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Kurzfassung

Die vorliegende Arbeit erforscht mathematische und computergestützte Methoden,
die zur Analyse von Daten geeignet sind, welche von großen cyber-physikalischen Sys-
temen stammen. Durch die Einbettung der dem Systemverhalten zugrundeliegenden
Gleichungen, insbesondere der Dynamik, werden Lösungen abgeleitet, welche mit den
physikalischen Grundgesetzen des Systems kompatibel sind. Bei den entwickelten
Methoden werden dabei die Messunsicherheiten, welche grundsätzlich die Daten
überlagern, in der Fehlerabschätzung berücksichtigt.

Basierend auf Ideen aus dem Gebiet der symbolischen Datenanalyse werden An-
sätze entwickelt, welche automatisch und unüberwacht Strukturen in multivariaten
Zeitreihen identifizieren können. Dabei werden Elemente und Methoden, die in der
Entwicklung der natürlichen Sprache eine wesentliche Rolle spielen, computergestützt
nachgeahmt. Die Funktionsweise wird anhand eines Beispiels gezeigt, in welchem
automatisch unterschiedliche Betriebszustände erkannt werden. Besonders interes-
sant ist in diesem Zusammenhang die Identifikation der menschlichen Interaktion
mit dem System, welche zu einer Struktur in den Zeitreihen führt und somit erkannt
werden kann.

Darüber hinaus wird in dieser Arbeit die Charakterisierung von Sensoren und
die Quantifizierung ihres Verhaltens behandelt, wodurch deren Messunsicherheit
abgeleitet und modelliert werden kann. Dies ist von grundlegender Bedeutung, da
sich Fehler, die bereits bei der Interpretation von Sensordaten entstehen, fortpflanzen
und dadurch den gesamten Analysezyklus beeinflussen.

Die eingeführten und präsentierten Techniken und Methoden werden in ein Framework
integriert, welches sämtliche Schritte der Datenanalyse – von der Datenerfassung bis
zur Aufbereitung der Ergebnisse – unterstützt. Ein in dieser Arbeit entwickeltes Soft-
waretool erweitert den Funktionsumfang des Frameworks durch das Bereitstellen von
Werkzeugen zur Handhabung, Analyse und Visualisierung von großen multivariaten
Zeitreihen, wodurch die Arbeit des Datenanalysten unterstützt wird.

Die vorliegende Dissertation fasst die durchgeführte Forschung als eine Sammlung
von Publikationen zusammen, welche mit einleitenden Texten und Erweiterungen zu
einem durchgängigen Dokument verknüpft wird.

Schlagwörter

Datenwissenschaften; cyber-physikalisches System; inverses Problem; diskrete or-
thogonale Polynome; symbolische Zeitreihenanalyse; Polynomapproximation
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Abstract

This work investigates mathematical and computational methods suitable for analysing
data emanating from large cyber physical systems. Embedding the governing equa-
tions for the system behaviour, especially dynamics, ensures analysis solutions which
are consistent with the physics of the system. The developed methods also deal with
the implicit uncertainty fundamentally associated with perturbed data.

Symbolic data analysis is investigated as a means of establishing a consistent com-
putational approach to perform automatic unsupervised identification of structures
in multi-channel time series data. This is achieved by mimicking techniques from
the evolution of natural language. The validity of the approach is demonstrated
in an application to automatic operations recognition. Particularly interesting in
this context is the identification of human interaction with the system via structure
embedded in the data.

Additionally, this thesis considers the issue of characterizing sensors and quantifying
their behaviour, in particular modelling their uncertainty. This is fundamental since
errors entering via the interpretation of sensor data will propagate through the entire
analysis cycle.

The established methods and techniques are integrated into a framework to support
end-to-end applications, i.e. from the data acquisition to the presentation of the
results. A software tool, developed within this work, extends the framework to
support the data analyst in the handling, analysis and visualization of large multi-
dimensional time series together with the computational results.

The conducted research is presented as a collection of papers woven together with
introductory texts and some extensions to form a complete thesis.

Index Terms

Data science; cyber physical system; inverse problem; discrete orthogonal polynomials;
symbolic time series analysis; polynomial approximation
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1 | Introduction

1.1 Motivation

During the work on projects with companies building and operating large mining
machines, i.e. large physical systems, the people involved often expressed the wish of
collecting data from their machines and to analyse this data. Their goals being to:

1. Improve their machines, i.e. to obtain engineering feedback.

2. To find and analyse incidents, i.e. to detect misbehaviour of the machine and
to determine the cause of this behaviour. This is particularly prevalent for
incidents with serious or catastrophic consequences.

3. Estimate the wear of parts with the aim of making maintenance and/or contin-
gency plans, i.e. enable predictive maintenance.

4. Operate equipment more efficiently through continuous monitoring, i.e. auto-
matic report generation.

5. Characterize operating procedures automatically, i.e. automatic operations
recognition. This is a key aspect in achieving efficiency.

To support these activities, there is a need for a structured and secure data collection-,
archiving- and analysing-system, which is easy to interact with. In other words, the
person who is working on the data should focus on the analysis and not be concerned
about collecting the data or how they are stored. Although this task seems simple, a
lot of companies which tried to implement such systems failed due to the complexity
and diversity of tasks involved.

Besides this issue, the available data analytics software is normally based on statistics
(i.e. it is used as a black box) and therefore does not support the embedding of
a-priori knowledge of the system within calculations. Since large physical systems
have to follow the laws of physics, the systems cannot be operated randomly, i.e. not
purely stochastic. Statistics alone cannot lead to semantics based on the physical
behaviour of a system, as system models are required to ensure causality. Therefore,
including the system dynamics is important to analyse the data more precisely.

1



2 Chapter 1. Introduction

To investigate the available data, various levels of abstraction need to be generated to
“read” and interpret the data. Therefore, meaning must be associated with the data
hierarchically. Starting from a global overview, the meaning is refined accordingly to
obtain a more detailed view. In general meaning can be expressed by using language.
Since the monitored machines are operated from humans acting non-analytically, the
idea of interpreting the data using human readable text, i.e. words and symbols, was
developed.

Based on these considerations the thesis of this dissertation can be summarized as:

It is possible to formulate a framework based on consistent data structures, mathe-
matical and statistical models and methods to enable structured analysis of large
data sets emanating from cyber physical systems.

Within this work, this statement is substantiated by the included publications and
content introduced in additional chapters. The structure therefore is presented in
the following section.

1.2 Structure and Synopsis of the Thesis

As the title of this document suggests, this thesis investigates multiple topics impor-
tant for data analytics in large physical systems.

In Section 1.1 the motivation which lead to this work is presented together with the
thesis statement.

The main body of the thesis is structured into four parts (Parts I to IV) dealing with
four different areas of work, whereby Parts II to IV contain ten papers, which can
be seen as the major contribution of this thesis. Each of these parts is preceded by a
detailed synopsis (see Chapters 5, 9 and 13), weaving the publications together within
the topic. An overview of the author’s contribution to the included publications is
given in Section 1.3.

The parts of the thesis are:

Part I: Prerequisites. This one presents prerequisites needed to perform data
science in cyber physical systems. To get an overview of the entire topic, Chapter 2
investigates the terms Data Science and Cyber Physical Systems in Section 2.1 and
Section 2.2. Additionally, the structured approach to data analytics followed within
this thesis is presented in Section 2.3.

Since the basis for data analytics is the data itself, Chapter 3 presents the means and
methods for data collection and ingestion into a global data warehouse. Therefore,
the overall data flow, the data acquisition and ingestion structure are introduced in
Section 3.1 and Section 3.2. A continuous view onto the data present on the global
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data warehouse is enabled by using a contiguous data model, which is established in
Section 3.3.

To handle data locally and perform computations, so called “data on-demand”
services map requested data to a structure (object) which fits into the data analytics
framework. This is presented in Chapter 4. It describes the core functionality needed
to set the focus on data and development of new algorithms rather than on data
handling.

Part II: Polynomial Methods. The Weierstrass approximation theorem [1] proves
that polynomials can model or approximate any function. As a result, polynomials
have become a central tool in analysing data; remember the Fourier bases area
are also polynomials. Therefore, three publications dealing with polynomials are
collected and presented in Part II.

In the first paper, Chapter 6, a consistent mathematical framework for the approx-
imation with polynomials, which have to fulfil constraints, is presented together
with the covariance propagation. In this manner, the systematic behaviour of the
system can be characterized together with the uncertainty. Fundamentally, there
will always be some uncertainty involved when establishing models from perturbed
data. The constraints addressed in this paper are zero-, value- and general derivative
constraints and constraints on the coefficients.

Motivated by the idea of how the constraints are included in the computation, the
ideas in the paper presented in Chapter 7 were developed. In this publication, a
time series is approximated hierarchically by first calculating the state vectors for
given intervals using weighted local polynomial approximations. To approximate the
state vectors in the next hierarchical levels, a new method was developed, which takes
both, value and derivative information into account. It uses geometric polynomials (i.e.
Vandermonde basis) and their analytical derivatives to simultaneously approximate
the state vectors. Covariance weighting is used to establish a metric relationship
between values and derivatives. Additionally, the temporal behaviour of the states,
which can be analysed in the state space, is characteristic for the dynamics of a
system.

Since geometric polynomials may become numerically unstable for high degrees,
discrete orthogonal polynomial methods are developed in the work presented in
Chapter 8 to address this issue. It uses covariance weighting in the three term recur-
rence relation to synthesize an orthogonal basis function set, whereby the covariance
weighting establishes a metric in the state space leading to a valid approximation.
It is shown that this basis is advantageous compared to the Vandermonde basis,
especially for high degree polynomial approximation.

Part III: Symbolic Time Series Analysis. In symbolic time series analysis a
stream of data is quantized and transformed into a stream of symbols which is in
general a compressed representation of the original data. This idea is adapted and
used in the paper appended in Chapter 10. There, meaning is associated with the
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symbols/words by including the dynamics of the system within the symbolization
step. Therefore, a stream of data can now be seen as a stream of words similar to
natural language.

The presented methods build the basis for the publication presented in Chapter 11.
To analyse multi-dimensional time series ideas from natural language are taken up,
i.e. the symbols from two different channels are merged to form polysyllabic words
for describing more complex behaviour. Additionally, frequency dictionaries are used
to identify different operation modes from data emanating from a bucket-wheel-
excavator.

To automatically reveal structure with various degree of detail within such multi-
dimensional data, a linguistic mechanism called compounding was mimicked in the
paper introduced in Chapter 12. In the presented technique, common sequences of
symbols/words are merged iteratively yielding new words, similar to natural language.
Using this method, a given data set is automatically segmented hierarchically,
revealing structures and their substructures in an unsupervised manner.

Part IV: Applied Data Analytics in Cyber Physical Systems. The publica-
tions within the above mentioned parts are mainly introducing new data science
concepts and methods with focus on including the physics of the system within
the models and subsequent calculations. In this part, publications which address
applications throughout the full data science cycle are collected.

Using a sensor to observe the behaviour of a system already includes the first
assumption for data analysis (i.e. indicator hypothesis), since the data emanating
from this specific sensor is tagged implicitly as an important source of information
– otherwise the data would not be collected. Although the obtained data may
not contain significant information all the time, sensors build the major source of
information within cyber physical systems. Thus, the precision of the sensor is
linked to the precision of subsequent computations and results. In Chapter 14 the
precision and characterization of inclinometer sensors with two sensing elements
in opposite directions are investigated. As a result, a not perfect alignment of the
sensing elements was found by analysing the bivariate histogram of the individual
signals. Additionally, it was discovered that the distribution of the perturbations are
well modelled by a Cauchy-Lorenz distribution, which must be taken into account in
further computations and considerations.

The idea of using the information content for segmenting a stream of data is introduced
in the paper presented in Chapter 15. Shannon’s entropy is used to detect regions
of interest within production processes, e.g. drilling or milling. Furthermore, time
varying histograms are used to detect changes of the system in observation. For
example, this enabled the detection of a tool malfunction during milling by analysing
the force signals observed on the tool holder.

Several use cases for the data analysis framework to data emanating from raw
materials handling machines are presented in the publication within Chapter 16.
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Additionally, the main structure of a data collection and analytics framework as well
as a structured approach to data analytics is presented. Exemplary data evaluations
show the added value during the full life cycle of the machines.

Applying the data analytics framework to analyse the parallel hydraulic system of
mining machines is presented in the paper introduced in Chapter 17. A defective
sensor was identified using time-varying histograms. Additionally, investigating the
statistics of the signals revealed the presence of negative pressures within the system,
indicating cavitation. Avoiding this behaviour is to be considered in future designs
of the machine.

Part V: Discussion and Appendices. Within Chapter 18 the insights gained
during the herein presented research are used to draw a conclusion and give a
direction for possible future research.

This thesis closes with the appendices which comprise the list of figures, the list of
tables, a complete list of the author’s publication as well as a list of references1.

1.3 Contribution

The main part of the thesis is built by the ten papers included and addressed herein.
Besides that, an extensive introduction for a structured approach and the needed
environment to perform data science in large cyber physical systems is given in
Part I. In Table 1.1 the contribution of the author to the peer-reviewed papers is
summarized. With the progress of time, the contribution has moved increasingly
from contributing to primary author.

As visible in the structure of the thesis, the papers can be grouped into three areas:
Polynomial Methods [P1–P3, P8], Symbolic Time Series Analysis [P4, P5, P9] and
Applied Data Analytics in Cyber Physical Systems [P6, P7, P10, P11]. A detailed
breakdown of the areas can be found in Section 1.2.

1This list does not contain the literature cited within the papers, since each paper includes its own
list of references.
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Tab. 1.1 Contribution of the Author to the publications collected in the thesis in percent.

Paper Chapter Conception
and planning

Experiments Analysis and
interpretation

Manuscript
preparation

[P1][P2]2 8 80 100 90 95
[P3] 7 80 100 90 95
[P4] 12 85 95 95 95
[P5] 11 75 95 90 95
[P6] 17 60 50 60 30
[P7] 16 50 50 50 40
[P8] 6 40 40 40 30
[P9] 10 20 20 25 20
[P10] 15 30 30 35 20
[P11] 14 25 25 30 25

1.4 Remarks

Within this thesis two types of citation marks are used:

1. Numbered citations, e.g. [1]: This form of citation marks is used to cite
the literature listed in the References section at Page 172 ff.

2. Prefixed and numbered citations, e.g. [P1]: The Prefix “P” within
citation marks indicates papers with significant contribution of the author.
These papers build the main part of this thesis and are presented in separate
chapters. A complete list can be found in the List of Author’s Publications at
Page 170 ff.

The author’s papers are included as “stand-alone” documents in their final version.
Consequently, each paper has its own bibliography. Note: This literature is not
included within the References list at Page 172 ff. of this thesis.

All the author’s papers (except the preprint [P1]) are peer-reviewed. This preprint
[P1], in a slightly modified version, has passed peer-review and is accepted for
publication as [P2].

2The paper [P2] is accepted for publication but not published at the time of submitting this thesis.
The preprint version of this paper is [P1].
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2 | Data Science in
Cyber Physical Systems

The presented thesis deals with a broad range of topics spanning data collection, data
structures and data analytics from different technical fields, especially large physical
systems. This is summarized in the title of this thesis Methods and Framework
for Data Science in Cyber Physical Systems. Since there is no common body of
knowledge for the terms in use, the following sections summarize the definitions
given in literature and point out the relevance to this work.

2.1 Data Science

Data Science is nowadays a widely used term in academia as well as in industry.
Various definition can be found in literature, e.g. [2–7], fitting to certain scopes.

The most general definition, which may explain the popularity of data science, is
given in the description of the Journal of Data Science [5]. It states that data science
is almost everything dealing with data spanning: data collection, data analytics
and data modelling. Although this “definition” includes the topics dealt within this
thesis, it is rather nebulous.

Several authors of the above cited papers try to give more precise definitions for the
abilities important in data science. They state that data science is a multidisciplinary
field which needs a depth knowledge in various areas. Therefore, it is normally
approached by a team to cover all aspects [2].

Common core components important for data science and relevant for this thesis are:

Mathematics: This is the most basic skill needed for data science. It gives you the
profound basis to approach, model and solve problems.

Statistics: This component is important to characterize given data as well as to
identify correlations and may predict the future. It is heavily used in Big Data
Analytics to build the basis of information [8]. It is important to not rely only

8
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on statistics since correlation is not a measure for causality. Especially when
working with large physical systems, a causal link to the physics of the system
is important, which is done by using mathematical models, i.e. differential
equations. Furthermore, the difference between uncertainty and confidence
needs to be addressed within this area.

Computer Science (often referred to as programming or hacking skills): This
includes the efficient implementation and use of mathematical and statistical
methods and algorithms, the use and knowledge of how data are stored and
handled, and the use of special tools, e.g. machine learning, artificial intelli-
gence and optimization1. In addition, the task of visualizing information and
knowledge to transport insights belongs to this area.

Domain-Specific Knowledge (also named as Substantive Expertise [2]). It is
important to include the available knowledge and all boundary conditions
within data analysis and to formulate and reduce the scientific question to meet
the required needs. This yields inverse problems to be solved in a regularized
manner, due to the nature of the data addressed herein.

Creativity: Since the information hidden in data is not straight forward to retrieve,
creativity is needed to combine knowledge from various fields to transform the
data to reveal the needed insights.

A summed up definition for those components is given by Dedge Parks in [3]. He
defines data science as a methodology using statistics, scientific rigour and systemic
capabilities to ensure that an answer to a data question is accurate. A similar
definition can be found in [4], which states that

. . . “data science” refers to the statistical, technical, and domain-specific
knowledge required to ensure that the analysis is done properly.

Dhar in [6] defines data science as

. . . the study of the generalizable extraction of knowledge from data.

As it can be seen, depending on the context data science is used in, the focus of
the definition changes. A big difference is also visible whether the term is used in
academia or in the industrial environment. This can be found in the extensive study
performed in [2].

The above definitions cover what the author refers to as data science in this work.
Summarized, in this thesis mathematics and statistics are used to develop and
implement efficient algorithms to extract knowledge and understanding in a specific
domain (large cyber physical systems) and transport this knowledge to others (using
data visualization) to generate added value.
1Machine learning and artificial intelligence are not considered within this thesis, because it is
beyond the scope of this work.
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2.2 Cyber Physical Systems

Although, cyber physical systems (CPS) found their way into curricula of universities,
development plans of governments and scientific communities, there is no unified
definition what constitutes a CPS. Following, a short review of various definitions is
given, which are important to this work.

As the name cyber physical system suggests, the most general definition, which builds
the basis in literature, is: A CPS is a system with a strong coupling of cyber aspects
(including hardware and software) with the physical aspects from systems [9–11].
In other words, computational systems (virtual world) work together with physical
systems (real world) to improve efficiency. The cyber aspects are often referred to as
computation, communication and control [12–16]. The physical aspect deals with
physical processes which are observed by sensors and controlled by actuators [10, 11,
17, 18]. Therefore, a CPS often contains a feedback loop (control). In this manner,
the physical processes affect the computations and vice versa [15, 17, 19–22].

Kagermann et al. in [22] state that communication is not only between the physical
system (physio-space) and the cyber-system (cyber-space), it also effects the socio-
space (the social environment), since CPS contain various human-machine interfaces
[16, 17, 22] to interact with [23]. Sometimes the interaction with humans is seen as a
major part of the system, i.e. human in the loop [10].

A stronger definition for CPS includes that a CPS is a complex system, which
consists of multiple subsystems (each with a closed control loop), which interact
and communicate within a network (wired or wireless) [15–17, 22]. Therefore, a
CPS not only uses information given directly, but requests mutual information from
other connectors or the internet of things (IoT). Huang et al. in [14] and Liu et
al. in [12] state that CPS can realize real-time perception and dynamic control of
multi-dimensional complex systems (CPS networks).

To establish the strong coupling between the cyber-space and the physio-space,
CPS are often seen as embedded systems with a communication core and extended
capabilities, e.g. efficiency, safety, complexity [9, 11, 15, 18, 22, 23]. Additionally,
some authors do not restrict a CPS to be within a local network. They state that a
CPS uses data available worldwide (global IoT). Therefore, the CPS should also be
able to store data [16]. It is important to notice that data analytics (computational
aspect of CPS) is performed directly on the CPS [17], which is also referred to as
decentralized control [24].

A good definition of what constitutes a CPS can be found in [20, 25]. The authors
defined that the core goal of CPS is the study of the joint dynamics of physical
processes, software and networks, since it is about the intersection and not the union
of the cyber- and physical aspects. In this definition the importance of the physics
of the system is addressed. Lee in [19] described this as:
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In the physical world, the passage of time is inexorable and concurrency
is intrinsic.

Park et al. in [15] state that a CPS should incorporate the key characteristics of the
application domain within the computations. This is also seen by others, who point
out the importance of the physics of the system being included within computations
to establish a causal link between observations and the cause [26, 27]. The definition
they gave is:

A cyber physical system is a system with the coupling of the cyber
aspects of computation and communications with the physical aspects of
dynamics and engineering, that must abide by the laws of physics.

This definition is the one which is used throughout this thesis, as the importance of
including the physical behaviour of the system in observation is essential. Although
CPS are seen as a subclass within IoT and Industry 4.0 [11, 23, 25], the fact that a
CPS includes a physical system differentiates them clearly from IoT and Industry 4.0.
Therefore, a major task in CPS (which is also addressed in this thesis) is to solve
inverse problems, since performing measurements are fundamentally inverse problems,
especially if the dynamics of the system is modelled using a causal link.

A more formal comment for modelling the physics of the system is given by Letichevsky
et al. in [28]. They described that the basic mathematical models for CPS are build
by hybrid automatons, which describe continuous dynamics as a linear or piecewise
linear problem. Linear inequalities are then discrete transitions – a change in the
behaviour of the system. This idea is also formulated by Lee in [20, 21], who described
that the dynamics of the real world is reduced to sequences of state changes without
temporal semantics in the cyber world. Within this thesis the temporal semantics is
not neglected. It is taken into account by using symbolic time series analysis [P4].

In general, the possibility of transforming the real world to the cyber world by
introducing physical models enables the exchange of mutual feedback (by solving the
associated forward and inverse problems). This builds the basis of a digital twin [29].

The applications for CPS can be split up into six groups [17, 18, 30]:

1. infrastructure and mobility,

2. health and living,

3. energy and resources,

4. production and logistics,

5. monitoring and control,

6. military and defence2.
2The author wants to strictly distance from CPS used in military.
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Fig. 2.1 Digital Twin for Large Physical Systems

The presented thesis is within the scope of monitoring and control which is at
some points extended to the field of production and logistics and the field of energy
and resources. The consistent modelling of the system dynamics builds the basis
for computations done within the CPS. A numerical efficient design of the herein
developed methods and algorithms is sought to make them suitable for near real-
time computations. Additionally, the interaction with the global world, i.e. global
data warehouse, is established (see Chapter 3). Therefore, the CPS implemented
in this work form digital twins (see Part IV). The structure is shown in Fig. 2.1.
The physical behaviour of the system is observed by sensors, sampled in real-time
using a programmable logic controller (PLC). The data is collected and transformed
using a local device and put into a local data storage (data base). The local device
performs computations and interacts with the machine, e.g. trigger alarms. Using
communication techniques, the data is mirrored to a global data warehouse to make
them available to other services, e.g. automatic report generation, data analysis or
data on-demand. A more detailed explanation is given in Chapter 3.
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2.3 A Structured Approach to Data Analytics and
Knowledge Discovery

During literature research it became clear that the terms data mining and knowledge
discovery are used in the same context [31]. Again there are no clear definitions for
these terms.

Since in our understanding the goal of both, data analytics and data mining, is
to extract knowledge from given data, the following sections address this issue in
a structured manner. The aim is to include models for the physics of the system
within the computation. This is an issue which is currently insufficiently addressed
in literature.

2.3.1 Knowledge Discovery Process Models

In literature various knowledge discovery process models exist (e.g. [32–40]), which
are mainly used for commercial data with the goal of extracting knowledge in a
structured way. A good overview can be found in [41]. The author pointed out that
the cross-industry standard process for data mining (CRISP-DM ) [34, 42] builds the
basis for the generic structure he found.

Although the CRISP-DM makes no proposals how a specific task can be performed,
it does have value because of its generic nature, i.e. it describes successfully the
generic processes which need to be dealt with, independent of the nature of the
project being addressed. It has more the nature of being a reminder of what should
be not forgotten. The six process phases, their description and their generic tasks
given by Kurgan et al. and Chapman et al. in [41, 42] are:

Business Understanding:

Description: Understanding of business objectives and requirements, which
are converted into a data mining problem definition.

Generic tasks: Determine business objectives, assess situation, determine
data mining goals, produce project plan.

Data Understanding:

Description: Identification of data quality problems, data exploration and
selection of interesting data subsets.

Generic tasks: Collect initial data, describe data, explore data, verify data
quality.
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Data Preparation:

Description: Preparation of the final dataset, which will be fed into data min-
ing tools and includes data and attribute selection, cleaning, construction
of new attributes, and data transformation.

Generic tasks: Select data, clean data, construct data, integrate data, format
data.

Modeling:

Description: Calibration and application of data mining methods to the
prepared data.

Generic tasks: Select modelling techniques, generate test design, build model,
assess model.

Evaluation:

Description: Evaluation of the generated knowledge from the business per-
spective.

Generic tasks: Evaluate results, review process, determine next steps.

Deployment:

Description: Presentation of the discovered knowledge in a customer-oriented
way. Performing deployment, monitoring, maintenance, writing final
report.

Generic tasks: Plan deployment, plan monitoring and maintenance, produce
final report, review project.

The generic tasks and their interaction is shown in the CRISP-DM reference model
in Fig. 2.2. As it can be seen, knowledge discovery is a cyclic and iterative process.
This process can be taken as a basis and adapted to mining sensor data in CPS.

Although, one of the most valuable aspects of CRISP is the clear description of the
tasks together with their outputs [34, 42], some very fundamental issues are ignored
in the CRISP model. The first issue is that before starting knowledge discovery one
must determine what data needs to be collected to ensure that sufficient information
is available to establish semantics. Secondly, the most serious issue is: that one must
design and install data collection prior to starting this process. Furthermore, in
physical systems metadata has a greater significance than in evaluating commercial
data since the sensor data has no meaning without the metadata.

In addition, in many companies the task of business understanding is not emphasized
sufficiently. As a consequence there is commonly a divergence in expectations as
a project proceeds. However, there is a chicken and egg situation when mining
sensor data from CPS, i.e. it is not possible to determine a-priori what can be
achieved or what the data will reveal. Alongside this the question of how success is
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Fig. 2.2 CRISP Data Mining Cycle [42]. Image by Kenneth Jensen [43], distributed under
a CC BY-SA 3.0 license3.

measured is often not addressed. This question becomes important in the evaluation
step, especially when there is no “training data” available. This issue should be
investigated at the very beginning of a knowledge discovery task.

Additionally, there is the fundamental question of whether an associated inverse
problem can be solved, i.e. there is a significant difference between explanatory
models (e.g. explaining an incident) and predictive models (e.g. predict an incident).
For this very reason, performing an extensive feasibility study on CPS prior to
committing to a major data mining system development is recommended. This
involves exploratory data analytics, a topic which is also within the scope of this
thesis.

2.3.2 From Data to Knowledge

As mentioned above, the described knowledge discovery process deals with the entire
business perspective. In literature the special nature of the sensor data (its relation
to physical systems) is rarely taken into account when performing data analytics.
Present data mining techniques mostly rely on correlation (in some manner) being a
reliable measure for significance. However, the solutions computed from the sensor
data should/must obey the equations modelling the physics of the system being
observed – this is fundamentally an inverse problem and requires the modelling of
the system dynamics. Unfortunately, the issue of inverse problems is not addressed
in literature on mining sensor data, see for example [44–47].

3https://creativecommons.org/licenses/by-sa/3.0/deed.en

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Fig. 2.3 Data Mining Pyramid as proposed by Mark Embrechts [48].

In a proper approach the inverse solution of the model-equations is required for the
digital twin to establish the semantic reference between the sensor observation and
its cause. Without this semantic reference to causality there can be no physical based
knowledge discovery. Data analytics from CPS is still a research topic, for which
there are only a few recognized standard procedures and there probably will not be
any new standards in the near future, since the modelling required is application
and domain specific.

To overcome this issue, this thesis follows a structured data analytics approach which
is also presented in [P7, P9] but revisited here for consistency. This approach is
based on the work from Embrechts et al. [48]. The authors proposed the pyramid of
data mining as shown in Figure 2.3, which was an extension of Ackoff’s work [49].
This pyramid is often cited in data mining, in particular in temporal data mining,
as the valid structure for implementations. Embrechts offers no definitions for the
terms information, knowledge, understanding and wisdom in his work, while Ackoff
offers intuitive but rather nebulous inaccurate definitions. The pyramid and the
terms used have positive connotations4; however, they do not provide a scientific
basis for the implementation of mining sensor data.

Nevertheless, the hierarchy does provide a possible structuring for approaching the
questions of what one wishes to extract from the processing of large data sets. Based
on this data mining pyramid the fundamental premiss followed within this thesis is
framed in the following section.
4Wisdom, just as the word creativity, have positive connotations but resist any formal definition,
see [50] for a discussion of this issue. Without formal definition they do not form the basis for
objective data analytics.
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2.3.3 Fundamental Premiss Behind Data Analytics in
Sensor Data

In Fig. 2.4 the fundamental premiss behind data analytics in large physical systems is
presented. Similar to the CRISP-DM model it forms a closed loop indicating multiple
iterations, since in exploratory data analytics there is in general no straight forward
way how to solve a certain problem. As one can see, the steps up to understanding
from the data mining pyramid Fig. 2.3 are part of this loop.

Machine/
Process

Data

Information

Knowledge

Understanding

SensorActuator

System

Inverse 
Problems

Indicator 
Hypothesis

ASTSA

Metadata/
Semantics

Engineering 
Feedback

Fig. 2.4 Fundamental premiss behind data analytics [P7].

The relationships between the steps [P7, P9] are:

1. An indicator hypothesis is required, otherwise there is no basis for the collection
of data. Selecting a specific sensor is already an implicit indicator hypothesis,
i.e. conditions measured by the sensor are relevant. Therefore, one paper of this
thesis deals with characterizing sensors to improve and support the indicator
hypotheses [P11].

2. The output of the data acquisition is simply a stream of numbers. Metadata is
necessary to add meaning to the data resulting in information. Furthermore,
context is additionally required to define significance, e.g. a temperature mea-
surement of T = 39.8 ◦C has a different significance if it is the temperature of
hydraulic oil or human body temperature – clearly a strong fever. This topic
together with data handling is addressed in [P7] and Chapter 3. Additionally,
Shannon [51] provided a mathematical definition for information content. Al-
though there is no causal link to significance, this idea can be used for a first
segmentation of the data by identifying points where the information content
changes. This idea is used in this thesis in the paper [P10].

3. To establish semantics based on physical results, a causal link between the
observation (measurement data) and its possible cause must be built. This
requires system models and the solution of the corresponding inverse problems5.
The results of the inverse solutions are dubbed knowledge in this context.

5In general, inverse problems do not have unique solutions. It is necessary at this point to embed
a-priori knowledge into the system to ensure that the desirable solution is found.
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Inverse problems and their solution are addressed in Part II of this thesis in
the papers [P1, P3, P8, P9].

4. To gain understanding of the behaviour of the complete system, the effects of
the human operator-machine interaction must be included. Human behaviour is
not strictly deterministic. Thus, human operated machines are hybrid systems,
since stochastic physical processes are combined with non-analytical human
interaction. For this reason a new research approach is proposed based on the
emergence of language as modelled by the philosophy of phenomenology. This
process is called advanced symbolic time series analysis (ASTSA) [P4, P5, P9],
see Part III.
The basic approach is to assign symbols to actions related to derivatives – these
symbols are likened to verbs; similarly states are modelled by symbols – nouns.
Additionally, the actions and states are predicated with adverbs and adjectives.
Finally, different pauses are likened to punctuation. In this manner the time
series is automatically converted to a sequence of symbols, opening the door to
the use of symbolic query methods to explore the data.

5. The extracted understanding can now be fed back into the whole process as
engineering feedback. Thus, the next level of understanding can be extracted
in the next iterations by improving the data collection and/or the monitored
system [P6, P7, P10, P11], see Part IV.

To follow this premiss, the necessity for a data collection and data analysis framework
is given to support the mentioned transitions. These topics are addressed in Chapter 3
and Chapter 4 of this thesis.
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To perform data analytics on data from different types of machinery with the
focus on extracting information rather than data handling and manipulation, a
structured approach to collect and store data needs to be established, which is
partially introduced in the papers [P7, P9]. This is the step prior to establishing a
local data analytics framework to actually work on the data, which is described in
Chapter 4. The structured data handling is often underestimated, but an important
prerequisite. Since the focus of this thesis is on data analytics, the following data
handling structures are described conceptually with the aim of transporting the main
ideas rather than being a complete implementation and specification guideline.

The first step to establish a working data collection and handling system is to define
the data flow, with a focus on data security. The data is normally collected on site
directly from the controlling device, i.e. from a programmable logic controller (PLC).
This is done using an edge-device, which collects the data and transmits it over a
secure channel to the global data storage. This is described in Section 3.1.

The structured ingestion of time series data collected on site into the global infras-
tructure is crucial. Therefore, Section 3.2 explains the steps implemented and used
do feed the data (analysed in this thesis) into such a structure. The data is quality
checked and after authentication the data is transferred to its own virtual destination.

To support data analysis, a contiguous data model is used to provide data on-demand.
Therefore, various data storage models are possible, each with its own benefits. This
is investigated in Section 3.3.

3.1 Data Flow Structure

This section deals with the aspects of how the data from machines and cyber physical
systems (CPS), information and results of analyses are passed through the system.
Since CPS are stand-alone devices, which are often globally distributed, the data
transmission is mostly wireless. This fact, and the fact that the emanating data
probably contains sensitive informations, a special focus in the design is laid on data
security.

19
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The entire data flow on a global scale is shown schematically in Fig. 3.1. Starting
on site, the data emanating from one machine is collected by a local industrial
edge-device (or an industrial PC; iPC). Since a large CPS is normally equipped with
a PLC, which collects and processes sensor data, the most common way is to use an
interface such as OPC-UA1 [52] with a publish and subscribe mechanism (which will
be explained in more detail in the subsequent section). If no PLC is available the
data may be delivered by smart sensors or directly acquired by sensors attached to
the iPC.

Within the iPC the data is collated – and if implemented – preprocessed. Thus, the
iPC can act as part of the CPS. In the next step, the data is transmitted over a secure
path to the data receiving service. This service is located at the data processing
centre and acts as the entry to the global data warehouse. It is used to receive data
1https://opcfoundation.org/about/opc-technologies/opc-ua/
OPC-UA is an open-source standard, which is acknowledged and used widely in industry. Therefore,
it is often used to replace proprietary systems and protocols.

https://opcfoundation.org/about/opc-technologies/opc-ua/
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from numerous machines located on multiple sites from various customers. It is the
only entry-point to get machine data into the data warehouse. Thus, this is the
point of interest for cyber-attacks and needs to have a high level of security. This is
established using encryption and certificate exchange. Additionally, the receiving
service only accepts data from known IP-addresses, which is an additional security
layer. Each time a data receive is triggered, a virtual server instance (receiving server)
is booted up which subsequently performs the authentication, i.e. the certificate
check.

If the data is authorized, it is forwarded and put onto the raw data partition of
a dedicated storage. For each machine (each closed entity) there is a separate
storage. The pointer to the correct location is part of the certificate. This partition
is exclusively served by the receiving server. This adds the next level of security.

If new data is deposited on this raw data partition, the data ingestion service is
triggered. This again boots up a new virtual server instance (data ingestion server).
This server now takes the deposited data, merges it with the metadata, optionally
performs preprocessing steps and deposits the result either file based on the dedicated
data partition or in the data base of this machine. A detailed description of the
data ingestion can be found in Section 3.2.2.

Access to the data is granted via the provider services. An important service is the
data on-demand service to request data to process it locally (see Chapter 4). To
perform the work done in the thesis, this is the mostly used service. Further, services
which are an optional part of the provider-services include, e.g. Evaluation Requests
for incident analysis and automatic evaluations, Reporting to automatically provide
daily/weekly/monthly reports, and Notifications to trigger warnings and alarms in
case of unwanted behaviour of the system.

3.2 Data Acquisition and Ingestion Process

During the work with companies starting data analytics on a global scale it became
clear that the most security concerns arise in regard to the transmission of the data
from the machine to the cloud, the main fear being that an attacker takes over the
control of the machine. This section gives a detailed description of how the data
acquisition was designed and used to collect the data analysed in this thesis.
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3.2.1 Data Acquisition

Since the large cyber physical systems monitored in this thesis are controlled by PLC,
the first step of data acquisition is to collect the data from the PLC using a local
industrial edge-device, i.e. iPC. OPC-UA [52] is used to implement a mono-directional
data transfer using the publish and subscribe mechanism [53]. This ensures that
the iPC, or an unwanted attacker who is in control of the iPC, can’t write data or
malicious code to the PLC. Thus, the data collection device cannot be used as a
back-door to control the machine. In addition, only the data which is published on
the PLC can be collected from the data collection device. Using this mechanism,
secure data is not visible outside the device if not published.

The collected data is now mapped to a local data base (e.g. SQL) on the iPC.
Subsequently, batched files (e.g. *.csv files, *.json files) are generated. These files
contain the collected data either in a on-change or full-table format.

On-change: The data record consists of the triplets [time-stamp, sensor tag,
sensor value], which is generated each time a sensor value changes. The
single records are appended to form a list of records. This format is efficient for
systems such as ship loaders. These types of machines have long time periods,
where sub-systems and families of sensors do not change and/or are not active.
As a result, only a few records for the active sensors are generated.

Full-table: Full table data is shaped, as the name suggests, like a table. For each
time-stamp, the sensor values for every sensor in the local system are collected.
One time-stamp forms a row of the table. Therefore, each column of the table
represents a single sensor in the system. Optionally, the header line contains
the sensor tags. This type of files is more efficient if most of the sensors within
the monitored system change continuously. If on-change records are used in
such a case, a record would be generated for each sensor for only a single
time-stamp. This would clearly include much more overhead due to the fact
that the sensor tag and the time-stamp is included in each record.

Note: in both cases the sensor tag can be a hashed value so as to exclude information
of the sensor within the data files. In this manner, one can only see numbers
without association to the sensor. Thus, the attacker cannot interpret the data,
since no information on the meaning of the data is contained within the data file.
Consequently, no knowledge discovery is possible.

To add a physical layer to security, two separated Ethernet ports are used on the
iPC: one is connected to the PLC to collect the data using OPC-UA, the other
port is used to connect to a modem through a firewall. The two ports ensure that
the internal network used to control the machine cannot be inhibited by external
network traffic. In this manner, Denial of Service attacks do not affect the operating
machine.
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Fig. 3.2 Data collection and secure data transfer.

Subsequently, the modem transfers the data encrypted and mono-directional to the
global data warehouse (cloud). This is done using a secure multi-layer connection
including certificate exchange. As described above, the receiving service of the global
data warehouse is now responsible for the next steps.

The full architecture of the data collection is shown schematically in Fig. 3.2.

3.2.2 Data Ingestion

As mentioned above, after the data is received and the authentication is performed
(which is provided by the data receiving server), the raw data is put onto the dedicated
raw data storage partition and triggers the ingestion service. Archiving the raw data
enables a regeneration of the processed data at a later date if required for any reason.

In the first step, the data ingestion service converts the incoming data to a full-table
matrix since multi-dimensional time series are most suitable for further calculations.
During this step the data is checked for consistency using the metadata. The metadata
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Fig. 3.3 Contiguous Data Model.

includes the sensor definitions, such as the sensor names, sensor ID, description,
limits and units. If a sensor is not defined within the metadata or a value exceeds
the predefined limits, a notification is triggered. Additionally, if data is sampled at
a fixed sampling rate, the consistency to previous data is checked to support the
contiguous data model (described below).

If the consistency checks are successful, the data is put on the dedicated data partition
of the specific machine. This is either done file based (e.g. *.csv, *.mat or *.json),
i.e. data from one day/week/month are within one file, or on a data base system, e.g.
SQL. The benefit of the file based system is the quick data on-demand in case the
full range of a file is requested.

3.3 Contiguous Data Model

Within the global data warehouse, a contiguous data model is established for each
individual machine to enable data on-demand. Independent of the input segmentation,
the data forms a contiguous data stream on the data server. This enables a separated
output segmentation, which can be used to automatically perform, e.g. daily or
weekly reports, trigger evaluations on a vessel by vessel basis in case of a ship loader,
or return data from a variable time span. Additionally, this supports the data
scientist working on the data, since he can focus on the data itself and does not
have to care about data handling and the underlying storage system nor the storage
structure. The contiguous data model is shown schematically in Fig. 3.3. As it can
be seen, the data on the warehouse appears as a single stream of (multi-dimensional)
time series data for the actual user. This contiguous data model is a prerequisite to
establish a structured access to the data and to implement data on-demand services.
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3.3.1 Data On-Demand – Interface to the
Global Data Warehouse

To support fast exploratory data analysis, data on-demand services together with
the local data analytics framework need to be established. Therefore, an interface to
the global data warehouse is implemented, which mirrors the data from the server to
an instance of the local data model (MdtsClass, see next chapter). Since data from
multiple machines from various companies on various sites are available, a structured
request for data is necessary.

In the presented framework, the request for data (i.e. RESTfull) consists of the
following input-parameters:

Company:
The name of the company to which the machine data belong to.

Site:
The name of the site the machine is located on.

Machine name:
A unique name of the machine the data is emanating from.

Start time:
The time (UTC) the requested time period starts.

End time:
The time (UTC) the requested time period ends.

Tags:
The tags of the sensor channels to be requested.

The data is returned as a *.json, which is used to instantiate the local data handling
framework (i.e. MdtsClass), as described within the next chapter.
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Along with the herein developed methods, a consistent data analytics framework
was designed and implemented to support data analysis and knowledge discovery
for cyber physical systems. This supports the data scientist in the handling of data
and visualization of large multi-dimensional data sets. Additionally, the framework
implements various newly developed methods and functionality as presented in later
parts of this thesis. The code, which is implemented using MATLAB®1, together
with the documentation has been made available online2. Since the data analysis
framework is only supporting the main topics of this thesis (which is data analytics
and the development of new algorithms), the following sections describe only the key
aspects behind the framework to transport the basic concept rather than being a
complete implementation and code documentation3.

The framework is designed and implemented using an object-oriented approach for
most of the components. Unit testing and a distributed version-control system are
used to support the continuous development. In general, the components can be
grouped into the Data Handling Framework, supportive components (Decorative
Classes) and Additional Functions and Toolboxes4.

The schematic class diagram in Fig. 4.1 shows the relations between certain classes
and presents the core attributes and key methods.
1Version 2018b — https://de.mathworks.com/
2https://github.com/RolandRitt/Matlab-mdtsToolbox
3Some names of classes/methods/attributes are modified slightly within this document for the ease
of reading.

4Currently, not all the additional functions are yet available as source code in the public domain.
They are being reviewed and it is expected that they will be made available in the near future.
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4.1 Data Handling Framework

The data handling classes form one of the core components of the analytics framework.
It can be seen as a data container for multi-dimensional time series (mdts), with all
the necessary functionality to easily interact with the data and to handle it.

The framework is split into two main classes: the core-class (MdtsCoreClass) and
the user-class (MdtsClass). In general these classes have common attributes (i.e.
core attributes) and implement the same functions (i.e. core functions), since the
user-class inherits the core-class.

The core-class implements efficient data handling methods without input checks.
This reduces the overhead but decreases the usability. Therefore, instances of these
class are in general only used in special applications, with a focus on efficiency.

For the general use of this framework, where the overhead is not dominant, instances
of the user-class are used. This is a wrapper class with the aim of simplifying usability.
The class performs all the necessary input checks and the task of indexing prior to
calling the methods from the core-class. Additionally, multiple helper methods and
supplementary functionality are implemented in this class.

Splitting up the framework in this manner the focus of the implementation task is
clearly defined, yielding a structured development.

4.1.1 Core Attributes

The mandatory elements of the data handling framework are: the data matrix, the
time vector and the tags. The data matrix contains the raw data collected from the
machine in observation. Each column of the matrix represents the observations of
one sensor channel. Each row comprises the observations of all channels at a certain
point in time, which is represented as a time-stamp. Therefore, the data matrix
represents a multi-dimensional time series which is consistent with the contiguous
data model on the global data warehouse. This structure is chosen to be consistent
with matrix vector calculus. Each column (i.e. column vector) forms a time series in
its own right, which can be directly used in calculations, e.g. apply linear differential
operators or solve inverse problems.

Together with the data matrix, the tags, i.e. the identifiers of the individual channels,
are used to index the columns of the data matrix. These are the names provided
as metadata to the global data warehouse. Although the tags can contain useful
information if a structured naming is chosen (e.g. if the tags contain information
about the assembly group they belong to), a long tag name can be confusing and
make the framework difficult to use. This can also cause problems if the same data
analysis is applied to data from machines of the same type but different tag naming.
To overcome this problem, aliases can be assigned to the tags (i.e. alias table).
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Indexing a column can now be done using either the tag or it’s alias. Using this
functionality, data analysis procedures can be implemented generically, using aliases
instead of tags.

In the presented design, the time-stamps of the observations are collected in the
time vector, which is separated from the data matrix. This vector is used to index
rows of the data, e.g. to extract data spanning a certain time interval. Since the
framework is mainly used with time series, various representations of the time vector
are available, e.g. absolute time, relative time with respect to the first time-stamp or
a number (e.g. UNIX time-stamps). The values of the time vector are in general used
as abscissa values when visualizing time series. Therefore, this vector can be used to
generate linear differential operators or (polynomial) function bases as presented in
Part II and Part III.

Metadata, e.g. the name of the dataset, the units associated with the channels or
a description of the machine the data is emanating from are stored along with the
data. These informations are mainly used for the automatic visualization of the
time series. Additionally, the metadata gives the data meaning.

Decorative objects can be added/linked to the time series to support enhanced
analysis techniques, e.g. symbolic time series analysis. These objects are Events,
Segments and Symbolic Time Series Representations. A detailed description of those
objects is given below.

A visual representation of the above described attributes is given in Fig. 4.2.

4.1.2 Key Methods

The most important functionality of the data handling framework is the extraction
of a subset of the data (getData()). Therefore, one has to define a time span (i.e.
start and end) and the tags which should be returned. This returns a new instance
of the class in use. This method is implemented for multiple types of indexes, e.g.
direct indexing and time indexing for the rows and direct indexing, tags and aliases
for column indexing.

The possibility to add new channels to the time series (addChannel()) is important,
especially when performing collocative calculations. After adding a new channel, this
channel can be indexed exactly the same way as the raw data.

To decorate the data, methods for linking decorative objects to the time series are
implemented, e.g. addSegment(), addEvent() and addSymbRep(). These objects
have their own functionality, but they are handled within this framework especially
when subsets of data are extracted.

One of the most important methods is the visualization method (plot()). This is
used to plot the multi-dimensional time series. A detailed description can be found
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Fig. 4.2 Visual representation of the core attributes of the data handling framework.
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below in Section 4.4.1. This method handles the visualization of the time series along
with the visualization of the decorative objects.

4.2 Decorative Objects

Decorative objects5 are instances of additional classes, which are linked to the
time series to expand either the functionality and/or contain additional information,
i.e. other representations of the time series. Decorative objects comprise Events,
Segments and Symbolic Time Series Representations. These are either known a-priori
(e.g. certain events) or emanate as the result of computations, e.g. applying the rule
engine delivers segments and transforming a time series into a symbolic time series
as proposed in Part III results in a symbolic time series representation.

4.2.1 Symbolic Time Series Representation

Symbolic time series analysis is an acknowledged method in time series analysis
(see Part III for details). In literature (e.g. [54]), the time series is divided into
sub-segments of equal length. Subsequently, a symbol (from a finite set of symbols)
is assigned to each sub-segment based on a derived value describing the sub-segment
(e.g. mean, slope). Sub-sequences with the same behaviour/shape are assigned with
the same symbol. As a result, the time series is transformed into a stream of symbols.
Since each symbol spans a certain range, the dimensionality of the time series is
reduced. This makes it suitable for tasks such as similarity search, finding discords,
classification, e.g. [55–61].

Within this thesis, large physical systems are investigated: therefore, symbols/words
are assigned based on the values obtained after processing the data with a linear
differential operator (LDO). The combination of symbolic analysis with linear dif-
ferential operators is a significant extension of the analysis paradigm since it now
introduces symbolic analysis which includes system dynamics (see [P4, P5, P9]).
This is tantamount to having the pseudo phase space available for symbolic analysis.
Compared to the method described above, this results in sub-sequences of different
length, see Fig. 4.3(a). The borders between the symbols and/or segments normally
serve to locate change in the behaviour of the system.

In the shown example, the first derivative of the signal is used to symbolize the
time series. The word up (abbreviated by the symbol u) is assigned to all values
with a positive first derivative, the word down (abbreviated by the symbol d) for
negative derivative values respectively. In the case the first derivative is zeros, the
word stationary (with the symbol s) is assigned.

5Not to be confused with the idea of decorators in programming languages, such as Python.
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Fig. 4.3 Graphical visualization of the symbolic representation of a time series.

Instances of the class SymbRepClass are used to store and handle symbolic time
series. In Fig. 4.3(b) the structure used for the implementation is shown. Additionally,
this class implements various methods used for advanced symbolic time series, e.g.:

removeShortSyms(): This method is used to delete symbols (sequences) which are
shorter than a given length. Outliers caused by perturbations of the signal can
be removed using this method, yielding a “smoothed” version of the symbolic
time series.

findSequence(): This method is used to find sequences of symbols within the
stream of symbols. Using this method, hypotheses can be formulated to find
certain patterns in the time series.

mergeSequence(): This method is used to merge sequences of symbols and assign
a new symbol to the sequence. In this manner, a more complex behaviour
can be described using a single new word/symbol. This builds the basis for
hierarchical compounding.

hierarchicalCompounding(): Applying this method performs hierarchical com-
pounding as proposed in [P4]. This can be used to automatically identify
hierarchical patterns in the time series.

plotOnAxes(): To visualize symbolic time series this method is used. It uses semi-
transparent patches as overlay to already existing time series plots. This is
described in Section 4.4.1. Additionally, the symbols and their duration are
annotated on the patches, see Fig. 4.7.

Each signal channel from a MdtsClass instance can hold a link to an instance of a
SymbRepClass. This provides the basis to perform more advanced computations,
e.g. multi-channel symbolic time series analysis.
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4.2.2 Segments

Segments are similar to the symbolic representation as mentioned before, with the
exception that not each data point must belong to a segment. They are used for
marking ranges of data with similar behaviour, e.g. to mark where the machine is in
active operation (see Fig. 4.4(a)) or to mark incidents (see [P7]). This is useful to
extract data and visualize time intervals of interest.

The class SegmentsClass defines and implements the structure used to store seg-
ments. The structure of how segments are stored within instances of this class is
shown in Fig. 4.4(b). Segments with the same properties are grouped together using
a single tag. The start and stop indices of each single segment of the group are stored
along with their duration. Multiple segments of a different type can be hold by a
single instance of the SegmentsClass.

To visualize the segments on already existing time series plots, the method plotOnAxes()
can be used. This is achieved using semi-transparent patches, similar to the symbolic
time series representation, see Fig. 4.7.

Again, each signal channel of an MdtsClass instance can refer to one instance of a
SegmentsClass.

4.2.3 Events

Events are used to mark something special on certain time-stamps (see Fig. 4.2),
e.g. breakdown/replacement of a certain part. Each event consists of the tuple
[event-name, time-stamp(s)]. If the same event occurs multiple times, there is a
link to multiple time-stamps established. Different events are collected and grouped
in a single instance of the EventsClass. The tuples are stored in the fields names
and times.
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An instance of the MdtsClass can hold exactly one EventsClass instance since
events are treated to be valid for the entire time series. As it can be seen in Fig. 4.7,
events are displayed as line-markers in each channel.

4.3 Additional Functions and Toolboxes

The herein presented data analytics framework for cyber physical systems additionally
comprises newly developed algorithms and functions collected in toolboxes. Some of
those are developed along with the papers implementing the presented algorithms6.

The functions and toolboxes most pertinent to this thesis are:

Rule Engine: The rule engine is used to formulate hypotheses which are to be found
within the multi-dimensional time series. An example for a hypothesis would
be: channel1 > 100 & channel2 <= 0. As a result, segments where this
hypothesis is valid are returned. This can be seen as the first primitive of a
domain specific language. The rule engine is heavily used for incident analysis,
e.g. [P7].

applyLDO(): Linear differential operators (LDO) are used to include the physics
of the system within calculations. This is used in the presented methods for
symbolic time series analysis, see Part III. The function applies a given LDO
matrix to channels of the MdtsClass instance. For example, this can be used
to smooth a channel, calculate a regularized derivative or solve the associated
inverse problem.

Hierarchical Decomposition: This toolbox implements the “hierarchical decom-
position” algorithm as presented in [P3].

Hermite Approximation: This toolbox implements Hermite approximation as pre-
sented in [P1, P2].

Constraint Fitting Toolbox: The constraint fitting toolbox implements con-
strained polynomial approximation as presented in [P8].

computeCollocative(): This function is used to perform collocative computations
for channels of a MdtsClass instance. In this case values are computed at
collocated time-stamps, i.e. this results in a new channel with data at the same
time-stamps as the channels in the MdtsClass instance. This can be seen as
derived measurements. Different types of calculations can lead to a derived
channel. The most common are:

1x1: In this case the derived channel is based on exactly one existing channel,
e.g. from a hydraulic pressure signal the force signal is calculated (with

6Currently, not all the additional functions are yet available as source code in the public domain.
They are being reviewed, and it is expected that they will be made available in the near future.
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the use of the piston area of a hydraulic cylinder). Another example would
be the calculation of a local derivative of one channel using a local linear
differential operator (see Section 9.1).

nx1: Here a new channel is computed based on n existing channels, e.g. from
the rod- and piston-side pressures of a cylinder the actual working force
is calculated.

This pool of functions and toolboxes will increase in future and some are planned to
be implemented as methods of the MdtsClass for the ease of use.

4.4 Data Visualization

A large part of this thesis deals with the development of new methods for analysing
data emanating from large physical systems. To gain new insights, exploratory data
analysis (EDA) [62] is an important tool. Different types of time series visualizations,
e.g. [63, 64], reveal different insights leading to novel data analysis algorithms.

In the presented data analytics framework a data visualization supporting the above
mentioned data handling framework is implemented. The goal is to support the
formulation of hypotheses and the development of new algorithms.

4.4.1 Visualizing Multi-Dimensional Time Series Data

Since the multi-dimensional time series represents multiple channels sampled at the
same time-stamps, the implemented visualization is based on stacked plots (axes)
sharing a common abscissa (time axis), see Fig. 4.5. Each signal channel is visualized
in one sub-plot. There are various representations available for displaying the data.
The most common ones are scatter-plots and line-plots. The analysed time series
are temporally ordered sets, therefore the default representation for displaying the
data are line-plots. In this manner the order of the points gets visible.

4.4.2 Data Decimation

In exploratory data analytics a seamless and fast interaction with the data is
important. The implemented data visualization uses the MATLAB® graphics-engine.
If a figure is generated, the figure holds the entire data which can yield a poor
interaction performance in the case of big data sets.

In the presented framework, data decimation is implemented to support plotting
multi-dimensional time series. The focus is to minimize the amount of data to be
handled by the graphics-engine and simultaneously preserving the visual perception
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multi-dimensional time series

Fig. 4.5 A multi-dimensional time series visualized as a stacked plot with a common
time axis. Each channel is plotted as one sub-plot.

(shape) of the time series. Various work is published in this area, e.g. [65–67]. The
basic idea implemented herein is, to decimate the data based on a given resolution
(e.g. screen resolution). On a screen it makes no sense to generate graphics with
a resolution better than one data point per one pixel. If multiple data points are
within one pixel of the screen, not all points need to be displayed [68–70].

This idea is shown in Fig. 4.6 for scatter-plots and line-plots. In Fig. 4.6(a) the data
decimation for scatter plots is presented schematically. In the shown case, multiple
data points activate the same pixel yielding an overdrawing. In other words, although
there are multiple data points within one pixel, the information content cannot be
represented by this pixel. Therefore, it is enough to keep only one of the points.

The same idea is valid for line-plots as presented in Fig. 4.6(b). Since the MATLAB®

graphics-engine automatically connects two data points with a line, the points kept
for plotting are the data points with the highest and lowest y-value within each
column of pixels.

In general, the reduced data set is computed in a preprocessing step for a given
monitor resolution and a given range of data to be plotted. Since those parameters
change during interaction this preprocessing step is triggered on each interaction (e.g.
zooming or resizing of figure). To improve speed, only the data within the needed
range is decimated, stored temporarily and provided to the MATLAB® graphics-
engine.
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decimate

x

y

(a) Schematic of decimation used in scatter-plots.

decimate

x

y

(b) Schematic of decimation used in line-plots.

Fig. 4.6 Schematic of decimation; Multiple data points within the same pixel are reduced
to a single data point, since sub-pixel details cannot be displayed on a monitor. The grey
squares indicate the activated pixels.

4.4.3 Decorative Overlays

To visualize the herein presented decorative objects, i.e. events, segments and
symbolic time series, the multi-dimensional time series plots as presented in Sec-
tion 4.4.1 are overlaid with the “decorative” information. This is shown in Fig. 4.7.
Events (EventsClass) are visualized using a vertical marker (vertical line, spanning
the full y-range). Different colours represent various types of events. Segments
(SegmentsClass) and symbolic time series representations (SymbRepClass) are rep-
resented as semi-transparent patches spanning the given time-intervals and the full
y-range. Again, different colours indicate different symbols/words in the case of sym-
bolic time series or segments of various behaviour. By defining the degree of opacity,
multiple overlays can overlap by simultaneously preserving the shown information.
These overlays are heavily used in Part III.

As described above, to handle and visualize data from complex systems each signal
channel can hold a link to his decorative objects. Therefore, each sub-plot (channel)
can show different representations, which is necessary to support the identification of
sub-sequences. A visualization of a time series with the mentioned overlays is shown
in Fig. 4.7.
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multi-dimensional time series

Ev.1
Ev.2
Snippet

Events

multi-dimensional time series (snippet)

Snippet

Events

Fig. 4.7 Visualization of decorative objects using overlays. The three top channels are
overlaid with symbolic representations. The bottom channel is overlaid with segments.
Additionally, events are shown as dashed lines on each channel. The plot on the bottom
shows a zoomed in snippet with additional annotations regarding the length and the
name/symbol of the segments/symbolic time series.
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5 | Synopsis

Polynomials are famous and studied extensively in literature due to their nature and
simplicity. This is, amongst other reasons, because every continuous function within
a closed interval can be approximated with a polynomial so that it does not exceed
a given approximation error (the Weierstrass approximation theorem[1]). Therefore,
polynomials are the main topic of this part of the thesis, since they play an essential
role in data analytics.

The first paper [P8] (see Chapter 6) presents a framework for approximating data with
a polynomial which fulfils certain constraints. These constraints can either be zero
constrains, value constraints, general constraints or constraints on the coefficients of
the polynomial. In the first step, the solution for zero constraints is presented which
yields the homogeneous solution. Based on that, Vandermonde vectors and their
analytical derivatives are used to model the value/general constraints yielding the
particular solution. This solution is subtracted from the noisy data and a polynomial
is approximated in a homogeneous manner yielding the homogeneous portion of the
solution. Throughout all types of constraints, the mathematical formulation, the
numerical implementation and the covariance propagation are shown.

The ideas in paper [P3] (see Chapter 7) were developed based on the ability of using
analytical derivatives of the Vandemonde vectors within polynomial approximation.
In this paper, weighted polynomial approximation is used to derive the state vectors
(value and derivatives) at a reduced set of abscissa values, since state space variables
are known to provide a good description for the dynamics of a system. The next
level of compression is achieved by polynomial approximation of the state vectors,
i.e. Hermite approximation. To establish a metric for simultaneous least-squares
approximation in both domains (value and derivative domain), covariance weighting
together with concatenated Vandermonde matrices is used. Additionally, covariance
propagation is performed throughout all compression levels. This idea can be used in
cyber physical systems, since the weighted polynomial regression can be calculated
on the edge-device. Subsequently, only the state vectors are transmitted to other
devices which can be used to rebuild an approximation of the original signal. The
reconstruction can be used to perform further evaluations.

As Weierstrass’ theorem stated, every function within an interval can be approxi-
mated up to the needed precision using polynomials with a “high” enough degree.
Although the Vandermonde basis is analytically linear independent, it becomes
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degenerated in numerical computations at higher degrees. To perform high degree
polynomial approximation for state vectors (i.e. given function values and derivatives)
a method using discrete orthogonal polynomials was developed in paper [P1] (see
Chapter 8). This method is numerically stable for high degree polynomials, since
re-orthogonalization is used within the derivation of the method. In the case the
abscissa-values do not change for multiple approximations, the basis can be calcu-
lated a-priori. Thus, the approximation problem reduces to a simple vector-matrix
multiplication making it suitable to be processed on an edge-device.
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Abstract. This paper presents the derivation, implementation and testing of a se-
ries of algorithms for the least squares approximation of perturbed data by poly-
nomials subject to arbitrary constraints. These approximations are applied to the
solution of inverse problems in engineering applications. The generalized nature
of the constraints considered enables the generation of vector basis sets which
correspond to admissible functions for the solution of inverse initial-, internal-
and boundary-value problems. The selection of the degree of the approximation
polynomial corresponds to spectral regularization using incomplete sets of basis
functions. When applied to the approximation of data, all algorithms yield the
vector of polynomial coefficientsα, together with the associated covariance ma-
trix Λα. A matrix algebraic approach is taken to all the derivations. A numerical
application example is presented for each of the constraint types presented. Fur-
thermore, a new approach to performing constrained polynomial approximation
with constraints on the coefficients is presented.

Keywords: constrained polynomial approximation, conditional least squares

1 Introduction

In 1964 Klopfenstein published a paper on Conditional Least Squares Polynomial Ap-
proximation [7]. In this paper he proposed a method which should implement a least
squares approximation

y(x) = p(x,α) =
d

∑
i=0

αi xi (1)

with a set of m generalized constraints of the form,

y(ri)(ci) = bi, (2)

i.e., a set of generalized derivative constraints. This is a very important class of equa-
tions since it corresponds to the problems which need to be solved when addressing
inverse initial-, inner-, and boundary value problems, where we may have Neumann
or Dirichlet boundary conditions. His work has been cited in numerous papers as a
means of implementing such constraints [5, 8]. However, as we shall see with a closer
examination this is not exactly the problem he has solved.
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Now using Klopfenstein’s notation, he proposes minimizing the cost function

Sm =
m

∑
k=1

wk {yk−Qn(xk)}2 (3)

where Qn(x) is an nth degree polynomial, there are l prescribed constraints on Qn(x) at
one or more points x j of the form,

Q(r)
n (x j) = br j. (4)

This is exactly the problem we wish to solve. The proposed model polynomial is of the
form,

Qn(x) = Pl−1(x)+Πl(x)Qn−l(x) (5)

where,

Πl(x) =
l

∏
j=1

(x− x j)
1+Ri . (6)

This definition for Πl(x) is where the error lies: defining the derivative constraint as
multiple zeros at the location x j not only places a constraint on the derivative but also
on the discriminant [3]. For example the single constraint

Q(1)
n (x j) = br j (7)

results in,
Π(x) = (x− x j)

2. (8)

This constraint implies that both the value of the function Πl(x) = 0 and its first deriva-
tive Π̇l(x) = 0 are both zero, i.e., its discriminant is zero at these locations. This is
not the same as only requiring Q(1)

n (x) = 0. Consequently, the algorithm is not actually
solving the case of a generalized derivative constraint. A further consequence is the
product,

Πl(x)Qn−l(x) (9)

is not of degree n as required but of degree n+1. Indeed, the method is perfectly correct
for value constraints, but not for generalized derivative constraints. Consequently, there
is still the need for a generalized solution.

A further issue with the proposed calculation method is associated with the trans-
formation

y
′
=

yk−Pl−1

Πl(xk)
. (10)

This transformation requires different solutions for collocated and interstitial constraints.
Collocated constraints will have the value Πl(xk) = 0, which requires the elimination
of the point yk from the data set; whereas this is not required for interstitial constraints.
Klopfenstein proposes eliminating the points which are collocated; however, this will
not solve the issue with an interstitial constraint which is very close to a location of xi.
In this case the computation becomes numerically unstable. Also, the computation of
the covariance propagation is by no means trivial.
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The authors have in the past worked on covariance weighted implementation of con-
straints [10]. This method does not permit the determination of admissible functions in
such a general manner and the work was restricted to first order derivatives. The work
presented in [9, 11] solve a similar set of problems using discrete orthogonal polyno-
mials however the constraints were restricted to be collocated. The interstitial case was
not dealt with.

There are a number of other papers relating to what is called constrained polynomial
approximation [1,4,6]; however, these papers refer to constraints on the residual and not
on the approximating function. As a consequence they are not relevant to the solution
of this problem.

In this paper we present a series of methods for constrained polynomial approx-
imation which permit the solution of the above problem among others. A consistent
algebraic formulation is derived which enables the computation of the coefficients α
of the minimizing polynomial p(x,α), together with the associated covariances Λα.
The paper is structured so that each algorithm is presented separately with a motivation
why and for which problems it is required; an algebraic derivation of the method; an
algorithmic implementation and a demonstration on a numerical example1.

2 Notation and definition of constraint types

In this paper we shall us a matrix-vector formulation of the solutions. The following
notation is used:

1. A polynomial of degree d is denoted as pd(x,α),

pd(x,α) =
d

∑
i=0

αi xi. (11)

2. The coefficient vectors, e.g., α = [αd , . . . ,α0]
T are denoted using Greek letters.

Their corresponding covariance matrix is denoted as Λα.
3. The sets of observations xi, ŷi are denoted by vectors x and ŷ, the hat denotes that

these values are perturbed.
4. The approximating values of ŷ are denoted as y.
5. The vector v, is an exception as it is a row vector, it corresponds to a row in the

Vandermonde matrix V, e.g., v = [xd
i ,x

d−1
i , . . . ,xi,1]

The types of constraints considered are shown in Figure 1, they are, polynomials:

1. with constraining zeros.
2. with constraining values, and
3. with generalized constraints of the form,

p(k)(c,α) = h, (12)

i.e., the kth derivative of the polynomial at the location c is h.
1A full implementation of each method is available at https://www.mathworks.com/matlabce

ntral/profile/authors/3977359-matthew-harker-paul-o-leary
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Fig. 1. The values of the polynomial are generated at the locations xi. The three types of con-
straints considered are: a known zero located at c1; a value constraint located at c2 and a differ-
ential constraint located at c3. The location of the constraints may be either collocated with the
data points xi or interstitial.

3 Polynomial approximation with constraining roots

The task here is to approximate a set of n points xi, ŷi by a polynomial, p(x,α) of degree
d, while fulfilling the constraints p(ci,α) = 0 ∀ ci ∈ c. The vector c , [c1, . . . ,cm]T

contains the locations of the m constraints.These types of constraints are motivated from
the fact that many physical and engineering systems exhibit eigenfunctions which have
known zeros. In particular systems which are described by Sturm-Liouville equations
commonly have such constraints. Consider, for example the simply supported beam
shown in Figure 2: its bending modes have zeros at both ends. If we were using sensors
to measure the deformation of the beam, it would be desirable to have a model which
takes advantage of the a-priori knowledge about the solution.

The example in Figure 2 is a boundary value problem, i.e., the constraints are at
the boundaries of the system. However, in this paper, we consider the more general
case where zeros can be at any location, either within or outside the support; in this
manner initial-, interior- and boundary-value problems can be solved. The model we
are defining is a polynomial pd(x,α) of degree d with at least m roots at the locations
c= [c1, . . . ,cm]T. The proposed polynomial pd(x,α) model is the product of two poly-
nomials,

pd(x,α) = pm(x,γ)pd−m(x,β), (13)

whereby, pm(x,γ) is the polynomial with exactly m roots at the locations c= [c1, . . . ,cm]T.
This polynomial is known prior to the computation of the approximation, since it is fully
defined by the locations of the roots,

pm(x,γ) =
m

∏
k=1

(x− ck) . (14)

Given γ, the task of the least squares approximation is now to determine the values
for β which minimize the residual is a least squares sense. Then to map β 7→ α to
obtain the required coefficients and also compute the covariance Λα.
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Fig. 2. Example of a simply supported beam (top) and the first three constrained polynomials
which fulfil the constraints. These polynomials can be used to approximate the bending modes
(bottom) of the beam.

3.1 Algebraic formulation

The values of the model are computed as

y = Vα, (15)

The coefficient vector α results from the product of two polynomials, pm(x,γ) and
pd−m(x,β). Given the coefficients γ we can compute the corresponding convolution
matrix Γ such that,

α= Γβ. (16)

Substituting into Equation (17) we obtain,

y = V Γβ. (17)

The residual vector r, is computed as,

r = ŷ−y (18)
= ŷ−Vα (19)
= ŷ−V Γβ (20)

The weighted cost function εw(β) is defined as

εw(β) = {ŷ−V Γβ}T W {ŷ−V Γβ} (21)

where W = diag{w} is a diagonal matrix, with w = w(x) containing the values of the
weighting function w(x). The weighting function w(x) must be positive definite. The
normal equations are obtained by solving,

dεw(β)

dβ
= 0. (22)

3. Polynomial approximation with constraining roots 47
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This is a well known problem, the solution is,

β =
(
ΓT VT W V Γ

)−1
ΓT VT W ŷ. (23)

For clarity2 we shall consider the case W = I,

β =
(
ΓT VT V Γ

)−1
ΓT VT ŷ (24)

= (V Γ)+ ŷ (25)

where given the matrix A, then A+ denotes the Moore and Penrose pseudo inverse of
this matrix . Then substituting into Equation (16) yields,

α= Γ (V Γ)+ ŷ. (26)

Defining,
K , Γ (V Γ)+ , (27)

yields,
α= K ŷ, (28)

and from the statistics of linear operators we obtain the covariance of α as,

Λα = KΛŷKT. (29)

This further simplifies under the assumption that the model is free from bias and the
input is i.i.d. perturbed with a standard deviation σ . In this case,

Λŷ = σ2 I, (30)

and consequently,
Λα = σ2 KKT. (31)

and

Λy = V ΛαVT (32)

= V KΛŷKT VT. (33)

3.2 Algorithmic implementation

Equation (13) can be written as,

pd(x,α) =
m

∏
k=1

(x− ck)
d−m

∑
j=0

β jx
j. (34)

Since c is known we can compute the vector,

yc =
m

∏
k=1

(x− ck) (35)

2This simplifies the equations and makes the structure more visible. There is no principle
change in the methods for generalized weighting.
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this corresponds to Πl(xk) in Klofpenstein’s paper. He proposes dividing the left-hand-
side of his equation [7, Equation 4] by these values. However, since yc can contain
values of zero or very close to zero this computation becomes numerically unstable.
Alternatively, we can compute the Hadamard product of yc with the monomials of the
free polynomial p(x,β) to obtain,

pd(x,α) =
d−m

∑
j=0

β j yc ◦x j. (36)

Now defining the basis function b j , yc ◦x j and B , [bd−m, . . . ,b1,b0] we obtain

B≡ V Γ, (37)

leading to
y = Bβ. (38)

There are a number major advantages associated with this approach:

1. Most importantly, the numerical instability of the Klopfenstein’s methods is elimi-
nated.

2. There is no further need to distinguish between collocated and interstitial con-
straints.

3. The matrix B can be computed in a numerically efficient manner using a Horner
form starting from the vector yc, see m-code Listing 1.1.

Listing 1.1. Code snippet to compute B.

B = z e r o s ( l e n g t h ( x ) , n r C f s B e t a ) ;
% per fo rm t h e s y n t h e s i s
B ( : , n r C f s B e t a ) = yz ;
f o r k =( n r C f s B e t a − 1) :−1:1

B ( : , k ) = x .∗B ( : , k + 1 ) ;
end

The pseudo-inverse of B = QR is computed using QR decomposition, so that β is
obtained as,

β = R+ QT ŷ, (39)

and α is obtained by computing α= Γβ.

3.3 Example and interpretation

Polynomials form a vector space P. The columns bi of the matrix B form a vector basis
set, which spans the sub-space of P that is the polynomials of degree d which have
the prescribed roots. Consequently, any linear combination of the columns of B also
fulfills the constraints. The matrix B has the same polynomial ordering as V, since Γ is
a convolution matrix and by definition it has a band diagonal structure. An example of
such vector bases is shown in Figure 3.

3. Polynomial approximation with constraining roots 49
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Fig. 3. Example of a set of polynomials, of degrees d = [2,3,4,5], with prescribed roots c =
[−1,0.5]T. These polynomials form a vector basis set for the space of all polynomial up to degree
d = 5 which fulfil the constraints.

To test the algorithm a synthetic set of data points were generated: the constraints
are defined by p(c,α) = 0 with c = [−0.1,1]T; an arbitrary free polynomial y f (x) =
(−x3 +0.6x2 + x) was assumed. The resulting polynomial used for the synthesis of the
data is yg(x) = (x + 0.1)(x− 1)(−x3 + 0.6x2 + x) and iid. noise with σ = 0.03 was
added. The corresponding coefficient vector αg and the results of the approximation
α f are shown in Table 1. The data, the results of the approximation and the 1σ error
bound for the data prediction are shown graphically in Figure 4. The variance of the
solution resulting from the uncertainty in the coefficients is shown in Figure 5. The
approximating polynomial is p5(x,α).

Table 1. Example of a polynomial with predefined zero locations, αg are the coefficients of the
polynomial used to generate the data; whereby iid. noise with σ = 0.03 was used during the syn-
thesis; the constraints are defined by p(c,α) = 0 and c= [−0.1,1]T; an arbitrary free polynomial
y f (x) = (−x3 + 0.6x2 + x) was assumed. The resulting polynomial used for the synthesis of the
data is yg(x) = (x + 0.1)(x− 1)(−x3 + 0.6x2 + x). The coefficients α f were obtained from the
fitting algorithm.

αg α f

α5 -1.00 -0.9909
α4 1.50 1.4956
α3 0.56 0.5291
α2 -0.96 -0.9511
α1 -0.10 -0.0841
α0 0.00 0.0015
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Table 2. Covariance matrix Λα for the coefficientsα resulting from the approximation: all values
have been scaled by 103.

α5 α4 α3 α2 α1 α0

α5 3.7504 -0.2748 -4.5183 -0.0682 1.0134 0.0976
α4 -0.2748 0.7678 0.0643 -0.6316 0.0618 0.0125
α3 -4.5183 0.0643 5.7272 0.2785 -1.4133 -0.1384
α2 -0.0682 -0.6316 0.2785 0.5709 -0.1312 -0.0185
α1 1.0134 0.0618 -1.4133 -0.1312 0.4267 0.0426
α0 0.0976 0.0125 -0.1384 -0.0185 0.0426 0.0043

This polynomial is equivalent to,

y(x) =
(
γ2 x2 + γ1 x+ γ0

) (
β3 x3 +β2 x2 +β1 x+β0

)
, (40)

y(x) = (x+0.1) (x−1)
(
β3 x3 +β2 x2 +β1 x+β0

)
, (41)

y(x) =
(
x2−0.9x−0.1

) (
β3 x3 +β2 x2 +β1 x+β0

)
. (42)

Fig. 4. Example data set and results as summarized in Table 1. The upper and lower curves shown
correspond to a 1σ error bound for the prediction of a measurement value. Note the approximat-
ing polynomial fulfils the constraints exactly.

4 Polynomial approximation with constraining values

The task here is to approximate a set of n points xi, ŷi by a polynomial, p(x,α) of
degree d, while fulfilling the constraints p(ci,α) = ai ∀ci,ai. This problem is the natural
extension of approximation with polynomials having known roots. This type of problem

4. Polynomial approximation with constraining values 51
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Fig. 5. Model prediction variance due to covariance of the polynomial coefficients, see Table 1.
Note the approximating polynomial fulfils the constraints exactly, i.e., there is zero variance at
the locations of the zeros.

is encountered in many inverse problems in engineering and science. The vectors c and
a contain the locations and the corresponding values of the constraints. The task of
approximating can be split into separate tasks:

1. Use polynomial interpolation to determine the coefficients δ of yp(x) = p(x,δ)
which fulfil the m constraints, i.e., pm−1(c,δ) = a. We call this portion the partic-
ular solution it is denoted by yp, since it changes with the particular values of the
constraints ai. Given m constraints the polynomial is of degree m−1.

2. Residualize the observations ŷ wrt. the particular solution, i.e. ŷh = ŷ−p(x,δ).
3. Approximate ŷh with a polynomial fulfilling the constraints in a homogeneous

manner; this problem was solved in the Section 3. This portion, denoted by yh ,
is called the homogeneous portion of the solution, it is independent of the particu-
lar values of ai and has the structure

yh(x) = pm(x,γ)pd−m(x,β). (43)

The resulting polynomial model being considered is:

pd(x,α) = pm(x,γ)pd−m(x,β)︸ ︷︷ ︸
yh(x)

+pm−1(x,δ)︸ ︷︷ ︸
yp(x)

. (44)

4.1 Algebraic formulation

The least squares approximation of data by a polynomial with a-priori value constraints
decomposes into a number of simple algebraic steps. The solutions for each of these
steps are already available:

1. Determine the coefficients δ of the interpolating polynomial p(x,δ): we may use
any method suitable to compute the interpolating polynomials, as far it delivers the
coefficients with respect to a sum of monomials.

52 Chapter 6. Constrained Polynomial Approximation



Constrained Polynomial Approximation 11

2. Then we proceed to compute, ŷh(xi) = ŷi−p(xi,δ), the approximation to this data
should fulfil the constraints in a homogeneous manner.

3. Compute, γ the coefficients of the polynomial which has roots located at the values
of c, i.e. p(c,γ) = 0

4. Determine the values for β using the methods previously presented in Section 3.
5. Compute α as follows:

α= γ ∗β+δ, (45)

Note δ must be padded with leading zeros to obtain the same dimension as γ ∗β.

With respect to covariance propagation: the vector δ is error free since it represents
the polynomial which interpolates the constraining values exactly. Additionally the con-
straining values are considered to be free from error. The covariance propagation comes
from computing β from ŷ, this is exactly the same mechanism as in Section 3; conse-
quently, the task of computing the covariance matrix Λα is also solved.

The numerical implementation consists primarily in the concatenation of a series of
already available functions.

4.2 Numerical example

A synthetic data set was generated to test the algorithm: the constraints were defined
as: p(c,α) = a with c = [1,0,0.9]T and a = [−0.5,0.3,−0.5]T. A free polynomial
y f (x) =−x3 +x2−1 was assumed and iid. noise with σ = 0.03 was added. The various
coefficients involved are presented in Table 3.

Table 3. The values of the coefficients γ, β and δ used to generate the synthetic data. Addition-
ally an iid Gaussian noise component with σ = 0.03 was added.

β γ δ

β3 -1 γ3 1.0
β2 1 γ2 0.1 δ2 -0.8889
β1 0 γ1 -0.9 δ1 -0.0889
β0 -1 γ0 0 δ0 0.3000

The data set, results of the approximation, a 1σ error bound for the measurement
prediction and the interpolation p(x,δ) are shown in Figure 6. For completeness the
residualized data ŷ and the homogeneous approximation are shown in Figure 7

5 Polynomial approximation with generalized constraints

The task now is to perform polynomial approximation given a more general form of
constraint,

dk y(x)
dxk

∣∣∣∣
c
= y(k)(c) = a. (46)
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Interp

Approx

Fig. 6. Result of the approximation for the test data set defined by the values given in Table 3. The
interpolating polynomial and the approximation are shown. The upper and lower curves shown
correspond to a 1σ error error bound for the prediction of a measurement point.

Fig. 7. The homogeneous approximation after ŷ(x) has been residualized on the interpolation
polynomial p(x,δ).

This is the case Klopfenstein claimed to solve; however, his method makes no pro-
vision for the case y(k)(ci) = ai but there being no constraints on y( j<k)(ci) = ai. His
method placed multiple roots to implement the constraints, this implies that the dis-
criminant will also be zero.

Each constraint of this form is fully defined by the triplet of values: c the location
of the constraints; k the order of the derivative associated with the constraint and a the
value of the constraint. We define the triplet t , [c,k,a]T as the representation for the
constraint. Some examples of constraints and their defining triplets are given in Table 4

Furthermore, given m constraints the ith is defined as a triplet of values,

ti = [ci,ki,ai]
T (47)

and the m definitions are concatenated to form the matrix T , [t1, . . . , tm]. This is a very
general definition for constraints. It permits the implementation of initial, interior and
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Table 4. Some examples of generalized constraints and their representation as triplets.

Constraint Triplet

y(0) = 0 t= [0,0,0]T

y(1)(0.9) = 1.3 t= [0.9,1,1.3]T

y(2)(−1) =−0.1 t= [−1,2,−0.1]T

boundary value conditions: Dirichlet, y(c) = a and Neumann, y(1)(c) = a, are simply
special cases.

This more general definition of a constraint enables the application of the polynomi-
als to a large class of inverse problems related to the observation of systems governed by
ordinary differential equations. Additional the solution algorithm will enable the gener-
ation of vector basis sets which span the sub-space of all polynomials which fulfill the
constraints in a homogeneous manner. These correspond to admissible functions when
solving differential equations using the Rayleigh-Ritz method [2, 12, 13]. Virtually all
engineering systems have some known solution conditions. Using these constraints the
a-priori knowledge can be embedded in the solution; this provides for regularization
which is consistent with the known behaviour of the system.

5.1 Algebraic formulation

Let us consider the polynomial pd(x,α): defining the Vandermonde vector vd of degree
d as3,

vd(x) ,
[
xd ,xd−1, . . . ,x,1

]
, (48)

and the coefficient vector α, then we can define the value of y(x) as,

y(x) = vd(x)α. (49)

Now taking the first derivative of this polynomial with respect to x,

ẏ(x) = d αd xd−1 . . .+2α2 x1 +α1 x0. (50)

One possibility is to define a vector α̇, [0,d αd , . . . ,2α2,α1]
T such that,

ẏ(x) = vd(x)α̇. (51)

The relationship between the entries of α̇ and α can be written as,

α̇(k−1) = kα(k). (52)

3More stringently we should define all vectors as column vectors and use the transpose op-
eration to obtain the corresponding row vector. However, to maintain consistency here we define
the Vandermonde vector as one row of the Vandermonde matrix,
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That is, each coefficient is scaled by k and shifted by one location in the coefficient
vector. We now need to formulate the derivative ẏ(x) in terms of v̇d(x) and α, i.e.,

ẏ(x) = v̇d(x)α. (53)

Let us us start by differentiating the Vandermonde vector, to obtain,

v̇d(x) ,
[
d xd−1,(d−1)xd−2, . . . ,1,0

]
. (54)

We now wish to determine a matrix M such that,

v̇d(x) = vd(x)M. (55)

Observing the consequences of performing the derivative: each power of x is scaled
by the degree of the monomial being differentiated. Additionally the monomials are
shifted up one location in the vector. We can define a scaling vector s associated with
the derivative of each entry,

s= [d,(d−1), . . . ,2,1] . (56)

Then from s we generate the matrix S required to scale the entries of vd , i.e.,

S = diag{s} . (57)

Secondly we observe that the powers of x are all shifted one place to the left and a zero
is inserted where the constant term (1) was present. The scaling and shifting are both
achieved by applying the matrix M,

M =

[
0 0
S 0

]
(58)

With this we obtain,
ẏ(x) = vd(x)Mα. (59)

From this equation we can determine the two relationships,

v̇d(x) = vd(x)M (60)

α̇, Mα (61)

This approach generalizes to derivatives of ith order as follows,

v
(i)
d (x) = vd(x)Mi (62)

α(i) = Miα (63)

With this we have all the equations required so that we can implement the triplets. Now
returning to the m constraints defined as triplets.

The aim now is to define and compute a matrix C such that

Cα= a. (64)
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This is achieved using Equation (62) to generate C with one row per constraint, i.e.,

C ,



v

(k1)
d (c1)

...
v

(km)
d (cm)


 (65)

The rC = rank{C} gives the number of independent constraints. If rC < m, then there
are redundant constraints. Secondly, the values of the constraints amust lie in the range
of C, i.e., a ∈ range{C}. If this is not the case then the constraints are inconsistent.

Solving Equation 64 for α yields,

α= C+a+NCγ. (66)

Whereby, NC is an ortho-normal basis function set which spans the null space of C, i.e.,
the subspace of polynomials which fulfil the constraints. Consequently,

y = V
{

C+a+NCγ
}

. (67)

Expanding shows that the equation splits into the particular and the homogeneous por-
tion which is used to perform the least squares approximation.

y = V C+a︸ ︷︷ ︸
yp

+V NCγ︸ ︷︷ ︸
yh

(68)

5.2 Algorithmic implementation

With Equation (68) we now have all the prerequisites to perform the least squares ap-
proximation. The algorithm can be summarized as follows:

1. Compute the constraining matrix C by concatenating the Vandermonde vectors cor-
responding to the definitions of the constraints represented by their triplets.

2. Determine the rank rC = rank{C}, pseudo-inverse C+ and a vector basis set for
the null space of C, i.e., NC.

3. Test for uniqueness and consistency of the defined constraints.
4. Compute the particular solution αp = C+a and yp = V C+a.
5. Residualize the observations ŷ on the particular solution,

ŷh = ŷ−yp. (69)

6. Compute γ,
γ = {V NC}+ ŷh. (70)

7. Compute α,
α=αp +NCγ. (71)

8. Compute Λα by defining,
K , NC {V NC}+ . (72)

then
Λα = KΛŷKT. (73)
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5.3 Numerical example

A synthetic data set was generated to test the algorithm, the constraints used are defined
in Table 5. In this example the coefficients of the free polynomial are chosen to have
the coefficients β = [1,1,0.8,0.9]T and iid. Gaussian noise with σ = 0.03 was added.

Table 5. Definition of the constraints used to synthesize the test data and their representations as
triplets.

Constraint Triplet

y(0)(−0.8) = 1 t1 = [−0.8,0,1]T

y(0)(0.1) = 0, t2 = [0.1,0,0]T

y(1)(1) = 1 t3 = [1,1,1]T

The null space of C, i.e., NC, forms a vector basis set for the space of the coefficients
of all polynomials which fulfil the constraints in a homogeneous manner. Consequently,
B = V NC is a vector basis set of polynomials for the space itself. The columns of B
correspond to admissible functions for this portion of the problem. The basis functions
and their first derivatives are shown in Figure 8; as can be seen, the basis functions fulfil
all the constraints in a homogeneous manner as expected. Furthermore, the derivative
constraint located at x = 1, places no restrictions on the values of the basis functions at
this location.

Fig. 8. Top: B = V NC and bottom Ḃ = V MNC show the basis functions and their first derivatives
respectively. It can be seen that all basis functions fulfil the constraints in a homogeneous manner
as required. Furthermore, the derivative constraint places no restrictions on the values of the
polynomials at this location.

The result of the least squares approximation are shown in Figure 9. The raw data
together with the constrained polynomial approximation. The upper and lower curves
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shown correspond to a 1σ error bound for the prediction of a measurement point. Ad-
ditionally, the first derivative of the approximation is presented, this is to show that the
derivative constraint has been fulfilled.

Fig. 9. Top: The raw data together with the constrained polynomial approximation. The upper and
lower curves shown correspond to a 1σ error bound for the prediction of a measurement point.
Bottom: The first derivative of the approximation; this is to show that the derivative constraint
has been fulfilled.

5.4 Extensions of this work

In this paper we have demonstrated it with the geometric polynomials. However, it
could just as well be performed using the Bernstein polynomials. In this case we would
define CB to be C in terms of the Bernstein polynomials

CB(u)β = a. (74)

and perform a coordinate transformation,

u =
x− xmin

xmax− xmin
. (75)

The Berstein polynomials can be computed generically, as can their derivatives,

bnk =

(
k
n

)
uk (1−u)n−k, k = 0, . . . ,n. (76)

Consequently, we can form CB(u) so that Equation (74) is fulfilled. The rest of the
algorithm remains unchanged. This method works with any basis function set for which
we can compute their values and derivatives as required.

6 Coefficient constrained polynomial approximation

The above constraints have all involved placing constraints on the function. However,
we may also wish to put constraints on the values or relationships between coefficients.
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To achieve this we define a matrix G which maps between an auxiliary vector of coeffi-
cients γ and the primary set of coefficients α. Starting from,

y = Vα (77)

Now defining the mapping between γ and α,

α= Gγ, (78)

we obtain,
y = V Gγ. (79)

From the algebra in this paper we know the approximating solution given this model is,

γ = (V G)+ ŷ (80)

K , G (V G)+ (81)
α= K ŷ (82)

Λα = KΛŷKT. (83)

As we can see the solution has exactly the same structure as the solution in Section 3.

6.1 Example coefficient constraints

Consider the curve y(u) defined by the coefficients of the Bernstein polynomials,

y(u) = (1−u)3 β0 +3(1−u)2 uβ1 +3(1−u)u2 β2 +u3 β3. (84)

Defining the individual basis functions as,

b30 = (1−u)3 b31 = 3(1−u)2 u b32 = 3(1−u)u2 b33 = u3 (85)

and B , [b30,b31,b32,b33] then we can write,

y = Bβ (86)

Now let us consider some possible constraints, to perform symmetric approximation we
may wish to define β0 = β3 = γ0 and β1 = β2 = γ1, this would require defining,

G =




1 0
0 1
0 1
1 0


 and γ =

[
γ0
γ1

]
(87)

Then the formulation,
y = BGγ, (88)

yields the necessary equations to solve the approximation. Formulated, in this manner
any linear relationship between the coefficients can be used as a constraining condition.
The matrix G may also be rank deficient, as in the case of eliminating matrices.
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7 Conclusions

This paper has presented a series of algorithms for constrained polynomial approxi-
mation. The methods enable constraints as roots of a polynomial, as value constraints
and as generalize differential constraints. The generic matrix algebraic formulation per-
mits the computation of the optimizing coefficient values as well as their covariance,
in a direct and simple manner. Additionally, a new approach to applying generic linear
constraints to the coefficients of polynomials is presented.
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Abstract. This paper addresses the issue of hierarchical approximation and de-
composition of long time series emerging from the observation of physical sys-
tems. The first level of the decomposition uses spatial weighted polynomial ap-
proximation to obtain local estimates for the state vectors of a system, i.e., values
and derivatives. Covariance weighted Hermite approximation is used to approxi-
mate the next hierarchy of state vectors by using value and derivative information
from the previous hierarchy to improve the approximation. This is repeated until
a certain rate of compression and/or smoothing is reached. For further usage, met-
hods for interpolation between the state vectors are presented to reconstruct the
signal at arbitrary points. All derivations needed for the presented approach are
provided in this paper along with derivations needed for covariance propagation.
Additionally, numerical tests reveal the benefits of the single steps. The proposed
hierarchical method is successfully tested on synthetic data, proving the validity
of the concept.

Keywords: signal decimation, hermite approximation, hermite interpolation, co-
variance propagation, signal reconstruction, weighted regression

1 Introduction

Currently, much effort is being put into the collection of data, in particular in con-
junction with IoT and smart sensors. With the rise of cyber physical systems (CPS)
many data is collected from machines which, by nature, must abide by the laws of phy-
sics (e.g. dynamic systems). To analyse the behaviour of the system monitored, techni-
ques for the approximation of the observed signal in presence of noise are necessary.
A lot of research is done in the area of streaming algorithms,i.e., local regression pro-
blems [3, 7, 11, 13, 15, 16, 22, 23], for smoothing and approximation of data. In [24], a
method for identifying patterns in dynamical systems using phase space was introdu-
ced. The analysis of the phase space is also used in [8] to detect fatigue damage based
on ultrasonic data. To transform signals into the phase space, it is necessary to approx-
imate data and derivatives, that is, to compute time series estimates for the state vector.
In the past, the authors published work dealing with reconstruction of curves given its
derivatives with the requirement to fulfil additional constraints [18, 19].

In this paper a new framework for the approximation of large time series data ema-
nating from physical systems is presented. The main contributions of the paper are:
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1. The proposal of a hierarchical approach for approximating large time series data
which can be used in signal decimation;

2. The derivations for generating state vectors using spatial weighted polynomial ap-
proximation. This improves the quality of approximation by diminishing Runge’s
phenomenon;

3. A formulation for the approximation of data given value and derivative information
(i.e. Hermite approximation). Covariance weighting is used to achieve a consis-
tent metric used in the least squares approximation. This improves the quality of
subsequent approximations;

4. The proposal to use a two-point expansion for the reconstruction of the signal and
its derivatives based on the state vectors;

5. A consistent formulation of covariance propagation for the proposed derivations.

This paper is structured as follows: In Sect. 2 the framework for the hierarchical approx-
imation is presented. For the calculation of state vectors, spatial weighted polynomial
approximation is presented in Sect. 2.1. Different weighting functions are investigated
and a matrix approach for the calculation of the state vectors and their according cova-
riance matrix is presented. Section 2.2 presents a novel method for approximating data
given collocated value and derivative information (state vectors). Covariance weighting
and optional spatial weighting is used to achieve a consistent metric for least squares
Hermite approximation. To reconstruct the signal from its decimated version (given its
state vectors), a two-point expansion is proposed in Sect. 2.3 which performs better than
a single point Taylor expansion. Finally, in Sect. 3 the performance of the proposed fra-
mework is tested on synthetic data. Different stages of the hierarchical approximation
are presented and discussed.

2 Methodology and Algebraic Framework

A physical process y(x) is observed at discrete points xi (e.g. time, location). The ob-
servations made at these points are denoted as ŷi. Note: The hat indicates that the ob-
servation is perturbed by noise. This is said to be level 0 of the hierarchy (L0). The
n observations (signal) and locations are collected in the vector ŷ =

[
ŷ1, . . . , ŷn

]T and

x=
[
x1, . . . ,xn

]T
=
[
x(0),1, . . . ,x(0),n

]T
, whereby xi = x(0),i denotes the i-th location (i-th

point) in level 0.
In the first level (L1) of the proposed hierarchical approach the signal and its deri-

vatives up to a certain order d, i.e, the state vectors s j, are approximated at collocated
points x j. These local estimates for the state vectors of the signal to be monitored are
defined as

s j = s(1), j ,
[
y(1), j, ẏ(1), j, ÿ(1), j, . . . ,y

(d)
(1), j

]T
=
[
y(x j), ẏ(x j), ÿ(x j), . . . ,y(d)(x j)

]T
,

where x j = x(1), j = x(0),i= j×l1 denotes the j-th point1 in level 1. In this level the first
decimation takes place, since only points with a spacing l1 are approximated. In ot-

1To simplify readability, xi is used for points in L0, x j for points in L1 and xk for points in
L2 and above if not defined in another way. The subscripts (0), (1) and (2) denote the different
levels.
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her words, only the points x(0),i= j×l1 from L0 are approximated in L1. Additionally, the
matrix Λ j corresponding to the covariance of s j can be computed along with the ap-
proximation. To improve the quality of the fit, a local weighting function w j(x) is used
to perform weighted regression. Local weighting is used to obtain behaviour similar
to splines; that is, input data only influence the result of the approximation in a finite
region. The use of weighting functions which limit both, the values and derivatives at
the end of the interval also reduce the Runge phenomenon. This is very closely related
to Gibbs error and windowing in Fourier analysis [10].

The levels 0 and 1 (L0 and L1) of the hierarchical process is shown in Fig. 1.

Fig. 1: Level 0 and 1 of the hierarchical approach: decimation is performed using weig-
hted local polynomial approximation for obtaining local estimates for the state vectors
s j (and their covariances Λ j).

Based on the state vectors s j and their covariances Λ j, a new method of covariance
weighted Hermite approximation is used to perform the next level of hierarchical ap-
proximation. In this step, decimation can be implemented as well, if the approximated
function is only evaluated at certain points xk. As a result, you get the collocated state
vectors sk = s(2),k of level 2 (L2). Since the derivatives are included in the approxima-
tion, a better confidence in the approximation is reached. Additional, spatial weighting
can be implemented as well. This hierarchical process (Hermite approximation) can be
repeated until the needed level of abstraction and smoothing (and/or decimation) of the
signal is reached. This repetitive process is visualized in Fig. 2.

After this, the state vectors (i.e. the decimated signal) can be used to reconstruct
(interpolate) the signal at the original positions (or somewhere in-between) using some
form of expansion. or interpolation. Since there is derivative information available, an
interpolation of higher degree is possible, resulting in better reconstruction. The neces-
sary algebraic formulations are collected in the next sections.
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Fig. 2: Schematic of the higher levels of hierarchical approximation by using repetitive
covariance weighted Hermite approximation.

2.1 Weighted Local Polynomial Approximation - Hierarchy Level 1

Local weighted regression is well-known in literature [3,5,13,15,17,20,22] with diffe-
rent studies on the weighting function to be used. In this work we investigate different
weighting functions suitable for the herein presented hierarchical approach.

Weighting Functions: As [3] proposed, a local weighting function w j(u) should fulfil
the following properties:

1. w j(u) > 0 for |u| < 1: the weighting function influences only points in a certain
range u ∈ ]−1,1[;

2. w j(−u) = w j(u): it is symmetric around u = 0;
3. w j(u) is a non-increasing function for |u| ≥ 0: the weighting function decreases

with increasing distance to the point of interest;
4. w j(u) = 0 for |u| ≥ 1: everything outside the local window does not influence the

approximation.

In our proposed framework, the weighting function w j is shifted to the point of interest
x j and scaled, so that only a certain number of points nw,1 = 2l1−1 is within the local
window,

u = 2
x− x j

x j+1− x j−1
. (1)
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The number of points in the local window used to generate the state vectors in level 1
are denoted by nw,1. Note: In the case of evenly spaced points, the weighting function
is already 0 at the points x j−1 and x j+1, i.e., w j(x j−1) = w j(x j+1) = 0. In this work two
considerations are made with respect to the weighting functions w j(u):

1. Overlapping weighting functions (from the neighbouring local approximations)
should form a partition of unity (∑

n j
j=1 w j(x) = 1). This ensures that all points in

the input stream contribute with the same total weighting to the result. Some possi-
ble weighting functions are shown in Fig. 3. Of special interest is the raised cosine

(a) Piecewise constant (b) Triangular (c) Raised cosine

Fig. 3: Weighting functions forming a partition of unity; black: local weighting function
w j(x) for approximating s j; blue: sum of the local weighting functions; blue, red dotted:
parts of the weighting functions w j−1(x) and w j+1(x) for generating the neighbouring
state vectors s j−1 and s j+1; bottom: schematic visualization of the position of original
data points to be weighted.

function

w j(u) =
1+ cos(π u)

2
. (2)

This function is known as the Hanning window in Fourier analysis which is used to
diminish the Gibbs error [10]. This function also provides a first derivative of 0 at
the end of the interval and at the centre point, i.e, dw j

du

∣∣
u=−1 =

dw j
du

∣∣
u=1 =

dw j
du

∣∣
u=0 =

0; this is advantageous with respect to the Runge phenomenon.
2. Alternatively, we may wish to define a weighting function w j(u) such that its values

and derivatives up to the kth order tend to zero at the ends of the support; that is,

lim
|u|→1

w(0)(u)→ 0, . . . , lim
|u|→1

w(k)(u)→ 0. (3)

This can be achieved using the polynomials,

w(u) = (u−1)(k+1) (u+1)(k+1). (4)

The polynomials computed using this weighting function are special cases of the
Jacobi polynomials. These functions do not directly form a partition of unity but
approximate it. The weighting function for k = 1 is shown in Fig. 4.
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Fig. 4: Jacobi polynomial with k = 1; black: local weighting function w j(x) for approx-
imating s j; blue: sum of the local weighting functions; blue, red dotted: parts of the
weighting functions w j−1(x) and w j+1(x) for generating the neighbouring state vectors
s j−1 and s j+1; bottom: schematic visualization of the position of original data points to
be weighted.

Spatial Weighted Local Regression: After choosing a weighting function, weigh-
ted regression is performed. The points and the observed values within the segment
j are denoted as xl, j and ŷl, j. The according weightings are collected in the vec-
tor w j = w j(xl, j). This vector is expanded to form the diagonal weighting matrix
W j = diag

{
w j
}

. If a linear model of the form

yl, j = B jα j (5)

is used to model the signal, the cost function to be minimized can be written as

ε =
(
ŷT

l, j−αT
j BT

j
)

W j
(
ŷl, j−B jα j

)
, (6)

which is the sum of the weighted squared errors. B j is a basis function set and α j are
the according coefficients for modelling the signal. Now the matrix square root of W is
defined as

U j = W
1/2
j with U jU j = W j. (7)

Note: if W j is positive semi-definite and symmetric, the numerically more stable Cho-
lesky factorization (W j = UT

j U j) can be used instead of the matrix square root. Mini-
mizing (6) with respect to α j delivers the least-squares solution, i.e.,

α j = {U jB j}+U jŷl, j, (8)

where {U jB j}+ denotes the pseudoinverse of U jB j.
To calculate the state vector s j, the model and the derivatives of the model up to

order d are evaluated at the point x j, yielding

s j =




y(0)
j
...

y(d)
j


=




B
(0)
j (x j)

...
B

(d)
j (x j)


α j = B̃ jα j, (9)
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where y(m)
j is the approximation of the m-th derivative of the signal at the point x j, and

B
(m)
j (x j) is the m-th derivative of the basis function set B j evaluated at x j, so that

y(m)
j = B

(m)
j (x j)α j. (10)

B̃ j is the concatenated matrix containing the basis functions and their derivatives eva-
luated at the point of interest.

Covariance propagation: Additionally, given the covariance Λl, j associated with the
original data in the segment j, the covariance for the state vector Λs, j can be propagated
using first order covariance propagation, i.e.,

Λs, j = B̃ jA jΛl, jA
T
j B̃T

j (11)

with

A j = {U jB j}+U j. (12)

The covariance matrix Λl, j is either known a priori (e.g. knowing the error associated
with the sensor used for observation) or can be calculated from the data, e.g., via the
norm of the residual vector (especially when using a polynomial basis).

The impact of the weighting function onto the covariance of the approximation is
shown in Fig. 5. As a basis function set a Vandermonde basis (polynomial basis) of
degree 4 is chosen along with an i.i.d noise on the input. Clearly it can be seen that
the piecewise constant weighting function performs badly outside its support due to the
Runge phenomenon [6, 25].

The above calculation is repeated for each segment xl, j to approximate the deci-
mated signal at the points x j. If the signal is equally spaced and the window size does
not change, the matrices W j, B j and A j are the same for each interval, i.e, W j = W,
B j = B and A j = A for j = 1 . . .n j. This is of major advantage, since these matrices can
be calculated a priori and the approximation of the state vectors (see Eq. 8) reduces to
the single linear mapping α j = A ŷl, j, which can be easily implemented on embedded
devices and smart sensors collecting the data. This makes the presented method suitable
for collecting real-time machine data. As shown later, the quality of approximation is
improved using state vectors instead of standard approximation techniques using only
value information.

The right choice of the basis functions used for approximation depends on the ob-
served system. The most common basis function set, also used in this work, is the
Vandermonde basis (polynomial basis). To improve stability, it is referred to discrete
orthogonal basis functions [16, 18]. The availability of the state vectors opens the door
to analyse signals in the so-called pseudo phase space (e.g. investigating Poincaré re-
currence times [21]). This is especially interesting for analysing dynamic systems.
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Fig. 5: This figure shows from top to bottom the propagated variances of y(u), y(1)(u)
and y(2)(u) respectively, for some weighting functions. Note that in all cases there is a
significant improvement in the variance compared to the piecewise constant window.

2.2 Hermite Approximation - Hierarchy Level 2 and above

In the first level of the presented hierarchical approximation the signal and its derivati-
ves (concatenated in the state vector ŝ j)2 are approximated at points x j. Additionally,
the covariance associated with each state vector is available. The approximation of such
signals (given the values and their derivatives) is not common in literature. It is related
to Hermite polynomials [2]. In [1] Hermite approximation is used for multidimensional
surface approximation. Hermite weighting functions are used in [12] to perform local
polynomial approximation. An application using two-point Hermite approximation for
solving initial value and boundary value problems can be found in [14]. The idea of re-
constructing signals given the first derivatives and additional value information at some
points is presented in [19]. Based on this work, we introduce a new method of doing le-
ast squares Hermite approximation using covariance weighting which extends the work
to higher order derivative information. It is used to approximate higher levels of the
hierarchical process presented in this paper.

Algebraic Formulation Given a system model in terms of a linear combination of
basis functions, the goal is to find the according coefficients that approximate the given
observations (values as well as derivatives) best, i.e., minimizing the residuals in a least
squares sense. Therefore, a consistent measure for the residuals in both, the value and

2The ˆ notation is used here, since the given state vector is the ’noisy’ input for the next level
of approximation.
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derivative domain, is necessary. Since the covariance information for the value and the
derivatives is available at each point, it can be used to weight the residual according to
this. That is, if a given information is precise, it has more impact on the solution.

First, the matrix H j is assembled as

H j =




h(x j)

h(1)(x j)
...

h(d)(x j)


 , (13)

where h(x j) denotes the basis function vector (e.g. Vandermonde vector). Each column
of this vector contains one of the basis functions evaluated at the point of interest x j.
h(m)(x j) is the m-th derivative of the basis function evaluated at xi and d is the number
of derivatives given in the state vector ŝ j. The local observed state vector ŝ j is now
approximated by s j = H jβ, where β denotes the coefficient vector. Consequently, the
local residual vector r j is given by,

r j = ŝ j−s j (14)
= ŝ j−H jβ. (15)

Additionally, for each ŝ j we have the corresponding covariance Λs, j; consequently we
can define an inverse covariance weighted computation of the error ε j,

ε j = rT
j Λ−1

s, j r j (16)

= rT
j WC, j r j (17)

= (ŝ j−s j)
T WC, j (ŝ j−s j) (18)

= (ŝ j−H jβ)T WC, j (ŝ j−H jβ) . (19)

WC, j denotes the covariance weighting matrix for the point j. All the individual local
estimates for the state variables can be vertically concatenated to obtain the normal
equations for the minimization problem. Let us start by defining

Λ ,




Λs,1 0 . . . 0
0 Λs,2 . . . 0
...

...
. . .

...
0 0 . . . Λs,n


 , H ,




H1
...

Hn


 , ŝ,



ŝ1
...
ŝn


 . (20)

Given Λ, the weighting matrix WC is computed as,

WC , Λ−1 =




Λ−1
s,1 0 . . . 0

0 Λ−1
s,2 . . . 0

...
...

. . .
...

0 0 . . . Λ−1
s,n


 (21)
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Since all data is approximated with the same underlying function, β is the same for
each point and the sum of the covariance weighted errors can be written as

ε =
n

∑
j=1

ε j =






ŝ1
...
ŝn


−




H1
...

Hn


 β




T



Λ−1
s,1 0 . . . 0

0 Λ−1
s,2 . . . 0

...
...

. . .
...

0 0 . . . Λ−1
s,n









ŝ1
...
ŝn


−




H1
...

Hn


 β


 . (22)

This is again a weighted regression problem of the form

min
β

ε = min
β

(ŝ−Hβ)TWC(ŝ−Hβ) (23)

with the solution,

β =
(

W
1/2
C H

)+
W

1/2
C ŝ. (24)

Now defining,

L ,
(

W
1/2
C H

)+
W

1/2
C , (25)

we also obtain the covariance for β, i.e.,

Λβ = LΛLT. (26)

Local Hermite Approximation The algebraic formulation given above is a generali-
zed version for approximating data from given values and its derivatives. For the pro-
posed hierarchical algorithm this approximation is applied locally to a window k which
spans only a certain number of the state vectors approximated in level 1. This is shown
in Fig. 2. As a result we get approximations for the coefficients for each window deno-
ted as βk. Additionally, spatial weighting can be added as described in Sect. 2.1. When
using spacial weighting captured in the weighting matrix WS,k along with the covari-
ance weighting WC,k, the matrix WC in (21)-(25) is replaced by the matrix product of
the two local weighting matrices WSC,k = WS,k WC,k. To implement decimation also in
this hierarchical level, the approximation of the state vectors is only done for the centre
xk of the local window, yielding sk, i.e.,

sk = Hk Lk ŝk. (27)

Hk denotes the matrix of basis functions (and their derivatives) evaluated at the point xk
as given in (13), Lk denotes the local version of (25) and ŝk is the concatenation of all
state vectors derived in level 1 within the local window. Again, the covariance for this
level of state vectors can be propagated as

Λs,k = Hk Lk Λk LT
k HT

k , (28)

where Λk is the local version of Λ.
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Polynomial Appr.

Hermite Appr.

Fig. 6: Synthetic data used for Monte-Carlo simulation. The two plots on the top show
the function and its derivative with the addition of Gaussian noise. The two plots on
the bottom show residuals for the approximation of the values and the derivatives for
both, the Hermite approximation and a standard polynomial fit, with twice the number
of samples (same amount of data).

Performance Test A Monte-Carlo experiment with n = 10000 iterations revealed that
using Hermite approximation is of advantage, if both, the signal and the derivatives,
should be approximated well. Therefore, a synthetic polynomial data set (see Fig. 6)
was generated with known values and first derivatives. A Gaussian noise with σy = 0.1
was added to the values and noise with σdy = 0.4 was added to the first derivatives.
The covariance weighted regression was performed without spatial weighting. The re-
sult was compared to standard polynomial fitting with the doubled number of samples
but without derivative information (to provide an identical amount information in both
methods, to make them comparable). As a measure, the weighted norm of the residual
vector ry = yapprox−yorig and rdy = ẏapprox− ẏorig was taken. The results are presen-
ted in Table 1. As it can be seen, Hermite approximation performs around 2 times better
than the standard polynomial fit for approximating derivatives. On the other hand, this
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Table 1: Result of the Monte-Carlo experiment.

1
σy
||ry ||2

1
σdy
||rdy ||2

Hermite approximation 0.0282 0.0262
Standard polynomial fit 0.0245 0.0443

leads to a slightly worse performance in approximating values. As to be expected, the
norm of the residual for the values and derivatives are nearly the same for the Hermite
approximation, due to the fact of the covariance weighting. This is not the case for stan-
dard polynomial fitting. Note: the behaviour at the ends of the interval is also better for
Hermite approximation (see Fig. 6).

As a result, it is suggested to provide state vectors sampled at a lower frequency
instead of using only value information sampled with full sampling frequency. The
amount of data does not change, whereas the quality of approximating derivatives is
improved. This fact can be considered in future design of smart sensors and IoT devices
collecting data of dynamic systems.

2.3 Data Reconstruction

In this section, methods for the reconstruction of the signal are investigated. During
the presented hierarchical approximation, the signal is decimated, and state vectors are
only available at certain points xk. In some applications, it is necessary to describe the
signal analytically to provide the possibility to do calculations at arbitrary locations and
not only at discrete points. This is known as Interpolation. In literature, especially in
digital signal processing, a lot of methods are well-established [4]. Basically, there are
two main categories:

1. Local interpolation: e.g, piecewise constant, linear or spline interpolation. For each
segment, a different interpolating function is used. If one point changes, only neig-
hbouring segments are affected. Note: this is not fully true for splines, since a
change in one point (knot) does affect a wider range of segments, based on the
degree of continuity to be fulfilled.

2. Global interpolation: this is related to approximation, e.g., polynomial interpola-
tion, trigonometric interpolation. A change in one point does affect the whole range
to be interpolated. These types also suffer from problems which arise due to over-
fitting.

Taylor Expansion: In the presented hierarchical method, state vectors, containing va-
lue and derivative information, are available. A straight forward possibility is to use a
one-point expansion (i.e Taylor expansion) to interpolate between two given points, i.e.,

fk(x) = yk + y(1)
k (x− xk)+ · · ·+ y(d)

k
d!

(x− xk)
d , (29)
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where fk(x) denotes the interpolating function based on the state vector sk at the posi-
tion xk. The order of derivatives available in the state vector is denoted by d. Since the
interpolating function is a polynomial, the derivatives are simple to calculate as well.
For q discrete points xi, the interpolated points yk can be calculated as




y1
y2
...

yq


=




(x1− xk)
d . . . (x1− xk) 1

(x2− xk)
d . . . (x2− xk) 1

...
. . .

...
...

(xq− xk)
d . . . (xq− xk) 1







1
d! 0 . . . 0
0 1

(d−1)! . . . 0
...

...
. . .

...
0 0 . . . 0







y(d)
k

y(d−1)
k

...
yk




. (30)

or in matrix vector equation as
yk = V Fsk, (31)

where V denotes the Vandermonde matrix for the expansion around xk and F holds
the scaling values resulting from Taylor approximation. For interpolating derivatives of
degree d, one can use

y
(d)
k = V(d) Fsk, (32)

where V(d) is the d-th derivative of the Vandermonde matrix.
A major problem of using this method is that discontinuities occur where the inter-

polating functions fk(x) and fk+1(x) meet (see Fig. 7).

Generalized Hermite Interpolation: To overcome the problem of discontinuities, we
take the idea of Hermite Interpolation [9] and extend it to higher degrees. Given n state
vectors, each with d states (order of derivatives) at each point xk, the polynomial fulfil-
ling all the given constraints would be at most of degree p = nd−1. The coefficients ρ
for this are computed by solving

min
ρ

∥∥∥∥∥∥∥∥∥∥




y

y(1)

...
y(d)


−




Vp

V
(1)
p
...

V
(d)
p



ρ

∥∥∥∥∥∥∥∥∥∥

2

2

= min
ρ

∥∥ỹ− Ṽpρ
∥∥2

2 , (33)

where y, y(1), . . . , y(d) are the vectors which hold the values and the derivatives for each
point xk used for interpolation. Vp denotes the Vandermonde matrix of degree p and V

(i)
p

denotes the i-th derivative of this Vandermonde matrix evaluated at the interpolating
points. If Ṽp is full rank, the interpolating polynomial is unique. In this case, the solution
is given as,

ρ= Ṽ−1
p ỹ. (34)

If the covariances of the state vectors are available, covariance propagation can be cal-
culated as in the above methods.

The presented hierarchical method proposes to use this generalized Hermite interpo-
lation to interpolate between two neighbouring points, which is a two-point expansion.
Thus, a change of one state vector does only influence the two neighbouring segments.
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With this method, the resulting curve (which is piecewise polynomial) is at least Cd-
continuous. This type of interpolation is closely related to splines. In Fig. 7 both, the
Taylor expansion and the generalized Hermite interpolation, are demonstrated. Both
methods use a cubic polynomial for interpolation. As it can be seen in the plots, the
Taylor expansion is discontinuous at points where two functions from neighbouring in-
tervals meet. This is not the case for the Hermite interpolation. At the end of the interval,
the Taylor expansion performs better due to the fact of being a single-point expansion
with the same degree as the two-point expansion of the Hermite interpolation.

original

Hermite Int.

Taylor appr.

(a) Full range of data (b) Zoomed region

Fig. 7: Hermite interpolation vs Taylor expansion.

If these methods are used to interpolate from L1 to L0, a consistency check can be
made simultaneously to identify discontinuities in the sampled data. This can be used to
trigger additional state vector samples at these point. However, this is not in the scope
of this paper.

3 Numerical Testing

To show the abilities of the herein proposed hierarchical approximation of data, the
method is tested on a synthetic dataset. The test data originate from the function

y(x) = sin(x)+ sin(3+2.5x)+ sin(15+4x)+
x3

25
(35)
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with the analytical first derivative

dy
dx

(x) = cos(x)+2.5cos(3+2.5x)+4cos(15+4x)+
3x2

25
. (36)

The function is sampled at n = 2001 equidistant locations. A Gaussian noise with σy
was added to the function. To generate the first level of the hierarchical approximation
(L1), a local window covering nw,1 = 75 points from the sampled signal is chosen.
This results in a decimated signal with a distance of l1 = 37 data points between the
approximated state vectors s j. As a local model, a polynomial of degree 1 is chosen,
which can be modelled using a Vandermonde matrix (B j = V1). Returned are state
vectors of dimension d = 1 containing the approximated value and first derivative. As
a weighting function the piecewise constant and a raised cosine (weighted) are used
for demonstration. The results are shown in Fig. 8. As it can be seen, the raised cosine

(a) Signal and approximation (b) First derivative and approximation

Fig. 8: L1 Spatial weighted approximation; top and/or red: raised cosine weighting;
middle and/or blue: piecewise constant weighting; bottom: residuals of approximation;
black line: original function values; gray: noisy data.

weighting performs better than the piecewise constant, which is expected. Especially
the approximation of the first derivative is of better quality.

After generating L1, covariance weighted Hermite approximation is used to generate
the subsequent levels (L2 and L3). Therefore, a local window, containing nw,2 = nw,3 = 5
state vectors was used, resulting in a decimated signal with a distance of l2 = 74 and
l3 = 148 data points in terms of the original signal. This corresponds to a compression
c-ratio= 74 for level 2 and c-ratio= 148 for level 3. For the approximation, a polynomial
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of degree 2 is used. The results for both, L2 and L3, are shown in Fig. 9. Although the

(a) Signal and approximation (b) First derivative and approximation

Fig. 9: L2 and L3 Hermite approximation (covariance and spatial weighted); top and/or
red: L2 approximation; middle and/or blue: L3 approximation; bottom: residuals of ap-
proximation; black line: original function values; gray: noisy data.

compression ratio is high, the hierarchical approximation delivers good results for ap-
proximating the values and also the derivatives. This is important, if the approximation
of the derivative is used for further calculation.

In Fig. 10 the given state vectors from L2 and L3 are used to interpolate the signal
at the original locations. The proposed two-point expansion using generalized Hermite
interpolation was used. Additionally, covariance propagation was performed through
all levels. The resulting variance after interpolation is visualized in the figure as well.
Note: different magnification gains are used to make the variance visible in the plots.
Again, the proposed method delivers suitable results. As it can be seen, the covariance
propagation is getting worse at the end of the interval, which is due to the fact that at
the ends the signal is extrapolated, since the supporting points are missing.

4 Conclusion

This paper has presented a new method for hierarchical approximation of sensor data
along with all derivations. In the first level spatial weighting was used to approximate
state vectors at collocated locations. Different weighting functions have been investi-
gated by analysing their covariance propagation. It has been shown that a piecewise
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(a) Signal and interpolation (b) First derivative and interpolation

Fig. 10: Hermite interpolation based on L2 and L3; top and/or red: L2 interpolation;
middle and/or blue: L3 interpolation; bottom: residual of interpolation; black line: origi-
nal function values; shaded areas: propagated covariances (magnified with g = 2e3 on
the left, g = 8e1 top-right and g = 4e2 middle-right).

constant weighting function is not the method of choice. In subsequent levels of the
hierarchy, a new method of covariance weighted Hermite approximation is proposed
to approximate the signal by the given value and derivative information. This yields a
decimated signal which maintains derivative information. This method was compared
to a standard fitting method and revealed a large improvement in approximating deri-
vatives by only a minor decrease of quality in approximating values. Based on this, it
can be concluded that future sensors should deliver the state vector instead of a higher
frequent signal without derivative information. To make use of the approximated state
vectors, two interpolation methods are presented which approximate the original signal
in a continuous sense. The presented generalized Hermite interpolation proved to be the
method of choice, since the signal and its derivatives are continuous within the whole
interval, which is beneficial for further derivations based on the signal. A successful test
on synthetic data showed the correct functionality of the proposed hierarchical method
and delivered good results for the approximation of large data sets, especially for the
approximation of derivatives.
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Abstract—This paper presents a new method for polynomial
approximation using the fusion of value and derivative informa-
tion emanating from different sources, i.e., sensors. Therefore, the
least-squares error in both domains is simultaneously minimized.
A covariance weighting is used to introduce a metric between the
value and derivative domain, to handle different noise behaviour.
Based on a recurrence relation with full re-orthogonalization,
a weighted polynomial basis function set is generated. This
basis is numerically more stable compared to other algorithms,
making it suitable for the approximation of data with high
degree polynomials. With the new method, the fitting problem
can be solved using inner products instead of matrix-inverses,
yielding a computational more efficient method, e.g., for real-
time approximation.

A Monte Carlo simulation is performed on synthetic data,
demonstrating the validity of the method. Additionally, various
tests on the basis function set are presented, showing the
improvement on the numerical stability.

Index Terms—multisensor fusion, optimization, discrete or-
thogonal polynomials, basis functions, Hermite approximation

I. MOTIVATION

Measurements with a fusion of value and derivative infor-
mation are common in geotechnical monitoring. There are
measurement cases where observations from different mea-
surement devices must be fused to obtain optimal results.
An example in case is, when total stations (theodolites) and
inclinometers are used to monitor structural degradation , e.g.
Fig. 1 and [1]. In this example the total station measures
position as a function of time and the inclinometers measure
the first spatial derivatives of position as a function of time.
Consequently, the function and its first derivative are measured
independently and thus are not correlated in the common case.
The task now at hand is to compute an optimal estimate for
the deflection from the two independent observation sources
with the presence of perturbations, to detect unwanted changes
or subsidence. Thus, there is an explicit need for methods
which perform approximation based on function values and
their measured derivatives.

In the case shown in Fig. 1 the total station measurements
are significantly more accurate and stable with respect to the

Fig. 1. Schematic of geotechnical monitoring using inclination measurements
in combination with reference measurements (total stations, theodolites)

inclinometer data so that they were considered as reference
measurements. Subsequently, they were used as constraints in
the approximation. The generalization of the above issue is
the development of an approximation method which utilizes
independent observations of a function and its derivatives. This
is a special case of sensor data fusion where there is no a-priori
relationship between the two sources of data.

Especially in engineering problems, polynomials are the
model of choice for the approximation of such data, due to
their properties and their relation to the underlying physical
model [2]. Hermite [3] provided a method of performing
interpolation given function values y(x) and its derivatives
y′(x). However, he did not address the issue of approximation.
Due to the Runge phenomenon it is not a trivial task to extend
his methods directly to approximation. As discussed in the
following section, there is some literature relating to Hermite
approximation of analytical functions. However, there is no
method with respect to measurement data.

Within this work, we develop a framework for the ap-
proximation with polynomials of given values and derivatives
(Hermite approximation) with different noises characteristics
using covariance weighted discrete orthogonal polynomials.
The method has been verified using synthetic data with known
properties. It proves to be suitable for high degree polynomial
approximation, since it is numerically more stable than other
methods.

The main contribution of this paper span:
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1) The derivation of a novel methodology for the generation
of a discrete orthogonal polynomial basis function set
which can be used to approximate values and derivatives
which are perturbed by noise of different characteristics.
It uses a three-term recurrence relation with full re-
orthogonalization (to increase numerical stability) to-
gether with covariance weighting of the residual (for
introducing a metric between the value and derivative
domain).

2) The derivation of covariance propagation for the coeffi-
cients and the resulting approximation.

3) The introduction of various measures for the evaluation
of the numerical stability.

The paper is structured as follows: A review of literature is
found in Sec. II. In Sec. III all the derivations for the genera-
tion of a covariance weighted discrete orthogonal polynomial
basis function set are introduced. The derivation of the covari-
ance propagation is presented in Sec. III-D. To demonstrate
the validity of the novel method, a Monte Carlo experiment
for high degree polynomial approximation is performed on a
synthetic data set in Sec. IV. It is shown that the residual
between the data and the approximated values is reduced to
noise with the same parameters as used in the generation of
the synthetic noise. The numerical stability of the generated
basis is validated in Sec. V demonstrating the novel method
to be advantageous compared to using Vandermonde type
basis functions, especially for higher degrees. Various quality
measures are tested and presented for both, complete and
incomplete basis function sets.

II. REVIEW OF LITERATURE

The use of value and derivative information for polynomial
approximation (Hermite approximation) is not common in
literature, whereas the use value and derivative information
for interpolation is well-known in literature.

Based on the idea of a Newton type interpolation, Hermite
introduced a similar methodology for the interpolation of
values and derivatives. The original idea can be found in [3].
Based on this, several books, e.g. [4], introduce this idea to a
broader audience.

A generalized version for arbitrary orders of derivatives at
given points can be found in [5]. This idea is extended to
bivariate functions in [6]. An extensive study on multivariate
Hermite interpolation can be found in [7].

Since the calculation of those interpolating polynomials
is straight forward, Hermite type interpolating polynomials
gained popularity for the approximation of functions using
a two point approach rather than Taylor expansion [8], [9].
They are well studied in terms of error bounds [10], [11] and
compared to other standard methods [12]. They are used to
solving ordinary differential equation [13], [14] and partial
differential equation [15]–[17] by approximating the equations
using Hermite type interpolation. It is pointed out, that using
this method lead to higher order of approximation, which
improves step-size for iterative methods compared to standard
methods.

Another use of the Hermite interpolation is presented in
[18]. In this work it is used to perform a moving-least-squares
approximation based on local basis functions which use value
and derivative information.

The idea of including derivative information within the ap-
proximation of data is mostly found in constrained polynomial
approximation, e.g., [1], [19]–[21]. There it is assumed, that
some information (e.g. reference points) is 100 % certain.
Approximation of data with uncertain value and derivatives
is introduced in [22].

The idea of including a covariance weighting on the resid-
uals to get a valid metric between the value and derivative
domain is introduced in [1] and extended to higher order
derivatives in [23].

Within this paper we use this idea of covariance weighting
within the generation of a discrete orthogonal polynomial
basis function set to improve the numerical stability, making
it suitable for high degree polynomial fitting.

III. THEORETICAL FRAMEWORK

The herein presented framework addresses the approxima-
tion of a polynomial model given noisy values and collocated
derivatives using discrete orthogonal polynomials, i.e., systems
of polynomials that satisfy a discrete orthogonality constraint.

A. Modelling of Measured Values

The measured noisy values and derivatives are col-
lected in the vectors ŷ =

[
ŷ1 ŷ2 . . . ŷn

]T
and ŷ′ =[

ŷ′1 ŷ′2 . . . ŷ′n
]T

. They are sampled at the positions x =[
x1 x2 . . . xn

]T
. For modelling the measurement, we

assume that we measure the true value plus covariant noise.
This covariant noise is generated from a vector of gaussian ran-
dom variables with zero mean and unit variance (i.i.d. noise)
together with the according covariance matrix. Mathematically
this is described as

ŷ = y + Λ
1
2
ys (1)

ŷ′ = y′ + Λ
1
2

dyt, (2)

where y and y′ are the true values, Λy and Λ dy are the
associated covariance matrices and s and t are vectors of
i.i.d. noise.

B. Approximation of Values and Derivatives

The goal is now to approximate the given data in a least-
squares sense, using a set of discrete basis functions collected
in the columns of the matrix B and their derivatives B’. The
true values y and derivates y′ are modelled as

y = Bγ (3)
y′ = B′γ, (4)

where B′ denotes the first derivative of the basis functions B
with respect to x and γ is the coefficient vector. To apply
Gauss’s least-squares theorem, the involved errors must be
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i.i.d., so we solve for the gaussian random variables s and
t using Eqn. (1)-(4), yielding

s = Λ
− 1

2
y (ŷ − Bγ) (5)

t = Λ
− 1

2

dy

(
ŷ′ − B′γ

)
. (6)

This results in the following functional to be minimized,

E (γ) = ‖s‖22 + ‖t‖22 = (7)

= ‖Λ−
1
2

y (ŷ − Bγ)‖22 + ‖Λ−
1
2

dy

(
ŷ′ − B′γ

)
‖22. (8)

Clearly, this introduces covariance weighting on the residual
and thus a metric between value and derivative domain is
established as stated in [1] and [23]. Substituting W

1
2
y , Λ

− 1
2

y

and W
1
2

dy , Λ
− 1

2

dy and minimizing Eqn. (7) leads to the normal
equations for weighted regression [24],
(
BTWyB + B′TW dyB′

)
γ = BTWyŷ + B′TW dyŷ

′. (9)

To solve this equation for γ one can use standard methods,
e.g, inverting

(
BTWyB + B′TW dyB′

)
which is known to be

computational costly.
To overcome this problem, we developed a method to find

a polynomial basis function set P and its derivative P′, which
fulfil

PTWyP + P′TW dyP′ = I, (10)

i.e., a discrete orthogonality condition. The
matrices P =

[
p0 p1 . . . pi . . . pd

]
and

P′ =
[
p′0 p′1 . . . p′i . . .p′d

]
are a collection of

discrete polynomial basis functions and their derivatives.
Each column pi represents a polynomial of degree i and p′i
is the first derivative of that discrete polynomial. They are
sorted on increasing degrees yielding a basis function set of
degree d. Respectively a linear combination of those basis
functions yield a polynomial of degree d at most.

The coefficients γ for the approximating polynomial can
then be easily calculated from Eqn. (9) using,

γ = PTWyŷ + P′TW dyŷ
′, (11)

which are inner products of the basis functions and the
covariance weighted measurements. That is, the coefficient γi

for a certain basis function pi of degree i can be directly
calculated as

γi = pT
i Wyŷ + p′Ti W dyŷ

′, (12)

which is similar to the calculation of discrete Fourier series.
Thus, the computational efficiency is improved compared to
solving the fitting problem using standard algorithms including
matrix inverses. To calculate the approximated values ỹ and
ỹ′, we use the estimated parameters γ within the model
equation (3) and (4), yielding

ỹ = Pγ (13)
ỹ′ = P′γ, (14)

C. Synthesis of Weighted Discrete Orthogonal Basis

In this section, a novel method for the synthesis of a set of
weighted discrete orthogonal polynomials fulfilling Eqn. (10)
is presented.

Two important conditions can be directly derived form the
identity in Eqn. (10). These are the normal condition

pT
k+1Wypk+1 + p′Tk+1W dyp

′
k+1 = 1 (15)

and the orthogonality condition

PT
k Wypk+1 + P′Tk W dyp

′
k+1 = 0, (16)

which requires, that a basis function of degree k + 1 is
orthogonal to all basis functions of lower degree. The matrices
Pk =

[
p0 p1 . . . pk

]
and P′k =

[
p′0 p′1 . . . p′k

]

collect the basis vectors up to degree k.
For the generation of a set of suitable polynomial basis

functions P and their derivatives P′ up to a certain degree d,
we use a recurrence relation with full re-orthogonalisation (as
studied in [19], [25]) together with covariance weighting.

Starting from the classical three-term recurrence relation
from functional analysis for orthogonal polynomials, e.g. [26],
also known as Gram-Schmidt process [24], a polynomial
pk+1 (x) of degree k + 1 can be generated from lower degree
polynomials using

pk+1 (x) = αxpk (x)− βpk (x)− γpk-1 (x) . (17)

The derivative of this polynomial with respect to x is calcu-
lated as

p′k+1 (x) = αxp′k (x) +αx′pk (x)− βp′k (x)− γp′k-1 (x) . (18)

This is the definition for the continuous case.
The discrete formulations of Eqn. (17) and (18) for a given

vector x =
[
x1 x2 . . . xn

]T
are1

pk+1 = αx ◦ pk − βpk − γpk-1 (19)

and
p′k+1 = αx ◦ p′k + αx′ ◦ pk − βp′k − γp′k-1. (20)

The vectors pi =
[
pi (x1) pi (x2) . . . pi (xn)

]T
and p′i =[

p′i (x1) p′i (x2) . . . p′i (xn)
]T

are the polynomial of de-
gree i and its derivative evaluated at the points x. As shown
in [27], the normal three-term recurrence relation is numeri-
cally unstable, so we use a complete re-orthogonalization as
suggested in [25]. Using this improvement, Eqn. (19) and (20)
read as

pk+1 = αx ◦ pk − Pkβ (21)

and
p′k+1 = αx ◦ p′k + αx′ ◦ pk − P′kβ. (22)

Using the substitutions

uk = x ◦ pk (23)

1The operation with the symbol ◦ denotes the Hadamard product, i.e., the
element-wise product.
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and
vk = x ◦ p′k + x′ ◦ pk, (24)

Eqn. (21) and (22) read as

pk+1 = αuk − Pkβ (25)

and
p′k+1 = αvk − P′kβ. (26)

Using the orthogonality condition (16) together with (25)
and (26) yields
(
PT

k WyPk + P′Tk W dyP′k
)
β = α

(
PT

k Wyuk + P′Tk W dyv
′
k

)
.

(27)
Since, per definition, the previous generated basis functions
have to fulfil the orthogonality and normal condition

PT
k WyPk + P′Tk W dyP′k = I, (28)

β can be expressed as

β = α
(
PT

k Wyuk + P′Tk W dyvk
)
. (29)

Using this, Eqn. (25) and (26) can be rewritten as

pk+1 = α
(
uk − PkPT

k Wyuk − PkP′Tk W dyvk
)

= αck+1 (30)

and

p′k+1 = α
(
vk − P′kPT

k Wyuk − P′kP′Tk W dyvk
)

= αc′k+1. (31)

ck+1 and c′k+1 represent a basis function and (its derivative)
which is orthogonal to all previous basis functions but not yet
normed. To fulfil the norm condition in Eqn. (15), the scaling
factor α is calculated as

α =

√
1

cT
k+1Wyck+1 + c′Tk+1W dyc′k+1

. (32)

This scaling factor and the coefficient vector β have to be
calculated for each newly generated basis function.

To start the recurrence, the first basis functions p0, p1 and
their derivatives have to be defined in an initial step, to meet
the above mentioned conditions. The first basis function of
degree d = 0 is defined as

p0 =
e√

eTWye
, (33)

which is a normalized constant vector. e denotes a vector of
ones. The first derivative of this basis function is the zero
vector

p′0 = 0. (34)

For the second basis function p1 we first generate the vector

u1 = x ◦ p0, (35)

which we project onto the orthogonal complement of p0 to
meet the orthogonality condition, yielding

p̂1 =
(
I− p0p

T
0 Wy

)
u1. (36)

This is a scaled version of p1. To get the slope for the
derivatives of the basis functions right, the vector x′ is
calculated as

x′ =
√
eTWye

(
p̂1,n − p̂1,1

xn − x1

)
e. (37)

Using this, we calculate a scaled version of p′1 based on
Eqn. (24) and (26), yielding

p̂′1 = x′ ◦ p0. (38)

To generate the basis functions fulfilling the norm conditions,
we calculate the scaling factor

α1 =

√
1

p̂T
1 Wyp̂1 + p̂′T1 W dyp̂

′
1
. (39)

From this we calculate the second pair of basis functions

p1 = α1p̂1 (40)

and
p′1 = α1p̂

′
1. (41)

This is the prerequisite to start the synthesis of higher order
basis functions. The final set of basis functions P , Pd
and P′ , P′d of a certain degree d can now be used in
Eqn. (11), (13) and (14) to calculate the coefficients and to
finally approximate perturbed values and its derivatives with
a polynomial of degree d. A set of basis functions is shown
in Fig. 2.

Fig. 2. A set of discrete orthogonal basis functions P of degree d = 4
and its derivative P′ generated for n = 300 equally spaced points with
σyi = σy = 0.2 and σ dyi

= σ dy = 0.8

The generation of a basis function set using the presented
method is a generalized Gram-Schmidt process. As it can be
seen, the generation of the basis depends only on the relative
locations of the x values2 and not on the values itself. If the
abscissa values x do not change, the basis function set can
be calculated a priori and the solution to the weighted fitting
problem reduces to a simple matrix-vector multiplication (see

2To improve numerical stability, x is transformed to be centered at the
origin and scaled to unit norm.
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Eqn. (11)). This is advantageous when implemented in smart
sensors or low power controllers. A further advantage is, that
the weighting matrices Wy and W dy can be rank-deficient,
e.g., points can be weighted with 0 if they should not be
considered. This can be helpful to suppress outliers.

D. Covariance Propagation

Since we are dealing with noisy data, covariance propaga-
tion is a prerequisite for making assumptions about the quality
of the approximated values. Based on Eqn. (11) the covariance
Λγ for the coefficients γ is calculated as

Λγ = PT
c WcΛcWT

c Pc (42)

with the block matrices

Λc =

[
Λy 0
0 Λ dy

]
, Wc =

[
Wy 0

0 W dy

]
, Pc =

[
P
P′

]
.(43)

Similarly, the covariance matrices for the approximated
values and derivatives can be propagated as

Λỹ = PPT
c WcΛcWT

c PcPT (44)

and
Λdỹ = P′PT

c WcΛcWT
c PcP′T. (45)

Since Wc , Λ−1
c the middle-term results in WcΛcWT

c = Wc.
Together with the identity from Eqn. (10), the above equations
simplify to

Λγ = I, (46)

Λỹ = PPT (47)

and
Λdỹ = P′P′T. (48)

These covariance matrices for the approximated coefficients
and values, can be used to calculate confidence intervals or
predictions intervals. Note: As it can be seen in Eqn. (46),
the presented method decorrelates the noise to i.i.d. noise, to
accord with Gauss’s theorem.

IV. NUMERICAL EXAMPLE

To test the validity of the herein presented method to
approximate a polynomial given perturbed values and deriva-
tives, a synthetic dataset is generated. The underlying function
is defined as

f (x) = cos (5x) (49)

with its analytical first derivative

df (x)

dx
= −5 sin (5x) . (50)

The function and its derivative are evaluated in the range
[−2π, 2π] at n = 500 equally spaced nodes, yielding the
vectors of values and derivatives y and y′. Gaussian noise with
different gains σyi

= σy = 0.1 and σ dyi
= σ dy = 2 is added

to those vectors yielding the noisy measurement vectors ŷ and
ŷ′. A polynomial of degree d = 35 is used for approximating
the noisy data set. Although the test function seems simple,
i.e., a cosine function, it is a difficult task to approximate

perturbed data corresponding to multiple cycles of a cosine by
a polynomial. Using geometric polynomials (i.e. Vandermonde
basis) would be numerically unstable due to the high degree
required.

To test the developed method, a Monte Carlo simulation
is performed with niter = 1000 iterations. As a measure, the
standard deviation of the residuals std{ry} = std{y− ŷ} and
std{r dy} = std{y′ − ŷ′} are calculated in each run. Since
the presented method uses covariance weighting, the standard
deviation of the result should be the same as σy ≈ std{y− ŷ}
and σ dy ≈ std{y′ − ŷ′}. The mean value of the standard
deviations over all runs is shown in Fig. 3. As it can be
seen, although the noise gains are very different, the pre-
sented method which uses covariance weighted approximation
delivers the correct results for both, values and derivatives
demonstrating the method to be valid.

As expected, the method using the Vandermonde basis as
presented in [23], is not stable for such a high degree. As one
can inspect, the approximation does not follow the signal.

V. NUMERICAL QUALITY OF BASIS

To verify the numerical quality of herein presented method,
a meaningful measure has to be found. As Wilkinson [28]
pointed out, a posteriori estimation of error bounds is preferred
to a priori error predictions in such cases. The identity in
Eqn. (10) can be written in terms of the block matrices as

PT
c WcPc = I. (51)

Rewriting in terms of a unitary matrix U yields

UTU = I, (52)

with
U = W

1
2
c Pc. (53)

The residual matrix

R = I− PT
c WcPc ≈ 0 (54)

should ideally be equivalent zero, i.e., all entries should be
zero. However, numerical limitations during the synthesis
may lead to errors, which can be correlated. The residual
matrix R is shown in Fig. 4. Although there are errors, it is
important to notice, that the errors made are within the range
of ±5× 10−14. Additionally, the errors show no significant
structure within the residual. The uniformity of the residual
is important, since the approximation is not exhibited to
structural errors. In Fig. 5 a zoomed-in section with the most
significant errors is shown, but again the errors are only in
the range mentioned above. The revealed pattern indicates a
small correlation between basis functions with even and odd
degrees. To summarize the numerical quality of the generated
basis, the following error measures are tested in order to find
the appropriate measure:

1) Maximum norm. The maximum norm is the largest
single element within the residual matrix, i.e., εmax =
‖R‖max = max{|rij |}. Since this norm depends only on
one specific entry, this may lead to wrong conclusions.
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Fig. 3. Approximation of a polynomial of degree d = 35 to synthetic data generated from f (x) = cos (5x) with σyi = σy = 0.1 and σ dyi
= σ dy = 2
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Fig. 4. The structure of a residual matrix R = I − PT
cWcPc for d = 100

and n = 50 with σyi = σy = 0.2 and σ dyi
= σ dy = 0.8. The red box

indicates the zoomed in region shown in Fig. 5.

-4

-3

-2

-1

0

1

2

3

4

10
-14

Fig. 5. Zoomed in region of the residual matrix as shown in Fig. 4. The
checkerboard structure reveals the correlation, be they very small, between
the even and odd degree of the synthesized basis functions.

2) Frobenius norm. The Frobenius norm is the square root
of the sum of the squares of all entries in the residual
matrix, i.e., εF = ‖R‖F =

√∑
i

∑
j r

2
ij . This norm is a

measure for the total error.
3) Determinant. The determinant of a matrix is a theoret-

ical quality measure and equals 1 for an ideal unitary
matrix. The variation from this, i.e., εdet = 1− det{U}
is a measure for the quality of the tested basis function
set.

4) Condition number. The condition number of a matrix is
connected to the error propagation. For a unitary matrix
the condition number is 1. Thus, the measure tested is
εcond = 1− cond{U}.

5) Rank. Since the presented method generates a weighted
orthogonal basis function set, the rank of U should be
full rank, i.e., no linear dependencies. Due to round off
errors this can be used to find linear dependencies, i.e.,
εrank = n− rank {U }.

Based on those measures the approximate number of sig-
nificant digits η is calculated as

ηm = − log10 (εm) . (55)

These measures are calculated for a complete basis function
set where the number of basis functions equals the number of
data points (values and derivatives). Therefore, the degree of
the resulting polynomial is d = 2n− 1. In Fig. 6 the different
measures are presented for varying degrees. As it can be seen,
the Frobenius norm and the condition number are the most
meaningful measures, since they show the highest dependency
on the degree of the resulting polynomial. The rank measure
is not visible, since the proposed algorithm generates full-
rank basis function sets, so there is no error visible. Since the
Frobenius norm is a measure for the total error, this measure
is chosen to compare to other algorithms in the following.

The new method is compared to the one presented in [23].
It uses a Vandermonde basis function set to solve the same
problem. As [19] pointed out, the Vandermonde basis for
normal polynomial regression gets degenerate at high degrees.
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Fig. 6. Comparison of different error measures for a complete basis function
set with d = 2n− 1 and σyi = σy = 0.2 and σ dyi

= σ dy = 0.8

This behaviour can also be inspected within this paper. As it
can be seen in Fig. 7, the new method generates a more stable
result also for high degrees.

weighted discrete orthogonal polynomials

Vandermonde

Fig. 7. Numerical quality of Vandermonde basis compared to the new method
using a complete basis with σyi = σy = 0.2 and σ dyi

= σ dy = 0.8

Since this new method can also be used for approxima-
tion (overdetermined system of equations), the quality of the
basis is determined for an incomplete basis function set for
n = 1000. The result for various degrees of polynomial is
visualized in Fig. 8, showing that the new method performs
also better for an incomplete basis.

weighted discrete orthogonal polynomials

Vandermonde

Fig. 8. Numerical quality of Vandermonde basis compared to the new method
using an incomplete basis with σyi = σy = 0.2, σ dyi

= σ dy = 0.8 and
n = 1000

VI. CONCLUSION

The herein presented method introduces a novel poly-
nomial fitting framework for the approximation of value
and derivative data. Including both sources of information
within the fitting procedure improves the quality of the fit-
ted polynomial improving both, reconstruction of values and
derivatives. The method uses a recurrence relation with full
re-orthogonalization together with covariance weighting for
introducing a metric between value and derivative domain,
yielding a set of discrete orthogonal polynomials. As it is
shown, the generated basis function set is numerically more
stable compared to other methods, especially for high degree
polynomials. Using this basis, the fitting problem is reduced
to inner products, which is beneficial in terms of computa-
tional efficiency. Due to the covariance weighting, the noise
associated with the channels is decorrelated to i.i.d. noise, to
accord with Gauss’s theorem. Thus, there is no bias based on
different noise parameters. The validity of the method is tested
and presented on a numerical example, where a polynomial
of degree d = 35 is fitted to a periodic function. In future
research, this method will be adapted for fitting data given
noisy constraints, based on discrete orthogonal polynomials.
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9 | Synopsis

The basic idea behind symbolic time series analysis as proposed in the following
papers is that symbols/words are assigned to states of the monitored machine.
Additionally, linear differential operators (LDO) are used to model the dynamics of
the system in observation, e.g. calculate regularized derivatives or solve the associated
inverse problems. To not only work on a global scale with LDO, the use of local
linear differential operators is investigated in Section 9.1. Applying a LDO to a
single signal can be seen as supporting physical based knowledge discovery by taking
dynamics into account while calculating the cause of the observations. To express
this knowledge in a compact form, a symbol/word is assigned to portions of the
signal with the same cause (e.g. the word up is assigned to each observation with a
positive first derivative, indicating that the signal has an upwards trend, whereas the
word down is a assigned to values with a negative first derivative). By combining
run-length of the same word to a single word predicated with its length (number of
subsequent occurrences), a discrete signal is transformed into a symbolic time series,
including the first layer of compression. The physics of the system is respected by
applying LDO prior to symbolization and the idea of assigning meaningful words
to the signal is a major contribution of this thesis, since standard methods perform
symbolization based on equal probability rather than on a-priori knowledge.

Combining the symbolic time series of multiple channels in form of polysyllabic
words, a more complex state of the machine can be described and automatically
separates/segments multi-dimensional time series. By analysing the distribution
of such polysyllabic words, i.e. building frequency dictionaries, operation modes
and rare events can be identified, which can be used to perform a higher level of
segmentation. A detailed description of those ideas can be found in [P5, P9] (see
Chapter 10 and Chapter 11).

Since large physical systems are often operated from humans, these machines can
be seen as hybrid systems. In this context, a hybrid machine performs operations
which are a sequence of physical processes connected involving non-analytical human
interaction. The physical processes can be modelled using LDO. To model the non-
analytical portion, the metaphor of language is used in combination with the above
presented symbolic time series approach. The idea of compounding (i.e. give common
repetitions of word combinations a new word) is used iteratively in a hierarchical
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manner to automatically reveal operation modes, which are a combination of common
word sequences. This idea is described in [P4] (see Chapter 12).

9.1 Local Linear Differential Operator

The data analysed in this thesis is emanating from large physical systems driven
by human operators and is operated 24/7. This results in large multi-dimensional
time series (TS) to be dealt with. Each channel builds a continuous stream of
discrete data y = y (t) which are collections of values at specific time points t, the
so called data points. These TS work well with linear differential operators (LDO)
as described in detail in the papers below. As the TS grows (number of data points
increases) the matrices involved in the computations grow accordingly and slow
down the computation. The global view on the entire TS is not necessary in a lot of
applications, especially when talking about hybrid system with non-analytical human
interaction. A local view (window) on the data may be sufficient for numerous tasks
and allows a more efficient calculation. When talking about real-time data mining,
one has to deal with TS with a constant sampling rate (which leads to equally spaced
nodes). This allows setting up the local LDO-matrix L only for a window length ls
and to compute the solution for each window with this local matrix. Since L remains
constant if the sampling rate is constant, it can be calculated a-priori.

In general, the calculation of an operated signal wLDO of a snippet w = y (s : s + ls)
of the TS y is done via the matrix multiplication

wLDO = Lw. (9.1)

This is, row j of L multiplied with w calculates the operated signal wLDO,j at the
position of data point wj, which is a linear combination of all values wk in this
window. If ls is odd, the middle row of L is used for calculating the operated signal
at the centre node of the window, see Fig. 9.1(a). Note: The number of points taken
into account to the left and to the right of the actual viewpoint need to be equal.

If the window is incrementally moved along the TS, it is only necessary to use the
centre row of L for computing the entire operated signal yLDO, only the ls−1

2 endpoints
at the beginning and the end have to be corrected using the top and lower portion
of the local LDO-matrix, see Fig. 9.1(b). The entire computation for the TS can
be either done using an expanded version of the local LDO-matrix, which results
in a band-diagonal matrix Lfull, see [71], or by using a convolutional approach, see
Fig. 9.1(c) and Fig. 9.1(d).

Using the expanded version Lfull, the calculation of the entire operated signal is given
by

yLDO = Lfully. (9.2)
The expanded matrix Lfull is built by creating a squared matrix with zeros of size
[n × n], where n is the length of the TS y. In the upper left corner the first ls−1

2
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(a) Local LDO-
matrix L.

(b) Par-
titioned
LDO-matrix;
green: top
part of L;
blue: centre
row of L; red:
bottom rows
of L.

(c) Expanded
LDO-matrix Lfull

(d) Convolving the centre row over
the data; top: the flipped centre row
acting as kernel; middle: the origi-
nal data to be operated on: bottom:
operated data generated via convolu-
tion (with corrected endpoints using
the top and bottom part of L).

Fig. 9.1 Graphical visualization of the LDO-matrices and the convolutional approach.

rows of the local linear operator matrix L, and in the lower right corner the last
ls−1

2 rows of L are placed. The core part of Lfull is filled diagonally with the centre
row of L, which results in the structure shown in Fig. 9.1(b) and Fig. 9.1(c). This
computation requires setting up a matrix with size [n × n] which is memory-costly.
Although the band-diagonal structure of Lfull allows the use of sparse matrices, the
computation itself can be expensive with large time series. Furthermore, the full TS
must be available at the point of analysis.

To overcome this problem, a convolutional approach is proposed for local calculations.
Here the signal y is convolved with the flipped middle row of the local linear
differential operator (the so called kernel). Only the endpoints on both sides of the
TS have to be corrected using the top and the bottom parts of L. This approach is
shown in Alg. 9.1 and for a visual representation see Fig. 9.1(d). Since the convolution
part acts as sliding window, this methodology is also applicable for streaming data
and high performance analysis, especially in real-time data analytics.

Alg. 9.1: Convolutional approach for collocational local linear differential com-
putations.

Input : L // local linear differential operator matrix (LDO-matrix)
y // signal to be operated on

Output : yLDO // processed signal:

[1] im := ls−1
2 ; // find index of centre line

[2] T := L (1 : im, :) ; // Extract top portion of L
[3] B := L (end − im + 1 : end, :) ; // Extract bottom portion of L
[4] mL := L (ls, :) ; // Extract middle row of L
[5] yLDO := conv(y, fliplr(mL), ‘same’) ; // perform convolution with middle row
[6] yLDO (1 : im) = Ty (1 : im) ; // Correct endpoints at the beginning
[7] yLDO (end − im + 1 : end) = By (end − im + 1 : end) ; // Correct endpoints at the

end



10 | Mining Sensor Data in Larger
Physical Systems

Originally appeared as:

P. O’Leary, M. Harker, R. Ritt, M. Habacher, K. Landl, and M. Brandner, “Mining
Sensor Data in Larger Physical Systems,” IFAC-PapersOnLine, vol. 49, no. 20, pp. 37–
42, 2016, issn: 24058963. doi: 10.1016/j.ifacol.2016.10.093. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S2405896316316561

BibTEX:

@article { OLeary2016MiningSensorData ,
author = {O'Leary , Paul and Harker , Matthew and Ritt ,

Roland and Habacher , Michael and Landl , Katharina
and Brandner , Michael },

doi = {10.1016/ j. ifacol .2016.10.093} ,
issn = {24058963} ,
journal = {IFAC- PapersOnLine },
keywords = {Data mining ,data mining ,entropy , lexical analysis ,

linear differential operators },
number = {20} ,
pages = {37--42},
title = {{ Mining Sensor Data in Larger Physical Systems }},
url = {http :// linkinghub . elsevier .com/ retrieve /pii/

S2405896316316561 },
volume = {49} ,
year = {2016}

}

97

https://doi.org/10.1016/j.ifacol.2016.10.093
http://linkinghub.elsevier.com/retrieve/pii/S2405896316316561


Mining Sensor Data
in Larger Physical Systems

Paul O’Leary, Matthew Harker, Roland Ritt,
Michael Habacher, Katharina Landl, Michael Brandner

∗ Institute for Automation, University of Leoben, Leoben, Austria.
(e-mail: roland.ritt@unileoben.ac.at).

Abstract: This paper presents a framework for the collection, management and mining of sensor
data in large cyber-physical systems. Particular emphasis has been placed on mathematical
methods, data structures and implementations which enable the real-time solution of inverse
problems associated with the system in question. That is, given a system model, to obtain
an estimate for the phenomenological cause of the sensor observation. This enables the use
of causality, rather than mere correlation, when computing measures of significance during
machine learning and knowledge discovery in very large data sets. The model is an abstract
representation of a real physical system establishing the relationships between cause and effects.
The pertinent behaviour of the model is captured in the form of equations, e.g., differential
equations. The inverse solution of these model-equations, within certain constraints, permit us
to establish the semantic reference between the sensor observation and its cause. Without this
semantic reference there can be no physically based knowledge discovery.
Embrechts pyramid of knowledge is addressed and shown that it will not suffice for future
developments. The issue of information content is addressed more formally than in most data
mining literature. Additionally the Epistemology for the emergent-perceptive portion of speech
is presented and a prototype implementation with experimental results in data mining are
presented. A lexical symbolic analysis of sensor data is implemented.

Keywords: Data mining, entropy, linear differential operators, lexical analysis.

1. INTRODUCTION

This paper addresses issues involved in mining sensor data
in cyber physical systems (CPS), see e.g. O’Leary et al.
(2015b). The advent of cyber physical systems has brought
about a significant change in the architecture of sensor
and measurement systems. The change is in terms of the
numbers of sensors involved, the complexity of the system
being addressed, the spatial distribution of the sensors
within the systems and the global nature of the system
itself. This is facilitated by the use of network components.

There are many different definitions for what constitutes
a cyber physical system (CPS) Baheti and Gill (2011);
Geisberger and Broy (2012); IOSB (2013); Lee (2008);
NIST (2012); Park et al. (2012); Spath et al. (2013a,b);
Tabuada (2006). The most succinct and pertinent to this
paper is the definition given be the IEEE Baheti and Gill
(2011) and ACM 1 :

A CPS is a system with a coupling of the cyber aspects of
computing and communications with the physical aspects of
dynamics and engineering that must abide by the laws
of physics. This includes sensor networks, real-time and
hybrid systems.

The solutions computed from the sensor data must obey
the equations modelling the physics of the system being

1 ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS) (iccps.acm.org)

observed - this is fundamentally an inverse problem and
requires the modeling of the system dynamics. Unfortu-
nately, the issue of inverse problems is not addressed in
literature on mining sensor data, see for example Esling
and Agon (2012); Fuchs et al. (2010); Keogh and Kasetty
(2003); Last et al. (2004). Actually, none of the standard
books available, e.g. Aggarwal (2013) on mining sensor
data, take the special nature of the sensor data into
account. Present data mining techniques rely on corre-
lation (in some manner) as being a reliable measure for
significance. However, the inverse solution of the model-
equations is required to establish the semantic reference
between the sensor observation and its cause. Without this
semantic reference to causality there can be no physically
based knowledge discovery. The main contributions of this
paper are:

(1) A structured approach based on data, information,
hypothesis, evidence, truth and fact is proposed and
demonstrated.

(2) A mechanism for the solution of ordinary differential
equations (ODE) is introduced. The numerical meth-
ods for the linear differential operators (LDO) have
been developed in such a manner that they can be
integrated into standard data mining environments
such as Hadoop Shvachko et al. (2010); White (2009).
This permits the implementation of embedded sim-
ulation (forward problems), the solution of inverse
problems and regularizing computations.
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(3) The extension of the symbolic aggregate approxima-
tion (SAX) Keogh and Kasetty (2003) to non-linear
intervals while maintaining the lower bound property.
The approximation with series of symbols permits
the use of regular expressions to perform symbolic
searches in the real sensor data.

2. A STRUCTURED APPROACH TO DATA
ANALYTICS/MINING

Embrechts et al. (2005) proposed the pyramid of data
mining as shown in Figure 1, which was an extension of
Ackoff’s work Ackoff (1989). Embrechts offers no defini-
tions for the terms information, knowledge, understanding
and wisdom in his work, while Ackoff offers intuitive but
rather nebulous inaccurate definitions. The pyramid and
the terms used have positive connotations 2 ; however, they
do not provide a scientific basis for mining sensor data.

Data

Information

Knowledge

Understanding

Wisdom

Fig. 1. The data mining wisdom pyramid as proposed by
Mark Embrechts.

Shannon provided a formal mathematical framework for
computing information content in a data stream. It is
important to note that this measure of information is
neither a measure for significance nor of meaningfulness. It
is however a powerful tool in identifying temporal locations
where the information content in a data stream changes.

The addition of meta-data is required to give a data
stream meaning. For example, the stream of data from
a digital thermometer is meaningless, i.e. its just a stream
of numbers, without the meta-data for the measurement
device. Correct meta-data should ensure that a datum is a
statement about a fact and can so be considered as a low
level of knowledge. In the context of this paper we shall
define understanding as the relationship between facts,
constructs (models) and temporal context which is indica-
tive of a specific operation (behaviour) 3 . Understanding
permits the prediction of the behaviour of a system under
similar circumstances and wisdom can be considered as
advantageous behaviour in a certain circumstance given
the specific state of the available resources.

To implement data analytics and mining, it is necessary
to develop tools which support the exploration of data
which supports the formulation of hypotheses. Then we

2 Wisdom just as the word creativity have positive connotations but
resist any formal definition, see von Hentig (1998) for a discussion of
this issue. Withour formal definition they do not form the basis for
objective data analytics.
3 We are using the word behaviour with some concern at this point,
since it reflects the subjective behaviour of the operator. Large plant
and machinery can generate data sequences which have a very strong
operator dependency.

Fig. 2. Photograph of the port and ship loader used as
an example to characterize the data flows involved in
continuous monitoring.

need a means of representing the hypotheses to enable
the extraction of evidence from the data with the aim
of supporting or refuting the hypothesis. This is the
process of knowledge discovery. It requires a representation
for knowledge which enables its later utilization — this
mechanism must also include the possibility to encode a-
priory knowledge, e.g., coming from the design process.
Statistical evidence plays a very significant role in mining
sensor data, since the complexity of the systems my
preclude the complete observability of the process, i.e.,
there is no possibility to have a conclusive induction of
the creating process from the observation represented by
the sensor data in a finite time.

3. DATA COLLECTION AND MANAGEMENT

Two modes of data collection are supported: full-table
mode whereby all channels are provided at each time
stamp. This mode is suitable for systems where there is
a high degree of activity and no long periods during which
the system is dormant; on-change in this mode values for
the channels are only transmitted when they change, each
message consists of a time-stamp, a tag and a value. In
on-change mode it is necessary to introduce a calibration
mechanism which initiates the transmission of all time-
stamp: tag: value triplets at predefined times, otherwise
there is the danger of undefined data states. At the server
the sensor data is always stored in full-table format.

We have characterized the data flows from a ship loader
currently being monitored, see Fig. 2. Currently, there
are n = 150 sensors being monitored with the sampling
period ts = 1s, in addition there are four vibration
channels acquired with fs = 2.5kHz. The sensor data is
transmitted as on-change and the vibration data as full-
table, but segmented into observation periods of tp = 25s.
The summary of the data flows for this plant is given in
Table 1. The volume of data transmitted varies from day
to day due to the use of on-change format. The maximum
file size observed over a time period of m = 147 days
was sd = 62Mb and the average over this period was
35.2Mb. we have chosen the HFD5 file format to store the
sensor data, since in this manner the data can be efficiently
stored as binary in double precision. In this work we are
using MATLABr for exploratory work and Python for
established methods. The consequence of this investigation
is, that approximately sy ≈ 2.6 Gb of storage is required,
with level nine compression, to archive the complete sensor
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Table 1. Summary of data from the ship loader:
for n = 150 sensors, with a sampling interval
of ts = 1s over a period of 24 hours. The data
is transmitted on change and the full table is

reconstructed on the server.

File format Structure Size read time

CSV (ascii) maximum on change 62Mb
CSV (ascii) average on change 35.2Mb
HDF5 (level 0 - binary) full table 72Mb 0.3 s
HDF5 (level 9 - binary) full table 7Mb 0.3 . . . 0.6 s

Fig. 3. Photograph of the reclaimer from which the data
for Table 2 were acquired.

Table 2. Summary of data from the reclaimer:
for n = 12 sensors, with a sampling interval of
ts = 1s over a period of 24 hours. The data is

transmitted directly in full table format.

Read times in seconds Local Network

HDF5 High level 0.0028 s 0.1683 s
HDF5 Low level 0, 0024 s 0.0032 s
mySQL 2.1394 s
HBase via Java 1.2570 s
HBase via MATLAB 4.5835 s

data for one year in HDF5 format; this is by no means
prohibitive.

A second set of tests were performed on data from a
reclaimer (see Fig. 3) with the aim of determining data
retrieval times: in this case n = 12 sensors are being
monitored with a sampling period of ts = 1s and blocked
into observation periods of 24 hours. The results for
retrieving the data from local HDF5, SQL and HBase are
shown in Table 2; the retrieval times are significantly faster
for HDF5. Finally, Fig. 4 shows the comparison of local vs
remote retrieval as a function of number of rows loaded.
This would suggest that the final system should support
a three level cache: in memory for the most actual data,
since these are the most commonly queried data set; local
HDF5 files for recent data and remote data base supported
data archiving for the complete data sets.

4. LINEAR DIFFERENTIAL OPERATORS.

The dynamics of physical and engineering systems are, in
general, modelled using differential equations. Whereby,
the sensor data is a measure of the response of the system
to some phenomena affecting the system. Consequently,
correlation with other signals may not be reveal causality ;
since, to relate the response of the system to causing phe-
nomena we must solve the inverse problem. Furthermore,
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Fig. 4. HDF5 data retrieval times: blue is for local i.e. left
axis and red is for the remote retrieval.

we must first determine if the system demonstrates an
ergodic 4 Walters (1982) behavior. the question of ergodic
behaviour is particularly important when dealing with
fleet management. The measurement model considered
here is an ODE, (see O’Leary et al. (2015a) for more
details):

an(x) y(n) + an−1(x) y(n−1) + . . .

+ a1(x) y(1) + a0(x) y = g(x), (1)

where y is a function of x, y(n) is the notation for the nth

derivative of y with respect to x and g(x) is the exciting
function, in this case the sensor data. The nature of the
constraints determines if the system is considered to be an
inner-, initial- or boundary-value problem; whereby any
mixture is also admissible in the proposed method.

We use the general notion of a linear differential opera-
tor Lanczos (1997) D; such that, D(n) y(x) = y(n): using
this notation in Equation 1 yields,

an(x) D(n) y + an−1(x) D(n−1) y + . . .

+ a1(x) D y + a0(x) y = g(x). (2)

Factoring y to the right yields and defining the linear
differential operator

L , an(x) D(n)+an−1(x) D(n−1)+. . .+a1(x) D+a0(x) (3)

Consequently, Equation 1 can be written as,

L y = g(x). (4)

The matrix L can in general be partitioned into two
portions: a band diagonal portion with a Toeplitz structure
and a correction factor for the first and last ls entries,
where ls is the support length chosen. The storage of the
sensor data as contiguous full table has been chosen to
enable the computation of the product of the Toeplitz
matrix and the data vector as a convolution, for which
there are particularly fast implementations.

5. SINGLE CHANNEL INFORMATION

Shannon (1948) provided a mathematical framework for
the computation of information in a sequence of sym-
bols being transmitted between systems, see Gallager
(1968). It is important to note that information content
computed as entropy is a simple manipulation of symbols

4 Ergodic theory is a branch of mathematics that studies dynamical
systems with an invariant measure. Its initial development was
motivated by problems of statistical physics. Broadly speaking, the
term is used to denote a system that has the same behavior averaged
over time as averaged over the space of all the system’s states.
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and their probabilities, the result is neither a measure for
significance nor meaningfulness. However, when mining
very large data sets, we may be interested in inexact
measures which identify sub-portions of the code which
justify further investigation. Time varying histograms are
a very efficient and valuable tool in this area of obtaining
statistical evidence; they also permit the very efficient
computation of local entropy in a signal. An example is
shown in Fig 5. The concept is extended by computing
the regularized first derivative of entropy as a means of
identifying events, which result in a perdurant change in
information content.
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Fig. 5. Top: time varying histogram of the chuck torque
during the milling of a metal part. Mid: Entropy as
a function of time S(t) . Bottom: the regularized first

differential of entropy Ṡ(t) . The time point of the
peak in the bottom plot corresponds to a fracturing
of the milling tool’s cutting edge.

6. EPISTEMOLOGY AND THE EMERGENCE OF
SPEECH

The Merriam Webster dictionary defines epistemology as:
the study or a theory of the nature and grounds of knowl-
edge especially with reference to its limits and validity.
This is the question we need to address in mining sensor
data. This leads us naturally to consider phenomenology.
To cite Husserl in brief: All knowledge is derived from the
experience of phenomena.. Phenomenology as a branch of
physics is defined as:

A body of knowledge that relates empirical observations
of phenomena to each other, in a way that is consistent
with fundamental theory, but is not directly derived from
theory..

This definition is much closer to what we need to establish.
However, it does not say anything about how the empirical
observations of phenomena are performed and how the
models are established so that they are consistent with
fundamental theory. The implementation of the LDO as
part of the mining process is the first step in ensuring that
the laws of physics governing the system are observed.

In this portion of the paper we shall address the Asian
model on the emergence of human speech and its relevance
to data mining. It is considered that when we observe
repetitions in our sensory experience that we wish to assign

names (symbols) to this experience, as abbreviations.
There are three relevant types of repetition in data mining:

(1) Value repetitions. This would correspond to modes in
a histogram in a technical application.

(2) Repetition of temporal sequences, and
(3) Repetition in combinations within the senses.

The first corresponds to a modified symbolic aggregation
approximation Lin et al. (2003) (SAX). The advantage
of the SAX approach is that there is a formal proof for
the lower bounding theorem, i.e., there is a positive semi-
definite distance measure, this implies that comparisons
of sequences are valid. The symbols are compressed by re-
placing a multitude of the same symbol as a single symbol
predicated by its length. This also solves the problem of
dynamic time warping (DTW), since the sequence remains
unchanged, under time dilation, only the predicates need
to be compared. This process converts a real valued sen-
sor data stream to a sequence of symbols and predicates
enabling symbolic searching.

We present the concept of a single channel lexical analyser
(SCLA) consisting of: a linear differential operator LDO;
a symbolic SAX approximation and a lexical compression,
see Fig 7 for an example of its application to the slewing
data of a reclaimer. We call it lexical analysis since we can
use regular expressions to search for symbols for specific
types of events in the real sensor data.

Fig. 6. Block diagram for the SCLA.

Fig. 7. Example of the application of an SCLA to the
slewing data of the reclaimer shown in Fig 3. It has
segmented the data into symbol segments shown as
underlaying colours.

6.1 Parallel Channels

The sequence of symbols and predicates delivered by the
SCLA modules are grouped, then parallel sequences are
automatically identified, see Fig. 8. As is well known from
the A-Priori algorithm the number of combinations does
not explode, since the machines are not being operated in a
random fashion. The search reveals which sequences occur
with which frequencies, this corresponds to the concept
of frequency dictionaries in language. They are ideal for
identifying which operations need to be considered during
optimization.

7. EXAMPLE APPLICATIONS OF THE SYSTEM

The concepts presented here have been applied to a
number of different case studies:
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Fig. 8. Example of knowledge discovery in a multi sensor
system as the generation of a frequency dictionary
form combinations of the SAX approximation of each
channel.
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Fig. 9. Example of corrupted data.

7.1 Commissioning support

The system has been used to support engineers during
commissioning of a ship loader; Fig. 9 shows a 24 hour
sequence of data with intermittent corruptions of the
data, each with a duration of approximately 3s. An SCLA
was implemented which automatically identifies such short
interruptions. This type of error is very difficult for a field
engineer to identify.

7.2 Fleet Management

The comparative monitoring of two ship loaders is shown
in Figure 10. The time varying histograms are generated
after the SCLA’s has automatically identified comparable
operating conditions for each machine. The automatic
identification of operations is an important issue when
comparing the performance of machines, otherwise mean-
ingless statistical results are obtained.

7.3 Logistics and Preventative Maintenance

In this application the total tonnage produced as a func-
tion of the reclaimers angular position is determined and
the statistics generated for one complete years produc-
tion,see Figure 11. Clearly, the life time of the slew-bearing
is a function of the cumulative loading. The very slow
rotational speeds of slew-bearings in reclaimers make them
susceptible to local damage. The high loading of one spe-
cific quadrant is due to the instruction on the positioning
of material is the stock yard; consequently, the life time
of the bearing can be extended significantly simply by
changing the operational instructions.

Fig. 11. Total tonnage produced as a function of the
angular position on the slew-bearing.

Fig. 12. Channels above the red line are sensor data and
below actor data, the data is for a 24 hour period
acquired with a sampling interval of 1s. The parallel
analysis of multiple SCLA’s is used here to identify
regions with a very high interaction between the actor
and sensor signals.

7.4 System Identification

This example demonstrates the use of parallel channel
analysis to identify time intervals where there is a very
high interaction between the actor and sensors data, see
Figure 12. Such intervals are particularly important when
performing system identification.

8. CONCLUSIONS

This paper has presented some new approaches to data
mining in cyber physical systems and some of the back-
ground considerations behind these developments. These
are emerging technologies and the descriptions are not as
tight as is the case with established technologies. Never-
theless, very impressive results are achieved with the first
prototypes. The use of HDF5 as a file format permits the
loading of very large data sets in modest times. The pre-
sented methods are fundamentally parallel in nature and
are well suited for implementation with the MapReduce
paradigm.
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This paper presents advanced symbolic time series analysis (ASTSA) for large
data sets emanating from cyber physical systems (CPS). The definition of CPS
most pertinent to this paper is: A CPS is a system with a coupling of the cyber
aspects of computing and communications with the physical aspects of dynamics
and engineering that must abide by the laws of physics. This includes sensor net-
works, real-time and hybrid systems [1]. To ensure that the computation results
conform to the laws of physics a linear differential operator (LDO) is embedded
in the processing channel for each sensor. In this manner the dynamics of the
system can be incorporated prior to performing symbolic analysis. A non-linear
quantization is used for the intervals corresponding to the symbols. The intervals
are based on observed modes of the system, which can be determined either du-
ring an exploratory phase or on–line during operation of the system. A complete
processing channel (see Fig. 2) is called a single channel lexical analyser; one is
made available for each sensor on the machine being observed.

The implementation of LDO in the system is particularly important since it
enables the establishment of a causal link between the observations of the dyn-
amic system and their cause. Without causality there can be no semantics and
without semantics no knowledge acquisition based on the physical background
of the system being observed. Correlation alone is not a guarantee for causality1

This work was originally motivated from the observation of large bulk mate-
rial handling systems, see Fig. 1 for three examples of such systems. Typically,
there are n = 150 . . . 250 sensors per machine, and data is collected in a multi
rate manner; whereby general sensors are sampled with fs = 1 Hz and vibration
data being sampled in the kilo-hertz range.

1 Local Linear Differential Operators (LDO)

Although processing the entire ’large’ time series is a common practice in ex-
ploratory data analysis, reliable local computations (implemented as streaming

1 Consider an exothermic system with a high activation energy. We must include
the exothermic model if we are to establish causality, correlation alone will lead to
erroneous interpretation.
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Fig. 1. Examples of machines to which the analysis is applied. Image courtesy: Sandvik

algorithms) are preferred in on–line data processing. Since in this work we deal
with time series emanating from cyber physical systems new techniques for lo-
cal computations including the physics of the system (described by differential
equations) have to be developed.

An ordinary differential equation (ODE) of the form

ad (t) y(d) (t) + ad−1 (t) y(d−1) (t) + . . . + a0 (t) y(0) (t) = g (t) (1)

can be described using a linear differential operator (LDO) D [2] such that
D(i)y (t) = y(i) (t) where y is a function of t, y(i) is the n-th derivative with
respect to t and g (t) is the exciting function, in our case the noisy sensor data.
This yields to the notation [3]

ad (t) D(d)y(d) (t)+ad−1 (t) D(d−1)y(d−1) (t)+ . . .+a0 (t) D(0)y(0) (t) = g (t) . (2)

Factoring y (t) leads to the compact formulation of the model

Ly (t) = g (t) , (3)

with
L , ad (t) D(d) + ad−1 (t) D(d−1) + . . . + a0 (t) D(0). (4)

In the discrete case (3) can be formulated as matrix equation. Solving this
equation for y is an inverse problem which can be solved numerically in a discrete
sense by

y = L+g + NLα, (5)

where y is the solution to the inverse problem, L+ is the pseudo-inverse of L,
NL is an orthonormal basis function set of the null space of L , α is a coefficient
vector for the null space (computed by initial- and/or the boundary-values) and
g is the noisy time series data vector. Algebraic implementations for the solution
of such problems can be found in [4–7].

The LDO, and their inverses, can be implemented as local operators and effi-
ciently computed using a convolutional approach. This is basically a streaming-
algorithm and thus suitable for big-data processing.

Furthermore, the covariance of the solution (5) is simply propagated as

Λy = L+Λg

(
L+

)T
. (6)
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Using Λy as an estimate for the covariance in conjunction with the student-t
and/or F-distribution permits the estimation of a confidence interval over the
complete solution and allows the computation of a prediction interval for future
values.

That is, the approach presented here to implementing linear differential ope-
rators not only permits the solution of embedded system dynamics but also
yields a confidence interval for the predicted values of the dynamics.

2 Symbolic Time Series Analysis

The availability of the sensor signals, their regularized derivative and/or the
application of a LDO permits the implementation of an advanced symbolic time
series analysis (ASTSA) which includes the modelling of the system dynamics.
As a result the time series (TS) can be discretized and compressed using unique
symbols for different intervals (the so called alphabet). This step is named lexical
analysis. A number of methods for the selection of the symbol intervals based
on, e.g. , equal probability, variance or entropy can be found in literature [8–12].
Here, in a new approach, we define the intervals to correspond to the modes
of the dynamic system in operation, i.e. each symbol corresponds to a mode or
portion of a mode which should be identified. Commonly controllers are designed
to operate optimally in a number of specific but distinct modes of the dynamic
system.

In a next step, connected sequences with the same symbol can be compres-
sed to a single symbol predicated with its length. The combination of applying a
LDO, lexical analysis of the derived signal and compression is called single chan-
nel lexical analyser (SCLA), see Fig. 2. Combining the output of multiple SCLA

LDO Lexical analysis + 
compression

L Alphabet
g (t)

fy(t)g

sym[y (t)]

fsym[g (t)]g

Fig. 2. A single channel lexical analyser (SCLA)
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is called multi channel lexical analyser (MCLA). Two examples of symbolic time
series analysis using MCLA are demonstrated in Fig. 3 and Fig. 4). For signal 1
and signal 2 the alphabet consists of the three symbols [u, s, d] assigned to the
direction of the signal (up, stationary, down). The figures show two operation
modes from the same machine. It can be clearly seen, that the operation modes
of the machine have a different symbolic representation (visualized as different
shaded colours in the plots) and allow a fast intuitive inspection and characte-
rization of the signal. The signal range from the first dashed-blue line to the

Fig. 3. Operation mode 1; the coloured areas illustrate the output of the MCLA;
different colours represent different combinations of symbols from the SCLA of each
channel (in this case two channels); the alphabet used for signal 1 and 2 consists of
the three symbols [u, s, d]. Top: machine working in operation mode 1 with longer
interrupts in-between (light blue area - both signals are stationary); Bottom: snippet
of the signal showing the typical repeating pattern of operation mode 1.

dashed-red line (marked in both plots) have the same symbolic representation
in both modes, whereas the portion of the signal after the dashed-red line shows
a different colour-code for each mode.
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Fig. 4. Operation mode 2; the coloured areas illustrate the output of the MCLA;
different colours represent different combinations of symbols from the SCLA of each
channel (in this case two channels); the alphabet used for signal 1 and 2 consists of
the three symbols [u, s, d]. Top: machine working in operation mode 2 with interrupts
in-between (light blue area - both signals are stationary); Bottom: snippet of the signal
showing the typical repeating pattern of operation mode 2.

The generated symbolic representation is used for further analyses. Building
up histograms for occurring symbol combinations offers an insight in the overall
behaviour of the system, see Fig. 5). This allows inter-machine comparison and
comparison of different signal portions/ranges as well as classification of the
operation mode. On top of Fig. 5 the histograms of the entire signal ranges
shown in Fig 3 (top) and Fig 4 (top) are presented. The histograms for the
typical repeating snippets, shown in Fig 3 (bottom) and Fig 4 (bottom), are
visualized on the bottom. Since the machine is interrupted several times in both
operating modes, the bins for the stationary state (ss) are more visible for the
entire signal sequences (top). Excluding these bins, the statistics (histograms) of
the shown snippets can act as representatives (motifs) for the operating modes.
It can be seen that the histograms differ whether the machine is operating in
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mode 1 (left) or mode 2 (right). Especially the occurrences of dd and ud reveal
the differences. In future investigations the definition of a similarity measure for
such histograms is planned to compare them qualitatively and may use this for
automatic operation recognition and finding motifs. Note: sorting the histograms
in decreasing order of occurrences will yield a classical frequency dictionary.

(a) Operation mode 1 (b) Operation mode 2

(c) Operation mode 1 - snippet (d) Operation mode 2 - snippet

Fig. 5. Histograms of occurring symbol combinations of a machine in two different
operation modes. Top: Histograms for the entire time range shown in Fig 3 (top) and
Fig 4 (top); Bottom: Histograms for the signal snippets presented in Fig 3 (bottom)
and Fig 4 (bottom).

A big advantage of the presented symbolic time series analysis is, that he
sequence of symbols - either single or multi channel - can now be addressed with
techniques more common to computational linguistics (e.g. regex ) [13], which is
a growing field of research.

3 Conclusion

Successful data analytics in large physical systems must embed the modelling of
the individual component and complete system dynamics. This has been addres-
sed by providing for a linear differential operator or its inverse in each and every
signal- or derived-data-channel. A multi-variate symbolic time series analysis has
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been introduced. It permits a symbolic view of the system and its dynamics. The
concept of frequency dictionaries has been applied to automatic operation recog-
nition; this functions for operation types which are characterised by a specific
distribution of symbols. A major advantage of the proposed method is its intrin-
sic multi-scale property. This enables the identification of very short events in
very large data sets. Currently, we are performing research on the relationships
between the sequences of symbols and the metaphor of language. Initial results
indicate that this opens the door to take advantage of new methods emerging in
computational linguistics.

References

1. Baheti, R., Gill, H.: Cyber-physical systems. The Impact of Control Technology
(2011) 161–166

2. Lanczos, C.: Linear differential operators. SIAM (1961)
3. O’Leary, P., Harker, M., Gugg, C.: An inverse problem approach to approximating

sensor data in cyber physical systems. In: 2015 IEEE International Instrumentation
and Measurement Technology Conference (I2MTC) Proceedings. Volume 2015-
July., IEEE (may 2015) 1717–1722

4. Gugg, C., Harker, M., O’Leary, P., Rath, G.: An Algebraic Framework for the Real-
Time Solution of Inverse Problems on Embedded Systems. In: 2015 IEEE 17th
International Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and
2015 IEEE 12th International Conference on Embedded Software and Systems.
Volume V., IEEE (aug 2015) 1097–1102

5. Harker, M., O’Leary, P.: Discrete Orthogonal Polynomial Toolbox - Matlab File
Exchange

6. Gugg, C.: An Algebraic Framework for the Solution of Inverse Problems in Cyber-
Physical Systems. Phd thesis, Montanuniversitaet Leoben (2015)

7. O’Leary, P., Harker, M.: An algebraic framework for discrete basis functions in
computer vision. In: Proceedings - 6th Indian Conference on Computer Vision,
Graphics and Image Processing, ICVGIP 2008, IEEE (dec 2008) 150–157

8. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery 15(2) (aug
2007) 107–144

9. Veenman, C., Reinders, M., Backer, E.: A maximum variance cluster algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9) (sep 2002)
1273–1280

10. Chau, T., Wong, A.: Pattern discovery by residual analysis and recursive par-
titioning. IEEE Transactions on Knowledge and Data Engineering 11(6) (1999)
833–852

11. Keogh, E., Lonardi, S., Chiu, B.Y.c.: Finding surprising patterns in a time series
database in linear time and space. In: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD ’02, New
York, New York, USA, ACM Press (2002) 550

12. Daw, C.S., Finney, C.E.A., Tracy, E.R.: A review of symbolic analysis of experi-
mental data. Review of Scientific Instruments 74(2) (feb 2003) 915–930

13. Clark, A., Fox, C., Lappin, S.: The Handbook of Computational Linguistics and
Natural Language Processing. Volume XXXIII. Wiley-Blackwell (2010)

3. Conclusion 111



12 | Symbolic Analysis of Machine
Behaviour and the Emergence
of the Machine Language

Originally appeared as:

R. Ritt and P. O’Leary, “Symbolic Analysis of Machine Behaviour and the Emergence
of the Machine Language,” in Theory and Practice of Natural Computing, Springer
International Publishing, 2018, pp. 305–316. doi: 10.1007/978-3-030-04070-3_24.
[Online]. Available: http://link.springer.com/10.1007/978-3-030-04070-
3%7B%5C_%7D24

BibTEX:

@incollection {Ritt2018a ,
author = {Ritt , Roland and O'Leary , Paul},
booktitle = { Theory and Practice of Natural Computing },
doi = {10.1007/978 -3-030-04070-3_24},
keywords = { compounding ,cyber physical system ,emergence ,

knowledge discovery ,of language , segmentation ,
symbolic time series },

pages = {305--316} ,
publisher = { Springer International Publishing },
title = {{ Symbolic Analysis of Machine Behaviour and the

Emergence of the Machine Language }},
url = {http :// link. springer .com /10.1007/978 -3-030-04070-

3{\_}24} ,
year = {2018}

}

112

https://doi.org/10.1007/978-3-030-04070-3_24
http://link.springer.com/10.1007/978-3-030-04070-3%7B%5C_%7D24
http://link.springer.com/10.1007/978-3-030-04070-3%7B%5C_%7D24


Symbolic Analysis of Machine Behaviour and the
Emergence of the Machine Language

Roland Ritt[0000−0002−2519−8303] and Paul O’Leary

Chair of Automation – Departement Product Engineering
University of Leoben

Peter-Tunner-Straße 25, A-8700 Leoben, Austria
{roland.ritt,paul.oleary}@unileoben.ac.at

Abstract. This paper takes a fundamental new approach to symbolic
time series analysis of real time data acquired from human driven mining
equipment, which can be seen as stochastic physical systems with non
analytic human interaction (hybrid systems). The developed framework
uses linear differential operators (LDO) to include the system dynamics
within the analysis, whereas the metaphor of language is used to mimic
the human interaction. After applying LDO, the multidimensional data
stream is converted into a single symbolic time series yielding a more ab-
stract but highly condense representation of the original data. Inspired
by natural language, the presented algorithm combines iteratively sym-
bol pairs (word pairs) which occur frequently to new symbols/words; a
machine-specific language emerges in a hierarchical manner, which au-
tomatically structures the dataset into segments and sub-segments.
As a demonstration, the automatic recognition of operation modes of a
bucket-wheel excavator is presented, proving the metaphor of language
to be valuable in such hybrid systems.

Keywords: Knowledge discovery · Symbolic time series · Emergence
of language · Compounding · Segmentation · Cyber physical system ·
Hybrid systems

1 Preamble

This paper addresses issues involved in the analysis of data from large plant and
heavy machinery. In particular, we consider systems which are implemented as
cyber physical systems1 (CPS). In general this involves working with real time
multidimensional time series. The inclusion of physical and chemical systems im-
plies that the issues of dynamical systems must be considered. The determination
of causes from observation in such systems is fundamentally an inverse problem.
Consequently, linear differential operators are an integral part of the proposed

1 The definition for CPS assumed here is: a system with a coupling of the cyber
aspects of computing and communications with the physical aspects of dynamics and
engineering that must abide by the laws of physics. This includes sensor networks,
real time and hybrid systems.
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processing. Additionally, there is significant human manual interaction with the
systems being considered. The goal of the human interaction is to implement
processes through procedures involving combinations of operations. However,
the human behaviour cannot be modelled analytically, nor is it well described
by techniques such as: finite state machines or hidden Markov models. The com-
bination of stochastic dynamical systems and non analytical human behaviour
implies that we are dealing fundamentally with hybrid systems. Consequently,
new hybrid analysis techniques are required.

The continuous monitoring of plant and machinery through CPS techniques,
makes very large volumes of data, with high temporal resolution, available for
analysis. The availability of very large data sets, at the beginning of the 21st cen-
tury, lead to people seriously predicting the ”end of theory” [3], the suggestion
being that learning techniques would replace scientific method. However, promi-
nent failures of learning from very large data sets, e.g. Google Flue Trends [17],
lead to the insight that it is essential to embed understanding and good scientific
methods into data analysis relating to physical phenomena. The lack of causal-
ity, in the models implied by learning at that time, were the prominent cause
of failure. In the mean time hybrid analysis systems, which combine theory and
learning, have become a major focus of research [7,14]. However, as of yet the
work has only looked at combining theory with learning.

In this paper we take a fundamentally new approach — inspired by the
metaphor of emergence of language — and present a new algorithm for the au-
tomatic detection of hierarchical structure in data. The inspiration comes from
the Asian model of phenomenology [20], which takes the view that language
structures human thinking and is almost definitive for behaviour. The new ap-
proach presented here combines: LDO to enable the modelling of dynamics;
symbolization of data to reduce numerosity and a new algorithm which mim-
ics the mechanism of compounding as observed in language. Furthermore, this
opens the door to applying techniques from computational linguistics to the
analysis of sensor data from physical systems. We consider these methods to be
complementary to theory driven learning.

(a) Terrace Cut (OP1) (b) Drop Cut (OP2)

Fig. 1. Two different operation modes of a bucket-wheel excavator. The colours high-
light different sub-operation modes

114 Chapter 12. Symbolic Analysis of Machine Behaviour



Emergence of the Machine Language 3

Within this paper we focus on investigating the performance of the new
algorithm and its ability to detect hierarchical structure in data streams coming
from real machinery. As a possible example, two specific operation modes from
a bucket-wheel excavator are shown in Figure 1a and 1b. These modes are build
from various sub-modes (color-shaded areas). To improve data analytics in such
hybrid systems, these (and various other) operation modes have to be identified
automatically in a multidimensional data stream, which is shown exemplarily
in Figure 3b. In additional subsequent analysis the sub-modes may be used in
further investigations.

2 Introduction and Related Work

The first — and most common — step in finding structure in time series2 is to
segment the data streams into relevant portions. Most techniques are based on
identifying temporal locations of discontinuity in characteristic channels of the
time series. A good overview of segmentation techniques for univariate data can
be found in [26]. Good results have also been achieved using algorithms based
on dynamic programming, e.g. [11,13]; however, with the drawback of high com-
putational costs. Additionally, good results have been obtained using techniques
based on heuristics, such as Top-Down, Bottom-Up and Sliding-Window algo-
rithm, e.g. [15,19] and derived algorithms, e.g. [5,15]. The heuristics are normally
less computationally intensive compared to dynamic programming. For multidi-
mensional data, algorithms based on principal component analysis (PCA) and
singular value decomposition (SVD) are available, e.g. [4,8,32].

Polynomial modelling of segments, see for example [9,10], is used in cases
where simple straight line models are insufficient. Additionally, local Taylor ap-
proximations — implemented via polynomial approximation — can be applied
to obtain information w.r.t. the derivative behaviour of a segment, e.g. [22].
This information can be used to determine the temporal locations of local max-
ima, minima or points of inflection which act as possible segmentation points,
e.g., [26]. In the case of physical system it is advantageous to embed a priori
knowledge about the underlying process/system, e.g. integrating system mod-
els [1,8,12].

The concept of transforming time series into a symbolic time series, e.g. [18],
was introduced to reduce the numerosity. Based on this [33] developed a mech-
anism to address dynamic time warping and find segments with the same shape
but different length. This concept will prove important in this paper since in
human driven machines, the same operation may be performed spanning differ-
ent durations; this is tantamount to dynamic time warping. A further interest-
ing concept, especially for dynamic systems, is to symbolize a signal within it’s
phase-space as presented in [27]. This embeds additional information in the form
of derivatives in the analysis, which is also intended by the authors of this paper.

2 There is much work on time series for the analysis of data relating to financial
transactions. However, financial transactions are not bound to any physical laws;
consequently much of these techniques are not applicable to CPS
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Multidimensional symbolic time series are investigated in [6,23,21] and con-
tain the first idea of combining symbols along multiple channels to obtain a new
data stream containing combinations of symbols. This stream is then analysed
to find frequent patterns, using algorithms such as the Apriori algorithm [2]. Al-
though the previous authors use symbols/words to discretize a time series, there
is no meaning associated to the symbols in use. [22] used this idea in his work to
segment data based on the shape in a tree-like structure. More advanced tech-
niques used for finding structure within data are inspired by natural language
and grammars, e.g. [24,30,29].

A brief discussion of discontinuity when performing discrete time observa-
tions of continuous physical systems is necessary at this point: discrete time-
series are discontinuous at every point by their very nature. Consequently, we
need to introduce some measure related to the physical system to define and de-
tect characteristics which are to be considered as a discontinuity. In this paper
we introduce the embedding of linear differential operators (LDO) [16] to model
the behaviour of dynamical systems from which the time series are emanating.
The dynamics of the system determine the computation of maximum values for
derivatives which have physical meaning. This in turn permits us to determine
the required sampling rate, so that the dynamics can be correctly identified and
not misinterpreted as discontinuities. Sampling rate in the range of ten’s of hun-
dred’s of milliseconds may be required to characterize the dynamics; whereas
human operation and processes are significantly slower. Consequently, high tem-
poral resolution over long periods of time are commonly required. The high
temporal resolution over extended time periods will lead to very long symbolic
series. Consequently, naive methods such as the Apriori algorithm — which take
no advantage of hierarchy — suffer from the extremely high number of symbol
combinations and permutations. Consequently, we consider it to be essential to
introduce some form of hierarchical structure detection to deal with CPS in an
efficient manner. In this paper we shall concentrate on one such mechanism: this
work is inspired by the mechanism of compounding as observed in the emergence
of natural language. That is, common sequences of words are compounded (or
sometimes contracted) to form new polysyllabic words. These new words are
then represented using new single symbols. This compounding is performed in
a hierarchical manner, revealing implicit structure in the data.

To address the afore mentioned problems, the main contributions of this
paper are:

1. The embedding of LDO to model dynamical systems in real time. This en-
ables the integration of a priori knowledge about the physics of the system
being observed.

2. Development of a new algorithm to segment multidimensional time series
data in a hierarchical manner to detect the underlying structure and sub-
structures based on symbolic time series analysis. We propose the use of
the metaphor of the emergence of a natural machine language, as a helpful
support tool, e.g. the mechanisms of natural language become accessible.
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3. Using a new way of symbolizing time series data, which includes a priori
knowledge about the underlying system. The combination of LDO with sym-
bols permits the association of meaning with the symbols in a physical sense.
In this manner human readable sequences of symbols can be generated.

4. Using the metaphor of language and the mechanism of compounding — in-
spired from natural language evolution — to combine frequent combinations
of symbols (words) to form new words. Run-lengths of the same word are
combined and predicated with its length which addresses the problem of
dynamic time warping.

5. The proposed mechanisms are verified with time series data emanating from
the high resolution monitoring of a large piece of mining equipment.

3 Methodology

The process we are investigating can be segmented into a series of computational
aspects:

1. Apply linear differential operators (LDO) to include the dynamics of the
system into the analysis.

2. Symbolize multiple channels, and combine them to get a stream of polysyl-
labic words.

3. Iteratively combine frequent word combinations within the stream of words
to find the underlying structure and reveal ‘the machine language’. This is
called hierarchical compounding.

3.1 Linear Differential Operator (LDO)

Modelling the dynamical behaviour of physical systems is done using differen-
tial equations. Using linear differential operators (LDO, see [16]) an ordinary
differential equation (ODE) of the form

ad
dd

dtd
y(t) + ad−1

dd−1

dtd−1
y(t) + · · ·+ a1

d

dt
y(t) + a0y(t) = g(t) (1)

can be rewritten as

Ly(t) = g(t) with L =

d∑

i=0

ai

(
d

dt

)(i)

, (2)

where the function of interest y(t) is a function of t, g(t) is the excitation function,(
d
dt

)(i)
is the i-th derivative operator and ai is the according coefficient.

A discrete implementation for solving ODE in this manner can be found in
[25]. Using this, Equation 2 can be written as matrix-vector equation

Ly = g, (3)
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where L is a linear differential operator matrix, the vector y corresponds to

sampling the function y(t) at a set of locations t ,
[
t1 . . . tn

]T
, similarly for g

and g(t).

In our framework the LDO is applied to the sensor channels as appropriate.
This is, the LDO is selected to model the ODE approximating the dynamics of
the system or as a generic means of computing regularized derivatives; which
yield estimates for the state vectors. This step is a precursor to the assignment
of symbols and approaching the metaphor of language.

3.2 Advanced Symbolic Time Series Analysis (ASTSA)

The transition to language starts with the assignment of symbols to the signal
— to support the metaphor of language we shall call the symbols words. The
SAX algorithm [18] uses a linear quantization of the input signal to what they
call an alphabet. Here we take a fundamentally different approach: during an
exploratory phase the statistical modes of the signal are determined. The modes
may be based on histograms or distributions of entropy. A dictionary is defined
and a symbolic name, i.e., a word is assigned to each mode. The dictionary
contains the value ranges and the associated words.

In the operative phase various LDO are applied and the resulting time series
are converted to symbolic time series, i.e. a sequence of words. The assignment
of the corresponding word to each sample of each channel is performed accord-
ing to the dictionary associated with the sensor channel. At this point we have
time series of words. There may be multiple sequential occurrences of the same
word in a symbolic times series. These cases can be contracted to a single oc-
currence of the word and an associated predicate corresponding to the number
of occurrences. This yields a very high compression ratio, which is nevertheless
lossless, i.e., we can reconstruct the original sequence of words without error [28].

This process is shown exemplarily on the left side of Figure 2. Here an LDO
is chosen which acts as a derivative operator. To all positive values of the re-
sulting signal the word up (u), to all negative values the word down (d) and
to all values which are zero the word stationary (s) is assigned. In this manner
meaning (about the trend of the signal) is associated to the original signal. Note:
If only the words without the predicated lengths are used to compare signals,
the problem of dynamic time-warping is solved directly, as it can be inspected
in the plot.

In a subsequent step, parallel sequences of words from a collection of multiple
channels can be automatically combined to form a new single-channel polysyl-
labic time series, see Figure 2 (top-right). This step is beneficial for analysing
multidimensional time series and is the precursor for using existing single-channel
symbolic analysis methods. As a result, the first level of segmentation of multi-
dimensional time series is achieved with this method. For getting deeper insights
in different levels of the underlying structure, the following algorithm for hier-
archical compounding of words is developed.
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 perform compounding 

Fig. 2. Process of compounding of words; left: two signals are symbolized (based on
their derivatives: u. . . up, d . . . down, s. . . stationary, colours represent the different
words); right-top: the symbols are combined to form polysyllabic words; right-bottom:
frequently recurring word-pairs (us-ds) are compounded

3.3 Hierarchical Compounding of Words

Here we focus on explicating the hierarchical compounding of words, since this
is the most significant new contribution in this paper. A formal definition of the
algorithm is given in Algorithm 1. As is the case in natural language, we do
not expect random combinations and permutations of word sequences [31]. This
is simply a reflection of the fact that the machine is not being operated in a
random manner, nor do the automatic controllers, which are in essence Touring
machines, generate random sequences.

Given the jth. channel we have the dictionary Dj containing the definitions
for m words; Dj(i) is used to denote the ith. entry in the dictionary. We define
Mj an m × m matrix for the jth. channel, whereby at the location Mj(i, k) the
counts ni,k for the observed occurrences of the bigram sequence [Dj(k), Dj(i)]
are entered.

Mj �




0 n1,2 . . . n1,m

n2,1
. . .

...
...

. . . nm−1,m

nm,1 . . . nm,m−1 0




(4)

The previous contraction ensures that the diagonal of this matrix contains zeros.
Mj can be used to find the most common word combinations - but this is not
a measure of coherence, since the absolute count is taken as measure. A more
scaleable approach is to normalize Mj such that the sum of entries in each

column is 1; we obtain the Markov probability matrix M̂j . That is, M̂j(i, k) is
the probability of Dj(k) being followed by Dj(i). Note: if the sum of one column
in Mj is one, this word combination must not be merged. This is, if a word
occurs only once in the stream the probability of the combination of this word
with the subsequent word is 100%. This causes a growth of this combination,
which is not desirable.
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Subsequently, a new single word is defined corresponding to the bigram with
the highest probability and added to the dictionary. All occurrences of this bi-
gram in the symbolic time series are now replaced by the new word; yielding a
further compression of the sequence. A contraction is performed following each
compounding step. Note: Both, simultaneous repetitions and also repetitions
identified by the compounding lead to polysyllabic words.

The compounding and contraction process is repeated till a stopping criterion
is met (e.g. no more bigrams to merge or the alphabet-size is bigger than number
of words in the time series). This is effectively always a trade off between the
size of the dictionary and the compression ratio for the sequence. At some point
adding new words no longer yields a significant compression of the sequence.

Each iteration forms a new level of hierarchical compounding revealing differ-
ent structures and substructures within the data. The mechanism of contraction

Algorithm 1: Hierarchical Compounding of Words
Input : sts // a symbolic time series

D // a finite set of words (symbols) building the dictionary D
Output: stsc // hierarchical collection of compressed symbolic time series

Dn // expanded dictionary including compounds which are performed

[1] i := 0 ; // initialize counter
[2] stsc := [ ]; // initialize stsc

[3] Dn = D; // initialize Dn with D
[4][4] repeat
[5] stsc(i) :=performContraction(sts); // perform contraction
[6] S := findSeqToCompound(stsc(i), Dn); // find sequence of words

to be compounded

[7] Dn := [Dn,S]; // add sequence S as new word to Dn

[8] sts := mergeSeq(stsc(i), S); // replace the found sequences in the symbolic
time series with the new compound

[9] i := i + 1; // increase counter

[10] until stoppingCriteriaMet(sts) 6= true;
[11] stsc(i) :=performContraction(sts); // perform contraction for last level

and compounding are common in linguistics. As it will be seen in the following
application, the metaphor of language is proving powerful, e.g., operation modes
can be identified automatically. The emerging structure of the symbols we shall
regard as the emergence of a machine’s own language.

In Figure 2 (bottom-right) it can be seen, that after the compounding, all
ranges where signal 1 is oscillating and signal 2 is stationary are identified as
having the same underlying structure ({us ds}; note: the curly braces indicate
compounding). Due to the contraction process, the number of oscillations does
not matter. This is advantageous to other algorithms, since the structure of the
signal is identified and not only strictly similar repeated patterns.

4 Background - Relations to Natural Language

The fundamental premiss being investigated in this work is the Yogācāra phe-
nomenological model on the emergence of human speech [20]. It proposes that
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observed repetitions in our sensory excitation, which are significant to our situa-
tion, are assigned a language representation, i.e., words. Consequently, meaning
is simultaneously experiential and contextual. Sensory excitation in multiple
senses are merged, by the portion of mind known as mano-vijhana, to percep-
tions of objects (nouns) and activities (verbs). In Proto-Indo-European languages
each syllable has a specific meaning and more complex experiences are expressed
as poly-syllabic words. Furthermore, predicates — primarily adjectives and ad-
verbs — emerge to define properties of objects and activities. Punctuation, is a
relatively late development, it first became necessary with the wider availability
of books, where the natural pauses of the spoken language, which give mean-
ing, were not available. In particular, Latin liturgical texts were more carefully
punctuated than the vernacular, the aim was to circumvent misreading which
might lead to heretical meanings. In this work we investigate the usefulness of
the metaphor of language when analysing real time machine data — particu-
larly when they are being operated by humans. However, we shall extend these
concepts by proceeding them with a preprocessing of the sensor signals with lin-
ear differential operators. The idea of this work is, that words derived from the
original signal are considered to constitute nouns and from derivatives, i.e, ac-
tivity in a signal, verbs. The lengths from the contraction process are predicates,
i.e, adjectives and adverbs. In a more advanced language, the states where the
machine is not operated are defined to be punctuations. Defined in this manner,
the symbolization converts the data stream into a readable text. However, this
work only deals with the aspect of compounding frequent word combinations
to form new words. These words describe more complex machine states and
thus reveal the underlying structure which can be used for segmentation of the
original data.

5 Experimental Evaluation

The above presented algorithm for hierarchical compounding of symbolic time
series is tested on real time data emanating from large human driven mining
machinery (e.g. bucket-wheel excavators). The slewing and luffing angle (Signal 1
& 2) of an excavator are used to identify different operating modes (see Figure 1a
and 1b). These signals are sampled with fs = 1 Hz.

As an LDO, a regularized first derivative operator is used locally on each
channel with a support length of ls = 111 samples. For the approximation
of the derivative a polynomial of degree d = 2 is used. The resulting sig-
nals are symbolized: the word stationary (s) is assigned to values within the
range of −0.0231 ◦ s−1 to 0.0231 ◦ s−1 for slewing and between −0.0081 ◦ s−1 to
0.0231 ◦ s−1 for luffing. The word down (d) and up (u) are assigned to values
below and above those limits, indicating that the trend of the signal is down-
wards or upwards. After this, the two symbolic time series are combined to form
a single polysyllabic time series (see Figure 3a). On this time series, the herein
presented algorithm is tested. The result after 17 iterations is shown in Figure 3b.

5. Experimental Evaluation 121



10 R. Ritt and P. O’Leary

As it can be seen, the two operation modes presented above are automatically
identified.

(a) Level 1

(b) Level 18

Fig. 3. Data from a bucket-wheel excavator analysed with the hierarchical compound-
ing algorithm; Top: symbolized data without compounding; Bottom: symbolized data
after 17 iterations - the operation modes are revealed and can be used for segmentation

6 Conclusion and Future Work

The presented methods have proved, that including the metaphor of language
in the analysis of data emanating from large physical systems is powerful and of
major advantage. Transforming a time series into a symbolic time series using
ASTSA includes the dynamics of the system by applying an LDO and thus
includes a priori knowledge in further analysis. A new algorithm is proposed
which identifies implicit structure in real time machine data. Via the application
of LDO and the metaphor of language this emergent structure can be likened to
machine having its own language. This language automatically partitions large
data sets into segments with the same behaviour, which can be used in further
investigations. In future research, the composition of the machines own language
is to be improved using different techniques for finding recurring sequences as well
as using the more advanced definitions for language as introduced in Section 4
of this paper.
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13 | Synopsis

This part of the thesis contains the papers which investigate topics within the full
data analytics cycle (as presented in Section 2.3.3) starting from the sensor-level
up to applying the data analytics framework. As it can be seen, a broad field of
knowledge is necessary to deal with the different steps involved. Profound knowledge
on the sensor-level is important to collect the needed information and make a causal
link to their origin. To extract knowledge from the data, information content is an
indicator for which data may be of importance and relevant for further investigations.
These ideas and the availability of a functional data collection and analysis framework
than serve as a support for various applications.

The importance of knowledge in the sensor-level to ensure correct measurements is
presented in [P11] (see Chapter 14). In this paper, the noise behaviour of inclinometers
with two sensing elements in opposite directions is characterized. To identify the
correlation of the sensing elements, singular value decomposition is used. Based on
this, the misalignment of the sensors can be corrected to perform measurements with
an improved confidence interval. Although Gaussian noise is assumed in most of
the available data analytics algorithms, this paper shows that the noise of the used
sensors is more correctly modelled using a Cauchy Lorenz distribution. This has to
be considered in subsequent use of the data.

Although every available source of information should be used in data analytics,
a common and sometimes necessary step is to separate data into portions with
significant and insignificant information content, especially for analysing large volumes
of data. In [P10] (see Chapter 15) Shannon Entropy is used to analyse the forces
measured on a tool holder with the goal of identifying tool wear in manufacturing
processes (drilling and milling). Local entropy is used to divide the data into
individual drilling/milling operations. These segments can then be used to calculate
the segment-entropy, which acts as an indicator for the health of the tool. Additionally,
the idea of time-varying histograms is introduced which is also used in [P6].

In paper [P7] (see Chapter 16) an overview of the relevance of the full data analytics
cycle in the context of mining and raw material handling is given. Within this
paper the basic idea of the fundamental premiss of sensor data analytics is presented.
Based on that, the means of collecting data on large physical machines used in the
mining environment is presented. Those topics are revisited in detail in Chapter 2.
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Various fields of applications are identified and investigated which are relevant for
both, machine constructors and operators.

Hydraulic sensors and actuators are widely used in mining equipment, and thus are
an important source of information when analysing those machines. Malfunctioning
of the hydraulic system can lead to unwanted behaviour and damage to the machine.
Therefore, the herein presented data analytics framework (see Chapter 4) is used to
analyse the data of a bucket-wheel excavator [P6] (see Chapter 17). The monitored
machine uses a parallel hydraulic system for the main lifting boom. By investigating
the statistics of the pressure signals, the existence of negative pressure was verified,
which can cause cavitation and normally results in the damage to system components.
This indicates a possible design error in the hydraulic system, which can be reported
back as engineering feedback. Additionally, time-varying histograms are used to
detect changes in the system behaviour. This was used to find a flawed sensor.
With the addition of metadata, the pressure signals are used to calculate sum and
difference forces of the parallel hydraulics. Investigating these signals show that
there is a continuous torsion on the main boom due to the skewed bucket-wheel.

To conclude: following the steps involved in the data analytics premiss is the prereq-
uisite to base data analytics on causality. Therefore, including theoretical profound
knowledge within each step is important. The availability of the data analytics
framework supports the data scientist to focus on development of new methods
and the analysis itself, which is valuable for inspecting large multi-dimensional
time series.
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Abstract—This paper presents a detailed modelling, analysis
and experimental verification of the noise behaviour for two
families of MEMS based inclinometers. These MEMS use two
accelerometers in opposing directions to measure inclination.
Large sample sizes have been used to ensure reliable statistical
results. The results reveal a differential susceptibility of the
two sensors to ambient vibrational noise. It is shown that
singular value decomposition can be used to orthogonalize the
data emanating from the two sensors, yielding a significant
improvement in the confidence interval of the measurement
result. It is experimentally verified that the noise observed in
the application of the investigated MEMS system has a Cauchy-
Lorentz distribution. This leads to the fundamental necessity
for non-linear signal processing if reliable performance is to be
obtained in safety relevant applications.

I. INTRODUCTION

Inclinometers can be found in many applications [1]–[10].
In the monitoring of civil-structures [1], [4], [5], [10], [11]
and ground-subsidence [3]. This paper presents a detailed
modelling, analysis and experimental verification of the noise
behaviour of micro-electro-mechanical system (MEMS) based
inclinometers. When monitoring structures on large building
cites, e.g. [12], ambient vibrational noise and impulses result
in perturbations of the acquired signal and must be considered
in the noise analysis.

Detailed mathematical approaches to the analysis of data
from multiple inclinometers have been provided in the past [7].
Additionally, the startup behaviour of such MEMS has been
considered in [9]. The noise behaviour of MEMS based inertial
sensors was presented in [13], the Gauss-Markov (GM) and
Auto-Regressive (AR) methods presented there assume gaus-
sian perturbations. A Kalman based approach was proposed
in [14]; once again this assumes a Gaussian noise model to
obtain a maximum likelihood prediction. Newer research on
inclinometer implementations can be found in [15]. None of
the above literature reports detailed statistical analysis which
document that noise observed with MEMS-based inclinome-
ters is best modelled by a Cauchy-Lorenz distribution. This
is highly significant; since, maximum likelihood predictors
are not appropriate in this case; actually, most classical filter
design procedures will fail to produce the desired results.

The main contributions of this paper are:

1) The experimental acquisition of long term data to deter-
mine the noise behaviour of two families of MEMS based
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Fig. 1: Schematic of the SCA103T MEM inclinometer sensor.

inclinometers. The data is representative of both laboratory
and realistic application conditions.

2) A detailed statistical modelling and analysis of the noise
behaviour of dual-sensor differential inclinometers. Al-
though each of the sensors individually exhibit a Gaussian
noise behaviour, the difference signal, i.e., the inclination
has a Cauchy-Lorentz distribution. This behaviour has
not been previously reported in literature and no detailed
analysis was available up until now.

3) A differential sensing model with individual sensor gains is
proposed: i(t) = α , x(t)−β y(t) and a(t) = β , x(t)+α y(t),
together with a singular value decomposition based or-
thogonalization procedure to obtain optimal values for
α and β . The procedure yields minimum entropy and
maximum likelihood results for i(t) and a(t) respectively.
This leads to a significant improvement in the width of
the probability distributions of i(t) and a(t), which reflects
an improvement in the uncertainty bound for the final
measurement.

In this paper we analyse data from the MEMS based
SCA103T-D04 and SCA830-D07 families of devices from
Murata, The schematic diagrams for the respective devices
are shown in figures 1 and 2.

A laboratory test-rig was developed to enable the static
positioning of the inclinometer sensors for deflections in the
range ±25◦ with an accuracy of 0.25◦, (i.e., approx 1%, see
Fig. 3). This accuracy ε = 1% was considered sufficient, since
it is the goal of the measurements to characterize the noise
at different inclinations, but not to determine the absolute
accuracy of the sensors.
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Fig. 3: Above left: shows the experimental setup as a whole.
Above right upper: shows the sensor bracket, in this case with
two different sensor holders. The cylindrical sensor holder
(left) is preferred in field applications. Above right lower: the
pointer and scale from which the inclination is read. Note the
stability is relevant for the noise characterization and not the
absolute accuracy.

II. ANALYSIS OF THE SCA103T-D04

The SCA103T, see Fig. 1, is a MEMS based inclinometer
sensor. It consists of two accelerometer sensors arranged in
diametrically opposing directions yielding the signals,

x(t) = g+ i(t)+ v(t)+nx(t), (1)
y(t) = g− i(t)+ v(t)+ny(t) (2)

where g is due to gravitation, i(t) is the inclination as a func-
tion of time, v(t) is the component due to ambient vibrational
noise, nx(t) and ny(t) are the individual noise components
of each sensor. Defining the differential dm(t) and sum sm(t)
measurement signals as:

dm(t) = x(t)− y(t) = 2 i(t)+nx(t)−ny(t), (3)
sm(t) = x(t)+ y(t) = 2g+2v(t)+nx(t)+ny(t). (4)

Consequently, it should be possible to determine both the
extraneous vibrations and inclinations from the sensor data.
According to the manufacturer the inclination, scaled to mg,
can be computed as,

iφ (t) =
dm(t)−d0(t)

s
(5)
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Fig. 4: The signal acquired from the SCA103T sensor after
evaluation to tilt: (black) signal prior to filtering and (red)
after filtering. A total of n = 183311 samples are used for the
ensuing statistical analysis.

where d0(t) is the zero measurement and s is the sensitivity of
the device. The proposed computations assume that both sen-
sor chains, i.e., sensors, amplifiers and ADCs, have identical
gain. As we shall see later this is not the case and leads to a
significant loss in sensor performance.

The SCA103T was positioned at m = 11 different deflec-
tions and a total of n = 183311 samples were acquired. The
raw data1 and a filtered result are shown in Fig. 4. The
histograms for each of the m = 11 segments together with a
Gaussian and Cauchy Lorentz distribution approximations are
shown in Fig. 5 and the numerical values for the distribution
parameters are given in Table I. The χ2 test for the Cauchy-
Lorentz distribution in each of the n = 11 segments is an
order of magnitude better than the corresponding Gaussian
approximation; this is consistent with the visual inspection.
These results justify the further and more detailed investigation
of the nature of the noise in the system. Furthermore, the
data from the segments show that the distribution width γ is
independent of the specific inclination x0; consequently, we
may conclude that the distribution of the noise is independent
of the deflection angle.

A. Histograms and distributions for x(t) and y(t).

Given the fact that there is no correlation between x0 and γ ,
it is permissible to concatenate the median free data from each
segment to obtain a larger sample size for the determination
of the noise characteristics. This has been performed for the
signals x(t) and y(t); their respective histograms and PDFs are
shown in Fig. 6, while the deviation from a Gaussian CDF is
given in Fig. 7. Clearly, the signals x(t) and y(t) are subject
to Gaussian noise. It is important to note that σx = 17.4 and
σy = 19.2 have different values and indicate that the sensor

1A brief note on nomenclature: All data presented in the histograms have
integer values corresponding to the digital reading of the individual sensor.
Consequently, the width of the distributions are all in LSB.
PDF refers to probability distribution function and CDF to cumulative distri-
bution function. The notation p(α) refers to the probability of the variable
α having a given value. The symbol σα refers to the standard deviation of
α and γα is the half-width at half-maximum value of the Cauchy Lorentz
distribution for α .
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Fig. 5: Histogram for x − y in each of the segments i ∈ 1 . . .11 denoted by si, as shown in Fig. 4. The PDF for the Cauchy
and Gaussian are shown in red and blue respectively. The corresponding coefficients for the distributions are given in Table I.
The histograms have been centered around the median value of each segment, this simplifies the comparison of the results in
each segment.

n xo γx−y Io χ2
C μ σ χ2

G

S1 19126 −650 7.89 4.56 1.42 −649.65 13.24 20.21
S2 14648 −529 10.00 3.67 2.07 −528.10 15.31 12.00
S3 13812 −416 8.51 4.23 1.76 −415.48 14.20 18.63
S4 14755 −305 8.27 4.23 2.68 −303.60 15.32 25.73
S5 7789 −191 10.21 3.66 2.35 −191.20 15.43 11.94
S6 15155 −84 9.18 4.16 3.11 −83.86 12.57 7.79
S7 11265 43 10.35 3.39 1.21 42.74 19.35 21.33
S8 11166 151 8.91 4.02 2.94 151.76 14.96 18.90
S9 9347 265 9.54 3.79 3.15 266.25 15.35 15.72
S10 32523 368 7.89 4.43 2.24 369.18 14.46 25.01
S11 33725 490 9.17 3.86 2.00 490.90 17.17 24.14

TABLE I: Statistics for each of the n = 11 segments, as shown
in Fig. 4. Whereby: n is the number of samples in the segment,
xo, γ and Io (scaled by ×100) are the parameters of the
Cauchy-Lorentz distribution, χ2

C for its PDF (scaled by ×1E4),
μ and σ as the coefficients for the Gaussian and χ2

G for the
PDF (scaled by ×1E4).

channels may have different gains with respect to ambient
vibrational noise.

Now proceeding to the computation of the statistics for
dm(t) and sm(t): the respective histograms and Gaussian
models are shown in Fig. 8. Additionally for the signal dm(t) a
Cauchy-Lorentz PDF has been computed. The fact that dm(t)
has Cauchy-Lorentz distribution implies that the perturbations
of x(t) and y(t) must be correlated, since the difference of two
Gaussians is also a Gaussian if the signals are not correlated.
Furthermore, given σx = 17.4 and σy = 19.2 we would expect
σx+y ≈ 25.91; however, we observe σx+y ≈ 33.35, obviously
ignoring the relative gains of the sensor chains is degrading

-60 -40 -20 0 20 40 60
0

0.01

0.02

p
(x
)

σx = 17.4373

-60 -40 -20 0 20 40 60

Value

0

0.01

0.02

p
(y
)

σy = 19.2206

Fig. 6: Histogram of the values x(t) and y(t) with their cor-
responding Gaussian approximations with respective standard
deviations.

the quality of the result.

B. Correlation in the perturbations of x(t) and y(t)

To investigate the correlations in the perturbations of x(t)
and y(t) a bivariate histogram has been computed, see Fig. 9.
The correlation between the signals is clearly visible. The
orientation of the dominant axis is not at 45◦ a further
indication that the sensor chains have differing gains. If the
gain of the sensor chains were equal the dominant axis would
be at 45◦ .

Singular value decomposition (SVD) is now used to deter-
mine the dominant axes and the distributions of the data with
respect to these axes. Defining the matrix D � [x,y] where x
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Fig. 10: Histograms for the orthogonalized values dSV D and
sSV D together with the Gaussian and Cauchy-Lorentz PDF.

is the column vector of the values of x(t) (similarly for y and
y(t)). The SVD for a matrix D is defined as,

D = USVT. (6)

The matrix V forms an ortho-normal vector basis set for the
span{D}, in the 2D case this corresponds to a rotation matrix
from which we can determine the orientation of the major
and minor axes. S is a diagonal matrix containing the singular
values, i.e., the 2-norm distance of the points in D to the vector
basis set. U is the scale free orthogonal projection of D onto
V. Consequently, we now obtain,

dSV D = U(:,1)S(1,1) (7)
sSV D = U(:,2)S(2,2) (8)

as orthogonalized estimates for dm and sm. The matrix V has
the values,

V =

[
0.6530 0.7574
0.7574 −0.6530

]
. (9)

corresponding to the angle φ = 40.77◦ and a relative gain
for the sensors of gr = 0.86. The histograms and respective
probability distribution functions for dSV D and sSV D are shown
in Fig. 10. Note: the observed standard deviation σs = 23.64
now corresponds very closely to the predicted value when the
relative gain is taken into account,

σ =
√

σ2
x +(gr σy)2 = 24.01. (10)

This indicates that the application of SVD has performed the
correct orthogonalization of the signals x(t) and y(t). Further-
more, the γ value for the Cauchy-Lorentz distribution has also
been reduced. These results indicates that both vibration and
inclination can be measured with a better confidence interval
when orthogonalization is applied.

The results of computing γx−y and γd after applying orthog-
onalization to each segment of the data from Fig. 4 are shown
in Table II. A mean reduction in γ of rγ ≈ 0.66 has been
achieved.
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γx−y γd r
S1 7.89 5.01 0.63
S2 10.00 6.54 0.65
S3 8.51 5.47 0.64
S4 8.27 5.27 0.64
S5 10.21 6.97 0.68
S6 9.18 5.45 0.59
S7 10.35 6.94 0.67
S8 8.91 5.86 0.66
S9 9.54 6.42 0.67
S10 7.89 5.09 0.64
S11 9.17 6.09 0.66

TABLE II: The values of γx−y and γd obtained after applying
orthogonalization to each segment of the data shown in Fig. 4.
A mean reduction in γ of rγ = 0.66 has been achieved.
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Fig. 11: The full signal acquired with the SCA830 sensor over
a period of approximately one hour. The portions marked in
red correspond to all values lying within 1% (percentile). This
data set contains n = 400693 samples. The values are in LSB
acquired directly from the ADC. The device as a 16 bit ADC
for the range ±1g.

III. ANALYSIS OF THE SCA830-D07

The second MEMS based inclinometer considered in this
paper is the SCA830 device, see Fig. 2 for the schematic
diagram. Unfortunately, with this device the individual sensor
signals are not available. Consequently, it is not possible to
perform orthogonalization prior to signal processing. Data
from this sensor was collected over prolonged periods of time.
A sample data set collected over a period of approximately one
hour is shown in Fig. 11.

The peaks observed in Fig. 11 caused much concern and
lead to extensive testing of the sensor at night during periods
when there was little or no activity in the building. We finally
came to the conclusion that the observed peaks are due to
disturbances within the building, but are unavoidable in any
real application. They lead to wide tails in the probability
distributions. In particular when working on construction sites,
as reported in [12], such perturbations must be considered.
They are simply a fact when measuring with these devices in
the vicinity of heavy machinery.

The histogram, Gaussian and Cauchy-Lorenz approxima-
tions to the signal from the SCA830 device are shown in
Fig. 12. This result has been obtained using the complete
data sequence. Once again the Cauchy-Lorentz distribution
provides a good model for the noise behaviour.
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Fig. 12: Histogram of the SCA830 Signal, with the Gaussian
and Cauchy-Lorentz models for the complete data set.
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Fig. 13: Histogram of the SCA830 Signal, with the Gaussian
and Cauchy-Lorentz models for the centered 98% percentile
of the data set.

It is now interesting to consider the statistics for p(x) in the
range p(x) ∈ 1 . . .99%. This 98 percentile signal is shown in
Fig. 11 — it basically corresponds to eliminating local outliers.
The histogram, Gaussian and Cauchy-Lorentz approximations
for this signal are shown in Fig. 13. This is an interesting
result, since in this case the Gaussian provides a possibly
satisfactory noise model. Consequently, after eliminating out-
liers, it would be possible to apply classical signal process-
ing techniques — although they implicitly assume Gaussian
perturbations — to obtain satisfactory results. However, for
precision measurements modelling the Cauchy-Lorentz nature
of the perturbations is unavoidable.

IV. CONCLUSIONS

The large sample sizes used in the analysis presented here
ensure reliable statistical results. The first conclusion we can
draw from these results is: the noise performance of the
vibration and inclination measurements can be improved by
applying orthogonalization to the dual-sensors data (when
available). The width of the Cauchy-Lorentz distribution is
reduced by a factor of rγ ≈ 0.66.

The influence of ambient vibrational noise and impulses
lead to the perturbations having a long-tailed distribution;
the distributions are well modelled by a Cauchy-Lorentz
distribution. The nature of these distributions must be taken
into account when designing the signal filtering. Ignoring this
fact will lead to significant errors in the signal processing,
for example, a sliding average will not reduce the width of
a Cauchy-Lorentz distribution. For non-critical applications a
good approximation to Gaussian nose is obtained by extracting
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1 % Median as estimate for x0
2 x0 = median( x );
3 % Compute the histogram counts
4 [cts, edges] = histcounts(x-x0,...
5 ’Normalization’, ’pdf’ );
6 % Determine the corresponding bins
7 bins = edges(1:end-1) + diff( edges ) / 2;
8 % Apply a Savitzky Golay filter
9 spanMin = 5;
10 factor = 50;
11 % use 2% span length but not less than 5
12 span = max([round(length(cts)/factor),

spanMin]);
13 ctsSmooth = smooth(cts,span,’sgolay’,0);
14 % Use the peak as an estimate for I0
15 I0 = max( ctsSmooth );
16 % Use Io = 1 /( pi gamma) for initial

gamma
17 gamma0 = 1/(pi * I0);
18 % Start values for the optimization
19 cfs = [x0, gamma0, I0];
20 % Anonomous function for the norm
21 cauchyPDFn = @(cfs) norm(cauchyPDF( bins,

cfs ) - cts);
22 % Optimize
23 [cfs, ˜] = fminsearch(cauchyPDFn, cfs);

Listing 1: M-code to perform a non-linear approximation
of the PDF of x by a Cauchy-Lorentz distribution.

the center 98% percentile of the signals, prior to filtering. This
fundamentally leads to non-linear signal processing methods.

Median filters are one potential non-linear filtering tech-
nique that one may consider applying. However, you need to
be aware that the median is not always a good estimate for
the mode of a samples Cauchy-Lorentz distribution [16], [17].

APPENDIX: CAUCHY-LORENTZ DISTRIBUTION

The three term Cauchy-Lorentz distribution is defined as,

p(x) � I0
γ2

(x− xo)2 + γ2 . (11)

In all computations performed here: the histogram has been
normalized to yield probabilities and a least square approxima-
tion of these probabilities by the Cauchy-Lorentz distribution
is performed. The trapezoidal rule has been used to implement
a discrete approximation to integration. In this manner we
ensure that ∫ ∞

−∞
p(x)dx ≈ 1. (12)

There is a significant volume of literature on estimating
the parameters of Cauchy-Lorentz distributions, see for exam-
ple [16], [17]. To avoid any misunderstandings and to simplify
the verification of our results, we have chosen to present the m-
code used to perform the nonlinear least squares estimation of
the parameters of Cauchy-Laurentz distribution, see Listing 1.
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Abstract—In this paper, an approach for the detection of
tool wear occurring during a machining process is presented.
An instrumented chuck is used to measure the tool forces.
The measured signals are partitioned into machining operation
and auxiliary movement. Each machining operation is analysed
using the statistical central moments: mean, variance, skewness
and kurtosis. The machining operations are represented as time
histogram for further examination. From the time histogram the
concept of segment based entropy is derived. A method for a
local computation of the entropy based on probability mapping
is presented. Based on the joint probability derived from the
phase diagram the method of local joint entropy is developed.

I. INTRODUCTION

In metal machining, such as drilling and milling, worn
tools reduce the quality of parts via surface degenerations
or deviation from the ideal geometry. This can lead to high
cost due to full rejection of the part, expensive refinishing
and in the worst case claims from the customers and bad
reputation. These costs are avoidable with a reliable tool
condition monitoring system. Based on such systems, methods
for predicting tool damage can be developed. Furthermore,
the influence of different tool and process parameter can
be analysed. The results can be used to validate process
simulations [1] and also to optimize tool parameters [2], [3].

In the summaries given by Lauro et al [4] and Jantunen et al
[5], it can be seen that four measurement types are favoured for
tool monitoring: force, vibration, acoustic emission and motor
current. Force sensors measure the tools cutting forces but they
are difficult to integrate in existing machines. Vibration and
acoustic emission sensors are simple to install but they are
susceptive for perturbation. Monitoring motor current requires
no changes of the machine but it is not sufficient sensitive for
every monitoring task. Rizal et al [6] states that the cutting
force is the most sensitive indicator of wear.

This paper focuses on the detection of wear and anomalies
in the cutting force signals. The forces are measured with an
instrumented tool holder equipped with a wireless transmission
system. The measured data is statistical analysed. Additionally
to the statistics the local information content of the signals
are investigated. The aim of the investigation is to detect local
changes in the information content caused by an external event
such as cutting edge breakage or wear.

Fig. 1: The instrumented chuck is equipped with four strain
gauges, enabling the measurement of: bending moments Mx

and My in orthogonal direction; the torque T and the holding
force Fa. In addition, there is a temperature sensor. The chuck
is also equipped with a wireless data connection to enable
a remote real-time observation of the measured values. The
magnification shows the damage of one cutting edge at the
end of the life time experiment.
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Fig. 2: Signals collected during the end mills life time exper-
iment. The signals are: a) bending moment Mx, b) bending
moment My , c) torque T , d) axial force Fa, e) temperature
at the strain gauge location. The vertical red lines indicate
interruptions for the optical measurement of the cutting edge
wear.

II. MEASUREMENT SETUP

A direct measurement of the force at the cutting edge
is not possible but the reaction force is measurable. These
reaction forces are measured with an instrumented chuck1 with
a standardized machine interface and is shown in Fig.1 top.
It is instrumented with four full bridge strain gauge circuites.
Each strain gauge circuit measures a component of the reaction
force. The reaction forces are the axial force Fa , the torque
T , the bending moment Mx about the x-axis ,the bending
moment My about the y-axis and the temperature T at the
strain gauges location. From these reaction force components,
it is possible to reconstruct the cutting force using the tools

1It is available at pro-micron GmbH & Co. KG under the name SPIKE®.

Tool Hard metal
Cutter diameter : 10 mm

Cutting Conditions Radial depth of cut: 8 mm
Depth of cut: 10 mm
Feed per tooth: 0.060 mm/tooth
Surface cutting speed: 125 m/min
Spindle speed: 3979 rpm

Milling method climb milling
Material X155CrMoV12

Tensile strength: 800 N/mm

TABLE I: Milling Parameter used for the life time experiment
of the end mill.

diameter and lever arm. Also the bending moment magnitude
M can be derived from its components Mx and My .

The measured strain signals are converted to digital signal
with a 15 bit analog-digital converter at a sampling rate of 1.6
kHz. The digital signal is transmitted wireless over the 2.45
GHz frequency band to a stationary receiver that is connected
to a personal computer.

The data, presented in the first part of this paper, are
collected from life time experiments for a hard metal end mill
with four teeth. During the experiments all process parameters,
listed in TABLE I, are kept constant to avoid interference by
them. The experiment is interrupted in predefined intervals
to measure the wear with an optical system. Fig.2 shows an
example of the signals occurring during these experiments. In-
terrupts for the reference measurements cause a block structure
in the signals. The life time experiment has been aborted after
the cutting edge damage exceeded the predefined width of 0.4
mm.The bottom of Fig.1 shows the damage of the cutting edge
after the termination of the experiment.

The data, presented in the last two sections of the paper,
are obtained from a drilling operation. During this operation
twelve holes with a diameter of 5 mm and a depth of 25 mm
were drilled with a spindle speed of 15000 rpm.

III. SEGMENTATION

Manufacturing processes have a typical signal pattern as
shown in Fig.3. A common cause of these patterns are
repeating events e.g. the repeated pass of the tool over the
workpiece. To analyse such events, a separation of the events
is of advantage. It is convenient to use the feature transitions
as natural separation points. Therefore a threshold based
segmentation algorithm was developed in [7] which extract the
indices of the segments rather than the data itself. This avoids
redundancy of the data which is important for an efficient
handling with large data sets. Additionally the indices allow a
simultaneous segmentation of other time synchronous signals.
This approach enables the storage of large data set in no-
SQL data bases such as HBase [8], while maintaining the
segmentation relations in a meta-data structure, whereby the
indices form the key row values in HBase.
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Fig. 3: Magnification of two passes of the miller for following
signals: a) bending moment M , b) bending moment Mx , c)
bending moment My , d) torque T e) axial force Fa. The
extracted segments are marked in red.

Fig. 4: Statistical central moments a) mean μ1, b) variance
μ2, c) skewness μ3 and d) kurtosis μ4 of the segments of the
torque signal T shown in Fig.2. The vertical red lines indicate
the interruption by the optical wear measurement.

Fig. 5: The time histogram of the bending moment M is a
collection of histograms. Increasing wear leads to a significant
change in the distribution shape of the data. The vertical red
lines indicate the interruption by the optical wear measure-
ment.

IV. STATISTICAL CENTRAL MOMENTS AND TIME
HISTOGRAM

A statistical analysis of a segment is possible if its number
of data points exceeds the necessary samples size. The data
contained in each segment have an individual probability dis-
tribution. This distribution can be characterized by its central
moments, whereby only the first four orders are of practical
relevance. The first and the second central moments μ1, μ2

are the mean and the variance. The third moment μ3 (see
Eqn.1) is the skewness and is a measure for the asymmetry of
a probability distribution about the mean μ1. Positive values
indicate a skew to the left and negative values a skew to the
right. The fourth central moment μ4 (see Eqn.2) is the kurtosis
and measures the spikiness of a probability distribution. If
a normal distribution is used as reference, its kurtosis value
,three, is subtracted form the computed kurtosis and is called
excess kurtosis. Skewness and kurtosis are dimensionless.

μ3 =

∑N
i=1(xi − x)3

N s3
(1)

μ4 =

∑N
i=1(xi − x)4

N s4
− 3. (2)

Fig.4 shows the central moments of the signal segments. The
sudden change in the central moments indicates a cutting edge
damage.

Each signal value xi has an occurrence probability Pi.
For each segment of signals these occurrence probabilities
are derived from its histogram. The probability for a single
histogram bin j is calculated by

Pj =
nj

Δxj N
, (3)
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Fig. 6: Top: Time histogram computed form the segments of
the torque signal T . The vertical red lines indicate the inter-
ruption for the wear measurement. Middle: Shannon entropy
H computed from the columns of the time histogram. Bottom:
The peaks in the derivative of the Shannon entropy indicate a
significant change in the information content.

where nj and Δxj are the frequency and the width of the
bin j and N is the total number of samples. It is possible to
store the histogram of each segment as single column in a
matrix i.e. the so called time histogram. This method requires
the same bin intervals for all segment histograms and it has
to be defined a priori. The time histogram can be used to
detect temporal changes and anomalies in the data as shown
in Fig.5. Time histograms can be easily presented as images or
3D-plots. The time histogram can be used as a data exploration
tool for large data sets of time series such as time frames of
a fluid simulation [9]. This method offers an effective way to
explore large data sets by a human operator.

V. ENTROPY AND INFORMATION

In ”A mathematical theory of communication” [10], Claude
Shannon introduced the concept of entropy H , see Eqn.4,
as a measure for the information content. He interpreted the
Shannon entropy H for the basis B = 2 as minimum number
of bits to which a symbolic sequence can be compressed. Due
to the lack of systematic pattern random sequences require
more bits than systematic ones.

H = −
N∑

i=1

Pi logB(Pi) (4)

The Shannon entropy was developed for discrete random
variables but measurements are continuous random variables
which would require a integral formula for the entropy. For-
tunately, an approximation of the continuous distribution is
possible by a histogram to overcome this problem.

Fig. 7: Top: Axial force recorded from a drilling process.
Bottom: Local entropy computed of the signal. The regions
with low entropy, marked in red, match with the high levels
of the feature. The detected outliner is marked in green.

A. Segment based Entropy

Additional to the central moments, the Shannon entropy H
can be used to characterize discrete probability distributions
i.e. histograms. Therefore, the probability of the bin Pj is
treated as an occurrence probability Pi to compute the Shan-
non entropy according Eqn.4. This method can be applied to
time histograms to compute an entropy sequence. Changes
in this sequence indicate changes in the information content.
These changes can be localized by the first derivative of the
sequence. In physical systems a change in the information
content is correlated with the change of its physical behaviour.
In Fig.6 middle, the entropy is applied to the signal of a milling
process. The entropy change correlates with the tool damage
and can be clearly identified by the maxima of the entropies
derivative shown in Fig.6 bottom. The entropy H , shown in
Fig.6, and the standard deviation σ =

√
μ2, shown in Fig.4

b, are linked via their probability distribution. For a Gaussian
distribution this link is given for a basis B = e by Eqn.5.

H = logB(
√

2π e) + logB(σ) (5)

The probability Pi, necessary to calculate the entropy, can
be calculated from different sources than the occurrence fre-
quency of the signal values. Hence, every property, that can be
represented as probability Pi, can be used for the computation
of the Shannon entropy. Examples for these sources are: the
spectra of a short time fourier transform [11], wavelet energy
[12], symbols [10] and permutations of number sequences
[13].

B. Local Entropy

Every data point xi is a sample of the signals probability dis-
tribution and has an individual occurrence probability Pi. Un-
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fortunately, the exact analytic distribution is unknown but it is
possible to approximate this distribution with a histogram. The
probability of the histogram bins can be mapped to the data
points inside the bins range. The result of this mapping is a
vector of occurrence probabilities pT = [P1, . . . , PN ] of every
data point. The probability vector p is used to compute a vector
of summands hT = [−P1 logB(P1), . . . , −PN logB(PN )] of
the Shannon entropy using Eqn.62

h = −p ◦ logB(p). (6)

The Shannon entropy for any region of interest can be com-
puted by multiplying the summand vector h with a windowing
vector w . Alternative the convolution of the summand vector
h with window wT = [1, . . . , 1] can be used to compute the
local entropy vector H , see Eqn.7. Every entry of H represent
the entropy ,i.e. information content of all data points inside
the range of sliding windows w.

H = h ∗ w (7)

Deterministic signal parts show lower entropy values than
stochastic parts. This can be used to extract the deterministic
parts of a signal.

In Fig.7 the axial force acting on a drill and the derived
local entropy is presented. The signal shows a sequence
of individual drilling operations which can be identified by
thresholding its local entropy. By defining a certain entropy
limit, outlier exceeding this limit can be located.

VI. PHASE DIAGRAM AND JOINT ENTROPY

Differential equations are used to model physical system
eg. dynamic systems. Differential equation of higher order
are typically represented in the phase space, whereby every
derivative corresponds to a phase space variable. This implies
that a measured phase space variable is correlated with its
derivative. Therefore, the derivative also contains information
about the system and should be considered in a signal analysis.

The phase diagram is a method to analyse the phase space
of a system, whereby, the phase diagram describes a two
dimensional subspace of the phase space. Systems described
by differential equation of order two, such as dynamic systems,
the complete phase space coincides with the phase diagram.
Hence, the phase diagram is used to analyze motions [14] or
detect changes in the motion caused by changes of the system
eg. defects [15].

The phase diagram is computed using the Savitzky-Golay
[16] smoothed signal and its numerically computed derivative.
Fig.8 shows the phase diagram of the axial force of the same
drilling process as shown in Fig.7.

From the points in the phase diagram a two dimensional his-
togram can be computed as shown in the bottom of Fig.8.This
histogram provides the joint probability of the data points and
its derivatives. This joint probability can be mapped to the
data points and results in a joint probability vector pxy . This
joint probability vector pxy can be used to compute the joint

2The symbol ◦ represents the Hadamard product

Fig. 8: Top: Phase diagram computed from Savitzky-Golay
smoothed axial force and its derivative with a support length
ls = 101. Bottom: Two dimensional histogram computed from
the phase diagram.

Fig. 9: Top: Axial force recorded from a drilling process.
Bottom: Joint entropy computed from the phase space his-
togram. The region with lower joint entropy matches the
drilling features marked in red.
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local entropy vector Hxy using the methods described in the
previous section.

In the described method the derivative is used as a second
source of information. Thus, also information which is not
covered by the local entropy is contained in joint local entropy.

Applying this method to the same axial force signal as
presented in Fig.7 allows an improved identification of the
individual drilling operations as shown in Fig.9.

Beside of the presented method also other entropy defini-
tions, such as the Permutation entropy [13], use the phase
space to detect anomalies of dynamical systems.

VII. CONCLUSION

Statistical central moments are a suitable tool to identify
anomalous region of the data. The time histogram provides a
visual summary of the data and takes advantage of the humans
natural ability of pattern recognition. Also, it provides deeper
insight in the nature of the data than the central moments.
Anomalous regions show a different amount of information
than the rest. They can be identified using the Shannon entropy
as a measure for information. Entropy is a transformation
of the probability and the source of the probability, used
for its computation, decides about meaning of the detected
information. A probability mapping enables a detection of
local region with different information content. Linear trans-
formations are able to uncover information parts that are
impossible to capture in the original signal. In combination
with the signal information an accurate detection of events is
possible.
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[3] I. Krajinović, W. Daves, M. Tkadletz, T. Teppernegg, T. Klünsner,
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1 Introduction 

This paper proposes a system for the ingestion and analysis of real-time sensor and actor data of bulk 

materials handling plants and machinery. It references issues that concern mining sensor data in cyber 

physical systems (CPS) as addressed in O’Leary et al. [2015]. 

The advance of cyber physical systems has created a significant change in the architecture of sensor 

and actor data. It affects the complexity of the observed systems in general, the number of signals 

being processed, the spatial distribution of the signal sources on a machine or plant and the global 

availability of the data. There are different definitions for what constitutes cyber physical systems 

Baheti and Gill [2011], Geisberger and Broy [2012], IOSB [2013], Lee [2008], NIST [2012], Park et 

al. [2012], Spath et al. [2013a,b], Tabuada [2006]: the most succinct and pertinent to the work shown 

in this paper is the definition given by the IEEE Baheti and Gill [2011] and ACM1: 

A CPS is a system with a coupling of the cyber aspects of computing and communications 

with the physical aspects of dynamics and engineering that must abide by the laws of physics. 

This includes sensor networks, real-time and hybrid systems. 

Results computed from sensor and actor data must obey the equations used for modelling the physics 

of the observed system — this fundamentally poses an inverse problem. Such problems are not 

covered sufficiently by literature addressing mining of sensor data, see for example Esling and Agon 

[2012], Fuchs et al. [2010], Keogh and Kasetty [2003], Last et al. [2004]. Even available standard 

books, such as Aggarwal [2013] on mining sensor data, do not discuss the special nature of sensor 

data. Typically, present approaches of mining data rely on correlation as being a sole, reliable measure 

for significance. It is not taken into account that the inverse solutions to the model-describing 

equations are required to establish a semantic link between a sensor observation and its precedent 

cause. Without this link — without causality — there can be no physics based knowledge discovery. 

  

                                                 

1 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (iccps.acm.org) 
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The underlying data analytics problem can be described generally by the following statements: 

1. The momentum of what is called Industry 4.0 promotes an increasing amount and availability 

of data. A suitable data ingestion system becomes necessary to acquire real-time sensor and 

actor data on a global scale. The fundamental concept on how to acquire, transport, ingest, 

and provide data needs to be sufficiently secure and adaptable enough to accommodate data 

of mining machines that may be located in remote areas. 

2. Mathematical tasks are required to apply data analytics to industrial data sets, such as the 

solution of inverse problems and optimal-control-type problems. 

3. Complex systems are modelled mathematically by following principles gained from 

modelling simple engineering systems, e.g., a vibrating string or a vibrating beam. These can 

be modelled using differential equations, ordinary and partial. More sophisticated 

mathematical models will be required to conquer the expanding complexity of modern 

mechatronic systems. 

4. Data analytics will determine the particular causes to specific behaviour witnessed by sensor 

and actor data. Inverse problems are fundamental to accomplish such tasks. Additional 

metadata is required to accurately interpret the results of inverse models, as inverse problems 

do not have unique solutions per definition. 

5. Extracting knowledge from data lies beyond simple information extraction. A more profound 

view on the philosophy of science points towards the necessity of assigning semantic 

information to data channels to establish such investigations. The metaphorical parallels 

between machine behaviour and natural language provide a form of knowledge extraction. It 

can be shown that machines have their own specific polysyllabic language. Once identified, 

it can be efficiently queried for symbolic patterns of normal or anomalous behaviour. 

2 System Premiss 

As an extension of Ackoff’s work (Ackoff [1989]), Embrechts (Embrechts et al. [2005]) proposes the 

data mining pyramid consisting of the terms data, information, knowledge, understanding and 

wisdom. Embrechts does not provide any definitions for these terms, Ackoff offers intuitive but rather 

nebulous definitions; both do not provide a scientific basis for mining sensor data. Based on the 

integral idea we propose the fundamental concept behind the data analytics in Fig. 1.  

 

Fig. 1: The process behind the data analysis system. 
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The presented hierarchy illustrates how the questions of processing large data sets can be approached 

in a coherent and structured manner. The fundamental relationships of this premiss are: 

1. A suitable indicator hypothesis builds the basis for the collection of data. If a specific sensor 

is chosen, an implicit indicator hypothesis has been selected as well, i.e., a temperature sensor 

defines that temperature is of relevance for the task. 

2. Once acquired, data is only present as a simple stream of numbers; metadata adds meaning to 

the data. Beyond that, context is required to establish significance: a temperature value can 

have entirely contrasting significances for measurements of two different sources. 

3. System models and the solution of the corresponding inverse problems are required to 

establish a causal link between measurement data and its possible cause. In general, there are 

no unique solutions to inverse problems.   

4. Hence, a-priori knowledge is necessary to find the desired solution. These results of the 

inverse problems (the causes) constitute knowledge. 

5. Effects of human-machine interaction must be considered to gain understanding of the whole 

system behaviour. Our approach, Advanced Symbolic Time Series Analysis (ASTSA), is based 

on the emergence of language as it is modelled by the philosophy of phenomenology. The 

basic principle consists of symbols that are assigned to actions — verbs. The symbols for 

states are nouns. Adverbs and adjectives are used to predicate the verbs and nouns. 

Punctuation represents different lengths of pauses. Following such a segmentation, the time 

series is automatically converted into a sequence of symbols, enabling symbolic querying. 

6. The whole process serves the understanding of what was originally only a stream of numbers. 

Engineering feedback can be derived from understanding the system response behaviour to 

certain loads and circumstances. Existing systems can be optimised and future revisions 

benefit from this as well. 

3 Data Ingestion 

A versatile data handling system is necessary to conquer large sets of time series data in a structured 

and efficient manner. Before such a system is able to provide any data, it has to ingest data following 

a specific workflow. In the course of the ingestion process, data is collected, quality-checked, and 

merged with corresponding metadata before it is prepared to fit a consistent data model. Sensor values 

are handled in the same way as derived measurements, i.e., the force of a hydraulic cylinder calculated 

from its dimensions (metadata) and its pressure values (time series from sensors). 
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Fig. 2: This illustration shows the main processes of data ingestion. The top section corresponds to 
the machine or plant on which data is being collected, while the bottom part represents the data 
center located at a different location. The data is provided in several formats after it has been 
ingested. 

The concept describing the data ingestion process is illustrated in Fig. 2. Data of a machine’s sensors 

is collected from its main programmable logic controller (PLC) and stored on a local data server 

before it is transported via a secured connection to the data center. After passing quality control, the 

data is stored permanently according to the data model and specified data manipulation workflows 

can be triggered on the cluster. Ultimately, the data is made available to consumers (data analysts, 

report recipients, domain experts, etc.) in different formats: this ensures that all users are independent 

in their choice of working environment. 

The data is stored as a contiguous data stream as a result of the data ingestion process, see Fig. 3. The 

data input can be split, e.g., as daily exports of a buffering database running on the local data server 

at the machine’s location. The data of all packets are merged to a contiguous, multi-channel stream 

of time series. When a user requests data from the system, they have the experience of querying the 

machine directly and in real-time. This opens the door to evaluations spanning time ranges varying 

from days to months and years. Furthermore, time ranges fitting a machine’s operation characteristics 

can be queried, such as the time for loading a vessel in the case of analysing a ship loader. This 

permits a complete differentiation between input and output segmentation. 
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Fig. 3: Three single days of data are assembled to a contiguous data stream. The illustrated 
contiguous section corresponds to the time portion a ship loader needs to load a vessel: this enables 
evaluations based on time ranges that are significant to particular fields of interest. 
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4 Systems Currently Being Monitored 

Four mining machines that are currently being monitored using the approach presented in this paper 

are shown in Fig. 4. Data of these systems is collected constantly with a sampling interval of 1s. 

Typically, 50 to 850 sensor signals are collected, depending on the complexity of the monitored 

system. 

 

Fig. 4:  Examples of four systems that are currently being monitored using the described approach: 
a) ship loader, b) mobile sizing rig, c) bucket-wheel excavator, d) bucket-wheel reclaimer. The sensor 
channels of these systems are monitored with a sampling interval of 1s. (Sources: (a) – 
http://www.flickriver.com/photos/ impalaterminals_images/17557941415/, retrieved on 2016-02-08; 
(b), (c), (d) – Courtesy of Sandvik.) 

5 Exemplary Data Evaluations 

The collection and analysis of data can be used for many different aspects of evaluating a machine 

during its life-cycle: 

Condition Monitoring: Undoubtedly, data analytics can be used to address questions regarding 

condition monitoring or preventative maintenance, see Rothschedl [2016]. However, in this work we 

focus on issues that have received less attention in literature, e.g., incident analysis. 

Commissioning: If data is already collected during the commissioning phase of a machine, analysing 

it can support shortening the time needed for this phase. Controlled tests can be verified with 

manageable effort and unexpected response behaviour to specific load scenarios can be detected. On 
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several occasions, it was possible to identify sensors that delivered erroneous values for only a few 

samples a day. Judging from the nature of such error patterns, it would not be possible for a 

commissioning engineer to spot these defective sensors without such a system. 

Fleet management: Insights gained from analysing one machine can support understanding the 

behaviour of other machines of similar design. For example, two identical bucket-wheel excavators 

were monitored which are operated in the same mine, handling the same type of material. The 

characteristics of both machines matched in many aspects. In contrast, two similar ship loaders 

exhibited behaviour that was significantly different. This raises the question whether these machines 

fulfil the conditions required to be ergodic systems. 

Automatic Operations Recognition: With ASTSA, several data channels can be combined to define 

machine states. Sequences of these states refer to corresponding operation modes which can be used 

to characterise how a machine is being controlled. These sequences support the identification of 

inappropriate operations that may lead to damages or to missing performance goals. 

Incident Analysis: Incidents with equipment in mining environments bear serious financial and legal 

issues. Unplanned maintenance and repair work in such environments and locations quickly reach 

immense financial dimensions, also because associated materials handling processes are interrupted, 

provoking serious follow-up costs. Liability for injury and damages are the main concerns from the 

legal point of view. The analysis of real-time operational data prior to incidents supports the 

determination of the possible causes for their occurrences and, hence, can provide more certainty to 

the financial and legal claims. Although this form of analysis can shed light on the clarification of 

far-reaching issues, this topic has been rarely mentioned in literature. It is evident that incident 

analysis plays a major role when working with mining machines. 

Logistics Optimisation: The analysis of long-term time series allows evaluations based on 

aggregated data: the distribution of conveyed material over the full slewing range of a machine over 

a long period of time can support identifying unevenly distributed component utilisation. Such 

problems can often be avoided or mitigated if the logistics of a machine are adapted. 
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Two exemplary evaluations are presented: 

5.1 Incident Analysis 

The figures below (Fig. 5 and Fig. 6) show the results of performing incident analysis for a bucket-

wheel excavator. The analysis shows a large number of events distributed over time and conspicuous 

times during which no events occurred: this is with most certainty operator-dependent behaviour of 

the system as a whole. 

 

Fig. 5: This example of incident analysis shows data for a time period of two months, acquired with 
a sampling time of 1s. Each vertical line corresponds to an event; 63 events were found in total by 
using Advanced Symbolic Time Series Analysis (ASTSA). Every event corresponds to an 
inappropriate operation of the machine: the data can be zoomed in on automatically for every single 
event to perform local analysis, i.e., in the seconds and minutes right before the occurrence of the 
event (see Fig. 6). 

 

Fig. 6: Plots of the identified events with 1s resolution for three of the 63 events reported in Fig. 5. 

5.2 Long-Term Logistics Optimisation 

The data shown in Fig. 7 is the polar histogram of loading on the slew bearing of a bucket-wheel 

reclaimer. The data has been aggregated with ts=1s over an observation period of one year. 

Interestingly, the overloading in one quadrant is not visible on a daily basis. The higher loading, 

evident from aggregated long-term data in the figure, has significant consequences on the life span 

of the bearing. 
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Fig. 7: Polar histogram of loading on the slew bearing of a bucket-wheel reclaimer. The data has 
been aggregated with a sampling time of 1s over an observation period of one year. 

6 Conclusions 

The collection of very large real-time data series from plant and machinery is highly relevant in a 

mining context. A strongly structured approach is required, if the best use is to be made of the data. 

The results are relevant for both, machine constructors and also their operators. It is significantly 

more than just preventative maintenance. 

REFERENCES 

Ackoff, R.L. (1989). From data to wisdom. Journal of Applied Systems Analysis, 16, 3–9.  

Aggarwal, C.C. (ed.) (2013). Managing and Mining Sensor Data. Springer. 

Baheti, R. and Gill, H. (2011). Cyber-physical systems. The Impact of Control Technology, 161–166. 

Embrechts, M., Szymanski, B., and Sternickel, K. (2005). Computationally Intelligent Hybrid 

Systems: The Fusion of Soft Computing and Hard Computing. John Wiley and Sons, NewYork. 

Esling, P. and Agon, C. (2012). Time-series data mining. ACM Comput. Surv., 45(1), 12:1–12:34. 

doi:10.1145/2379776.2379788. URL http://doi.acm.org/10.1145/2379776.2379788. 

Fuchs, E., Gruber, T., Pree, H., and Sick, B. (2010). Temporal data mining using shape space 

representations of time series. Neurocomputing, 74(13), 379 – 393. 

doi:http://dx.doi.org/10.1016/j.neucom.2010.03.022. URL 

http://www.sciencedirect.com/science/article/pii/S0925231210002237. Artificial Brains. 

Geisberger, E. and Broy, M. (2012). agendaCPS: Integrierte Forschungsagenda Cyber-Physical 

Systems, volume 1. Springer. 

IOSB, F. (2013). Industry 4.0 information technology is the key element in the factory of the future. 

Press Information.  

6. Conclusions 151



REAL TIME MINING - Conference on Innovation on Raw Material Extraction Amsterdam 2017 

 

10 

Keogh, E. and Kasetty, S. (2003). On the need for time series data mining benchmarks: A survey and 

empirical demonstration. Data Min. Knowl. Discov., 7(4), 349–371. doi:10.1023/A:1024988512476. 

URL http://dx.doi. org/10.1023/A:1024988512476. 

Last, M., Kandel, A., and Bunke, H. (2004). Data Mining in Time Series Databases. Series in machine 

perception and artificial intelligence. World Scientific. URL 

http://books.google.at/books?id=f38wqKjyBm4C. 

Lee, E.A. (2008). Cyber physical systems: Design challenges. In Object Oriented Real-Time 

Distributed Computing (ISORC), 2008 11th IEEE International Symposium on, 363–369. IEEE. 

NIST (2012). Cyber-physical systems: Situation analysis of current trends, technologies, and 

challenges. Technical report, National Institute of Standards and Technology (NIST). URL 

www.nist.gov. 

O’Leary, P., Harker, M., and Gugg, C. (2015).  A position paper on: Sensor-data analytics in cyber 

physical systems, from Husserl to data mining. In SensorNets 2015, Le Cresout, France. 

Park, K.J., Zheng, R., and Liu, X. (2012). Cyber-physical systems: Milestones and research 

challenges. Computer Communications, 36(1), 1–7. 

Rothschedl, C.J. (2016). Condition Monitoring of Large-Scale Slew Bearings in Bucket-Wheel 

Boom-Type Reclaimers. Diploma Thesis, University of Leoben.  

Spath, D., Gerlach, S., Hämmerle, M., Schlund, S., and Strölin, T. (2013a). Cyber-physical system 

for self-organised and flexible labour utilisation. Personnel, 50, 22. 

Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., and Schlund, S. (2013b).   

Produktionsarbeit der Zukunft-Industrie 4.0. Fraunhofer IAO Stuttgart. 

Tabuada, P. (2006). Cyber-physical systems: Position paper. In NSF Workshop on Cyber-Physical 

Systems. 

152 Chapter 16. Real-Time-Data Analytics in Raw Materials Handling



17 | Condition Monitoring
of Hydraulics in
Heavy Plant and Machinery

Originally appeared as: S. F. Nussdorfer, R. Ritt, and C. J. Rothschedl, “Con-
dition Monitoring of Hydraulics in Heavy Plant and Machinery,” in 6th International
Congress on Automation in Mining, V. Babarovich, D. Haro, M. Gajardo, and F.
Gómez, Eds., Santiago, Chile: Gecamin, 2018, ch. 6, pp. 417–424, isbn: 978-956-397-
000-5

BibTEX:

@inproceedings { Nussdorfer2018 ,
address = {Santiago , Chile},
author = {Nussdorfer , Stefan Franz and Ritt , Roland and

Rothschedl , Christopher Josef},
booktitle = {6th International Congress on Automation in

Mining },
chapter = {6},
editor = {Babarovich , V{\ '{i}} ctor and Haro , Daniel and

Gajardo , Mall {\ '{e}}n and G{\ '{o}}mez , Freddy },
isbn = {978-956-397-000-5},
pages = {417--424} ,
publisher = { Gecamin },
title = {{ Condition Monitoring of Hydraulics in Heavy

Plant and Machinery }},
year = {2018}

}

153



 

 

1 

 

Condition Monitoring of Hydraulics in Heavy Plant 
and Machinery  

Stefan Franz Nussdorfer1, Roland Ritt1*, Christopher Josef Rothschedl1   

 and Paul O'Leary1  

1. Chair of Automation, Department Product Engineering, University of Leoben, Austria  

 

ABSTRACT 

This paper presents a new approach to remote condition monitoring of hydraulic actuators as used 

in mining equipment. The condition of the hydraulic system has a major influence on the life span 

of machine parts and the equipment’s performance in general. The aim is to use real-time 

monitoring to extract a better understanding of the state of the machine, its behaviour, and how it is 

being operated. Specifically, the goal is to generate added value along the complete life cycle of the 

equipment.  

Within an existing framework, all available sensor and actuator data is collected. The hydraulic 

analysis module uses the pressures measured on the rod side �௥,� and on the piston side �௣,� of each 

hydraulic cylinder, with � indicating the �-th cylinder. Additionally, the values are combined with 

the metadata of the rod and piston areas �௥,�  and �௣,� , yielding the operating force ௢݂,� . The 

exemplary system consists of two hydraulic cylinders working in parallel. By analysing the sum ௦݂ 

and difference �݂  forces, the total lifting force and torsion exerted on the machine’s boom are 

determined. For each of the variables �௥,�, �௣,� and resulting forces, time series data is available for a 

period of 93 days, with the data being collected at sampling intervals of 1 second. Consequently, 

there are ͺ.Ͳ͵ͷ.ʹͲͲ  samples per signal. The large number of samples ensures a well-defined 

confidence interval in the statistical evaluation of the data.  

The time-varying histograms for 24 hour intervals make both short and long term changes visible. 

Whereby the large number of samples enables a reliable separation of systematic and stochastic 

components in the signal. 

Operational analysis is presented for a bucket-wheel excavator which demonstrates the monitoring 

capabilities and specific results. The monitoring system has enabled the automatic detection of 

various defects in the observed hydraulics, e.g., a defective sensor was identified, as was the 

systematic occurrence of negative pressures. 
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INTRODUCTION  

The condition of remotely located heavy plant and machinery, especially mining equipment, is vital 

to the processes they are part of. This paper focuses on the monitoring of the hydraulic systems of 

such machines, which are needed to carry out the luffing movements of a machine’s boom. The 

condition of these hydraulic systems has a major influence on the life span of the machine and, 

hence, has an important influence on the materials handling process. An unplanned shutdown can 

be the consequence of an unexpected failure of a crucial machine component: subsequent processes 

need to be stopped for the duration of the time-consuming maintenance works, which can quickly 

accumulate to high costs (Rothschedl, 2016). 

The presented tool is part of a data analytics framework that supports the decision-making 

processes of mining and machine experts (domain experts): using their input, improved estimations 

of the component condition can be given. To accomplish the tasks necessary for this, a flexible and 

sufficiently secure framework is required; Figure 1 illustrates the implemented setup of such a 

framework. (Rothschedl et al., 2017) 

 

 

Figure 1  Schematic of the data ingestion system 
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It consists of a central data cluster that ingests, handles and processes operational data from 

currently 15 mobile mining machines, which are primarily located in remote locations and are 

equipped with a local data acquisition device. The ingestion process running on the data cluster 

ensures a consistent data format, the incoming values are accommodated in a contiguous data 

model. Such a model provides a distinct separation between input and output segmentation: data 

can be queried for an arbitrary period of time, even if the data is input on a daily basis only. 

Different analysing tools are available, which can be triggered manually by a user request or 

automatically on a regular basis. Metadata is integrated into the system via a secured connection 

that is entirely separated from the numerical sensor data. This is an additional security layer, as the 

numerical data is considered worthless without the corresponding metadata – no knowledge 

discovery is possible ǻO’Leary et al., ŘŖŗŜǼ. 

The available time series of the existing machines span several years, between 150 and 600 actuator 

and sensor signals are monitored per machine at a sampling rate of 1 Hz. Relevant channels of a 

bucket-wheel excavator were chosen to demonstrate the methods used in this paper. 

METHODOLOGY 

The herein presented analysis module gives an overview of tools and methods used for analysing 

hydraulics data to gain insights into machine behaviour. The aim is to support domain experts in 

monitoring the hydraulic systems of machines and in figuring out system improvement potential. 

The developed analysis module addresses the hydraulics of boom luffing systems of machines used 

in mining: two cylinders are used to luff the boom up and down. The signal channels relevant for 

the exemplary evaluations are the rod and piston side pressures (�௥,�, �௣,�) of the cylinders in the 

hydraulic system. In a preliminary step, additional signal channels are used to partition the data 

into sequences to identify periods when the machine is operating and not operating. This is an 

important step, since the conclusions of evaluations may differ significantly based on the operation 

modes, e.g., the sequences where the machine is not operating can be used to characterise the 

hydraulic system, whereas sequences where the machine is operating can be used to monitor the 

operational behaviour. 

Based on the available data, additionally derived channels can be included in the investigations, 

e.g., geometric metadata of the cylinders, operational forces produced by the cylinders can be 

calculated. They, again, can support the derivation of statistical properties, e.g., local entropy 

ǻKollment, O’Leary, Ritt, & Kl(nsner, ŘŖŗŝǼ.  
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Hydraulics Monitoring 

In Figure 2, exemplary data of a bucket-wheel excavator is presented, showing the channels most 

relevant for the evaluations. Selected are: the luffing and slewing positions (��݂݂, ��݁�) to identify 

the current operation mode, and the pressure signals from the cylinders holding the bucket-wheel 

boom. Since there are two cylinders working in parallel, there are four signals: two for the piston 

side (�௣,ଵ, �௣,ଶ) and two for the rod side (�௥,ଵ, �௥,ଶ). 

 

In combination with the metadata of the rod and piston areas (�௥,�, �௣,�), the operating forces ௢݂,�  are 

calculated as ௢݂,� =  �௣,� �௣,� − �௥,� �௥,�. 

(1) 

 

Due to the fact that there are two hydraulic cylinders working in parallel, the sum and difference 

forces ( ௦݂, �݂) are analysed to include an additional level of information. They are calculated as ௦݂  =  ௢݂,ଵ  +  ௢݂,ଶ 

(2) �݂  =  ௢݂,ଵ  −  ௢݂,ଶ. 

(3) ௦݂ is the total lifting force and �݂ is a measure for the torsion exerted on the boom. In an idealistic 

case �݂ = Ͳ and ௢݂,ଵ =  ௢݂,ଶ. In Figure 3 those signals are shown for an entire day.  

Figure 2  Relevant data channels for a duration of 4 days 
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Figure 3  Data for a single day showing the sum and difference forces, the luff angle and the slew angle 

As shown in Figure 4, the histogram for �݂  reveals a slightly asymmetrical distribution that 

indicates a higher torsion in one specific direction. The reason is that the bucket-wheel is assembled 

at a skewed angle on the boom. This behaviour is therefore expected.  

Due to the kinematics of the boom and the cylinders, a correlation between the luff angle and the 

total lifting force is given. This correlation can be quantified by calculating the correlation 

coefficient of these two signals. To do this for all channels, the correlation coefficient matrix C is 

derived (Lawson & Hanson, 1987). For the presented data ( ௦݂ , �݂ , ��݂݂ , ��݁� ) the correlation 

coefficient matrix constitutes to 

C =  [ ͳ −Ͳ.ͳͺ −Ͳ.ͺͶ −Ͳ.ͳͶ−Ͳ.ͳͺ ͳ Ͳ.Ͳͳ −Ͳ.ʹͶ−Ͳ.ͺͶ Ͳ.Ͳͳ ͳ Ͳ.Ͳͻ−Ͳ.ͳͶ −Ͳ.ʹͶ Ͳ.Ͳͻ ͳ ]. 

(4) 

Figure 4  Histogram of �� in the range of -0.6 to 0.6 MN 
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The largest value at C[ͳ,͵] is the above mentioned (negative) correlation between the total lifting 

force and the luff angle, which is to be expected. 

Statistics  

The signal channels used in this work were sampled at 1 Hz over a period of 93 days. Thus, � =ͺ.Ͳ͵ͷ.ʹͲͲ samples for each channel are available (86.400 samples per day). This large number of 

samples ensures a well-defined confidence interval in the statistical evaluation of the data. Since 

there is a contiguous data model provided by the data framework, evaluations can be triggered for 

different time spans. In this paper, evaluations on a daily basis are presented. 

A histogram is computed for each variable for each 24-hour period. The distribution can be 

characterised by its statistical central moments. The first central moment is the mean and the second 

one is the variance. The third moment is the skewness: it characterises the asymmetry of the 

distribution. The fourth central moment is the kurtosis and measures the steepness of the 

distribution (Loether & McTavish, 1980). Those properties can be used to find anomalies and 

identify time sequences, which demand further investigation. 

To quickly get an overview of the entire statistics for a longer time period, the histograms for each 

day are collected as a column in a matrix, which can be viewed and processed as images. The time-

varying histogram is used to visualise the evolution of the system response behaviour to find 

abrupt changes: these indicate parts that require further investigation. Both, short- and long-term 

changes in the statistical behaviour of the system become visible quickly (Kollment et al., 2017). 

This method is a powerful tool for the evaluation of big data sets used in an exploratory phase. 

A time-varying histogram for the piston side pressure of cylinder 2 (�௣,ଶ) is shown in Figure 5. The 

sudden change indicates a major change in the system behaviour. It was confirmed, that the sensor 

was flawed and was changed at this exact point in time. 

For a more detailed inspection the histograms of single days can be investigated. They are found in 

the according column of the time-varying histogram matrix. 

Figure 5  Time-varying histogram of the pressure of 

cylinder 2 piston side for a period of 93 days 

Figure 6  Single-day histogram with a pressure range of  

-1 to 45 bar of cylinder 1 rod side 
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In Figure 6, such a histogram is plotted for the rod side pressure of cylinder 1 (�௥,ଵ). There are 2 

modes visible: the mode at �௥,ଵ ≈ ͵Ͳ bar1 is the expected pre-tension of the cylinder; the mode at �௥,ଵ ≈ Ͳ bar indicates a low pre-tension, although the machine is in operation: this may be of 

interest for domain experts. Rules applied to the value ranges of the pressure signals (�௠�� , �௠�௡) 

can be used to find data sequences where certain limits are exceeded. In Figure 6, the occurrence of 

negative pressure values is visible. Negative pressures increase the risk of cavitation and can cause 

dirt and debris to be sucked into the oil cycle through the sealings. Additionally, the stiffness of the 

luffing system can become more and more unstable: if the load direction of a cylinder changes 

when the pressure is close to zero in one of its oil chambers, the piston needs to travel a certain 

distance for the pressure to build up again. Such a scenario would induce or increase 

superstructure rocking, which can lead to further issues and can have a significant impact on other 

components as well (Rothschedl, 2016). Hence, close to zero or even negative pressures in the 

cylinder hydraulics can cause serious problems. 

RESULTS AND CONCLUSION 

This paper covers the steps of exploratory work on hydraulics data of a mining machine. It was 

shown that many characteristics of the machine’s hydraulic design can be found in the data during 
and between machine operations. Additionally, a sensor delivering erroneous values was 

identified. To interpret certain patterns and findings within the data correctly, the involvement of 

domain experts is required. To integrate this specific domain expertise, data has to be made 

available to these engineering and process experts in an easy-to-work-with manner. Many of the 

evaluations provide a technical discussion basis that acts as an interface between the raw data and 

the engineers. 

The presented methods can either be used to analyse historical data sets to provide engineering 

feedback and to optimise, or can generate reports or notifications in real-time monitoring 

environments. Notifications triggered by automatic evaluations can facilitate decision-making 

chains to ensure corrective or preventative actions are taken in a timely manner. Further tools are 

currently under development with the aim of representing large data sets efficiently in a compact 

manner, without neglecting important content. 

The results presented here have been evaluated by the hydraulics design engineer and the detected 

defects deemed to be valid results. 

  

                                                           
1 The unit bar is used for pressure because of common on-site acceptance, although it is not an SI unit. 
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18 | Conclusion and Outlook

The work performed during the herein presented research confirmed the thesis
proposed at the beginning. Beside the conclusions given in the individual papers,
the following statements about future investigations for data science in large cyber
physical systems can be deducted:

The importance of including the physics of the system within calculations is stated
throughout the entire thesis. Therefore, value and/or derivative data play an
important role. Investigating the data in the (pseudo) phase space can yield valuable
insights for, e.g. the segmentation of data, distance measures for time series sequences
to find similarities or discords, or identifying a change in the system behaviour by
investigating the area within a closed loop. Therefore, the concepts of ergodicity and
recurrence times are important to consider [72].

A fundamental issue, which needs to be addressed in future when analysing data from
physical systems, is the establishment of a generic structure to store more advanced
metadata alongside the data. This encompasses metadata dealing with the kinematics
of physical systems, interdependencies of data emanating from subsequent assembly-
groups and the description of the dynamics of interacting components. Therefore,
description languages, e.g. Automation Markup Language (AutomationML)1, need to
be considered and investigated.

Along with the handling of metadata, the concept of how hypotheses are formulated
for querying data and performing analysis needs to be refined. Symbolic time series
analysis as proposed within this work proved to be powerful. In future research, much
more ideas from the metaphor of language need to be addressed, e.g. fixed states are
seen as nouns and the action needed to move from one state to the other are seen as
verbs. Additionally, the use of adverbs and adjectives as well as punctuations should
be addressed. In this case, natural language processing tools can be applied to the
emerging machine language to handle and process data analysis queries contextually
and abstractly. Additionally, knowledge representation languages, e.g. Web Ontology
Language (OWL)2, need to be considered in this field of research.

To analyse large volumes of data emanating from large physical systems, symbolic
time series can be used in hybrid learning approaches in future research. With the
1https://www.automationml.org
2https://www.w3.org/TR/owl2-overview
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use of symbolic time series the physics of the system is included within the machine
learning task. In this context, a consistent distance measure for symbolic time series
generated from multi-dimensional time series, i.e. multisyllabic symbolic time series,
needs to be established.

A rather philosophical issue in data analysis, which is often neglected but impor-
tant, is the difference between describing data (ontology) and understanding data
(epistemology). Just because an incident can be described, does not automatically
imply that it can be predicted as well, since the causal link is not there or not
established correctly. As in a lot of cases the underlying truth is not known, intuition
(often based on belief and sometimes justified belief ) is used to formulate hypotheses.
Experience, either gained personally or from others, justifies and strengthens the
belief, yielding justified belief. However, the question followed by this is: What exactly
is the justification in a justified belief? This question needs to be considered and
should be a driver each time data science in cyber physical systems is addressed.
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