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1 Introduction

This volume is the fourth within the series of the reservoir engineering textbooks provided by
the Association of Professor Heinemann Doctorate Group.

The accompanying lecture presumes that the reader possesses profound knowledge of reservoir
engineering. A moderate level in applied mathematics and computer application will also be
expected. However, this text book is written for petroleum engineers and not for scientists.
Wherever if it is possible, application of higher mathematics will be avoided. On the other hand
no relation will be made to any given commercial simulator and no special methods will be
discussed. The task is to achieve profound understanding rather than to write a manual or a
guide line for the simulation work.

This textbook is only one of the tools to teach the reservoir simulation techniques at the
university and in post graduate courses efficiently. It is important to learn by doing. The readers
have to work with a sophisticated reservoir simulator to deepen their theoretical knowledge too.
A collection of exercises with growing complexity was worked out and will be used. The
exercises are based on the simulator PRS, but they can easily be adapted to any other similar
system.

1.1. What does Simulation mean

For developing an engine, a prototype of it will be built after some preliminary computation and
examinations on different modules. The prototype will be tested and improved step by step.
Knowledge about the already used product can be gathered and serves as basis for further
improvements. This approach is not applicable to every real system, due to one of the following
circumstances:

 the system is unique,

e it is inaccessible,

* its dimensions are too large or too small,
« its life cycle is long.

For hydrocarbon reservoirs all four limitations are valid. For such cases three principle
possibilities for modeling are given: physical, analogous and numerical. The criteria for all of
them is to be able to formulate every or a least the most important physical and chemical
processes in a mathematical model. This makes it possible to deduce the similarity conditions
for a physical model or to replace the real processes with analogous, but easy realizable
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processes. When dealing with a hydrocarbon reservoir the possibilities for modeling would be
a three dimensional sand pack laboratory model or an electrical model consisting of a network
of resistivity and electrical capacities. Both were tried but without or with very limited success.
The only remaining possibility is numerical modeling.

No mathematical model can be complete. The mathematical formulae are more or less
approximations of the physical phenomena Furthermore, to be able to calculate with the
formulae they have to be simplified. In most cases they reflect only the most important aspects
of reality. With a particular mathematical model, only those processes formulated in this model
can be examined.

The same mathematical model can be used in two modes:

+ as modeling tool (analytical mode),
* as simulation tool.

Figure 1.1 shows this classification. The correctness of a computation in analytical mode is
guaranteed when the basic equations are based on experimental evidence and when the
calculations are mathematically correct. In the simulation mode the above is proved by
matching the calculated results with the system behavior. The tuning of the model, even if it has
no physical explanation, is allowed.

AMATHEMATICAL MODEL
WITH SUITABLE
SOLVING METHODS
WHICH CAN BE
ANALYTICAL, NUMERICAL OR ANALOGOUS
IS USED
EITHER IN ORIN
ANALYTICAL MODE SIMULATION MODE
IT REQUIRES
THE EXPERIMENTAL EVIDENCE THE CONCISTANCE OF
OF THE BASIC EQUATIONS ITS BEHAVIOR WITH
AND CORRECT THE REAL SYSTEM (MATCHING)
MATHEMATICAL CALCULATIONS
THE RESULTS
ARE FINDINGS ON ARE THE PREDICTION
QUALITATIVE PROPERTIES OF THE BEHAVIOR
AND COHERENCES
AND ARE USED AS
BASIS FOR DISCUSSION BASIS FOR DECISION

Figure 1.1: Use mathematical models in analytical and simulation mode

This classification is independent of the solving method which can be analytical or numerical.
In this term a material balance calculation based on the production history to determine the
water influx and OOIP is a simulation, the calculation of a steam flooding with a three
dimensional non-isotherm numerical model before starting this process is a numerical modeling
(in analytical mode). Nevertheless, the mathematical models used as simulation tools are so
complex that only numerical solutions are possible.
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The numerical models, which are mainly used in simulation techniques will be discussed in this
volume. Commonly these models (and computer programs) will be called simulation models,
eve if they are used for analytical purposes too.

The nature of numerical simulation is demonstrated in Figure 1.2. It has two sides, a real and an
imaginary one. The computer program, based on the mathematical model needs input. These
data are measured on the object (e.g. reservoir), the parameters are matched so that one part of
the output coincides with the observations on the object. A greater part of the output cannot be
compared with observations, but gives valuable information about the object and can be
regarded as serious in case the matching is successful. Without reliable data and serious
comparison the model cannot solve real problems. No simulator can replace reliable data or the
brain of the user.

SIMULATION
REAL IMAGINARY

|
INPUT N

|
| \
| \
| \
| \
\
\
\
COMPUTER, [ MATHEMATICAL ||
OBJECT PROGRAM MODEL |
/
/
/
OUTCOME /
/
/

Figure 1.2: The nature of numerical simulation

1.2. What does Reservoir Simulation mean

The reservoir simulation technique makes it possible to gain insight into the recovery processes
of a reservoir. To understand fluid flow and, by this, to evaluate the performance of oil and gas
recovery methods, the petroleum engineer models the relevant physical and chemical processes
by systems of partial differential equations. These equations account for mass and heat transfer.
They include terms for gravity, capillary and viscous forces. Thermodynamic equilibrium
conditions determine the number of existing phases, their composition and properties. Reservoir
simulation involves the numerical solution of such systems with a computer, together with
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appropriate boundary conditions as supplementary relationships.

A reservoir is a three-dimensional, heterogeneous, anisotropic rock body, filled up
inhomogenously with fluids of different composition. It is evident that a reservoir model can
only be constructed mathematically. As already mentioned, a reliable physical or analogous
model is not possible.

The workflow when building a simulation model is shown in Figure 1.3.

Formulation of the Physical Model

Modeling

Partial Differential Equations

Discretization

Non-linear Algebraic Equations

Linearization

Linear Matrix Equation
Figure 1.3: Workflow for building a simulation model

In the physical model all relevant processes and properties must be considered. The
mathematical model consists of constitutive equations (e.g.: Darcy equation), balance
equations, property functions and constraints.

The discretization method can be based
» on Taylor series, leading to finite difference method (FDM),
* on integral formulation, leading to control volume difference method (CVDE) or
* on variational formulation resulting in finite element method (FEM). A special
variant of FEM is the control volume finite element method (CVFE).

The discretization involves two main steps:
» Construction of an appropriate grid.
» Setup of proper algebraic equations.

The major requirements are:
» The discrete solution has to be a good approximation to the exact solution.
* The number of grid points has to be as small as possible.
» The structure of the matrix equation must ensure to be able to solve it economically.

The discretization scheme will be called convergent if the numerical solution approaches the
exact solution of the mathematical model (i.e.: those of the partial differential equations) as the
grid size and time step length tend to zero. All discretization methods, if applied correctly, will
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lead to the same algebraic equation system. If this is not the case then one of them is erroneous.
Therefore the question to use CVFD or to use CVFE method is practically irrelevant.

The balance equations combined with Darcy's law yield highly non-linear, partial differential
equations of mixed hyperbolic-parabolic type. In general, those equations cannot be solved
analytically, but can be solved numerically by replacing the differential equations with
difference equations. This process is called discretization.

Basically, there are two methods available for discretization: the finite difference and the finite
element method. When dealing with mass transfer both methods need a definition of a control
volume around a grid point. Consequently, they are called the Control Volume Finite Difference
(CVFD) and the Control Volume Finite Element (CVFE) method. Both methods reduce the
differential equations to a finite-dimensional system of algebraic equations.

1.3. About the Contents

This volume gives a first theoretical insight into numerical reservoir simulation. All necessary
concepts are addressed. The goal is to help the reader to achieve a fundamental understanding.

Chapter 2 deals with the conventional black oil formulation of the flow equations. At first a
two-component, two-phase and two-dimensional black oil model will be formulated and the
concept of Implicit-Pressure-Explicit-Saturation (IMPES) will be introduced. This model will
be extended to three components, three phases and three dimensions. In this Chapter a simple
Cartesian grid is used, explaining the difference between 22 -dimensional and fully
3-dimensional grids. The equations will be written in implicit form and the difference between
IMPES and fully implicit solution will be explained. It will be shown that IMPES and
fully-implicit solution can be combined within one model and time step, leading to the concept
of adaptive implicitness.

Chapter 3 mainly discusses the 22D grid, usable for full-field simulation. Both isotropic and
anisotropic cases will be considered. This Chapter introduces the Local Grid Refinement (LGR)
and deals with the layering techniques. As special case the radial grid, applicable for single
vertical wells, will be presented. Short discussions about corner-point and curvilinear grids
complete this Chapter.

Chapter 4 deals with the initialization of a grid model and which requirements and conditions
have to be satisfied when calculating the initial vertical pressure and saturation distributions for
areservoir model. Benefits and limitations of different initialization methods will be elucidated.
The chapter is closed by some practical remarks.

Chapter 5 introduces the classical well models. Wells are handled as source/sink terms within
the blocks in which they are perforated. The productivity indices are calculated for every
perforation, which gives a linear relationship between the bottom-hole pressure, the rate and the
average block pressure.
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2 Basic Concept of a Reservoir
Simulator (IMPES Models)

2.1. Derivation of a Two-Dimensional Two-Phase
Black Oil Model

A rectangular Cartesian mesh is laid over the structure map of the reservoir. Each block
represents one part of the reservoir. The top depth, thickness, porosity, pressure, water and oil
saturation of the blocks are chosen so that its position, the bulk and pore volumes and the oil-,
gas- and water contents coincides with the values of the represented piece of the reservoir. In
this way a block model is generated, which imitates, at least volumetrically, the real reservoir.
Figure 2.1 shows a two dimensional block model. It becomes three dimensional if the blocks
are vertically divided.

Each grid block has a point of gravity. In this case, we presume the geometric center as this
point. Furthermore, we presume that the block contains only one phase (e.g.: oil). The phase
potential for block 7 is:

) (2.1)

of ~ Por 8P FPr

where p is the pressure, p is the density and z; is the vertical distance of the grid point to a
reference depth.

Figure 2.2 shows a block, divided by a plane through the block center M;, perpendicular to the
coordinate /,. The side abcd through M has the potential @, and the side efgh has the potential

®, . Both sides have the same surface 4 and the distance between these two is H,". According
to DARCY'S law, the oil flow rate in the coordinate direction /, can be calculated by the
following formula:
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Figure 2.1: Two dimensional block model of a reservoir

_ (4] 2o Por 22
Q02 + u s ( . )
H 7> 0

where k is the permeability in the coordinate direction /, and p, is the oil viscosity. The
quantities are gathered in such a manner that the first group contains only constant properties of
the block. This group gets the symbol 1 and it is called block half-transmissibility for the
positive /, direction. Equation 2.2 can be also written in a form:

+
‘a1

Q02 - uo

(CI)O—CI)OI). (2.3)
Six block half-transmissibilities can be defined for each block in the same manner:

I T
Yirtie 2 Yor Y30 3
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Figure 2.2: Block I is divided by a side through the block center

A block pair with serial number / and J shall now be considered, Figure 2.3. As the fluid flows
from block 7 into block J, the following relations can be applied:

_ o o) Yo o) Yo o 2.4
QOZ_H_( o 01)_ u_( oJ 0)_ M_( oJ 01)' 24)

o o o

®,; and @, are the potentials in M; and M.t is the block pair transmissibility. From
Equation 2.4 follows:

=+ -
- TNy

T, 2.5)

P
Tt

Two immiscible and compressible fluids (oil and water) shall be considered now. The following
quantity of oil flows between block 7 and block J at multiphase saturation conditions:

. kro
Qo)™ g g (Lo Pop)- (2.6)
MO o

0,,,1s positive, if oil flows into block / and negative, if it flows out of it. The oil mobility

ro

o8B,

= A*(p, S) (2.7)

is a function of saturation and pressure. The values A* ;and A* ; can be calculated from the

saturations and pressure of block 7 and block J. The reason why one and not the average value
of these functions has to be included in Equation 2.6 for calculating the rate can be easily
explained.
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Figure 2.3: The neighboring blocks / and J

If, for example, block / is saturated with oil and block J is saturated with water, the following
applies:

¥ >0, 0% = 0. (2.8)

If the potential in block 7 is greater then in block J then oil will flow between both blocks,
otherwise water will flow. Therefore:

*

A if® , >
* I 1 J
.- N ¢ ¢ (2.9)
0 .
on’ if cI)01 < CI)oJ

Taking the mobility from the upstream block is called upstream weighting. The term

K, 1= T o (2.10)

is called phase transmissibility. Now Equation 2.6 can be written in the following form:

Q1= Korf( @y =@, (2.11)

or after substitution of Equation 2.1:

— _ £
Qo1 Koy Poy=Po )™ o1 (2.12)

where
"o1) = Kor8Po 7y PorF D =K1 8P 017D (2.13)

The individual oil densities were replaced with the average value:
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_ Pos™ po[z (poJerol)
0

Pors = 3 > (2.14)

Both approximations can be used in Equation 2.13.

In a two dimensional system, the block 7 has four neighbors, see Figure 2.4.

@

Figure 2.4: Block with its neighbors in a two dimensional system

From a well situated in block 7 oil can be produced with the rate g,,. The sum

n+1
[Qoi1 * Cornnt Cornt Cora T 4,18 1 (2.15)

is the difference of the oil quantities flowing in or out of the block during the time interval:

- +
ATt (2.16)
J; to J4 are the serial numbers of the neighboring blocks. Index » designates the serial number

of the time point. The initial time is #°. The amount of oil in block 7 at the time ¢” is (in standard
volume, sm3):

V(S b ) b =

1
1 Syb ) 0B (2.17)

where V), is the block pore volume (at reservoir conditions), S, is the oil saturation, B, is the

formation volume factor of oil and its reciprocal b, is called shrinkage factor. The change

during the time intervals A" 't is:

|
v, ][(Sobo)n T (Sobo)nL. 2.18)
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If

sntl—gn 43
o o o

pn Tl = pnash |
o o o

then Equation 2.18 can be written in the following way:
I[(S"+SS )(b”+6b )— S”b” (2.19)
n n
pI[SOSbO + bOSSO + SSOSbO]I

If the changes are small, then the last term is very small compared with the first two terms, and
can be neglected. Furthermore, b, is a function of pressure. It follows that

pn +1 n db
db = —O(P"+1—p”)= [—Oj op (2.20)
0o pg +1 pg o o dpo 0

Equation 2.19 can be written also in the following form:
V S” dp dp, +b1dS, | = C,dp, +E,BS, ;, (2.21)
o 1

where

and

E, = [Vpbg]l.

Based on the law of mass conservation, the terms Equation 2.15 and Equation 2.21 must be
equal:

(9011 T Cornt Corsz T Qopga t 4,101 = Cidp,+E, 8BS, (2.22)

Equation 2.22 is a volume balance. Both sides of the equation are written in standard m3 and
due to the fact that the standard density is a constant, it is equivalent with a mass balance. This

equation is valid for the time interval Az. Therefore Oy 1s the rate which is valid during the
time interval Az. It is possible to calculate this rate explicitly, using the block pressures at time
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point #*. In this case the unknowns 8p,, and 8S,, are only on the right hand side of the equation.

It is easy to understand that in this case A may become very small. In other words, the
numerical method becomes instable.

To demonstrate this stability problem we consider an isolated model consisting of two blocks
only, containing one mobile phase (e.g.: oil). The initial pressure in block / should be higher
than in block J. This fact causes a pressure adjustment with time. The pressure difference
induces a flow between the two blocks. The pressure in block 7 will continuously diminish and
it will rise in block J. After some time the block pressures becomes equal, as shown by the
continuous line in Figure 2.5.

Using our numerical formulation, the flow rate can be calculated explicitly at the beginning of
every time step At or implicitly at the end of A¢’s. This rate will be valid for the actual time
step. If the flow rate is calculated explicitly and A¢ is greater then a critical value then at the end
of the time step the pressure becomes greater in block J as in block I. For the next time step the

flow direction changes, leading to quick divergence of the calculated pressures. The calculation
becomes instable.

+

0 0 ; ; ; P,
=

R pUJ 0 t, t, i,

Figure 2.5: Demonstration of the instability in explicit methods

It is better to calculate the Q,-values with the transmissibility of time point #*, and the pressure

difference at the time point TAa By that Equation 2.12 gets the form:
- n. . n o n *
Qo1 = Korg Poy 005 Por905P 7,1 (2.23)
or with gathering of known values:
Oo17 = Kot/®pos=8p0D o1 (2.24)

Inserting Equation 2.24 into Equation 2.22 it becomes:
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oIJl( poJ] =0,00 T o1
Ko ® pos2 6p01)+rolJ2
K30 p0J3 800 T To13

0[J4( poJ4 pol) o4t o1
[CO dp 1+E SS ]

JAt

Dividing both sides by E; and writing the equation in a shorter form:

4

c,
> Kotk ar 51’01 E Z Kok g1 9Sortd01
Loy

where

4

dor= =7 | 2 Torsk T 901
k=1

Equation 2.26 contains six unknowns, five pressure changes and 35, .

The equation for water is written analogously to Equation 2.26:

4 ¢ 4
AL K s K 8 8s, +d
7| 2 Kt 2y 9Pt E DI P

wl =1 wlk_1

Equation 2.27 also contains six unknowns.
Confined to two phases, there is
S,+tS,=1,
and
SSW + 8S0=
The capillary pressure is
Po= Py~ Peow®y)
and

5p0—5pw= 8Pcow(Sw)

(2.25)

(2.26)

2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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In practical cases often

8Pc0w « Spo (2.32)
and can be neglected. But herewith

dp, = 6p,= Op. (2.33)

Adding Equation 2.26 and Equation 2.27

4
a18p1+ Z bIJkSPJk: e (2.34)
k=1
where
4
- A - K L Sot 235
ap =M= > Kt (2.35)
ol
k=1
4
Cwl
Z w[Jk “Ar
s o Kotk Kt
Lk E E
ol wl

e/~ (d,+d,p

Equation 2.34 contains five unknowns.

Taking boundary conditions into account the following applies: The boundary of a reservoir
(i.e.: the block model) may either be closed, that means no mass transfer across this boundary
is possible, or the pressure is constant at this boundary. Figure 2.6 shows a simple model, in
which both boundary conditions occur.

For blocks 12-14, the following applies:
dp1y = Op 3= Op 4= (2.36)
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1 3 5 8 " 14:
|
1
2 4 7 10 18-+ -
]
1
/ 6 9 12=-7-
1
CLOSED BOUNDARY ™ BOUNDARY WITH
CONSTANT PRESSURE

Figure 2.6: Block model with closed and constant pressure boundaries

With that, the system of Equation 2.34 contains 11 equations with 11 unknowns. The system of
equations is written in detail to visualize it better:

1 a 6p1+b1,26p2+b1,38p3 =e,
2 b,,8,*a, 5, +0,,3,, =€,
3 b3,16p1 +a, 6p3+b3,46p4+b3,58p5 =e,
4 b, .8,,*b, 0,5 +a, d,, +0,68,6*b, ;0,7 =€,
5 D5 58,5 +a5 O +D5. 0,7+ D5 60, =€;
6 D640 +ag O +Dg 60,0 =e,
7 b, 48,:t07 50,5 +a, o, +0,68,0D7 160,10 =e,
8 Dg 5055 +a, O *+0; 100,107 Dg 1181175
9 Dg,6856+Dg /0,7 3 Oy =€
10 D178, D10,606 +a0 8,1 =€y
11 b1 685 +a,, 8,,=€y

Figure 2.7: Equation system corresponding to Figure 2.6

It is simpler to write the system of equations system in Figure 2.7 in matrix form:
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or even shorter as

unknowns
_1234567891011_____
1 [X X X O e,
2 |x x X 8y e,
3 | X X X X .
" 4 X X X X X
5 5 X X X X
-Eg 6 X X X =
> 7 X X X X X
)
8 X X X X
9 X X X
10 X X X .
"L 0 ] L] (2.37)
Adp=¢ (2.38)

where 4 is the sparse matrix shown above in Figure 2.7.

The calculation is described as follows:

1.

B w

7.

Pressure and saturations for the blocks are known for the time point #* = . This is the
initial situation and n = 0.
We choose a time interval As and designate the production rates g, and g,
describing the average values for the time interval Az.
We designate the terms K, 7, C, E and d of Equation 2.26, Equation 2.27 for block /.
We calculate the coefficients a, b and e of Equation 2.34.
We solve the linear equation system Equation 2.37 by a suitable method. The results
are the pressure changes Op during the time interval Az. Therefore the pressures at
the end of the time interval are:
pn = p"+ §p (2.39)
We calculate the saturation changes SSW and 6§, from Equation 2.26 and
Equation 2.27:
+1_
§hTi= 8"+6S, (2.40)
+1_
S§nTi= 8"+, (2.41)
We check the accuracy by a material balance calculation.

Steps 2 to 7 are repeated until the entire production time is calculated.



2-18

Basic Concept of a Reservoir Simulator (IMPES Models)

2.2. The Gas Equation

Gas can be contained in a reservoir either as free gas or as dissolved gas. The pressure p,; in
block 7 can be higher or equal to the bubble point pressure p,,. If the oil is saturated, the dissolved

gas in oil ration R, is a function of pressure for pressures p <p, :

Rs[ = Rs(pol) (2.42)

The general case also taking into account the undersaturated state p > p, , will be considered in

Chapter 2.7.. The change of the gas quantity in block / during the time interval Az can be written
analogously to Equation 2.18

S 0 O s 0 O

Vpl[(Sgb +RS b)Y —(Sgb +RS b)) } (2.43)

where b, is the gas shrinkage factor. Like in Equation 2.21 the following applies:

db

dby ) d(R b >) ;
Vpl[(Sg dp) 8pg + bIBS, + 8p, +(RbD,) SSOL (2.44)

The difference between oil- and gas phase pressure is the gas-oil capillary pressure:

pg -P,= cho(Sg) (2.45)

From experience, the change of P, with time is small. Analogously to Equation 2.31 it follows
that:

Spg - Spo (S )= 0 (2.46)

cgo

and therefore with Equation 2.33 the following applies:
8p0= Spw = Spg = op. (2.47)

Including Equation 2.46 into Equation 2.43:

db d(R b )n

g n n
Vpl{[Sg TS, — J 8p+(R.b) SSO+ngSg} (2.48)

1

= Cg15p[+ EgISSgIJr DgISSo]

Gas will be transported between two blocks in two phases, in the gas phase and in the oil phase.
According to Equation 2.12 the gas rate is
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* *
Ou1y = Koy gy P * RK ) (P y=Pop +Tgrs (2.49)
where
k
"gll” _[KgUngjL (RSKO)UPOIJ]g(ZJ_ZI)‘ (2.50)

R,y 1s the dissolved GOR of the oil flowing from one block to the other, and must be set equal

to R, of the upstream block, from the same reason as the phase mobility A (Equation 2.9):

RS[’ if q)ol - (I)OJ’
R .. = ) (2.51)
slJ if & , <& .
R ol oJ
sJ°
Inserting
_l’_
pgl 1 = pg]Jr 8p1 (2.52)
n+1 — N
Por = Doyt opy

into Equation 2.48 while taking Equation 2.46 into consideration, the following applies

%k n n
QgIJ - KgIJ(ng_pgl) +(RSK0)]J(p0J_p01) (2.53)
* *
+(Kg+RsKo)]J(6pJ_8P1)+”g1J
= Ko Op =00 tropy
where
K .. = (K +RK
glJ ( g s o)IJ,
and
= +K* n-l— R K n 2.54
"el) ~ Tgl) gU(ng_ng) (Rg O)U(poJ_poj) : (2.54)

Equation 2.24 and Equation 2.53 are formally equal, caused by the notation applied.
Analogously to Equation 2.22, Equation 2.25 and Equation 2.26, the balance equation for gas
follows as:
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4

> Qo Ugryp|A = CopBpy+ Eg 85, Dy 85, (2.55)
k=1

After including Equation 2.53 into Equation 2.55

C
At gl At
‘E_{ gIJk+X[}8pI+E_ > Kok (2:56)
wl gl, _
k k=1
Dy,
=0S ,+—==08S ,+d ;.
gl Eg] ol “gl
with
At
dyr= _E_{ r gIJk+qu}
gl k

2.3. Cartesian Coordinate System

Although the rigid Cartesian coordinate system does not seem very suitable for the geometry
and flow pattern of a real reservoir, this technique is widely applied for reservoir simulation. At
first a two-dimensional Cartesian system - having the coordinates aligned to the /2 and /3 axes
- is selected to assemble the block system for reservoir simulation.

\4

I

Figure 2.8: Cartesian coordinate system

The /1-axis 1s perpendicular to the /2-13-plane and points downwards. The block system can be
defined one-dimensionally, two-dimensionally or three-dimensionally. This orientation, as
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depicted in Figure 2.8, is not the usual one, but it has the advantage that the depth is measured
and the layers are numbered in the same manner as in the geological representation. Then, a
basic grid is constructed based on the geological structure. The grid can be defined in two ways:

* Block centered scheme: For the block centered grid the block sizes are selected at
first and then the nodal points are centered between the boundaries. M is the

geometrical center point of the block (Figure 2.9).

* Point distributed scheme: A basic grid is constructed by determining the nodal
points, taking into consideration the concepts of geological structures. The block
boundaries divide the distance between the nodes in halves. The margin boundary is
determined by reflecting the last block boundary at the outmost nodal point (Figure

2.10).

The block centered approach is very common in reservoir simulation.

X

X

X

X

X

X

X

X

Figure 2.9: Construction of a block centered Cartesian grid

However from a practical point of view, there is not any additional difference when using one
or the other type of grid. That means, the application of the point distributed grid is not more
complicated than the using the block centered one. The only difference seems to be that a better
consistency is provided for the point distributed grid by the mathematical error analysis. This is
sufficient for us to give a recommendation for that type of grid, without refusing the

applicability of the other one.
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X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

Figure 2.10: Construction of a point distributed Cartesian grid
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/|

/1
// — \\
~ T~

Figure 2.11: Three-dimensional Cartesian grid

The same procedure of block construction can be applied in the vertical direction if the
extension of the reservoir is comparable with the horizontal one (Figure 2.11). Most frequently
however, the vertical extension is smaller in order of magnitude than the horizontal one and it
is also layered, so that such a discretization cannot be used or requires very small grid spacing.
Instead of doing so it is better to use a stream tube approach in the cross section, as shown in
(Figure 2.12). We assume that the vertical component of the flow velocity as well as its
components parallel to the layering can be calculated independently.

A 3D block system is shown in (Figure 2.13). It is evident that this grid is only Cartesian and
orthogonal in the horizontal plane but not in the cross section.

OVERBURDEN

—
—

UNDERBURDEN

=y

z
|

e

Figure 2.12: Steam tube approach in cross section

In practical application the geometrical torsions in the cross section are sometimes neglected
and the block system will display as a system of rectangular horizontal blocks as shown in
(Figure 2.14). The blocks are shifted vertically from each other, their surfaces are not the same
for the neighbors and the overlapping is only partly. This is only a question of the graphical
illustration and has no influence on the calculation of the transmissibilities.
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2.3.1 Transmissibilities

In Chapter 2.1. we already introduced the concept of block transmissibilities. A fundamental
Cartesian grid has six of them, oriented from the grid point toward the six block sides. Those

six transmissibilities are indicated with ‘c;;. or T;; (i= 1,2,3). They are calculated in a simple

way, supposing a linear incompressible one-phase DARCY-flow, orthogonal on the block
surface. From the DARCY law:

+®-D, 17
0 - ( LK),,- = o) (2.57)

WY

Figure 2.14: Dip correction of the transmissibilities

where @ is the phase potential on the block surface. The transmissibility between two grid
points will be calculated - based on the KIRCHOFF law - as the harmonic average of two block
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transmissibilities

+ -
T,-T.
T = 1i " Ji (2.58)
1J + 4
T ™ Ui

In this way, not only the permeabilities of the neighboring blocks but also the block surfaces are
averaged. If the layer is not horizontal, then this approximation will not be correct, because the
direction of the flow is parallel to the layer and not to the block edge. The true distance from the
grid point to the communication surface and the true surface can be calculated easily, as shown
in Figure 2.14:

L+
Ir !
coso’ | (2.59)

I —
Ay = A;cosa,

where o is the dip of the layer. Applying the definition after Equation 2.57

TNt D - O
- (ﬂ() ! 2.60
O L’ M (2.60)

we get

+ AK)+ (AK)* 2
Ty (L . 7 [icos o (2.61)

2.4. Three-Dimensional Three-Phase
IMPES-Equation

The balance equation for oil (according Equation 2.26):

B O S (2.62)
E 2 Kotk a7 [9p1 E ]Z olJkOPJk~ 20 " Yor :
k k

The balance equation for water (according Equation 2.27):

At i

At B
‘E_[ wik " Ay }Spﬁ 7 2Kk = 95, F (2.63)

The balance equation for gas (according Equation 2.56):
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C
At
Eg[{ Kokt At} e E Z Ko 171 1k (2.64)
&
D,
= 6Sg1+ ?glasol‘f‘ dg[

> is the summation over all neighboring blocks of block I. The summation from 1 to 4, done
k

in Chapter 2.1., was not exactly correct. Inevitable, there are blocks with only 2 or 3 neighbors

in a two dimensional model. The extension to the third dimension is simply made by taking the

neighboring blocks of the third coordinate direction into account too. There are no differences

between one-, two- and three dimensional models when applying this formalism. After

multiplying Equation 2.62 by

Equation 2.62, Equation 2.63 and Equation 2.64 will be added. For the saturations is valid:

S +85 +§ =1, (2.65)
w "o g
Consequently:
8S +08S +48S = 0. (2.66)
w o g

Therefore the resulting equation contains no saturation changes. The obtained equation has the
same form as Equation 2.34:

alf)p[-l- ZbIJkSPJkZ e (2.67)
k

where
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O e () N I (R ) 68
i B R > Kork Ar | E wiJk " At (2.68)
ol gl k wl k
1 Cg }
+—( K ;. +—=
=)
Eg] glk At
o A{Egl_DglK ik +KgIJk}
I I
Tk EyEqp Ok E, . Eg
E —D
_ gl gl
‘T T E, dort dyrtdgr
g

2.5. Formulation of a Fully Implicit Black Oil Model

2.5.1 The Balance Equations

The balance equations for the three components are:

Water:
N(I)
wn+1 n+1 n+1_ Vl )
> UL (P @) gy = A0S, (2.69)
Oil:
N(I)
wn+ 1 n+ n+1_ V
Z TN oL D= —At(¢SOb0) (2.70)
QGas:
N(I)
> Tl (@ = @ )" AR (@, @, ) (2.71)
J=1

v,
+qty 1= —A(q)S bg+ 0S,b,Ry),

o o0 'S

Differences between these equations and those in Chapter 2.1. exist, because not only the
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potentials but also the A* and the production rate g are described for the time point A

Furthermore, the porosity is pressure dependent, that means changeable in time.

N(1) is the number of neighbors of block /. Vj is the block bulk volume, therefore the pore
volume is:

Vor = Vi0r (2.72)
The potentials @ are given through:

@ =p,—p,8% (2.73)

D =p,—pP,Lz, (2.74)

d)g = Py P87 (2.75)

where z is the depth of the grid point. The differences between the phase pressures are the
capillary pressures:

po—pWZPCOW, (2.76)

Pg=Py = Prgy (2.77)

The component mobility A* is defined by:

k._b
* _ rm_m
mlJ Hm

(m=w,o,g) (2.78)

with b, = 1/B,,, which is the shrinkage factor. The mobility related to the gas dissolved in oil is:

k. b R
Moy = ——"—. (2.79)
Ko

For the PVT - and rock properties the following applies, if p<p,:

B, = B, (p) w,, = const (2.80)
B,=B, (p,R), M,=u,(p,R))

B, =B, (p), g = 1y (P)

R;=R, (p)

o = o(p), (2.81)
krw - krw(Sw)’ kI’O - kVO(SW’Sg)’ k”g - k”g(Sg)

Pcow - Pcow(Sw)’ cho - cho(Sg)
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Furthermore, the depth z, the thickness 4 and the porosity ¢ have to be functions of place. The

production rate of phase m in block 7 at time point #* s given through the well equation:
apil = WA i phap e (2 - 2,0 (2.82)
with & being the serial number of the well. p,,4 is the bottom hole flowing pressure of the Kt

well in reference depth z,. p,; 1s the average density of the fluid, residing in the well between

the top and the bottom of the perforation, corrected towards the reference depth.
W1y, 1s a productivity index for the perforation of the k" well in block 1.

The total gas production rate is calculated with
n+l

The well production rates result from the summation of Equation 2.82 and Equation 2.83
respectively, over the blocks 7 in which the well & is perforated.

The equations Equation 2.69 - Equation 2.71 and Equation 2.82 are not linear. An iterative
solution method must be applied for these equations.

2.6. Generation and Linearization of the Equations

2.6.1 Notations

Let x be an unknown. The sequence of the iterated will be named with

n,0 n 1 n,v n,v+l1

, X XX . (2.84)

Furthermore

n,0 n

X=X (2.85)

and

+1 V) + 1
xn n,v¥(n)

- x (2.86)

v* depends on the break-off criteria for the iteration. For abbreviation, the following applies:

8n, v+1 n, v+l  n,v

X=X —X (2.87)
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or for sake of simplicity:

n, v+1

Sx=x"" T XY (2.88)

2.6.2 Linearization

Lets regard the following non-linear expression:

n+l n+1

o Ty Ty (2.89)

where the functions ¢ and y can be unlimited derived and therefore they can be expanded in
Taylor series. For ¢:

o(x" "1y = (2.90)
do\'s  1(de)" <2 1(d9)" <3, 1(d"9|"
(P(xn)+(d—(p) 8x+5[—(29J dx +§[—(3PJ ox™ + —'(—(Ej &x"
X ‘\dx ‘\dx M dx™
If dx is small, than the higher terms can be neglected and
v

(p(x”l)z(p(wi(%’) Sx,v=101,...,v, (2.91)

Similarly for y:
\4 \4

v D e+ (5 e (5 e 2.92)

For the expression the linearized approximation is then:
+1 +1 +1
e Dy Ly )= (2.93)

o )y, y") + [w%‘f + <p%\)ﬂv8x + [cpaaﬂy}vay

where the higher order terms with Sx*and 0x9dy are already neglected.

The non-linear equation

o(x) =0 (2.94)
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. . =0 . .
can be solved by Newton-Raphson iteration. Let x be the first approximation for the root,
then we solve the linear equation

o) +¢'(x)8" k=0 (2.95)

+1 . . .
for 8 x and the next approximation for the unknown is

v+1 % 6v+1x

x =x + (2.96)
This value will be applied in Equation 2.95 again and again. The iteration converged if

§ <. (2.97)
The Newton-Raphson iteration converges if ¢ is monotone and

lo”(x)| < 1. (2.98)

The Newton-Raphson iteration is widely used for solving non-linear equation systems too, but
there is no theoretical prove for convergence.

For the sake of simplicity the difference operator 5‘)+1 will be replaced by 6 for further
notations.

2.6.3 Production Rate

The oil production rate emerges from equation Equation 2.82 with the TAYLOR series method:

+

ay; = qy;+8q,, (2.99)

*k *
- qzl + Wllk}\‘o}/spwﬂc_ Wllk}\‘o}/spol

d_(bYTY d (D]
WXI[%ap @J 15p1+q31[%a—R (;,ﬂ ISRSI
o o N o

\Y

1 ak}"o:|v 1 akI”O
+qY, | — oS A+ qY, | — A
ol |: kro 9 Sw . wl ol kro 0 Sg . gl

respectively with the particular abbreviations:

v+1

Qo1 = dor™ ConOPyp+ 0oppdP0 0 388, 1 F 0, 488, + 0, sOR . (2.100)
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The calculation of the flow terms is made with the component transmissibilities of the upstream
blocks. That means that the &,-values are calculated with the saturations and the pressure of the

dominant block. The dominance operator is introduced to describe this in a formalism:
x; if @, >,

dom[‘](x):{x] D <d ; m=Wwo0,g (2.101)

ml = " mJ

For the oil phase the upstream weighting can be symbolized as follows:

k. b
T A 1= T[Jdomou( r: OJ (2.102)

o

The TAYLOR series method provides:

krb) v+1 kr v
domg (=) = d 0(—?) 2.103
omy; o omg; o ( )
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o o N o
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+dom¢, (a)é—:g—— dom¢,8S =~ +dom?; (:')53— domUSSg
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The following applies for generating the potential difference:

v+1

v+1
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The generation of the potential difference for the water phase and the gas phase differ from that
for the oil phase caused by the capillary pressure.

For water:
vl _ 1 v+1
(@ —Pyp) = [poj—pol— 5Pyt PWNEEZ) = Pyt Pcow,} (2.105)

1 \Y
- [poJ_pol_E(pwJ+ Pwl)gZU_PcowJJrPcole
1 dPWJV 1 (dp,)"

+il1—zgz | =—| |Op, ,—|1+=gz,/ =—]| |Op

{ 5 Jl[dpw [ Pes 255 3p,,) ol

LS
ds w ds w
J

with
Z;= Z;-7. (2.106)
The expression for the gas potential difference can be written analogously. The first term of

Equation 2.70 can be generated in the following form, after having inserted Equation 2.103 and
Equation 2.104, neglecting very small terms of second order:



2-34 Basic Concept of a Reservoir Simulator IMPES Models)

N(I) N(I)
n+1 kr vl v+1
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If I is the dominant block, the particular dom-term can added to the previous 8" *!p , term.

With the abbreviations already used before, Equation 2.107 can be written in a shorter form. The

expressions for 5 can be written by the comparison of the two equations. The short symbolic
forms are:
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N(I)
*v+1 v+l
D Yol (PP (2.108)
J=1

*
_ Vv Y, v+1 \% v+1
B0104_[30128 p01+zB0J68 Poy

*

v gvtl v sVl
* B0138 ‘val—i_z:l‘)’oﬂ8 SWJ

*

v svtl v gvtl
* B0148 Sgl+ ZB0J88 SgJ

*®

v gvtl A
By TR Bod Ry

> * means, that the summation is only made with these neighbors which are dominant in regard
to block J.

2.6.4 Accumulation Term

For the right hand side of Equation 2.70 - paying attention to

v+1 v+1 v+1

o S=-8 §,-98 Sg (2.109)
follows this description:
V V
1 T v+1 0
TAM0S,b,1 = 1/ (05,6,)," "' = (05,6,)" | (2.110)
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By using symbolic writing, Equation 2.110 can be written as follows:

v
I v+1 v+1
z[¢Sobo] Yor0 T Yor®  Port¥,;38 S, (2.111)

v+1 v+1
+Y, 749 Sg[+y )

ol5 R

sl

Finally, the linearized oil equation results from inserting Equation 2.100, Equation 2.108 and
Equation 2.110 into Equation 2.70, taking Equation 2.88 into account and summarizing the
coefficients.

v+1 v+1
Ny, 8 pwfk+n3125 p,+ZnVJ6 Py (2.112)
v+l
+nV,38 S YN8 S,
v+l
+ﬂ3145 S +Z 0J8 gJ

v v+ v+1 — v
M50 R [T Mopd R~ dy,

The water equation follows analogously taking Equation 2.105 into account:

v+l v+ 1 v +1
Nyr19 Pwﬁ+nXV[25 pﬁ anm P,y (2.113)
v + 1
Y0 S, > = dy;
And also the gas equation:
v+l v+1 v+ 1
Ngn®  Pup ﬂZﬂzS ot SNy Poy (2.114)
v +1
+Mgs3 8" Swl ¥ Mgp0 Sy
v + 1
n §148 1+ 2. Ngs®
v+ 1
+ ﬂ§155 Rsl+ D Mgyd R~ ng

The right sides of Equation 2.112 - Equation 2.114 allows estimation of the magnitude of the

unknowns 8" 'S ,, and 8" s o, asan example the left side of Equation 2.113 will be written

in a more detailed form:
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dy= Yoo~ Buwro — Dwr (2.115)

_ V[ \% o
= 510S,5,)" - (95,5,)]

N(I) . .
w r
-2 T]J[domU(Tb)w(q)wJ_ 2,/ } ~dr
J=1

The first term is the accumulation rate, the second one the influx or outflux rate and the third

one the production rate of water. The dimension is standard m°/s. If dY =0, then the ¥ * s wi
will be a smaller value because this is a proper function of other variables, mainly of 8V * 1p’s .
If dY ; is greater then zero there is a strong uncompensated water in - or outflux from the block
and greater changes of the water saturation must be expected. The quantity
. - d;} [q)At’
77

(2.116)

shows how much is this water compared to the pore volume and can be used to estimate the
magnitude of saturation changes for the next iteration step. In the same manner e, and e, can be

determined.

The total production rate of well k& is the sum of the partial rates g,,;. The summation of Equation
2.99 - for those blocks 7 in which well k is perforated - provides:

WI\K) WI\K)

+1 v+1 1
OV Py > Qo T D Lo pp oY TS, (2.117)
I=1 I=1
+1 +1 _
t 08V TS o s8Y T IR 1 = dyy

A similar equation follows if the gross production rate is given. For gas wells the gas production
rate, for water injection wells the injection rate is given.

It is also possible to fix the bottom hole flowing pressure instead of the production rate. The
following applies:

8V+1pwfk= 0 (2.118)

and Equation 2.112 and Equation 2.114 can be reduced by this term.
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2.7. Variable Bubble Point

The oil in block 7 is undersaturated, if the following applies:

R,<R.(p,). (2.119)

In that case

Sy~ 0 and 8V*lS =0, (2.120)

sodvtls ol does not appear in Equation 2.112 - Equation 2.117 anymore.

If the gas saturation is larger than zero, R; is a function of pressure:
dR \V
_ +lp — |_s| gvtl
R, = Rs(p]), VIR = [dp J O P, (2.121)
o]

and block / will be considered as saturated or undersaturated in Equation 2.112 and Equation

2.114 at time point . After inserting either Equation 2.120 for undersaturated or Equation
2.121 for saturated case, the equation system Equation 2.112 - Equation 2.117 can be reduced
to one unknown.

A possible passover from one to the other state within one time step will not be considered yet.
Therefore, an initial undersaturated block may become oversaturated:

RYTISR (I, St =0 (2.122)

In that case, the correction is made in the next time step:

Ry =R (prh). (2.123)

In the opposite case, more gas than available dissolves in oil,

RY "= Rpy ., Sif<0 (2.124)

the following correction is made:

Sg,*l = 0. (2.125)

This corrected saturation and solution gas ratio gives the initial state for the next time step. The
corrections Equation 2.123 and Equation 2.124 may cause significant material balance errors.
These can be eliminated by mass correction.

Let block 7 be oversaturated at the timepoint ¢ before time n + 1. The oil- and gas content
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follows as:
GO = V1(¢Sobo)n> (2.126)
Gg = Vl(q)SObORS[)”, (2.127)

If this block is transferred into the saturated state, the following changes occur:

G = V(0S,)1b, (), (2.128)

Go= V{0S,)"b,(pIR(P]), (2.129)
where

b",1<b,(pyy) and (R ;>R (ph))) (2.130)
The differences

AG, = G- Go= V(0S)"b", — b, ()], 2.131)

AG, = Gy Gy= V(0S)bER — b, (pI)R (P, ], (2.132)

will be reinjected into this block if AG is positive, or produced out of this block if AG is
negative during the time step n + 1.

If the oil is saturated (the bubble point is equal with the block pressure) but the gas saturation
becomes negative, then the gas saturation will be set zero and the oil saturation will be

adequately increased at the timepoint #*. In the next time step the oil quantity of

AG = —V[((I)Sgbo);’ (2.133)
must be produced out of this block and the gas quantity of

AG,= ~V[(0S,b)" (2.134)

must be injected into this block.

2.8. Solution Methods

There are three possibilities to solve the Equation 2.112 - Equation 2.117:

* Fully implicit method. The iteration method given by Equation 2.112 - Equation
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2.117 will be applied until the changes 8" 'p,, 8" "'s,,, 8" "', or 8" 'Ry, are

smaller than the given limits.

* Semi-implicit method. The equation system will be solved only once (v = 0) per
time step.

+ IMPES-method. IMPES stands for Implicit Pressure Explicit Saturation.

The combination of these three methods is the adaptive implicitness. In a proper IMPES
formulation the phase transmissibilities, the capillary pressures and the production rates at time

point t” are taken. Therefore Equation 2.116 does not belong anymore to those equations being
solved simultaneously. Because all coefficients in Equation 2.70, Equation 2.72 refer to the time

point t”, the terms following the summation X+ disappear from Equation 2.112 - Equation 2.114
which can be written as follows:

Mo oty 8" lp, (2.135)
| 1
NSy g8 TS,

n n+1 — Jn
TNy R = dy,

N8 38"y, (2.136)
)8 S, s dn

28" p 38 p, (2.137)
TNy dt TS, g8 TSy,

n nt+1l — gn
+ng158 Rsl dg]

At first one of the unknown SV " 1S ol and SV " 1R s should be eliminated on the basis of

Equation 2.118 or Equation 2.119. Afterwards these three equations are multiplied with the
following factors and added:

for saturated case for undersaturated case
nh )
n gl4 n gl4
n n n n n n n n
No3Ngra = Ne3Moa No3Ngrs ~Ner3MNors
n n
N3 N3

n
No1a Nors
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+1

The unknowns &' S vl

o S

+1 .. .
ol and & R 7 are eliminated by this procedure because

wl >

. . . +1
the resulting equations only contains the pressure change 8" p as unknown:

N(I)
v+1 v+1
ed’ " p+ Y epd i, =y (2.138)
J=1
&' " ISW ; and 5" s o1 OF 5" R o7 can be calculated explicitly from Equation 2.35 and

Equation 2.36, after having solved the linear equation system Equation 2.138.

Applying adaptive implicitness first at the residuals 4, , i.e. the norm e, given by Equation 2.116

have to be examined. If for a given block all of them are smaller than a given value (e.g.: 0.01,
that means 1% of the pore volume) then this block will be taken as an IMPES block. All
coefficients originating from the derivatives regarding the saturations or R, will drop out. From

the equations written for the neighboring blocks the terms containing the saturation changes
(orSV i 1R ¢7) Will be cancelled. After that the three equations for the IMPES block can be

reduced to one equation, similar to Equation 2.138. If this block has neighbors, which remained

implicit then also saturation changes (8" i 1SW 7 8" ISW ) exist in the IMPES equation for

those neighbors.

The average degree of implicitness IGA is defined as the average number of implicitly
calculated variables per block and time step:

N v¥ LL
1
1IGA= ——— +K 2.1
CA= NXNIZ| 2 2 2™ (2-139)
i=lv=17=1
where

N - number of time steps
LL -  number of blocks
v - number of iteration steps for the time step
ny - number of implicit unknown for block I in an iteration step
K - number of wells

For a proper IMPES calculation IGA =1 for the semi-implicit method slightly above 3 and for
fully implicit 5 to 10. For field scale simulation the adaptive implicitness usually has a value
between 1.2 and 1.6, without loosing stability performance compared to the fully implicit
computation.

Although the IMPES method requires solving a fewer number of unknowns simultaneously, it
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has lower performance than the semi- or fully-implicit solution methods because due to poor
stability only smaller time steps can applied. The superiority of the adaptive implicitness is that
larger time steps can applied. The superiority of the adaptive implicitness is unambiguous. (At
least by scalar computing. On vector computers this advantage can be lost because the
irregularity of the matrix equation impedes the vectorization).



3 2 -Dimensional Grid Models

3.1. Cartesian Coordinate System

It should be noted, that Section 3.1. is to some part a repetition of Section 2.3., however some
in-depth discussion is added.

Although the rigid Cartesian coordinate system does not seem very suitable for the geometry
and flow pattern of a real reservoir, this technique has been widely applied for reservoir
simulation. Other coordinate systems and grid construction methods were used only for special
purposes. An exception is the radial cylindrical coordinate system for solving single well
problems.

v

l

Figure 3.1: Cartesian coordinate system

At first a two-dimensional Cartesian system - having the coordinates aligned to the /2 and /3
axes - is selected to assemble the block system for reservoir simulation. The [/-axis is
perpendicular to the /,-I3-plane and points downwards. This orientation (as shown in Figure

3.1) is not the usual one, but it has the advantage that the depth is measured and the layers are
numbered in the same manner as in the geological representation. Then, a basic grid is
constructed. The grid can be defined in two ways:

3-43
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X X X XX X X X
X X X XX X X X
X X X I XX X X X
X X X I XX X X X
X X X I XX X X X

Figure 3.2: Construction of a block centered Cartesian grid

* Block centered scheme: For the block centered grid the block sizes are selected at
first and then the nodal points are centered between the boundaries (Figure 3.2).

* Point distributed scheme: The grid points are set at first and the block boundaries
halve the distance between the nodes. The boundaries at the model margins are
determined by reflecting the last block boundary at the outmost grid point, as shown
in Figure 3.3.

The Cartesian grid is orthogonal per definition. Therefore the flow rate between two blocks can
be approximated by two-point approximation. The point distributed scheme is a special kind of
the perpendicular bisection (PEBI) grid while the block centered grid is not.

Aziz and Settari'3] discussed the properties of the two grid types using differential formulation
of the flow equation. Aziz and Settari calculated the potential gradient for the grid point and not
at the block boundaries. For this case there is no difference between the two grids if the mobility
A is a constant. When using integral formulation it becomes evident that the order of
approximation of the potential gradient term remains different. The significance of the
discretization error analysis is that the point-distributed approximation is consistent and
therefore for any stable finite difference method it will be convergent. However, there is no a
priori guarantee for convergence for the block centered grid.
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Figure 3.3: Construction of a point distributed Cartesian grid

It should be emphasized that inconsistency does not necessarily imply divergence as the block
size goes to zero (||#] — 0).The actual order of convergence depends on the manner or the
irregularity of the grid spacing. Because the discretization errors act as error sources for the
solution of the equations, their effects are smoothed out. Based on numerical experiments, we
conclude that for any reasonably smooth variation of grid spacing the block centered difference
scheme will also be convergent in the limit. However from a practical point of view, there is no
additional difference when using one or the other type of Cartesian grid. That means, the
application of the point distributed grid is not more complicated than the block centered one.
The only difference seems to be that a better consistency is provided for the point distributed
grid by the numerical error analysis. This is sufficient for us to give a recommendation for that
type of grid, without refusing the applicability of the other one. From mathematical point of
view the regular Cartesian grid provides the minimum time and spatial discretization errors
therefore this grid should be used if no other reason exists for irregular grid spacing.

The same procedure for block construction can be applied in the vertical direction if the
extension of the reservoir is comparable with the horizontal one (see Figure 3.4). Most
frequently however, the vertical extension is smaller in order of magnitude than the horizontal
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one and it is also layered, so that such a discretization cannot be used or requires very small grid
spacing. Instead of doing so it is better to construct the grid in the horizontal plane and project
it through the layers as shown in Figure 3.5. This is the 2)4-dimensional grid.

In 3D and 2'4D Cartesian block system a block has maximum six neighbors. It is evident that
this grid is only Cartesian and orthogonal in the horizontal plane but not in the cross section.
The basic idea is to use a stream tube approach in the cross section. We assume that the vertical
component of flow velocity as well as its components parallel to layer can be de-coupled.

Figure 3.4: 3D Cartesian grid in cross section

WY

W)

Figure 3.5: 2)5-dimensional Cartesian grid

In Chapter 2.1. we already introduced the concept of block transmissibilities. A fundamental
Cartesian grid has six of them, oriented from the grid point toward the six block sides. Those

six transmissibilities are indicated with 1:;;. or T;; (i= 1,2,3). They are calculated in a simple

way, supposing a linear incompressible one-phase DARCY-flow, orthogonal on the block
surface. From the DARCY law:

+.
a2 = Ld-0) (3.1)
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Therefore the block half-transmissibility has the form of

o (4 52

where 4 is the block surface, L the half-length of the block and & the permeability.

Figure 3.6: Dip correction of the transmissibilities (must be corrected, D should point
to the middle of the block)

The transmissibility between two grid points, called block-pair transmissibility, will be
calculated - based on the KIRCHOFF law - as the harmonical average of two half-block
transmissibilities

+ -
T.TT
1
T, = _1iJi (3.3)
1J T++T_
Ii Ji

In this way, not only the permeabilities of the neighboring blocks but also the block surfaces are
averaged. If the layer is not horizontal, then this approximation will not be correct, because the
direction of the flow is parallel to the layer and not to the block edge. The true distance from the
grid point to the communication surface and the true surface can be calculated easily, as shown
in Figure 3.6:

L
Ly = —,
coso. | (3.4)
A | = Ajcosa,
where o is the dip of the layer. Applying Equation 3.4 to Equation 3.2 and considering Equation
3.3 the right block-pair transmissibility is:
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T 2
1, = —I (cosa)” (3.5)
1J + 4o

T T

In practical application the geometrical torsions in the cross section are sometimes neglected
and the block system will be displayed as a system of rectangular horizontal blocks as shown in
Figure 3.7. The blocks are shifted vertically from each other, their surfaces are not the same for
the neighbors and the overlapping is only partly. This is only a question of the graphical
illustration and has no influence on the calculation of the transmissibilities.

1

a) b)

Figure 3.7: Cross section of a Cartesian layered model
a) discretization grid, b) visualized grid

3.2. Local Grid Refinement

In most of the cases the Cartesian grid is not sufficient to provide the necessary resolution for
particularly interesting areas, e.g. at the vicinity of wells. To achieve a high resolution in
relevant areas, and at the same time to keep the overall number of blocks as small as possible,
selected blocks can be subdivided. This subdivision is called local grid refinement (LGR). LGR

was introduced by Heinemann et al.>® in 1983 and it was discussed in many papers since then.

To distinguish between the original (coarse) and the resulting (fine) blocks the expressions
"fundamental” and "refined" blocks will be used. Three divisor numbers (K;;, Kj,, K 3) can be
assigned to every fundamental block. They indicate the number of partial blocks into which the
fundamental block is to be subdivided in the corresponding direction. In this way,
sub-coordinates (I;; 1,7 I37) are defined in every fundamental block, with the same orientation

as the main coordinates (Figure 3.8).
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In this way, each partial block can be addressed by specifying the coordinates ({;, 15, I3) of the

fundamental block and the sub-coordinates (/;5 I,5 I37). (For brevity, we refer fundamental
blocks as F-blocks and the refinded blocks as R-blocks in the following).

L] /
o

\”
N

~1 1 /

N~

\\/ //
~.

Figure 3.8: Determination of the sub-coordinates

The subdivision can be done on more levels, uniformly or irregularly. Possibilities which are
not recommended are shown in Figure 3.9. All these types of LGR were discussed in the
literature with contradicting results. Even if the advantage of a certain kind of LGR was
demonstrated for a couple of problems, it was always possible to find a case in which the
deviations from the equivalent, fully refined grid was unacceptable, or the coarse grid gives
even more reliable results. To avoid these pitfalls the following requirements must be satisfied:

The grid must be point distributed and not block centered.

The coarse blocks must be equally and uniformly divided in x- and y- directions.

The coarse-fine grid transition must be smooth; the transition ratio between finer and
coarser grid should be 1:2 or 1:3.

The orthogonality at the transition zone must be assured.
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T

Figure 3.9: Not recommended Cartesian grid refinements.

The necessity of the first requirement was demonstrated by Nacul et al. (98] Most of the
commercial simulators use block-centered grids. In such a case the LGR can be used for the area
with square Cartesian blocks which are block-centered and point-distributed at the same time.
No LGR can be recommended for corner point geometry.

If the second requirement is not satisfied, thus a supplementary artificial orientation effect will
be introduced if the main flow direction changes, leading to wrong conclusions. The third
requirement is necessary to assure an acceptable accuracy in calculating the flow between

refined and coarse regions as it was proved by Nacul et al. (98], By disregarding the fourth
requirement the two-point flux approximation is not applicable. When the refined block system
is determined, the divided region should have as few corners as possible (Figure 3.10).

It is suggested to use 2x2, 4x4, 8x8 or 3x3 and 6x6 areal refinement only. The transition ratios
1:2 or 1:3 between coarse and fine grids can be satisfied by extending the refined zone as shown
in Figure 3.10b. There is no argument against a multilevel LGR in which the individual refined
blocks are further refined, satisfying the same requirements. However, there is no practical need
for such an option. It is better to exploit the possibilities offered by the windowing

techniquel321133],
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NOT RECOMMENDED RECOMMENDED

Figure 3.10: Definition of the subdivided area. a) not recommended, b) recommended

The shortcoming of the classical LGR, as shown in Figure 3.10b, is that the transition between
coarse and refined grid is not orthogonal, therefore the two point approximation cannot be used,
or if it is used it leads to considerable discretization errors. To overcome this problem different
approaches exist. One possibility is to make use of multi-point flux approximation.
Alternatively Quandal et al. introduced pseudo-points along the transition boundaries. Both
solutions are limited applicable and complicated. The right solution is to construct the grid by
the PEBI method assuring orthogonal transition between the coarse and refined blocks as shown
in Figure 3.11. It is easy to understand that this solution has also some limitations. It can be used
only if the Cartesian grid is point-distributed and the grid spacing of the F-blocks does not
change very much. For blocks with stretched shape it is not possible to construct such a
geometry (Figure 3.12).
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Figure 3.11: Incorrect and correct block interfaces for refined grid
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» NEGATIVE BLOCK BREADTH
i b—»«—bH—>
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a 4e ./
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v

Figure 3.12: No orthogonal refinement possible by stretched blocks

3.3. 2% -Dimensional Full-Scale Grid Construction

We combine three kinds of independently constructed grids in one full field project: Productive
Area grid (PA), Aquifer grid and Window grid. The PA and Aquifer grids are always (without
exceptions) a 2% dimensional (layered) grid. A window grid can be a 22D or a fully 3D grid.

A 2% D grid will be constructed in the horizontal plane. Laterally the grid points are set in the
mid-surfaces of the layers and in the third dimension they are located on vertical lines.

3.3.1 The Aquifer Grid

While the geological and petrophysical properties of the productive areas are known at the
beginning of a simulation project, the aquifer is usually unknown. The size, the porosity, the
permeability and their distributions around the productive area will be determined by matching
reservoir pressure. The permeability is in areal extension isotropic, i.e.: does not depend on the
direction. The History Match is a step-by-step procedure in which the aquifer model becomes
more and more complex by re-sizing and re-parametrizing the aquifer without changing the
productive area.

The aquifer grid is constructed from the global mesh outside the PA. At the boundary of the
productive area the PEBI method is applied to obtain a correct transition between the different
grids. Figure 3.14 shows the two-dimensional block model constructed from the global mesh in
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Figure 3.13. Please note, that two productive areas are modelled within one common aquifer.

Figure 3.13: Global mesh with two PA’s and different spacing in the aquifer
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Figure 3.14: Block model constructed from the global mesh
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3.3.2 Productive Area Grid

Figure 3.15: Productive Area grid

The grid in the productive areas will be constructed independently from the aquifer. Figure 3.15
shows one of the PA’s from the previous example. The grid is always a simple regular Cartesian
mesh. It is assumed that the principal directions of the permeability tensor coincide with the
lateral direction of the grid lines or that they are diagonal to it. This is a simplification but
practical. The areal anisotropy is not or only poorly known. In the global view it is satisfactory
to offer four possibilities for the highest permeability direction as shown in Figure 3.16 and
Figure 3.17. The direction can be different for all quadrangles formed by four grid points.
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Figure 3.16: Possibilities offered for the highest permeability directions

Figure 3.17: Definition of the areal anisotropy

Lets assume an anisotropic reservoir, where the permeability values &, # ky are known. If the

principal directions coincide with the coordinate directions, then the grid remains as shown in
Figure 3.15. Figure 3.18 is a productive area grid for the case of partially diagonal permeability
direction.
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Figure 3.18: Cartesian grid with partially diagonal main permeability direction and

increasing anisotropy ratio (from left to right)
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Figure 3.19: Productive area with channels

Channel structures can be characterized by the polygons built by segments in x, y and diagonal
direction, approximating the principal axis of permeability. The corresponding PA grid is

depicted in Figure 3.19. Note that the position of the grid points remained unchanged.

Figure 3.20 shows a PA with two refined zones for the isotropic case. In anisotropic cases the
principal permeability directions (horizontal, vertical or diagonal) will not be parallel with the
edges of the triangular grid elements in the transition zone, therefore the permeability ratio
applicable for the kPEBI grid construction is limited. From a practical point of view this
restrictions do not hamper the application of LGR. The refined area should be extended so that

the conditions are satisfied in the transition zones.
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Figure 3.20: PA with two refined zones

3.4. Vertical Extension

In the isotropic case the vertical extension of the grid model can be done easily. The grid
constructed for the top will be projected through all layers and sublayers. The same is valid for
the anisotropic case, if the principal permeability directions are parallel to the x- and y-axis. The
anisotropy ratio can be different in all vertically connected blocks. All features of the
conventional layering such as vertical refinement, pinch-outs, discountinuities, etc. can be
applied.

If the principal permeability direction is diagonal the shape of the blocks changes with the
anisotropy ratio and the surfaces of the stacked blocks will not be identical and they will
produce an apparent discrepancy in the overlapping as shown in Figure 3.21. In such a case a
2D grid must be constructed for all layers individually. Note that the grid lines are always
vertical. From the point of view of flow calculation this is not a serious problem. The vertical
transmissibilities will be calculated as harmonic average of the block half-transmissibilities
depending on the two block surfaces.

We consider a quadrangle formed by 4 grid points on top of the reservoir (Ist layer). If the
principal permeability directions do not coincide with the coordinate axis then the block shape
will be different to the Cartesian one as it was shown in Figure 3.18. The block shape depends
on the direction and the permeability ratio as well. The 2D grid must be constructed now for all
layers individually, producing an apparent discrepancy in the overlapping of the stacked blocks
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as shown in Figure 3.21. One could conclude that the construction of a 22D model is no longer
possible. This is understandable from geometrical point of view, but the conclusion, based on
the Control Volume Finite Discretization (CVFD) theory, is wrong. Theoretically it is not
required that the communication surfaces must be identical from both sides. It is solely required
that both blocks have one surface which is the unique communication surface with the

neighboring grid block. As given by Equation 3.6, the block pair transmissibility T ij will be

calculated as harmonic average from the so call half-block transmissibilities Y ij andY i using

properties of a single block only. As explained previously, the permeability and thickness of
neighboring blocks can be different. Therefore, why it should be required that the surfaces must
be equal?

T = [L+LJ1 (3.6)
i YT,

In fact, such an apparent "discrepancy" is not new. The cross section of a simple layered grid
looks as shown in Figure 3.7a. One grid block is apparently connected to more than one block
in the neighboring column which is naturally not the case. Therefore it is usual to visualize the
cross sections and also the 3D plots in a smoothed form as it is shown in Figure 3.7b.

As shown in Figure 3.21, the vertical coordinate line /; remains vertical, which is a fundamental
requirement for all kinds of 22D grid models.

a) b) c)
Figure 3.21: Vertical column of blocks if (a) anisotropy is uniform and (c) changes

over the layers

A fully three dimensional grid construction is not applicable for this kind of stretched blocks.
The thickness of a layer is by magnitudes smaller than the horizontal extensions of the blocks
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which can be easily over 1000 feet. Theoretically an alternative solution would be using
Multi-Point Flux Approximation (MPFA) instead of a kPEBI grid, keeping the block shapes
unchanged through the layers.

Until now no theoretical investigation or numerical experiences were made for comparing the
two methods, namely the kPEBI layered model versus a Cartesian or general quadrilateral grid
using MPFA. Based on sound engineering judgment the kPEBI solution may be applicable to
most of the practical problems.

3.5. Cylindrical Coordinate System

For dealing with rotational-symmetric problems a cylindrical (7, z) coordinate system should be
used. Such a grid is illustrated in Figure 3.22 and Figure 3.23.
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Figure 3.22: Block-centered cylindrical block model
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3.5.1 Block Construction
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Figure 3.23: Point-distributed cylindrical block model

In Figure 3.22 the grid is block-centered in the vertical direction, which means that the grid
points are the midpoints of the layers. Figure 3.23 shows the point-distributed case. In radial
direction the block boundaries (7; + 1,5, 7; . 1) are specified by the user. The first ring is the well

radius (ry, = RW) and the last one the outer boundary (r, ; 1/, = r,). It is recommended to

distribute the rings in such a way, that assuming steady-state radial flow, the pressure drop
between two neighboring blocks is equal.

This is the case, if

1nri+ 1/2

= ¢ = const (3.7)
Fic1r2
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and

y \n—1
(4 o0

n is the number of blocks in radial direction. The pressure distribution within the block
boundaries r; | 5, 7;, 1, 1s different for steady-state or pseudo-steady state flow. For

steady-state flow the dimensionless pressure may be expressed as

P, = lnrp, (3.9)

and for pseudo-steady state flow

72 (r2 r2 )
_ i+1/2 1 “li-1/2
Py = 5 5 lnrD—E s (3.10)
Piv1/27Ti-1/2 Yit1/2
The dimensionless variables are
2nhk
PD = ——Ip(») _p(Vi,l/z)] (3.11)
Hg
kt
Ip———>5— (3.12)
woc,r
r
rp =T (3.13)
i-1/2
The average dimensionless pressure for a block is:
"De
_[ Pp-2nrpdry,
b _ 'p=1
Pp = - (3.14)
J. 2nrpdr,
D=1

The correct position of the grid points (7;) is where the pressure calculated from the steady-state
(or pseudo-steady state, resp.) pressure distribution is equivalent with the volumetrically
averaged pressure of the radial block. This radius can be calculated for the steady-state case by
setting the right sides of Equation 3.9 and Equation 3.14 equal. The correct position of the grid
point now is
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2 2
Fiv120 10T 1
i~ OXP 2 2

Fiv1/27Tic1,2

(3.15)

For the pseudo-steady state case Equation 3.10 and Equation 3.14 are set equal. The result is the
following equation which must be solved iteratively for r;:

2 2
r. r.
ln( ’J— 12( ’j =2 hmo-—5-3 (3.16)
Ticy 20° \Vi—1/ o —1 402 4
with
_Tiv1/2 (3.17)
Ti 1,2

The correct grid point location is then calculated with

"= IpTtisa (3.18)

3.5.2 Transmissibilities

After the determination of the grid point radii, 7;, the pore volumes and the transmissibilities can
be calculated (j denotes the vertical direction, i the radial direction)

2 2
Vig =m0y [0 10— 11 2) By (3.19)
; ; 2Th,
Yiv1/2,j = Kivrso,; 7 DIS3;; (3.20)
11’1 l+1
T
and
2 2
2n(r; -7 )
z .z i+1/2 "i—-1/2
V12 = K1 Bt h - DISY, ; (3.21)

k; 12 is the permeability in the radial direction and klZ.’ 172 is the permeability in the axial
direction. Both values are averaged from the permeability values of the two involved blocks.

r Zki
kiv1/2; = %

- FKTX3
- FKTX3

RT3 K

i FKTX3Z.’]. + ki+ 1,/

i+ 1’]

(3.22)

A i+l
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. 2k; ;- FKTX1; -k, oy FKTXT,

k. =
j+1/2 , .
1] ki i FKTX1, kg ;- FKTX1,

1

(3.23)

A

The z-direction corresponds to direction /;, and the radial direction to direction /3. A subdivision
of the blocks is not possible.

The two gridding methods (for steady-state and pseudo-steady state flow respectively) give
similar results in most of the cases. Calculating transient flow behaviors (well testing), the
pseudo-steady state grid is more suitable.

For a generalized case the third dimension is the rotation angle ©, as shown in Figure 3.24.

Figure 3.24: Three-dimensional radial coordinate system

3.6. Curvilinear Grid

3.6.1 Orthogonal Curvilinear Grid

A coordinate system is orthogonal if the coordinate lines are mutually orthogonal everywhere.
In this case the inter-block flow term for one block surface can be calculated from two grid
points and there are no cross derivative terms in the transformed flow equations. For any
orthogonal block system, the inter-block transmissibilities can be calculated from intuitive
geometrical concepts. This means in general:

A
1J
T = h—UkUcosy (3.24)
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where
* kyy - is the average permeability between block I and J,
4, 7 - 1S the cross-sectional area and,
* hy - is the distance between grid points,
sy - is the angle /y; on the surface 4.

The only reason to use an orthogonal curvilinear grid system is to reduce grid orientation effects.
From this reason the curvilinear grid system should be based upon a stream tube model, without
neglecting the cross tube flow terms. The stream tube model coincides with physical reservoir
stream lines. However they will change with time. Therefore such a grid is valid only for a
prefixed situation.

Figure 3.25: Streamlines and orthogonal streamtube grid after Mlacnik ef al.

3.6.2 Stream Tube Grid

The stream-tube approximation was introduced by Higgins and Leighton[72]. They presented
convincing evidence that the performance of a five-spot pattern waterflood can be calculated by
holding the streamlines constant as the flood progresses. They calculated the fluid displacement

along streamlines using the Buckley-Leverett!??] theory.

If the stream lines are known, the grid points can be distributed arbitrarily along them. The block
boundaries are in one direction stream lines, forming the so called stream tubes, in the other
direction they are arbitrary surfaces cutting the stream tubes into blocks.

Figure 3.26 shows a five-spot pattern grid. On one side the stream tubes are irregularly cut into
grid blocks. On the other side an equivalent orthogonal grid was constructed via stream lines
and equipotential surfaces. The two grids are equivalent so far in the sense that the stream lines
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remain unchanged. The interblock transmissibilities have to be calculated with Equation 3.24
for both cases, only the angle v is 90 degree for the orthogonal case and variable for the other
one.

Orthogonal

Non-Orthogonal

Figure 3.26: Orthogonal and non-orthogonal stream tube grid for five-spot pattern

The applicability of the stream tube model is limited to simple patterns and favorable mobility
ratio.

If the mobility ratio is adverse, the stream tubes will change significantly during displacement.

Martin and Wegner[go] proposed a method to change the stream tubes over time. Such a way
seems to be too complicated for general purpose applications.

The orthogonal stream tube grid has curved block boundaries and so it is a little bit complicated

to calculate block volumes, surfaces etc. To overcome these difficulties Wadsley[136] suggested

using non rectangular coordinate lines. The curvilinear edges of the blocks are approximated
with straight lines. Such a grid is shown in Figure 3.27. The approximation of the flow problem
is as good as the approximation of the geometry.
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Figure 3.27: Use of non-rectangular grid to approximate stream tube grid (after
WADSLEY!!36))

3.6.3 Corner Point Geometry

The way to this type of grid is a straight one: Beginning with the non-orthogonal stream tube
grid which is correct, through the non-rectangular grid which is an approximation of the stream
tube grid, to the free choosing of the corner points of the grid blocks. The latter is devoid of any
theoretical background.

Figure 3.28 shows such a grid, taken from the advertising material of a commercial simulator.
Such a freedom is naturally tempting but the outcome completely uncertain.

Figure 3.28: Grid construction with corner point geometry



4 Initialization of a Grid Model

4.1. Initial Pressure and Saturation Distribution in a
Reservoir

In a reservoir containing hydrocarbons and non-hydrocarbons, the initial phase distribution is
determined by the equilibrium between capillary and gravitational forces. Capillary pressure is
the pressure difference between two phases showing different properties, like oil and water or
gas and liquids. For example, the capillary pressure for the oil-water system is given by:

Po=Pyw ~ Pcow(Sw)’ (4.1)

where p, and p,, are the oil and water phase pressures. Due to the phenomenon of capillary

pressure the vertical saturation distribution is continuous, building a more or less extended
transition zone between the phases. In equilibrium, the capillary pressure gradient must be equal
with the gravitational one. Therefore, the following equation must be satisfied:

dP. (S.) dS
cow\"w w_ B
T = g(p, ) (42)

w

The coordinate axes z represents the vertical direction and is oriented downwards. The phase
densities are a function of the pressure, temperature and additionally of the composition.

The capillary pressure is not only a function of the saturation, it depends on the direction of the
saturation change, too (hysteresis effect). Therefore, the concept of initialization must be based
on the assumed process of hydrocarbon accumulation and needs some further considerations.

4.1.1 Fluid Properties at Initial State

The compositions of the reservoir fluids at the initial state are not uniform. On one hand side the
reservoir can be divided by sealing faults and interbeddings into more parts, called
compartments, that communicate through a common aquifer only. Due to this communication
they build one hydrodynamic unit, that must be integrated into one single block model. The
reasons for different fluid compositions across a reservoir are manifold. The hydrocarbon
accumulation could have happened at different time. Also geochemical processes, taking place
after the accumulation, can lead to different compositions. This kind of differences are handled

4-69
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by introducing PVT regions. The fluid properties are defined for each PVT region
independently. A PVT region is, per definition, the part of the reservoir, for which the same fluid
characterization is valid.

On the other hand side the hydrocarbon phases are mixtures of many chemical compounds, and
if they are in equilibrium, than their spatial distribution is determined mainly by the equilibrium
of the chemical potential and the gravitational force. Due to the geothermal temperature
gradient, also hydrodynamic convection can manifest in a reservoir, which tends to homogenize
the composition of the phases. The vertical variation of fluid compositions is generally
non-linear.

How a PVT region must be handled at the initial state depends on the fluid system, the size and
the complexity of the reservoir. We discuss here black oil type fluid description only. The usual
approaches are the following:

4111 The most simple case

It will be assumed that the temperature and the composition of the phases are uniform in the
PVT region. That means, that the water salinity and the bubble point pressure of the oil phase
are uniform. Consequently initially all densities depend on the pressure, which means on depth
only:

Py = PywlPy)i Py = Po(Py)s Py = PgPg) (4.3)

In an oil reservoirs with gas cap, the oil must be saturated at the gas-oil-contact (GOC). Because
the bubble-point-pressure (p;) is constant, the oil becomes bellow the GOC undersaturated. Due

to the, with depth increasing phase pressures, all phase densities are increasing too. This is an
important fact. If the densities would decrease with the depth then the fluid column becomes
gravitational instable, inducing uncontrolled fluid movement in the model.

4.1.1.2 Variation of Bubble Point Pressure with Depth

It will be assumed that the temperature is uniform but the bubble point pressure changes
monotonic with the depth:

R=R(2); P, = PPy Ry) (4.4)

The vertical changes can be defined by the bubble-point pressure or directly by the solution
GOR. The condition that the oil density cannot decrease with the depth must be satisfied.
Therefore the assumption that the oil is saturated at every depth is not applicable.

4.1.1.3 Variation of Salinity with Depth
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The water salinity can increase with the depth. The stability requirement is satisfied because the
water density increases with the salinity:

P = PP Cry) (4.5)

where Cy, is the salt concentration in kg/kg brine.

41.1.4 Variation of Temperature with Depth

If the vertical extension of the reservoir is considerable, than it is recommended to account for
the geothermic temperature gradient. The PVT properties must be defined for two reference
temperatures and will be interpolated for a given depth. The combination with variable bubble
point pressure (Case B) and variable salinity (Case C) is naturally possible. For this case:

where T is the temperature.

41.1.5 Variation of Oil Density with Depth

In many reservoirs the oil gravity increases with the depth. In such a case a special model
formulation must be used, called API Tracking. After the gravity of oil in a block is determined,
the appropriate fluid properties for this particular oil gravity, saturation pressure and reservoir
pressure, may be interpolated on both pressure and oil gravity. For the oil density:

p, = P,(p,,APLR) 4.7)

The combination with variable bubble-point-pressure (p;) and salinity is possible but not with

variable temperature. Assuming variable temperature it would be necessary to interpolate for
both the API grade and for 7, which could not be done practically.

4.1.2 Formation of Hydrocarbon Reservoirs

The porous rock of a hydrocarbon reservoir is assumed to be originally saturated with water
(brine). During the migration of hydrocarbons (oil and gas) into the trap, the water phase, which
is in most of the cases the wetting phase (w), is displaced by the non-wetting (nw) hydrocarbon
phases. In the most simple case, the hydrocarbon mixture forms one single phase resulting in an
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undersaturated oil or in a gas reservoir, as it is shown in Figure 4.1

a) b)
i1 v

Gas or Oil Water

Figure 4.1: Formation of two phase reservoirs
a) Water saturated formation; b) Accumulation of gas or oil

When talking about a reservoir containing oil and free gas (a saturated oil reservoir with a gas
cap), the hydrocarbon accumulation may have occurred in different ways:

a)

Hydrocarbon

Figure 4.2: Formation of oil reservoirs
a) Water saturated formation; b) Migration of hydrocarbons into the trap; c)
Separation of oil and gas

1. Contemporary migration of the light and heavy HC components into the trap and
separation of the phases within the trap (Figure 4.2).

2. The heavy components accumulated first and the gas formed during the later phase
of the genesis and migrated through the oil body.

3. The gas accumulated at first and the oil became trapped later on.

For the cases 1 and 2 the non-wetting gas phase displaced the oil from the gas cap volume
(drainage process) which is a similar process as the oil/water and gas/water drainage process. In
the third case the oil entered into the gas cap through imbibition. Nevertheless, it is very
difficult, maybe impossible to get evidence how the accumulation took place. Therefore, it is
assumed that both for the oil/water and gas/oil phases the accumulation was a drainage process
and the primary drainage capillary curves determine the initial phase distributions.

Figure 4.4 shows the water/oil and oil/gas capillary pressure functions for a primary drainage
process. The saturation changes are ranging between 100% and residual wetting phase
saturation. The drainage capillary pressure shows normally a threshold pressure. It must be
exceeded so that the non-wetting phase can enter the pores of the rock.
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Figure 4.3: Primary drainage capillary pressure curves for oil/water and

gas/oil

4.1.3 Oil-Water and Gas-0Oil Contacts

The Water-Oil-Contact (WOC) and analogous the Gas-Oil-Contact (GOC) can be defined in
different ways. The possible interpretations are the following:

1. Atthe WOC the water-oil capillary pressure is equal to zero (P

2. The oil saturation below the WOC is zero (S, = 0).
When opening a well above the WOC oil will be produced, below the WOC only

water will be produced.

0).

cow

The definitions for the GOC are analogous. The contacts based on these three interpretations are
shown in Figure 4.4. From the physical point of view the first definition is the only correct one.

The surface where P, = 0 is a horizontal plane. It is assumed that no water movement takes

place in the bottom aquifer. The S = 0 surface is normally not a horizontal plane due to the

different threshold pressure in different areas. The third kind of ‘phase contact’ is influenced by
the relative permeabilities too. It can be useful from the practical point of view (especially for
petroleum production engineers) but it is not applicable for reservoir modeling.
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Rock regions
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krw = 0 S
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Figure 4.4: Different interpretations of the phase contact
(1) Peoy =0;(2) S, =0, (3) ¢, =0

In the simulation technique always the first definition of the phase contacts must be used. It must
be emphasized that even above the WOC the water saturation and above the GOC the oil
saturation can be 1.0, due to the capillary threshold pressure.

4.1.4 Initial Vertical Pressure Distribution

Figure 4.5 shows the vertical distribution of the phase pressures in a reservoir. The vertical
pressure distribution can be calculated as follows: The pressure of the water phase at a reference
depth z,,r> zyoc s called p,,,.: The pressure at the level z is determined by:

Pu(E)= Pyt & | P (2)2 (4.8)

Zref
Equation 4.8 is valid below and above the WOC until S, becomes equal S,,,. at the depth zp.

The oil-water capillary pressure becomes zero P,,,,= 0 at the WOC therefore, the oil-phase

cow
pressure above the WOC can be calculated as:

z
woc
Py2=py,  * [ p,p,)d (4.9)
Zwoc
At the level z, the difference between the oil and water phase pressures exceeds the threshold

pressure therefore, the oil saturation becomes greater than zero. At a level zp the water
saturation becomes S,,,. and than the water phase pressure follows the oil phase pressure parallel.
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Figure 4.5: Initial pressure distribution in the reservoir

The vertical phase pressure distributions beyond the GOC are similar to those at the WOC:

Pe(2)= pg | pyle)dz (4.10)

ZGo
Due to the threshold pressure the gas saturation becomes greater than zero at the level z <z

Equation 4.8 - Equation 4.10 are recursive for the pressures, which does not make any
difficulties in the practical application.The following numerical solution can be applied for
phase p:

pp(zi+1)= Pp(Zi)"'gP(Zi)AZ; Az= Zj+1_Zj (4.11)

4.1.5 Initial Vertical Saturation Distribution

After defining the vertical distribution of the phase pressures it is simple to determine the
saturation distribution:
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S,= 1 if z2zpoc (4.12)
Sw: Pcow(po _pw); SOZ 1‘_Sw if ZWOC>ZZZGOC

—1 .
SF: cho(pg_po); Soz SF_SWC if Z<Zgoc

i
GAS
z, -1
Zgoc 1 - - - -
z. | _ |
’ OIL
z, |-
z, |--
Zwuc - — = — — — — —
WATER
Zrcf, - - — — — — — — — — —
0
Saturation Pressure ———»

Figure 4.6: Initial saturation distribution in the reservoir

Figure 4.6 shows the vertical phase pressure and the corresponding vertical saturation
distributions for a given set of capillary pressure and PVT functions. Taking two arbitrary
depths z; and z; on this curves, then the following relation must be valid:

(Doj_q)oi: pj—pi—g(pojzj—poizl.)zO (4.13)
q)wj o q)wi - pj a Pcow(Swj) —P; + Pcow(Swi) _g(pojzj_poizi) =0

Equation 4.13 becomes rigorous if p; = p;, which is practically true if the distance between the

two points is not very large. If the reservoir is described using more rock and PVT regions then
the vertical pressure and saturation distributions must be calculated for all combinations of the
rock and PVT regions.
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4.2. Assigning Pressure and Saturation Values to
the Blocks

4.2.1 Equilibrium Based Initialization

The reservoir model is built - as result of the discretization of the flow equations - as a three
dimensional system of blocks. Each block is representing one part of the reservoir rock and is
characterized by the top depth, thickness, porosity and permeability. Initialization means to
assign a pressure and the saturation value to each block. The initialization is correct if the
following two requirements are satisfied:

1. No fluid movement takes place if the model is operated without
production/injection.

2. The fluid content of every block is practically identical with those of the
corresponding part of the reservoir.

Saturation Saturation

+

Pressure ——»
Figure 4.7: Initial saturation of the blocks using INITM option
Figure 4.7 shows a vertical column of blocks together with the vertical distribution of the
pressure and the saturations. Two possibilities of initialization will be discussed:
INITM: Initialization at the middle-point,

INITD: Initialization based on fluid content.

INITM and INITD are not standardized abbreviations, they are used exclusively in this text for
sake of brevity only! Use the full expressions “Block middle-point initialization” and
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“Initialization by vertical integration of the fluid content” in daily communication.

Saturation Saturation

'+

Pressure ——»

Figure 4.8: Initial saturation of the blocks using INITD option

INITM is the most simple initialization method and is used by most of the commercial
simulators. The block pressure and saturations are taken from the vertical distributions at the
grid point depths. Based on Equation 4.13, INITM satisfies the first requirement but fails
regarding the second one. For blocks near to the phase contacts, the block saturation can be quite
different to the real one. It may happen, that the middle-point of the block is situated just below
of the WOC and the water saturation becomes 1.0. Contrary, point could be just slightly above
of the WOC resulting in a considerable amount of oil in the block.

Using INITD, the saturation function will be vertically integrated between the top and the
bottom of the block, determining the average water and oil or gas saturations. It’s easy to solve
this integration by calculating the integral of the saturations over the height at first. For water
this means:

Zmax

re = [ 8,4 (4.14)

Zmin

where I'(2) is a function of the rock and PVT properties.The average initial water saturation in
a given block can be easily calculated by:
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— _ T(z,)-T(z,)

wi Zy—2z

(4.15)
t

Based on this average saturation, the position of the grid point z; will be chosen on the vertical

saturation distribution function and the block pressure will be interpolated to this depth. This
method satisfies the first requirement as good as INITM but gives the right fluid in place, too.
Figure 4.8 demonstrates the result of the INITD method. The distance of two neighboring
blocks will be determined for this new grid point location.

AzizI 3] uses a correction term to the capillary pressure for each block instead of vertical
shifting of the grid points. The correction term is calculated based on the correct capillary
pressure (which maintain the initial equilibrium) and those saturation which results in the
correct fluid in place:

corr ini

PO = P p (S (4.16)

cow cow COW( w

This correction term must be added to the capillary pressures calculated in each time step,
resulting in greater storage and CPU time and can therefore not be recommended.

The depth of the grid point determined by INITD will not be very different from the middle
point. Therefore, it is normally not necessary to recalculate the block-pair transmissibilities if
they are already available. The difference between the midpoint transmissibility and the
corrected one is negligible compared to the usual uncertainties of the reservoir parameters.
Nevertheless the recalculation is an easy issue.

4.2.2 Non Equilibrium Initialization

For non equilibrium initialization pressure and saturation values are assigned for each grid
block from maps. To achieve no fluid movement at initial conditions, this means before
production startup, certain measures (e.g. a pseudo capillary pressure) have to be taken.

Such kind of initialization is required in certain circumstances only, such as a tilted phase
contact at initial time. Especially in the Persian gulf, such reservoirs can be frequently found.

4.2.3 Stability Condition

To have a stable initialization means, that the velocities (or rates) of all phases are zero at each
communication surface of neighboring grid blocks. It means, that the phases do not move and
the reservoir is in equilibrium.

The rate of the phases p through connection ij is:
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k
. o )
9 sz(upj_.(q’p,j D, )= Tijhpi(Pp = Py 1) (*.17)
ij

where 7; is the constant transmissibility between block i and j, k,, is the relative permeability,

My, 18 the viscosity and @, is the potential of the phase p. The mobility ﬂ’pij will be calculated by
one point upstream weighting:
| Ay (@ =, )20 (4.18)

Py My if (@, =D, )<0

The rate between the two blocks is zero if (1) the phase potentials of the two blocks are equal
or (2) /Ipij is zero. Based on Equation 4.13 the first condition must be satisfied if the saturation

of the phase p is greater then the immobile saturation in both blocks. Consequently /"tpij
than zero, independent which of the blocks is the upstream one. If the mobility in the block j is
zero but not in the block 7, than the blockj is already in the interval in which the (wetting) phase

pressure gradient is parallel to the non-wetting ones (above the level z;, in Figure 4.7) and

1s greater

therefore for the wetting phase the block j becomes the “upstream” block and

Ayij = Ay = 0. (4.19)

It is easy to approve if the initialization is stable or not by calculating the model without

production/injection. Some simulators provide so called uniforming options (see AzizI 3] to
counterbalance the instable initialization. This is not necessary if the method INITD will be
used.

4.2.4 Segregated Flow

In important cases, especially for gas reservoirs, it is possible to use a simpler concept assuming
a complete separation of the phases neglecting the capillary pressures. Figure 4.9 shows such a
model.

Above the WOC or WGC the water saturation is immobile (S,,,.) and above the GOC the oil

saturation is zero.The average block saturations can be calculated easily based on the position
of the blocks and the phase contacts. This results in two classes of blocks: (1) The blocks which
are not cut by phase contacts. They contain one mobile phase only. The block pressure can be
assigned to the midpoints in the same manner as it is done with INITM. (2) The phase contact
is cutting the block. In this case the grid point depth must be equal with the depth of the phase
contact, otherwise the potential difference between two neighboring blocks will not be zero and
will induce an uncontrolled fluid movement.
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Figure 4.9: Segregated flow initialization (INITSF option)

4.3. Practical Remarks

1. The measured pressure p at a given depth will be equivalent with the pressure of
those phase which is in contact with the pressure gauge. For the initial state we can
assume that

pP=p, - ZZ2Zyoc
pP=p, ;pw=p_Pcow(Sw) Zwoc>Z22Zg0C
P~ Pg ;p0=p_ch0(Sw+So)ZZZWOC

(4.20)

Regarding the Equation 4.3 the phase densities are functions of their own phase
pressure. This leads to the complication that they will not be a function of the
measured pressure p only but based on the Equation 4.1 of the capillary pressures
and the saturations, too. This does not effect the initialization but induces a more
complicated and time consuming calculation of the coefficients of the flow
equations which are required for all blocks and time steps. For the practical point of
view it is enough to assume that the densities are functions of the measured pressure
p (defined by Equation 4.20) only:

Py = PuP) Py =P R Py =Py(p) (4.21)
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For initialization the drainage type capillary pressure functions (see Figure 4.3), for
calculating the displacement (simulation run) those for the imbibition types should
be used. Although the drainage and imbibition curves are different in shape, they
end up with equal values at the initial saturation for each individual block. Capillary
pressure functions are not only a function of the saturation, they depend on the
direction on saturation change, too. This phenomenon is called hysteresis. In many
cases the hysteresis data are not available, therefore, one set of capillary (and
relative permeability) functions will be used only. There is no doubt which type of
relative permeabilities should be used during the simulation run because they are
required for the dynamic calculation only. For an oil reservoir there will be the
imbibition curve for k., and &,,, and the drainage curve for k..

If using one set of the capillary pressure curves an error will be introduced either in
the initialization (in case of imbibition functions) or in the calculation of
displacement (in case of drainage functions). Which error is more serious depends
on the actual project. E.g. imbibition functions should be used for modeling a single
well conning problem while drainage curves in most of the full-field cases.

The drainage type capillary functions shows a jump at S,=1, called threshold
pressure. This cannot be handled mathematically, therefore, it is necessary to smear
out the curve. The imbibition type capillary function has no values at S, >(1.-S,,),
still this interval must be defined when using the function for initialization, too.
Therefore, the capillary functions must be given in a form when using for numerical
calculation, that both

—~1
Pcow = Pcow(Sw) and SW—SW (Pcow) (4.22)
become unambiguous. This numerical ‘corrections® are shown in Figure 4.10
Pcow PCgO
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Figure 4.10: Numerical representation of drainage and imbibition type capillary pressure

curves



5 Wells in Reservoir Simulation

5.1. The Well Models

To consider the wells in a numerical reservoir model to fundamental different approaches exist:

1. Using specialized grids (radial, unstructured, windows) that represent the well at its
true scale.

2. Applying so called well models which relate the bottom hole flowing pressure to the
pressure of the perforated grid cell.

The first approach is beyond the scope of this textbook. Therefore only the second one will be
followed, which is the standard approach in commercial reservoir simulators.

In reservoir simulation models wells are usually defined as a "source" (or "sink"), located in a
grid block with dimensions considerably larger than the wellbore. No special gridding technique
is used around the well. Because of this dimension difference between the well and its grid
block, the numerically calculated block pressure is different from the well bottom hole flowing
pressure. A well model is therefore needed to translate the block pressure into wellbore
pressure. It is a relationship between wellbore pressure p,,; block pressure py, and well

production rate g. The model describing this relationship may be called well index, numerical
productivity index, or simply well model.

Peaceman!!%*] introduced the basis for the most common well model. The Peaceman-type well
model calculates an equivalent well block radius r, which is defined as the radial distance from

the well at which the numerically calculated block pressure equals the reservoir steady state
pressure, hence

B 1/
Pur = P03k (5.1)

Py 1s the wellbore pressure,

Po is the block pressure,

q is the well production rate,

k is the well block permeability,

h is the well block effective thickness,
rp is the equivalent well block radius,
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r is the wellbore radius.

w

5.2. The Peaceman Well Model

Peaceman’s approach is based on the comparison of the analytical solution with the result of the
numerical solution of a selected problem. He considers one phase flow in a two dimensional
domain with constant pressure at the boundary. The wells have an arbitrary position (x;,);) and
produce with constant rate g, (positive for production and negative for injection). Muskat (971

gave the analytical solution of this problem using the principle of superposition such that the
pressure p(x,y) at any point (xy) is given by Equation 5.2:

plny) = et E=Sg In(ry,p). (5.2)
k

where r; is the distance of the well & to the point (x,y), and ¢ is an arbitrary constant determined
by the boundary condition. The boundary pressure pr(x,y) can be chosen in such a way that the
constant ¢ becomes equal to zero. In this case the following equation must be valid:

prx,y) = M%qu In7 (5.3)
k

From Equation 5.2 and Equation 5.3 the bottom hole flowing pressure for a well m can be
calculated as follows:

Py = Eﬁz{qmlnrwm-i-k; q,Inr,, (5.4)
m

where

g, 1sthe well rate,

9k is the rate of offset wells,

rom 1S the considered well radius,

rwm 1S the distance between the considered well m and offset well £.

The same problem can be solved numerically using the finite difference method. The region is
overlain by a rectangular grid having a grid aspect ratio oo = Ay/Ax. The pressure at the boundary

nodes is set equal to the values given by Equation 5.3.

Using five point difference scheme, the finite difference equation is written as:
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khrAy -2 + 55
”[Ax p(z'+ (7)) Py Ta-1) }} )
kh[ Ax
—| = ] =g .
" u [Ay p(i,j+ 1) p(i,j) +p(i,j—1)}} 9

where g;; is the sum of the production rates of all wells located within block (if). The solution
of the linear equation system Equation 5.5 gives the block pressure p;;,,. Inserting this pressure
the well bottom hole flowing pressure p,,, can be calculated as follows:

. qu "om
Pywfm = Pijm ™~ rkh IHL_j (5.6)

er

By combining Equation 5.4 and Equation 5.6, and solving for the equivalent wellblock radius
(}’ Om)

1 | 27tkh
In(rg,,) = q_{_pijm_ Z qklnrkm} (5.7)

ml H kOm
where p;,, is the wellblock pressure.

Equation 5.7 is a general equation for the equivalent wellblock radius for regular 2D grids.

When a single well lies on the boundary of two blocks, each block has a rate g;; equals half the
well rate. p;;, will be the same for both blocks because of similarity, and g; will be 0 for & not
equal to m (as no other wells exist when the well is considered isolated).

It should be emphasized that Equation 5.7 is valid only if the basic assumptions of Peaceman
are satisfied. They are the following:

* the flow is two dimensional,

» the well(s) is isolated,

 regular grids (rectangular or square) are used, and

* the blocks are uniform (i.e. Ay and Ax are constants and no grid refinement is used).

A well is regarded as isolated, if it is far enough from any reservoir boundary and other wells,
such that it may not be influenced by them. A conservative rule that the well is isolated if r ;5>

10 max (Ay,Ax) where r4p is the distance to the nearest well and

u>5Ax+%and v>5Ay+% (5.8)

where

u is the distance to the nearest boundary parallel to y direction.
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v is the distance to the nearest boundary parallel to x direction.
o is the grid aspect ratio (Ay/Ax).

The most important results from Peaceman are presented in the following.

5.3. Peaceman Results for Different Well Geometries

Peaceman!!%%] made calculations for a square domain using the solution given by Equation 5.7
with the boundary condition defined by Equation 5.3. He found that the equivalent wellblock
radius (7) is a function of the block diagonal

Ly= (A)*+HAap)H)°>. (5.9)

For a well at the center of a rectangular block he found that

0 _ 14 5.10
E;_' (5.10)

This ratio is constant regardless the grid aspect ratio o0 = Ay/Ax. Peacemanl!%® called the
constant (0.14) as G. If the well is located within its block but off the center, the ratio (r(/L,) is

still constant. The conclusion that the equivalent wellblock radius is constant regardless the
position of the well in its block is somehow surprising.

In an anisotropic case L  has to be calculated in the equivalent isotropic uv plane such that:

L = J(Au) + (Av)? = J(Ax)z(%)o’5+(Ay)2(%)o’5 (5.11)

Av _ Ay(k\%3
‘T A A—ﬁ(#) (5.12)
Y

For example in the case of a single well centered in its block in an anisotropic reservoir the
equivalent well block radius is:

0,5 0,5
0.14 - A/(Ax)z(%) + (Ay)z(’%)
ro = - (5.13)

%.((%)0,25+(%)0,25)

For an isotropic reservoir, modelled with squared blocks of side length Ax Equation 5.13
simplifies to:
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ro = 0.142Ax" = 0, 2Ax (5.14)

5.4. well Model for Horizontal Wells

For the simulation of a horizontal well parallel to y axis, Peaceman’s [108] Equation 5.13 can be
used by replacing the y axis by z axis thus

0.14 - /\/(Ax)z(]]éz) %3, (AZ)Z(’;—X) o3
= = (5.15)

v

0
l(l_cz 0’25+(1f&)0’25)
2 k

such that the well model is written as:

_ Hg "o
PRV ypp—_ E— (5.16)
T Ay ok

Peacemanl!08] emphasized that Equation 5.15 should be used only if the assumptions of
uniform grid and isolated well are satisfied. He explained that the horizontal well can be
considered isolated if the following condition is true:

Ax (kzj 05 0.9. min(z,, h—z,)
_ . <

(5.17)

Az k_ Az

X

where z,, represents the vertical distance between the lower boundary of the reservoir and the
well

Az is the vertical grid dimension
h is the reservoir thickness

This means that the scaled grid aspect ratio should be less than the number of blocks between
the well and the nearest boundary.

If these conditions are satisfied then Equation 5.15 can be used with error less than 10%. If the

condition in Equation 5.17 is not satisfied then Babu et al. ['* model should be used. However
this well model is beyond the scope of the "Introduction to Reservoir Simulation" volume.
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