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Chapter 1

General Formulation of the Fluid Flow 
Equation

1.1. Introduction

Reservoir engineering requires deep understanding in geology, rock and fluid mechanics, in 
fluid thermodynamics and a little knowledge and limited skills in mathematics. All practical 
underground fluid flow models are based on the same mathematical formulation, differently 
simplified to given problems. A reservoir engineer will never face difficulties, once he/she has 
understood the multicomponent, multiphase and multidimensional formulation of the flow 
equations and if he/she is able to adequately relate analytical solutions or numerical solution 
methods to his/her actual problems. A reservoir engineer should not spend efforts to learn the 
solution methods (e.g.: Laplace transform); all necessary solutions are known for more than a 
half century. Petroleum engineering students with limited affinity to mathematics but good 
practical mind often orient themselves to drilling and production technology, which is certainly 
against the industrial interest. The ability of a sound cognition of practical problems and their 
solution is more important in reservoir engineering than in other areas of petroleum technology.

The objective of this script is to give a short but comprehensive presentation of the reservoir 
flow equations. It will be shown that all established differential equations of the area have the 
same root and all of them can be derived easily from a most general formulation. These 
equations handle the problems of the two phase linear displacement, calculation of water influx, 
well test evaluation up to compositional numerical modeling (simulation). Investing once time 
and effort in this Chapter the petroleum engineer will be equipped for his/her entire professional 
life.    

In this Section we deal with isothermal flow models only, therefore no entalphy balance will be 
written. For the sake of generality and later extension, the temperature will be handled as an 
independent variable. Also the dual continuum formulation is excluded here, but it will be 
handled in Volume 5 in detail. 

1.1.1 The Constitutive Equations

In physics and engineering, a constitutive equation or constitutive relation is a relation between 



-2

two physical quantities that is specific to a material or substance, and approximates the response 
of that material to external stimuli, usually such as applied fields or forces. Some constitutive 
equations are simply phenomenological, others are derived from "first principles". A common 
approximate constitutive equation frequently is expressed as simple proportionality using a 
parameter taken to be a property of the material. Such properties are also the permeability of the 
porous material and the diffusion coefficient. The first is defined by the Darcy’s law, the second 
by the Fick’s law. Both laws describe the transport of matter in an almost identical way: Flux is 
proportional to a gradient, and the constant of proportionality is a characteristic of the material. 

1.1.2 The Darcy Law

The permeability of the porous material is defined by the phenomenological Darcy-equation:

, (1.1)

where  is the filtration velocity,  the dynamic viscosity and  the potential. To account for 
the directional dependence of the material the scalar permeability is generalized to a tensor:

. (1.2)

, in general, is a symmetric tensor. Some upscaling methods can produce a non-symmetrical 
permeability tensor, which would mean that the Darcy flow shows shear effects. For such an 
effect no physical evidence exists. An asymmetric permeability tensor is solely the product of 
the upscaling method.

Constitutive relations are often modified to account for non-linear behaviors or inhomogeneity 
in the material. In this sense, the Darcy equation is used for multiphase flow too: 

, (1.3)

where  is the filtration velocity of the phase p,

(1.4)

 is the phase mobility and  the dynamic viscosity. In multiphase flow the pore space is 
occupied by fluids, separated by phase surfaces. The proportion of one phase in the pore volume 
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is defined as the phase saturation Sp. The relative permeability depends on these saturations:

. (1.5)

The driving force is the gradient in the potential field:

, (1.6)

where  is the phase density. 

Inserting Equ.1.6 into Equ.1.3 results in:

(1.7)

Darcy’s Law is valid for laminar flow through the porous medium. In a fine grained medium the 
dimensions of interstices are small and thus flow is laminar. Coarse-grained media behave 
similarly. But in very coarse-grained media - also in naturally fractured media - the flow is of 
turbulent nature. Hence, Darcy’s Law is not valid in such media.

1.1.3 The Fick’s Law

The first Fick’s law relates the diffusive flux to the concentration gradient under the assumption 
of steady state. It postulates that the flux goes from regions of high concentration to regions of 
low concentration, with the magnitude proportional to the concentration gradient:

, (1.8)

where J is the diffusion flux per unit area per unit time [kmol.m-2.s-1],  is the diffusivity 
[m2.s-1] and C the concentration [kmol.m-3]. For a porous medium under multiphase condition 
this yields: 

, (1.9)

where  is the porosity and Sp the phase saturation. In anisotropic media, the diffusion 
coefficient depends on the direction and  becomes a symmetric tensor. By changing the 
concentration C to the mole fraction: 

, (1.10)

where Dp is the mole density [kmol.m-3] of the phase p, the diffusion flux for the component c
in phase p becomes:

krp krp Sp( )=

Φp∇ pp∇ ρpg–=

ρp

up λpk pp∇ ρpg–( )–=

Jc Dc∇Cc–=

D

Jpc φSpDpc∇Cpc–=

φ

D

Cpc Dpxpc=



-4

. (1.11)

If    therefore the following form is a practical approximation:

(1.12)

1.1.4 Constraints and Dependencies 

The porous material has a porosity , which is a function of the pressure (and temperature). The 
fluid system is composed of C components. The state of the fluid depends on the pressure p, the 
temperature T and the overall composition z. These state variables define the number of phases, 
the distribution of the material between the phases, the density and other fluid properties of the 
phases.

The fluid system builds P phases separated by phase surfaces. The composition of the pth phase 
is given by the mole fraction xpc. The mole fractions of the phases obey the equilibrium 
constrains:

, (1.13)

where  and  are the mole fractions of the component c in phase p and p’, respectively. 
The equilibrium constant K is specific for the component c and the phases p and p’. K is 
dimensionless and depends on the pressure, temperature and the overall composition: 

. (1.14)

Naturally for all phases the “mole constraint” is valid:

(1.15)

The proportion of one phase in the pore volume is defined as the phase saturation Sp. It is 
obvious that

(1.16)

Equ.1.16 is called “saturation constraint”.

Jpc φSp– Dpc∇ Dpxpc( ) φSp– Dpc Dp∇xpc xpc∇Dp+( )= =

xpc 1 then ∇Dp 0≈«

Jpc φSp– DpDpc∇xpc=

φ

xp′c Kp′pcxpc=

xpc xp′c

Kp′pc Kp′pc pp T zc, ,( )=

xpc 1;       p 1 ... , P{ , } .∈=
c 1=

C

Sp 1;=
p 1=

P
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The specific mole density Dp [kmol.m-3] is

, (1.17)

where xpc is the mole fraction of phase p. Let Mc be the mole weight of component c, then the 
phase density, ρp [kg.m-3]can be calculated easily:

. (1.18)

The difference between the phase pressures is the capillary pressure Pc [bar]:

 . (1.19)

The capillary pressure depends on the saturation and on the interfacial tension, which is a 
function of pressure, temperature and composition. If the interfacial tension is invariable, then 
the capillary pressure reduces to a function of the saturation only:

. (1.20)

Note, that the subscript c in the symbol of capillary pressure Pc has nothing in common with the 
usual component sign c.

1.1.5 The Equation of Continuity

Consider a cube with a side length of one meter. The mass of component c changes within this 
unit bulk volume with the following rate: 

. (1.21)

The origin of the expression of Equ.1.21 is explained in Fig.1.1 The mass flow rate stimulated 
by convection changes over the cube:

(1.22)

Equ.1.22 is explained in Fig.1.2. Based on the principle of mass conservation the following 
equivalency 

Dp Dp pp, T, xpc( )=

ρp Dp Mcxpc
c 1=

C
=

pp pp′– Pcpp′= p p′≠ p p' 1 … P, ,{ }∈,

Pcpp′ Pcpp′ Sp( )= p p′≠

δGc
∂
∂t
---- φ SpDpxpcMc

p 1=

P
=

δUc upDpxpcMc
p 1=

P
∇=
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(1.23)

has to be satisfied, therefore:

. (1.24)

By considering mass transport by diffusion and the possibility of a volume source/sink the final 
form of Equ.1.24 can be written as:

(1.25)

Equ.1.24 and Equ.1.25 are displayed in Fig.1.3.

Figure 1.1:  Explanation of accumulation term

δUc– δGc=

upDpxpcMc
p 1=

P
∂
∂t
---- φ SpDpxpcMc

p 1=

P
=∇–

upDpxpcMc
p 1=

P
JpcMc

p 1=

P
∇– qc+ Mc

∂
∂t
---- φ SpDpxpcMc

p 1=

P
=∇–



-7

The first term on the left-hand side in Equ.1.25 is the convection term or flow term. It gives the 

Figure 1.2:  Explanation of flow term

Figure 1.3:  Explanation to the balance equation



-8

mass of component c flowing through the unit surface per unit time (mass velocity). The 
summation over all phases is necessary, because the particular component may be present in 
several phases. The second term is the diffusion term. It gives the mass of the component c
moving through the unit surface per unit time, driven by the concentration gradient. The third 
term is the volumetric source/sink term. It determines how much of component c will be taken 
out, or is supplied to the unit volume per unit time. The right-hand side is the accumulation term. 
It contains SpDpxpc moles and SpDpxpcMc mass of component c. The summation over all phases 
gives the amount of component c within an unit bulk volume. Jpc [kmol.m-2.s-1] is the molar 
flux of component c in phase p, which can be expressed by Fick‘s first law, as given in Equ.1.11.

Equ.1.25 is a mass balance, which can be shortened by the constant mole weight Mc receiving 
a mole balance:

(1.26)

Thus, the mole and mass balance are equivalent. Inserting Darcy’s Equ.1.7 and Fick’s Equ.1.12 
gives:

(1.27)

1.2. Initial and Boundary Conditions

The differential equations describe the changes of function values in space and in time. To get 
their values at a given time and at a given location an initial condition and boundary conditions 
have to be defined.

The initial condition defines the function values at any location within the domain  for time 
zero:

,       . (1.28)

Boundaries can be divided into inner and outer boundaries. Outer boundaries are the top and the 
bottom of the domain as outer delimitation lines (surfaces). Examples for inner boundaries are 
discontinuity lines (surfaces) such as faults. 

Generally, two types of boundary conditions (BC) can be defined:

I. DIRICHLET type BC.             - The potential is known at the boundary:

upDpxpc
p 1=

P
Jpc

p 1=

P
∇– qc+ ∂

∂t
---- φ SpDpxpc

p 1=

P
=∇–

∇ λpk pp∇ ρpg–( )Dpxpc
p 1=

P
φSpDpDpc∇xpc

p 1=

P
∇ qc+ + ∂

∂t
---- φ SpDpxpc

p 1=

P
=

Ω

Φ x t, 0=( ) Φ0 x( )= x Ω∈
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,       . (1.29)

II. VON NEUMANN type BC.   - The flow rate across the boundary is known:

,    . (1.30)

If the boundary is sealing (no-flow boundary) then:

(1.31)

The top and bottom of the domain are sealing (no flow) boundaries. 

At the outer delimitations of the domain all kinds of boundary conditions can be applied:

• The outer boundary is sealing. 
• The flow rate as function of time is defined if an analytical aquifer model is used. 
• Constant potential can be set for special cases.

At well surfaces both BCs can be set. The flow rate or the potential at such boundaries must be 
determined by a well model which considers the type of well operation (constant rate, constant 
bottom hole or well head pressure, etc.) and the pressure drop within the wellbore. Such a well 
model can be analytical, numerical or semi-analytical. 

An inner boundary separates and connects two continua. At any point i of this boundary the flux 
must be continuous:

, (1.32)

where ir and il denote the right and left hand sides of the discontinuity surface,  is the 

potential of phase p and  is the unit normal vector to the surface. The flow through the inner 
boundary could cause a supplementary pressure drop (choke effect), therefore, the potential is 
not continuous at this boundary: 

, (1.33)

where  is rather a function of the potential difference  than a constant. The filtration 
velocity of phase p can be calculated from both sides of the boundary:

. (1.34)

ΦΓ t( ) Φ= x Γ∈

upΓ t( ) λpk∇ΦpnΓ–= x Γ∈

upΓ 0.=

kir∇Φpirni kil∇Φpilni=

Φp

ni

Φpir Φpil εiupini–=

ε Φpir Φpil–

upi λpkir∇Φpir–=
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Chapter 2

Special Forms of the Balance Equation

We will show that all known equations of single and multiphase flow can be easily derived from 
Equ.1.25. 

2.1. Multiphase Flow of Immiscible Fluids

 Equ.1.24 gets, by inserting Equ.1.18, the following form: 

. (2.1)

Let us consider that the composition of the phases remains unchanged. This is the case if a 
multicomponent oil phase will be displaced by brine (composed of water and salt). Both phases 
can be considered as a one component system. Oil and brine are so called pseudo-components, 
existing in one of the phases only. Consequently xpc= 1.0,

, (2.2)

and the summation over the phases is no longer necessary. Equ.2.1 gets the following form:

. (2.3)

upρpxpcMc

Mcxpc
c 1=

C
-----------------------------

p 1=

P
∂
∂t
---- φ

SpρpxpcMc

Mcxpc
c 1=

C
-----------------------------

p 1=

P
=∇–

Mcxpc
c 1=

C
const=

upρp( ) ∂
∂t
---- φSpρp( )=∇–



-12

2.2. Single phase flow 

In this case Sp = 1.0, therefore

. (2.4)

In the case of one-phase flow the relative permeability krp =1. Inserting Equ.1.7 into Equ.2.4 we 
get 

. (2.5)

The second term on the left hand side is small compared to the first one and usually it is 
neglected:

. (2.6)

2.2.1 Single phase low compressible fluid flow

The isothermal compressibility of a homogenous fluid is 

. (2.7)

The fluid is categorized as low compressible if the compressibility factor c [m3.bar-1] is small 
and constant. After integration of Equ.2.7, yields:

, (2.8)

where:  is the density of fluid at any reference pressure . Applying TAYLOR's rule and 
neglecting the terms of higher order we get the following approximation:

. (2.9)

Based on Equ.2.8 the following transformation can be made:

. (2.10)

Substituting Equ.2.10 into Equ.2.6 becomes:

uρ( ) ∂
∂t
---- φρ( )=∇–

kρ
μ
------∇p ∇ kρ2

μ
---------g– ∂

∂t
---- φρ( )=∇

kρ
μ
------∇p ∂

∂t
---- φρ( )=∇

c 1
ρ
---dρ

dp
------=

ρ ρoe
c p po–( )

=

ρo p0( )

ρ ρ0 1 c p po–( )+[ ]⋅≈

ρ∇p ρ0e
c p p0–( )

p∇ 1
c
--- ρ0e

c p p0–( )
∇ 1

c
---∇ρ= = =
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. (2.11)

Differentiation of Equ.2.9 gives:

. (2.12)

Substituting both Equ.2.12  and Equ.2.9 into Equ.2.11 results in:

. (2.13)

In Equ.2.13 , c and  are constant. 

2.2.2 Single phase low compressible fluid flow in low 
compressible porous media

Similar approximation as to the fluid can be applied for the porosity too: 

 . (2.14)

Now 

(2.15)

where

(2.16)

is the total compressibility. The cross product   is with 5 magnitudes less then ct therefore 

the corresponding term was neglected. The viscosity can be regarded as constant as well 
( ), hence the fluid compressibility is small. 

The substitution of Equ.2.12 into Equ.2.11 results in:

. (2.17)

2.2.3 Single phase low compressible fluid flow in low 

∇ k
cμ
------∇ρ ∂

∂t
---- φρ( )=

∇ρ ρoc∇p=

∇ k
μ
---ρo∇p ∂

∂t
---- φρo 1 c p po–( )+[ ]{ }=

ρ0 p0

φ φ0 1 cφ p p0–( )+( )=

φρ φ0ρ0 1 c p p0–( )+( ) 1 cφ p p0–( )+( )= φ0ρ0 1 ct p p0–( )+( )≈

ct c cφ+=

ccφ

μ const=

∇ k∇p[ ]
φ0ct

μ
----------∂p

∂t
------=
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compressible isotropic and homogenous porous media

In a isotropic and homogenous porous media the permeability k is a constant scalar value. 
Therefore the Equ.2.17 becomes: 

, (2.18)

where 

(2.19)

is the piezometric conductivity and 

. (2.20)

2.2.3.1 Low compressible fluid flow in radial symmetrical 
coordinate system

In one dimensional radial symmetrical coordinate system

(2.21)

and so Equ.2.18 get the following form:

. (2.22)

2.2.4 Incompressible or steady state flow

In this case the total compressibility ct is zero, K equals to  and the Equ.2.18 reduces to 

. (2.23)

Incompressible linear flow:

. (2.24)

∇2p p 1
K
---- p∂

t∂
-----=Δ=

K k
μctφ0
--------------=

ct c cφ+=

∇ ∂2

∂r2
-------- 1

r
--- ∂

∂r
-----+=

∂2p

∂r2
--------- 1

r
---∂p

∂r
------+ 1

K
----∂p

∂t
------=

∞

∇2p p 0=Δ=

∂2p

∂x2
--------- 0=
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2.3. Two-Phase Two-Component Incompressible 
Flow

2.3.1 The Pressure and Saturation Equations

We assume that the two components are immiscible, forming two incompressible phases. Let 
phase 1 be the displacing water and phase 2 the displaced oil. Because , are 
constant values, the balance equations according Equ.2.3 are:

     for water, (2.25)

      for oil. (2.26)

Inserting Equ.1.7:

, (2.27)

. (2.28)

Neglecting the gravitation terms (i.e.: assuming two-dimensional horizontal flow) we get from 
Equ.2.27 the saturation equation, which is represented by Equ.2.29. Summing up Equ.2.27 and 
Equ.2.28 yields the pressure equation, shown by Equ.2.30:

, (2.29)

, (2.30)

where  is the total mobility.

2.3.2 Fractional Flow Equation

The overall filtration velocity is

ρw ρo and   φ,

uw φ
∂Sw
∂t

---------=∇–

uo φ
∂So
∂t

---------=∇–

λwk ∇pw ρwg–( ) φ
∂Sw
∂t

---------=∇

λok ∇pw Pcow∇ ρog–+( ) φ
∂So
∂t

---------=∇

φ td
dSw k∇ λw∇pw( )– 0=

∇k λt∇pw λo∇Pc+( ) 0=

λt λw λo+=
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. (2.31)

The incompressibility of the phases 

(2.32)

is valid, which means that  is independent of the space coordinates x, y, z. Regarding one 
dimensional flow, the fractional value can be defined:

. (2.33)

Inserting Equ.2.33 into Equ.2.25 we get the following form:

. (2.34)

Remember that u is independent of x, therefore:

. (2.35)

Neglecting the capillary pressure, fw depends on the saturation only:

, (2.36)

and so the final form of Equ.2.35 is the well known BUCKLEY-LEVERETT equation:

. (2.37)

With appropriate boundary and initial conditions Equ.2.23, Equ.2.22 and Equ.2.37 can be 
solved analytically. These solutions are widely used for classical reservoir problems, evaluating 
well tests, calculating displacement efficiency, etc. The general flow Equ.1.27 is strongly 
non-linear and can be solved using numerical methods only. The solution will be calculated for 
discrete points in space and time.

u uw uo+=

u 0=∇

u

fw
uw
u

------=

x∂
∂ fwu( ) φ

∂Sw
∂t

--------- 0=+

u
φ
---

∂fw
∂x
--------

∂Sw
∂t

---------+ 0=

fw fw Sw( )=

u
φ
---

dfw
dSw
---------

∂Sw
∂x

---------
∂Sw
∂t

---------+ 0=
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Chapter 3

Black Oil Model in Compositional 
Formulation

Using conventional black oil type reservoir fluid description one considers 3 components 
(water, oil and gas) forming three phases: water, oil and gas. The indices

and

will be used to identify the phases and the components. The water and gas phases are formed by 
one component; the oil phase consists of two components: oil and gas. Based on Equ.1.16:

, (3.1)

And from Equ.1.15 follows:

, (3.2)

, (3.3)

. (3.4)

In Equ.3.2 to Equ.3.4 the first index refers to the phase, the second one to the component. The 
reservoir oil is composed of 1m3 stock tank oil and Rs standard m3 gas. Therefore the mole 
fractions are:

, (3.5)

p w o g          P;, , 3= =

c w o g          C;, , 3= =

Sw So Sg 1=+ +

xww 1=

xgg 1=

xoo xog+ 1=

xoo

ρo
0

Mo
-------

ρo
0

Mo
-------

Rsρg
0

Mg
------------+

---------------------------=
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. (3.6)

Where  is the standard density of water, oil and gas, respectively. Dividing 
Equ.3.6 by Equ.3.5 the solution gas ratio can be expressed in terms of mole fractions:

. (3.7)

The mole densities can be calculated from the formation volume factors:

, (3.8)

, (3.9)

. (3.10)

Inserting Equ.3.7 in Equ.3.10 yields

, (3.11)

and using Equ.3.4 results in:

. (3.12)

Inserting Equ.3.2 and Equ.3.8 into Equ.1.27 we get the balance equation for the water 
component: 

. (3.13)

The summation over the phases is not necessary because no water exists in oil and gas phase. 
The balance equation for oil is obtained by inserting Equ.3.4 and Equ.3.11 into Equ.1.23:

xog

Rsρg
0

Mg
------------

ρo
0

Mo
-------

Rsρg
0

Mg
------------+

---------------------------=

ρm
0   m w o g, ,=( )

Rs
xog
xoo
--------

Mg
Mo
-------

ρo
0

ρg
0

------=

Dw
ρw

0

MwBw
----------------=

Dg
ρg

0

MgBg
--------------=

Do
ρo

0

Mo
-------

Rsρg
0

Mg
------------ 1

Bo
------+=

Do
ρo

0

Mo
------- 1

xog
xoo
--------+ 1

Bo
------=

Doxoo
ρo

0

MoBo
--------------=

λ∗wk Φw∇[ ] qw+∇
t∂

∂ φSw
Bw
----------=
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. (3.14)

For the gas balance equation the summation over the oil and gas phase is necessary and it is 
obtained by inserting Equ.3.3, Equ.3.4, Equ.3.9 and Equ.3.10 into Equ.1.27:

. (3.15)

The phase mobility  is defined by:

, (3.16)

where the sign * indicates the difference to the usual mobility definition according to Equ.1.4. 
The phase potentials are:

(3.17)

(3.18)

(3.19)

where z is the depth. The differences between the phase pressures are the capillary pressures:

(3.20)

(3.21)

λ∗ok Φo∇[ ] qo+∇ t∂
∂ φSo

Bo
---------=

k λ∗g Φg λ∗+∇ oRs Φo∇( )[ ] qg+∇ t∂
∂ φSg

Bg
---------

φSoRs
Bo

---------------+=

λ∗

λ∗p
krp

μpBp
------------               p w o g, ,=( )=

Φw pw ρwgz,–=

Φo po ρogz,–=

Φg pg ρggz,–=

po pw Pcow,=–

pg po Pcgo.=–
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4 Nomenclature 

Symbols
Bp - formation volume factor, [m3/m3]
Dp - specific mole density, [kmol/m3]

- diffusion coefficient, [m2/d]

- gravity acceleration vector, [m/s2]
 - fraction value, [-]
 - diffusion flux, [kmol.m-2.s-1]

- permeability tensor
krp - relative permeability, [-]

- piezometric conductivity, [m2.s-1] 
Mc - molar mass of component c, [kg/mol]

 - is the unit normal vector to a surface
- capillary pressure between phase p and p’, [bar]

pp - phase pressure, [bar]
qc - source/sink term for component c, [kmol/day]
qp - source/sink term for component c, [kmol/day]
qcmf - matrix-fracture transfer term, [kmol/day]
Rs - solution gas GOR, [-]
Sp - phase saturation, [-]
t - time, [day]
T - temperature, [K]

- filtration velocity, [m/day]

VI - volume of gridblock I, [m3]
xpc - mole fraction of component c in phase p, [-]
r - radial distance, [m]
z - depth, [m]

Greek Symbols
φ - porosity, [-]
Φp - phase potential, [bar]
λp - phase mobility, [1/cp]
μp - phase viscosity, [cp]
ρp - phase density, [kg/m3]

Dpp'

g
f
J
k

K

ni

Pcpp'

up
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ρs - rock density, [kg/m3]
- surface tension between phase p and p’

- block transmissibility, [m3]

τIJ - interblock transmissibility, [m3]

Subscripts
c - component
g - gas
n - old time level
n+1 - new time level
o - oil
p - phase
w - water

Superscripts
Nc - total number of components
Np - total number of phases
ν - old iteration level
ν+1 - new iteration level

Conversion Factors
bar  = psia*0.06894757
m  = ft*0.3048
kg  = lb*0.453592
1000m3  = MMSCF*26.795
kg/m3  = lb/ft3*16.01846
°F  = °R-459.67

°C  =

°API  =

σpp'

τI
J

°F-32( )
1.8

------------------

141.5
Spec. Gravity-131.5
------------------------------------------------
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