


Abstract

This work presents the mathematical modelling of an integrated gradient field based Hall-
angle sensor excited by a diametrically polarized disc magnet. It starts with the compu-
tation of the magnetic field of such a magnet based on the results presented in relevant
publications. Coordinate transformations are then performed to simulate the assembly
tolerances of the sensor and magnet. An abstraction of the real sensor has been designed
and coded to simulate the data path of the sensor product. It has been shown that this
simplified model delivers results consistent with more detailed and complex models. An
increasing complexity of the model has little effects on further accuracy. The results of
the data path are then processed using a Kalman Filter algorithm to compensate errors
arising from noise as well as signal processing and transmission delays.

All models are implemented in m-code (MATLAB). These models enable the simulation
of uncertainty propagation using a toolbox. This toolbox uses the approach presented in
”Guide to the expression of Uncertainty in Measurement” (GUM). The results deployed
by this toolbox have been validated against Monte Carlo simulations. The possibilities
and limitations of this toolbox are shown for the magnetic field calculation, data path cal-
culation and filtering using Kalman’s algorithm.

The results of the simulation are consistent with experimental results conducted on un-
calibrated test chips. Time series analysis has been performed on these results to remove
systematical error contribution. After such thorough calibration, the angle error results
reduce to values of as low as 0.05◦ (1 σ value), which is simply the remaining noise level.

This work enables concept engineers for such sensor products to perform fast and yet
accurate uncertainty analysis. It allows statistical optimization at an early stage and there-
fore significantly reduces the time required for product development.
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Zusammenfassung

In dieser Arbeit wird die mathematische Modellierung eines integrierten Hall-Winkelsensors
auf Gradientenfeldbasis vorgestellt, der von einem diametral polarisierten Scheibenmag-
neten angeregt wird. Die Arbeit beginnt mit der Berechnung des Magnetfelds eines
solchen Magneten auf der Grundlage der in einschlägigen Veröffentlichungen vorgestell-
ten Ergebnisse. Anschließend werden Koordinatentransformationen durchgeführt, um
die Montagetoleranzen von Sensor und Magnet zu simulieren. Eine Abstraktion des
realen Sensors wurde entworfen und programmiert, um den Datenpfad des Sensorpro-
dukts zu simulieren. Es wurde gezeigt, dass dieses vereinfachte Modell Ergebnisse liefert,
die mit detaillierteren und komplexeren Modellen konsistent sind. Eine zunehmende
Komplexität des Modells hat nur geringe Auswirkungen auf die weitere Genauigkeit.
Die Ergebnisse des Datenpfads werden dann unter Verwendung eines Kalman-Filter-
Algorithmus verarbeitet, um Fehler zu kompensieren, die sich aus dem Messrauschen
und Signalverarbeitungs- sowie Übertragungsverzögerungen ergeben.

Alle Modelle sind in m-Code (MATLAB) implementiert. Dieses Modell ermöglicht die
Simulation der Unsicherheitsausbreitung mithilfe einer Toolbox. In dieser Toolbox wird
der in ”Guide to the expression of Uncertainty in Measurement” (GUM) beschriebene
Ansatz verwendet. Die von dieser Toolbox bereitgestellten Ergebnisse wurden anhand
von Monte-Carlo-Simulationen validiert. Die Möglichkeiten und Einschränkungen dieser
Toolbox werden für die Magnetfeldberechnung, Datenpfadberechnung und Filterung unter
Verwendung des Kalman-Algorithmus gezeigt. Die Ergebnisse der Simulation stimmen
mit experimentellen Ergebnissen überein, die mit nicht kalibrierten Testchips durchgeführt
wurden. An diesen Ergebnissen wurde eine Zeitreihenanalyse durchgeführt, um den sys-
tematischen Fehlerbeitrag zu beseitigen. Nach solch einer gründlichen Kalibrierung re-
duzieren sich die Winkelfehlerergebnisse auf Werte von 0,05◦ (1 σ -Wert). Dies entspricht
dem verbleibenden Rauschpegel.

Diese Arbeit ermöglicht es Konzeptingenieuren solcher Sensorprodukte eine schnelle
und dennoch genaue Unsicherheitsanalyse durchzuführen. Es ermöglicht eine frühzeitige
statistische Optimierung und reduziert damit erheblich den Zeitaufwand für die Produkt-
entwicklung.
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Chapter 1

Introduction

1.1 Introduction
A world without sensors would be unimaginable today. Sensors are used in almost all
areas of life. There are a variety of sensors, from simple liquid thermometers to com-
plex acceleration sensors. These two examples also lead to the first distinction of sensors.
There are sensors which directly indicate the measurement result to the user in form of
a observable physical quantity (temperature change leads to an expansion of the liquid)
or those sensors which convert an input physical quantity to an electrical output (voltage,
current, electrical resistance, charge, capacity, ...) produce. This work will focus on the
latter of which.

One of the core tasks is to design these sensors. This is not a trivial task which takes
many months or years of development, as a sensor is no longer exclusively used to de-
tect and convert measurable variables but, in the case of integrated sensors, encloses the
supply of the sensitive elements and digitization and performing evaluation algorithm to
directly calculate the quantity of interest. In most cases an error compensation is per-
formed onboard too. One of the core customers of such sensor products is the automotive
industry.

This Master’s thesis will put close attention to angle sensors. They are used in a wide
range of applications. Some of the most prominent applications for angle sensors include
steering angle detection, commutating electric motors and detection of throttle and valve
positions. [7]

Increasing requirements in functional safety drives sensor system suppliers of mass vehi-
cle manufacturers to develop accurate, reliable and robust sensor products. Magnetic field
based sensors are very well known to fulfil these requirements. Unfortunately the contin-
uous electrification of the propulsion causes electromagnetic interference to components
sensitive to magnetic fields. Gradient field based sensing principles can suppress these
effects and have gained large popularity in the last decade.

Concept engineers of such sensor products may want to have an adequate mathemati-
cal model at an early stage of development to reduce unnecessary overhead in simulations
and experiments to make assumptions about the accuracy and reliability of their product.
Delivering such results at this early stage forces engineers to consider the concept of un-

1



CHAPTER 1. INTRODUCTION 2

certainty propagation during this phase.

Therefore this work presents a model of such a gradient field based sensor with Hall plates
using technological data from existing products. The uncertainty is propagated through
the signal processing path using an existing toolbox developed by the Alpen Adria Univer-
sity of Klagenfurt [1]. The results of this model are validated against experimental results.
Evident conclusions summarize the possibilities and restrictions of the mathematical model
and the uncertainty propagation tools. An outlook for future analysis such as methods for
statistical optimization of the sensor product based on these conclusions is presented.

1.2 Target application
A roadmap of this Master’s thesis is shown in Figure 1.1. This project aims to model
an entire ”datapath” of a gradient field (which is stray field robust if some prerequisites
are met) magnetic angle sensor (section 1.4.2) using MATLAB R©. This datapath starts
with the computation of 3D- field solution created by a diametrically polarized permanent
disc magnet. It moves on to an abstracted mathematical model of an Integrated Hall sen-
sor, which includes signal acquisition, digitalization and offset and amplitude corrections
aiming to return an estimate of the angular position of a shaft. In the final step, a Kalman
Filter is applied to allow predictions of future state values.
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Figure 1.1: Roadmap of this Master’s thesis. The signal processing path consists of
the calculation of the magnetic field, modelling Hall plates, Analog-Digital Converters
(ADC), signal corrections (amplitude and phase), angle calculation via an arctangent
function and future state prediction with Kalman Filter.

Additionally, the uncertainty propagation was considered for this model using a MAT-
LAB based toolbox developed by the University of Klagenfurt for evaluating uncertain-
ties. This toolbox was tested for its applicability for stray field robust gradient based
angle sensors and validated against Monte Carlo simulations and experimental results of
test chips.

This Master’s thesis aims to build an accurate model of such sensor devices, allowing
Concept Engineers to conduct fast computations of the performance of stray field robust
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magnetic sensors at an early stage and providing the basis for the adaption to other sensor
devices and reducing significant time in sensor development.

1.3 Automotive sensor requirements
The following listing contains some general requirements of automotive sensors. Sensor
system manufactures need to fulfil these requirements when selling their products to the
automotive industry. The information in this list was gathered using both hard-copy books
and online sources.

1. Temperature range: −40◦C up to +125◦C (+150◦C for sensors in the engine com-
partment, or even up to +180◦C closer to the engine) [2–7]. Wheel-speed sensors
placed close to the brakes require operation temperatures of up to +190◦C [8].

2. Maximum failure rate varying between less than 1 ppm [3] and 5 ppm [4]

3. Failure probabilities < 10−9 f ailures/h for safety critical sensors [7, 9]

4. Minimal service life of 15 years or 200.000 km mileage [3]

5. Durability against water, steam, oil, fuel, salt, dust, vibrations (in engine compart-
ment) and even ozone [3, 7]

6. Redundancy of safety critical sensors [10]

The Automotive Electronics Council (AEC) is the standardization body which aims to es-
tablish standards for electronic components with high quality and reliability in vehicles.
Their developed standards are publicly available from the AEC website [11]. The council
is made up by leading companies of automotive OEM’s and leading semi-conductor com-
panies. Sensor products for the automotive industry are tested in accordance with AEC
Q-100 [12].

1.4 Magnetic field sensors and their application in the
automotive sector

Magnetic field sensors are probably one of the oldest sensors invented by mankind. Ear-
liest documented use of compasses dates back to the Ancient Greek Empire around 500
BC [13]. The effect of magnetism was already known but could not be quantified at that
time. It took another 2,300 years until the first real magnetometer was built by Gauss in
1832. His rather simple device was made up by a permanent magnet and was suspended
in midair by a fiber [14]. This magnetometer was able to measure the absolute magnetic
intensity.
But not only humans have learned to use the effects of the terrestrial magnetic field. Re-
cent studies show that migratory birds can sense the terrestrial magnetic field with their
eyes to navigate during their travel periods [15].

State of the art magnetic field angular sensors are quite commonly used in automotive
applications suffering from harsh environmental impact such as the engine compartment.
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Magnetic field sensors do not suffer from wear and are quite robust against most kinds
of contamination [7, 16, 17]. Application fields range from sensing small angles from
single digit degrees for torque measurements via angular excursions over sensors used for
headlight levelling up to multi-turn angular detection sensors for steering wheels. [7, 18]

Today two different physical principles are used to detect magnetic fields. The probably
best known is the Hall effect, which has been discovered at the end of the 19th century and
magneto-resistive effects such as Anisotropic Magneto Resistors (AMR), Giant Magneto
Resistors (GMR) and most recently Tunnel Magneto Resistors (TMR). The Hall effect re-
lies on detecting the value of the magnetic field, whereas magneto-resistive sensors detect
the direction (changes) of the field and do not measure the field values itself.
Most of the magnetic field sensors manufactured today still use the Hall effect [19]. The
reason for this is despite their much lower sensitivity against GMR’s and TMR’s that they
are not only easy and cheap to built but have also high linearity up to high magnetic fields
without hysteresis effects. The properties of Hall sensors are well known and documented
in various books and publications.

1.4.1 Sensing principles for magnetic field based angle sensors
Four different sensing principles are commonly used for magnetic field based angle sen-
sors. In all four options a permanent magnet is attached to a rotating shaft. Their ap-
plication is typically determined by the mechanical conditions. Whenever a shaft end is
available an end-of-shaft or in-shaft solution will be chosen. Whenever the shaft end is
not accessible for mounting magnets, a through-shaft or out-of shaft solution is the best
way to go. In-shaft sensors have the best performance in general [20] but are also very
expensive in manufacturing. End-of-shaft solutions are the cheapest as only cheap and
simple magnets are needed and the setup is quite easy (no drilling required). Through-
shaft and out-of-shaft solution need larger and thus more expensive magnets (depending
on the shaft diameter). All four sensing principles are illustrated in Figure 1.2.
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Figure 1.2: Most common sensing principles for magnetic angle sensors. From Left to
Right: End-of-shaft,in-shaft, through-shaft and out-of-shaft sensing. PCB: Printed Circuit
Board.

The sensor analysed in this Master’s thesis is used in an end-of shaft sensing application.
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1.4.2 Stray field robust magnetic angle sensing
The recent paradigm change in the automotive industry moving from combustion engines
to the electrification of propulsion (electric vehicles (EV) with batteries as well as hy-
drogen fuelled vehicles and hybrids) caused new challenges for magnetic sensors as high
power cables are causing Electromagnetic Interference (EMI) to magneto-sensitive de-
vices. One possible solution to overcome this challenge are gradiometric based magnetic
sensors for end-of-shaft solutions, which have been introduced by [21], with early ideas
dating back to 1994 [22]. The basic idea is it to place four Hall elements on a circle with
reading radius RR. Two opposite Hall elements built up one gradiometer. This setup
detects the gradients of the axial magnetic field components with respect to the x- and y-
axis.

x

y

Hall 1

(h1)

Hall 2

(h2)

Hall 3

(h3)

Hall 4

(h4)

RR

Figure 1.3: Sensing principle of gradient field based Hall effect sensor. Four Hall plates
(Hall 1 to 4) are placed on a circle around the center. A gradiometer is made up by two
opposite Hall plates [63].

This sensing principle is able to cancel out homogeneous disturbances if some precau-
tions are met (such as non-ferrous shafts). The system cannot cancel out inhomogeneous
disturbances, but since their effects are small, they are neglectable.

The following example explains how homogeneous disturbances are cancelled out by the
sensor system. The rotating magnet ideally induces a sinusoidal magnetic signal at each
Hall plate (BH 1 to BH 4). Each Hall plate has an equal amplitude of Bamp and a phase shift
of 90◦ (π

2 in radians) if mounted equiangular on the die. An ideal homogeneous stray field
Bo f f affects all Hall plates equally. With this the magnetic field at each Hall plate can be
calculated by:
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BH 1 = Bamp sin(ϕ +π) +Bo f f , (1.1)
BH 2 = Bamp sin(ϕ + π

2 ) +Bo f f , (1.2)
BH 3 = Bamp sin(ϕ) +Bo f f , (1.3)
BH 4 = Bamp sin(ϕ− π

2 ) +Bo f f . (1.4)

The difference of Hall 1 and Hall 3 makes up the ”x” signal xSig of the sensor and the
difference of Hall 2 and Hall 4 makes up the ”y” signal ySig:

xSig = BH 1−BH 3 (1.5)

and
ySig = BH 2−BH 4. (1.6)

In this manner the homogeneous offset Bo f f (which may vary over time but has to be
invariant of the location) is cancelled out as it affects both Hall plates equally, this is
shown by:

xSig = Bamp sin(ϕ +π)+Bo f f − (Bamp sin(ϕ)+Bo f f ), (1.7)
(1.8)

when applying basic trigonometry,

sin(ϕ) =−sin(ϕ +π), (1.9)

xSig simplifies to:
xSig =−2 Bamp sin(ϕ). (1.10)

ySig is calculated the same way by,

ySig = 2 Bamp sin(ϕ +
π

2
). (1.11)

The measured angle ϕ˜can then be calculated with the ”arctan2” function given by,

ϕ˜ = arctan2(xSig,ySig). (1.12)

Compared to the regular ”arctan”, ”arctan2” can resolve angles in [0,360)◦, whereas ”arc-
tan” is only unique within (-90,+90)◦.

The angle error ∆ϕ is then the difference of ϕ˜and the true angle value ϕ given by,

∆ϕ = ϕ˜−ϕ. (1.13)

As this gradiometric sensing principle needs information about the values of the mag-
netic field, out of magnetic angle sensing devices only Hall effect sensors are suitable for
homogeneous stray field compensation.
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1.5 Definition of accuracy errors
Equation (1.13) simply defined an angle error as the difference of some measured angle
ϕ˜and the true angle ϕ which varies over the course of time. Application engineers are
not interested in error curves within a certain angle domain (e.g. [0,360]◦) but rather in an
”overall” error in this angle domain. Most commonly, two different definitions are used
according to [23]: The Maximum Error ME-error being the absolute value of the largest
peak in the error curve and the Average Error AE-error [24] being the mean of the highest
and the lowest peak in the error curve. Both accuracy definitions are shown in Figure 1.4.

0 30 60 90 120 150 180 210 240 270 300 330 360
-1.5
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0

0.5

1

1.5

Figure 1.4: Most common quantities to describe accuracy errors by an exemplary angle
error curve: Maximum Error ME-error = max(|∆ϕmin|, |∆ϕmax|) and Average Error AE-
error = ∆ϕmax−∆ϕmin

2

AE-error is more sophisticated than ME-error as systematic (bias) angle errors are can-
celled out for AE- but not for ME-errors. These systematic angle errors are cancelled out
anyway during the calibration process of the sensor. In addition, AE-error is smaller than
ME-error in general implying a higher accuracy of the sensor product.



Chapter 2

Background & State of the Art

2.1 The Hall effect and Hall effect devices
The Hall effect was discovered in 1879 by Edwin Hall, an American physicist working at
John Hopkins University at that time [25].

Imagine a strip of metal (or a semi-conductor) with thickness d, which carries an elec-
tric current (which will be later on defined as bias current) IB along its length. When a
magnetic field (with flux density B) is applied simultaneously, electrons in this strip are
deflected towards an edge of the strip. This produces a voltage gradient across the width
of the strip. This voltage is the so-called Hall voltage VH given by,

VH = AH
IB B

d
, (2.1)

where AH is the Hall constant, which can be calculated by,

AH =
1

n q
. (2.2)

where n is the charge carrier density and q is the electric charge of a single charge carrier.

A schematic Hall plate is shown in Figure 2.1. If the direction of the magnetic field is
reversed, the polarity of the induced voltage will also reverse [5].

The main advantage of this effect is it that this effect does not need a changing mag-
netic field to induce this voltage (compared to inductive sensors), so Hall sensors can also
detect static magnetic fields [5].

The main disadvantages of Hall sensors are their relatively low sensitivity and a lower
offset stability (due to the piezo effect) compared to magneto resistive sensors [19]. Un-
der most conditions, the Hall Effect is not measurable in metals. Semi-conductors are
much better due their lower charge carrier density [5].

8
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T
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Hall 
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Figure 2.1: Schematic overview of a Hall plate. The Hall voltage VH is affected by the bias
circuit (bias current IB and bias voltage UB) as well as mechanical stress σ , temperature
T and the magnitude of the magnetic field B.

Unfortunately, Hall sensors are not only sensitive to the magnetic field. They also detect
changes of temperature T and mechanical stress σ . In addition also the ambient humidity
has an effect on the sensitivity of the sensor as the plastic package swells in highly humid
environment and effects the mechanical stress randomly in nature [26].

The bias voltage VB plays quite an important role in Hall sensors. An angular Hall sensor
needs to sense a changing magnetic field at different temperatures. With an increasing
temperature the sensitivity of the sensor decreases. On the other hand, an increasing tem-
perature will cause a higher bias current IB. This increasing bias current increases the
sensitivity of the Hall plate therefore cancelling out the negative effect to a certain stage
and thus limiting the temperature effect.

2.1.1 Main characteristics of Hall sensors
According to [5] the main characteristics needed to model a Hall effect transducer are:

1. Sensitivity

2. Temperature coefficient of sensitivity

3. Ohmic offset

4. Temperature coefficient of ohmic offset
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5. Linearity

6. Input and output resistances

7. Temperature coefficient of resistances

8. Electrical output noise

The individual characteristics are explained in detail below:

Sensitivity

The sensitivity (also referred to as gain) describes in general the ratio of some of out-
put with respect to its input. A high sensitivity means that the output source is higher
compared to a low sensitivity when the input value is the same for both sensors. A high
sensitivity is generally a good thing. The sensitivity of a Hall sensor depends on the
amount of current used to bias the sensor. There are two ways to describe the sensitivity
of a Hall sensor: [5]

• Volts per unit field, per unit of bias current

• Volts per unit field, per unit of bias voltage

The sensitivity of silicon (Si) based Hall sensors is around 1 mV/mT for a 1 mA current.
Indium antimonide (InSb) reaches a typical sensitivity of around 5 mV/mT and Indium
arsenide (InAs) has a typical sensitivity of around 2 mV/mT [5]. Although InAs has a
lower sensitivity than InSb, InAs has a lower temperature dependence and a wider work-
ing range (exceeding the temperature range from -40◦C up to 150◦C, which is needed for
automotive applications) [19].

Temperature Coefficient of Sensitivity

In general, Hall effect sensors do have decent constant sensitivity (if they are powered
by a constant current source), but the sensitivity does vary a little over temperature. For
some cases, an assumed constant sensitivity is enough, but as soon as a higher stability is
desired, the non constant sensitivity needs to be considered. [5]

Ohmic offset

The ohmic offset (or offset voltage) is a small voltage that can be measured from a Hall
sensor, even when it is not excited by a magnetic field. The ohmic offset limits the ability
to detect small magnetic field of steady state. There are multiple effects, which cause this
offset voltage. Sources for this offset come from inhomogeneities of the sensor materials
(e.g. doping density or surface conditions), alignment errors of the sensor contacts and
the piezo-resistive effect, due to nature of semiconductors. [5] [6]

Temperature coefficient of ohmic offset

The offset voltage of a Hall sensor is not constant over temperature. In addition this effect
tends to be of random nature making it unpredictable in general. This drift can vary across
”identical” devices. [5]
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Linearity

Hall effect sensors are passive devices which cannot deliver unlimited output voltage. The
physical limit is the input (or bias) voltage. In practice the limit of linearity is much lower
due to saturation effects. When measuring small voltages compared to the bias voltage,
a Hall sensor is very likely to be linear, whereas the linearity is lost as soon as the output
voltage increases. When measuring very large magnetic fields, one may use a Hall sensor
with a low sensitivity, because these sensors do not saturate so easily. [5]

Input and output resistances

Both the input and the output resistances have an influence on the shape of the bias cir-
cuitry and the front-end amplifier used to recover the transducer signal. The input resis-
tance affects the design of the bias circuitry, while the output resistance affects the design
of the amplifier used to detect the Hall voltage. [5]

Temperature coefficient of resistances

The temperature coefficients of the input and output resistance are very close to each other
at least. In general cases they may be identical. According to [5] practical transducers the
temperature coefficient of resistance can be quite high, often as much as 0.3%/◦C. For
typical automotive purposes the resistances can vary by up to 30%. [5]

Electrical output noise

Hall sensors show electrical noise at their outputs. Naturally, there can be many sources
for a noisy output signal. The most common and fundamental noise source is the thermal
noise caused by moving electrons, which is better known as Johnson noise, Nyquist noise
or Johnson–Nyquist noise. The Johnson noise can be calculated by,

Vn =
√

4 k T R Bw, (2.3)

where ,

• k is the Boltzmann’s constant (approximately 1.38 10−23 J K−1),

• T is the absolute temperature in K,

• R is the resistance in Ω,

• Bw is the bandwith in Hz.

Another noise source can be 1/ f noise (also known as Flicker noise), which can be found
in many physical systems. 1/ f noise can have various different types of underlying mech-
anisms. The amount of noise per unit bandwidth decreases with increasing frequencies
explaining its naming. Different literatures [5, 6] either prioritize the Johnson or 1/ f
noise respectively.
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Additional error sources

The error sources shown above are not the only ones that can affect the accuracy of Hall
sensors. Some other error sources are assembly tolerances of the sensor and magnet
(which will be covered in section 3.1 of this thesis) or imperfections and demagnetization
effects of the permanent magnet the latter of which causing inevitable life-time drifts
[20,27] which cannot be compensated beforehand. But also external sources of deviation
such has Electromagnetic Interferences (EMI) or stray fields of both homogeneous and
inhomogeneous nature cause errors. All these non-compensable error sources perturb the
measurement signal with uncertainties.

Chopper Stabilization

One possibility to reduce offset by removing errors caused by thermal and mechanical
stresses is chopper stabilization. It separates these stresses from the magnetic field based
signal in the frequency domain using a modulation-demodulation process [28]. Unfor-
tunately, this causes a delay and adds electrical noise to the signal [29]. A newer and
more advanced alternative to chopping is the spinning Hall technique. Such a sensor is
given in [30]. New magnetic sensors even combine the spinning-current Hall probe and
a chopped 3rd-order continuous-time ∆Σ-converter to manage the balancing act of both
low noise and good stability [31].

Integrated Hall Sensors

Integrated Hall sensors use more than a single Hall element inside an Integrated Circuit
(IC). In most cases two or four (sometimes even more) Hall elements are placed within
a common IC. Their positioning is not arbitrary as they should all experience the same
packaging stress. Such a setup can eliminate the signal due to packaging stress [32]. To
fulfil increasing requirements regarding Functional Safety of road vehicles (ISO 26262)
[10] so called dual-channel integrated sensors are manufactured today. Two redundant
measurement paths are placed on the same die. Each path operates independent of the
other, but detect the same magnetic quantity [33, 34].

2.2 Signal processing
After the Hall effect device itself is now properly modelled it is time to look at the actual
signal processing next. The aim of the signal processing path is it to transfer some ana-
logue Hall output voltage VH to some measured angle value ϕ˜. Recalling section 1.4.2
we already know that there are four Hall plates with four individual Hall voltages:

VH =


VH 1
VH 2
VH 3
VH 4

 . (2.4)

The first step is it to calculate analog signal path voltages Vx and Vy of the respective
voltage paths and digitalize them using a separate Analog Digital Converter (ADC) for
each path. A schematic figure, which illustrates this, is shown in Figure 2.2.
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Figure 2.2: Schematic overview of the analog part of the signal processing path. Channel
voltages Vx, Vy are calculated by using the differential voltage of two opposite Hall plates.
These channel voltages are then digitalized.

2.2.1 Analog Digital Converters (ADC)
An Analog Digital Converter is a device that converts an analog time continous signal
such as a voltage to a discrete digital signal (which is typically a two’s complement binary
number). The main parameters of an ADC are its resolution (in bits) and its maximum
sample rate. Indicators for ADC performance are its bandwidth (which is mainly affected
by the sample rate) and the signal-to-noise ratio (which is affected by its resolution, errors
in accuracy and linearity as well as jitter and aliasing effects). For an ideal ADC the
resolution Q in V/LSB (least significant bit) can be calculated quite easily by, [35]

Q =
VFSR

2N , (2.5)

where VFSR is the full scale range of the voltage signal which is given by,

VFSR =Vmax−Vmin, (2.6)

where [Vmin,Vmax] are the highest and lowest expected voltage peak in the signal.
N is the resolution of the ADC in bits. The limiting factor in resolution is usually the
signal-to-noise ratio.

Sample-and-Hold

The conversion from a given voltage to a binary value cannot be performed instantly. That
is why the voltage signal needs to be kept constant during the conversion. Most simply a
circuit consisting of a simple capacitor controlled by an electronic switch can be used to
store the signal. Such a circuit is called Sample-and-Hold circuit and is part of most ADC
IC’s.
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Error sources

Like other electronic devices ADC’s suffer from imperfections which cause errors to the
output signal of the ADC. Some of the most prominent error sources of ADC’s are listed
below:

Quantization error

Converting analog values into digital ones is always perturbed with quantization error
eQ caused by the limiting resolution of the ADC (see Equation (2.5)). The quantization
error cannot exceed the gap of one bit (but can be reduced to ±0.5 bit if the ideal trans-
fer function is shifted to the center of each bit range [36]), or else the ADC would be
converting the value to a neighbouring bit. The quantization error is defined as:

eQ =Vd−Va, (2.7)

where Vd is the quantized (digital) voltage and Va its analog input value. The quantization
error is signal dependant and non-linear in general.

Aliasing

Aliasing (or discretization error) typically has two main sources. Either the fundamental
Nyquist–Shannon sampling theorem was not adhered (The sampling rate has to be at least
twice as high as the highest frequency fmax in the spectrum) or noise in the signal has a
frequency which is higher than half of the sampling rate.
Aliasing can be avoided if the analog signal passes through a low pass filter before digi-
talization. After digitalization, aliasing cannot be avoided.

Offset Error

Like Hall effect devices, ADC’s too are perturbed with offset error. This offset error
is also defined as some output of the device when no input signal is present and the theo-
retical output signal should be zero. Such an offset error can be both positive or negative
and may cause the ADC to saturate before the full scale range is reached [37]. Gain Error
Consider the offset to be compensated. A gain error is a cause of a deviating slope against
the ideal transfer function (while still being linear though). A positive gain error indicates
a higher slope, whereas a negative gain error displays as a weaker slope of the transfer
function.

The combination of the offset (eO) and gain error (eG) is called Full-scale error (eFS).
The Full-scale error is given by,

eFS = eO + eG. (2.8)

Non-Linearities

Unavoidable imperfections cause non-linearity errors which deviates the shape of the
transfer function from the otherwise ideal linear transfer function. Deviations of the ideal
step width are called Differential Non-Linearities (DNL) [38, 39]. The cumulation of
these errors is defined as the Integral Non-Linearity (INL), which is the highest deviation
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of the real transfer function versus the ideal one [39, 40].

The effects of non-linearities cannot be removed by calibration [39].

2.2.2 Amplitude-, phase- and offset correction
Consider the signal processing path as given in Figure 2.2. Each ADC produces an digital
output (xSig, ySig). Assume that the signals are ideal with the exceptions of offset-, gain
errors and phase difference (also known as orthogonality error) being present. Such sig-
nals for both ADC’s for a full rotation in [0,360]◦ are shown in Figure 2.3.
Each signal (x-Signal xSig and y-Signal ySig) can be described with the following function
given by,

xSig = Ax cos(ϕ) +Ox, (2.9)
ySig = Ay cos(ϕ +ϕortho +90◦) +Oy, (2.10)

where Ax and Ay denote the amplitude of each signal, ϕortho denotes the phase shift be-
tween the two signals and Ox and Oy denote the offset of each signal.
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Figure 2.3: Definition of amplitude-, phase difference- and offset errors between the x-
channel (blue) and y-channel (red). ADC’s with sufficient resolution (the quantization
error shall be neglected) are assumed.

This X-offset and Y-offset is not to be confused with the offset presented in Section 1.4.2.
X- and Y- offsets here are caused by imperfections of the Hall device and the ADC,
whereas the offset in Section 1.4.2 is merely caused by a homogenous stray field. This
stray field is already cancelled out due to the gradiometric sensing principle presented in
Section 1.4.2.
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The calibration process explained here is based on the end-of-line calibrations docu-
mented in [41–43]. In this calibration process a full 360◦ rotation is recorded twice
(once in clockwise (cw) and once in counter-clockwise (ccw) direction). Such an end-
of-line calibration does not compensate long term drift effects [42]. Such effects are not
covered in the scope of this thesis.

Determining calibration parameters

Amplitudes and offsets of both channels Ax, Ay,Ox and Oy can be calculated quite simply
using only the peak values (Xmax, Xmin, Ymax and Ymin) of each channel. Their calculation
is given by:

Ax = Xmax−Xmin
2 , (2.11)

Ay = Ymax−Ymin
2 , (2.12)

Ox = Xmax+Xmin
2 , (2.13)

Oy = Ymax+Ymin
2 . (2.14)

The phase difference ϕortho (also known as orthogonality error [42]) can be calculated by
determining the zero crossings of each signal:

ϕortho = ϕx,0−ϕy,0−90◦. (2.15)

Alternatively, a Discrete Fourier Transformation (DFT) can be used for a more exact ap-
proach. The method is thoroughly explained in Section 5.1.2 of [42] and will not be cited
here. For more informations to this approach refer to [42].

After these parameters are computed for both clockwise (cw) and counter-clockwise di-
rection (ccw), the mean of the amplitudes Ax,m,Ay,m, offsets Ox,m,Oy,m and phase differ-
ence ϕortho,m between both channels of both runs are calculated to obtain the symmetrical
values:

Ax,m =
Ax,cw+Ax,ccw

2 , (2.16)

Ay,m =
Ay,cw+Ay,ccw

2 , (2.17)

Ox,m =
Ox,cw+Ox,ccw

2 , (2.18)

Oy,m =
Oy,cw+Oy,ccw

2 , (2.19)

ϕortho,m =
ϕortho,cw+ϕortho,ccw

2 . (2.20)

Most sensor devices also allow to compensate temperature dependant offsets. Sensor de-
signers usually implement linear compensation (evaluating the offset at two temperatures)
or quadratic temperature compensation (evaluating the offset at three different tempera-
tures). The concept of linear temperature dependant offset compensation is illustrated in
Figure 2.4.
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Figure 2.4: How compensation of temperature dependant offset is performed. In most
cases it is sufficient to fit a straight line between two temperatures with known offsets.
Usually room temperature (25◦C) is chosen as one of the two points. This is not manda-
tory, though.

The calibration temperatures are chosen carefully in order two minimize this error for
the full temperature range. In most cases room temperature is used as one of these two
temperatures.
In order to compute the linear compensation two offsets (for both channels) at two differ-
ent temperatures need to be known. The slope of the descending calibration line can be
calculated by,

kT =
O1−O25◦C

T1−T25◦C
, (2.21)

for both channels (kT x and kT y). Temperatures need to entered as digital values in the
equation above. Offsets O1 and O25◦C are calculated for both channels by Equations (2.18-
2.19). The calibration parameters are now fully determined and the calibrated measured
angle ϕ˜cal can now be computed.

Angle Calibration

The actual calibration process, which is implemented in the microcontroller and calcu-
lated for each discrete signal value of the integrated sensor is shown in Figure 2.5. This
multi-step process is explained below.
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Figure 2.5: Schematic overview of the calibration process. Calibration consists of offset-,
gain- and phase difference (orthogonality error) compensation. The measured angle is
calculated after the compensations are performed. Typically a phase calibration is com-
puted afterwards, if needed. The phase difference shift compensation covers the phase
shift between the two signals. The final phase calibration calibrates the static offset of the
angular output.

In the first step the offset values for both channels (Ox, Oy) are calculated using the tem-
perature coefficients kT x, kT y and the temperature (in digits) for both channels:

Ox = Ox25◦C + kT x(T −T25◦), (2.22)
Oy = Oy25◦C + kT y(T −T25◦). (2.23)

These offset values are then subtracted from the ADC output yielding a offset compen-
sated signal given by,

xo f f = xSig−Ox, (2.24)
yo f f = ySig−Oy. (2.25)

In the next step, the amplitude of each signal is normalized to unit length. The gain
compensation is performed by:

xamp =
xo f f

Ax,m
, (2.26)

yamp =
yo f f

Ay,m
. (2.27)

The error arising from the phase difference between the x and y signal is still present, one
channel (mainly the y-channel) needs to be calibrated as given by,

yortho =
yamp− xamp sin(−ϕortho,m)

cos(−ϕortho,m)
. (2.28)

Finally the arctan2 function can be used to calculate an unique angle value in ϕ =
[0,360)◦. The phase shift of the x-Signal ϕx,0 needs to be subtracted from this angle
and the final calibrated angle ϕ˜cal is obtained by:

ϕ˜cal = arctan2
(

yortho

xamp

)
−ϕx,0. (2.29)
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2.3 Kalman filtering

2.3.1 Need for prediction of future states
One might see the world and especially time as continuous system (Touching the field
quantum mechanics is clearly not intended in this thesis), but when working with sensors
one knows that he needs to switch to the discrete world owing it to the quantization effects
when digitalizing physical units to bits and bytes. Of course one can choose small incre-
ments, but nonetheless these are discrete values. But when increasing the sample size, the
amount of storage needed, increases of course. But also the components for digitalizing
and computing are not ideal and need some physical time to conduct their computations
(compare section 2.2.1).

Real Hall sensors typically have sampling rates between 5 Hz and 40 kHz [44–46]. This
corresponds to sample intervals of 0.2 s to 25 µs. The computation time needed to convert
the Hall sensor output to a digitalized angle value lies between 10 and 100 µs. This cre-
ates a latency between the signal acquisition and the further processing of the result. Such
a latency causes a delayed sensor output producing systematic errors. To name an exam-
ple, the efficiency of electrically commutated motors (ECM) (also known as brushless DC
motors (BLDC)) is is strongly affected by these delays. Such safety critical sensors need
evaluation cycles as close to real time as possible, meaning that some sort of prediction
or forecast for upcoming values may need to be programmed.

The first option which one might come up to solve this problem is applying a Kalman
Filter. Of course one needs to think about the applicability and limitations of the Filter
method beforehand.

2.3.2 Describing Kalman’s filter algorithm
The Kalman Filter (KF) is a type of mathematical algorithm, named after one of its main
developers, Rudolf E. Kálmán [47].

It can be used as an estimator for the linear quadratic problem. The future dynamic system
which is impaired with white noise can be estimated using state space techniques, making
it possible to use the Kalman Filter either as an estimator, filter or even as a smoother [48].

The Kalman Filter produces estimates of future unknown target variables. This estimation
tends to be more precise than a simple estimation based on measurements only. The most
known application of Kalman filtering is the navigation of aircrafts, spacecrafts, missiles,
ships and many more [49].

In general a Kalman Filter compares a mathematical model to a measurement of the real
life system and creates a prediction for the next state of the system. Both the mathemati-
cal model and the measurements suffer from imperfections. The system model as well as
the measurements are multiplied with a weighting factor indicating the weighting of the
model (often denoted as β ) and the measurement (often denoted as α). A high α indicates
a strong accuracy of the measurements, whereas a high β indicates a high accuracy of the
model.
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In the past years, many extensions or adaptions to the ”classic” Kalman Filter were de-
veloped, the most known are the ”Extended Kalman Filter” (EKF) (which is a non-linear
version of the KF) and the ”Unscented Kalman Filter” (used for highly non-linear predict-
and update functions) (UKF) [50]

The following listing procedure names the main steps of Kalman filtering: [51]

1. Initialization and first prediction

2. Measurement

3. State Update

4. Prediction

5. Repeating step 2-4 (new iteration)

Figure 2.6 shows a simplified schema of the Kalman Filter algorithm. It is an example for
an recursive algorithm.

Initial state 

prediction

Kalman Gain

Update Estimates

Update Covariance

Measurement
Predict Estimates

Predict Covariance

Figure 2.6: Schematic algorithm of a recursive Kalman Filter. This algorithm consists
of an initialization and a recursive loop, in which the Kalman Gain, the estimates of the
current state and the predictions for the upcoming iteration are computed.

A huge advantage of the Kalman Filter is its ability to be implemented as a recursive al-
gorithm, meaning that besides of the underlying algorithm only the data of the previous
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cycle needs to be stored for the computation of the next cycle. This keeps the overall
dynamic storage demand to a minimum, making it able to be implemented within an In-
tegrated Sensor application.

Ad 1: The initialization is conducted at the beginning and it needs a guess of the sys-
tem state and the state uncertainty. [51]

Ad 2: Like the initialization, the measurement step also delivers a system state and a
uncertainty of the measurement. [51]

Ad 3: This step is responsible for the current state estimation of the system. Also the
Kalman Gain and the outputs of the filter (System State Estimate and Previous State Esti-
mate Uncertainty) are calculated [51].

Ad 4: In the final step the state and the uncertainty are extrapolated for the next sys-
tem state and estimated using the provided model [51].

The derivation of the Kalman equations are outside the scope of this thesis and can be
found in the original publication presented by Rudolf E. Kálmán [47] or various online
tutorials and publications [48, 51, 52].
In this chapter the five main equations of Kalman Filters are taken as is. It is explained
how these equations can be used to implement a filter. The five main questions of the
Kalman Filter are (other names for the equations are written in brackets: [51]) :

1. Kalman Gain Equation (Weight equation)

2. State Update Equation (Filtering Equation)

3. Covariance Update Equation (Corrector equation)

4. Dynamic Model Equation (Predictor-, Transition-, Prediction Equation, or State
Space Model)

5. Predictor Covariance Equation

We shall now take a closer look at the underlying equations. At the beginning, we dis-
tinguish between true values x, estimates x̂, predictions x̂′ and measured values z, all of
those are functions over time, or in the discrete sense functions over some index k. All of
the vectors above contain the value as well as all considered derivatives of it, e.g.:

x̂′ =


x̂′
˙̂x′
¨̂x′
...

 . (2.30)

As already explained above the Kalman Gain K is a measure for the confidence in the
model or the equations, a high K indicates us a weak model, whereas a low K shows us,
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that the Kalman Filter relies stronger on the model equations rather than the measure-
ments. Using the following equation, the Kalman Gain can be computed easily by,

K =
P′HT

HP′HT +R
. (2.31)

In this equation P′ is the predicted covariance matrix computed in the previous step (dur-
ing the initialization an assumption on this matrix needs to be made)
H is the so-called observation matrix. H indicates which quantities of the vector x can be
observed (or measured) in our system. The shape of H must be identical to xT :

H =
[
H Ḣ Ḧ . . .

]
. (2.32)

If a quantity (e.g. position) and its considered derivatives (e.g. speed and acceleration)
are observable, the correct entry is 1 and if not, the correct entry is 0.
Let’s take a look at this little example: Consider a mathematical model for a car driving
with almost constant speed along a straight road. This model needs information about
the position and the speed of the vehicle (H is then of size (1x2)). Only the position is
observed (measure) over time, yielding an Observation matrix H given by,

H =
[
1 0

]
. (2.33)

And finally the matrix R is the covariance of the measurement noise. For the example
above R yields to a scalar, as there is only one measured quantity, and R therefore simpli-
fies to the variance of the measurement noise σ2 as there is no variable it can correlate to.

Author Note: The standard uncertainty σ is not to be confused with the mechanical stress,
which is also denoted by σ . I did not want to introduce new notations here and apologize
for the inconvenience caused.

With this Kalman Gain, the updated estimate x̂ for the current step can be calculated
by applying the following equation. To calculate x̂ we simply take our prediction of the
estimate x̂ acquired from the previous iteration (For the 1st iteration an assumption for x̂
needs to be made in the initialization step) and add the weighted residual of the measure-
ment signal z and the prior estimate. When K is very small or even zero, the estimate for
the current state becomes the prediction made in the previous state, yielding an accurate
model. The state update equation is given by,

x̂= x̂′+K(z−Hx̂′). (2.34)

The updated covariance matrix P can be calculated by the following equation. I is the
Identity matrix of the same size as the product of KH. Again, when dealing with a low
or even zero Kalman Gain K, the estimate for the covariance is close to (or even equal) to
the prediction made in the state before:

P = (I−KH)P′. (2.35)

With the updated estimates for the current step and the covariance matrix the predictions
for the next step can be calculated using a matrix F which links future and current step.
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To be more precise F contains the underlying equations based on some physical principle.
It is called the Transition matrix. For instance: Let’s assume that the change rate of the
angle is constant for high sample rates, then F would look like this (dT denotes the time
between two samples):

F =

[
1 dT
0 1

]
. (2.36)

The equations for the predicted estimate is formed quite simply by,

x̂′ = Fx̂. (2.37)

Its shape is quite obvious when looking at the row-wise formulation. In the following set
of equations the product of Fx̂ has been computed:

x̂′ = x̂+dT ˙̂x, (2.38)
˙̂x′ = ˙̂x. (2.39)

Obviously, this set of equation does simply describe a motion of constant speed. The
transition matrix F needs to be adapted to the given physical behaviour of the real system
to work accurately.

The last step of each iteration is it to compute the predicted covariance matrix P′:

P′ = FPFT +Q. (2.40)

The matrix Q contains information about the process noise of the system is added to our
updated covariance matrix. Q has a high influence on the smoothing and stability of the
filter. Very small entries in Q result in high confidence of the modelled system, returning
a smooth curve over time. On the other hand, such a Q would not be able to directly fol-
low changes from the idealized model in the real system, even neglecting measurements
in some extreme cases.

To sum up: A high Q allows the model to question the perfection of the model equa-
tions and returns some of the noise obtained by the measurements, whereas a small Q
reduces noise but is slower in detecting changes in the real system.

Notes:

After all this excitement, the limitations and prerequisition of Kalman Filters shall not
be forgotten to be stated here:

1. The classic Kalman Filter can only be properly used for linear-quadratic problems.

2. The measured sources need to be perturbed by Gaussian noise.

3. The filter only works as good as its model was programmed. If the model is not
sufficient enough to describe the actual process, the filter will fail.
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2.3.3 Simplifying the Kalman algorithm
The set of equations presented above presents the following conclusion:
The set of Kalman equations can be split in two parts, Equations (2.31), (2.35) and (2.40)
can be computed separately. No information from the measurements is needed. Addi-
tionally, both the Covariance matrix and the Kalman Gain matrix converge after a decent
amount of iterations, allowing to pre-define this matrices for a certain application. These
equations do not need to be in the actual iteration cycles if the process noise matrix and
measurement noise matrix are time-invariant. This reduces the actual filter work signifi-
cantly as only Equations 2.34 and 2.37 need to be solved.

Let’s take a look at the example above (recalling the car travelling with constant speed)
and split the matrix equations into separate line-wise equations. Equation 2.34 then splits
up into the following two equations:

x̂ = x̂′+Kx xres, (2.41)
˙̂x = ˙̂x′+Kẋ xres, (2.42)

where Kx and Kẋ are the entries of the Kalman Gain matrix K (which is now assumed
constant over time) given by,

K =

[
Kx
Kẋ

]
(2.43)

and xres is the residual of the measurement result from the current state between the pre-
diction of the previous state to the current one:

xres = x˜− x̂′. (2.44)

Equation 2.37 was already adapted to the given example, let’s recall Equations (2.38,2.39):

x̂′ = x̂+dT ˙̂x, (2.45)
˙̂x′ = ˙̂x. (2.46)

The actual Kalman Filter algorithm de-solves into a system of four simple equations
(Equation 2.46 generates no new information and does not need to be calculated) which
need to be iterated over time. This set of equations has only three multiplications, three
additions and one subtraction per iteration cycle.

These simplifications now enables the Kalman Filter to be used within an integrated
sensor. The computational power of the microcontrollers in use is sufficient enough to
compute the set of rather simple equations. This concludes the proposal for a method to
predict future state of a safety relevant sensor in automotive applications with Kalman
filtering.
A first estimate of the computation time per Kalman Filter iteration yields about 5 µs,
which is sufficient enough for sensors with typical sample rates specified in section 2.3.1.

Note:
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The example of the car travelling with constant speed can be adapted to model a car
travelling with constant acceleration, the remaining set of Kalman Filter equations is pre-
sented without derivation:

x̂ = x̂′+Kx xres, (2.47)
˙̂x = ˙̂x′+Kẋ xres, (2.48)
¨̂x = ¨̂x′+Kẍ xres, (2.49)

for the state update equations and,

x̂′ = x̂+dT ˙̂x+dT 2/2 ¨̂x, (2.50)
˙̂x′ = ˙̂x+dT ¨̂x, (2.51)
¨̂x′ = ¨̂x, (2.52)

for the state prediction equations. In this set of equations above, Kx, Kẋ, Kẍ (all entries of
the Kalman Gain matrix) as well as dT and dT 2/2 are all constants.

2.4 Uncertainty modelling

2.4.1 What is uncertainty?
The dictionary of the Cambridge University defines uncertainty as a situation in which
something is not known, or something that is not known or certain [53]. Any measure-
ment result is fraught with systematic (“known”) and random (“not-known”) errors. The
definition above implies that systematic errors are not uncertain, because they can be
quantified, only random errors remain uncertain.

How do mechanical engineers deal with uncertainties?

Mechanical engineers usually need to have hard limits to reject or accept a batch of de-
liverables. Let us assume that a shaft with nominal length of 200 mm with a tolerance of
± 0.5 mm is required. Then a mechanical engineer would choose a notation given by,

x = (200±0.5)mm. (2.53)

Any shaft with a length exceeding 200.5 mm or deceeding 199.5 mm will be rejected. The
production process is perturbed with random error sources resulting in an error distribu-
tion which could be Gaussian. Such a distribution indicates that the vast majority of shafts
will have a length close to the nominal value but very few shafts can have much larger
(or smaller). So the manufacturer would like to keep his uncertainty as low as possible.
This has a huge effect on production costs. Let us also consider different batch sizes. A
smaller batch has a lower probability of containing a rejected part than a batch with a
much higher size. Even with this in mind, one needs to define a certain amount of parts
within a batch which is allowed to exceed the given limits. In the automotive industry
this limit is very low (→ section 1.3) combined with the typical batch sizes exceeding 106

parts per batch. In such vast batch counts rare outliers suddenly are not that unlikely any
more, making it impossible to define hard limits. That is why one needs to think of the
probability of such a tolerance range, e.g.: 99.95% of the parts lie within x = (200±0.5)
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mm. This is a much accurate definition than Equation 2.53 alone. For a long time there
was no standardized methodology to define uncertainties properly. For this reason the
”Guide to the Expression of Uncertainty in Measurement” (GUM) was created.

2.4.2 Guide to the expression of Uncertainty in Measurement (GUM)
The Bureau International des Poids et Mesures (BIPM) is an international organization,
through which member states act together on matters related to measurement science
and measurement standards aiming to be centre for scientific and technical collaboration
between member states and being the coordinator of the world wide measurement sys-
tem [54]. It is part of the Joint Committee for Guides in Metrology (JCGM) organization,
which has released the GUM [55–59] and the International vocabulary of metrology-
basic and general concepts and associated terms (VIM) [60]. The GUM, VIM and all
their supplementary documents are available at [61] for free. The GUM does not give
detailed instructions to solve a specific task but rather gives general rules for evaluating
and expressing uncertainty in measurement.

In contrast to the definition of uncertainty above, the GUM defines uncertainty (of mea-
surement) as [55]:

Parameter, associated with the result of a measurement, that characterizes the disper-
sion of the values that could reasonably be attributed to the measurand

GUM proposes the following notation for defining uncertain measurement results:

U = 10.04(25)V. (2.54)

This is obviously the measurement result of a voltage U in Volts. A proper definition
needs the quantity of the measurand (U), the value of the measurand 10.04, its standard
uncertainty (25) and its unit V. The standard uncertainty refers to the last digits of the cor-
responding result. This is a much proper definition of uncertainty than equation (2.53). A
standard uncertainty of two digits implies that the least significant digit of the measure-
ment result has to be arbitrary.
Please beware that GUM also allows a definition looking exactly like Equation (2.53),
whereby GUM defines the number after ± as the (combined) standard uncertainty and
not a confidence interval. For obvious reasons the latter definition is not preferred by
GUM. Other definitions can be found in section 7.2.2 of [55].

Propagation and summarizing of uncertainty evaluation

JCGM 104:2009 [58] summarizes three methods for the propagation of uncertainty eval-
uation:

1. The GUM uncertainty framework

2. Analytic methods

3. Monte-Carlo simulations
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GUM uncertainty framework

The GUM uncertainty framework [55] uses the law of uncertainty propagation and char-
acterizes the output Z by a normal- or t-distribution. The GUM approach fails when [58]:

• measurement functions are non linear,

• asymmetric input variables occur and if output variables are not normally- or t-
distributed,

• input variables do not have similar contribution to the combined uncertainty.

Evaluating standard uncertainty

JCGM 100:2008 [55] names two methods to evaluate standard uncertainties. Type A
uses statistical methods based on results from experiments such as computing the stan-
dard deviation from a set of experimental data, whereas Type B uses a-priori knowledge
of the input quantity such as data from previous measurements, personal experience or
specifications given by the manufacturer. Type B is not more inaccurate than Type A in
general, especially with a certain experience or a rather small sample size for Type A
evaluations.

Determining combined standard uncertainty

The computation of the combined standard uncertainty uC(y) is presented in section
5 of JCGM 100:2008 [55]. A 1st order Taylor approximation of the measurand Y =
f (X1,X2, ...,Xn) yields an approximation of the standard uncertainty. This approach is
reasonably accurate if the transfer function f is reasonably linear, if this is not the case,
higher order terms of the Taylor series approximation also need to be considered.
The combined standard uncertainty uC(y) of Y = f (X1,X2, ...,Xn) where Y is the measur-
and and y is its estimate can be calculated by (Eq. 10 in [55]):

uC(y) =

√
N

∑
i=1

(
∂ f
∂xi

)2

u2(xi). (2.55)

The combined standard uncertainty can also be calculated for correlated variables x1,x2, ...,xn
(Eq. 13 and 15 in [55]):

uC(y) =

√√√√ N

∑
i=1

(
∂ f
∂xi

)2

u2(xi)+2
N−1

∑
i=1

N

∑
j=i+1

∂ f
∂xi

∂ f
∂x j

u(xi)u(x j)r(xi,x j), (2.56)

where r(xi,x j) is the correlation coefficient of xi,x j which can be calculated by,

r(xi,x j) =
u(xi,x j)

u(xi)u(x j)
, (2.57)

where u(xi,x j) denotes the estimated covariance of xi,x j.
Equations (2.55,2.56) are an expression of the law of propagation of uncertainty (as de-
fined in section 3.1 of [55]).
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Analytic Methods

Analytic methods yield an algebraic form for the probability distribution. They do not
produce any approximations and can only be used for simple cases with very few input
variables. Analytic methods were not used in the scope of this thesis, as the applications
were too complex to be modelled analytically.

Monte Carlo method

The Monte Carlo method is explained in JCGM 101:2008 [56]. The distribution of the
output Z can be determined approximately by taking random picks according to the prob-
ability distributions of the input variables and evaluating the model at the resulting values
Z. A Monte Carlo simulation can be used to determine if an application is suitable for
the calculation by the GUM framework. Monte Carlo simulation is more versatile and
can handle non-linearities where the GUM approach would fail, it also outperforms GUM
with increasing numbers of uncertain variables as the complexity of linearisation increases
with the number of variables. On the other hand, Monte Carlo simulation requires many
samples to deliver stable results, due to its non deterministic nature performing quite poor
at the tails of the distribution, not allowing direct application to reliability investigations.

Every computation conducted with the GUM approach in the scope of this thesis has
been cross-checked with the Monte Carlo method.

2.4.3 Central limit theorem
It states that in a case of a sequence of n independent, identically distributed random
variables (r.v.) X1...Xn with mean µ and variance σ2 and Xn being the arithmetic mean of
X1...Xn, then Zn tends to the standard normal distribution (µ = 0, σ = 1) for n→ ∞:

Zn =
X1 + · · ·+Xn−nµ

σ
√

n
=

Xn−µ

σ/
√

n
. (2.58)

For a large n, the sum Sn = X1 +X2 + · · ·+Xn has approximately a Gaussian distribution
regardless of the distribution of each Xi (i = 1,2, . . . ,n) [62]. The closer the distributions
of each individual Xi are to a Normal distribution, the less Xi are required to yield a Normal
distribution for Zn. But even the convolution of very few extreme non-normal distributions
such as a rectangular distribution with equal widths is approximately normal [55]. This is
one of the reason for the vast popularity of Gaussian distributions.
Beware that the Central limit theorem is not applicable for the square of the sum of several
Gaussian distributed random variables. Such a square of the sum yields to a distribution
with much longer tails [63].

2.4.4 Software for uncertainty propagation
A vast number of both commercial and free to use software to perform uncertainty prop-
agation is available for the most common programming environments such as Java, R,
Python, Julia, MATLAB and even Microsoft Excel. Most of them can handle basic math-
ematical operations very well. More advanced functionality such as complex number
calculation or the capability to handle correlations is only covered by a very few of them.
Such advanced software is given in [64] and [65].
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2.4.5 An introduction to ”An Uncertainty Toolbox” (AUT)
An Uncertainty toolbox (AUT) is a MATLAB based toolbox developed by the University
of Klagenfurt [66].It uses the capabilities of object-oriented programming in MATLAB
allowing storage and operation of data as well as interactions between different objects
[67]. It has been investigated in previous publications [68–71] and theses [72]. This
toolbox is yet in its developmental stage and will be available at [1] once released. The
toolbox is able to handle the uncertainty propagation of the GUM framework [55] with
correlations as well as complex numbers. Additionally a supplementary toolbox was
developed to handle Monte Carlo simulations as well.
The semantics for using the GUM framework based approach is very easy. An uncertain
variable can be created with a single line of code:

1 x=unc(mu,sigma,’name’)

Listing 2.1: Defining an uncertain variable with AUT, where: mu represents the expected
value of the random variable, sigma represents its standard uncertainty and name is a
string used for variable identification

x does not necessarily has to be a single random variable, it can also be an array of any
dimension [m,n], by simply defining mu and sigma as arrays of the same type. The
expected value of x can be extracted from the object by gmv(x) or in ”dot” notation by
x.value. Similarly the standard uncertainty of x can be obtained by gmu(x) or by
x.std.
MATLAB allows users to overload basic operators such as +,-,/,*,ˆ,.. and func-
tions such as min,max,sum,sqrt,diag,trace,sin,cos,tan,... In this way
the same operators and functions that the user has become familiar with can be used in the
same way for unc variables too. A more detailed overview can be found in the documen-
tation of the toolbox. As already explained above, the toolbox can also handle correlations
quite well as illustrated in the following example:

1 x1=unc(10,1,’x1’);
2 x2=unc(10,1,’x2’);
3 x3=x1;
4 x1-x2
5 >> ans= 0.0(1.4)
6 x1-x3
7 >> ans= 0(0)

Listing 2.2: Some example code to illustrate the principle of correlation

In the first step, two independent random variables x1,x2 are set. As x1 and x2 are
not correlated, the expected value of x1-x2 yields 0 and the standard uncertainty equals
sqrt(x1ˆ2+x2ˆ2). As x1 fully correlates with itself, the standard uncertainty of
x1-x3 equals 0.

Correlations between two random variables can also be set manually:

1 x1=unc(10,1,’x1’);
2 x2=unc(10,1,’x2’);
3 x3=unc(10,1,’x3’);
4 x1-x2
5 >>ans=0.0(1.4)
6 set_correl(x1,x2,1);
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7 x1-x2
8 >>ans=0(0)
9 set_correl(x1,x3,0.5);

10 x1-x3
11 >> ans= 0.0(1.0)

Listing 2.3: Setting correlations between random variables manually

The command set correl(variable1,variable2,corrCoeff) correlates variable1
with variable2 by the correlation coefficient corrCoeff.

The semantics for the Monte Carlo simulation based toolbox is actually very similar,
new random variables with Gaussian distributions can be defined by:

1 x=unc_t(mu,sigma)

Listing 2.4: Defining an uncertain variable with AUT for Monte Carlo simulations,
where: mu represents the expected value of the random variable and sigma represents
its standard uncertainty

10,000 Monte Carlo samples are taken per default. This can be changed by setting the
global variable MCSAMPLES to the desired value in the beginning of the script code. An
alternative and convenient way to switch in-between GUM and Monte Carlo toolboxes is
to insert the following line at the beginning of the script:

1 unc= @ unc t

Listing 2.5: Calling unc t by overriding unc

Further examples can be found in [68, 72] and the documentation of AUT.

2.5 The Tukey-Lambda distribution and its application
The Tukey-Lambda distribution (often only called Lambda distribution) is a family of
symmetric distributions proposed by John Tukey in 1960 [73] and generalized by Ram-
berg and Schmeiser [74] in 1972 to also include asymmetric distributions.
The distribution can be defined numerically with the following three parameters:

1. shape parameter λ

2. location parameter µ (”mean”)

3. scale parameter σ (”standard deviation”)

Most commonly, the percent point function (PPF) is used to describe the standardized
Lambda distribution (omitting µ and σ ). A PPF is the inverse of the cumulative distribu-
tion function (CDF). Given a cumulative input probability p the corresponding ”x”-value
is computed for a given λ .

G(p,λ ) =
pλ − (1− p)λ

λ
, (2.59)

with,
λ >−1.
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The shape of the CDF is given for four different λ in Figure 2.7. The given λ are not
chosen arbitrarily. λ = −1 resembles a good approximation of a Cauchy Distribution,
λ = 0.14 looks very similar to the CDF of the standard normal distribution, λ = 0.5
resembles a ”U-shaped” distribution and λ = 1 looks exactly like a uniform distribution
in [−1,1].
That is why there is no unique probability density function to describe all possible values
of λ . The Lambda Distribution is therefore not used for statistical modelling but rather to
approximate another symmetric distributions or to determine the distribution of a given
set of symmetrically distributed random variables.
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Figure 2.7: Cumulative Distribution Function (CDF) of the Lambda distribution for
λ = [−1,0.14,0.5,1]. Upper Left Plot: λ =-1 is a good approximation of a Cauchy
Distribution. Upper Right Plot: λ =0.14 is a good approximation of a Gaussian dis-
tribution. Lower Left Plot: λ =0.5 resembles a ”U”-shaped distribution. Lower Right
Plot: λ =1 is an exact rebuild of a uniform distribution.

The Lambda distribution is an exact rebuild of the

1. Logistic distribution for λ = 0

2. Uniform distribution in [−1,1] for λ = 1 (Figure 2.7)
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The following distributions can be approximated using the Lambda distribution (which is
also shown in Figure 2.7):

1. Cauchy distribution for λ ≈−1

2. Normal distribution for λ ≈ 0.14

3. U-shaped distribution for λ ≈ 0.5

Probability Plot Correlation Coefficients (PPCC) plots can be used to identify the distri-
bution of a given set of symmetrically distributed random variables. The correlation coef-
ficient of the given Lambda distribution and the set of random variables is plotted against
the shape parameter λ . An example of such an PPCC is given Figure 2.8. The correlation
coefficient of 100,000 Gaussian distributed random variables versus the Lambda distri-
bution for λ = [−1...1] is shown. The maximum of this function lies at 0.14 and therefore
implies that a Gaussian distribution is suitable for the given random variables.
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Figure 2.8: Probability Plot Correlation Coefficient (PPCC) plots for set of 100,000 Gaus-
sian distributed random variables. The λ value at the peak of this curve is a strong indi-
cation of the statistical distribution of the underlying random variable.

The implementation using MATLAB is quite simple. In the 1st step the Tukey-
Lambda distribution is set up in MATLAB:

1 function gp=tukey(p,lambda)
2 if lambda ˜=0
3 gp=(p.ˆlambda-(1-p).ˆlambda)./lambda;
4 else
5 gp=log10(p/1-p);
6 end
7 end

Listing 2.6: Code to compute the percent point function (ppf) (Equation (2.59)) of a
Tukey-Lambda distribution
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The calculation of the correlation coefficient between the given distribution and the Lambda
distributions with λ in [−1,1] is shown by the following MATLAB code snippet:

1 % Create a set of random variables
2 x=randn(100000,1);
3 % Sort this set in increasing order
4 y=sort(x);
5 % Set up a linspace vector of probabilities
6 b=linspace(1/(2*length(x)),1-1/(2*length(x)),length(x));
7 % Pre-assign storage for the Correlation Coefficient matrix
8 C=zeros(2,2,201);
9 % Compute the Correlation Coefficient matrix

10 for i=1:201
11 lambda=(i-101)/100;
12 v=tukey(b,lambda);
13 C(:,:,i)=corrcoef(v,y’);
14 end
15 % Pre-assign storage to correlation coefficient vector
16 corrCoef=zeros(201,1);
17 % Collect the the correlation coefficients
18 for i=1:201
19 corrCoef(i)=C(1,2,i);
20 end

Listing 2.7: Code to compute to correlation coefficients for a given distribution against
a set of Tukey-Lambda distributions. The function corrcoef is used to compute
the correlation matrix between the given set of measurements and the Tukey-Lambda
distribtuions for different values of the shape parameter λ .

Be aware that the given distributions need to be symmetric. This can be pre-checked by
using e.g. histograms. The Tukey Lambda distribution is not implemented in most of
the commercial software. The PPCC plot can also be calculated online by using the tool
presented available at [75], which is based on the theory presented in [76].

Other well known tests in statistics are Kolmogorov-Smirnov test, Lilliefors test, Shapiro-
Wilk test and many more. The advantage of the PPCC plot of Tukey-Lambda over other
test algorithms lies in its versatility to test against multiple distributions at once.



Chapter 3

Modelling Signal Processing &
Uncertainty

3.1 Calculation of magnetic fields

3.1.1 3D field solution
The calculation of a three dimensional field solution of the magnetic field created by
a permanent magnet may become a non-trivial task, with increasing complexity of the
magnet geometry. Calculating magnetic fields from scratch lead to solving Maxwell’s
Equations. For simple geometries, such as cylinders or bars, many solutions of analytical,
numerical or polynomial approximated nature have been presented in numerous publi-
cations. Additionally, Finite Element Analysis also provides a way to evaluate complex
geometries too. For the given task an accurate, fast and MATLAB compatible approach
was searched to model the field created by a diametrically polarized disc magnet. Both
numerical solutions [77] and analytical solutions [78] were considered. All considered
approaches delivered results with satisfying accuracy. Naturally, the numerical solution
prompts results faster as analytical solutions such as [78], as they rely on integral solving.
In the MATLAB environment, these integrals had to be solved numerically undermining
the concept of analytical modelling to a certain degree. Ultimately, the numerical solution
of [77] was chosen.
During the stage of integration of the Uncertainty Toolbox, also 3D polynomial-approximated
solutions of [77] were analysed to further improve the speed of the computations at the
cost of accuracy. Such 3D polynomial approximations have also been considered by [79]
as tri-cubic polynomial approximations. These approximated solutions deliver decent re-
sults, when the region of interest (ROI) is kept low. With an increasing ROI the results
increase in error. This can be reduced by either cutting the complete ROI into multiple
segments and applying case differentiations or alternatively coding a piece-wise poly-
nomial approximation in three dimensions. Although polynomial approximations of the
magnetic field were considered, they were discarded as maximum accuracy which was
aimed to be achieved.

There are of course many software tools (both freeware and commercial) allowing to
perform numerical computations. Analytical solvers are also available, allowing to do
fast computations without the need to rely on time consuming FEA models. Such a tool
is MagPyLib [80], a freeware tool written in Python.

34
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3.1.2 3D solution for a stray field robust Hall sensor with 360◦ detec-
tion

With the approaches presented in section 3.1.1 the magnetic field created by a diametri-
cally polarized disc magnet (magnet properties are specified in Table 3.1) can be calcu-
lated in any point in space outside the magnet.

Table 3.1: Magnet properties.

Magnet diameter D 6 mm
Magnet height H 2.5 mm

Remanence Br 1100 mT
Material – Samarium-Cobalt (SmCo)

This section aims to present the mathematical relation needed to calculate the magnetic
field at each Hall plate location of the sensor system. The sensor system consists of four
Hall plates in total, which are located on a circle with reading radius (RR) around the
center of a die (Equation 3.1 consider also Figures 1.3 and 3.1). Their position on the die
with respect to the die center is best described in vector notation in Cartesian coordinates:

h1 =

 0
−RR

0

 h2 =

−RR
0
0

 h3 =

 0
+RR

0

 h4 =

+RR
0
0

 (3.1)

where h1 defines the position of Hall 1 with respect to the die center and h2 to h4 define
the position of the consecutive Hall elements. Typical values of RR lie between 5−25%
range of the magnet diameter D. For the given magnet in Table 3.1 typical values for lie
between RR ≈ 0.3− 1.5 mm. Choosing small RR allows to build smaller sensors at the
cost of signal strength, as the magnetic field is very small straight below the magnet’s
center. A large RR delivers much higher signal strength at the cost of larger sensor area
needed. Unless stated otherwise, a RR of 1 mm was chosen in all computations as this
proved to be an optimal compromise
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Figure 3.1: Schematic overview of the angle sensor system. An end-of shaft solution
(compare Figure 1.2) has been chosen. Four Hall elements are placed on a circle at a
reading-radius RR from the shaft center. This figure has also been published in [63].

The die, which carries the Hall plates, may have an arbitrary orientation within its pack-
age. Both the sensor and the magnet are afflicted with assembly tolerances, which are of
random nature, resulting in arbitrary trajectories of each Hall plate. A misplacement of
the magnet can be caused by imperfect magnet positioning while mounting the magnet on
the shaft (which is commonly done be glueing). An inhomogeneous glue film thickness
may even cause a tilt of the magnet with respect to shaft’s plane surface.

A possible solution for modelling this sensor system is using coordinate transformations
to switch in between coordinate systems (CS). A total of three CS were chosen to describe
the position and orientation of all components: Magnet CS, Sensor CS and Shaft CS. A
schematic overview of the model is shown in Figure 3.2.

Major parts of this section were also published in [63].

This system has twelve degrees of freedom (DoF) in total consisting of the sensor dis-
placement dS = [xS,yS,zS]

T , magnet misplacement dM = [xM,yM,zM]T in Cartesian coor-
dinates and the orientations of the sensor [αS,βS,γS] and magnet [αM,βM,γM] with respect
to the reference (=shaft) coordinate system. All DoF are listed in Table 3.2. Eight of these
DoF can be used to describe assembly tolerances (γM and γS are not considered as assem-
bly tolerances as they have linear effects on the angle error and are simply cancelled out
during phase shift calibration. The effects of zS and zM are usually covered separately).
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Table 3.2: Overview of Degrees of Freedom (DoF). There are a total of twelve degrees of
freedom.

Sensor DoF Magnet DoF
Misplacement (dS) Misplacement (dM)

xS xM
yS yM
zS zM

Orientation (w.r.t. shaft CS) Orientation (w.r.t. shaft CS)

αS αM
βS βM
γS γM

In proper vector notation dS and dM look like:

dS =

xS
yS
zS

 , dM =

xM
yM
zM

 . (3.2)

Besides all these parameters also the ”air gap” AG is a highly important parameter in
sensor applications. AG is the perpendicular distance between the top surface of the sen-
sor package and the bottom surface of the magnet. It is given by,

AG = zM + zS−H/2. (3.3)

Typical values for AG lie between 0.5 to 4 mm, usually depending on external conditions.
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Figure 3.2: Schematic overview of the different coordinate systems (CS). The relative CS
of the magnet is defined by a displacement vector dM = [xM,yM,zM]T and a set of Euler
angles [αM,βM,γM]. The sensor CS is defined similarly: dS = [xS,yS,zS]

T and [αS,βS,γS].
A set of multiple coordinate transformations are needed to calculate the position and
orientation of each Hall plate with respect to the magnet center. This figure has also been
published in [63].

How to switch in-between different coordinate systems? One prominent solution are
transformation matrices T(n,α) such as:

x∗ = T(n,α)x. (3.4)

Such a coordinate transformation allows not only to transform a vector x to meet the
orientation of another CS x∗, but also to perform rotations of the vector by an angle α
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around a certain axis n with n = [n1,n2,n3]
T . T(n,α) can be found in literature [81, 82]

and is cited here:

T(n,α) =

 n2
1(1− cos(α))+ cos(α) n1n2(1− cos(α))−n3sin(α) n1n3(1− cos(α))+n2sin(α)

n2n1(1− cos(α))+n3sin(α) n2
2(1− cos(α))+ cos(α) n2n3(1− cos(α))−n1sin(α)

n3n1(1− cos(α))−n2sin(α) n3n2(1− cos(α))+n1sin(α) n2
3(1− cos(α))+ cos(α)

.
(3.5)

This vast matrix can be greatly simplified when Cartesian axes are used as rotation axes.
To rotate by a certain angle α around nx = [1,0,0]T T(n,α) becomes:

Tx(α) =

1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

 . (3.6)

The rotation matrices for rotations around the y- (ny = [0,1,0]T ) and z- (nz = [0,0,1]T )
axes by angles of β and γ respectively are derived in the same way and yield:

Ty(β ) =

 cos(β ) 0 sin(β )
0 1 0

−sin(β ) 0 cos(β )

 , (3.7)

for rotating around the y- axis and

Tz(γ) =

cos(γ) −sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 , (3.8)

for rotations around the z- axis.

All three rotation matrices can be grouped to a single line yielding,

x∗ = (Tx(α)Ty(β )Tz(γ))x, (3.9)

allowing to rotate against all three Cartesian axes by the that exact order.

Be aware that matrix multiplications are not generally commutative [83]. When per-
forming reverse rotations the order of the transformation matrices need to be mirrored.

Transforming coordinates of Hall plates with respect to Magnet CS

The process of transforming the coordinates of the Hall plates to match the orientation
of the magnet is a multi-step process. Let us begin with taking the relative position of
each Hall element w.r.t. to the sensor center (Equation (3.1) and rotate them to meet the
orientation of the reference CS. Recalling Equation (3.9) the new coordinates hi

∗ can be
calculated by,

hi
∗ = (Tx(αS)Ty(βS)Tz(γS))hi, (3.10)

where,
i = {1,2,3,4}, (3.11)

indexes the corresponding Hall plate.
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All Hall plates have the same orientation as the shaft CS, by adding the sensor displace-
ment vector dS the absolute position of the Hall plates can be calculated by,

habs,i = dS +hi
∗. (3.12)

The next step is to perform a full rotation around the axis of revolution z. In practice, the
sensor remains static as the magnet is mounted to the rotating shaft. This kind of inverse
kinematics is in fact easier to compute here. habs,i now becomes an array of position
vectors Hi in [0,360]◦ described by,

Hi = Tz([0,360]◦)habs,i. (3.13)

Hi is now rotated again to meet the magnet CS orientation in a similar way as above,

Hi
∗ = (Tx(−αM)Ty(−βM)Tz(−γM))Hi. (3.14)

Like before, the offset vector dM needs to be added to this vector array do yield the final
coordinates Hm, given by its equation,

Hm,i = dM +Hi
∗. (3.15)

Calculating the magnetic field vector

After feeding the numerical field solution [77] with the array of coordinates Hm,i its solu-
tion yields,

Bi =

Bx,i
By,i
Bz,i

 , (3.16)

which is an array of magnetic fields for a full rotation for each Hall plate.

Transforming the magnetic field vector with respect to the sensor CS

Bi is an array of magnetic field vectors. In a multi-step process Bi needs to be rotated back
to meet the sensor’s orientation. The first step is to rotate this array to meet the reference
CS using transformations matrices given by,

Bi
∗ = (Tz(γM)Ty(βM)Tx(αM))Bi. (3.17)

Note that the order of the transformation matrices has now been flipped to perform a valid
re-transformation. Also recall that inverse kinematics have been applied before, where
the sensor has been rotated instead of the magnet. That is why the field solution so far
is just a static field solution, as the orientation of magnetic field vector changes when the
magnet is rotated. To compensate this, the magnet rotation is simulated by,

Brot,i = Tz([0,−360]◦)Bi
∗. (3.18)

The computation is almost complete. In the last step, Brot,i needs to be tilted one last time
to meet the orientation of the sensor:

Bsensor,i = (Tx(αS)Ty(βS)Tz(γS))Brot,i. (3.19)
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Bs,i contains all three components of the magnetic field vector as an array in [0,360]◦.
Each Hall element only detects the z-component of this field vector array. The x- and y-
component were nevertheless needed for computing the z-field, and therefore must not be
neglected beforehand. They are not needed for the further computations. But this model
could also allow computing the field of magneto resistive sensor or Vertical Hall sensor,
which do actually need information about x- and y-component of the field vector.

The z-component of Bs,i (denoted by Bs,zi) could be directly used to calculate the an-
gular error arising from a certain set of assembly tolerances. The measured angle ϕ˜
can be calculated by (also consider section 1.4.2) determing the magnetic field for each
channel given by,

Bx−Ch = Bs,z2−Bs,z4, (3.20)

for the x-channel and by,
By−Ch = Bs,z1−Bs,z3, (3.21)

for the y-channel. The measured angle ϕ˜ is then calculated by,

ϕ˜ = arctan2(Bx−Ch,By−Ch). (3.22)

The resulting angle error solely caused by assembly tolerances is then given by,

∆ϕ = ϕ˜−ϕ. (3.23)

For the further signal processing path only the z-component of the magnetic field array
will be needed. For that reason Bs,z1 to Bs,z4 is grouped to a 2D array given by,

Bz =


Bs,z1
Bs,z2
Bs,z3
Bs,z4

 . (3.24)

Some restrictions arising from the calculation

The methods presented above do hold some restrictions:

1. The numerical field solution [77] assumes an ideal magnet with a fixed and uniform
polarization.

2. The model assumes infinitesimal small Hall plates. The actual magnetic field de-
tected by the Hall plates may vary slightly.

3.1.3 Results
In this section, the results of two exemplary runs are shown for a full shaft rotation ϕ =
[0,360]◦, which is split into samples of 1◦ width, using the algorithm described in section
3.1.2. The assembly parameters used can be found in Table 3.3. The results are shown
in Figures 3.3-3.4. The upper sub-figure shows a plot of the z portion of the magnetic
field Bs,z, which is detected by each Hall plate, the center sub-figure shows the theoretical
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magnetic fields of both channels (compare Equations (3.20-3.21)) and the bottom sub-
figure shows a plot of the angle error ∆ϕ solely related to the assembly tolerances of the
model (compare Equation (3.22)).

Table 3.3: Overview of Degrees of Freedom (DoF) values which were used in the compu-
tations presented in Figures 3.3-3.4. Instead of defining zS, zM AG was defined according
to Equation (3.3). Magnet properties according to Table 3.1. Additionally AE error (com-
pare Figure 1.4) is shown for both runs.

Run RR AG xS yS αS βS γS xM yM αM βM γM AE error

— mm mm mm mm ◦ ◦ ◦ mm mm ◦ ◦ ◦ ◦

Run 1 1 2 0 0 0 0 0 0 0 0 0 0 ≈ 0
Run 2 1 2 0.1 0.1 1 1 0 0.1 0.1 1 1 0 0.181

Run 1 represents an ideal set of assembly parameters, without the presence of tolerances.
Regardless of the reading radius RR and air gap AG values chosen the model should yield
an angle error ∆ϕ ≈ 0 for ϕ = [0,360]◦. The results are presented in Figure 3.3.

The curves for Bs,z yield perfect sinusoidal curves with a phase shift of 90◦ between
each consecutive Hall element. The differential signals for the x- and y-channel are per-
fectly sinusoidal with doubled amplitude. As expected ∆ϕ is approximately zero for the
whole rotation cycle. The noisy error distribution is just a combination of the numerical
accuracy of the numerical 3D field solution used and some numerical inaccuracies of the
atan2 function in Matlab.

The results of Run 2 are shown in a similar way in Figure 3.4. Assembly tolerances
cause distortions in amplitude and phase to the perfect sinusoidal behaviour of each Bs,z
curve shown in the upper plot. This is also detected by the channel voltages depicted in
the central plot. An angle error can be detected. This angle error is not only affected by
the magnitude of the assembly tolerances alone but is also affected by the combination
magnet dimensions (D, H) and choice of RR and AG. Some of these effects have been
analysed and published in [63]. A more detailed investigation would go far beyond the
scope of this thesis.
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Figure 3.3: Results of the magnetic field calculation of a full shaft rotation ϕ = [0,360]◦

for Run 1 (assembly tolerances according to 3.3). Top Plot: Bs,z of each in Hall plate.
Center Plot: Hypothetical channel magnetic fields for x-channel and y-channel. Bottom
Plot: Angle error ∆ϕ resulting from the given set of assembly tolerances (compare Run 1
of Table 3.3).
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Figure 3.4: Results of the magnetic field calculation of a full shaft rotation ϕ = [0,360]◦

for Run 2 (assembly tolerances according to 3.3). Top Plot: Bs,z of each in Hall plate.
Center Plot: Hypothetical channel magnetic fields for x-channel and y-channel. Bottom
Plot: Angle error ∆ϕ resulting from the given set of assembly tolerances (compare Run 1
of Table 3.3).
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3.1.4 Model parameters for uncertainty analysis
The next step is to perform an uncertainty analysis of the MATLAB script. All assembly
tolerances are now defined as ”uncertain” variables. The rest of the script may remain
unchanged except for some restrictions which are discussed in the next section. An exem-
plary variable definition in MATLAB is given below in Listing 3.1. Table 3.4 specifies all
statistical position and angle tolerances, which were used in the statistical analysis in sec-
tion 3.1.5. Eccentricities and tilts were Gaussian distributed with standard deviations of
σ = 0.1 mm and σ = 1◦, respectively (Gaussian distributed random variables are denoted
by N (µ,σ2) and uniformly distributed random variables are denoted by U ([min,max])
in Table 3.4 ):

Table 3.4: Overview of assembly tolerances (eccentricities and tilts) for sensor and mag-
net. These are reasonable values for today’s mass production processes. This set of
assembly tolerances was also used in [63] and is based on [23]

Sensor tolerances Magnet tolerances

xS = N (0,0.01) mm xM = N (0,0.01) mm
yS = N (0,0.01) mm yM = N (0,0.01) mm
zS = N (0,0) mm zM = N (0,0) mm
δS = N (0,1)◦ δM = N (0,1)◦

ηS = U (0,360)◦ ηM = U (0,360)◦

αS = δS cos(ηS) αM = δM cos(ηM)
βS = δS sin(ηS) βM = δM sin(ηM)
γS = N (0,0)◦ γM = N (0,0)◦

Assuring an equal probability for the sensor and the magnet to be tilted around arbitrary
axes in the xy plane of the sensor (magnet) requires uniformly distributed auxiliary angles
ηS, ηM were introduced. The tilt angles of sensor and magnet are δS, δM. It holds αM =
δM cos(ηM), βM = δM sin(ηM), αS = δS cos(ηS), βS = δS sin(ηS). This is also illustrated
in Figure 3.5. This approach has also been used in [63].

xS
*

yS
*

Tilt axis

ηS

zS
*

δS αS

βS

Tilt angle

Figure 3.5: How to assure an equal probability of the orientation in the xy plane of the
sensors’ tilt axis. A uniformly distributed auxiliary angle ηS is introduced as the angle
between the sensor x-axis x∗S and the tilt axis. The tilt angle δS is then the actual tilt angle
of the sensor. The same procedure has been performed on the magnet (compare Table
3.4).
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1 xS=unc(0,0.0001,’xS’)

Listing 3.1: Defining the x- component of sensor displacement with respect to the shaft
center xS as an uncertain variable with mean 0 and standard uncertainty of 0.0001 m.
Note: units of physical quantities are defined as standard SI units

3.1.5 Magnetic field calculation with AUT
As mentioned above, the MATLAB code of the magnetic field calculation was adapted
to allow calculations with the unc and unc t environment. This adaption is conducted
rather fast as only the uncertain input variables need to be redefined as shown in section
2.4.5 and Listing 3.1. Precautions have to be taken, when built-in MATLAB functions are
used in the script such as zeros() or cart2pol(), as Matlab is not capable of pro-
cessing other than default objects such as double, strings or integers. In contrast to basic
mathematical operations (which may be overloaded), MATLAB does not allow overrid-
ing such functions. A possible remedy is to redefine this function under a different name
e.g. UNCzeros or UNCcart2pol.

The magnetic field calculation was conducted for the GUM approach (unc) and vali-
dated against Monte Carlo simulations (unc t). The magnet properties can be found in
Table 3.1. The set of assembly tolerances chosen are defined in Table 3.4.

The GUM approach

The results of the GUM based approach (unc) are presented in Figure 3.6 in the same
manner as in section 3.1.3. A full rotation of the shaft is split up into 64 equally spaced
angular increments. The dashed lines in each plot indicate the ±3σ limits of the uncer-
tain results. The sinusoidal waves of Bs,z show a rather high but mere constant uncertainty
of 20 mT (3 σ ). In contrast to an amplitude of approximately 37 mT this uncertainty is
rather high. This uncertainties seem to cancel each other perfectly when observing the
differential signals Bx−Ch and By−Ch in the central plot. The angle error ∆ϕ shown in the
bottom plot is practically zero. The first order terms of the Taylor series expansion seem
to cancel each other out perfectly leaving no angle error. Knowing that the contribution
of higher order terms of the Taylor series expansion usually delivers much smaller con-
tributions, one might be tempted to say that assembly tolerances of gradient field based
angular sensors do not produce any significant angle errors. This is obviously not the case
[23, 63]. A Monte Carlo simulation using AUT (unc t) should clarify this dilemma.
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Figure 3.6: Magnetic field result of the GUM based (unc) approach. Top Plot: Bs,z
of each in Hall plate. Center Plot: Hypothetical channel magnetic fields for x-channel
(Bx−Ch) and y-channel (By−Ch). Bottom Plot: Angle error ∆ϕ as a result of the given set
of uncertain assembly tolerances. The dashed lines in each plot show the ±3σ limits of
the uncertain result. Although the magnetic field detected by each Hall plate is afflicted
with a rather large portion of uncertainty, they seem to cancel each other out, when looking
at the uncertainty of the hypothetical magnetic field of each channel. According to GUM
no angle errors are detected. The computation time was ≈ 25,000 seconds.
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Monte Carlo simulation

As a next step, a Monte Carlo simulation using the Monte Carlo based approach of AUT
has been investigated. The result of the Monte Carlo simulation (unc t) for 10,000
Monte Carlo runs is shown in Figure 3.7. A full rotation of 360◦ is again split up in 64
equally spaced angle increments. Like above, the dashed lines indicate the ±3σ limits of
the uncertain results. Like before, the uncertainty of each magnetic field portion is rather
high, but its effects cancel (almost) each other out, the uncertainties of Bx−Ch and By−Ch
are very small and non detectable in the graph. This is due to the cancellation of first order
terms. The second and higher order error terms however remain, yielding an angle error,
which is clearly non neglectable. This is due to the additive effects of multiple assembly
tolerances being present simultaneously [23, 63].

The standard deviation of ∆ϕ should be a straight horizontal in theory, due to the sta-
tistical uncertainty in finite Monte Carlo simulations a small ripple remains.
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Figure 3.7: Magnetic field results of the Monte Carlo (unc t) approach. Top Plot:
Bsensor,z of each in Hall plate. Center Plot: Hypothetical channel magnetic fields for
x-channel (Bx−Ch) and y-channel (By−Ch). Bottom Plot: Angle error ∆ϕ resulting from
the given set of assembly tolerances. The dashed lines in each plot show the±3σ limits of
the uncertain result. 10,000 Monte Carlo samples taken. Although the magnetic field de-
tected by each Hall plate is afflicted with a rather large portion of uncertainty, they seem
to cancel each other out, when looking at the uncertainty of the hypothetical magnetic
field of each channel. A resulting angle error is yet present, which has not been detected
with the GUM approach. The computation time was ≈ 1,000 seconds.
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Résumé

As a conclusion of the result presented above, the GUM approach (unc) is not applica-
ble of calculating the uncertain angle error of a gradient field based angle sensor in its
current state. This is owed to the fact that the toolbox only covers first order term of the
Taylor series expansion, which is sufficient enough to calculate uncertainties in general.
Unfortunately, the modelling of Gradient Field based angle sensor is one of these few
exceptions. The second and higher order terms of individual assembly tolerances produce
small errors, but the combination of multiple assembly tolerances produce much higher
angle errors that are non-neglectable anymore.

Modifying the source code of AUT to additionally compute of some next higher order
terms of the Taylor series expansion could resolve this issue. This would lead to much
longer computations. Using GUM based unc variables is already more than 25 times
slower than pushing Monte Carlo simulations with 10,000 runs, although one might ex-
pect the exact opposite behaviour. The complexity of the linearization process increases
with the number of correlated uncertain variables. All this makes the unc approach (at
least in its current state) not applicable for this task.

3.2 Hall effect device and datapath modelling

3.2.1 Model of the datapath
The whole signal processing path is shown as a schematic in Figure 3.8. This rather
complex signal processing path can be split up in multiple parts:

1. Defining input values

2. Biasing

3. Hall voltage calculation

4. Channel voltage calculation

5. Digitalization

6. Applying end-of-line calibration parameters (compare section 2.2.2)

7. Stress compensation

8. Temperature compensation

9. Angle calculation

The compensation of temperature and stress dependencies do have their own signal pro-
cessing path. These paths are called auxiliary paths” whereas the Hall signal path will be
further paraphrased as ”main path”.
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Figure 3.8: Schematic overview of the angle sensor system. Off: Offset-, phase- and am-
plitude compensation; Stress: Stress compensation, Temp: Temperature compensation,
T: Temperature, σ : mechanical stress

Defining input values

The most important input parameter for this model is the magnetic field at each Hall
plates’ location given in matrix notation by,

B =


Bz1
Bz2
Bz3
Bz4

 . (3.25)

Despite the small size of Hall effect devices, an inhomogeneous temperature distribution
may need to be considered, as small drifts of temperature between the Hall elements
may cause additional errors. Especially incautious sensor design may lead to additional
inhomogeneities of the temperature field as the circuitry of the sensor produces heat as
well. Therefore the temperature is also defined in matrix notation given by,

T =


T1
T2
T3
T4

 . (3.26)

In some cases simplification to the temperature field can be made. Channel temperatures
Tx =

T1+T3
2 , Ty =

T2+T4
2 and the overall average temperature Tm = T1+T2+T3+T4

4 can be used.
Another important input value is the current related sensitivity of the Hall plate sI in V/(A
T). It is mainly a function of the material (compare section 2.1) but is also affected by
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stress and temperature. Additionally imperfections of the Hall effect devices also need
to be considered such as the Hall offset voltage Vo (which is also influenced by ambient
temperature). Typical values for Vo are 10−1000 µV.

The input values of individual elements of the circuitry will not be highlighted in the
scope of this thesis.

Temperature dependencies

All electric components show a temperature dependency. In most cases this temperature
dependency can be modelled with sufficiently accuracy using a linear model. The fol-
lowing example shows the calculation of the resistance RT of a resistor as a function of
temperature T :

RT = RRT (1+αR (T −TRT )), (3.27)

where RRT is the resistance at room temperature TRT (20◦ or 25◦), αR is the temperature
coefficient of that resistor. In cases, when a linear model is not sufficient enough a second
order polynomial can be alternatively chosen to model the temperature behaviour of the
resistor. A quadratic temperature coefficient βR can be introduced by,

RT = RRT (1+αR (T −TRT )+βR (T −TRT )
2). (3.28)

More complex models of temperature dependencies are needed in rare cases.

Stress dependencies

Hall effect IC’s are sensitive to mechanical stress. This mechanical stress is mainly caused
by the manufacturing and packaging process [84]. This stress itself depends on the am-
bient temperature. There are also other sources for stress drifts which are difficult to
quantify. Under humid ambient conditions the plastic package can soak up water yielding
such unruly stress dependencies [85]. Moisture dependant stress changes are not covered
in this thesis.
Additionally, mechanical stress is not a scalar like temperature leading to much more
complex compensation algorithms. Mechanical stress is described by an 3×3 tensor con-
sisting of six different stress terms (σxy = σyx, σxz = σzx, σyz = σzy due to the symmetry
of this tensor). The first index of each individual stress component defines the orientation
of the surface and the second index describes the orientation of the force. A typical stress
tensor is given by,

S =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 . (3.29)

The shape of the package (much smaller thickness in comparison to its length and width)
allows it to be treated as a laminate, reducing the number of individual stress compo-
nents down to three (S is now a 2× 2 square matrix). Recent research of [86] analysing
the stress pattern within a package has found out that the (geometric) sum of the normal
stresses σxx+σyy is nearly constant at the package center, with the remaining shear stress
component σxy vanishing, yielding a homogeneous stress state. This assumption is not
valid close to the package edges. Additionally the (geometric) combination of σxx +σyy
is invariant to in-plane rotations. This allows an algebraic addition of σxx +σyy. The al-
gebraic sum of σxx +σyy is therefore a scalar.
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The influence of mechanical stress generated by the sensor-mould-compound was mod-
elled using a linear stress model, such as shown in Figure 3.9. The internal stress (pres-
sure) increases with decreasing temperature and reaches zero above 150◦C.
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Figure 3.9: Mechanical stress vs. temperature within sensor package. When optimal
layout of the sensing elements is chosen, such a linear model is sufficient enough for
stress modelling

Biasing

Biasing is needed for a constant (DC) voltage supply of the integrated circuit. In sen-
sor design this bias voltage has to be kept as constant as possible over temperature. As
mentioned in section 2.1 there are two options for biasing. Voltage- and current mode
biasing, whereby current mode biasing is the preferred solution due to higher temperature
stability [5].

Once the bias current IB is obtained, the bias voltage given by,

VB(T ) = RB(T )IB(T ), (3.30)

can be calculated when the equivalent resistance of the bias circuitry RB is known.

There are multiple options in bias circuit design. There may be a single bias circuit for
each Hall plate, or most commonly a biasing circuit for each ”channel”. In some cases
each Hall plate has its own biasing circuit. A single bias circuit reduces statistical errors
as the differential signal cancels out the uncertainties of the bias circuit. On the other
hand, a single bias source requires more power as it powers all Hall plates.
The Matlab model uses an overall bias circuit for all Hall plates. This can nevertheless be
adapted to multiple biasing circuits with little coding effort.



CHAPTER 3. MODELLING SIGNAL PROCESSING & UNCERTAINTY 54

Hall voltage calculation

In the model, the Hall output voltage VH is computed in a multi-step process, adding the
influencing quantities in order. In the first step the temperature dependant Hall voltage
VHT is computed using the magnetic flux density at each Hall element Bz, the current-
related sensitivity sI and the bias current IB. VH is given by,

VHT = Bz sI(T ) IB. (3.31)

The stress dependency is added in the next step. In most cases a quadratic approximation
of the stress influence is sufficient using stress coefficient for the linear sσL and quadratic
sσQ portion. Unfortunately these stress coefficients are not temperature invariant and need
to have an approximation of their behaviour under temperature as well. The equation for
the stress dependant Hall voltage VHσ is given by,

VHσ =VHT (1+ sσL(T ) σ + sσQ(T ) σ
2). (3.32)

The Hall plates are also affected by Back-Bias (BB) effects caused by the common-mode
voltage VCM. Again a quadratic approximation using linear (sBB L) and quadratic (sBB Q)
coefficients is quite sufficient to model this effect. The equation for the back-biased Hall
voltage VH BB is given by,

VH BB =VHσ (1+ sBB L VCM + sBB Q V 2
CM). (3.33)

Next, the offset voltage of each Hall element is added to the model of the voltage signal
to obtain the offset dependant Hall voltage Vf given by,

Vf =VH BB +oHC +oHL (T −TRT )+oHQ (T −TRT )
2. (3.34)

Again, a temperature dependency has to be considered. As before a quadratic model com-
prising of a constant oHC, linear oHL and quadratic oHQ term is modelled.

The computation of the Hall output voltage is almost completed. In the final step, ther-
mal noise VT and an eventual amplitude mismatch Vmis is modelled. In order to cancel
out correlation effects, the noise needs to be individually defined for each Hall plate. To
reduce the overhead in notational footnotes, this ”final” Hall output voltage is denoted by
VH given by,

VH =Vf +VT +Vmis. (3.35)

The amplitude mismatch Vmis is only added to a single Hall plate. This is sufficient enough
to model an amplitude mismatch between the Hall voltages.

The algorithm described above is performed for each Hall plate yielding an array of Hall
voltages VH given by,

VH =


VH1
VH2
VH3
VH4

 . (3.36)
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Channel voltage calculation

After the Hall output voltages for each Hall element are obtained, the voltage of each
channel can be calculated by,

VX =VH2−VH4, (3.37)

for the x-channel and by,
VY =VH1−VH3, (3.38)

for the y-channel.
Vx and Vy may be grouped to an array for convenience purposes such as:

V =

[
VX
VY

]
. (3.39)

The analog part of the sensor model is completed. The channel voltages are now digital-
ized in the next step.

Digitalization

The digitalization is performed using Analog-Digital Converters (compare section 2.2.1).
Considering Equation (2.5) (Resolution Q of a ADC) the ideal ADC output can be calcu-
lated by, [

HADC,x
HADC,y

]
=

1
Q

[
VX
VY

]
. (3.40)

Error sources of each ADC (compare section 2.2.1) can be added in a similar way as for
Hall voltages. The necessity of adding error contribution is dependent of their influence
to the result.

In most cases 12 to 16 bit ADC’s provide sufficient accuracy for these applications. The
output is usually provided in 2′s complement to keep the information about the sign,
which is later on useful for the angle calculation.

Offset and phase shift compensation

A possible solution for offset and phase shift compensation has been explained in section
2.2.2.

Stress compensation

Unfortunately, no analogue signal is obtainable which is solely affected by the mechanical
stress, as the circuit is always perturbed with thermal influences. One possible solution is
to detect the difference between a stress and temperature dependant signal to a tempera-
ture dependant signal only. A schematic of this algorithm is shown in Figure 3.10.
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Figure 3.10: Digital stress-signal generation, where the main part of temperature depen-
dence is compensated by using a temperature dependent signal on input B. SADC is the
digitalized stress dependent output. Rp and Rt are dropping resistors in each input path.

Like biasing, SADC can either be computed per channel (using an average path temperature
in the model) or a single stress ADC for both channels combined.

Temperature compensation

Under increasing temperature the output values of the main path ADC (HADC) decreases.
Compensating this behaviour can be accomplished using a temperature related signal as
for stress compensation (compare to paragraph above). Such a temperature related signal
can be obtained from the Biasing path. Similar to Stress Compensation this signal is dig-
italized and its output values (TADC) are then used to reduce the temperature dependency
of HADC.

Angle calculation

In real life application the angle calculation is performed using a CORDIC (Coordinate
Rotation Digital Computer) algorithm. This CORDIC algorithm enables the calculation
of ”arctan2”, an modification of the ”arctan” algorithm allowing unique resolution in
[0,360)◦ [87]. (The classic ”arctan” is only unique in (−90,+90)◦.) To achieve this ”arc-
tan2” has two inputs (sin and cos portion). The combination of the portion’s sign can be
used to determine the quadrant, the angle lies in.

MATLAB provides a function for calculating the ”arctan2”, making the calculation of
the measured angle ϕ˜quite easily [88] by,

ϕ˜ = atan2(HADC,y,HADC,x). (3.41)

By obtaining ϕ˜the actual signal processing model is completed.
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3.2.2 Results
Validation against simulation results

The results of the signal processing model in MATLAB were validated against simulation
results in SPICE for an equivalent chip without noise or disturbances at a hypothetical
magnetic field amplitude of 1 mT. Sensor designers demanded a max. deviation of no
more than 5% as an acceptance criterium of this model. An overview of the validation
results are shown in Table 3.5. The deviations of Bias voltage VH , bias current IB, current
sensitivity sI , Hall voltage VH and the uncalibrated ADC output HADC between simulation
results and MATLAB model were analysed at three different temperatures: cold (−40◦C),
room temperature (RT +25◦C) and hot (+175◦C). The acceptance criterium was met for
all temperature levels.

Table 3.5: Validation of results of MATLAB signal processing model versus simulation
results. The relative deviation of the signal amplitude of bias voltage, bias current, current
sensitivity, Hall voltage and ADC output is given at three temperatures: ”cold” (−40◦C),
”room temperature (25◦C) and hot (175◦C)

Temperature Bias voltage Bias current Current sensitivity Hall voltage ADC output
◦C % % % % %
−40 −0.30 −0.20 −0.12 −0.52 −0.35
+25 1.02 0.90 0.09 0.85 1.10
+175 1.87 1.80 0.53 1.80 1.96

Hall and ADC behaviour versus temperature

Influence of temperature to non-calibrated results of the signal processing path is illus-
trated in Figure 3.11.Signal strength of the Hall voltage VH can decrease by as much as
50%. Temperature compensation can significantly improve the performance of the ADC
values Hcalover temperature. Choosing the calibration parameters more carefully may
even increase the performance of the calibrated ADC outputs to deviations ranging down
to single LSB’s.
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Figure 3.11: Behaviour of Hall circuits (bias voltage VB and Hall voltage VH) and non-
calibrated ADC output (Hncal) versus temperature. Additionally a temperature compen-
sated ADC output curve (Hcal) was plotted to illustrate the capabilities of temperature
compensation

Results of the signal processing path

The signal processing model was applied to results of the magnetic field calculation of
section 3.1.3 (the assembly tolerances for the magnetic field calculation were chosen ac-
cording to Run 2 of Table 3.3). Using a single biased circuit causes full correlation in the
biasing of each Hall plate, eliminating the error caused by uncertainties.

The non-calibrated results are presented in Figure 3.12. No deterministic disturbances
and offsets were added in the signal processing path. Due to this fact the angle error ∆ϕ

is identical to Figure 3.4.
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Figure 3.12: Results of the signal processing path with magnetic fields perturbed by as-
sembly tolerances according to Run 2 of Table 3.3 Top Plot: Hall channel voltages Vx,
Vy Center Plot: Uncalibrated ADC output HADC,x, HADC,y and Bottom Plot: Angle error
∆ϕ for a full shaft rotation ϕ = [0,360]◦

A calibration has not been performed on this set of data. In the following section, the
influence of statistical uncertainties of the signal processing path will be illustrated using
the GUM approach (unc) and the Monte Carlo method (unc t) as validation for GUM.

3.2.3 Datapath modelling with AUT
All electrical components (resistances, transistors, Hall plates) are perturbed with statisti-
cal uncertainties. In the current state they are fully correlated for each Hall plates’ signal
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path. This causes cancellation effects in the differential result. In fact the only uncertainty
detected in the angle error result is the thermal noise.

GUM approach

The results of the signal processing path using the GUM based uncertainty propagation is
shown in Figure 3.13.
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Figure 3.13: Results of the signal processing path modelled with GUM uncertainty mod-
elling. Calculation of magnetic fields was perturbed by assembly tolerances according to
Run 2 of Table 3.3 Top Plot: Hall channel voltages Vx, Vy Center Plot: Uncalibrated
ADC output HADC,x, HADC,y and Bottom Plot: Angle error ∆ϕ for a full shaft rotation
ϕ = [0,360]◦. The thin lines show the ±3σ limits of the uncertain result. Computation
time was 400 s.
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Monte Carlo method

The identical signal processing path was used to verify the applicability of the GUM based
AUT toolbox on signal process modelling. The results of the Monte Carlo based (unc t)
approach are shown in Figure 3.14.
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Figure 3.14: Results of the signal processing path modelled with Monte Carlo simula-
tions. Calculation of magnetic fields was perturbed by assembly tolerances according to
Run 2 of Table 3.3 Top Plot: Hall channel voltages Vx, Vy Center Plot: Uncalibrated
ADC output HADC,x, HADC,y and Bottom Plot: Angle error ∆ϕ for a full shaft rotation
ϕ = [0,360]◦. The thin lines show the ±3σ limits of the uncertain result. Computation
time was 50 s.
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A comparison of the results of both approaches presented in Figures 3.13- 3.14 shows no
discrepancy in the results for Hall channel voltages, ADC outputs (uncalibrated) and in
the angle error result ∆ϕ . No indication for inapplicability of the GUM approach (unc)
was found during the investigations made.

3.2.4 Calibration
In addition the calibration algorithm was run to illustrate that the systematic errors are
eliminated after calibration. The calibrated curve of the angle error curve (shown in Fig-
ures 3.13 and 3.14) is shown Figure 3.15. The statistical portion of the remaining angle
error ∆ϕcal is σ ≈ 0.05◦.
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Figure 3.15: Calibrated angle error curve ∆ϕcal of the error curves shown in Figures 3.13
and 3.14. The systematic portion of the angle error is cancelled out, with the random
portion of the remaining angle error. This angle error has a standard uncertainty of σ ≈
0.048◦. The thin lines show the ±3σ limits of ∆ϕcal

3.2.5 Further remarks
This thesis aims to develop a fair model of the analogue and digital circuits of an inte-
grated gradient field based magnetic field sensor and performing uncertainty propagation
to the model. With respect to statistics this model is not yet finished as it can be modelled
far more in detail such as considering more components and defining correlations between
elements of the signal processing path as well. Such an analysis is time consuming and is
outside the scope of this thesis.

Cross-checks of interim results by more complex models (compare Table 3.5) have shown,
that even such an simple model yields decent results. An increase in complexity will
likely improve the results of the model further but by much smaller means. But the effort
in model creation, which changes from sensor device to sensor device will harm the ver-
satility of this model on the other hand.
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As a final remark: This model is applicable for early design phases and uncertainty prop-
agation through the signal path. It answers questions such as: In what range will my
expected angle errors lie in? Which input parameter affects the uncertainty of the angle
error result most? Which parameter has little or no effect on the angle error result?
This model does not replace extensive simulation models when looking at precise sensor
designs.

3.3 Kalman filtering

3.3.1 Filter design
A schematic overview of the Kalman Filter design is shown in Figure 3.16. The filter
algorithm can be divided into two steps: The first of which being the initialization process,
where the Kalman Gain is computed. The Kalman Gain itself does not depend on the
individual measurements allowing its computation beforehand. The second step is the
actual filter algorithm. This algorithm consists of the acquisition of the measurand ϕ˜and
using the residual of the subtraction with the previously predicted estimate. This residual
is then used to produce an estimate of the current state (angular position ϕ ′ and angular
speed ϕ̇ ′), as the measurement signal is still perturbed with noise. The Kalman Gain
matrix K defines the weighting factors for the trustworthiness of the measurement and
the model equations. Using state transition equations, a prediction of the current state is
made for the upcoming one. Much care lies in the decision for the best fitting state space
representation. This algorithm assumes a constant change of angular velocity over time
yielding a simple and thus fast computable algorithm. The derivations of the formulas in
use were made in section 2.3.3.
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Figure 3.16: Schematic overview of the Kalman Filter algorithm. The Kalman Gain
matrix K is computed during initialization and stored onboard. The recurring Kalman
Filter algorithm only needs to perform the State Update and State Prediction. This reduces
computation time down to 3−5 µs.

Initialization

The initialization step is itself a loop, which computes the Kalman Gain matrix K until it
converges. This loop can be computed during engine start-up. In this way no computing



CHAPTER 3. MODELLING SIGNAL PROCESSING & UNCERTAINTY 64

power of the microchip is needed during driving. Let’s recall equation (2.31) for the
Kalman Gain matrix K as given by,

K =

[
Kϕ

Kϕ̇

]
=

P′HT

HP′HT +R
. (3.42)

with H being the measurement matrix showing the observables. Only the current angular
position is observed in this angle sensor system, yielding a H of:

H =
[
1 0

]
. (3.43)

The prediction of the covariance matrix P′ (here a 2× 2 matrix) has to be assumed for
initial iteration. It is then calculated by Equation (3.46).
Finally, R is the covariance matrix of the measurement noise. This matrix is actually just
a scalar showing the variance of the remaining angle error after calibration, as it is again
the only observable in this system. It is given by,

R = var(∆ϕ). (3.44)

The estimate of the covariance matrix P is calculated using the prediction from the previ-
ous iteration and the weighting factors of K. P is given by,

P = (I−KH)P′. (3.45)

The predicted covariance for the upcoming iteration is then calculated by applying the
state transition matrix F to the current estimate P and adding the process noise matrix Q
given by,

P′ = FPFT +Q. (3.46)

with F being the state transition matrix (also defined in Equation (2.36)) given by,

F =

[
1 dT
0 1

]
. (3.47)

where dT denotes the sample time.

Information on the trustworthiness of the state space equations is stored in the process
noise covariance matrix Q. Increasing values in this process noise matrix (decreasing
confidence in the state transition equations) causes an increase of the Kalman Gain ma-
trix, which indicates that the measurements receive higher weighting. Assuming that the
angular speed ϕ̇ may change over time, Q might look like this:

Q =

[
0 0
0 ϕ̇

]
. (3.48)

Unfortunately, the microcontrollers in use do not perform matrix operations. All equa-
tions in matrix notation need to be re-formulated in row-wise notation. A MATLAB code
snippet for the row wise Kalman Filter initialization is provided in Appendix B.1.
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Loop

Once the initializing is completed, the actual filtering process can begin. Only the entries
of the Kalman Gain matrix K = [Kϕ ,Kϕ̇ ]

T are needed. The derivations for the State
Update Equations and State Prediction Equations have already been made in section 2.3.3.
The State Update Equations (consider Equations (2.41,2.42)) are

ϕ̂ = ϕ̂
′+Kϕ ϕres, (3.49)

˙̂ϕ = ˙̂ϕ ′+Kϕ̇ ϕres, (3.50)

with ϕres being the residual of the measurement and the prediction of the model (consider
Equation (2.44)), which is given by,

ϕres = ϕ˜− ϕ̂
′. (3.51)

Note: The residual angle ϕres is not to be confused with the angle error ∆ϕ (∆ϕ = ϕ˜−ϕ).

In analogy to Equations (2.45,2.46) the State Prediction are to be as

ϕ̂
′ = ϕ̂ +dT ˙̂ϕ, (3.52)

˙̂ϕ ′ = ˙̂ϕ. (3.53)

Note: A Matlab Code snippet of this Kalman Filter loop is provided in Appendix B.2.

Filter tuning

The initialization algorithm allows some fine tuning to the filter’s properties. The mea-
surement noise matrix R cannot be modified as it defines the variance of the measurement
noise. The best way to tune the filter is to adjust the entries of the process noise variance
matrix Q. Higher entry values in the process noise matrix will cause the filter to put more
faith on the measurements. This means that the filter will primarily work as a predictor.
Lower valued entries in Q put a higher weight on the model equations. The filter will not
be able to follow rapid changes of the measurement signal and will primarily work as a
smoother. A better set up of initial values has little effect on the filter results in general,
as a proper tuned filter will quickly catch up to the true angle value ϕ .

3.3.2 Filter example application: Angle sensing for motor commuta-
tion

In this section the principle of Kalman Filtering will be illustrated using a possible appli-
cation in automotives: The commutation of the motor for electric power steering (EPS).
EPS receives sensor data (motor speed, current angle position) from the motor [89].

Some technical data of this application are:

1. max. acceleration rate ϕ̈max = 2.4×106 ◦/s2

2. max. rotation speed nmax = 10,000 rpm (or ϕ̇max = 60,000◦/s)

3. sample interval time dT = 25 µs
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4. standard uncertainty of noisy signal σnoise = 0.05◦ (after all systematic errors are
calibrated, consider also Chapter 4 of this thesis)

The value for ϕ̈max looks astonishingly high at first sight, but when this acceleration rate
is converted to the sample time domain, ϕ̈max remains only 0.0015◦/dT 2 which is equal
to an increase of 7.5× 10−4 ◦ per sample dT . In comparison to σnoise the acceleration
suddenly looks irrelevant.

Using this technological data, a simple speed ramp was modelled in Matlab. This ramp is
shown in Figure 3.18.

When looking at sampling intervals as small as dT = 25 µs, the time needed for data
processing and transmission reaches the same order of magnitude as dT and cannot be
neglected any more. This causes a delay by as much as 50 µs (compare Figure 3.17),
which is roughly the equivalent of a delay of two sample intervals.

Sensing 

Elements
ADC

Compen-

sation & 

Arctan

Interface
Target 

Interface

< 1ns ~ 12 µs ~ 25 µs~ 12 µs

B Vx,Vy HADC φcal
~

Processing 

Time

Figure 3.17: Time consumption for signal processing and transmission. The calculation
of the ADC output takes approximately 25 µs. Signal transmission to the target interface
may take up to 25 µs too. This yields to a total delay of 50 µs.

This delay causes angle errors proportional to the rotation speed of the shaft (compare
Figure 3.19).
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Figure 3.18: Exemplary speed ramp for Kalman Filter testing. Technological data is
in accordance with the data presented above. Top Plot: Rotation angle ϕ during this
exemplary ramp. Center Plot: Course of the angular velocity ϕ̇ . Bottom Plot: Course
of the angular acceleration ϕ̈ .

This simple ramp shown above is made up of five different states. An idle state is followed
by a rapid acceleration by ϕ̈max until ϕ̇max is reached. The speed ϕ̇max is kept constant for
the following 100 ms. The motor is then de-accelerated by −ϕ̈max to idle state, in which
it remains for another 10 ms.

The process noise variance chosen, allows an increase (or decrease) of the angular ve-
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locity by ϕ̇max for each sample. It is given in matrix notation by,

Q =

[
0 0
0 (dT ϕ̇max)

2

]
. (3.54)

3.3.3 Results
The results of this Kalman Filter (angular position, angular velocity and angular acceler-
ation) example are shown in Figures 3.19 to 3.21. The filter manages to predict highly
accurate results as long as the physical behaviour of the actual system is equal to the
model algorithm.

Angle error caused by the delay of the signal processing path are compensated by the
predictor of the Kalman filter in the states of constant velocity. During both states of con-
stant acceleration, a static lag error of 18 sample intervals is produced, as the state model
equations are not capable of detecting quadratic changes of the angular position.

Furthermore, the Kalman Filter also smooths the noisy data quite well (compare Fig-
ure 3.19). After a state of constant velocity is reached, the filter is adjusting back close to
the true angle values very fast.
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Figure 3.19: Angular position results of the Kalman Filter example: ”Motor commuta-
tion”. Upper Plot: Absolute angular position values of the true values, measurements and
Kalman Filter predictions. Lower Plot: The deviation of the angular position with respect
to the true position for the measurements and Kalman Filter prediction, respectively.

Figure 3.20 shows the true values and the Kalman Filter predictions of the angular speed.
The rapid change in angular acceleration causes a static lag. This lag is cancelled out once
the acceleration is again zero.
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Figure 3.20: Angular velocity results of the Kalman Filter example: ”Motor commuta-
tion”. Upper Plot: Angular velocity values of the true values and Kalman Filter predic-
tions. Lower Plot: The deviation of the angular velocity with respect to the true velocity
for the Kalman Filter prediction.

Figure 3.21 shows the true values of the angular acceleration and an approximation of the
predicted angular acceleration of the Kalman Filter, as the prediction of the acceleration
is not calculated by the filter algorithm. The approximation of the predicted angular
acceleration is calculated by,

ϕ̈
′(i) =

ϕ̇ ′(i+1)− ϕ̇ ′(i)
dT

. (3.55)
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Figure 3.21: Angular acceleration results of the Kalman Filter example: ”Motor commu-
tation”. Upper Plot: Angular acceleration values of the true values and estimations of
Kalman filter predictions. The angular acceleration of the filter is obtained by calculating
the increase in velocity between two velocity predictions and not calculated by the filter
algorithm. Lower Plot: The deviation of the angular acceleration with respect to the true
acceleration for the calculated Kalman Filter prediction.

A sudden change of the angular acceleration rate can not be handled by the filter produc-
ing the constant angular deviation in Figure 3.19. Nevertheless the filter is able to assume
the accurate angular acceleration rate in after a lag period of 18 samples. By reverting the
angular acceleration rate this deviation is cancelled out.

By adapting the entries of the process noise covariance matrix Q the filter could be
adapted to better process these changes at the cost of losing the ability to smooth the
noisy time series data. In extreme cases the noise level of the filter result can even be
higher than the original noise level.
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3.3.4 Kalman filtering with AUT
In this section, the results of the applicability analysis of the Uncertainty Toolbox for
Kalman Filter applications is analysed. Additionally, a Monte Carlo simulation was con-
ducted as a means of verification.

The MATLAB code of the example code only needed to be altered slightly for uncer-
tainty analysis. Gaussian distributed measurement noise can be added to the true angle
signal by adding an uncertain variable with zero mean and standard uncertainty R:

1 % true angle value with time delay of two sample intervals
2 phi_delay
3 % standard uncertainty of the measurement noise
4 R
5 % measurement
6 z
7 %
8 for i=1:nrPoints
9 z(i)=phi_delay(i)+unc(0,R);

10 end

Listing 3.2: How to add a Gaussian distributed measurement noise to an angle signal. A
Monte Carlo simulation can be performed by exchanging unc by unc t.

GUM approach

Unfortunately there are no results to present here. Due to the nature of the Kalman Filter
algorithm being recursive, the uncertainty of every previous measurement has an effect
on the uncertainty of the estimate at some time stamp tS. Due to the linearisation effects,
information of the uncertainty of each previous measurement is stored in the uncertainty
property of the current measurement point. The uncertainty contribution of each previous
measurement decreases obviously as time continues, but the model computes them never-
theless. This causes a rapid increase in computation time after just a comparatively small
sample size.

One such run was started, though, but aborted after a computation time of 2 1/2 days.

A possible remedy would be to alter the portion of the uncertainty contribution calcu-
lation of an uncertain variable to keep only a fixed number of error contribution (e.g.
keep the uncertainty contribution of ten previous measurements) or to define a limit under
which the error contribution of the previous measurement will be deleted.

Monte Carlo simulation

Fortunately, the Monte Carlo simulation of the Kalman Filter example did produce results
with reasonably computation time of approximately 50 s. The results for the angular
position’s prediction are shown in Figure 3.22. Additionally the velocity prediction is
shown in Figure 3.23. Looking at the bottom plot of Figure 3.22 no huge changes to the
corresponding Figure 3.19 are observable. In fact, they look almost perfectly alike. The
noise level is now indicated by the thin lines representing the ±3σ interval around the
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mean value. The uncertainty of the noise decreases by over a magnitude (the thin lines
are too close to the thick mean value to be detected).
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Figure 3.22: Angular position results of the Kalman Filter example: ”Motor commuta-
tion” with Monte Carlo simulation. Upper Plot: Absolute angular position values of the
true values, measurements and Kalman Filter predictions. Lower Plot: The deviation of
the angular position with respect to the true position for the measurements and Kalman fil-
ter prediction, respectively. The thin lines show the ±3σ limits of the respective quantity.
The uncertainty of the Kalman Filter prediction has decreased by one order of magnitude.
10,000 Monte Carlo samples taken.

Comparing the bottom plots of the corresponding angular velocity prediction (Figures
3.20 and 3.23, also no obvious alteration is observed. In fact both angular velocity devia-
tion curves look alike. Like above, the thin lines should indicate the ±3σ limits, but the
uncertainty of the angular velocity deviation is too small to be observed.
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Figure 3.23: Angular velocity results of the Kalman Filter example: ”Motor commu-
tation” with Monte Carlo simulation. Upper Plot: Angular velocity values of the true
values and Kalman Filter predictions. Lower Plot: The deviation of the angular velocity
with respect to the true velocity for the Kalman Filter prediction.The thin lines show the
±3σ limits of the respective quantity. The uncertainty of the result is by far smaller than
its mean value. 10,000 Monte Carlo samples taken.

Resumé

A Kalman Filter is a good method for both predicting and smoothing data. Angle errors
caused by delays signal processing and transmission may reach values of up to ∆ϕ = 3◦.
When the actual behaviour of the real system does not longer follow the coded behaviour
a deviation is observable. This deviation vanishes as soon as this state is left. The uncer-
tainty toolbox is not able to deploy results within reasonable computation time, but the
Monte Carlo approach did perform well, and showed that the data is smoothed for 10,000
observed runs.



Chapter 4

Experimental Verification

In this chapter some measurement data, that has been gathered from test-chips are pre-
sented and evaluated to validate that the assumption made about propagation of Gaussian
distributed angle errors is in fact valid. Furthermore the applicability of Kalman Filters
relies on Gaussian distributed measurement data. Two different types of measurements
were analysed. Section 4.1 looks at noise measurement results at various temperatures ,
Section 4.2 focusses on how to obtain measurement noise from angle measurements with
a high portion of systematic errors.

4.1 Noise measurement
Noise measurements have been conducted on a test chip at four different temperatures
in the range of −40◦C up to +150◦C. The sensor was kept in idle mode (no systematic
change of output) . 990 samples were recorded for each run. The measurement result is
given in digital values. Due to the step size of the digitalization, Gaussian behaviour of
noise cannot be detected for this data sets. Nevertheless the data set allows to search for
systematic behaviour in the noise measurement.
To show that this recorded noise is free of any systematic portion, the auto- covariance
function was calculated for each run. This function computes the covariance between the
noisy data and a delayed replica of that same data. If no systematic (periodic) noise con-
tribution is present, the auto-covariance function will compute the variance at zero lag.
In theory, the function should return zero co-variance at all other lags, or within some
confidence bound for a finite series of data.

The results of the auto-covariance function are shown in Figure 4.1. The red line in-
dicates the 95% confidence interval of indicating no auto-covariance for the given sample
size.

75
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Figure 4.1: Auto-Covariance plots [90] of noise measurement runs of a test chip at−40◦C,
25◦C, 80◦C and 150◦C. The red lines indicate the 95% confidence interval bounds (equal
to ±2σ ).

4.2 Angle error measurements
For Experimental verification of the angle error results, a test chip was mounted on a test
rig (as shown in Figures 4.2 and 4.3). This rig consisted of a shaft and a diametrically
polarized disc magnet fixed to the shaft end. Multiple measurement runs of a full 360◦

rotation, with 136 samples recorded in each of the runs, were performed. Between each
run, the sensor displacement dS = [xS,yS,zS]

T was altered using a precise coordinate table.
All other Degrees of Freedom according to Table 3.2 remained unaltered but unknown in
all runs. The test chip was not calibrated and all runs were conducted at room temperature
(RT = 23◦C).
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Figure 4.2: Overview of the test rig used for experimental verification. The sensor posi-
tion ([xS,yS,zS], compare Table 3.2) was altered for each measurement run using a highly
precise coordinate table. For each run a full 360◦ rotation was recorded. Courtesy of
Infineon Austria AG

Test chip

Magnet

xS
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Figure 4.3: Top view of the measurement setup as shown in Figure 4.2. A diametrically
magnetized disc magnet was mounted to the shaft end. The shaft performed a full 360◦

rotation, whereas the sensor remained fixed. Courtesy of Infineon Austria AG

Six representing runs (A to F; compare Table 4.1) were picked out of a set of measure-
ment runs at different air gaps and different sensor positions xS,yS aiming to indicate the
influence of sensor positioning tolerances to the angle error result. The reading radius RR
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was 1 mm. All runs were conducted at room temperature and only the input parameters
given in Table 4.1 were changed. Despite this other assembly tolerances such as sensor
tilts, magnet tilts and magnet misplacements were present but not changed for each run.
The raw data for all runs are shown in Figure 4.4.

Table 4.1: Exemplary samples of the measurement runs conducted. A single test chip was
used in all runs. Only the given parameters were changed. All other Degrees of Freedom
(compare Table 3.2) were unknown but remained unaltered. AG air gap (=̂ sensor dis-
placement in z-direction), xS sensor displacement in x-direction, yS sensor displacement
in y direction

Run AG xS yS

mm mm mm

A 0.8 0 0
B 0.8 - 0.15 0.15
C 1.1 0 0
D 1.1 0.15 0.15
E 1.4 - 0.15 0.15
F 1.7 0 0.15
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Figure 4.4: Uncalibrated angle error ∆ϕ over rotation angle ϕ of six representative runs A-
F as given in Table 4.1. The contribution of systematic errors due to imperfect positioning
of the magnet and sensor is the dominating portion of the error curves.

Systematic errors are the dominating portion of the angle error curves in Figure 4.4. The
vertical shift of individual curves are caused by varying sensor position tolerances be-
tween each curve. In order to perform noise analysis this systematic behaviour has to be
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filtered from the data.

A well known approach to detect periodic behaviour in time series is Fourier Analysis.
In Fourier Analysis a periodic function is described by a infinite sum of sine and cosine
function. In practice the Fast Fourier Transformation (FFT) is performed making advan-
tage of the basis functions’ structure. It is theoretically identical to a Fourier transform,
where all components of the Fourier series are computed. The first and last eight elements
of the spectrum were cut off. The following code snippet shows how the periodical error
portion can be elliminated from the angle error curve using FFT:

1 % true angle values/ mechanical angle
2 phi
3 % Angle Error (raw measurement)
4 dPhi
5 % Compute the Full Spectrum using FFT
6 fullSpec=fft(dPhi);
7 % Cut the spectrum
8 cut=8;
9 fullSpec(cut:end-cut+1)=0;

10 % Synthesize the filtered data (inverse Fourier Transform)
11 fftE=real(ifft(fullSpec));
12 % Compute the residual
13 fftR=dPhi-fftE;

Listing 4.1: MATLAB code to compute the residual angle error with Fast Fourier
Transformation (FFT)

Only periodic portions of the systematic error contributions can be filtered with Fourier
transform. An alternative solution is applying polynomial approximation of the data.
Given the large sample count in the data ”Discrete Orthogonal Polynomials” (DOP) are
a good approach for extracting systematic behaviour with polynomials of high order (the
polynomial order chosen in the computations was ”20”). The Discrete Orthogonal Poly-
nomials were calculated using DOPBox [91]. A MATLAB code snippet showing how the
polynomial approximation of the systematic error contribution is modelled using DOP-
Box is shown below:

1 % true angle values/ mechanical angle
2 phi
3 % Angle Error (raw measurement)
4 dPhi
5 % Define degree of polynomial
6 degree=20;
7 % Compute the basis functions using DOPBox
8 B=dop(phi,degree);
9 % Compute the approximation

10 dopE=B*B’*dPhi;
11 %Compute the residual error
12 dopR=dPhi-dopE;

Listing 4.2: MATLAB code to compute the residual angle error with polynomial
approximation of the systematical angle error portion using DOPBox
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The results of both the FFT and the DOP model are shown for Run C in Figure 4.5. The
results for all other runs (A-B,D-F) can be found in Appendix C.1 of this thesis.

The residual errors ∆ϕres (fftR for the FFT and dopR for the DOP model) are addi-
tionally plotted. The remaining residual error appears of statistical nature and it is one
magnitude smaller than the angle error of the raw measurement data.

The standard uncertainty of the residual error σres was computed for each run A-F. The
values for σres lie in a range of ≈ 0.05− 0.06◦. This coheres with the assumption made
in the Kalman Filter example in section 3.3.2.

The residual error curves are then analysed regarding their auto-correlation, do determine
residual systematic error behaviour. Additionally the auto-correlation was also computed
of the raw measurement data and an exemplary Gaussian distribution for better compari-
son of the curves. This is shown for Run C in Figure 4.6. The auto correlation functions
for all other measurement runs are shown in Appendix C.1.

The auto-correlation of the raw data is evident (compare upper left plot of Figure 4.6)
leaving no doubt in clear systematic error behaviour. The auto-correlation of the residual
errors of the FFT and DOP model clearly indicate that this systematic portion has van-
ished. A slight periodicity is still detectable as in the auto-correlation of the exemplary
Gaussian function plotted in the bottom right corner of 4.6. Such periodicities are in-
evitable for Gaussian distributions of a finite sample size.

Next, the Fourier Spectrum of the raw measurement error, of DOP and FFT residual
error was generated and compared to that of a Gaussian distributions. This is shown in
Figure 4.7 again for Run C (the results for all other runs can again be found in Appendix
C.1). Considering the raw error distribution in Figure 4.5 we assume that the strongest
error contribution is that of 2nd periodical order. This is validated by the indistinguishable
peak in the Fourier Spectrum at (Upper left plot in Figure 4.7.

Gaussian distributions on the other hand, should appear as white noise in the Fourier
spectrum in theory. The standard deviation of the Gaussian distribution does not converge
causing a slight periodicity still detectable (compare bottom right plot of Figure 4.7 and
also the auto correlation plot in Figure 4.6). Periodicity in high period orders can also be
detected in the spectra of the DOP and FFT model (upper right and bottom left plots of
Figure 4.7), respectively. The periodicity of low order terms, which dominated the error
contribution of the raw measurement, are almost cancelled out entirely.

The first order period corresponds to offset errors, the dominating second order period
arises from orthogonality and amplitude errors and the third order period is a mere result
of non-linear effects. They are the dominating error sources in the raw angle error data.
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Figure 4.5: Results of the DOP and FFT filter models for Run C (assembly tolerances
according to Table 4.1) . Top Plot: Uncalibrated angle error ∆ϕ and DOP filter model
results over rotation angle ϕ . Upper Central Plot: Resulting residual error ∆ϕres of DOP
model to raw data. Lower Central Plot: ∆ϕ and FFT filter model results over ϕ . Bottom
Plot: ∆ϕres of FFT model to raw data.
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Figure 4.6: Cross-Correlation functions for Run C (assembly tolerances according to
Table 4.1) of Lower Left Plot: raw measurement data, Upper Right Plot: Residual
angle error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter
model and Bottom Right Plot of a Gaussian distribution with the same sample size. The
red lines indicate the 2σ confidence interval for the given sample size.
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Figure 4.7: Results of the FFT spectral analysis for Run C (assembly tolerances according
to Table 4.1) Upper Left Plot: raw measurement data, Upper Right Plot: Residual angle
error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter model and
Lower Right Plot: of a Gaussian distribution with the same sample size.

The first orders of the Fourier Spectra of the DOP Model and the FFT Model are shown
in Figure 4.8. The amplitudes of those low order terms have declined by six magnitudes
for the residual angle error of the DOP Model in contrast to the amplitudes of the raw
measurement data. The amplitudes of the low order terms of the residual angle error of
the FFT Model has decreased by five magnitudes as well.
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Figure 4.8: Zoom view (Orders 0 to 15) of FFT spectral analysis results of Figure 4.7 for
Left Plot: Residual angle error of DOP filter model and Right Plot: Residual angle error
of FFT filter model

A Probability Plot Correlation Coefficient Plot (PPCC) (section 2.5) was created of each
run (A-F) to analyse the statistical distribution of the residual angle error ∆ϕres (see Figure
4.9). The measurement data was then centred and scaled and other statistical tests such as
the Kolmogorov-Smirnov test (KS test), Lilliefors test (Lillie test) and Anderson-Darling
test (AD test) were performed (the latter two of which being modifications of the KS
test with respect to higher perceptibility of non Gaussian behaviour) to test against the
null hypothesis that the measurement comes from a Gaussian distribution at the standard
significance level of 5%. The results of these tests (”Accept” if the null hypothesis was
accepted or ”Reject” if it the null hypothesis was rejected and showing that the data does
not come from a Gaussian distribution) is shown with the extracted results of the PPCC
plot above in Table 4.2. Technically speaking, this tests are not valid for proofing Gaussian
distribution as they are not applicable for time-series analysis, as the values are sorted by
magnitude beforehand.
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Figure 4.9: Probability Plot Correlation Coefficient (PPCC) Plot of the residual error of
runs A-F (compare Table 4.1)

Table 4.2: Overview of statistical test results for all runs A-F (according to Table 4.1)
of the residual error after performing polynomial approximation of the systematic error
contribution for Tukey-Lambda (Location and correlation coefficient at the peak / corre-
lation coefficient at λ = 0.14), Kolmogorov-Smirnov test (KS), Lilliefors test (Lillie) and
Anderson-Darling test (AD). ”Accept”, if the null hypothesis was not rejected, ”Reject”
if otherwise.

Run Samples Tukey-Lambda KS Lillie AD

A 136 0.20: 0.9965 / 0.14: 0.9962 Accept Accept Accept
B 136 0.15: 0.9937 / 0.14: 0.9934 Accept Accept Accept
C 136 0.21: 0.9965 / 0.14: 0.9860 Accept Accept Accept
D 136 0.18: 0.9975 / 0.14: 0.9974 Accept Accept Accept
E 136 0.08: 0.9948 / 0.14: 0.9942 Accept Accept Accept
F 136 0.22: 0.9962 / 0.14: 0.9954 Accept Accept Accept

With the information gathered from the tests above an assumption of Gaussian distributed
angle errors seems valid. Owing to the sample count in each run, the PPCC plot may al-
low drifts of the curves’ peak. The Correlation coefficient at λ = 0.14 is not significantly
smaller than the peak value. Test runs with higher sample counts should even deliver bet-
ter results.

Even the PPCC plot of a purely Gaussian distributed random variable may show a λ

significantly higher or lower than 0.14. Such an example plot for 136 Monte Carlo sam-
ples (identical to sample count of measurement runs) of a Gaussian distributed random
variable is shown in Figure 4.10.
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Figure 4.10: Example Probability Plot Correlation Coefficient (PPCC) plot for a Gaussian
distributed random variable with 136 Monte Carlo samples taken. The peak correlation
coefficient is 0.996 at λ=0.05 and 0.9918 at λ=0.14

All these methods and tests performed on the experimental data where necessary but not
sufficient to prove a Gaussian distribution of the noise. During the analysis no evidence of
non-Gaussian behaviour was found in the evaluated measurement data. A non-Gaussian
behaviour is highly unlikely but cannot be ruled out.



Chapter 5

Discussion and Conclusion

5.1 Discussion
In this work, the entire signal processing path of an integrated gradient field based Hall
angle sensor starting with the calculation of the magnetic field via the calculation of the
Hall voltage under consideration of various factors (temperature, mechanical stress, back-
biasing effects, ..) has been described with subsequent digitization and error compen-
sation. This entire data path was modeled in MATLAB. The aim was to reproduce this
complex system with the simplest possible models. In addition, the GUM uncertainty cal-
culation concept was applied to this measurement path using a MATLAB toolbox (AUT)
to show application fields for this toolbox and to verify how differential Hall sensors can
be interpreted.

In the course of this signal processing path was often pointed out the presence of Gaussian
distributed angle errors, which was also an elementary prerequisite for the proper func-
tioning of the Kalman Filter was assumed. The presence of Gaussian distributed angular
errors over time was analysed and demonstrated by the evaluation of measurement data.
In [63] it had been shown that assembly tolerances at a fixed time for many sensors do
not cause Gaussian distributed angle error values. Despite this fact, under consideration
of the influence of the measuring path, only Gaussian distributed noise is present after a
subsequent calibration. The applicability of the Kalman filter was thus guaranteed.

The practicality of the signal processing path was compared with simulation results and
sufficient accuracy was determined (compare Section 3.2.2). The results of the signal
processing path cohere with more complex simulation models. The calibrated results of
the signal processing path are also consistent with raw experimental data. The residual
angle error is reduced to a mere noise level of 0.05◦ (1σ value).

Specific experiences with AUT will be discussed in the next subsection.

5.1.1 Applicability of AUT
Based on my experience with AUT during this Master’s thesis I can recommend the fol-
lowing fields of application. Assistance in teaching in lectures on metrology and statistical
optimization. Because of their simple integration to the MATLAB environment, students
are quickly familiar with the operations and can be introduced to the topic of statistical
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uncertainty using simple examples. Another application is certainly the statistical calcula-
tion of measurement paths of sensor products. A special application is surely this present
master thesis.

The results of the toolbox must not be taken at face value. Whether the toolbox may
be applicable for use in a particular application needs to be proven in advance. In simple
cases it analytical solutions or in more complicated cases empirical or other statistical
methods, such as the Monte Carlo simulation, which was also used here prove the appli-
cability of the toolbox, can be chosen. As has been elaborated in this work, the toolbox on
GUM is not suitable for the calculation of statistical uncertainties of differential magnetic
fields. The applicability was by no means clear from the outset. Such a verification should
definitely be made at the beginning of a statistical analysis.

What is the toolbox suitable for? With the toolbox, a statistical influence analysis can be
carried out with a simple effort to find out which influencing factors affect how strongly
the measurement result.

The main advantages and disadvantages of the toolbox are summarized below. Some
of the advantages of the toolbox are:

1. Easy integration to the MATLAB environment

2. Easy definition of uncertain variables and perfect embedding using overwritten
MATLAB functions

3. The most common MATLAB features are overwritten and unc() variables can be
used as scalars and in vectors and matrices.

4. The toolbox can be modified (open source, once published)

5. Correlations between random variables are considered and a pre-definition is pos-
sible

6. The influencing parameters of a random variable can be displayed, showing not
only which random variable have the biggest impact but also those with little or
even no impact to the uncertainty of the result.

Some disadvantages are:

1. Increasing time consumption for computations of moderate complexity

2. Matlab functions need to be overwritten in order to be compatible with the toolbox
(As far as they are not overwritten)

3. Overwriting so called ”in-built” functions is not easily possible as the source code
of these functions is not available.

4. Some operations (such as Matrix/Vector operations or Matrix/Scalar operations)
cannot be performed in matrix notation and need to be written as loops. This de-
creases the performance of the code significantly.

5. An additional name parameter needs to be assigned to each variable to compute
correlations and covariances
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6. As input variables are only defined by µ and σ it is not possible to distinguish
between different probability distributions for input variables. Limited usage is
possible with the unc t() toolbox.

7. The toolbox is not fully bug-fixed.

During the work for this master thesis the functionality of the toolbox was tested thor-
oughly. In the following sub sections the main findings of each step will be discussed.

Magnetic Field Calculation

The toolbox is not suitable for the modelling of differential magnetic fields, since the
method according to GUM only allows approximations of the Taylor series up to and in-
cluding the first order. Exactly this first order terms are cancelled out due to the differential
sensing principle. The combination of multiple assembly tolerances being present simul-
taneously causes non-neglectable angle errors that only appear in higher orders. Possible
remedies include increasing the order of considered orders in the Taylor series expansion
and Monte Carlo simulations.

Modelling Signal Processing

Using an abstract model of the real signal processing path, with simplifications in bias-
ing and compensation circuits the Uncertainty Toolbox fully complied with Monte Carlo
results. Evaluations of experimental results also returned a roughly accurate standard
uncertainty of the angle error result.

Kalman Filtering

Some limitations arose for the Kalman filter with GUM uncertainty propagation. Each
measurement point is linearly dependent on all previous data points caused by the recur-
sive filter model. This results in a vast increase in computation time. However, this effect
can be avoided if the linear dependence on the previous data points is cut off above a
certain number. Performing Monte Carlo simulations instead is also a possible remedy.

5.1.2 Experimental verification
The experimental verification aimed to show that the noise of the angle error of a cal-
ibrated sensor is of Gaussian nature. Uncalibrated measurement data is massively per-
turbed by systematic errors, though. Fourier Analysis and Discrete Orthogonal Polyno-
mials are able to remove this systematic portions. Statistical tests (such as Probability Plot
Correlation Coefficient Plot, Kolmogorov Smirnov test,..) were run on the residual error
together with spectral analysis. This methods are necessary but not sufficient to detect
Gaussian noise in measurement. No indicators for non- Gaussian behaviour were found.
This lead to the assumption that Gaussian noise is indeed present.
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5.2 Conclusion

Taking numerical solutions of the 3D magnetic field solution for simple magnet shapes is
sufficient enough for magnetic field calculations for sensing applications. Increasing mag-
net complexity usually leads to inevitable extensive FEM simulations. It was shown that
basic kinematics knowledge are sufficient enough to model complex multi object systems
with high accuracy. More complex models are not needed and increase the performance
by a much smaller degree.

This is also somehow valid for the model of the signal processing path. The complex-
ity of this model may be increased as desired, but increases the difficulty of recognizing
individual influencing variables. The results in this thesis advise to choose a rather simple
model, which remains manageable and makes an influence impact analysis easier.

In a way, this is also the goal of an engineer to reduce his task to a minimum of com-
plexity in order to model the problem with sufficient accuracy. Technical standards and
guidelines sort of choose this way. A deeper penetration into matter increases the level
of complexity and makes it difficult for others to follow the thoughts and calculations. If
one wants to design a program that is as easy to understand as possible that remains un-
derstandable for the entire target group, it must not exceed the level of comprehensibility
of his target group.

Another important question addressed in this thesis was to analyse the applicability of
Kalman Filters for predicting future states and smoothing noisy data. It was shown that
Kalman Filters are fit to overcome angle errors caused by signal delay as long as the equa-
tions of state transition are fit to describe the motion sequence of the real system.

The concept of uncertainty propagation was introduced using the standards of ”Guide to
the Expression in Measurement” (GUM) [54]. It was shown that GUM can deliver very
good results, the simplifications due to linearisation (considering only up to first order
terms of Taylor series expansion) can lead to fatal results when considering differential
signals. Verification by means of a Monte Carlo simulation is indispensable in cases of
doubt, it also represents the secure and more conservative approach. Monte Carlo simu-
lations may be even faster if the complexity of the model increases up to a certain degree.
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5.3 Outlook and future scope
To round off this Master’s thesis, ideas for future research will be given based on the
methods and results presented in this thesis. The models described in this thesis may
build the basis in future sensor design, showing the tools available for performing fast
sensor dimensioning with sufficient accuracy to significantly reduce time needed for de-
velopment.

Magnetic field calculation

The magnetic field calculation script proved to be valuable companion for statistical anal-
ysis of assembly tolerances of gradient field based magnetic sensors with diametrically
polarized disc magnets. During the work for this thesis a publication was written and
published in October 2019 [63]. This script can be used for statistical optimization re-
garding the error contributions of assembly tolerances to the angle error result for any
given magnet shape and sensor dimensions.

Signal process modelling

The signal processing model presented in this thesis will allow Concept Engineers to per-
form quick and reliable analysis of sensor performance under the given layout for various
temperatures and stress levels. The underlying Matlab script can also be modified slightly
to perform correlation analysis of single electrical components of the sensor layout. In fu-
ture works the script can be modified to increase the performance of the results (compared
to simulation results) by increasing the level of complexity in the script.

Kalman filtering

The concept of Kalman Filtering and its capabilities for smoothing and predicting mea-
surements of Angular sensing products was introduced in this thesis. Further research
may be conducted on optimizing filter algorithm and optimal firmware coding. Once
perfectly tuned, Kalman filters can be used to improve the functionality of safety critical
automotive sensing devices.

Uncertainty Toolbox

The work on the Uncertainty Toolbox is far from complete. Future work could include
taking into account higher order terms of the Taylor series expansion to the Uncertainty
Toolbox, as well as making the most important MATLAB functions compatible with the
Toolbox. The extension for Monte Carlo simulations is already a step in the right di-
rection, this could be adapted in that even correlations between random variables and
non-normally distributed random variables can be created, as well as the compatibility
with MATLAB functions could be produced here.
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Appendix A

Glossary

Air Gap - The mean radial distance from the surface plane of a magnet to the housing of
the sensor (or to its Hall plate)

Bandwith - A frequency domain range in which a device (e.g. sensor) can transmit signals

CORDIC -Coordinate rotation digital computer; In the sense of this project: Tranforms
sine and cosine data to angle and amplitude

Datapath -The flow of analogue (voltages,currents) and digital (bit values) data through
the measurement chain

EEPROM -Electrically Erasable Programmable Read-Only Memory; An EEPROM is
a non-volatile memory used in microcontrollers and computers for storing small data
amounts. Single bytes can be erased and re-written electrically

Measurand - The quantitty intended to be measured

MOSFET -Metal Oxide Semiconductor Field Effect Transistor; it controls the current
flow by using an electric field

OEM - Original Equipment Manufacturer; Has a different meaning in the automotive
sector compared to other industry sectors. In the general case it defines a company which
produces parts and devices that are marketed by another company. The term OEM has no
strict definition in the automotive sector, as leading car manufacturers around the globe
call themselves OEM’s, to separate them from the real OEM’s and their suppliers, a pyra-
mid like structure has been established. Automotive manufacturers are called ”Tier 1”
OEM, the actual OEM’s are then called ”Tier 2” OEM, their suppliers are called ”Tier 3”
suppliers and so on. With the ”Tier” count the number of companies increases causing an
immense price war which is usually dictated by the ”Tier 1” companies.

PPCC - Probability Plot Correlation Coefficient Plot: A plot computing the correlation
between a set of noisy data to a set of given probability distribution. Most commonly, the
Tukey-Lambda distribution is being used. The aim is it to identify the distribution of the
noisy data.
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ppm - Parts per million: Number of broken or malfunctioning (in a more general sense:
marked or distinctive) parts in a batch size of one million parts

reading radius - The radial distance of each magneto-sensitive element to the centre
of the sensor

Remanence - The remaining flux density after saturation and without further excitation
in a permanent magnet

SmCo - Samarium-Cobalt: A rare earth-metal compound magnet with strong magneti-
zation, typically used in magnetic field sensors

Transfer Function - Describes the output in terms of its input, the transfer function can
be a mathematical function or a curve in a diagramm

White noise - Is a type of noise which has equal intensities at different frequencies. A
Gaussian distribution shows such an behaviour in the frequency domain. Other colours of
noise are: Pink, Red and Grey



Appendix B

MATLAB Codes

B.1 Kalman Filter initialization

1 %% Kalman Filter initialization
2 % Serkan Ergun
3 % Uncertainty Modelling in Sensor Systems
4
5 %% Defining constants and initial values
6
7 % sample Time/ sample interval
8 dT;
9 % Measurement Noise Variance

10 v=var(measurementNoise);
11 % Process Noise Variance
12 w=var(processNoiseSpeed);
13
14 %% Loop, usually less than 50 iterations are needed for

converging
15 for i=1:50
16
17 % Kalman Gain matrix (K=[K_phi,K_deltaPhi]’)
18 % Common denominator
19 K_denom=P_phi_phi_pred+v;
20 % K_phi
21 K_phi=P_phi_phi_pred/K_denom;
22 % K_deltaPhi
23 K_deltaPhi=P_deltaPhi_phi_pred/K_denom;
24 % Covariance Estimate update
25 %(P=[P_phi_phi, P_phi_deltaPhi;
26 % P_deltaPhi_phi, P_deltaPhi_deltaPhi])
27 P_phi_phi = (1-K_phi) * P_phi_phi_pred;
28 P_phi_deltaPhi = (1-K_phi) * P_phi_deltaPhi_pred;
29 P_deltaPhi_phi = -K_deltaPhi * P_phi_phi_pred +

P_deltaPhi_phi_pred;
30 P_deltaPhi_deltaPhi= -K_deltaPhi * P_phi_deltaPhi_pred +

P_deltaPhi_deltaPhi_pred;
31 % Covariance Prediction
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32 % (P_pred=[P_phi_phi_pred, P_phi_deltaPhi_pred;
P_deltaPhi_phi_pred, P_deltaPhi_deltaPhi_pred])

33 P_phi_phi_pred = P_phi_phi + dT * P_deltaPhi_phi +
dT * (P_phi_deltaPhi + dT * P_deltaPhi_deltaPhi);

34 P_phi_deltaPhi_pred = P_phi_deltaPhi + dT *
P_deltaPhi_deltaPhi;

35 P_deltaPhi_phi_pred = P_deltaPhi_phi + dT *
P_deltaPhi_deltaPhi;

36 P_deltaPhi_deltaPhipred = P_deltaPhi_deltaPhi + w;
37 end

Listing B.1: Matlab code snippet for initilaizing the Kalman Filter algorithm

B.2 Kalman Filter loop

1 %% Kalman Filter loop
2 % Serkan Ergun
3 % Uncertainty Modelling in Sensor Systems
4
5 % Update Estimate
6 % Compute Kalman Residual
7 phi_Residual=phi_tilde_cal-phi_Hat_Predicted;
8 % Update Position Estimate
9 phi_Hat=phi_Hat_Predicted+K_phi*phi_Residual;

10 % Update Speed Estimate
11 deltaPhi_Hat=deltaPhi_Hat_Predicted+K_deltaPhi*

phi_Residual;
12 % Next State Prediction
13 % Predict Position Estimate
14 phi_Hat_Predicted=phi_Hat+dT*deltaPhi_Hat;
15 % Predict Speed Estimate
16 deltaPhi_Hat_Predicted=deltaPhi_Hat;

Listing B.2: Matlab code snippet for the Kalman Filter loop algorithm



Appendix C

Additional Experimental Results

C.1 Angle measurement evaluation
This sections feature the additional results of the angle error measurement evaluation of
presented in section 4.2.
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C.1.1 Run A
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Figure C.1: Results of the DOP and FFT filter models for Run A (assembly tolerances
according to Table 4.1). Top Plot: Uncalibrated angle error ∆ϕ and DOP filter model
results over rotation angle ϕ . Upper Central Plot: Resulting residual error ∆ϕres of
DOP model to raw data. Lower Central Plot: ∆ϕ and FFT filter model results over ϕ .
Bottom Plot: ∆ϕres of FFT model to raw data.
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Figure C.2: Cross-Correlation functions for Run A (assembly tolerances according to
Table 4.1) of Upper Left Plot: raw measurement data, Upper Right Plot: Residual
angle error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter
model and Lower Right Plot: of a Gaussian distribution with the same sample size.The
red lines indicate the 2σ confidence interval for the given sample size.
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Figure C.3: Results of the FFT spectral analysis for Run A (assembly tolerances according
to Table 4.1) Upper Left Plot: raw measurement data, Upper Right Plot: Residual angle
error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter model and
Lower Right Plot: of a Gaussian distribution with the same sample size.
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C.1.2 Run B
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Figure C.4: Results of the DOP and FFT filter models for Run B (assembly tolerances
according to Table 4.1) . Top Plot: Uncalibrated angle error ∆ϕ and DOP filter model
results over rotation angle ϕ . Upper Central Plot: Resulting residual error ∆ϕres of DOP
model to raw data. Lower Central Plot: ∆ϕ and FFT filter model results over ϕ . Bottom
Plot: ∆ϕres of FFT model to raw data.
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Figure C.5: Cross-Correlation functions for Run B (assembly tolerances according to
Table 4.1) of Upper Left Plot: raw measurement data, Upper Right Plot: Residual
angle error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter
model and Lower Right Plot: of a Gaussian distribution with the same sample size.The
red lines indicate the 2σ confidence interval for the given sample size.
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Figure C.6: Results of the FFT spectral analysis for Run B (assembly tolerances according
to Table 4.1) Upper Left Plot: raw measurement data, Upper Right Plot: Residual angle
error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter model and
Lower Right Plot: of a Gaussian distribution with the same sample size.
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C.1.3 Run D
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Figure C.7: Results of the DOP and FFT filter models for Run D (assembly tolerances
according to Table 4.1) . Top Plot: Uncalibrated angle error ∆ϕ and DOP filter model
results over rotation angle ϕ . Upper Central Plot: Resulting residual error ∆ϕres of DOP
model to raw data. Lower Central Plot: ∆ϕ and FFT filter model results over ϕ . Bottom
Plot: ∆ϕres of FFT model to raw data.
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Figure C.8: Cross-Correlation functions for Run D (assembly tolerances according to
Table 4.1) of Upper Left Plot: raw measurement data, Upper Right Plot: Residual
angle error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter
model and Lower Right Plot: of a Gaussian distribution with the same sample size.The
red lines indicate the 2σ confidence interval for the given sample size.
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Figure C.9: Results of the FFT spectral analysis for Run D (assembly tolerances according
to Table 4.1) Upper Left Plot: raw measurement data, Upper Right Plot: Residual angle
error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter model and
Lower Right Plot: of a Gaussian distribution with the same sample size.
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C.1.4 Run E

-45 -15 15 45 75 105 135 165 195 225 255 285 315
-0.5

0

0.5

1

-45 -15 15 45 75 105 135 165 195 225 255 285 315
-0.2

-0.1

0

0.1

0.2

-45 -15 15 45 75 105 135 165 195 225 255 285 315
-0.5

0

0.5

1

-45 -15 15 45 75 105 135 165 195 225 255 285 315
-0.2

0

0.2

0.4

Figure C.10: Results of the DOP and FFT filter models for Run E (assembly tolerances
according to Table 4.1) . Top Plot: Uncalibrated angle error ∆ϕ and DOP filter model
results over rotation angle ϕ . Upper Central Plot: Resulting residual error ∆ϕres of DOP
model to raw data. Lower Central Plot: ∆ϕ and FFT filter model results over ϕ . Bottom
Plot: ∆ϕres of FFT model to raw data.
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Figure C.11: Cross-Correlation functions for Run E (assembly tolerances according to
Table 4.1) of Upper Left Plot: raw measurement data, Upper Right Plot: Residual
angle error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter
model and Lower Right Plot: of a Gaussian distribution with the same sample size.The
red lines indicate the 2σ confidence interval for the given sample size.
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Figure C.12: Results of the FFT spectral analysis for Run E (assembly tolerances accord-
ing to Table 4.1) Upper Left Plot: raw measurement data, Upper Right Plot: Residual
angle error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter
model and Lower Right Plot: of a Gaussian distribution with the same sample size.
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C.1.5 Run F
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Figure C.13: Results of the DOP and FFT filter models for Run F (assembly tolerances
according to Table 4.1) . Top Plot: Uncalibrated angle error ∆ϕ and DOP filter model
results over rotation angle ϕ . Upper Central Plot: Resulting residual error ∆ϕres of DOP
model to raw data. Lower Central Plot: ∆ϕ and FFT filter model results over ϕ . Bottom
Plot: ∆ϕres of FFT model to raw data.
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Figure C.14: Cross-Correlation functions for Run F (assembly tolerances according to
Table 4.1) of Upper Left Plot: raw measurement data, Upper Right Plot: Residual
angle error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter
model and Lower Right Plot: of a Gaussian distribution with the same sample size.The
red lines indicate the 2σ confidence interval for the given sample size.
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Figure C.15: Results of the FFT spectral analysis for Run F (assembly tolerances accord-
ing to Table 4.1) Upper Left Plot: raw measurement data, Upper Right Plot: Residual
angle error of DOP filter model, Lower Left Plot: Residual angle error of FFT filter
model and Lower Right Plot: of a Gaussian distribution with the same sample size.
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