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Abstract: 

A new toughness test for ball-shaped specimens is presented. In analogy to the 
“Surface Crack in Flexure”-method the fracture toughness is determined by making a 
semi-elliptical surface crack with a Knoop indenter into the surface of the specimen. 
In our case the specimen is a notched ball with an indent opposite to the notch. The 
recently developed “Notched Ball Test” produces a well defined and almost uniaxial 
stress field. 

The stress intensity factor of the crack in the notched ball is determined with FE 
methods in a parametric study in the practical range of the notch geometries, crack 
shapes and other parameters. The results correlate well with established calculations 
based on the Newman-Raju model. 

The new test is regarded as a component test for bearing balls and offers new 
possibilities for material selection and characterisation. An experimental evaluation 
on several ceramic materials will be presented in a consecutive paper. 
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1. Introduction 

Structural ceramics, especially silicon nitride (Si3N4), are distinguished due to their 
special properties: low wear rates, high stiffness, low density, electrical insulation and 
high corrosion resistance. For this reason they are advantageous for highly loaded 
structural applications or when special properties (due to additional requirements) are 
needed. An important application with a rapidly growing market are hybrid bearings 
(ceramic rolling elements and metal races), which are used for high operation speeds 
(e.g. racing), current generators (e.g. in wind turbines) or in the chemical industry [1, 
2]. Key elements of the bearings are the ceramic rolling elements, which should have 
to comply with highest requirements. But relevant standards for the proper 
determination of the mechanical properties of roller elements are missing.  

Mechanical properties of ceramics depend to a large fraction on their 
microstructure, which is strongly influenced by processing conditions. Therefore 
proper mechanical tests should be made on specimens cut out of the components, or – 
even better – on components themselves. The strength depends on the flaw 
populations occurring in the component which are – in general – different in the 
volume and at the surface. In roller bearing applications the highest tensile stresses 
occur at (and near) the surface of the rolling elements and surface flaws are of 
outmost significance for the strength of rolling elements. Therefore the highest loaded 
area in mechanical testing of bearing balls should be situated at the surface of the 
balls. 

These conditions are fulfilled in the case of the notched ball test [3-6] (NBT) for 
the strength measurement of balls, which has recently been developed by several of 
the authors. A slim notch is cut into the equatorial plane of a sphere and the testing 
force is applied on the poles perpendicular to the notch. In that way an almost uniaxial 
tensile stress field is generated in the surface near area opposite the notch, which is 
used for the determination of the strength of the notched ball (NB) specimen. 
Therefore the NBT is very sensitive to surface flaws and relevant for determining the 
strength of ceramic balls. Note that a similar test, the C-Sphere Test [7], was proposed 
earlier, where the notch is not slim but wide and must have a precise shape. The 
quality of bearing balls is strongly related to a high toughness, which should also be 
measured at specimens cut out of the balls or on the balls themselves. In industry 
toughness measurements on bearing balls are commonly made with indentation 
methods (i.e. “Indentation Fracture”-method [8-11] due to their ease of use. It has 
been recognised in the last years that the toughness values measured with indentation 
methods depend on the size and shape of the plastic deformation zone around the 
indent, which may vary from material to material. Therefore the resulting 
“Indentation Fracture Resistance” (IFR) is only a rough estimate of fracture toughness 
and has to be calibrated for each material and indentation load.  

Standardised fracture toughness testing methods normally use standard beams, 
which contain a well defined crack and which are loaded and broken in 4-point 

bending. The fracture toughness CK is determined by application of the Irwin failure 
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criterion: CK K , where K  is the stress intensity factor (SIF). The critical stress 

intensity factor can be determined using the fracture load and with information on 
beam and crack geometry.  

A prominent example is the “Single Edge V-Notched Beam”- (SEVNB) method 
[12], in which, a slim notch is introduced in a bending beam using a razor blade. In 
that way straight notches with a tip radius of at least 3 µm can be produced. For 
materials having a mean grain size of several micrometers or greater, this is an 
accurate approximation of a crack [13, 14] but for fine grained materials sharper 
cracks would be beneficial for a precise toughness measurement.  

Very sharp cracks are used in the “Surface Crack in Flexure” (SCF) method [15-
17]. A Knoop hardness indent is made on the tensile loaded side of a rectangular 
bending bar. Thus, an almost semi-elliptical and very sharp crack is introduced in the 
surface. The size of the remaining Knoop crack is determined by fractographic means, 
which may need some fractographic experience.  

In comparison the SEVNB method is easier to apply and less time consuming but 
the SCF-method is more appropriate for materials with a very fine grain structure.  

To measure the fracture toughness of ceramic balls, bending bars can machined 
out of balls, if the balls have minimum diameter, say 20 to 25 mm, but most of the 
produced rolling elements are smaller. So a simple toughness test for ball shaped 
components is needed. In this work we will focus on an extension of the SCF method 
on NB specimens. 

2. The SCF-method applied to notched ball specimens  

2.1. The Notched Ball Test for strength measurement 

Recently, the “Notched Ball Test” (NBT) was established at the Institut für Struktur- 
und Funktionskeramik at Montanuniversitaet Leoben to measure the strength of 
ceramic balls, see Figure 1. With a commercial diamond disc, a notch is cut into the 
equatorial plane of the ball (depth ca. 80 % of the diameter) and the load F  is applied 
at the poles (point 3) using a conventional testing machine. Then the notch is 
squeezed together and high tensile stresses occur in the surface region of the ball 

opposite to the notch root (the maximum stress NBT is located at position 1, 

furthermore called peak stress). 
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errors inaccurate alignment. Because the loading point is far away from the area, 
where the maximum tensile stress occurs (and which is used for strength testing), the 
result is only very little influenced by the local contact situation (contact stresses). 
Furthermore friction is extremely reduced (in comparison to bending testing; here 
friction may have a very strong impact on stress determination) and can be neglected 
for data evaluation. 

In summary the NBT is a very precise and simple testing method, which makes 
the characterisation of original ball surfaces possible. Up to now almost 1000 NB-
tests on specimens having different diameters and relative notch geometries, and are 
made from different materials have been successfully tested in the laboratory of the 
authors [3-6, 18]. 

2.2. Basic principles and fracture toughness determination 

The common approach in fracture toughness testing for ceramic materials is based on 
the Griffith/Irwin fracture criterion: 

 IcK K Y a     . (2) 

IcK  is the mode I fracture toughness, K  is the stress intensity factor,  is a typical 

stress in the specimen, a  the size of the crack and Y  is a geometric factor, which is 
determined by the geometry of the specimen, the crack shape and the course of the 
stress field. For details see standard text books on fracture mechanics or on 
mechanical properties of ceramics [19, 20]. Information on geometric factors for 
typical loading cases and standard specimen geometries can be found in literature 
[21]. 

To apply this equation for fracture toughness determination, a well defined stress 
field, which contains a crack of well-known geometry and size, is needed. In the case 
of the standardized SCF-method [15, 16, 22, 23] a surface crack is produced with a 
Knoop indent in a bending bar specimen. The indent causes plastic deformation 
around the indented zone, which also causes unknown internal stresses. They are 
relaxed by removing the plastic deformed material by grinding-off a thin surface layer 
of the specimen’s surface, in which the hardness impression was made. Then the 
specimen is loaded in four point bending, i.e. a well defined (known) stress field is 
applied. The load is increased until fracture occurs.  

After fracture the crack size is determined on the fracture surface by fractographic 
means. It has a semi-elliptic shape. For a material with the Poisson’s ratio  0.3 

Newman and Raju [17, 24, 25] have developed a parameterized and generalized 
solution of the geometric factor Y of a semi-elliptic crack in the stress field of a bent 
bar (thickness t and width 2 b) . It depends on the geometry of the crack (crack width 
2 c , crack depth a ), the bar's cross-section and on the position at the crack front given 

by the angle , see Figure 3. The geometric factor Y( a,t,b,c, )  shows a maximum 

either in point A (deepest point of the crack) or in point C (crack front intersection 

with the specimen surface), which results in different values AY  and CY . Tentatively 
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 In every case, the J-Integral method, singularity elements along the crack front 

and a plain strain assumption (effective Young’s modulus  21*E E /    were 

deployed for the determination of the stress intensity, more precisely with the 

formulation *K E J  . Correlated to Eq. (2) the geometric factor along the crack 

front can be expressed with the related K , the crack opening stress ( z ; calculated in 

the first loading step) at position 1’ and the crack depth a  (Note: Y  always refers to 
the crack depth a , this means that a  is taken as the typical defect size).  

The geometric factor Y was determined in a parameter study (about 20000 FE 
runs). The results are used to define two interpolation functions for the geometric 

factor AY  and CY , respectively. The parameter intervals given in Table 1 for the 

parametric study have been considered in equidistant steps. 
All assumed intervals are realistic in terms of the practical feasibility, if the range 

of ball diameters is considered to be between 5 and 20 mm. The parameter intervals 
for the notch geometry are explained in [6] (strength testing). The limits of the 
Poisson’s ratio were chosen concerning typical structural ceramics (silicon 
carbide: 0.17 and zirconia: 0.33). The limits of the crack geometry parameter,
  and  , are mainly designated through a qualified indentation load (i.e. HK10). 

To show the significance of each of the seven varied parameters for the value of 
the geometric factorY , the trends are shown in Figure 9. Only one of the seven 
parameters is varied in each subfigure, for the other six parameters, the values of the 
reference model were used. The standard crack shape is 0 5.   (ellipse with half axis 

ratio of 1/2) but for comparison also the curves for a semicircular crack ( 1  ) are 

also shown. In subfigure (a) the change of the geometric factor ( AY  and CY  

respectively) with the notch length is illustrated. AY  decreases much more than CY  

with the notch length, which is reasonable: As a first approximation the ligament is 
loaded in pure bending. If the ligament h  gets thinner (i.e. due to a deeper notch) and 
the crack size is constant the relative stress value at the crack tip at the surface (point 

C), so CY  is not influenced. The relative stress value at the deepest point of the crack 

(point A) decreases for bended specimens, hence, AY  is affected. 

The notch parameters   and   have almost no effect on Y  (see subfigures 

(b) and (c)). Plot (d) shows the influence of the Poisson’s ratio . AY  and CY shift 

clearly with  but in the opposite directions.  

The tendency of AY  is decreasing (see plot (e)) for an increasing amount of 

ground-off material ( ).  

The relative depth of the crack   has a stronger influence on the geometric 

factors AY  and CY  compared with the relative notch length but both parameters 

have the same tendencies; see plot (a) and (f). Note that the influence of the analysed 

parameters on CY  is weak. Plot (g) shows the course of Y  in both points with respect 

to the crack shape ( ). For 0 , AY  tends to the analytical value of 1.12 and CY  
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3. Discussion  

3.1. The precision of the FE model and the mesh quality  

Due to the rising importance of fracture mechanics for proof of safety in structural 
applications, many different approaches for stress intensity factor (SIF) calculation 
have been developed. Next to the direct method [28-31], fitting the stress distribution 
near the crack tip, three implemented methods are available in the used FE tool 
ANSYS 13.0 for the linear elastic material behaviour: the “J-Integral” [28, 32, 33], 
“Virtual Crack Closure Technique” (VCCT) [34-36] and “Crack Opening 
Displacement” (COD) [28].  

To estimate the principle error of these methods the resulting geometric factor Y  
can be compared to the analytical solution for a fully embedded circular crack in an 
infinite body ( 2 /Y  ). A quarter model of a finite block (full edge length 
40 x 40 x 40 mm³) with about 80,000 elements (all hexahedral) and with an embedded 
crack loaded in mode I (crack radius a 1 mm) was used. The J-Integral method with 
quarter node collapsed crack tip elements (CTE) provides the best accuracy out of all 
tested methods (the error is less than 0.01 %). This statement can also be found in 
literature [28], so this method was chosen for all investigation regarding the NB 
specimen. 

Also a convergence study considering the level of mesh refinement in the NB was 

carried out for three resulting values: peak stress (position 1’) and the SIF’s AK and

CK . The influences of local mesh refinements of the crack front and the rest of the 

NB specimen have been observed and compared to the reference model (see Table 1). 
 
 
Table 1: Overview and considered parameter intervals for the realized parametric FE study.  

Dimensionless 
parameter name 

Symbol Lower limit Upper limit Number of 
design points 

notch length 
N /L D   0.74 0.82 5 

notch width 
N /W D   0.10 0.15 2 

notch fillet radius 
N N/R W   0.25 0.40 2 

Poisson’s ratio   0.15 0.35 5 
grinding depth h / R    0.02 0.05 4 
crack depth a / R   0.005 0.065 7 

crack aspect ratio a / c   0.4 1 7 
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the standards for SCF toughness measurements. In reality, this is normally not the 
case. Even if the initial Knoop crack was perfectly semi-elliptical, grinding the 
surface layer of the crack will leave another contour. This case has been studied in 
[27], where – for worst case assumption – the differences in the geometric factors are 
less than: ± 4 % in point A and less than ± 2 % in point C for cracks having the same 
aspect ratio a/c . 

3.4. Stress singularity at the free surface   

The maximum of the Y-values along the crack front is always located either at point A 
or at point C (see Figure 3) and never between them [17, 22, 23], so just those two 
distinguished points have to be observed. 
Generally at the free surface (at point C) the stress singularity is not proportional to 

1 2/r  (with r  as the distance from the crack tip) according to Fett [37], Hutar [29, 31] 
and de Matos [38]. More precisely, the K-concept is therefore not valid at point C and 
it can only be used as an approximate approach. This effect is pronounced, if the 
crack intersects the surface perpendicular (or in the range 80 90    ) but it is less 

pronounced for smaller angles. Therefore the ASTM standard for the SCF-method 

[15] instructs to use flat crack shapes with A CY Y , i.e. the maximum of Y should be 

positioned at point A. In practice, the easiest way to realise this is to increase the 
grinding depth h . This has several useful effects: the intersection angle   gets 

smaller and the crack shape becomes flatter. The condition A CY Y  is fulfilled for flat 

crack shapes (the limit is at  = 0.6÷0.8, which depends on the crack size ).  
On the other hand the ISO-standard for the SCF-method [16] determines that the 

greater one out of both Y-value should be used for fracture toughness calculation. For 
this, two conditions have to be considerd: 1) the crack has to be nearly semi-elliptical 

and 2) the datum has to be rejected, if A CY Y  and the fracture could be caused by 

preparation damage or corner pop-ins at the surface-point C. 

4. Concluding remarks 

The standardized SCF-method for fracture toughness measurements on ceramics is 
modified and applied to a new specimen type, the notched ball. Compared to the NBT 
strength testing procedure, a modification of the geometry of the notched ball is 
necessary. Grinding–off the plastic zone produced by the Knoop indentation changes 
the peak stress at the ball apex. A dimensionless stress correction factor was evaluated 
by numerical analysis.  

The geometry factor Y was calculated for a wide range of notch and crack 
geometries by FEA. These results are compared with the Newman-Raju formula 
(generalized solution used in the standard SCF-method). An interpolation function of 
the new results takes the Poisson’s ratio into account, which is necessary for the 
characterization of other structural ceramics. 
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If the crack aspect ratio is a/c < 0.6, the notched ball specimen also favours crack 
instability at the deepest point (point A), which is a well defined situation in fracture 
mechanics, therefore flat surface cracks should be aimed. With typical indentation 
crack sizes (that can be achieved for advanced ceramics) the new method may be 
applied to balls with diameters between 2 mm to 20 mm. 

In the second part of the paper, which will be published soon, the experimental 
procedure of the new fracture toughness test are described in detail, measurement 
uncertainties are discussed and experimental results on silicon nitride balls are 
presented. The results fit well to measurement results determined using other standard 
testing procedures on bending test specimens. 
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Appendix A: Fit function for the maximum tensile stress in the NB specimen (at 

position 1’) after material removal (an interactive applet with the original 

interpolation can be found in [26] 

The results of the FEM-calculations were fitted to a polynomial. It is intended to keep 
the fit function simple and that the deviation of the fit function from the FE results 
should be less than 1 %. The stress is given in relative units (normalised with the 
maximum tensile stress in a NB specimen without surface material removal). The 
relative stress significantly depends on the relative amount of material removed (

h / R   ), the relative notch length ( 1 (2 )h / R   ) and on the Poisson’s ratio (
). R  is the radius of the ball. The influences of the relative notch width and of the 
relative notch fillet radius are weak. 
The general fit function for Sigmaf  is given in Eq. (A.1) and the needed coefficients in 

Table A.1. The fitting error is less than 0.25 %. 
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 (A.1) 

 
 
Table A.1: Coefficients for the fitting function for the stress factor (see Eq. A.1). 

 fit coefficients  (with z0 = 1.07844) 
indices A b c d 
10 -0.591634 2.37305 2.8519 2.74222 
11 2.6177 4.54232 2.65985 1.65029 
12 -2.06407 -19.5959 -3.41503 4.938 
20 -1.39017 3.50268 -8.0687 9.59176 
21 4.62443 6.77471 -9.46501 6.54502 
22 -3.41374 -44.9503 11.1753 24.7514 
30 3.08148 8.73812 20.9244 10.3407 
31 -7.41486 17.1121 23.2816 3.63325 
32 4.803 -164.037 -24.6965 18.151 
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Appendix B: Fit function of the geometric factor Y in the ground NB-specimen (an 

interactive applet with the original interpolation can be found in [26] 

The numerical values of the geometric factor AY  and CY  can be fitted in terms of the 

parameters , , ,     and . The influence of the notch parameters  and  is 

negligible (consider Figure 9); the reference values were used. The general fitting 

function – for AY  and CY  - is shown in Eq. (B.1). The needed coefficients are given in 

Table B.1 The fitting error  is less than 1.5 % in point C and less than 1 % in point A. 
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Table B.1: Coefficients for the fitting function for the geometric factor (see Eq. B.1). 

 Point A (with z0 = 1.259)  Point C (with z0 = -1.46387) 
indices a b c d  a b c d 
10 -1.16634 0.84972 0.482606 1.23491  1.30137 1.3381 0.785785 2.27784 
11 0.0191434 1.97075 28.3316 -3.02365  -0.0735881 0.315134 -0.0836458 -0.0569606
12 0.208143 -7.32415 -113.135 2.21254  -0.364722 -3.18661 1.64754 0.0292848 
20 0.128234 1.33431 1.77848 1.18249  0.632871 0.983236 -0.247442 5.72478 
21 -0.0209168 -1.41052 -11.5363 -10.7237  -0.259051 1.25891 -0.511638 2.34767 
22 -0.153399 8.01953 64.7578 7.67749  -0.161234 -12.3825 1.13783 -1.71875 
30 0.355241 3.16874 -1.3068 0.0796565  3.05859 -0.0162337 -1.20701 -1.53108 
31 -0.217446 -2.99067 5.18989 -0.66641  -3.10434 -0.0538943 -14.9341 11.5755 
32 -0.94953 17.7899 -29.3815 0.454138  2.0719 0.577001 84.2279 -8.59851 
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 h a

z,Lig h

-2 a h
f =

σ ξ= -1


   (C.2) 

and 

    2 2 2
z,Lig 0 1 0 2 3 1σ =1+ m λ+m λ n ξ+ m λ+m λ n ξ  (C.3a) 

with 

 0 1 2 3

0 1

m =-2.54721 m =2.17406 m =5.63419 m =-6.07159

n =3.93603 n =3.00221
   (C.3b) 

Due to the modification discussed above and the approximations of the Newman 
and Raju, the determination of the geometric factor of a semi-elliptical crack in a 
ground NB specimen has an unknown uncertainty. Newman and Raju claim that their 
fitting function provided has a maximum error of ± 5 % according to their FE results 
[17]. In addition, they specified their FE accuracy with ± 3 % compared to the 
analytical solution in terms of a completely embedded circular crack [24, 25]. All 
their calculations have been made for a Poisson’s ratio of 0 3.  . A direct 
comparison of the Newman and Raju formula and with own FE analysis for a semi-
elliptical surface crack in a rectangular beam under pure tension showed an error of 
less than ± 3 % for 0 3.  . 

For the NB model, a comparison of the Y-courses of our (very accurate) NBT-FE 
analysis with the approximations based on the Newman and Raju formula is shown in 
Figure C.2 (Note: all of our FEM values outside of 0 4 1.    are extrapolated). For 

relative small crack sizes (  = 0.005, see Figure C.2a) both solutions agree 

surprisingly well; the maximum deviation is less than ± 1.2 %. For bigger cracks (

  = 0.05, see Figure C.2b) the maximum error for AY  rises up to 2.9 %, but for CY  

the difference between both solutions is still less than 1 % for all analysed crack sizes. 
Generally, the agreement of the FE-results with the approximations based on the 
Newman and Raju formula and their tendencies is good but the agreement decreases 
with bigger relative crack sizes. 

In general the semi-analytical calculations of Newman and Raju give the same 
trend with the crack shape as our FE calculations but they are only valid for 0 3.  . 
Our FE-solution can be used in the range of Poisson’s ratio of interest (see Table 1). 
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