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Abstract

This thesis presents the conception, implementation and test of a condition monitoring system
using sub-GHz frequency bands. The results from performance testing on a complete proto-
type system are also presented. The Wireless M-Bus network protocol has been selected and
implemented; this provides a standardized and established interface.

The battery powered smart sensor was designed as an embedded system featuring a low-power
wireless microcontroller together with an accelerometer. An Industrial PC (IPC), with IEC 61131
certification, was selected as the edge device. This device includes a Wireless M-Bus extension
module.

The range was evaluated using omnidirectional aerials. At a transmission power of 14 dBm,
corresponding to a current consumption of 6.5 mA, ranges up to several hundred meters were
achieved; there is, however, a dependency on obstacles that are projecting into the fresnel zone.

The main influence in long-term mean current-consumption and therefore life of battery, was
identified as the current consumed in low power deep sleep mode. Assuming a typical application
measuring 1600 samples at a rate of 3200 Hz once each hour and transmitting data at an interval
of six hours leads to a life of battery estimation of about two years.

These results confirm that sub-GHz frequency bands are well-suited for condition monitoring
purposes with moderate data rate demands.





Zusammenfassung

In dieser Arbeit wird Konzept, Umsetzung und Evaluierung eines Systems zur Zustandsüberwa-
chung vorgestellt, welches auf den Sub-GHz Frequenzbändern basiert. Darüber hinaus werden
die an einem vollständigen Prototypen durchgeführten Leistungstests präsentiert. Das Wireless
M-Bus Netzwerkprotokoll wurde ausgewählt, da es eine genormte, etablierte Schnittstelle zur
Datenübertragung bietet.

Der Smart Sensor vereint einen Beschleunigungssensor und einen energieeffizienten Mikrocon-
troller mit Netzwerkunterstützung zu einem batteriebetriebenen eingebetteten System. Ein IEC
61131 konformer Industrie PC (IPC) wurde als Edge Device verwendet. Dieser beinhaltet ein
Wireless M-Bus Erweiterungsmodul.

Die Evaluierung der Reichweite wurde mit omnidirektionalen Antennen durchgeführt. Bei einer
Sendeleistung von 14 dBm, entsprechend einer Stromaufnahme von 6.5 mA, konnten Reichweiten
von einigen hundert Metern, abhängig von Hindernissen in der Fresnel’schen Zone, erreicht
werden.

Der Stromverbrauch im Ruhezustand des Smart Sensors wurde als Haupteinfluss der Batteriebe-
triebszeit identifiziert. Unter Annahme eines stündlichen Messzykluses mit 1600 Datenpunkten,
einer Messfrequenz von 3200 Hz, sowie einer gesammelten Datenübertragung in Intervallen von
sechs Stunden, konnten Batteriebetriebszeiten von bis zu ca. zwei Jahren geschätzt werden.

Diese Ergebnisse bestätigen die Eignung der Sub-GHz Frequenzbänder für Anwendungen in
der Zustandsüberwachung, sofern moderate Anforderungen an die Übertragungsgeschwindigkeit
vorliegen.
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1 Introduction

Condition monitoring is a central part of the Industry 4.0 concept. Compared to the conventional
condition assessment, which is conducted on a regular basis, it offers continuous data that can
be used to autonomously determine when human intervention is actually required. Methods of
data science, e. g. artificial intelligence, can be used to estimate when a specific component of
the monitored system is going to break down. This can avoid critical damage and therefore long
downtime while enabling to use the components to their full extent. Beyond that, the knowledge
gained from condition monitoring can be used in claims management as well as to improve further
designs. This concept relies on sensors that continuously provide measuring data of relevant
parameters.

In monitoring large systems, transmission of data is a challenge. Industry 4.0 knows two contrary
concepts to deal with it, cloud computing and edge computing. The architecture of Industrial
Internet of Things (IIoT) networks can be described according to Fig. 1.1. Devices, that can be
e. g. smart meters, are connected to an edge gateway. In highly flexible implementations wireless
connections are used. Gateway and cloud communicate via the Internet. Cloud computing refers
to collecting and analyzing sensor data at remote data centers while edge computing is a decen-
tralized approach where data is processed at edge level. Cloud computing offers unprecedented
computing resources, with the drawback that it relies on a internet connection that is capable of
transmitting data produced by hundreds of sensors. On the contrary, edge computing is conducted
distributed, as physically close to the sensors as possible. This eliminates the Internet as a strict
dependency and thereby improves reliability. In combined approaches the Internet is used to
efficiently distribute computation results of edge computing, which can be significantly lower
sized. Fundamental for suchlike concepts are smart sensors that deliver enough computational
power for their specific task.

Smart sensors are embedded systems consisting of a sensor, a Microcontroller Unit (MCU) and
an interface for connecting to other devices as well as to the Internet via an edge gateway. In
many cases they have to withstand vibration, dirt and even splash-water. By implementing battery
powered sensors with wireless communication, the smart sensor can be infused in resin to become
a self-contained system that is isolated from the environment. This also prevents cable breakage,
which is a common failure mechanism. If an existing machine is upgraded with a condition
monitoring system, the installation of cables for power supply and communication is no longer
required. Due to latest generations of high tech Microcontroller Units (MCUs), battery powered
smart meters can be designed to operate for over 3 years with just a coin cell battery. Therefore
one of the main obstacles is to implement a robust wireless data transmission method that is
suitable for harsh industrial environments.
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Fig. 1.1. Architecture of an Industrial Internet of Things (IIoT) network.

1.1 State of the Art

At present many smart sensors such as the sensor screw in Fig. 1.2c use the 2.4 GHz frequency
bands, e. g. Bluetooth Low Energy (BLE), for transmission. The experience gathered during
launching them shows that troubles can rise when such sensors interfere with other devices in the
same frequency band. This happens e. g. in environments with many BLE devices. In industrial
environments also noise levels are higher. In monitoring large plants, another constraint is the
limitation in transmission range.

Due to the lower number of devices using sub-GHz frequency bands, it is speculated that an
appropriate sub-GHz protocol might better suit the needs of an IIoT smart sensor. From a theo-
retical point of view also higher transmission ranges should be possible. It is well-known that the
transmission rate using sub-GHz is slower, which would not be a problem in many cases.

1.2 Objectives

The application of sub-GHz frequency bands in condition monitoring tasks, especially in harsh
industrial environments, shall be investigated. For any specific application, a literature research
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a) b) c)

Fig. 1.2. The development of smart sensor’s hardware takes place in three stages. The first pro-
totype often utilizes development boards that are supplied by the microprocessor unit’s
producer, see Fig. 1.2a. After the proof of concept, circuit boards are designed, see Fig.
1.2b, which are used for further firmware development and are installed to the prod-
uct at the stage of manufacturing, see Fig. 1.2c. Image courtesy of eSENSEial Data
Science GmbH.

should be carried out to examine benefits and drawbacks of sub-GHz and which protocol best fits
the requirements. In this application it became evident that the Wireless M-Bus sub-GHz network
protocol is the most suitable, see Chapter 5. This includes a market research to clarify for which
protocol industry-suited modules are available. Afterwards the hard-, firm-, and software required
to implement a prototype wireless condition monitoring system, including a sub-GHz network
stack, is developed that acts as a proof of concept. The prototype is based on a development board
of the CC1352 MCU of Texas Instruments, see Fig. 1.2a. It enables testing of wireless sensors,
e.g. vibration sensors, with respect to their range and stability of transmission, as well as their
current consumption.





Part I

Background methods





2 Embedded Systems Architecture

In a world where more and more machines and also everyday items are getting linked to the
Internet, MCUs for highly diverse fields of application are available. They are the heart of every
embedded system, that is, an electronic system with all hardware components embedded on a
Printed Circuit Board (PCB) [20, p. 93]. Some microcontroller families are focussed on efficiency,
while others may prioritize performance or connectivity. Selecting an MCU for a project is always
a compromise. For this thesis the Texas Instruments CC1352P was chosen. It features SubGHz
support, an ARM Cortex-M4 Central Processing Unit (CPU) with floating point unit and a fair
current consumption.

This chapter is discusses the architecture of this particular device and the most important compo-
nents that can be found in almost every MCU. Furthermore the interfacing between an MCU and
a sensor shall be investigated.

ARM Cortex-M4F
Processor

JTAG

ROM

Flash

SRAM

ARM Cortex-M0
Processor

RF Circuitry

ROM RAM

I²C SPI

AES

Timers RTC

GPIO

ULP Sensor 
Controller

Watchdog TRNG

Fig. 2.1. Architecture of the Texas Instruments CC1352P. Compare to [4].
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The main modules of the Texas Instruments CC1352P can be identified as: the main CPU; the
Radio Frequency (RF) core and the sensor interface. Each of these elements has it’s own dedicated
CPU. See Figure 2.1.

Each module is connected to the hardware peripherals and they partly share Read-Only Memory
(ROM), flash memory and Static Random Access Memory (SRAM).

2.1 Central Processing Unit

A processor is responsible for the actual execution of a program. More precisely, a processor
cyclically fetches, decodes and executes the machine code instructions of a program that is stored
in any kind of memory. The instruction set thereby depends on the specific CPU. [20, pp. 156–
157]

A program that is written in a high-level programming language such as C++ has to be translated
to machine code instructions suitable for the specific device before it can be executed. This process
is called compilation and is explained in detail in Chapter 7.4.

The Texas Instruments CC1352P contains three CPUs. The high-performance main CPU is
running user applications that can be very computationally intensive. However, it has a relative
high current consumption in active mode. In contrast, the sensor controller is an ultra low power
processor that is intended to monitor sensor values and alert the main CPU, which can be in a low
power deep sleep mode at the moment, if required. The sensor controller shares the peripherals
with the main CPU and can only take over very basic tasks. The RF core is interfacing with RF
circuitry and provides a command-based application programming interface for autonomously
handling various radio tasks to the main CPU. [5, pp. 77 84–85 1900]

2.2 Memory

This section should give a brief overview to the different memory types that are used in the Texas
Instruments CC1352P and what their purpose is.

2.2.1 Flash

Flash, also referred to as flash electrically erasable programmable read-only memory, is respon-
sible for storing the application firmware and constants. A program can be executed whether
directly from flash or copied to the Random Access Memory (RAM) at first and then be executed
from there.

Flash is a non-volatile memory, that is, data is not lost when the memory is not powered. Flash
memory can be erased in blocks a limited number of times.
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External flash memories that can be connected to the microcontroller via e. g. Serial Peripheral
Interface (SPI) can be used to extend storage capacity.

2.2.2 Random Access Memory (RAM)

The RAM is used to store the programs stack and heap, as well as global or static variables. Local
variables are allocated on the stack and therefore also stored in the RAM.

Both of the most common types, SRAM and Dynamic Random Access Memory (DRAM), are
volatile memories.

The Texas Instruments CC1352P implements a SRAM, which is the fastest type of RAM. [20,
p. 180]

2.2.3 Read Only Memory (ROM)

A read-only memory that is preprogrammed by the manufacturer can be used to provide e. g.
bootloaders, operating systems and network stacks. Once programmed their content can’t be
altered anymore. This can be achieved by etching data into the chip during production. Memory
of this type is called mask ROM. [20, p. 178]

2.3 Peripherals

Peripherals in a MCU are extending the core functionalities that the CPU provides together with
various types of memory. The quantity and types of peripheral devices vary even within the same
MCU families. Peripheral hardware that is utilized within the implementation of this project’s
hard- and firmware shall be introduced.

2.3.1 General Purpose Input and Output (GPIO)

General Purpose Input/Output (GPIO) pins are programmable digital inputs or outputs. Configured
as inputs they can be used to read in logic levels or trigger interrupts of the CPU. As Outputs GPIO
pins can control external logic and drive low-current circuits. For switching of higher currents
the GPIO pin usually drives a transistor. Most GPIO units have selectable pull-up or pull-down
resistors integrated.

GPIO pins share functionality with other peripheral hardware. Therefore the programmer can se-
lect if a particular pin shall be a GPIO pin or e. g. a pin that refers to a communication interface.

A notable feature of the Texas Instruments CC1352P is the multiplexer that enables routing of all
peripherals signals to arbitrary pins. [5, p. 84]
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2.3.2 Timer

Timers are basically counters that are periodically incremented by a clock. The clock source
and prescalers are configurable. This enables not only precise timings but also fully autonomous
generation of phase-width modulated signals in a specific mode.

Interrupting the CPU for a number of events can be configurated.

2.3.3 Real Time Clock (RTC)

A Real Time Clock (RTC) module is a special type of timer that is usually driven from a separate
32.768 Hz low-frequency crystal oscillator. Together with a 215 prescaler, a clock cycle of exactly
1 s is achieved. The separate quartz oscillator in addition allows to turn off the main oscillator
while the CPU is waiting for an external interrupt to save energy. In most microcontrollers that
are equipped with a RTC, the module is intended to be battery backed-up by a coin-cell battery to
keep time even if the main circuit is not powered.

2.3.4 Serial Peripheral Interface (SPI)

SPI is a synchronous interface that uses a common clock cycle for bidirectional transmission. SPI
is a very fast interface and is often used to program microcontrollers together with bootloaders, to
connect external memory or to communicate with sensors.

A SPI module can connect more than one external peripheral to the MCU, see Figure 2.2. There-
fore the external peripheral that is currently communicated with, has to be selected by means of
issuing the slave select (SS) line.

2.3.5 Inter-Integrated Circuit (I2C)

Inter-Integrated Circuit (I2C) is an interface that can connect more than 100 devices. Each device
can be selected by means of an I2C address that is unique within the network. I2C only requires
two wires, a bidirectional data line and a clock signal. It is used for sensors that get along with
medium transfer rates.

2.3.6 Advanced Encryption Standard (AES) Crypto Accelerator

The Advanced Encryption Standard (AES) crypto accelerator is a module that is designed to
efficiently perform operations that are required for encrypting and decrypting. The AES is further
discussed in Chapter 4.2.
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Fig. 2.2. SPI connecting a master device with three slaves. The slave select line is usually in-
verted. An inverted line is indicated by an exclamation mark, e. g. !SS. Compare to
[21, p. 21].

2.4 Flash Programming

Flash programming is the process of transferring an executable program to the non-volatile storage
of an MCU. This requires programming hardware which is embedded in development boards
usually. Most programming adapters are connected to the PC via USB. A common interface that
connects the programming adapter to the microcontroller is called JTAG. JTAG can be used to
flash a device as well as to debug firmware.

Another state of the art method used for firmware updates is over-the-air upgrade. Over-the-air
upgrade uses a wireless protocol to transmit the executable file to the MCU. A firmware update
process then is conducted.

2.5 Interfacing a Sensor

Digital external peripherals, in particular sensors, are usually physically connected to the MCU
via SPI, I2C, Universal Asynchronous Receiver/Transmitter (UART) or a parallel interface. Addi-
tionally some sensors provide programmable interrupt outputs which are routed to GPIO pins of
the MCU.

Digital sensors generally provide a register based setup. Each register has a unique address and
a specific purpose. To achieve the desired configuration, to start and stop sampling etc., registers
are set consecutively according to the device’s datasheet. Once a measurment is triggered, the



12 2 Embedded Systems Architecture

MCU has to poll a status register that signals if the conversion is finished recurrently or wait for
a specified time. As an alternative the MCU can proceed with it’s task until the sensor triggers
an interrupt, signaling that the conversion is finished. This is the desired method if the sensor
provides it.



3 Wireless Data Transmission

Development of wireless data transmission methods is a demanding task that involves a hardware
and a software part. A general design reference covering both is the Open Systems Interconnection
(OSI) model1. It’s key concepts shall be introduced in this chapter. It especially points out how
a network can be arranged in principle. Furthermore the frequency shift keying method shall be
introduced as an important modulation method for physical wireless data transmission.

3.1 Open Systems Interconnection Model

The OSI reference model is describing seven formal layers in which networking is separated.
Each of the layers has a particular task that it is responsible for. The layers are numbered from
one to seven, beginning with the physical layer which is the closest to the hardware. With an
increasing number, the abstractedness of the layer rises. In general, the lower four layers are about
transferring data from A to B, while the upper ones are concerned with the application and user
interaction. The various layers and their responsibilities are listed in Tab. 3.1. Note that not every
system implements all layers. [16, pp. 148–154].

# Layer Responsibilities
7 Application Layer User Application Services, ...
6 Presentation Layer Compression, Encryption, ...
5 Session Layer Session Management, ...
4 Transport Layer Connections, Acknowledgments, Retransmissions, ...
3 Network Layer Logical Addressing, Fragmentation, ...
2 Data Link Layer Error Detection and Handling, Addressing, ...
1 Physical Layer Hardware Specifications, Encoding, ...

Tab. 3.1. Open Systems Interconnection Model (OSI) layers. Compare to [16, pp. 184–185].

A basic principle in the OSI model is that every layer is communicating with it’s equal on the
other side. Communication on the same layer is represented by a protocol. The link between them
is logically for all layers except the physical layer. Communication therefore utilizes lower layers
consecutively until the data can finally be transmitted at the physical layer. On the receiver side
this procedure is happening the other way round. [16, pp. 156–157]

1The Open Systems Interconnection (OSI) model is also known as International Organization for Standardization
(ISO) model, since it is defined in an ISO standard.
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Since they rely on each other, adjacent layers within a particular host have to communicate with
each other. Therefore each layer has to define an interface for intercommunication between them.
Well-defined interfaces enable to exchange implementations of particular layers. [16, p. 154]

Another important concept of the OSI model is encapsulation. For transmission, each protocol is
represented by a protocol data unit that consists of protocol headers and data. The protocol data
unit of one layer becomes the service data of the next layer below, which again forms a protocol
data unit together with it’s headers, and so forth. Thereby application data is encapsulated by
more and more protocol headers downwards the network stack. [16, p. 159]

3.2 Frequency Shift Keying

Frequency Shift Keying (FSK) is a method to modulate the frequency of a carrier signal with
respect to a digital input signal. It can be found in wireless data transmission standards like
Bluetooth or Global System for Mobile Communications (GSM) and belongs to the physical layer.
The remarks in this chapter are illustrated in Figure 3.1.

Aiming at binary FSK, depending on the digital input the carrier frequency f0 is either shifted to
the lower or to the upper side by the frequency deviation ∆ f . A digital “0” translates to a baseband
level of −1 and a digital “1” to a baseband level of +1, leading to a frequency shift of −1 ·∆ f
respectively +1 ·∆ f . [8, pp. 58–60]

The easiest way of modulating the signal would be switching between two independent oscillators
that are set up to f0−∆ f and f0 +∆ f . Due to the fact that the oscillators are not synchronized
discontinuities will occur. This leads to high band width demands. A better approach regarding
band with usage is Continuous-Phase Frequency Shift Keying (CPFSK). Thereby the frequency
shifts also happen instantly but without discontinuities in phase. Even better band with character-
istics can be expected by Gaussian Frequency Shift Keying (GFSK). GFSK uses a gaussian filter
to smooth transitions of the baseband level which leads to a frequency shift that is continuous in
the frequency domain as well as in the time domain. Note that a low band width is desired in order
to keep sideband power as low as possible. Furthermore it reduces crosstalk. [37]

Demodulation can be implemented by two sharp bandpass filters that are tuned to f0−∆ f respec-
tively f0 +∆ f , both followed by envelope detectors. If the signal of the f0−∆ f envelope detector
is higher than that of the f0 +∆ f envelope detector a digital “0” is output, otherwise a digital “1”.
This can be achieved by a comparator. [8, pp. 60–61]
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Fig. 3.1. Different Frequency Shift Keying (FSK) methods distinguish by their behaviour in
transition. Needless to say, all plots refer to the time domain.





4 Cyclic Coding and Encryption

Transmission of data requires an error detection mechanism that corrupted data can be handled
properly. A common error detection mechanism is the Cyclic Redundancy Check (CRC), which
appends a checksum to the data. Especially in industrial environments it is recommended to
use encrypted communication. A convenient algorithm is the AES. Both can be implemented
in hardware as well as in software. In the following sections they shall be discussed from a
mathematical point of view.

4.1 Cyclic Redundancy Check (CRC)

Network transmissions can be compared to spoken conversations. Say your opposite noticed you
speaking, then he or she would subconsciously check your questions plausibility to decide if he
or she has understood a correct plausible sentence and whether give you an answer or ask for rep-
etition. In digital data transmission a simple method to check if a message was received correctly
is the CRC1. Based on a failed CRC check a retransmission would probably be initiated.

CRC checks are based on polynomial long division of polynomials defined in F2[x]. Therefore
specific finite field arithmetics have to be applied when adding or multiplying coefficients, see
(4.1). Notice that adding and multiplying of coefficients within F2[x] matches the definitions
of Exclusive Or (XOR) and logical AND respectively. Subtractions and divisions are implicitly
defined as additive and multiplicative inverses. [19, p. 74]

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

(4.1)

Each coefficient of the data polynomial d(x) represents one bit of the data. To calculate the
checksum of the data polynomial, at first a generator polynomial g(x) has to be defined. It’s
degree shall be denoted with w = deg[g(x)]. The CRC checksum is defined as the remainder
of a polynomial long division by the generator polynomial. The remainder then is subtracted
from the dividend, which makes it an integer multiple of g(x) and a further polynomial long
division by g(x), the CRC check, would be able without remainder. Consider the dividend would

1Cyclic Redundancy Check (CRC) is a very often used term that refers to cyclic codes that are used for error
detection. [19, p. 147]
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be the unmodified data polynomial d(x), then subtracting the remainder would modify the data.
Therefore the polynomial long division by g(x) is applied to an extended data polynomial xwd(x).
This polynomial contains the same information than the data polynomial but reserves space for the
remainder, in other words the checksum. Denoting the remainder of a polynomial long division
h(x)
g(x) as Rg(x)[h(x)], the calculation of the polynomial representation of the data including the
checksum can be written in the following form, see (4.2). In this representation the residual
is added. An addition is exactly the same as a subtraction in F2, since {x = −x |x ∈ F2}. [19,
pp. 147–148]

c(x) = xwd(x)+Rg(x)[x
wd(x)]︸ ︷︷ ︸

Checksum

(4.2)

Since the remainder is subtracted from the extended data polynomial, c(x) is a multiple of g(x),
if the transmission is free of errors. Thus, for a successful transmission, the remainder of the
polynomial long division c(x)

g(x) has to be 0, see (4.3). This is the criteria of the CRC check.

0 = Rg(x)[c(x)] (4.3)

The algorithm can be fully implemented representing coefficients of polynomials as bits and
interpreting the place of the bit as the monomials degree. Additions have to be replaced with
XORs and multiplications with logical ANDs. This enables very economic implementations. The
difference in the calculation shall be demonstrated by an example. The CRC checksum of the
data stream 0b00001100 using the generator polynomial g(x) = 1x3 + 0x2 + 1x1 + 1x0 shall be
calculated. [19, pp. 148–149]

At first the polynomial long division method is applied to calculate the checksum.

g(x) = 1x3 +0x2 +1x1 +1x0

d(x) = 1x3 +1x2 +0x1 +0x0

w = deg[g(x)] = 3

xwd(x) = 1x6 +1x5 +0x4 +0x3 +0x2 +0x1 +0x0

(4.4)

1x6 +1x5 +0x4 +0x3 +0x2 +0x1 +0x0 : g(x) = x3 + x2 + x
−1x6 −0x5 −1x4 −1x3

1x5 1x4 1x3 +0x2

−1x5 −0x4 −1x3 −1x2

+1x4 0x3 +1x2 +0x1

−1x4 −0x3 −1x2 −1x1

1x1 +0x0 = r(x)

(4.5)
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r(x) = Rg(x)[x
wd(x)] = 1x1 +0x0

c(x) = xwd(x)+ r(x) = 1x6 +1x5 +0x4 +0x3 +0x2 +1x1 +0x0 (4.6)

To check if the data was received correctly, (4.3) is used.

1x6 +1x5 +0x4 +0x3 +0x2 +1x1 +0x0 : g(x) = x3 + x2 + x
−1x6 −0x5 −1x4 −1x3

1x5 1x4 1x3 +0x2

−1x5 −0x4 −1x3 −1x2

+1x4 0x3 +1x2 +1x1

−1x4 −0x3 −1x2 −1x1

0 → OK

(4.7)

The same calculation as (4.5) can be carried out easier using XOR in the bit representation.

1 1 0 0 0 0 0
⊕ 1 0 1 1

1 1 1 0
⊕ 1 0 1 1

1 0 1 0
⊕ 1 0 1 1

1 0

(4.8)

The CRC check is conducted analogue to (4.3).

1 1 0 0 0 1 0
⊕ 1 0 1 1

1 1 1 0
⊕ 1 0 1 1

1 0 1 1
⊕ 1 0 1 1

OK 0

(4.9)

Some CRC implementations invert the data stream before calculation, invert the checksum or
extend the data polynomial in a different way.

Notice that a CRC check is not a definitive method to find out if the transmission was free of
errors.
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4.2 Advanced Encryption Standard (AES)

Secure transmission of confidential data via public networks requires an appropriate encryption.
One of the most important encryption algorithms that are considered to be secure at present [29,
pp. 145–146] is called AES. It is a special case of the Rijndael cipher that was developed by
Vincent Rijmen and Joan Daemen. AES basically makes use of a private key to transform the
plaintext to the ciphertext. [29, pp. 137–138]

In particular, AES is a symmetric block cipher with a block size of 128 bit and key lengths of 128,
192 or 256 bit [29, p. 138]. Symmetric methods use the same key for encryption and decryption,
while asymmetric methods like Rivest-Shamir-Adleman (RSA) use different keys for encrypting
and decrypting a message [3, pp. 76–77]. In data transfer asymmetric methods, also known as
public key ciphers, are often used to enable the secure exchange of a symmetric key. Applying
RSA, every client has a private and public key pair. The public key, as the name implies, is
available for everyone, while the private key is only known by the client owning it. If the public
key is used to encrypt data, the corresponding private key has to be used for decryption and vice
versa. To begin a secure data transfer between two clients, e. g. peer A and peer B, who do not
have any information about each other, at first they have to exchange their public keys. For this a
secure connection is not required, since public keys are not sensible. To secure a message, peer
A now uses peer B’s public key to encrypt it and transmits it to peer B. To decrypt the message,
peer B’s private key is required. Since only peer B itself knows it, only peer B can decrypt the
message. For exactly the same scenario a symmetric method could not be applied, because peer
A and peer B would both have to know the same (secret) key. Symmetric methods like AES are
less computation-intensive. Additionally, they can be implemented in hardware easier. Therefore,
an economic secure connection can be achieved by using RSA to exchange a secret AES key and
then using AES for further communication. [3, pp. 133–134 137]

Block ciphers in general map plaintext blocks with a fixed length to ciphertext blocks with the same
length. To encrypt an arbitrary length plaintext, a mode of operation has to be selected. Usually
the plaintext has to be padded in order that it’s length is an integer multiple of the block length to
enable splitting into block length sized portions. In contrast, stream ciphers map plaintexts with
an arbitrary length to ciphertexts. [3, pp. 68–70 77]

The AES algorithm can be described according to Fig. 4.1. For encryption and decryption, the
method performs several transformation rounds. Depending on the key length, the number of
rounds n is determined. For key lengths of 128, 192 or 256 bit, respectively 10, 12 or 14 rounds
are used. For n rounds (n+ 1) subkeys are required, which are derived from the main key in
the KeyPreparation operation. The so called state matrix T, to which all cryptographic
operations are applied consecutively as well as the subkeys Ki, that are derived from the main key
K are both represented by 4x4-matrices. Given a plaintext block p=

(
T0 T1 . . . T15

)T and a

main key k =
(
k0 k1 . . . k4L−1

)T with length L in 4-byte words, the initial state matrix T and
the 4xL-main key matrix K are assembled according to (4.10). [29, pp. 138–142]
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T=


T00 T04 T08 T12
T01 T05 T09 T13
T02 T06 T10 T14
T03 T07 T11 T15

 K=


k00 k04 . . . k4L−4
k01 k05 . . . k4L−3
k02 k06 . . . k4L−2
k03 k07 . . . k4L−1

 (4.10)

For this chapter additions shall be interpreted as bitwise XORs that are denoted as A⊕B. Mul-
tiplications shall be defined according to (4.11) and denoted with e. g. 2 • a. It is sufficient to
define multiplications with 1, 2 and 3. Matrix multiplications are carried out as usual, using
the addition and multiplication definitions from above respectively. Note the difference between
rotation and shifting. Every cell of the state matrix consists of 1 B data which has 8 digits in binary
representation. Therefore 0b01000000� 1 = 0b10000000, 0b10000000� 1 = 0b00000000 6=
0b00000001.

1•a = a

2•a =

{
(a� 1), a < 128
(a� 1)⊕0b00011011, a≥ 128

3•a = (2•a)⊕a

(4.11)

The cipher uses four operations that are performed consecutively. AddRoundKey adds the
particular subkey Ki to the state matrix T, which is the plaintext at the initial application, see
(4.12). [29, p. 141]

AddRoundKeyT= T⊕Ki (4.12)

SubBytes substitutes each byte of the state matrix with a corresponding byte from a substitution
box, which maps each character uniquely to another, see appendix A.1. [29, pp. 139–140]

ShiftRows, (4.13), rotates each row of the temporary buffer left by the number of bytes equal
to the row’s position in the matrix, starting with 0 for the first row. [29, p. 140]

ShiftRowsT=


T00 T04 T08 T12
T05 T09 T13 T01
T10 T14 T02 T06
T15 T03 T07 T11

 (4.13)

MixColumns, (4.14), is a matrix operation that basically mixes columns and is responsible for
diffusion. [29, pp. 140–141]
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MixColumnsT=


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

•T (4.14)

The KeyPreparation can be described according to Fig. 4.2. It is initialized with the column
vectors of the main key K, (4.15), in iteration 0.

K=
(
k0 k1 . . . kL−1

)
(4.15)

Since groups of four adjacent vectors ks describe a subkey Ki, (n+1) subkeys are required and
every iteration generates L vectors, m = ceil(4 · (n+1)/L) iterations have to be carried out.

The operations used for preparing the subkeys were already explained, except RCon(i), which
is the round constant and is defined in (4.16).

RCon(0)=
(
1 0 0 0

)T

RCon(i)= 2•RCon(i-1), i≥ 1 i ∈ N
(4.16)

Subkeys then can be extracted corresponding to (4.17).

Ki =
(
k4i k4i+1 k4i+2 k4i+3

)
, 0≤ i≤ n (4.17)

AES maps a 128 bit (=̂16B=̂ 16 characters) fixed-length plaintext to a 128 bit ciphertext. To
actually apply the cipher to a plaintext with an arbitrary length, a mode of operation has to be
introduced. The simplest one is Electronic Codebook (ECB), where the plaintext is padded to
a length that is an integer multiple of 16 B. The padded plaintext is then split up to 16 B blocks
which are encrypted independently. [3, p. 69]

A more sophisticated mode of operation is Cipher Block Chaining (CBC), see Fig. 4.3. CBC
requires a 16 B Initialisation Vector (IV) that can be chosen randomly but should not be used a
second time. As discussed for ECB, CBC also has to be padded. The IV is added (XOR) to the
first block of the plaintext. The result is encrypted and becomes to the first block of the ciphertext.
Beginning from the second block of the plaintext, the previous ciphertext block is used instead of
the IV. [29, pp. 71–74]

Another cipher mode of operation is Counter (CTR). CTR generates cipher blocks by consecu-
tively encrypting the value of a counter and incrementing it afterwards. These cipher blocks are
concatenated and from a key stream with a length that is an arbitrary integer multiple of 16 B. For
encryption of e. g. a 19 B plaintext, the first 19 B of the key stream are simply added (XOR) to the
plaintext to translate it to the ciphertext. While CBC is decrypted by applying the same operations



4.2 Advanced Encryption Standard (AES) 23
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(derive n+1 
subkeys)

Initial 
AddRoundKey
(subkey #0)
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128 bit 
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i := 1

SubBytes
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(subkey #n)

no

128, 192 or 
256 bit key

Fig. 4.1. The Advanced Encryption Standard (AES) ciphering procedure uses n transformation
rounds and (n+1) subkeys to encrypt the plaintext. [29, pp. 138–141]
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Fig. 4.2. The Advanced Encryption Standard (AES) subkey preparation algorithm for 128, 192
as well as for 256 bit key length is the first step in the encryption algorithm.
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Fig. 4.3. The Advanced Encryption Standard (AES) cipher block chaining mode of operation is
used for plaintexts that are longer than 128 bit. [3, p. 73][36]

required for encryption in reverse order, CTR is encrypted and decrypted by exactly the same
algorithm. [22, p. 99]





5 Sub-GHz Frequency Band

Sub-GHz refers to frequency bands below 1 GHz in general. The term is vague defined, neverthe-
less most often Industrial Scientific Medical (ISM) frequency bands or bands that are allocated to
so called short-range devices are meant. Especially those frequency bands that do not require a
licence are relevant for IIoT tasks.

Popular protocols, such as IEEE 802.15.4 and Wireless M-Bus use the 868 MHz to 870 MHz band
in Europe and the 902 MHz to 928 MHz band in USA. Limits for 868 MHz to 870 MHz sub-bands
are given in Tab. 5.1. [9, pp. 277–313]

The aim of this chapter is to show why the sub-GHz frequency band is attractive for IIoT applica-
tions in general and which protocol best suits the needs in condition monitoring.

5.1 Benefits and Drawbacks

In this section benefits and drawbacks of the sub-GHz frequency band compared to the 2.4 GHz
band with respect to data rate, range and current consumption are elaborated. In particular, BLE
is a strong competitor of sub-GHz standards, because it also offers reasonable data rates paired
with low power consumption. This comparison should be carried out from a general point of view
that is not limited to a certain protocol.

Lower Frequency Upper Frequency Power Limit Max. Duty Cycle1

MHz MHz mW %

868.0 868.6 25 1.0
868.7 869.2 25 0.1
869.4 869.65 500 10.0
869.7 870.0 5 100.0

Tab. 5.1. The tabulated frequency bands [7], amongst others, can be used for short-range de-
vices in Europe without licence. They are applied in IEEE 802.15.4 and Wireless M-
Bus.

1The duty cycle limit refers to active transmission time and must be obtained within a span of 1 h at any time [7].
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5.1.1 Transmission Range

A wireless transmission between a transmitting antenna and a receiving antenna in free space can
be modeled by the Friis equation, see (5.2). In this equation Pt and Pr represent power fed into the
transmitting antenna respectively power available at the output of the receiving antenna. Gt and
Gr are power gain factors of the transmitting and receiving antennas. λ is the wavelength of the
radio wave and d the distance between the antennas. [28, pp. 183–185][10]

The Friis transmission equation,
Pr

Pt
= GrGt

(
λ

4πd

)2

, (5.1)

is valid for distances d� 2a2/λ , with the largest linear dimension of either of the antennas a. It
omits absorption effects of the transmission medium as well as effects of the ground. [10]

The wavelength λ can be expressed as the velocity of light c divided by the frequency f , yielding

Pr

Pt
= GrGt

(
c

4πd f

)2

. (5.2)

Based on the Friis transmission equation, a more realistic model for transmission, the link budget,
can be derived, see (5.4). It includes a more realistic path loss Lp based on a factor n that can be
found in [24], see (5.3).

Lp =

(
λ

4π

)2

·
(

1
d

)n

(5.3)

Furthermore transmit-chain losses Lt and receive-chain losses Lr at connectors and cables as well
as a margin Lm for fluctuations of n are considered.

Pr =
Pt ·Gt ·Gr

Lp ·Lt ·Lr ·Lm
(5.4)

Atmel Corp. [24] recommends a minimum margin Lm of 15 dB. Equation (5.4) is also often
formulated in absolute levels.

Note that the greatest portion of power is transmitted within an ellipsoidal shaped region between
sender and receiver, the first Fresnel zone. Therefore this region should be kept free from obstacles.
The maximum radius of the ellipsoid is proportional to

√
λ . [38]

The Friis transmission equation (5.2) can be used to derive the ratio between the power at the
transmitter and at the receiver. It is proportional to 1/ f 2 for a given distance d. Thus, the lower the
frequency, the lower is it’s attenuation for a certain distance. BLE operating at 2.4 GHz for exam-
ple, compared to a sub-GHz technique operating at 868 MHz, would require a transmission power
that is (2400/868)2 ≈ 7.6 times higher in order to reach the same distance, assuming an equal
sensitivity level and antenna gain factors of 1. Using equal transmission powers for both would
lead to a (2400/868) ≈ 2.8 times higher transmission range for sub-GHz. Transmission power
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for BLE is limited with 100 mW [7], while transmission power limits for sub-GHz depending on
the frequency band can be found in Tab. 5.1, e. g. 5 mW to 500 mW.

Another significant parameter for transmission range is the receiver sensitivity. It characterizes
the minimum power that is required at the receiver to distinct data from noise. Receiver sensitivity
decreases with data rate. This relation can be evaluated for the Texas Instruments CC1352P
dual-band MCU in [4] for example and also for STMicroelectronics devices in [30] and [31].
Considering the Texas Instruments device, only the slowest BLE mode working with data rates
of 125 kbit s−1 achieves a sensitivity that is comparable to sub-GHz, while the fastest BLE mode
allowing data rates of 2 Mbits−1 requires more than 20 times the power to barely receive a
packet.

Transmission range is a major benefit of sub-GHz technology.

5.1.2 Data rate

Data rate in general has a strong dependence on the specified protocol and the used mode. As a
typical limit [9] estimates data rates of 100 kbit s−1 for protocols in the sub-GHz ISM band, while
BLE enables data rates up to 2 Mbits−1. Another drawback of sub-GHz is that the duty cycle is
limited within most bands, see Tab. 5.1, while it is not for BLE. This limits the amount of data
that can be transmitted at a time.

Assuming a transmission with a carrier frequency of 868.95 MHz, the maximum duty cycle is
limited to 1 % per hour, that is 3.6 s. With a data rate of 100 kbit s−1 per hour only 100kbit s−1 ·
3.6s = 360kbit = 45kB can be transmitted.

5.1.3 Current consumption

The current consumption for an equal effective radiated power is higher for higher frequencies.
The higher losses are caused by faster switching in radio circuitry. Texas Instruments e. g. specifies
transmission current of the CC1352P MCU for 20 dBm with 63 mA at 915 MHz and 85 mA at
2.4 GHz2 [4].

5.1.4 Interference

A benefit of using sub-GHz bands is that there are only a few devices operating on it at present,
thus, interferences are rare. This can be a huge issue with 2.4 GHz technologies since many
devices, such as Wi-Fi routers, Bluetooth and microwaves are using it. In environments where a
lot of people have enabled Bluetooth on their mobile phone, e. g. at exhibitions, reliability of the
connection can get lost. Crosstalk with mobile telephone systems is also possible.

2The current measure of the 915 MHz frequency transmission refers to a supply current of 3 V, while the current
measure of 2.4 GHz refers to 3.3 V.
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5.1.5 Conclusion

There are many aspects that have to be taken into account for selecting an appropriate low-power
wireless transmission technology. The most important ones are transmission range, data rate,
current consumption and interference which all together decide the amount of energy that is
required for transmission of a particular block of data. Lower transmission power for same
distances together with outstanding sensitivity as well as fair current consumption are the key
features of sub-GHz technologies. Since smart sensors have capabilities to do computations on
their own and components such as bearings do not have to be monitored permanently, data rate
is not the limiting factor in many cases and therefor sub-GHz perfectly suits the needs. If a faster
data rate is required or the duty cycle limit can’t be satisfied BLE might be the network standard
of choice.

5.2 Avaliable Standards

Sub-GHz networking has recently become popular. There are many protocols already available;
however, there are hardly any devices on the market using them. Therefore, it is difficult to say
which of them will take hold.

Furthermore there are a lot of proprietary protocols that shall not be dealt with in this thesis, since
they would very likely limit hardware selection to the particular manufacturer.

5.2.1 IEEE 802.15.4 PHY/MAC

The IEEE 802.15.4 network standard defines a physical and a media access control layer, the latter
being a sublayer of the data link layer in the OSI model (see Chapter 3.1). It is a packet-based
approach that basically supports point-to-point or star topology. Furthermore AES-128 encryption
is supported and 216 nodes can be addressed. IEEE 802.15.4 is not limited to sub-GHz, it can also
be used with 2.4 GHz frequency bands. [9, pp. 277–279]

IEEE 802.15.4 is used as the basis for higher level wireless standards, such as Thread, 6LoWPAN,
Zigbee and various proprietary protocols.

6LoWPAN

6LoWPAN is a low-power wireless private area network that enables transmission of IPv6 pro-
tocols over IEEE 802.15.4 networks. It adds network and transport layers on top of the IEEE
802.15.4 stack and specifies data rates of 20 kbit s−1 for the 868 MHz frequency band. [14]
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The introduction of Internet Protocol (IP) to smart sensor allows to use existing well-proven infras-
tructure as well as already existing tools for management and diagnostics. It allows connecting
IIoT devices to the Internet. [14]

To reduce configuration overhead to a minimum, a stateless address auto configuration method is
specified. [15]

Thread

Thread is an open standard for Connected Home applications, featuring IP-based networking. It
uses 6LoWPAN which in turn is based on IEEE 802.15.4. [33, p. 27]

Though being based on the IEEE 802.15.4 physical layer, a physical interface conforming to the
2450 MHz specifications of IEEE 802.15.4 has to be supported. Therefore at the moment it can’t
be used for a sub-GHz physical layer. [33, p. 44]

It is likely that further versions of Thread will support sub-GHz technology.

Zigbee

Zigbee is a network standard for industrial monitoring, home networks and wireless remote control.
It is developed by the Zigbee Alliance and requires a licence for sale of commercial products. [9,
pp. 309–311]

Zigbee is based on IEEE 802.15.4 and supports the 868 MHz frequency band with a data rate of
20 kbit s−1. [9, pp. 309–311]

5.2.2 LoRaWAN

The term LoRaWAN is an abbreviation for long range wide area network. It is specified by the
LoRa Alliance and uses a proprietary modulation technique called LoRa. [17]

Using LoRaWAN, the smart sensor communicates with an arbitrary LoRa gateway that is in range
which passes the data to a LoRaWAN server via the Internet. The server processes the data and
manages devices. [17]

LoRaWAN enables data rates up to 50 kbit s−1 and reaches very high transmission ranges up to
40 km [39]. LoRaWAN is intended for the use in smart cities.



32 5 Sub-GHz Frequency Band

5.2.3 Wireless M-Bus

M-Bus is an abbreviation for meter bus and is used for remote reading of gas, water and electricity
meters. Wireless M-Bus is the radio variant of M-Bus and is specified in the ÖNORM EN 13757-4
standard, see [22]. [32, p. 10]

Wireless M-Bus allows data rates of up to 66.67 kbit s−1, depending on the mode used [22].

5.3 Selection of a Sub-GHz Standard

Especially for the use in IIoT applications, a standard that has already taken hold shall be selected.
In this case the decision was made for Wireless M-Bus.

Major reasons for selecting Wireless M-Bus were the availability of industry-suited components
on the edge gateway side as well as availability of sensors that use the standard. It’s already in use
for e. g. drive-by readouts of electricity meters.

Wireless M-Bus is licence-free and defined in a European Standard, which indicates a well-proven
standard.

Additionally, compared to standards based on IEEE 802.15.4 for example, the implementation of
Wireless M-Bus is simpler, offers higher data rates and is also designed for low power consump-
tion.
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Very basic features of Wireless M-Bus and reasons why it was selected were already discussed in
Chapter 5. In this chapter the network standard and it’s features shall be discussed more in detail,
especially the mode T which was chosen to be used in this thesis.

In general, the specification of Wireless M-Bus differentiates between a meter1 and a other that it
communicates with.

6.1 Modes

Depending on the application, an appropriate Wireless M-Bus mode has to be selected, see Tab.
6.1. Modes are named by a letter together with a number. While the letter is an abbreviation for the
intended purpose, the number “1” or “2” differentiates between a unidirectional2 or bidirectional
transmission mode respectively.

The mode S is for use with stationary devices. In this case it is usually sufficient to transmit in
intervals reaching from minutes to hours due to the fact that the other device can be assumed to be
in range. In contrast, mode T is intended for frequent transmissions in order to enable driving or
walking by other devices to capture data. Thus, transmission intervals are in the scale of seconds.
[22, p. 12]

Mode Frequency Deviation Encoding Chip rate Data rate Max. Duty Cycle
MHz kHz kbit s−1 kbit s−1 %

S1 868.3 50.0 M 32.768 16.38 0.02
S2 868.3 50.0 M 32.768 16.38 1
T1 868.95 50.0 3-of-6 100.0 66.67 0.1
T2-TX 868.95 50.0 3-of-6 100.0 66.67 0.1
T2-RX 868.3 50.0 M 32.768 16.38 0.1
R2 868.33 6 M 4.8 2.4 1

Tab. 6.1. Properties of some of the Wireless M-Bus modes defined in [22]. In this table “M”
denotes manchester encoding.

1A meter refers to a measurement-meter not a unit of length.
2Unidirectional refers to a meter that can transmit but not receive.



34 6 Wireless M-Bus

In order to reduce power in bidirectional modes, usually communication begins with a periodical
message from the sensor. This allows the sensor to enter a low power deep sleep mode instead
of permanently waiting to receive commands, while the other is assumed to be reachable at any
time. For transmissions from the other device to the meter, the former has to wait for one of the
latter’s periodical messages. After sending a periodical message, the meter is waiting to receive
a command from the other device for a defined time span. The other can use this time frame to
send it’s command. [22, p. 12]

To allow sending commands from the other device to the sensor with reasonable delays, the mode
T2 is appropriate.

6.2 Coding

Depending on the Wireless M-Bus mode either manchester or 3-of-6 encoding is used. Coding is
used to occupy a narrower baseband width with a direct component that is vanishing. It avoids
long sequences of “0” or “1” which leads to a more reliable connection. [22, p. 19]

6.2.1 Manchester

To manchester encode a stream of bits, each bit that is “0” is represented by the sequence “10”
and each bit that is “1” by a sequence “01”.

6.2.2 3-of-6 Constant-Weight Code

A more efficient encoding technique than manchester is the 3-of-6 constant-weight code. 3-of-6
refers to the fact that in the encoded representation each word consists of three “1” and three “0”
bits. [22, pp. 22–23]

To encode, each 4-bit nibble of data is replaced by a corresponding 6-bit word, see Tab. A.2.

6.3 Network Layers

In this section the Wireless M-Bus layers that are required for networking, such as the data link
layer and the transport layer are presented. Note that Wireless M-Bus does not define all seven
layers of the OSI-Model.
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C-Field Name Direction Function Confirmation

0x0 SND-NKE To meter Link reset after communication -
0x3 SND-UD To meter Send user data ACK/NACK/

RSP-UD
0x4 SND-NR From meter Send data without request (no reply) -
0xB REQ-UD2 To meter Request user data ACK/RSP-UD

Tab. 6.2. C-Field codes, amongst others, used in primary stations. Compare table to [22, p. 41].

C-Field Name Direction Function Initiated by

0x0 ACK Both directions Acknowledge reception SND-UD
0x1 NACK From meter Not acknowledge packet if it is invalid SND-UD
0x8 RSP-UD From meter Response of data after request REQ-UD2

Tab. 6.3. C-Field codes, amongst others, used in secondary stations. Compare table to [22,
p. 42].

6.3.1 Physical Layer

The physical Wireless M-Bus layer makes use of FSK or GFSK modulation (see Chapter 3.2)
with the carrier frequency and frequency deviation defined in Tab. 6.1. Before an actual datagram,
a synchronization pattern and a preamble corresponding to the selected mode is transmitted.

6.3.2 Data Link Layer

Beginning with the data link layer, a Wireless M-Bus packet is arranged in blocks. The data link
layer is always the first block, see Tab. 6.4. The second block can be an extended link layer or
a transport layer and is arranged according to Tab. 6.5. If the second layer exceeds the length
limit or further layers follow, the structure defined in Tab. 6.6 is used. It is distinguished between
the primary and secondary station, while the primary station is the station that initialized the
bidirectional communication. Usually this is the other device.

The data link layer defines the overall length L of the packet, including CRC-Fields but not the
length field itself. In the C-Field the function of the message is specified, which determines e. g.
if a confirmation is required, see tables 6.2 and 6.3. Different codes are used in primary and
secondary stations. Fields M and A are representing a manufacturer ID and the address of the
device respectively. The CRC-Field contains the CRC checksum3 of the particular block, see
Chapter 4.1. [22, pp. 38–43]

3The generator polynomial used in Wireless M-Bus CRC-Checks is x16 +x13 +x12 +x11 +x10 +x8 +x6 +x5 +
x2 +1. [22, p. 80]
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L-Field C-Field M-Field A-Field CRC-Field
1 B 1 B 2 B 6 B 2 B

Tab. 6.4. Frame format A of the first Wireless M-Bus block in a packet. [22, p. 39]

CI-Field Data Field CRC-Field
1 B (((L-9) modulo 16)-1) byte if it is the last block; else 15 B 2 B

Tab. 6.5. Frame format A of the second Wireless M-Bus block in a packet. [22, p. 39]

All further layers are represented by one or more additional blocks, see Tab. 6.6. The CI field
specifies the type of the following protocol and therefore how the following bytes have to be
interpreted.

6.3.3 Transport Layer

The transport layer defines the address of the meter that is communicated to and a status. A
configuration field defines if AES-128 CBC encryption is used, see Chapter 4.2, and defines
the meter’s receiving behaviour. The transport layer defines an access counter that is used to
avoid receiving a message twice and to assign responses to particular requests. If a request is
sent and therefore a bidirectional communication initiated, a so called frequent access cycle is
started. In frequent access cycle, meter and other both repeat their previous message as long as it
is not acknowledged by a new command or terminated. A timeout is used additionally to end the
frequent access cycle if one of the peers does not correctly terminate the connection. An example
for a bidirectional communication is given in Fig. 6.1.

6.3.4 Application Layer

The application layer handles actual data that shall be transmitted.

6.4 Evaluation of a Packet

Since Wireless M-Bus uses encoding and encryption, manual parsing of transmitted data is very
expensive. To simplify parsing of Wireless M-Bus packets, a tool was developed that can be used

Data Field CRC-Field
((L-9) modulo 16) byte if it is the last block; else 16 B 2 B

Tab. 6.6. Frame format A of optional Wireless M-Bus blocks in a packet. [22, p. 39]
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Fig. 6.1. Bidirectional Wireless M-Bus communication. Compare to [22, p. 88].
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to encode and decode data with either manchester or 3-of-6 constant-weight code. Furthermore
the tool can generate CRC checksums as well as encrypt or decrypt data using AES-128 with
CBC mode of operation, see Figure 6.2.

MBusTool was implemented using C++ with Qt, therefore many methods could be reused in the
firmware implementation.

6.5 Effective Data Rate

Data rates that are specified in Tab. 6.1 refer to the transmission rate that does not take protocol
headers and CRC checksums in account that reduce the rate at which user data can effectively
be transmitted. The effective data rate shall be calculated for the Wireless M-Bus mode T2 for
a datagram that is sent from the meter to the other device. The buffer of the transmitting MCU
is assumed to have a size of 255 B. Due to the fact that 3-of-6 constant-weight coding is applied,
effectively 2

3 ·255B = 170B of unencoded data can be transmitted. Subtracting the length of the
data link layer of 12 B including the CRC checksum yields 158 B remaining.

Dividing 158 B by the block size of the second and subsequent blocks of 18 B including CRC
checksums yields 8 blocks with a remainder of 14 B. The bytes left considering coding, data link
layer size and CRC fields can be obtained by 8 ·16B+12B = 140B.

Subtracting the size of the transport layer, 5 B, and subtracting an assumed 1 B for a CI field
and another 1 B for length of application data leads to 133 B remaining. Thus, the chip rate is
reduced by a factor of 133

255 . This leads to an effective data rate of 133
255 100kbit s−1 ≈ 50kbit s−1 =

6.25kBs−1.

The calculation assumed that the buffer of the MCU is fully used and therefore the calculated
effective data rate is only reached in the best case.
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Fig. 6.2. MBusTool was developed as a convenience during the implementation of Wireless
M-Bus. It features encoding and decoding, encryption and decryption using AES-128
CBC as well as CRC checksum calculation.





7 Programming Fundamentals

This chapter explains the basics of object-oriented programming and the way code is documented
in this thesis. It should also deal with patterns, such as singleton and publish-subscribe, which
often lead to very tidy and functional object-oriented code. Furthermore the concept of multi-
threading and the procedure of translating source code to machine code shall be introduced.

All remarks here refer to the C++ programming language, although being written as general as
possible.

7.1 Object-Oriented Programming

While in traditional procedural programming the algorithm was the central difficulty, object-
oriented programming has a strong focus on data. In object-oriented programming complex data
structures and algorithms are broken down into simpler classes, which contribute to fulfilling the
overall task. [2, pp. 11–12]

7.1.1 Classes

Objects, from a programmers point of view, are instances of classes. Classes consist of variables
and functions, which are called attributes and methods respectively in this context. State and
behaviour, thus, form a unit in object-oriented programming. [41, p. 265]

In class diagrams, classes are represented by a box where the first compartment contains the name
of the class. The second compartment consists of the attributes and the third contains method
declarations. For instances of the class the first compartment is underlined and contains the
instances name and the class name separated by a colon. Methods and static attributes are not
quoted again, since they are the same for all instances. [6]

Note the difference between a class and an instance or object of a class. A class is a general
definition of the features that are represented, while an instance of it contains specific values
representing a concrete object, see Figure 7.1. A class can be considered as a scheme according
to which objects are constructed. Objects are created by calling a constructor method, which has
the same name as the class. It is responsible for initializing the object. Before deletion, a so
called destructor is called, which de-initializes the object. This could include e. g. deallocation of
memory. The destructor has the same name as the class but with a leading ~. [41, pp. 285–295]
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ComplexComplex

-real : Real = 0.0
-imag : Real = 0.0

+set(in re:Real, in im:Real)
+get_real() : Real
+get_imag() : Real
+abs()  : Real
+arg()  : Real
+add(in c:Complex) : void
+sub(in c:Complex) : void
+mul(in c:Complex) : void
+div(in c:Complex) : Boolean

aComplexNumber:ComplexaComplexNumber:Complex

real : Real =  1.0
imag : Real = -1.0

Fig. 7.1. A class representing complex numbers in general could consist of two private real num-
ber attributes, real and imag, which are both initialized with 0.0 on instantiation.
Furthermore there are some public methods like add, sub, mul and div defined.
aComplexNumber represents an instance of it. The instance represents a specific
number, in this case 1− i1, to which other Complex objects can be e. g. added or
subtracted.

A class is defining visibility of data and functions. The keywords private, protected and public
are used to specify if the particular attribute or method is visible from within the class only, also
from within an inherited class or from everywhere. In class diagrams the specifiers are denoted
by -, # and + respectively at the left side of the attribute’s or method’s name within the class box,
see Figure 7.1. [41, pp. 272–273 407 845]

7.1.2 Static Attributes and Methods

In some cases attributes are required, which shall be the same for all instances, so called static
attributes. They could be used e. g. to count the number of instances of a class, see Figure 7.2.
Static attributes are analogue to global variables in procedural programming. To access a private
static attribute, a member function that returns the attribute’s value is required. Since the attribute
is independent from an object, a get-method that is also independent from an object should be
used. These methods are called static methods. Static attributes and static methods are underlined
in class diagrams. [41, pp. 343–349]
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CountInstancesCountInstances

-ninstances : Integer = 0

+CountInstances()

anObject:CountInstancesanObject:CountInstances

+~CountInstances()
+countInstances() : Integer

Fig. 7.2. CountInstances counts the number of its instantiated objects. The construc-
tor CountInstances() implements incrementation of the static attribute
ninstances, while the destructor ~CountInstances() decrements it. The num-
ber of instances can be retrieved by calling the static method countInstances().

7.1.3 Inheritance and Abstract Classes

A very efficient mechanism in object-oriented programming is inheritance. Derived classes inherit
all attributes and methods of the base class, while only those that are marked as public or protected
are visible for them. The base class is a more general representation of an object, while the derived
class is an extension to a more specific object. This has the advantage that the common part of
similar classes can be reused and only has to be written and debugged once. An example is
depicted in Figure 7.3. Inheritance from more than one class as well as deriving from a derived
class is possible. In class diagrams, inheritance is represented by a solid line with a triangle at the
base class end. Note that every object from type of the derived class is an object from type of the
base class, but not vice versa. [41, pp. 392–393 849]

Behaviour of methods that are defined in the base class can be overwritten in the derived class
if they are originally declared virtual. Overwriting can be applied for each inherited class sep-
arately independent to other derived classes. Dynamic linkage takes care that the method that
is overwriting the base class’s definition is even used when the derived class object is casted to
base class type. The fact that calling equal methods of classes pretending to be of the same (base
class) type can trigger different implementations is called polymorphism. This feature is used
e. g. to extend classes that are defined in pre-compiled libraries [41, p. 413]. Overwriting a virtual
method is represented in class diagrams by simply defining a method in the derived class that
exactly matches the definition of a base class’s method. [41, pp. 414–420]

A common interface can be conceived by a base class that declares virtual dummy methods for
the required functionality. Derived classes then overwrite the dummy methods with their specific
implementation. To avoid the need for dummy methods, abstract methods can be used. Abstract
methods are virtually declared but not defined, thus, a class containing one or more abstract
methods cannot be instantiated. Such classes are called abstract classes. Classes that derive from
an abstract class have to define every abstract method, else they are also abstract. Abstract class’s
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FileFile

-path       : String = ""

+open(in path:String) : Boolean
+read()               : Char[*]
+write(in content:Char[*])
+close()

-fileOpened : Boolean = false

XMLFileXMLFile

+parse()
  : XMLData

+setFile(in path:String)
  : Boolean

CSVFileCSVFile

-nparam       : Integer = 0

+addData(in data:DataSet[*])
+readData()
  : DataSet[*]

-separator    : Char = ";"

+setFile(in path:String)
  : Boolean

+write(in data:XMLData)

+is_opened()          : Boolean

+setSeparator(in sep:Char)
+getSeparator()
  : Char

measData:CSVFilemeasData:CSVFile

nparam     : Integer
separator  : Char

fileOpened : Boolean
path       : String

settings:XMLFilesettings:XMLFile

fileOpened : Boolean
path       : String

Attributes and 
Methods of
File

Additional
Attributes and 

Methods of
XMLFile

Attributes and 
Methods of
File

Additional
Attributes and 

Methods of
CSVFile

Attributes and 
Methods of
File

Fig. 7.3. The class File implements a very simple interface to handle files. The classes CSV-
File and XMLFile, which also represent files in general, inherit from File. They
extend the simple file interface by methods for easier handling of Comma Sepa-
rated Value (CSV) or Extensive Markup Language (XML) files. It is assumed that
DataSet is a class describing one line of data of a CSV file and that XMLData is a
class that can store an XML tree.
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names and abstract methods are print italic in class diagrams. [41, pp. 435–438 852]

7.2 Programming Patterns

Programming patterns are arrangements that can be implemented to solve certain design prob-
lems. Using them has the benefit that they are well-known and therefore constraints as well as
consequences can be read up in e. g. [11].

7.2.1 Singleton

The singleton pattern allows classes with only a single instance, to which it provides global access.
This behaviour is often desired for classes that represent global settings. Only one global settings
object is required, which should be easily accessible from everywhere in the application, see 7.4.
[11, p. 127]

The singleton pattern declares the class’s constructor protected that it can’t be instantiated from
outside the class. A static method Instance() is defined that constructs and stores the instance
in a static attribute at the first call. It returns a reference to the instance. [11, pp. 128–130]

Note that the class’s constructor is declared as protected and not as private, which means that it
is possible to derive from it. This enables instantiating the attribute referring to the sole instance
with an object of subclass type. [11, p. 130]

7.2.2 Publish-Subscribe

The publish-subscribe pattern is used to notify all subscribed objects that the publishing one
changed it’s state. To achieve this behaviour usually classes Publisher and Subscriber
are defined. Subscriber is an abstract class that only has one abstract method update(in
p:Publisher). All subscribers derive from it and implement the update method according
to the desired behaviour. Publisher maintains a list of references to subscribers, that can
be attached or detached arbitrarily at any time. A method notify() iterates through the list
and calls each subscriber’s update method, without having to know of which subclass type of
Subscriber the objects exactly are. It passes a reference to the publisher that the subscriber
can distinct which one is notifying. Publishing classes are derived from Publisher. An example
is illustrated in Figure 7.5. [11, pp. 293–303]

Commonly subscribers maintain a reference to the publisher. Thus, subscribers are able to put
requests to the publisher, that can in turn trigger the publisher to notify all of it’s subscribers.
This leads to a behaviour like individual subscribers would know about each other, which is not
necessary with the publish-subscribe pattern. [11, pp. 293–294]
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GlobalSettingsGlobalSettings

-uniqueInstance : GlobalSettings = 0

+Instance()     : GlobalSettings

#GlobalSettings()
+~GlobalSettings()

...

...

if(uniqueInstance == 0){
  uniqueInstance = new GlobalSettings();
}
return uniqueInstance;

Fig. 7.4. The class GlobalSettings applies the singleton pattern: It’s constructor is pro-
tected that it can’t be instantiated from outside. The sole instance is constructed at
the first call to the static method Instance() and is stored in the static attribute
uniqueInstance. Calling Instance() returns the object.

7.2.3 Smart Pointer

Depending on the case of application of an array, it is possible that it’s size is not known at compile
time. For example in processing sensor data the number of measurements, and therefore the size
of the buffer collecting the samples, depends on the certain setup. Therefore the compiler can’t
pre-reserve the required space on the stack for local buffers or in the data or bss sections for global
ones. Of course it would be possible to use a buffer with a fixed size that is capable of storing the
largest possible number of samples. This would not be very efficient by means of memory usage.
To solve this problem dynamically allocated memory is required.

Dynamically allocated memory can be requested at runtime and is limited. It is located in the
heap. In C++ dynamically allocated memory always has to be deallocated, else applications would
in most cases consume more and more heap memory while running. This is not experienced
until there is no more heap memory available. An error message would be triggered then, if
implemented, otherwise a program crash is caused. This phenomenon is called memory leak.
Since Java for example employs a garbage collection, dynamic allocated memory is deallocated
automatically. This avoids memory leaks generally.

In C++ it is also possible to achieve a similar behaviour by using smart pointers. The C++
standard library basically provides some implementations of smart pointers, while especially in
MCU environments they are not always available.

A simple smart pointer that is similar to the shared_ptr from the standard library can be
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DataExportDataExport

+update(in p:Publisher)

SubscriberSubscriber

+update(in p:Publisher)

...

...

MeasuringControllerMeasuringController

-measurementFinished()

...

...

DisplayDisplay

+update(in p:Publisher)

...

...

PublisherPublisher

-subscribers :
  Subscriber[*]

#notify()
+attach(in sub:Subscriber)
+detach(in sub:Subscriber)

**

for all s in subscribers
{
  s->update(this);
}

//finalize measurement
...
notify();

Fig. 7.5. The classes Display and DataExport shall be notified when MeasuringCon-
troller has finished a new measurement. Therefore the measuring controller sub-
classes Publisher. Display and DataExport are derived from Subscriber
and implement update(...) according to their desired behaviour. Objects of
Display and DataExport are attached to the measuring controller object, which
calls notify() when a new measurement is finished. This subsequently notifies the
Display and DataExport objects.
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implemented according to Figure 7.6. A class that is holding a reference to the maintained
object is used. Additionally it has a reference to an object of a class RefCount consisting of
a counter variable which can be incremented and decremented. RefCount counts the number
of smart pointer objects that exist and correspond to the same maintained object reference. In
the destructor of the smart pointer the counter value is checked. If the smart pointer object being
deleted is the last reference to the maintained object, the object is also deallocated. Otherwise
the counting object is decremented. It is required to define the smart pointer’s copy mechanism
in order that it increments the counting object after copying the references to the maintained
object and the RefCount object. Note that there exist as many RefCount objects as different
objects managed by smart pointers. Constructing more than one smart pointer object from the
same dynamic allocated memory object is not allowed while copying the smart pointer object is
applicable. Compare to [25].

Smart pointers enable assigning a scope to dynamic allocated memory and therefore allow treating
it like a regular variable. The overhead that is caused by the usage of smart pointers of course is
much higher than maintaining the memory manually. An implementation of a smart pointer class
can be found in Chapter B.1.

7.2.4 Doubly Linked List

In Section 7.2.3 dynamically allocated memory was introduced as a way to create arbitrary sized
arrays. Their size indeed can be chosen arbitrarily at the time of construction, but it can not
be changed afterwards. A concept that allows appending, sorting and removing of an arbitrary
number of elements is called doubly linked list1.

In doubly linked lists each element, next to it’s actual data, maintains references to the next and
the previous list elements which are of the same type, see Figure 7.7. Usually implementations
provide a class that has a reference to the first list element and feature functionality to access the
elements, as well as to append elements to the list or remove elements from it.

During the firmware part of this thesis a very special implementation of doubly linked lists was
developed, that avoids dynamically allocated memory usage and does not require runtime type
information. It has the drawback that each element can only belong to one list at a time. Figure
7.8 shows how it is implemented.

Each class that should enable it’s objects to be in such a list has to be derived from DequeEle-
ment. This effectively adds attributes for maintaining the references to the next and the previous
list element as well as methods to get them. A list itself is represented by a template class Deque
whereby T denotes the type of the subclassed list element. Since the class Deque is a friend
of DequeElement it is allowed to access private attributes and members of DequeElement.
This allows the list object to maintain the list element object’s references within them.

1The C++ standard library of course offers containers like std::vector or std::deque, but they are neither
suitable nor available for most microcontroller units.
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SmartPtrSmartPtr

-ptr      : T

+SmartPtr(in ptr:T)
+~SmartPtr()

-refCount : RefCount

T

RefCountRefCount

-count : Integer = 0

+releaseRef() : Integer
+addRef()

...

Example usage:
{
  SmartPtr<int> obj(new int[arbitraryLength]);
  …
  int sum = 0
  for(int i = 0; i < arbitraryLength; ++i)
  {

    sum += obj[i]; ← Accessing obj like a regular array.
  }

} ← Memory will be deallocated here automatically!

this->ptr = ptr;
refCount =
  new RefCount();
refCount->addRef();

if(!refCount
  ->releaseRef())
{
  delete ptr;
  delete refCount;
}

+operator=(in sp:SmartPtr)

if(!refCount
  ->releaseRef())
{
  delete ptr;
  delete refCount;
}
ptr      = sp.ptr;
refCount =
  sp.refCount;
refCount->addRef();

Fig. 7.6. A smart pointer class according to Chapter 7.2.3. The smart pointer class SmartPtr
is implemented as a template class that it can be used for arbitrary data types. A
RefCount object stores how many smart pointer objects referring to the same object
exist. The methods addRef() and releaseRef() increment respectively decre-
ment the counting variable count.
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DataData DataData DataData DataData

|

|

Fig. 7.7. In a doubly linked list each element has references to the previous respectively the next
list element. Compare to [41, p. 442].

DequeDeque

-first : DequeElement = 0

+push_back(in e:T)
+pop_back()  : T

T

+pop_front() : T

DequeElementDequeElement

-m_prev : DequeElement
  = 0xFFFFFFFF

+getPrev() : DequeElement
+getNext() : DequeElement

-m_next : DequeElement
  = 0xFFFFFFFF

+getLast() : DequeElement

+push_front(in e:T)

+getFirst(): DequeElement

+count() : Integer
...

Fig. 7.8. Implementation of a doubly linked list suitable for microcontroller units.

By only allowing to append elements of the particular type T, and not of DequeElement
(which would enable to append all classes that subclassed DequeElement), it is obvious that
all involved references, which are stored as DequeElement references, are also of the specific
type T. This prevents requiring runtime type information, which is usually used if a particular
object type should be identified from a reference of base class type.

An implementation of a doubly linked list can be found in Chapter B.2.

7.3 Concurrency

Concurrency in computer systems refers to performing multiple independent activities in paral-
lel. While a single core system can only run one task at a time it can switch between two or



7.3 Concurrency 51

more tasks, creating the illusion they happen concurrently. Processors with multiple cores allow
genuine concurrency. The difference is illustrated in Figure 7.9. Notice that this is a simplified
representation. Task switches in single core machines involve saving the CPU state and reloading
the state for the task that is switched to. These delays can not be neglected in overall performance.
Although two or more CPU cores in a typical personal computer enable genuine concurrency, task
switching is required to handle more tasks than the hardware can run in parallel. Keep in mind
that a personal computer is typically running some background tasks as well as user tasks, where
each of them possibly employs multithreading in addition. The so-called scheduler that imple-
ments task switching is a core part of the operating system. A notably simple implementation of
a scheduler is discussed in [27]. Concurrency is used in order to separate concerns as well as to
increase performance. [40, pp. 5–6 10]

Dual Core

Single Core

Core 1

Core 2

Task 1

Task 2

Execution Time

Fig. 7.9. Concurrency on single vs. dual core computers: While the dual core machine supports
genuine concurrency, the single core utilizes task switching. Compare to [40, p. 6].

An example for genuine concurrency in order to separate concerns is given in Chapter 2, where a
separate processor is used to handle radio commands.

7.3.1 Multitasking vs. Multithreading

The two common approaches to utilize concurrency are multitasking and multithreading. Mul-
titasking is based on completely separate processes that communicate via operating system’s
resources. This approach is easier to handle for the programmer, since the tasks do not share
resources and communication between them is based on higher-level communication mechanisms.
The simplification in intercommunication is at the cost of resources. [40, pp. 7–8]

Multithreading is based on processes that operate in the same shared memory space, so called
threads. This means that the same global variables can be accessed from each thread. While the
intercommunication between threads is very fast, the programmer has to ensure that structures of
data seen by threads are consistent at any time. Without protection an inconsistency could occur
when one thread is reading a memory location that is currently being written by another. Common
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synchronizing mechanisms that can avoid such conflicts are called mutex and semaphores. [40,
pp. 9–10]

7.3.2 Synchronization

To avoid e. g. corruption of data on concurrent access from multiple threads, synchronization is
required. A commonly used synchronization primitive is called mutex, which is a composition
of mutual exclusion. A mutex is locked at the beginning of a critical section and is unlocked
at the end. Other threads can not enter the critical section at the same time since the call to the
mutex’s locking method blocks until it is unlocked again by the thread that locked it initially. In
the meantime the locking thread owns the resource.

A semaphore is a more general approach to control access to limited resources. Semaphores use
two atomic operations, post and pend, which both can be called from arbitrary threads at any time.
Post increments the value of a counter, while pend waits for the counter value to exceed 0, then it
decrements it and returns. If a counter with a maximum value of 1 is used, it is spoken of a binary
semaphore. The intention of semaphores is to notify another thread that a resource is available
again. A binary semaphore can also be used like a mutex.

Both mechanisms have to be supported by the processor.

7.4 Compilation & Linking

In this chapter many programming concepts were already presented. Now the gap between writing
a program in the high level language C++ and flashing an executable to an MCU should be closed.
The whole procedure is depicted in Figure 7.10.

Programming itself takes place in an Integrated Development Environment (IDE), which is basi-
cally a text editor. Header (.h) and source files (.cpp) contribute to the overall software solution.
The headers contain declarations that declare which symbols are going be defined in a source file.
Most often the symbols defined in a source file are declared in a header file with the same name.
Both source files and header files include header files, while mutual inclusion is not allowed.

The first step in translating source code to an executable is preprocessing. During preprocessing
macros are expanded and precompiler-switches are evaluated.

Subsequently, source files are going to be compiled. Compilation is the process of translating
source code into machine code. This is conducted on a source file per source file basis. Processing
the source files consecutively is possible because the compiler does not need to know how other
source files define particular symbols. It is sufficient to know their declaration, which is achieved
through inclusion of the header files corresponding to relevant other source files. For each source
file an object file containing machine code is created during compilation.
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The last step is linking, which puts object files as well as precompiled external libraries, if used,
together to the executable file. Note that in this step machine code parts of actual implementations
made in any of the source files are linked to each other. Thus, changing a source file requires
only recompilation of the particular file and relinking. The same principles apply for precompiled
external libraries. Relevant header files declaring library symbols have to be included. Precom-
piled library files containing the implementations have to be included in the linking process. [41,
pp. 31–32]

When compiling source code for another platform, e. g. firmware for a MCU compiled on a PC, it
is spoken about cross-compilation.
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Fig. 7.10. Procedure of translating source code to an executable file. This involves precompila-
tion, compilation and linking.
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8 Hardware

In this chapter the hardware components that were used to develop a basic Wireless M-Bus
condition monitoring system are explained. The system is split into a smart sensor and an edge
gateway part. Additionally a proprietary current measurement circuit that allows wide current
ranges is introduced.

8.1 Smart Sensor Development Setup

To actually start developing a smart sensor at first a MCU has to be selected, which is the heart
of the system. As already mentioned in Chapter 2, it was decided to use the Texas Instruments
CC1352P dual-band microcontroller in this thesis. The system’s sensing element has been selected
to be a Kionix KX222-1054 acceleration sensor. Development boards of the MCU as well as
evaluation boards of the sensor are used, in which the necessary basic circuitry is already built up
together with the particular chip. The main features of those components are as follows.

• Texas Instruments LaunchPadTM kit with CC1352P MCU

1. Basic Texas Instruments CC1352P circuit

2. PCB antenna for 868 MHz and 2.4 GHz

3. TI XDS110 JTAG debug probe embedded

4. Macronix MX25R8035F 1 MB external flash connected via SPI

5. Two programmable LEDs

6. Two programmable buttons

7. SPI, I2C and UART interfaces

• Kionix KX222-1054 tri-axis accelerometer evaluation board

1. Basic Kionix KX222-1054 circuit

2. Selectable range ±8 g, ±16 g and ±32 g

3. Selectable sample rate up to 25.6 kHz

4. SPI and I2C interface



58 8 Hardware

Fig. 8.1. The hardware setup consists of a TI LaunchPadTM development board and a Kionix
KX222-1054 evaluation board. They are both mounted on a 3D printed frame.

The MCU supports sub-GHz as well as 2.4 GHz networking, which can be used together e. g. to
benefit from sub-GHz technology in an IIoT application while using a BLE interface for over-
the-air upgrade. The device has an outstanding receiver sensitivity for sub-GHz modulation
methods.

The ARM Cortex-M4 CPU with floating point unit provides enough computational power to
actually perform computations, such as downsampling directly on the smart sensor, thus, reducing
the amount of data that has to be transmitted to the edge device.

The sensor hardware development setup is made up of the MCU development board and the sensor
evaluation board which are both mounted to a 3D printed frame that keeps the PCBs in position,
see Fig. 8.1. The architecture of the MCU development board as well as the connection to the
sensor via SPI is illustrated in Fig. 8.2. SPI is used due to high data rate demands. Using I2C
would not be beneficial.

The setup is usually powered by the USB connection to the developer’s PC, but can also be
powered from a separate power supply or a battery. Especially for measuring current consumption
of the hardware it is necessary to disconnect the USB connection and remove all jumpers that
connect the JTAG programmer to the MCU.

The sensor evaluation board basically features a LED that indicates if it is powered. Since the
overall current consumption during deep sleep periods of the microcontroller is much less than the
LED current, the LED had to be disabled. This was achieved by desoldering the series resistor.



8.1 Smart Sensor Development Setup 59

TI LaunchPad™ kit with
CC1352P MCU

TI LaunchPad™ kit with
CC1352P MCU

SCLK
MOSI
MISO
!SS

CC1352P
MCU

SPI1/SCLK
SPI1/MOSI
SPI1/MISO
SPI1/!SS1

Kionix
KX222-1054

S
C
L
K

M
O
S
I

M
I
S
O

 
!
S
S

External
Flash

A
N
T

Antenna

S
P
I
2
/
S
C
L
K

S
P
I
2
/
M
O
S
I

S
P
I
2
/
M
I
S
O

S
P
I
2
/
!
S
S
1

A
N
T

J
T
A
G
/
* XDS110

Programmer

J
T
A
G
/
*

USB USB
Developer

PC

Fig. 8.2. Block diagram of the sensor development setup that was used in this thesis.
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Fig. 8.3. The edge gateway setup consists of a RevolutionPi Connect paired with Wireless M-
Bus module and an antenna.

8.2 Edge Device Setup

The edge device is based on an IEC 61131 certified Industrial PC (IPC), the Kunbus RevPi
Connect. It is utilized with a quad-core 1.2 GHz CPU, 1 GB RAM and 4 GB storage. Furthermore
it has two Ethernet interfaces that can be used to connect e. g. to an automation network and the
corporate network simultaneously [26]. The device is running the operating system Raspbian with
a real time patch.

The RevPi Connect was chosen because a Wireless M-Bus extension module for it is available, the
RevPi Con M-Bus module. The module is connected via a proprietary connect bridge interface
and is communicated with via a serial port. It requires an external antenna to be attached.

The system has to be supplied by an external 24 V power supply and is mounted on a DIN rail.
The whole setup is depicted in Fig. 8.3.

8.3 Current Measurement Circuit

The first current measurement approach used a measuring device that has three ranges 1 nA to
1000 nA, 1 µA to 1000 µA and 1 mA to 1000 mA. Unfortunately the current consumption of the
sensor development setup was close to the lower limit of a particular range in many cases, which
caused very noisy measurements, see Fig. 8.4a.

Measuring current consumption of the sensor development setup is a difficult concern since the
current varies from about 1 µA to approximately 65 mA, depending on the task that is currently
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a)

b)

Fig. 8.4. The same measurement was conducted using a measuring device with inappropriate
ranges in Fig. 8.4a and with the developed circuit in Fig. 8.4b.
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Fig. 8.5. After testing the breadboard prototype, a PCB version of the current measurement
circuit was built.

performed. In order to avoid buying an appropriate expensive current measuring device a relative
simple circuit of operational amplifiers was invented that was then used for current sensing. Fig.
8.4 compares the circuit to the measuring device used in a first approach.

The current measurement circuit prototype was built on a solderless breadboard. After some
improvements, a robust PCB version was built that simplified mounting of components in Surface
Mounted Device (SMD) packages. It also reduces noise due to shorter wiring.

8.3.1 Schematic

The schematic of the current measurement circuit is explained in figures 8.6 and 8.7a - 8.7c.

The measurement itself is based on a transimpedance amplifier [13, p. 184] that utilizes a push-
pull amplifier [13, pp. 91–94] as a power stage. The feedback resistor that determines the tran-
simpedance is implemented as an IC socket in which arbitrary resistors can be plugged. This
enables to vary sensitivity.

The transimpedance amplifier is followed by another IC socket that enables e. g. to plug in a
low-pass filter. The low-pass filtered signal is put out via a voltage follower. This stage can be
used to determine mean current consumption.

Note that it measures the current of the external circuit together with the quiescent current of the
voltage regulator IC5. To minimize the effect of the regulator, a special type with a very low
quiescent current < 500nA was used.
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Fig. 8.6. The current measuring circuit requires a sophisticated power supply, which is powered
from 28 V to 32 V. R1 and R2 build a voltage divider, that is a reference for the center
voltage. The operational amplifier IC1, together with the push-pull amplifier R3-R6,
D1-D2 and Q1-Q2 facilitates current source and sink capabilities at center voltage level.
The linear voltage regulators IC2, IC3 and IC4 are responsible for supplying 12 V,
−12 V and 5 V respectively. C1-C6 stabilize the regulators.
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Fig. 8.7. Explanation of the current measuring circuit’s schematics.
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Fig. 8.8. The transimpedance amplifier circuit that is using a real operational amplifier.

8.3.2 Measuring Error Estimation

In this section the transfer function of the transimpedance amplifier, which is the main module
of the circuit is derived including deviations from the ideal operational amplifier. Afterwards,
the transfer function together with specified characteristics of a particular operational amplifier is
used to estimate the accuracy of measurements.

The schematic of the transimpedance amplifier with a real operational amplifier is given in Fig.
8.8. It includes influences of offset voltage, bias and offset currents as well as the quiescent current
of the voltage regulator IC5 in Fig. 8.7a, which is assumed to be constant.

The circuit can be split up in a part that deals with constant current and voltage sources and a part
dealing with the dynamic current that is to be measured according to Helmholtz’s law, see Fig.
8.9.

The measured current
Im = Iq + Is, (8.1)

with respect to the quiescent current of the voltage regulator IC5 in Fig. 8.7a denoted as Iq and
the current of the external smart sensor to be measured Is.

Kirchhoff’s voltage law yields
0 =Ud +Uos−Udr, (8.2)

with respect to the difference voltage of the ideal operational amplifier Ud , the offset voltage of
the operational amplifier Uos and the difference voltage of the real operational amplifier Udr.
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b) Dynamic part of the circuit

Fig. 8.9. Superposition of static and dynamic circuit parts depicted in figures 8.9a and 8.9b
yields the overall circuit depicted in Fig. 8.8.
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The complex gain G of an operational amplifier with respect to the frequency f can be formulated
as

G =
G0

1+ i( f/ fc)
, (8.3)

with respect to the open-loop gain G0 and the critical frequency fc. The critical frequency of an
operational amplifier fc = f0/G0, with respect to the gain-bandwidth product f0 and the open-loop
gain G0. [34, p. 539]

The definition of the gain yields

Um =Ud ·G = (Udr−Uos) ·G, (8.4)

using the definition of the offset voltage [34, pp. 530–532].

The bias current of a real operational amplifier is defined as

Ib =
1
2
· (I++ I−) (8.5)

and the offset current of a real operational amplifier is defined as

Ios = I+− I−, (8.6)

with respect to the current flowing into the non-inverting input I+, respectively into the inverting
input I− of the amplifier. [34, pp. 532–534][23]

Kirchhoff’s current law at the inverting input yields

Im + IR− I− = 0. (8.7)

Using (8.5) and (8.6) to eliminate I+ yields

I− = Ib−
Ios

2
. (8.8)

Using (8.8) and (8.7) to eliminate I− yields

0 = Im + IR− Ib +
Ios

2
. (8.9)

Kirchhoff’s voltage law can be used to derive

0 =Um +Udr− IR ·R, (8.10)

with respect to the feedback resistor R and the output voltage Um.

Using (8.4) and (8.10) to eliminate Udr yields

Um

G
+Uos = (Ib−

Ios

2
− Im) ·R−Um, (8.11)
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which can be rearranged to achieve

Um =
1

1+1/G

((
Ib−

Ios

2
− Im

)
·R+Uos

)
. (8.12)

The operational amplifiers gain G depends on the frequency. Therefore, (8.12) shall be separately
evaluated for the static part, see Fig. 8.9a, and for the dynamic part, see Fig. 8.9b. Note that static
parts of voltages and currents are indexed with an additional “s”, while dynamic parts are indexed
with an additional “d”.

For the static part
Ims = Iq (8.13)

and
G( f = 0) = G0 (8.14)

as well as
G0� 1 (8.15)

is assumed yielding the static part of the output voltage

Ums =
1

1+1/G0

((
Ib−

Ios

2
− Iq

)
·R+Uos

)
≈
(

Ib−
Ios

2
− Iq

)
·R+Uos.

(8.16)

For the dynamic part, all static voltage sources are replaced by bridges and all constant current
sources replaced by breaks, yielding

Umd =− 1
1+1/G

·R · Is. (8.17)

The magnitude of Umd can be written as

|Umd |=
G0 · f0√

( f ·G0)2 +( f0 · (G0 +1))2)
·R · Is. (8.18)

The composition of (8.17) and (8.16) yields the equation describing the overall system

Um =

(
Ib−

Ios

2
− Iq

)
·R+Uos−

1
1+1/G

·R · Is. (8.19)

It shall be corrected by the voltage, that is caused by the quiescent current of the voltage regula-
tor

Uq =−Iq ·R0, (8.20)
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Symbol Min. Nom. Max. Unit Device

R0 500 Ω

R 499.5 500.5 Ω 0.1%
Iq 500 nA TPS78230 [35]
G0 0.8 31.6 106 LTC2057 [18]
f0 1.5 MHz LTC2057 [18]

Uos 4 µV LTC2057 [18]
Ib 300 pA LTC2057 [18]
Ios 460 pA LTC2057 [18]

Tab. 8.1. The tabulated values are characteristic for the components used in the current measur-
ing circuit, see Chapter 8.3.1.

yielding the voltage corresponding to the measured current of the external sensor

U s =Um−Uq

=

(
Ib−

Ios

2
− Iq

)
·R+Uos + Iq ·R0︸ ︷︷ ︸
Fa

− 1
1+1/G

·R︸ ︷︷ ︸
A·R0

·Is, (8.21)

with respect to the nominal value R0 of the feedback resistor R, the absolute measurement error Fa

and the attenuation A. An arbitrary signal can be described analogue with a term for each spectral
component.

The attenuation A can be used to calculate the relative error

Fr = |A|−1. (8.22)

The relative error Fr is composed of the relative error of the feedback resistor and the attenuation
caused by demands on the operational amplifiers gain, which can’t be met for higher frequencies.
At the unity-gain frequency f0 the signal is attenuated by −3 dB corresponding to ≈−29.3%.

Evaluating the absolute error according to (8.21), together with worst case values from Tab. 8.1,
leads to a lower limit of the absolute error of −3.65 µV and to an upper limit of 4.38 µV. The
worst-case relative error with respect to the frequency is depicted in Fig. 8.10.

8.3.3 Phase compensation

In Chapter 8.3.2 equations describing the transimpedance amplifier were derived, which take
imperfections of the operational amplifier, such as offset voltage and limited unity-gain frequencies
into account. Another impact on the dynamic behaviour of a transimpedance amplifier is caused by
the capacitance Ci at the input, see Fig. 8.11. Note that the capacitance Ci represents all capacitive
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Fig. 8.10. Relative error of a transimpedance amplifier with characteristics specified in Tab. 8.1.

effects at the input, such as the operational amplifier’s input capacitance or the capacitance of
protection diodes.

Together with the feedback resistor R, the input capacitance Ci acts as a low-pass filter in the
feedback. The additional phase-shift that is caused by the low-pass filter can lead to resonances
for high frequencies. More precisely, the 90◦ phase-shift of the operational amplifier itself, the 90◦

of the low-pass filter and the 180◦ caused by the negative feedback can add up to 360◦, yielding a
positive feedback, see Fig. 8.12. [12, p. 41]

The resonance peak at least affects noise which can be enough for instable operation. The effect
should be considered if the critical frequency of the feedback low-pass filter

fgi = 1/(2πRCi) (8.23)

is lower than the unity-gain frequency f0 of the operational amplifier.

To compensate the instability, an additional capacitor C f can be placed in parallel to the feedback
resistor R. Taking effects of the capacities into account, (8.18) slightly changes to

Umd =− 1
1+ 1

G·β
·R · Is, (8.24)
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with respect to

β =
1+ i2π f ·RC f

1+ i2π f ·R(Ci +C f )
, (8.25)

see [12, pp. 39–43].

That the transimpedance amplifier circuit works properly, the condition

|G| ·
∣∣∣β ∣∣∣� 1, (8.26)

or rearranged

|G| � 1∣∣∣β ∣∣∣ , (8.27)

has to be fulfilled. Therefore 1/
∣∣∣β ∣∣∣ is called gain demand.

The resonance peak occurs at the frequency

fr =
√

fgi · f0, (8.28)

where the operational amplifier’s gain |G| and the gain demand 1/
∣∣∣β ∣∣∣ are equal. [12, p. 41]

A simple design equation for the compensation capacitor C f is given by

C f =

√
Ci

2π ·R · f0
, (8.29)

for Ci�C f . [12, p. 49]
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Fig. 8.11. Phase compensation can be achieved by placing a capacitor in parallel to the feedback
resistor. Compare to [12, p. 42].
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9 Firmware

This chapter documents the firmware that is running on the smart sensor. At first the main threads
in which the application was split up are explained. Afterwards the classes implementing most
of the features are discussed. The firmware is implemented in object oriented C++ using Texas
Instrument’s TI-RTOS operating system.

9.1 Program Flow

The firmware is split up in two threads to separate the concerns of networking and measuring, see
Fig. 9.1.

The network thread at first sets up the network stack. This includes allocating a buffer memory,
setting up the device’s Wireless M-Bus address as well as the AES-128 encryption key. The
thread then waits for the network semaphore to be available, which is cyclically posted by a timer
interrupt (external). Then it checks if a new dataset is available. In the case that a new dataset
is available in the external flash memory, a reference to it is stored. In the other case the latest
dataset is chunked and transmitted part by part until a new dataset is available.

The measuring thread is initialized by allocating temporary buffers, setting up the time module to
facilitate creation of timestamps and preparing the sensor. A particular sensor is derived from an
abstract sensor class, while the MeasScheduler class allows to handle an arbitrary number of
sensors by means of triggering their measurement method on a regular basis. Therefore the sensor
objects have to be passed to the measurement scheduler MeasScheduler.

The scheduler basically iterates over the sensors to determine which is the next to be triggered.
Then it sets up a timer generating an interrupt at the time, when the next sensor shall be triggered.
The timer interrupt posts the semaphore that the measuring thread is waiting for after starting
the timer. Then the measurement of the particular sensor is triggered, which can include data
processing, depending on the sensor. The datasets are stored on the external flash. Finally, the
next measurement is scheduled.

A sensor is basically implemented as a class derived from AbstractSensor. The concrete
sensor class defines how a measurement is conducted. Each AbstractSensor has a Data-
Manager object that is responsible for storage of measuring data. Each DataManager in turn
has a list of DSPAbstractComputation objects, each defining a particular algorithm, e. g.
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downsampling. After acquiring, the measuring data are processed and then written to non-volatile
memory.

The threads intersect at the DataManager object that is responsible for reading and writing data
to the external flash memory. In order to synchronize the threads, a mutex is used to provide
exclusive access to the DataManager object. To check which sensor was the last triggered and
if a new dataset is available, the thread safe DataExchange class is used.

9.2 Implementation

This chapter is documenting the implementation of the main features of the smart sensor firmware,
such as the Wireless M-Bus stack, the measurement scheduler and the memory management.

It was decided to document object-oriented code by means of class diagrams together with a
verbal explanation of the usage.

9.2.1 Wireless M-Bus Stack

The Wireless M-Bus stack is based on the MBusRFLayer class that implements encoding and
the interfacing with the Texas Instruments CC1352P’s radio core. The class can be considered
as the physical layer together with the radio core and the RF circuitry. It passes the encoded
datagram to the radio core, which is responsible for interfacing the RF circuitry and therefore
actual transmission. At the moment packets can be transmitted but not received.

The class MBusRFLayer, see Fig. 9.2, contains a Deque, see Fig. 7.8, that maintains the
consecutive layers, which have to be derived from MBusAbstractLayer. The MBusAb-
stractLayer base class provides functionality to network layers to communicate with each
other by means of events, allowing to exchange objects. It defines virtual methods data(...)
and count() which are used by MBusRFLayer to copy data from the layer’s buffer to the
transmission buffer. The method coversSubsequentLayers() returns true if the layer’s
buffer includes data from all subsequent layers, which then do not have to be considered anymore.
This is the case for the transport layer, if it is configured to encrypt all subsequent layers with
AES-128 CBC (see Chapter 4.2). A layer’s buffer is defined as an array if it’s size is known at
compilation time, otherwise a smart pointer, see Chapter 7.2.3 is used.

The data link layer for example is implemented according to Fig. 9.3. Further layers, such as the
transport layer as well as the user data layer are defined in a similar way.

To send a Wireless M-Bus datagram, at first objects of all layers, as well as an object of MBus-
RFLayer have to be defined. Then the layers have to be pushed on the network stack using
MBusRFLayer’s method pushLayer(...). Before sending any message, the static method
Initialize() has to be called to prepare the radio core. To initiate transmission MBusRF-
Layer’s method send(...), with the used coding scheme as an argument, has to be called.
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Fig. 9.1. The firmware is split up in two threads. The network thread is responsible for transmis-
sion of datasets, while the measuring thread periodically triggers measurements.
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The method at first iterates over all network layers and calls their transmissionPending()
method to notify them to prepare for transmission. Then the prepareBuffer(...) method
copies data from the layer’s buffer to the transmission buffer with respect to the Wireless M-Bus
block structure, see tabulations 6.4, 6.5 and 6.6. This operation includes generation of CRC
checksums (Chapter 4.1). Finally the transmission buffer is encoded using the specified scheme
and passed to the RF core.

9.2.2 Measurement Scheduler

The singleton class MeasScheduler, see Fig. 9.4, is responsible for scheduling measurements.
It maintains a list of sensors that it is responsible for.

At first, sensor objects have to be created and added to a list, in this case to a Deque<Abstract-
Sensor>, see Fig. 7.8. The list then has to be passed to the MeasScheduler by the method
setSensorList(...).

Before usage, the MeasScheduler has to be initiated by initializeScheduler(). This
sets up the clock module and the semaphore that are used together for timing.

Then runContinuousLoop() is called. The method is an endless loop that cyclically resched-
ules measurements, waits until the next measurement has to be started and triggers it. Reschedul-
ing iterates over all AbstractSensors and uses the timeLastMeasurement and peri-
odMeasurement properties, which define when the last measurement was triggered and the
period, respectively, to identify the sensor that has to be triggered next. The time until the next
measurement is calculated and then a timer is set up to generate an interrupt at that time. In the
meantime, the task is waiting for the semaphore that is to be posted by the timer interrupt.

Finally, the measurement is triggered and the DataExchange objects are notified, that the
particular sensor has acquired new data. Then the cycle starts again with rescheduling.

9.2.3 General Sensor Interface

The class AbstractSensor, see Fig. 9.4, provides a general interface to time and trigger
measurements. Each concrete sensor is represented by a class derived from AbstractSensor.
It utilizes or implements a driver for actual communication with the sensor. This interface allows
the MeasScheduler to handle a number of different sensors.
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9.2.4 Memory Management

The abstract class DataManager, see Fig. 9.5, is defining an interface for temporary and
permanently1 storing measuring data. Since data can be stored permanently on e. g. an internal
flash memory, an external flash memory or an Electrically Erasable Programmable Read-Only
Memory (EEPROM), it was decided to use an abstract class for storage. In this case an external
flash memory was used and therefore the abstract class was implemented for an external flash.

To use the DataManager, at first the type of data and header size of the application have to be
specified in the constructor. The class internally uses byte arrays for storage and takes care of type
conversion. Then AbstractComputation type objects can be added to the DataManager
object. The specified computations are applied to the measuring data before permanently saving
them. The DataManager object is then passed to the AbstractSensor that uses it. The
AbstractSensor can now use the methods addHeaderData(...) and addData(...)
to add header data, respectively, measuring data. If it is finished, it has to call save() to trigger
performance of computations and then permanently save the data.

Flash memory can only be deleted in blocks. More precisely, each bit can separately be toggled
from “1” to “0” while resetting bits from “0” to “1” is only feasible in large blocks. Furthermore
a mechanism is required that enables to delimit particular datasets in memory.

It was decided to further segment each block of the external flash memory according to Fig. 9.6.
Each segment has a header specifying if it is the first segment representing a particular dataset and
if the segment is valid, see Tab. 9.1. The segment header is followed by an index that is indicating
blocks that belong to the same dataset. If the segment is the first one representing a particular
dataset, the length of the dataset follows. This allows to check if all segments of a particular
dataset are available and valid. The remaining bytes of the segment are used for actual data.

If a dataset is written to the external flash as a number of segments, at first a header stating that
the segment is currently being written is used. After the whole dataset has been written, the
distinctive bit changing the status from is being written to valid is cleared. This enables detection
of corrupted data caused by a reset during the writing operation.

The class DataManager can easily be adapted to a wear leveling enabled permanent storage for
settings.

9.2.5 Auxiliary Classes

Sensor data as well as networking requires time of day. Time is maintained within a RTC module
that is often battery backed up. To simplify generation of a timestamp or to set up time, the
singleton class TimeMod was implemented, see Fig. 9.7. The method getTime(...) can be
used to create a timestamp, while setTime(...) is used for setup.

1Note that permanent means as long as the allocated memory is not full. Then it is overwritten in a circular buffer
manner.
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Segment header
Bit 3 Bit 2 Bit 1 Bit 0

H S2 S1 S0

H Definition
0 Second or subsequent segment (no length field)
1 First segment

S2-S0 Definition
111 Segment is empty
110 Segment is being written
100 Segment is valid
000 Segment is invalid

Tab. 9.1. Header used for storage of a segment in external flash memory.

In a battery supplied system it is important to provide methods for monitoring the battery level.
Therefore the singleton class BatteryTempMod was implemented. See Fig. 9.8. It allows
to query supply voltage and battery level via getVoltage() and getBatteryPercent()
respectively. Furthermore the interface can be used to read the device temperature acquired by an
internal temperature sensor via getTemerature().

9.2.6 Over the Air Download

Over the air download was implemented according to a Texas Instruments code sample using
their Bluetooth stack together with a bootloader. The over the air download functionality is
implemented in the application firmware, while the bootloader is a stand-alone firmware that is
responsible for checking available firmware during the boot process and branching to a specific
one. It is not modified by an application firmware update.

Over the air download was only used in early versions of the firmware, since the 868 MHz
and 2.4 GHz PCB dual-band antenna then was replaced by an external antenna only supporting
868 MHz.

9.3 Low power deep sleep

Entering low power deep sleep mode when idle is initiated by the Texas Instruments TI-RTOS
operating system. Each driver used maintains power constraints that the operating system has to
consider when choosing a low-power mode. The mode with the lowest power consumption that
allows timers as wake-up sources is the standby mode. It is usually used when both threads wait
on their particular semaphores to be posted by timers.



9.4 Extendability 79

9.4 Extendability

In this firmware, close attention was given to extendability. Usage of abstract classes for sensors,
the type of non-volatile memory and computations offers a very flexible solution. For exam-
ple, without changing everything else, a different sensor could be used by simply implementing
AbstractSensor for it. Due to the fact that MeasScheduler is capable of handling a
list of AbstractSensors, actually a number of sensors can be used simultaneously without
any firmware modification. Any desired computation can be achieved by simply deriving from
AbstractComputation and appending the object to the DataManager instance that is
responsible for the particular sensor.
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MBusRFLayerMBusRFLayer

-stack : Deque<MBusAbstractLayer> 

+Initialize()  : Boolean
+Terminate()
+MBusRFLayer(in buffersize:Integer)

-bufferLength  : Integer
-buffer        : Char[*]

+~MBusRFLayer()
-prepareBuffer(in coding:MBUS_RF_ENCODING)

+send(in coding:MBUS_RF_ENCODING)
  : Boolean

+popLayer()
  : MBusAbstractLayer

+pushLayer(in l:MBusAbstractLayer)
  : Boolean

DequeElementDequeElement MBusAbstractLayerMBusAbstractLayer

-eventFilter(in e:Integer,
  in ptr:Void)
#transmissionPending()
#transmissionComplete()
+coversSubsequentLayers() : Boolean
+count()                  : Integer
+data(in idx:Integer)     : Char
+countSubsequentBytes()   : Integer

**

<<enumeration>>
MBUS_RF_ENCODING
<<enumeration>>
MBUS_RF_ENCODING

MBUS_RF_ENCODING_MANCHESTER
MBUS_RF_ENCODING_THREEOFSIX

Fig. 9.2. The class MBusRFLayer is defining the lowest layer in the network stack, the phys-
ical layer. The MBusAbstractLayer base class provides functionality to network
layers to communicate with each other.
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DequeElementDequeElement

MBusDataLinkLayerMBusDataLinkLayer

-m_data : Char[10]

+MBusDataLinkLayer()
+~MBusDataLinkLayer()
-transmissionPending()
-count()                  : Integer
-data(in idx:Integer)     : Char
-prepareLengthField()
+setCField(in CField:Integer)
+getCField()              : Integer

MBusAbstractLayerMBusAbstractLayer

-eventFilter(in e:Integer,
  in ptr:Void)
#transmissionPending()
#transmissionComplete()
+coversSubsequentLayers() : Boolean
+count()                  : Integer
+data(in idx:Integer)     : Char
+countSubsequentBytes()   : Integer

...

Fig. 9.3. The class MBusDataLinkLayer implements the data link layer.
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MeasSchedulerMeasScheduler

-scheduler
  : MeasScheduler = 0

+getMeasScheduler()
  : MeasScheduler 

#MeasScheduler()
+~MeasScheduler()

+setSensorList(in
  slist:Deque<AbstractSensor>)

-sensorList
  : Deque<AbstractSensor>

-deList : Deque<DataExchange>

DequeElementDequeElement

AbstractSensorAbstractSensor

-dataManager : DataManager = 0

+AbstractSensor()
+~AbstractSensor()
+initialize()
+doMeasurement()
+standby()
+trigger()

**

-timeLastMeasurement : Integer = 0
-periodMeasurement   : Integer = 0

+setTimeLastMeasurementToNow()

+getDataManager() : DataManager

+getPeriodMeasurement()   : Integer
+getTimeLastMeasurement() : Integer

...

DataExchangeDataExchange**

DataManagerDataManager

**

-reschedule()
+initializeScheduler()
+terminateScheduler()

+runContinuousLoop()
...

Fig. 9.4. The class MeasScheduler is responsible for cyclically triggering sensors’s measure-
ment routine on time.
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DataManagerDataManager

-dsp_list : Deque<AbstractComputation>

+DataManager(in dataWidth:Integer, in 
isFloatingPoint:Boolean, in 
headerSize:Integer)
+~DataManager()
+addHeaderData(in d:Char[*])

-isFloatingPoint  : Boolean
-dataWidth        : Integer

+addData(in d:Char[*], in size:Integer)

+readData(...)

+popDSPComputation()
  : DSPAbstractComputation

+pushDSPComputation(in 
comp:DSPAbstractComputation)

DequeElementDequeElement
AbstractComputationAbstractComputation

+doComputation()

-dm       : DataManager

...

**

#bufferSize : Integer

#header     : SmartPtr<Integer>
#headerSize : Integer
#buffer     : Char[*]

#sampleLengthInBytes : Integer

+readHeader(...)
+save()

+discard()

1

-channels : Integer

...

Fig. 9.5. The class DataManager is responsible for temporary buffering of measuring data, as
well as for processing and permanently saving it.
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Segment iSegment i

Length
(first block only)

Index

Header

Data

Segment 1Segment 1

Segment mSegment m

Ext. Flash Block 1

Ext. Flash Block 2

Ext. Flash Block n

Segment i

Fig. 9.6. The external flash is arranged in segments.
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TimeModTimeMod

-t            : TimeMod = 0

+getTimeMod() : TimeMod 

#TimeMode()
+~TimeMod()

...

+setTime(in  unixepoch:Integer)
+getTime(out unixepoch:Integer)

if(t == 0){
  t = new TimeMod();
}
return t;

Fig. 9.7. The class TimeMod is a simple interface to get and set system time.

BatteryTempModBatteryTempMod

-btm                 : BatteryTempMod = 0

+getBatteryTempMod() : BatteryTempMod 

#BatteryTempMod()
+~BatteryTempMod()

...

+getTemperature()    : Real
+getVoltage()        : Real

+Initialize()
+Terminate()

+getBatteryPercent() : Real

if(btm == 0){
  btm = new BatteryTempMod();
}
return btm;

Fig. 9.8. The class BatteryTempMod implements an interface to query power supply voltage,
battery level and the temperature of the device.





10 Software

The software developed for the IPC is written in Python 3 and is intended for demonstration as
well as development purposes, see Fig. 10.1.

It is capable of plotting three dimensional vibration data. Furthermore it displays the number
of packets the current dataset consists of and how many of them have already been received.
Additionally, Received Signal Strength Indicator (RSSI) values are printed out which correspond
to the received power. The RSSI value of each part belonging to a certain dataset is written to a
Comma Separated Value (CSV) file. Note that the manufacturer of the edge gateway’s Wireless M-
Bus module defines the RSSI value as twice the received power in dBm, see [1]. The conversion
to dBm is handled by the software.

Fig. 10.1. The software is capable of plotting vibration data as well as displaying and logging
received datagrams.
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10.1 Interfacing the Wireless M-Bus module

The Wireless M-Bus module is connected to the IPC via a proprietary connect bridge interface.
The interface emulates a serial connection to the device. The communication protocol is pure
binary. It does not represent any command as human readable text.

During debugging, the application minicom was used to display incoming data, while

printf “[message]” > /dev/ttyConBrdige

was used to send commands to the device.

The script discussed in this chapter assumes that the following Wireless M-Bus module settings
are already set up.

• Matching serial port settings

• Master (other) network role

• T1 or T2 M-Bus mode

• Binding of the meter to the module (other) or disabled filtering

• RSSI mode enabled

• Data interface with start and stop byte

10.2 Program Flow

The main routine of the program is described in Fig 10.2. It makes use of the readDataSet()
function that returns the last completely received set of acceleration data acquired by the sensor.

The function readDataSet(), see Fig. 10.3, is responsible for collecting chunks in which the
dataset is split for transmission and reassembles them. It utilizes the readPart() function for
actual reception of Wireless M-Bus datagrams.

The function readPart(), see Fig 10.4, is used to identify Wireless M-Bus packets that are
passed by the Wireless M-Bus module via the serial interface. It uses start and stop bytes to
identify Wireless M-Bus packets, together with the length information defined in the datagram’s
data link layer. This is necessary, since the Wireless M-Bus module separates datagrams only by
a short time delay. Evaluating the length of the datagram avoids misidentification of packets as far
as possible. Note that a Wireless M-Bus datagram can also contain characters equal to the start
and end bytes.

1This functionality is defined within readDataSet().
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Query measurement 
distance for CSV 

file name

Is new 
dataset?

readDataSet()

Create plot

yes

no

Fig. 10.2. The main program starts with querying the distance between meter and other. It is
used for naming the CSV file1that collects RSSI values. Then readDataSet() is
called, which is listening for sensor data and returns a complete dataset. If the dataset
is different from the current plot, a replot is issued.

10.3 Integration in Other Projects

While this demonstration software only implements basic features, the functions readPart()
and readDataSet() can also be used in more comprehensive applications.

It is highly recommended to implement a bidirectional communication for industrial applications
to facilitate retransmission of lost datagrams according to Fig 6.1.
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Create CSV file 
for dataset

[dist]_[time].csv

Is part 
already in 

map?

Function readDataSet()

readPart()

Append part to 
map

Print statistics 
and append RSSI 

to CSV

Size of map
== #Parts

Return 
dataset

no

no

yes

Extract complete 
dataset from map

yes

Fig. 10.3. The function readDataSet() recurrently calls readPart() to gradually get all
chunks of a dataset. The chunks are collected in a map that assigns the chunk’s data
to it’s part number. After a new part was received, the new statistics of received parts
is printed to the console and it’s RSSI value is appended to a CSV file logging the
transmission of the current dataset. When all chunks of the dataset were received, in
other words, the size of the map is equal to the number of parts in which the dataset
was divided, the complete dataset is assembled and returned.
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Read 1B
(start byte)

Is 0x68?
no

Read 10B
Data Link Layer
(Length, ...)

yes

Address
known? no

Read remaining 
message w.r.t. 

DLL length field

yes

Read 1B
(end byte)

Is 0x16?
no Return RSSI 

+ DATA
Extract

RSSI + DATA

yes

Read 1B
(RSSI)

L

C 

M

A

START 

0x68

Data 

Link 

Layer 

(DLL)

Transport 

Layer 

(TPL)

DATA

RSSI

STOP  

0x16

Wireless
M-Bus Packet
from Module

Function readPart()

Fig. 10.4. The function readPart() handles the communication with the Wireless M-Bus
module via a serial interface. At first, it consecutively reads single bytes from the se-
rial interface until the start byte 0x68 is encountered. The function then assumes that
the next 10 B are the data link layer and checks if the address of the sending meter is
known. In that case the remaining message with respect to the data link layer’s length
field is read, as well as the following RSSI value. As a last check for a valid message
the end byte is validated. The function returns the RSSI value and the transmitted
chunk of the measuring data.
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11 Evaluation

In this chapter the developed condition monitoring system is evaluated in terms of transmission
range and the smart sensor’s current consumption.

11.1 Range

The transmission range of the prototype system was evaluated for 5 dBm and 14 dBm transmission
power.

11.1.1 Experimental Setup

To evaluate transmission range, the prototype setup, depicted in figures 8.1 and 8.3, was used
together with omnidirectional aerials.

The firmware was adapted to enable a triggered sending of exactly 1000 packets, each with a size
of 20 bytes not including headers. The software running on the edge device logged the RSSI
values for all correctly received packages to a CSV file. In this manner the number of incorrectly
received packets can be determined. The number of lines of the CSV file divided by the total
amount of 1000 sent packets yields the ratio of correctly received packets. Logging the RSSI
value for each received packet at a given range allows the estimation of an interval for the RSSI
value at a given distance. Neither error correction codes nor retransmissions were used, so that
the fundamental transmission properties could be evaluated.

The transmission range was measured in horizontal direction by a GPS device.

At first, the transmission range was estimated by (5.4) and (5.3) together with the following
assumptions:

1. receiver sensitivity Pr = 101dBm,

2. transmission power Pt = 5dBm respectively Pt = 14dBm,

3. antenna gain factors Gt and Gr that compensate transmit and receive chain losses Lt and Lr,

4. link margin of Lm = 15dBm as recommended in [24] and

5. a factor n of 2.5 according to [24], which was assessed at an open field 1.5 m above the
ground.
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This yields distances of 117 m for 5 dBm and 275 m for 14 dBm at a received signal strength of
−86 dBm. Reliable transmissions should be expectable in the calculated range. Error correction
can be used to extend this range.

11.1.2 Results

The results of the range evaluation are depicted in figures 11.1 and 11.2. With a transmission
power of 5dBm≈ 3mW ranges of over 150 m could be achieved, while a transmission power of
14dBm≈ 25mW allowed transmission ranges of over 400 m. The locations that were chosen for
the measurements avoided objects projecting into the Fresnel zone as good as was possible.

The omnidirectional characteristic of the antenna is valid approximately around a horizontal plane.
At short measurement distances there was a significant vertical displacement between the devices;
such that the near field effects in the Z-direction caused errors.

Differences considering the 5 dBm and 14 dBm tests in RSSI fluctuation as well as packet loss at
equal RSSI levels are assumed to be effected by different interferences at the different locations.

Differences compared to the estimated transmission ranges are assumed to be caused by a conser-
vative n factor.

11.2 Current Consumption

In this chapter the current consumption of the smart sensor is evaluated for the same setup using
5 dBm respectively 14 dBm transmission power. A typical application defined by:

1. 3200 Hz sample frequency,

2. 500 ms sample time,

3. 6 B per sample,

4. one measurement per hour,

5. a collected transmission of measurements at six-hourly intervals,

6. 950 mAh coin cell battery supply and

7. 4 s advertising interval

is assumed.
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Fig. 11.1. The transmission range was evaluated for a transmission power of 5 dBm. Elevation
data .
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Fig. 11.2. The transmission range was evaluated for a transmission power of 14 dBm. Elevation
data .
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11.2.1 Experimental Setup

To measure currents, the circuit explained in Chapter 8.3 was used together with a Rigol DS1054Z
oscilloscope. The current measuring circuit was supplied by a power supply and the jumpers
of the Texas Instruments CC1352P development board were configured in order to detach the
debugger and level shifters. Additionally, the LED from the accelerometer’s evaluation board was
removed. Note that the influence of the voltage regulator’s quiescent current is neglected.

11.2.2 Results

In the oscilloscope graphs, see figures 11.3 to 11.5, the yellow line represents the inverted, un-
filtered output of the current measurement circuit. The blue line represents the inverted filtered
output using a low-pass filter with R f = 10kΩ and C f = 1µF yielding a critical frequency

fc = 1/(2πR fC f ) = 15.9Hz. (11.1)

Firstly the standby current of the MCU was evaluated. It is smaller than 1 µA and can therefore
be neglected, see Fig. 11.3a.

According to Fig. 11.3b the current consumption for the sampling process can be estimated
to be 2.1V/500Ω = 4.2mA lasting for 0.5 s. The current consumption for saving the dataset
is approximately 5.2V/500Ω = 10.4mA and lasts approximately 440 ms. The energy used for
sampling and saving of data per day

Es = 24 · (4.2mA ·0.5s+10.4mA ·440ms) = 0.16mAs. (11.2)

According to Fig. 11.4b the average current consumption for transmission with a power of
5 dBm is about 2.94V/500Ω ·12 ·5ms/100ms = 3.53mA, while Fig. 11.5b estimates a current
consumption of 1.09V/100Ω · 12 · 5ms/100ms = 6.54mA for transmitting with 14 dBm. It is
assumed that transmission is chunked in blocks of 100 B data sent with a period of 100 ms. This
leads to an effective transmission rate of 1000 Bs−1. The energy used for transmission per day for
5 dBm

Et5 = 4 ·
(
3.53mA ·6 ·6B ·3200Hz ·0.5s/1000Bs−1)= 813.3mAs, (11.3)

respectively for 14 dBm

Et14 = 4 ·
(
6.54mA ·6 ·6B ·3200Hz ·0.5s/1000Bs−1)= 1507mAs. (11.4)

According to Fig. 11.4a the average current consumption for advertising with a transmission
power of 5 dBm is about 3.91V/500Ω · 12 · 2ms/4s = 46.9µA, while Fig. 11.5a estimates a
current consumption of 1.23V/100Ω ·12 ·2ms/4s = 73.8µA for advertising with 14 dBm. For
advertising 20 B user data are estimated. The time left per day for advertising is calculated by
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24 ·60 ·60s−4 ·6 ·6B ·3200Hz ·0.5s/1000Bs−1−24 · (0.5s+0.44s) = 86147s. This leads to
an energy per day for advertising with 5 dBm

Eadv5 = 46.9µA ·86147s = 4040mAs, (11.5)

respectively for 14 dBm

Eadv14 = 73.8µA ·86147s = 6358mAs. (11.6)

This yields a total energy of 4853mAs=̂1.348mAh per day for 5 dBm and 7865mAs=̂2.185mAh
for 14 dBm. With a 950 mAh coin cell this leads to a battery life of 705 days for 5 dBm respec-
tively 435 days for 14 dBm.

The energy used for advertising can be identified to be the largest influence on life of battery.
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a) The standby current was evaluated with a transimpedance of 1000 Ω. It is smaller than
1 µA.

b) The current consumption during sampling and saving was acquired with a tran-
simpedance of 500 Ω. Sampling can be observed from −380 ms to 120 ms, while
erasing and writing of the external flash is happening from 120 ms to 460 ms

Fig. 11.3. Evaluation of the current consumption in standby as well as in a measuring cycle.
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a) The curve represents transmission of 20 B user data sent during advertising with a
transmission power of 5 dBm. A transimpedance of 500 Ω was used. The period of
advertising is 4 s.

b) The curve represents transmission of 100 B user data with a transmission power of
5 dBm. A transimpedance of 500 Ω was used. The period of transmitting a 100 B block
is 100 ms.

Fig. 11.4. Evaluation of the current consumption with a transmission power of 5 dBm.
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a) The curve represents transmission of 20 B user data sent during advertising with a
transmission power of 14 dBm. A transimpedance of 100 Ω was used. The period of
advertising is 4 s.

b) The curve represents transmission of 100 B user data with a transmission power of
14 dBm. A transimpedance of 100 Ω was used. The period of transmitting a 100 B
block is 100 ms.

Fig. 11.5. Evaluation of the current consumption with a transmission power of 14 dBm.





12 Conclusion

This thesis presents the conception, prototype implementation and testing of a condition monitor-
ing system that is using sub-GHz frequency bands.

The Friis transmission equation is introduced to discuss the benefits of sub-GHz frequency bands.
Together with antenna gain factors it considers path loss in vacuum and yields that the attenuation
is decreasing for increasing wave-lengths. This enables equal transmission ranges while consum-
ing less power compared to 2.4 GHz technologies as well as avoiding interference with Bluetooth,
Wi-Fi, mobile phones and microwaves.

Especially in industrial environments, where a line of sight is not given in many cases, the wider
Fresnel zone compared to 2.4 GHz allows to surround obstacles.

Wireless M-Bus was selected as network protocol due to standardization. It allows further power
savings by being optimized for low-power meters. The sensor setup, consisting of a Texas In-
struments CC1352P microcontroller and a Kionix KX222-1054 accelerometer, allows conducting
some less expensive computations for data preparation, e. g. downsampling. The RevolutionPi
IPC in contrast allows more computationally expensive computations.

The firmware is written in C++ using abstract classes in many cases; this simplifies the imple-
mentation of e. g. other types of sensors or arbitrary computations that have to be conducted after
sampling. This leaded to very flexible code that can be easily adapted for other use cases.

The range was evaluated using omnidirectional aerials. Ranges of over 400 m at a current con-
sumption of 14 mA during actual transmission were achieved. Packet loss ratios indicate that a
forward error correction mechanism could improve the system’s performance. The trend of the
RSSI values shows that the correct alignment of aerials is very important.

The current consumption of the smart sensor was evaluated for all operating states. An estimation
for a typical measurement yields that the smart sensor can be powered for approximately two years
using only a single coin-cell battery. For the evaluated setup, the energy consumed by advertising
has the largest influence on the life of battery.

The developed prototype system provides a suitable basis for a new commercial condition moni-
toring system offering low-power paired with a very good transmission range. However, usage in
commercial systems requires the implementation of a bidirectional communication. The channel
from the other device to the meter is necessary to ensure a reliable data exchange and/or remote
configuration. In addition, a more general driver implementation that allows simple integration in
edge software would be preferred. It can be based on the software presented in this thesis.
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A Tables

A.1 Advanced Encryption Standard (AES) S-Box

0x00-0x07 0x63 0x7C 0x77 0x7B 0xF2 0x6B 0x6F 0xC5
0x10-0x17 0xCA 0x82 0xC9 0x7D 0xFA 0x59 0x47 0xF0
0x20-0x27 0xB7 0xFD 0x93 0x26 0x36 0x3F 0xF7 0xCC
0x30-0x37 0x04 0xC7 0x23 0xC3 0x18 0x96 0x05 0x9A
0x40-0x47 0x09 0x83 0x2C 0x1A 0x1B 0x6E 0x5A 0xA0
0x50-0x57 0x53 0xD1 0x00 0xED 0x20 0xFC 0xB1 0x5B
0x60-0x67 0xD0 0xEF 0xAA 0xFB 0x43 0x4D 0x33 0x85
0x70-0x77 0x51 0xA3 0x40 0x8F 0x92 0x9D 0x38 0xF5
0x80-0x87 0xCD 0x0C 0x13 0xEC 0x5F 0x97 0x44 0x17
0x90-0x97 0x60 0x81 0x4F 0xDC 0x22 0x2A 0x90 0x88
0xA0-0xA7 0xE0 0x32 0x3A 0x0A 0x49 0x06 0x24 0x5C
0xB0-0xB7 0xE7 0xC8 0x37 0x6D 0x8D 0xD5 0x4E 0xA9
0xC0-0xC7 0xBA 0x78 0x25 0x2E 0x1C 0xA6 0xB4 0xC6
0xD0-0xD7 0x70 0x3E 0xB5 0x66 0x48 0x03 0xF6 0x0E
0xE0-0xE7 0xE1 0xF8 0x98 0x11 0x69 0xD9 0x8E 0x94
0xF0-0xF7 0x8C 0xA1 0x89 0x0D 0xBF 0xE6 0x42 0x68
0x08-0x0F 0x30 0x01 0x67 0x2B 0xFE 0xD7 0xAB 0x76
0x18-0x1F 0xAD 0xD4 0xA2 0xAF 0x9C 0xA4 0x72 0xC0
0x28-0x2F 0x34 0xA5 0xE5 0xF1 0x71 0xD8 0x31 0x15
0x38-0x3F 0x07 0x12 0x80 0xE2 0xEB 0x27 0xB2 0x75
0x48-0x4F 0x52 0x3B 0xD6 0xB3 0x29 0xE3 0x2F 0x84
0x58-0x5F 0x6A 0xCB 0xBE 0x39 0x4A 0x4C 0x58 0xCF
0x68-0x6F 0x45 0xF9 0x02 0x7F 0x50 0x3C 0x9F 0xA8
0x78-0x7F 0xBC 0xB6 0xDA 0x21 0x10 0xFF 0xF3 0xD2
0x88-0x8F 0xC4 0xA7 0x7E 0x3D 0x64 0x5D 0x19 0x73
0x98-0x9F 0x46 0xEE 0xB8 0x14 0xDE 0x5E 0x0B 0xDB
0xA8-0xAF 0xC2 0xD3 0xAC 0x62 0x91 0x95 0xE4 0x79
0xB8-0xBF 0x6C 0x56 0xF4 0xEA 0x65 0x7A 0xAE 0x08
0xC8-0xCF 0xE8 0xDD 0x74 0x1F 0x4B 0xBD 0x8B 0x8A
0xD8-0xDF 0x61 0x35 0x57 0xB9 0x86 0xC1 0x1D 0x9E
0xE8-0xEF 0x9B 0x1E 0x87 0xE9 0xCE 0x55 0x28 0xDF
0xF8-0xFF 0x41 0x99 0x2D 0x0F 0xB0 0x54 0xBB 0x16

Tab. A.1. Advanced Encryption Standard (AES) S-Box used in SubBytes. Compare table to
[29, pp. 139–140].
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A.2 3-of-6 Constant Weight Code

Unencoded Encoded
0b0000 0b010110
0b0001 0b001101
0b0010 0b001110
0b0011 0b001011
0b0100 0b011100
0b0101 0b011001
0b0110 0b011010
0b0111 0b010011
0b1000 0b101100
0b1001 0b100101
0b1010 0b100110
0b1011 0b100011
0b1100 0b110100
0b1101 0b110001
0b1110 0b110010
0b1111 0b101001

Tab. A.2. Conversion table for encoding or decoding data with 3-of-6 constant-weight code.
Compare table to [22, p. 23].



B Implementations

B.1 Smart Pointer

1 #ifndef AUXILIARY_SMARTPTR_H_
2 #define AUXILIARY_SMARTPTR_H_
3

4 #include <stdint.h>
5

6 class RefCount
7 {
8 private:
9 uint8_t count;

10 public:
11 void addRef();
12 uint8_t releaseRef();
13

14 RefCount();
15 ~RefCount();
16

17 };
18

19 template <typename T>
20 class SmartPtr
21 {
22 private:
23 T* ptr;
24 RefCount* refCount;
25

26 public:
27 SmartPtr()
28 : ptr(0), refCount(0)
29 {
30 refCount = new RefCount();
31 refCount->addRef(); // only assignment is possible on default

constructed object; assignment releases ref --> size should be 0
now, therefore it has to be 1 at init

32 }
33 SmartPtr(T* ptr)
34 : ptr(ptr), refCount(0)
35 {
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36 refCount = new RefCount();
37 refCount->addRef();
38 }
39 SmartPtr(const SmartPtr<T>& sp)
40 : ptr(sp.ptr), refCount(sp.refCount)
41 {
42 refCount->addRef();
43 }
44

45 T& operator*() const {return *ptr;}
46 T* operator->() const {return ptr;}
47

48 SmartPtr<T>& operator= (const SmartPtr<T>& sp)
49 {
50 if(this != &sp){
51 if(!refCount->releaseRef()){
52 if(ptr) delete ptr;
53 delete refCount;
54 }
55

56 ptr = sp.ptr;
57 refCount = sp.refCount;
58 refCount->addRef();
59 }
60 return *this;
61 }
62

63 T& operator[](uint8_t idx) const {return ptr[idx];}
64

65 void reset(){
66 if(!refCount->releaseRef()){
67 if(ptr) delete ptr;
68 delete refCount;
69 }
70

71 ptr = 0;
72 refCount = new RefCount();
73 refCount->addRef();
74

75 }
76

77 T* get() const {return ptr;}
78

79 ~SmartPtr()
80 {
81 if(!refCount->releaseRef()){
82 if(ptr) delete ptr;
83 delete refCount;
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84 }
85 }
86 };
87

88 #endif /* AUXILIARY_SMARTPTR_H_ */

Listing B.1. SmartPtr.h: Compare implementation to [25].

1 #include "Auxiliary/SmartPtr.h"
2

3 RefCount::RefCount()
4 : count(0)
5 {
6

7 }
8 RefCount::~RefCount(){
9

10 }
11

12 void RefCount::addRef(){
13 count++;
14 }
15 uint8_t RefCount::releaseRef(){
16 return --count;
17 }

Listing B.2. SmartPtr.cpp: Compare implementation to [25].

B.2 Doubly Linked List

1 #ifndef MBUS_DEQUE_H_
2 #define MBUS_DEQUE_H_
3

4 #include <stdint.h>
5 #include "DequeElement.h"
6

7 template <class X>
8 class Deque{
9 DequeElement* first = 0;

10 private:
11 Deque(X l){
12 if(l == 0) return;
13 DequeElement* f = l;
14 while(f->m_prev != reinterpret_cast<DequeElement*>(0)
15 && f->m_prev !=
16 reinterpret_cast<DequeElement*>(0xFFFFFFFF))
17 f = f->m_prev;
18 first = f;
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19 return;
20 }
21

22 public:
23 static void postEventToList(X l, const unsigned int& event){
24 const Deque tmp(l);
25 tmp.postEvent(event);
26 }
27

28 uint8_t count() const {
29 if(!first) return 0;
30

31 uint8_t ct = 1;
32 DequeElement* next = first;
33 while(next->m_next){
34 ++ct;
35 next = next->m_next;
36 }
37 return ct;
38 }
39

40 X operator[](uint8_t idx) const {
41 if(!first) return 0;
42 DequeElement* next = first;
43 while(idx--){
44 next = next->m_next;
45 if(!next) return 0;
46 }
47 return static_cast<X>(next);
48 }
49

50 X end() const {
51 if(!first) return 0;
52 DequeElement* next = first;
53 while(next->m_next){
54 next = next->m_next;
55 }
56 return static_cast<X>(next);
57 }
58

59 X begin(){
60 if(!first) return static_cast<X>(0);
61 return static_cast<X>(first);
62 }
63

64 bool push_back(X el){
65 //updateList();
66 if(el->m_next != reinterpret_cast<DequeElement*>(0xFFFFFFFF))
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67 return false; //if it is already in a list -> return false
68

69 el->m_next = 0; // is in list, but last element
70 el->m_prev = end();
71 if(first == 0){
72 first = el;
73 }
74 else{
75 end()->m_next = el;
76 }
77 return true;
78 }
79 X pop_back(){
80 //updateList();
81 uint8_t ct = count();
82 X ret = static_cast<X>(0);
83 if(!ct) return 0;
84 if(ct == 1){
85 ret = reinterpret_cast<X>(first);
86 first->m_next =
87 reinterpret_cast<DequeElement*>(0xFFFFFFFF);
88 first->m_prev =
89 reinterpret_cast<DequeElement*>(0xFFFFFFFF);
90 first = 0;
91 }
92 else{
93 DequeElement* le = (*this)[ct-2];
94 ret = reinterpret_cast<X>(le->m_next);
95 le->m_next->m_next =
96 reinterpret_cast<DequeElement*>(0xFFFFFFFF);
97 le->m_next->m_prev =
98 reinterpret_cast<DequeElement*>(0xFFFFFFFF);
99 le->m_next = 0;

100 }
101 return ret;
102 }
103 bool push_front(X el){
104 //updateList();
105 if(el->m_prev != reinterpret_cast<DequeElement*>(0xFFFFFFFF))
106 return false; //if it is already in a list -> return false
107

108 el->m_prev = 0; // is in list, but first element
109 el->m_next = begin();
110 if(first != 0) begin()->m_prev = el;
111 first = el;
112 return true;
113 }
114 X pop_front(){



116 B Implementations

115 //updateList();
116 X ret = static_cast<X>(0);
117 if(!first) return 0;
118 if(count() == 1){
119 ret = reinterpret_cast<X>(first);
120 first->m_next =
121 reinterpret_cast<DequeElement*>(0xFFFFFFFF);
122 first->m_prev =
123 reinterpret_cast<DequeElement*>(0xFFFFFFFF);
124 first = 0;
125 }
126 else{
127 DequeElement* le = begin();
128 ret = reinterpret_cast<X>(le);
129 le->m_next->m_prev = reinterpret_cast<DequeElement*>(0);
130 first = le->m_next;
131 le->m_next = reinterpret_cast<DequeElement*>(0xFFFFFFFF);
132 le->m_prev = reinterpret_cast<DequeElement*>(0xFFFFFFFF);
133 }
134 return ret;
135 }
136 void postEvent(const unsigned int& e, void* ptr) const{
137 uint8_t ct = count();
138 while(ct--){
139 DequeElement* l = (*this)[ct];
140 l->eventFilter(e, ptr);
141 }
142 }
143 void postEvent(const unsigned int& e) const{
144 postEvent(e, NULL);
145 }
146

147 Deque(){}
148

149 ~Deque(){}
150 };
151

152 #endif /* MBUS_DEQUE_H_ */

Listing B.3. Deque.h

1 #ifndef DequeElement_H_
2 #define DequeElement_H_
3

4

5 class DequeElement{
6 private:
7 DequeElement* m_prev = reinterpret_cast<DequeElement*>(0xFFFFFFFF)

;
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8 DequeElement* m_next = reinterpret_cast<DequeElement*>(0xFFFFFFFF)
;

9 template <class X>
10 friend class Deque;
11

12 virtual void eventFilter(const unsigned int& e, void* ptr);
13

14 public:
15 DequeElement* getNext() const {return m_next;}
16 DequeElement* getPrev() const {return m_prev;}
17 DequeElement* getFirst() const;
18 DequeElement* getLast() const;
19 };
20

21 #endif /* DequeElement_H_ */

Listing B.4. DequeElement.h

1 #include "Auxiliary/DequeElement.h"
2

3 void DequeElement::eventFilter(const unsigned int& e, void* ptr){
4

5 }
6

7 DequeElement* DequeElement::getFirst() const{
8 DequeElement* l = const_cast<DequeElement*>(this);
9 while(l->getPrev()){

10 l = l->getPrev();
11 }
12 return l;
13 }
14 DequeElement* DequeElement::getLast() const{
15 DequeElement* l = const_cast<DequeElement*>(this);
16 while(l->getNext()){
17 l = l->getNext();
18 }
19 return l;
20 }

Listing B.5. DequeElement.cpp
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