified Redlich-Kwong Equation of State,” Chem. 
Eng. Sci. (1972) 1197-1203.

126 Søreide,I.: “Improved Phase Behavior Prediction of Petroleum Reservoir Fluids From a Cubic 
Equation of State,” Dr.Ing. thesis, IPT Report 1989:4, Norwegian Institute of Technology, 
Department of Petroleum Engineering and Applied Geophysics (1989).

127 Sonier, F., Souillard, P., and Blaskovich, F.T.: "Numerical Simulation of Naturally Fractured 
Reservoirs". SPERE 1988, November, 1114-1122.

128 Stiel, L.I. and Thodos G.: “The Viscosity of Polar Substances in the Dense Gaseous and Liquid 
Regions,” AIChE J. (Mar. 1964) 275-277.

129 Thomas, L.K., Dixon, T.N., and Pierson, A.G.: "Fractured Reservoir Simulation". SPEJ, 



References 6-97

February, 638-648, 1983.

130 Van Golf-Racht, T.D. (1982): Fundamentals of Fractured Reservoir Engineering. 
Developments in Petroleum Science 12, Elsevier Scientific Publishing Company.

131 Van Poolen, H.K., Breitenbach, E.A. and Thurnau, D.H.:”Treatment of Individual Wells and 
Grids in Reservoir Modelling,” SPEJ, December 1968, 341-346.

132 Verma, S.: "Flexible Grids for Reservoir Simulation," Ph.D. Dissertation, Departement of 
petroleum Engineering,Stanford University, Palo Alto, California, USA, June 1996.

133 Verma, S. and Aziz, K.: “A Control Volume Schema for Flexible Grids is Reservoir 
Simulation,” paper SPE 37999 presented at 1997 SPE Symposium on Reservoir Simulation, 
Dallas, TX, June 6-8.

134 von Rosenberg D.W.: “Local Grid Refinement for Finite Difference Networks”, SPE 10974, 
presented at the 1982 SPE Technical Conference and Exhibition, New Orleans, Sept. 26-29.

135 Warren, J.E., and Root P.J.: "The Behavior of Naturally Fractured Reservoirs". SPEJ, 
September, 245-255, 1963 and Transformations of the American Institute of Mining, 
Metallurgical, and Petroleum Engineers (AIME), 228.

136 Wadsley, W.A.:"Modelling Reservoir Geometry With Non-Rectangular Coordinate Grids," 
Society of Petroleum Engineers, 1980.

137 Watson, D.F.: “Computing the N-dimensional Delaunay Tesselation with Application to 
Voronoi Polytopes”, Computer Journal, 24, 167-172,1981.

138 Williamson, A.S. and Chappelear, J.E.:”Representing Wells in Numerical Reservoir 
Simulation: Part 1- Theory, Part 2- Implementation,” SPEJ, June 1981.

139 Whitson, C.H., and Michelsen, M.L.: "The Negative Flash," Fluid Phase Equilibria, 53 (1989) 
51-71.

140 Yanosik, L.J. and McCracken, T.A.: "A Nine-Point, Finite Difference Reservoir Simulator for 
Realistic Prediction of Adverse Mobility Ratio Displacements," SPEJ (Aug.1979) 253-62; 
Trans., AIME, 267.

141 Yielding,G., Freeman, B. and Needham, D.T.: “Quantitative Fault Seal Prediction,” American 
Association of Petroleum Geologists Bulletin, 81, 897-917 (1997).

142 Yortsos, Y.C. and Huang, A.B.. Linear Stability Analysis of Immiscible Displacement," 
SPERE, (July 1986), p.378-390.

143 Young, L.C.: " Rigorous Treatment of Distorted Grids in 3D", paper SPE 51899 presented at 
1999 SPE Symposium on Reservoir Simulation, Huston, TX, Febr. 14-17.



6-98 References


