

Chair of Ceramics

Master's Thesis

Investigation of new slag compositions for the continuous casting of soft steel

Alan Jiyuan Ye

May 2019

AFFIDAVIT

I declare on oath that I wrote this thesis independently, did not use other than the specified sources and aids, and did not otherwise use any unauthorized aids.

I declare that I have read, understood, and complied with the guidelines of the senate of the Montanuniversität Leoben for "Good Scientific Practice".

Furthermore, I declare that the electronic and printed version of the submitted thesis are identical, both, formally and with regard to content.

Date 07.05.2019

Clange

Signature Author Alan Jiyuan, Ye Matriculation Number: 01435688

Abstract

Mould slag plays a pivotal role in the continuous casting of steel. CaF₂-containing slag compositions have been industrially successful, but associated health hazards have been demonstrated. The purpose of this master thesis is to develop a novel CaF₂-free slag composition within the Na₂O-K₂O-CaO-MgO-FeO-MnO-SiO₂-TiO₂-Al₂O₃-B₂O₃ chemical system with the help of FactSage and optical basicity calculation. The compositions are expressed as molar ratios between the oxides. The requirements for the composition are to exhibit low crystallization tendency, have a melting point below 1250 °C, and viscosity below 3 poise at 1300 °C. FactSage was utilized to produce slag compositions that meet such criteria. Several compositions are tested, with a boron-free and a boron-containing compositions meeting most of the criteria.

Slag compositions were mixed from pure raw material, liquefied at 1400 °C, and quenched to assess the glass formation ability. Compositions demonstrating high glass formation ability were selected for further testing. Viscosity at 1300 °C and dynamic break temperature were determined with the help of a concentric cylinder type rheometer with a cooling rate of 5K/min. Furnace crystallization test and simultaneous thermal analysis were conducted to measure the temperature where crystals are formed. The furnace crystallization test samples were used for scanning electron microscopy to determine the mineralogical composition with the aid of the XRD and SEM results. Time-temperature-transformation diagrams were constructed with single hot thermocouple technique to assess the crystallization tendency.

Two novel slag compositions exhibit relatively satisfactory characteristics. One is a boron-free slag with the chemical composition (wt%) of 39.22% SiO₂, 31.39% CaO, 11.53% Na₂O, 5.84% K₂O, 3.03% MgO, and 8.99% TiO₂. Its T_m is 1161 °C, but its viscosity at 1300 °C is 4.48 poise. Its nose temperature is 900 °C, at which point $t_{0.5}$ is 3.6 ± 0.8 sec, and t_{95} is 22 ± 3 sec. Improvements are needed in regards to viscosity. The other slag is a boron-containing composition with the chemical composition (wt%) of 37.23% SiO₂, 26.66% CaO, 12.27% Na₂O, 6.21% K₂O, 2.81% MgO, 8.35% TiO₂, and 6.47% B₂O₃. Its T_m is 1188 °C, and its viscosity at 1300 °C is 2.21 poise. Its nose temperature is 700 °C, at which point $t_{0.5}$ is 6.1 ± 1.3 sec, and t_{95} is 44 ± 13 sec.

The results from tested compositions suggest that introducing Al_2O_3 to the boron-free slag at above 4 wt% increases the crystallization tendency very significantly due to the formation of C_2S , but the viscosity is reduced to 3.3 poise. Adding MnO and FeO at small percentages to the boron-free composition significantly reduces glass formation ability. However, if added together with Al_2O_3 , viscosity is significantly reduced to 1 poise without reduction in glass formation ability.

Acknowledgement

The investigator of this master thesis topic would like to thank his immediate supervisor, Dr. Nathalie Kölbl, for her instrumental direction in this project. The investigator would also like to thank Dr. Irmtraud Marschall, for the discussions on the project. The investigator would like to thank Mr. Christian Schober for the many hours he had spent on the experiments and training. Finally, the investigator would like to sincerely thank Professor Harald Harmuth for his years of teaching and instruction.

Table of Contents

Affidavit
Abstract
Acknowledgement
List of Figures
List of Tables
List of Abbreviation and Symbols
I. Problem Definition
II. State of Art
II.i. Mould in the continuous casting of steel process
II.ii. Mould slag
II.ii.1. Property considerations
II.ii.1.1. Viscosity
II.ii.1.2. Melting point
II.ii.1.3. Heat transfer
II.ii.1.4 Glass formation ability
II.ii.1.5 Crystallization tendency
II.ii.1.6. Optical basicity
II.iii. CaF ₂ -free slag compositions
II.iii.1. B ₂ O ₃ -containing recipes
II.iii.2. B ₂ O ₃ -free mould fluxes
III. Experimental Methods
III.i. Chemical compositions
III.ii Evaluation of the glass formation ability
III.iii. Development of new slag compositions
III.iii.1. Soda-lime-silicate system
III.iii.2. High-alkaline boroaluminate slag system
III.iv. Testing methods
III.iv.1. Sample preparation
III.iv.2. Rheometer
III.iv.3. Simultaneous thermal analysis
III.iv.4. Furnace crystallization test
III.iv.5 Mineralogical investigation
III.iv.6. Single hot thermocouple technique
IV. Results and Discussion
IV.i. soda-lime-silicate slag system
IV.i.1. Quenching results and selection of compositions
IV.i.2. Viscosity and breaking temperature
IV.i.3. DTA and FCT
IV.i.4. XRD and SEM
IV.i.5. SHTT and TTT-diagram
IV.i.6. Summary for the soda-lime-silicate slag system

IV.ii. High-alkaline boroaluminate slag system	55
IV.ii.1 Quenching results and selection of compositions	55
IV.ii.2. DTA and FCT	56
V. Summary	58
VI. Outlook	59
List of References	60
Appendix A. Selected FactSage Calculation	69
Appendix B. Slag Molar Compositions	70
Appendix C. DTA Results	72
Appendix D. FCT graphs	79

List of Figures

	Page
Figure 1. A depiction of the mould	2
Figure 2. Different sections of the mould slag during its function	3
Figure 3. Illustration of rheometer experimental result	9
Figure 4. Heat flux from slab to mould wall depicted in thermal resistance terms	11
Figure 5. IET set up	12
Figure 6. Slag recipes have their CAS ratios represented by the green dots	13
Figure 7. Heating wire design of a)SHTT and b)DHTT	16
Figure 8. CAS phase diagram in weight scale	24
Figure 9a. Isotherms of pseudo-ternary CTS system in weight scale	25
Figure 9b. Pseudo-ternary CMS system in weight scale	25
Figure 10. NCS phase diagram	26
Figure 11. Glass formation region in the CAS system	27
Figure 12. Glass formation region within the NCAS system	27
Figure 13a. Glass formation region for the NABS system	28
Figure 13b. The devitrification region for the NABS system	28
Figure 14. Glass formation region for MAB system	29
Figure 15. Liquidus temperature and viscosity at 1300 °C	30
Figure 16. Experimental flowsheet	31
Figure 17. Quenched slags of A002-005, 008-010, 015, 016	36
Figure 18. Quenched slags of A017-022	37
Figure 19. Quenched slags of A033-036, 039, 040	38
Figure 20. Viscosity of E-2018-A002 in dependence of temperature	39
Figure 21. DTA heating curve for slag E-2018-A002	40
Figure 22. DTA cooling curve for slag E-2018-A002	40
Figure 23. FCT result for slag E-2018-A002	41
Figure 24. XRD result from FCT specimen of E-2018-A002	43
Figure 25. Representative SEM image of E-2018-A002	44
Figure 26. XRD result from FCT specimen of E-2018-A010	44
Figure 27. Representative SEM image of E-2018-A010	45
Figure 28. XRD result from FCT specimen of E-2018-A015	46
Figure 29. Representative SEM image of E-2018-A015	47
Figure 30. XRD result from FCT specimen of E-2018-A018	47
Figure 31. Representative SEM image of E-2018-A018	48
Figure 32. XRD result from FCT specimen of E-2018-A033	48
Figure 33. Representative SEM image of E-2018-A033	49
Figure 34. XRD result from FCT specimen of E-2018-A040	50
Figure 35. FCT sample of E-2018-A040	50
Figure 36a. Representative SEM image 1 of E-2018-A040	50
Figure 36b. Representative SEM image 2 of E-2018-A040	51
Figure 37. TTT diagram of E-2018-A002	52
Figure 38. TTT diagram of E-2018-A040	52

Figure 39. Quenched slags of A123-126, 130-132, 137, 138	56
Figure C1. DTA heating curve for slag E-2018-A010	72
Figure C2. DTA cooling curve for slag E-2018-A010	72
Figure C3. DTA heating curve for slag E-2018-A015	73
Figure C4. DTA cooling curve for slag E-2018-A015	73
Figure C5. DTA heating curve for slag E-2018-A018	74
Figure C6. DTA cooling curve for slag E-2018-A018	74
Figure C7. DTA heating curve for slag E-2018-A033	75
Figure C8. DTA cooling curve for slag E-2018-A033	75
Figure C9. DTA heating curve for slag E-2018-A040	76
Figure C10. DTA cooling curve for slag E-2018-A040	76
Figure C11. DTA heating curve for slag E-2018-A124	77
Figure C12. DTA cooling curve for slag E-2018-A124	77
Figure C13. DTA heating curve for slag E-2018-A138	78
Figure C14. DTA cooling curve for slag E-2018-A138	78
Figure D1. FCT result of E-2018-A010	79
Figure D2. FCT result of E-2018-A015	79
Figure D3. FCT result of E-2018-A018	80
Figure D4. FCT result of E-2018-A033	80
Figure D5. FCT result of E-2018-A040	81
Figure D6. FCT result of E-2018-A124	81
Figure D7. FCT result of E-2018-A138	82

List of Tables

	Page
Table 1. CaF ₂ -containing slag chemical range	3
Table 2. Performance requirements for slags	3
Table 3. Properties of selected oxides and effects on viscosity and melting point	5
Table 4. Activity coefficient and partial viscosities of selected oxides	8
Table 5. Compilation of Λ_i values from various sources \dots	18
Table 6. Chemical compositions of F-free Boron containing mould slags in wt%	19
Table 7. Phase formation in the CABS system	21
Table 8. Chemistry of F-free Boron-free slag compositions in wt%	22
Table 9. Compositions of soda-lime-silicate system with introduction of AI_2O_3	35
Table 10. Compositions of soda-lime-silicate system with FeO and MnO	36
Table 11. Boron-containing compositions of soda-lime-silicate system	37
Table 12. Soda-lime-silicate slags selected for further testing	38
Table 13. Properties of the investigated soda-lime-silicate slags	53
Table 14. High-alkaline boroaluminate slag system	55
Table 15. Proposed slag compositions for further investigation	59
Table A1. Chemical compositions for Figure 15 in section 3.3.1	69
Table B1. Slag molar compositions corresponding to Table 9	70
Table B2. Slag molar compositions corresponding to Table 10	70
Table B3. Slag molar compositions corresponding to Table 11	70
Table B4. Slag molar compositions corresponding to Table 14	70
Table B5. Slag molar compositions corresponding to Table 15	71
Table D1. Chemical compositions of the FCT specimens according to SEM	82

List of Abbreviations and Symbols

Abbrev./Symbol	Terminology
A/S ratio	AI_2O_3 to SiO_2 weight ratio
AS system	Al ₂ O ₃ -SiO ₂ system
CA	CaAl ₂ O ₄
CAS system	CaO-Al ₂ O ₃ -SiO ₂ system
CAS ₂	anorthite
CASB system	CaO-Al ₂ O ₃ -SiO ₂ -B ₂ O ₃ system
CMAST system	CaO-MgO-Al ₂ O ₃ -SiO ₂ -TiO ₂ system
CMS system	CaO-MgO-SiO ₂ system
CS	wallastonite
CS system	CaO-SiO ₂ system
C ₃ A	$Ca_3Al_2O_6$
C ₃ B	$Ca_3B_2O_6$
C ₃ S ₂	rankanite
C/A ratio	CaO to Al_2O_3 weight ratio
C/S ratio	CaO to SiO ₂ weight ratio
CTS	sphene
CTS system	CaO-SiO ₂ -TiO ₂ system
C ₁₂ A ₇	majenite
C ₂ AS	gehlenite
C ₂ B	$Ca_2B_2O_5$
C ₂ S	belite
C _x A _y BS _z	$Ca_xAI_{2y}B_2Si_zO_{(x+3y+2z+3)}$
$C_x M_y S_z$	$Ca_xMg_ySi_zO_{(x+y+2z)}$
DTA	differential thermal analysis
FCT	furnace crystallization test
GFA	glass formation ability
KAS system	K ₂ O-Al ₂ O ₃ -SiO ₂ system

KCS system	K ₂ O-CaO-SiO ₂ system
K _x C _y S _z	K _{2x} Ca _y Si _z O _(x+y+2z)
Λ_{th}	optical basicity
LOI	loss of ignition
MAS system	MgO-Al ₂ O ₃ -SiO ₂ system
M _x A _y S _z	Mg _x Al _{2y} Si _z O _(x+3y+2z)
NABS system	Na ₂ O-CaO-B ₂ O ₃ -SiO ₂ system
NAS system	Na ₂ O-Al ₂ O ₃ -SiO ₂ system
NCAS system	Na ₂ O-CaO-Al ₂ O ₃ -SiO ₂ system
NCS system	Na ₂ O-CaO-SiO ₂ system
N/K ratio	Na ₂ O to K ₂ O ratio
$N_x C_y S_z$	Na _{2x} Ca _y Si _z O _(x+y+2z)
PaS	N•sec/m ²
R _{crit}	critical cooling rate
RO	CaO or MgO
rpm	rotation per minute
R ₂ O	Na ₂ O or K ₂ O
SEM	scanning electron microscope
SHTT	single hot thermocouple technique
S/(N+A+S) ratio	SiO ₂ to (Na ₂ O+Al ₂ O ₃ +SiO ₂) weight ratio
T _{br}	breaking temperature
T _{crys,onset}	onset of crystallization temperature
T _g	glass transition temperature
T _m	melting point
To	Vogel-Fulcher-Tammann temperature
T _{rg}	reduced glass transition temperature
ттт	time-temperature-transformation
wt %	weight percentage
XRD	X-ray powder diffraction

1. Problem Definition

Mould powder is added to the mould on top of liquid steel in the continuous casting process. The mould powder liquefies and the liquid slag is entrapped into the gap between the strand and the mould where a liquid, crystalline and glassy layers are formed. The mould powder should fulfill the following tasks: lubrication of the steel, ensuring a consistent and sufficient rate of heat transfer, preventing the steel from re-oxidation, and absorption of inclusions from the steel. The mould slag should not react with the steel, or leach a significant amount of precious alloy metals from the steel.

In order to guarantee a trouble free operation for soft steel, a successful slag composition should have the following properties. The liquidus temperature of the mould slag should be below 1250 °C. The ideal temperature would be below 1160 °C to ensure the continuity of the slag liquid film layer and reduce slag rim formation. Low viscosities at 1300 °C are also desirable, the criteria being below 3 poise for ensuring the entrapment into the gap. A high degree of glass phase formation is desired over crystallization in the solid layers of slag. Therefore, devitrification is to be reduced.

The established mould powder recipe works within the CaO-SiO₂-CaF₂ system, with the crystalline phase being cuspidine. This chemical system has excellent properties such as low liquidus temperature and decreased viscosity at working temperature. However, partial pressures of volatile $NaF_{(g)}$ and $KF_{(g)}$ is formed at working temperatures, and this in turn reacts to form HF, which is hazardous to operators and intensifies machine wear. As a result, industry has been searching for an alternative chemistry system that offers similar properties without the adverse health impacts. Some of the proposed fluorine-free chemistry systems use LiO₂, B₂O₃, Na₂O, K₂O, La₂O₃, and TiO₂ as substitutes of CaF₂. In this master thesis, the chemical system has to operate within the SiO₂-Al₂O₃-Na₂O-K₂O-CaO-MgO-TiO₂-B₂O₃ system. FeO and MnO can also be introduced but may not exceed 0.8 wt% for each. The amount of TiO_2 also may not exceed 20 wt% for economic consideration. The melting points and viscosities of possible chemical compositions will be calculated with the commercially available software FactSage. If the requirements given above are fulfilled, samples will be mixed from pure raw materials, liquefied and quenched to room temperature on an iron plate. If a glassy specimen is formed, crystallization tendency of the slag is investigated using simultaneous thermal analysis (DTA), furnace crystallization test (FCT), and single hot thermocouple technique (SHTT). From SHTT the time-temperature-transformation diagrams are generated. Additionally the mineralogical compositions of the FCT specimens will be investigated.

2. State of Art

2.1. Mould in the continuous casting of steel process

Continuous casting of steel has become the primary casting method of the steel industry due to its high quality and efficiency. The continuous casting process starts with the molten steel from the ladle and ends with the solidified slab as seen in Figure 1 [1]. Molten steel is fed from the ladle into the tundish, where its temperature is monitored and a constant molten steel level is maintained for slab quality [2-4].

Figure 1. A depiction of the mould [5]

The mould is open on both of its vertical ends. The oxidation of the steel is prevented by covering the top opening with loose mould powder. The mould is made of copper due to the high thermal conductivity, and the inner surfaces of the mould could be coated with a layer of Ni and Cr in order to reduce wear. The heat transfer out of the mould is facilitated by running water, and the heat flux is controlled to be constant. Molten steel cools down and partially solidifies due to the heat transfer. The solidified section of steel is called the shell, and grows in thickness as the steel is transported downwards. The shell has to be able to hold the liquid melt inside. The shell and molten steel, together called the strand, are transported downwards at a constant rate in order to prevent crack formation. The transport rate is called casting speed, which is typically 0.7 to 2 m/min. A small shrinkage takes place due to steel cooling down, and as a result the mould is designed with a concave shape that corresponds to this shrinkage. This helps facilitating the heat transport of the shell is lubricated by the mould slag [6].

2.2. Mould slag

Mould powder is supplied to the top opening of the mould onto the liquid steel, where it liquefies. It is entrapped into the gap between the strand and the mould, where it solidifies and differentiates into the liquid slag film, crystalline slag film, and the glassy slag film. The three films together are about 3-5 mm in thickness. State of the art slag composition uses CaF₂

as a main network modifier due to its effect in significantly lowering viscosity and melting point. The main phase in the crystalline slag film is cuspidine, 3CaO·2SiO₂·CaF₂, which is excellent for controlling the heat transfer [7]. The chemical composition range of common slags is shown in Table 1. Important performance parameters for mould slags are viscosity and melting point. The requirements for these parameters vary depending on the type of steel casted. The requirements are listed in Table 2 [9-17].

	Compor	ent and C	ompositio	n in wt (%)	
CaF ₂	2-15	Fe ₂ O ₃	0-6	SrO	0-5
B2O3	0-10	CaO	22-45	Li ₂ O	0-5
SiO ₂	17-56	MgO	0-10	K2O	0-2
Al ₂ O ₃	0-13	MnO	0-5	Na ₂ O	0-25
TiO2	0-8	BaO	0-10	carbon	2-20

Table 1. CaF₂-containing slag chemical range [8]

Steel Type	Carbon Content (wt%)	Casting Speed (m/min)	Viscosity at 1300 ≌C (Poise)	Melting Point (ºC)
low-carbon steel	< 0.08	0.8-2.0	0.4-3	970-1150
medium-carbon steel	0.08-0.25	0.8-1.6	0.5-3.9	1050-1190
high-carbon steel	> 0.25	0.7-1.3	0.8-2	980-1180
stainless steel		1.2-1.4	4-5	1150-1180

Table 2. Performance requirements for slags [9-17]

The behavior of the powder in the mould is shown in Figure 2. The powder and sintered powder is kept at a depth of 10-15 cm by supplying fresh powder. The powder consumption for common CaF₂-containing slags is typically about 0.3 kg per ton of steel casted. Typical powder compositions contain 4 to 20 % carbon, which creates a CO/CO₂ flux upwards to the surface in the liquid slag. This keeps the mould under reducing conditions. The alkaline contents of the mould powder normally are added in the carbonate form, as this is much more stable for storage. The depth of the liquid slag layer is desirably to be kept relatively constant at 10 mm. A thin mushy slag layer consisting of liquidus slag, sintered powder, and resolidified slag exists between the liquid slag and sintered powder layer. It is prevented from intruding into the gap between mould wall and steel shell by the rim. The rim is a layer composed of sintered powder and resolidified slag and congregates next to the walls of the mould on top of the liquid slag layer. The rim serves an important function of applying a force helping to push the liquid slag in between the mould wall and the steel shell. [18, 19].

Figure 2. Different layers of the mould powder and slag in the mould [20]

Industry has expressed a desire to move away from CaF₂-containing mould fluxes, due to the fluorine emissions, which forms fluoric acid that corrodes production aggregates and poses long-term health hazards for workers. As the slag powdered is sintered, the first liquid phases occur, which have a concentration of alkalis and fluorine due to their low eutectic points. Fluorine reacts with the alkalis, which result in partial pressures of fluorine being released to the atmosphere [21, 22].

$$Na_2O_{(slag)} + CaF_{2(slag)} \leftrightarrow CaO_{(slag)} + 2Na^+_{(g)} + 2F^-_{(g)}$$
(1)

$$K_2 O_{(slag)} + CaF_{2(slag)} \leftrightarrow CaO_{(slag)} + 2K_{(g)}^+ + 2F_{(g)}^-$$

$$\tag{2}$$

A common industrial slag with 14 wt% Na₂O and 9 wt% CaF₂ is shown to yield a partial pressure of NaF of 4.4 kPa at 1300 °C. This is not so insignificant. In the subsequent alkali condensation reaction, the fluorine may react with the humidity in atmosphere, which lead to the very harmful substance HF:

$$2Na_{(g)}^{+} + 2F_{(g)}^{-} + H_2O_{(g)} \to Na_2O_{(s)} + HF_{(g)}$$
(3)

The fluorine content also reacts with the other oxides in the slag to produce partial pressure of SiF₄, AlF₃, BF₃, and MgF₂. However, these partial pressures are insignificant when compared to those of NaF and KF. The saturated partial pressure of MgF₂ is only 1 Pa at 1300 °C [23].

It may appear that fluorine emission could be resolved by developing an alkali-free slag compositions. However, the consequent rise in viscosity and melting point cannot be remediated. Therefore, substitute for CaF₂ in slag recipe has been the topic of interest [7].

2.2.1. Property considerations

Depending on steel grade, special requirements on physical properties of mould slags are important for producing good quality products. Major defects that could possibly occur during the continuous casting of steel include nonmetallic inclusions, breakout, cracks, and oscillation marks. Of these breakout is the most serious, and is often associated with reduction in the lubrication of the strand [24]. Cracks occur due to too high tensile stresses in the strand associated with the rate of heat transfer to the slag. Oscillation marks are somewhat made more severe due to too high viscosity of the slag [25].

2.2.1.1. Viscosity

One of the most important properties of mould slags that affect the quality of the strand and the efficiency of the casting process is viscosity. It plays a pivotal role in slag infiltration and lubrication of the strand. The viscosity of a liquid depends on its chemical composition and temperature as expressed by the Fulcher-Vogel-Tammann equation [66]:

$$\ln(\mu) = A + \frac{B}{T - T_o} \tag{4}$$

where T is the temperature; T_o is the Vogel-Fulcher-Tammann temperature, at which the viscosity of the glass goes to infinity; μ is the viscosity at temperature T; A, B are constants calculated by complex non-linear equations in relation to the chemical composition.

Fluorine free mould slag compositions may include the following oxides: SiO_2 , Al_2O_3 , B_2O_3 , TiO_2 , CaO, MgO, SrO, FeO, MnO, Na₂O, and K₂O [26-32]. Their relative effects on viscosity of the slag, which somewhat correspond to their role in the glass network theory in relation to Dietzel's field strength,

$$Dietzel's field strength = Z/\alpha^2$$
(5)

where Z is the ion valency of the non-oxygen ion, and α is the distance of the balance points of the positively charged ion and the oxygen. The effect of selected oxides on the viscosity and melting point of a non-basic slag are generalized below in Table 3:

Table 3. Properties of selected oxides and their effects on viscosity and melting point (T_m) ; CN refers to coordination number [26-32]

	SiO2	Al2	203	B2	03	TiO2	CaO	MgO	SrO	Na2O	K2O
Viscosity	$\uparrow\uparrow$	$\uparrow\uparrow$	1) 1	$\downarrow\downarrow$	↓(2)	\downarrow	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	\downarrow	$\downarrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow \downarrow$
Tm	$\uparrow\uparrow$	↑ 1	$\uparrow\uparrow$	\downarrow	\downarrow	\uparrow	$\downarrow\downarrow\downarrow$	$\downarrow\downarrow\downarrow$	\checkmark	$\downarrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow \downarrow$
M in MOx	Si	A	AI	l	В	Ti	Ca	Mg	Sr	Na	K
CN	4	4	6	3	4	6	8	6	8	6	8
Single bond strength (kcals)	106	79-101	53-67	119	89	73	32	37	32	20	13
Dietzel's Field Strength	1.57	0.96	0.84	1.63	1.34	1.04	0.33	0.45	0.28	0.19	0.13
Ionic radius for CN=6 (Å)	0.39	0.	57	0.	20	0.64	1.06	0.78	1.27	0.98	1.33

(1) only if the moles of basic oxides is more than the moles of nonbasic oxides, which is likely to be the case (2) depends on the amount of basic oxide due to boron anormaly

(2) depends on the amount of subic onder an				
ተተተ	relatively greatly increase			
$\uparrow\uparrow$	increase			
1	relatively slightly increase			
\downarrow	relatively slightly decrease			
$\downarrow\downarrow$	decrease			
$\downarrow \downarrow \downarrow \downarrow$	relatively greatly decrease			

In the glass network theory, oxides with low basicity, which can be identified with a Dietzel's field strength above 1.4 and molar single bond strength above 80 kcals, are the network formers, and provide the bridging oxygen bonds in the glass matrix. Oxides with high basicity are the network modifiers. They create non-bridging oxygen bonds. The network modifiers have a Dietzel's field strength below 0.4 and molar single bond strength below 20 kcals. Others are intermediate oxides. As can be seen in Table 1, network formers generally increase the viscosity of the melt due to increasing number of bridging oxygen bonds, while network

modifiers have the opposite effect due to increasing number of non-bridging oxygen bonds [66].

SiO₂ is the primary network former in several glass systems. Alkali network modifiers only have marginal ability in lowering the viscosity if SiO₂ molar content is above 60%. This is due to the high viscosity associated with the Qⁿ unit distribution between Q³ and Q⁴, where n is the number of bridging oxygens per Si atom. So the SiO₂ molar content of the mould slag must be below 60% [33].

It has been suggested in literature, that the viscosity of a glass system with SiO_2 as the primary network former will be significantly lowered by introducing different oxides at low percentages, such as below 0.5 molar percent, due to the increase in entropy of the melt [33]:

$$\ln(\mu) = A_e + \frac{B_e}{T * S(T)} \tag{6}$$

where A_e is the high temperature viscosity limit, which is the viscosity close to the vaporization temperature of the liquid slag; B_e is a constant in Jmol⁻¹ proportional to the potential barrier opposed to the cooperative rearrangement of the liquid structure; S(T) is the melt configurational entropy at temperature T. The oxides are not necessarily network formers, network modifiers, or intermediates; the entropy of the system increases with every additional oxide. Of course, if the additional oxides were network formers, this viscosity lowering effect is lost once the dosage of the oxides exceeds a certain threshold. The threshold could be understood as the marginal solubility limit of the oxide in a pure silica melt. Therefore the viscosity of the silica-rich melt will not be lowered with small amounts of Cr_2O_3 or ZrO_2 . Since the oxides are introduced at molar percentages below 0.3%, it is reasonable to assume that the slag phases will not be affected qualitatively. However, the complexity of the chemical system may possibly leads to reaction with the steel [34].

 B_2O_3 is a network former. Pure boron glass matrix consist of BO_3 triangles and boroxol rings. The BO_3 glass configuration is transformed to BO_4 tetrahedra configuration as alkali oxides are introduced in the glass matrix. This transformation takes place in a linear fashion until R_2O/B_2O_3 molar ratio reaches 0.5. This gives rise to the expectation that minimums in viscosity and melting point of alkali-borate glass could be expected when alkali molar content is around 30%. However, this is not the case due to boron anomaly. The minimum in properties could be expected at R_2O/B_2O_3 ratio of 16/84 [35].

Unlike other network formers, B_2O_3 has the effect of very significantly lowering viscosity in the haplogranitic system ($K_2O-Na_2O-Al_2O_3-SiO_2$) across all temperatures, which makes it a rather useful addition for this purpose to any slags in the KAS or NAS systems. Literature shows that while the B_2O_3 has a pronounced effect on viscosity with dosage ranging from 1 to 25 weight percent, at higher dosage this effect has diminishing returns. The most cost-effective dosage for minimizing viscosity has been suggested to be between 1 to 4.4 wt% B_2O_3 [36]. AI_2O_3 is an intermediate oxide, but acts as a primary network former in many glass systems due to the activation by network modifiers when R_2O/AI_2O_3 molar ratio is above 1. Al substitutes the Si in the glass matrix, but has a much higher effect on increasing viscosity than SiO_2 per mole overall [31]. This is not entirely true however due to the entropy consideration mentioned in equation 6. It has been suggested that for the CAS system there is an optimum A/S weight ratio at 0.1 for minimum viscosity [29].

TiO₂ is an intermediate oxide, but at below around 10 molar percent acts as a network former in a common NCAS glass system by forming glass matrix of interconnected TiO₄ and SiO₄ tetrahedra. In this range, replacing SiO₂ with TiO₂ content results in decrease in viscosity. At above 10 molar percent of TiO₂, rising fractions of Ti result in the formation of TiO₅ polyhedra, which lead to small increases in viscosity. It has been suggested that in a CMAST system, the viscosity increases linearly as TiO₂ is substituted by Al₂O₃ on a 1 to 1 molar ratio within the Qⁿ region where Q² to Q³ ratio is below 1.65, where both Al³⁺ and Ti⁴⁺ still enter the matrix as network formers in the forms of AlO₄ and TiO₄. This is due to, as two Al³⁺ replace two Ti⁴⁺, one Ca²⁺ is needed to keep the equilibrium of electric charge. So for every two mole of TiO₂ that are replaced by Al₂O₃, one mole of CaO no longer acts as network modifier, and the viscosity increases [37-39].

Alkali oxides are network modifiers, and reduce viscosity within all aluminosilicate glass systems. Alkali containing AS glass systems exhibit mixed alkali effect for viscosity, so as one alkali ion is substituted by another, the viscosity changes predictably, first decreasing to a minimum, then rising again until one alkali ion is completely substituted. This means that a minimum in viscosity can be expected for each system associated with a particular molar ratio of for example $K_2O/(Na_2O+K_2O)$ [40].

Alkaline earth oxides can be categorized as network modifiers, although they exhibit less influence on viscosity per mole as compared to alkalis due to higher Dietzel's field strength. It has been suggested that a similar alkaline earth mix effect exists between MgO and CaO, and that a minimum in viscosity can be expected for a particular molar ratio of MgO/(MgO+CaO) [41]. However, finding this ratio may not be as important as finding the K₂O/(Na₂O+K₂O) ratio, since a limit to MgO content could be expected in order to avoid paragenesis of C_xM_yS_z phases, which have both high melting points and high devitrification tendencies [42].

There are several models to predict viscosity of slags. For $CaF_2-B_2O_3$ -free slags, the modified lida model, which correlates the activity coefficients of the oxides in dependence of temperature to viscosity, has good accuracy (±25%) compared to other models. The viscosity of a slag is calculated as:

$$\mu = A * \mu_o * \exp(E/B_i), \tag{7}$$

where A and E are temperature (in Kelvin) dependent parameters:

$$A = 1.029 - 2.078E - 03 * T + 1.050E - 06 * T^{2}$$
(8)

$$E = 28.46 - 2.088E - 02 * T + 4.000E - 06 * T^2$$
(9)

 μ_o is the sum of the partial viscosities of the melts of each oxide in dependence of temperature, μ_{oi} , multiplied by their weight fractions, X_i

$$\mu_o = \sum \mu_{o_i} * X_i \tag{10}$$

lida model is based on a modified basicity index, B_i, which categorizes the oxides as basic ones, denoted by B, and non-basic ones, denoted by A.

$$B_i = \frac{\sum (\alpha_i X_i)_B}{\sum (\alpha_i X_i)_A}$$
(11)

The activity coefficient, α_i , is the interaction of the oxide with other components of the slag. For 1300 °C, the α_i and μ_{oi} of selected oxides of interest are listed in table 4:

	· · · · · · · · · · · · · · · · · · ·			-		-						
nen herie	Si	O2	Ba	203	Al	203	Ti	TiO2				
non-basic -	0Li	μοί	C Li	μοί	0Li	μοί	QLi	μοί				
oxide	1.48	4.64	2.12	0.33	0.1	10.22	0.36	8.12				
_	CaO		MgO		MnO		FeO					
_	0Li	μοί	C Li	μοί	0Li	μοί	QLi	μοί				
basic	1.53	33.03	1.51	56.51	1.03	9.35	0.96	4.2				
components	5 Li2O		Li2O		Li2O		Li2O Na2O		K	20	CaF2	
-	0Li	μοί	C Li	μοί	0Li	μοί	0Li	μοί				
	3.55	4.01	1.94	0.93	1.37	0.51	1.53	2.59				

Table 4. Activity coefficient and partial viscosities (in 10⁻³•PaS) of selected oxides [43, 44]

Another popular slag viscosity model is the Urbain model designed for complex slags in the CAS system, which gives an accuracy of $\pm 30\%$ for CaF₂-containing slags [45]. However, it has rather large inaccuracies for the CaF₂-free systems as it categorizes TiO₂ and ZrO₂ as network modifiers. This problem has been mitigated in the modified Urbain model proposed by Dong *et al* [46].

lida model has significant inaccuracies for B_2O_3 -containing slags, as upwards of 100% error has been reported [47]. Modified Urbain model could predict within ±30% accuracy for B_2O_3 containing slags [48]. The NPL model proposed by Mills and Sridhar based on optical basicity, Λ_{th} , could predict viscosity within ±60% accuracy for B_2O_3 -containing slags [49]. A modified NPL (New Philadelphia Laboratory) model is proposed by Ray and Pal, which is very accurate for glasses but less so for slags [50]. Shankar has proposed another modified NPL model (see section 2.2.1.6), which can also be considered a modified Riboud model, based on a modified basicity index for slags, which could predict viscosity within ±15% accuracy for B_2O_3 -containing slags [51].

Viscosity of a slag is often measured by a high-temperature rotational rheometer. The slag is melted in a crucible at 1400 °C, and its viscosity is measured as the temperature is decreased. The viscosity in logarithmic scale plotted against the inverse of temperature in K⁻¹ would yield a graph akin to Figure 3, which can be used to determine the breaking temperature, T_{br}. Two straight lines approximating the tangents to the viscosity curves are drawn, and their

intersection determines T_{br}. At this temperature it is thought that the solid and liquid state within the slag film is 50-50. T_{br} depends on the cooling rate during the measurement, and therefore experimental procedures must be stated to compare the results of different slags [52].

Figure 3. Illustration of determination of T_{br} from rheometer result

2.2.1.2. Melting point

A slag with low melting point offers excellent lubrication properties and facilitate fast slab growth. The melting point of the slag is predetermined by its chemical composition. In Table 1, the effect on the melting point of the slag by increasing the content of each oxide is generalized. However, while these trends are certainly useful guidelines for developing new slag compositions, they are only true as long as the crystallization mechanism of the slag is not changed. If the composition enters a different composition triangle or tetrahedral due to the increasing content of one oxide, the melting point of the slag could become too high due to formation of a mineral phase with high T_m. The composition of the slag should not be located within the composition triangles that will result in the paragenesis of such a phase. However, while many ternary phase diagrams are well-established, it is difficult to consult them due to the complexity of the slag compositions. As observed with many pseudo-ternary phase diagrams, the primary fields of the phases could shrink, expand, or shift significantly due to the presence of an oxide not belonging to the ternary system. In some cases, a congruently melting phase could become incongruently melting, and cooling in disequilibrium avoids its formation. Therefore, pseudo-ternary phase diagrams should be consulted to reasonably estimate if the paragenesis of a phase with high T_m would take place. Also, due to the complex chemistry of the slag, the liquidus surfaces of the phases should be significantly lowered in terms of temperature when compared to the ternary phase diagrams.

For a common CaF₂-containing mould slag within the chemical range of: 65-75% (CaO+SiO₂), C/S ratio is between 0.7 and 1.3, 0-6% M, 2-6% A, 2-10% (N+K), up to 10% CaF₂, with possible TiO₂ and MnO additions, the melting point could be predicted according to the following relation to within \pm 35 °C [53]:

$$T_m = 1191 + 4.2 * X_A + 11.4 * X_S - 11 * X_C + 5.7 * X_M + 8.3 * X_F + 11.6 * X_{MnO} - 15.8 * X_K - 10.1 * X_N + 1.9 * X_{CaF_2}$$
(12)

 T_m is in degree Celsius, and X are weight fractions in percentage. As can be observed, MgO has a completely opposite effect on melting point as listed in Table 1. This is due to its unwanted effect on shrinking the primary field of cuspidine. The melting points of fluorine containing mould slags show good predictability attributable to the enlargement of the cuspidine primary field due to the addition of further oxides [54]. The CaF₂-free slags do not permit the same level of predictability due to the complexity of their phase formation, which will be discussed in section 3.

Differential thermal analysis, DTA, provides an accurate method to measure the melting point of the slag. An inert reference material or an empty crucible alongside the slag (65 mg) is heated at a constant rate (5 K/min) to 1400 °C. Then both are cooled with a defined rate of for example 5 K/min. The temperature difference between the two crucibles indicates the phase changes occurring within the slag, including the melting of the slag. They go along with exothermal or endothermal heat zones, which can be seen as peaks within the DTA-curve. However, if the slag contains a significant amount of alkalis and B_2O_3 , due to the large surface area to volume ratio of the sample, a significant amount of T_m [55].

Furnace crystallization test, FCT, provides a more accurate assessment of the melting point when the slag contains significant amount of volatiles. The working principle of FCT is the same as DTA, except for the sample loading (27 g) and the percentage of material loss is less than that of DTA [56].

2.2.1.3. Heat transfer

Heat is transferred from the liquid steel to the mould through the slag, which allows the initial solidification of the slab to take place. Uniform and consistent heat transfer is one of the key factors to avoid surface defects of the slab. Heat transfer that is too low would result in insufficient strand shell thickness; high heat transfer is somewhat preferred, but could lead to longitudinal cracks on slab surface if it was too high. Non-uniform heat transfer is often detrimental, especially during casting hypo-peritectic steel [57]. The heat transfer of the slag is difficult to calculate, as it depends on the slag chemical composition [58], crystallization tendency, and melting rate. It is further complicated in actual operation by the slab speed and steel grade [23].

As shown in Figure 2, the slag film can be divided into a liquid film in contact with the slab, a crystalline film, and a glassy film. There is also a small air gap between the slag film and the mould wall which results in an interfacial thermal resistance. The heat transfer from the slab to the mould wall therefore could be depicted in terms of thermal resistance as shown in Figure 4, and the following relationship could be drawn:

$$T_{slab} - T_{wall} = q_{tot} * (R_{liquid} + R_{crystal} + R_{glass} + R_{int})$$
(13)

where q_{tot} is the heat flux, T_{slab} is the temperature of the slab surface in contact with slab, T_{glassy} is the temperature at which the viscosity is too high for crystallization to occur, and T_{wall} is the temperature of the hot side of the mould wall. Resistance has the unit m²/(MW). R_{int} is the thermal resistance of the interfacial gap.

Figure 4. Heat flux from the slab to the mould wall depicted in thermal resistance terms

For the liquid slag film, the Rayleigh number of a low viscosity slag in continuous casting process is typically in the 10^6 magnitude range, which means the dominant mode of heat transfer in the liquid slag film is convection. It could be generalized that a slag with low melting point typically has a high heat transfer coefficient [59].

The heat convection and lubrication provided by the liquid film is important for minimizing longitudinal cracks and sticker breakout for the slab. In Figure 4, the distinction between slag liquid film and crystalline film is defined to be at the break temperature. Therefore the break temperature is an important physical parameter for the slag. The break temperature is lower than the melting point of the slag; T_{br} is typically 1100-1200 °C for established CaF₂ containing slags, and could be lowered to 1000 °C in B₂O₃ containing slags. T_{br} has a linear relationship to the chemical composition of the slag in the steady state:

$$T_{br} = 1180 - 3.94 * X_A - 7.87 * X_S + 11.37 * X_C - 9.88 * X_M + 24.34 * X_F + 0.23 * X_{MnO} - 30.87 * X_K + 6.96 * X_N - 17.32 * X_{CaF_2}$$
(14)

where T_{br} is in degree Celsius. Equation 14 could predict T_{br} to an accuracy within ±30 °C. T_{br} values can be very different in dynamic situations, and have different measured values due to different rates of cooling, but the linear dependency on chemical composition remains [53].

The mode of heat transfer in the crystalline and glassy film is conduction. The thermal conductivity of the crystalline film depends on the crystal phases. Different phases have different thermal conductivities, which lower the uniformity. Therefore in order to generate uniform and consistent heat transfer, having the paragenesis of only one type of crystal is most ideal. However, this is difficult to achieve. As a result, the crystallization mechanism and crystal growth are important areas of investigation that need to be carried out. Glassy slag films have uniformity of thermal conductivity [54].

Interfacial gaps occur due to the shrinkage of the slag during crystallization, and are therefore unavoidable. The mode of heat transfer across the gap is radiation, and therefore R_{int} value depends on the emissivity and absorptivity of the glassy film. These two physical parameters are predictable in the CAS glass formation regions, as this chemical system is well studied [60].

The R_{liquid}, R_{crystal}, and R_{glassy} of the slag could be measured by infrared emitter technique, IET. Set up of such an experiment can be seen in Figure 5 [61]. The heat flux is provided through infrared radiation from the top. Slag sample is loaded below the infrared lamp, and on top of a copper surface, which is water-cooled. The hot face temperature is controlled to approximate T_{br} . So that some liquid phase is present at the hot face. The cold face temperature is around 600 °C. Thermocouples are imbedded within the slag, and the temperature gradients could be measured. q_{tot} is measured by the water flow rate and the temperature difference between water inlet and outlet. The thermal resistance can then be calculated, for example

The radiative thermal conductivity, K_{rad} , could be measured experimentally to within ± 5% accuracy using the Fourier transform infrared spectrometer, FTIR. Sample is prepared as a cut disc of 0.3 ± 0.02 mm from quenched glassy slag, heat flux is provided by an infrared beam emitter, and the receiver is made of copper. The effect of crystallization on radiative heat transfer could also be measured by raising the power output, allowing crystallization to take place in the disc. In order to estimate d_{gap}, the slag is assumed to behave like grey gas, yielding:

$$q_{tot} = K_{glassy} * \frac{T_{glassy} - T_{gap}}{d_{glassy}} = K_{rad} * \frac{T_{gap} - T_{wall}}{d_{gap}}$$
(16)

$$K_{rad} = \beta \frac{(T_{glassy}^4 - T_{gap}^4)}{T_{glassy} - T_{gap}} d_{glassy}$$
(17)

$$\beta = \frac{n_e^2 k}{0.75 \alpha d_{glassy} + \varepsilon_{glassy}^{-1} + \varepsilon_{copper}^{-1}}$$
(18)

Here, n_e is the refractive index, assumed to be 1.6 for glassy slag; k is the Stefan-Boltzmann constant; α is the absorption coefficient, assumed to be 400 m⁻¹ for glassy slag; ε_{glassy} is the emissivity for glassy slag, assumed to be 0.92; ε_{copper} is the emissivity for copper, assumed to be 0.4. The temperatures are in Kelvin [62].

Experiments have shown that it is difficult to correlate the chemical composition of the slag with its measured thermal resistance. This is in part due to the difficulty in predicting the depth of the two films, although the sum of the depth is often controlled. As can be seen in Figure 6, for an industrial slag containing 2 wt% MgO, 9 wt% Na₂O, 6 wt% CaF₂, 0.5 wt% Li₂O, the alumina content is increased linearly from point 1 to 4 while C/S ratio is maintained. However, there is no observable linear pattern in the thermal resistance parameters [57].

Figure 6. Thermal resistance for compositions with C/S ratio of 0.8 and increasing Al_2O_3 contents [57]

2.2.1.4 Glass formation ability

Glass can be considered a supercooled liquid. In theory, any thermodynamically stable melt (no creeping or evaporation) can be formed into glass by being cooled rapidly enough below its glass transformation temperature, T_g , which prevents the formation of nuclei or significant amount of crystal. Here T_g may be defined as the temperature for a viscosity of 10^{12} PaS is reached, where crystal growth due to diffusion is impeded by such high viscosity [52]. Glass formation ability, GFA, of such a stable melt is defined to be the ease of a melt to undergo vitrification upon cooling. This parameter does not have a consensus in its measurements and unit, but is often defined by the critical cooling rate, R_{crit} , the minimum cooling rate that results in the vitrification of the liquid. Barandiaran proposes that R_{crit} is related to the melting point, T_m (in Kelvin), and can be calculated according to the following equation:

$$R_{crit} = \exp(A - \frac{B}{T_m^2})$$
⁽¹⁹⁾

where A and B are empirical constants based on formulas related to chemical composition. A lower melting point results in a smaller R_{crit} , and a higher GFA [63, 64].

It has been proposed by Takeuchi that a slag with high viscosity between T_g and T_m exhibit low R_{crit} and high GFA due to the suppression of crystallization kinetics. Low viscosity between the T_{br} and T_m is a desirable characteristic for the lubrication of steel shell. Therefore having the T_g and T_{br} being as close as possible would favor GFA, as this would indicate a sharp rise in viscosity between these two temperatures, which would not favor crystallization due to the mechanism of diffusion, and therefore resulting in a lower R_{crit} [65].

2.2.1.5 Crystallization tendency

Crystallization tendency is not a reciprocal property of GFA, but a measurement of how readily the glass undergoes crystallization. Glass matrix has higher free energy than crystal lattice, and this is the driving force for its crystallization process. The crystallization process is retarded by high viscosity. Therefore, as temperature rises and viscosity lowers, theoretically crystals would precipitate out of the glass matrix, except for invert glass where crystal matrix is not possible. For mould slags, the crystallization tendency could be understood to be the ratio of the thickness of the slag crystalline film to the thickness of slag glass film in Figure 4 [57, 64].

In the perspective of ternary phase diagrams, greatest tendency of devitrification occurs at compositions at or close to the composition points of binary and ternary compounds, while the lowest tendency occurs at compositions near the liquidus lines (especially close to invariant points). However, this characteristic is difficult to utilize due to the significant shifting of primary fields in a complex chemical system [66].

The crystallization mechanism depends on the nucleation rate and the crystal growth rate, which depend on temperature and cooling rate. The two parameters reach their individual maxima at different temperatures. Therefore a glass composition with a large difference between the two temperatures would have a low crystallization tendency. However, while this has important application to the quenching procedure in glass production, it may not be straightforwardly applicable when discussing the thickness of the slag crystalline film due to the relatively slow cooling rate.

The residence time of a slag in the mould once it had been pushed in between the mould wall and slab by the rim has been reported to be 15-30 min for casting speeds of 0.7 to 1.4 m/min. The temperature drop experienced by the slag from rim to exit from mould is about 350 °C [23, 67]. This gives an average cooling rate of 12-23 K/min, which is rather small and combined with the long residence time, the production conditions could be considered favorable to the crystallization process.

It has been proposed that the thickness of slag crystalline film is correlated to the reduced glass transition temperature, T_{rg} [68]:

$$T_{rg} = \frac{T_g}{T_m} \tag{20}$$

A slag with relatively close T_g and T_m values is expected to have relatively higher viscosity between these two temperatures, thus lowering the crystallization tendency. Turnbull proposes a simplification for T_{rg} to equal to 2/3 of T_o . Turnbull further proposes the following relationship for crystallization rate by drawing a relation to the atomic migration in the melt [69]:

$$J = \frac{A_{\nu}}{\mu_o} \exp\left(-\frac{D^* T_{ro}}{T_r - T_{ro}}\right) \exp\left(-\frac{A}{T_r (1 - T_r)^2}\right),\tag{21}$$

where A_v is a constant of the order of 10^{32} Pa·s/(m³·s), μ_o is a constant inversely proportional to the molar volume with the unit Pa·s. D^{*} is the degree of deviation of the system from Arrhenius equation, which is 100 for silica-rich melts. T_r and T_{ro} are temperature dependent parameters:

$$T_r = T/T_m \tag{22}$$

$$T_{ro} = T_o/T \tag{23}$$

A is derived from the change in free energy:

$$A = \frac{16}{3} \frac{\pi \sigma^3}{k \alpha^2 T_m^3 \Delta S_v^2}$$
(24)

σ is the interphase energy between liquid and nuclei, k is the Boltzmann constant, α is the reduced surface energy, ΔS_v is the entropy change per volume due to crystallization:

$$\Delta S_{\nu} = (S_{crystal} - S_{glass}) / V_{crys}$$
⁽²⁵⁾

where V_{crys} is the volume of the devitrified glass. From equation 21, the first exponential is smaller if the VFT temperature is higher. From equation 24, the value of A is smaller if T_m is smaller, hence reducing the second exponential in equation 21. Therefore from equation 20, slag with relatively low crystallization tendency has a relatively high T_{rg} value.

As mentioned in section 2.2.1.2, DTA and FCT are both used to determine the temperatures at which phase changes take place in the slag. The cooling step is very useful for determining the onset of crystallization temperature, $T_{crys,onset}$, for each of the crystal phase that precipitates out of the liquid slag during defined cooling. The $T_{crys,onset}$ could help identify the paragenesis of phases [70].

DTA and FCT qualitatively describe the phase formation in the slag. Whereas confocal scanning laser microscopy, CSLM, is used to quantify the amount of crystals in order to construct the time-temperature-transformation (TTT) diagram. Mould powder of 5*5*0.4 cm is loaded into the heating chamber, and heated to e.g. 1400 °C. T_m of the slag could be measured by in situ observation during heating. After achieving the maximum temperature, the sample is quenched to defined temperatures, and the crystal growth is observed.

Computer program divides the 5*5 cm screen into millions of grids, and count the number of crystallized grids. Time for 0.5, 50, and 95% crystallization could be acquired for the TTT diagram [71].

Single hot thermocouple technique, SHTT, has the same function as CSLM, but enables the observation of bigger samples. A small amount of the slag is loaded on a U-shaped platinum wire, stretched to uniform depth, and melted as shown in Figure 7a. Some researchers have used SHTT also as a means to measure the melting point of the slag. The slag is quenched to different temperatures, and photos are taken to record the crystal growth. The photos are processed with Photoshop to quantify the crystal growth to generate the TTT diagram [72].

Figure 7. Heating wire design of a)SHTT and b)DHTT [72]

Double hot thermocouple technique, DHTT, is an excellent experimental technique to simulate the working conditions of the mould. A small amount of sample is melted and stretched between two U-shaped wires as shown in Figure 7b. T1 and T2 define the temperature gradient of the slag in the mould. The slag is maintained at this temperature gradient to observe the crystal growth, and photos are taken for analysis. The T_{crys,onset} could be estimated by observing the initial crystal growth site, and correlating its location to the temperature gradient. The crystallization area is measured in dependence of time [73].

2.2.1.6. Optical basicity

Lowering the melting point, which could be done by increasing basicity in non-basic slags, lowers the crystallization tendency thermodynamically. This is suggested by equation 21, where a smaller T_m results in a lower crystallization rate, J. However, increasing basicity increases the polarizability of the atoms in the glass matrix, which increases the crystallization tendency mechanistically. This is due to the ions of same element having different electronic polarizability (measured in Å³) in amorphous state from crystalline state. The sum of the electronic polarizability of all the anions and cations in glass matrix (also for slag melts) is larger than those same ions in devitrified state. This is one of the driving forces behind devitrification of the glass. The polarizability of cations follow the same trend as Dietzel's field strength, with decreasing ionic radii and increasing positive charge indicating higher polarizability. This is the reason that boron-rich glass matrix has a lower crystallization tendency than silica-rich glass matrix. For anions, increasing ionic radii and increasing negative charge indicates higher polarizability. This is the reason that boron-rich glass matrix has a lower crystallization tendency than silica-rich glass matrix. For anions, increasing ionic radii and increasing negative charge indicates higher polarizability. This is the reason that boron-rich glass matrix has a lower crystallization tendency than silica-rich glass matrix. For anions, increasing ionic radii and increasing negative charge indicates higher polarizability. This is the reason that boron-rich glass matrix has a lower crystallization tendency than silica-rich glass matrix. For anions, increasing ionic radii and increasing negative charge indicates higher polarizability. This is the reason that CaF₂-containing slags can have

relatively low devitrification tendency. The oxygens (and fluorine) in the glass matrix must donate its electron density to surrounding cations. When the oxygens donate the maximum possible of electron density, they become non-bridging oxygens. The glass matrix is metastable as long as the number of non-bridging oxygens do not exceed the limit for possible glass network, and the electron density donated by anions readily satisfy the demand of cations. As the number of cations increases, the polarizability of the cations increases in the coulomb field of anions as they compete for more electron density (coordination number increases), and the glass matrix devitrifies [74].

To gauge the overall polarizability of glass and melts (dimensionless), optical basicity concept is developed to describe the chemistry of non-aqueous and non-protonic melts. Optical basicity, Λ_{th} , is the average charge born by the oxygen atom of the glass matrix, and the concept can be extended to system that includes CaF₂. It does not differentiate between bridging oxygen and non-bridging oxygen, and indicates the average polarizability of all the atoms in the glass matrix. Optical basicity is a relatively easy way to calculate parameter when considering the stability of the glass matrix of the slag. The calculation of Λ_{th} of the slag is given in the following formula [34]:

$$\Lambda_{\rm th} = \frac{\sum x_i n_i \wedge i}{\sum x_i n_i}$$
(26)

where x_i is the molar fraction of oxide i, n_i is the mole of oxygen atom per mole of oxide i, and Λ_i is the optical basicity of oxide i. The optical basicity of common commercial glasses is 0.5 to 0.7, while for mould slags it is normally between 0.8 and 1. It could be generalized that for non-basic mould slags, the high basicity of mould slag is associated with the higher amount of alkaline that is necessary for decreasing viscosity, but results in higher crystallization tendency due to the higher average polarizability of the atoms in the glass matrix, as the electronic negativity differences are greater [75].

In the modified NPL viscosity model, Shankar introduces a modified optical basicity, Λ_{new} , which is the optical basicity of all the basic oxides divided against the basicity of all the acidic oxides [76]:

$$\Lambda_{new} = \left(\frac{\sum x_i n_i \wedge i}{\sum x_i n_i}\right)_{Basic} / \left(\frac{\sum x_i n_i \wedge i}{\sum x_i n_i}\right)_{Acidic}$$
(27)

This is used to give an elegant solution for the constants A and B in equation 4 (see section 2.2.1.1) for the calculation of viscosity in the VFT-equation:

$$A = -0.3068 \cdot B - 6.7374 \tag{28}$$

$$B = -9.897 \cdot \Lambda_{new} + 31.347 \tag{29}$$

There are different values given for Λ_i from literature sources as shown in Table 5, the values that have shown best correlation with crystallization tendency is in the column in the right.

	Dietzel's field	A: accroding	Ai accroding to	Ai accroding to	Ai measured by	Ai accroding to	most used
	strength	to Pauling	electron density	Slag Atlas	refractive index	energy gap	Λi value
K2O	0,13	1,40	1,15	1,40			1,40
Na ₂ O	0,19	1,15	1,10	1,15			1,20
SrO	0,28	1,07	1,04	1,10	1,10	1,18	1,05
CaO	0,33	1,00	1,00	1,00	1,00	0,95	1,00
MnO	0,40-0,49	0,59	0,95	1,00			0,95
FeO	0,43	0,51	0,93	1,00			0,93
MgO	0,48	0,78	0,92	0,78			0,85
Al ₂ O ₃	0,84-0,96	0,61	0,68	0,60			0,65
TiO ₂	1,04	0,61	0,64	0,61	0,96	0,91	0,65
B2O3	1,34	0,42	0,42	0,42	0,43		0,42
SiO2	1,57	0,48	0,47	0,48	0,48	0,52	0,48

Table 5. Compilation of Λ_i values from various sources [21, 77-79]

There is a very strong correspondence between the optical basicity and Dietzel's field strength, and as a consequence with the role of the oxide in the glass matrix. SrO has a rather high basicity, while it has a relatively small effect in lowering viscosity and melting point as shown in Table 1. B_2O_3 has a particularly low optical basicity, and its addition in the recipe is expected to significantly lower the crystallization tendency.

2.3. CaF₂-free slag compositions

Some researchers have already tested chemical compositions for CaF_2 -free mould slags. These can be divided into B_2O_3 -containing and B_2O_3 -free slags. The results are summarized below.

2.3.1. B₂O₃-containing recipes

 B_2O_3 is an excellent substitute for fluorine, as it increases the superheat degree of the melt, which leads to a loosening of flux structure, resulting in a significant reduction in viscosity [13, 80]. The possible paragenesis of $C_{11}BS_{14}$ is considered an excellent substitute for cuspidine [81]. Boron-containing slag compositions developed by various authors are listed in Table 6.

author	C/S	B2O3	TiO ₂	Na2O	Li2O	MnO	Al2O3	K20	MgO	Fe2O3	Note	Ref#
Arefpour et al.	0.94	4.4	-	9.52	-	6.56	2.72	0.36	6.16	1.6	(4)	82
Bezerra et al.	0.63	1.49	-	12.35	-	0.31	8.3	0.09	5.2	0.65	-	83
Brandaleze et al.	0.85-0.86	5.8-9.8	-	12.3-19.6	-	-	4.7-5.1	0.1	1.3-1.4	3.6-3.9	-	34
Fox et al.	0.9	1.5-8	-	up to 10	-	-	5	-	-	-	(5)	84
He and Wang	0.65	1	-	23	1	-	-	-	4	-	-	85
He et al.	1.2	3	30	4	1	-	3	-	2	-	-	16
Jiang and Wang	(1)	10	-	-	3	-	38.2-46.7	-	-	-	-	86
Li et al.	(2)	8	-	up to 10	up to 8	-	-	-	-	-	-	87
Li and Shu	(3)	10-12	-	8	8	-	-	-	-	-	-	88
Li and Zhang	1.2	5-10	15	8-12	-	-	-	-	-	-	-	89
Marschall et al.	1.2	5	8.8	8	1.2	-	3.5	-	4.5	0.9	-	90
Qi and Liu	8.33	5	-	-	10	-	29.84	-	-	-	(6)	91
Qi et al.	1.2	4.5	-	5.5	1.2	4.5	3.9	-	4.5	1.3	-	92
Reddy and Yan	0.9-0.92	6.3-6.7	4.2-4.3	5-11	1-1.1	-	3.6-3.7	-	2.1-2.3	-	-	93
Shin and Cho	0.98	9.3	-	6.3	-	-	4.3	-	1	0.4	-	94
Wang and Shu	1	5	10	10	-	-	7	-	2	-	-	95
Wang and Zhou	1.15-1.25	6	-	-	2-6	-	4	-	-	-	-	96
Wang et al.	0.8	2.78	15.76	7.65	1.57	-	-	-	1.85	-	-	97
Wen and Liu	0.95-1.15	4-8	4-7	5-8	1-2	3-5	-	-	-	-	-	98
Xin et al.	1.17	3.3-8.2	4.7-6	8.1-11.8	2.2-3.5	5	5	-	6-9.2	-	-	99
Xiong et al.	0.5	4	-	-	4	1	30	-	-	-	-	100
Yan et al.	8	10	-	10	-	-	35.7	-	-	-	-	101
Yang and Zhang	1.1	6.3-6.8	4.2	5-11	1	-	3.6	-	2.2	-	-	81
Yang et al.	0.90	6.9	4.4	8.6	0.8	-	3.6	-	2.3	-	-	102
Zhang and Cho	1.25	5	up to 6	-	-	-	3	-	-	-	-	103
Zhang and Liu	1.05-1.25	5	6	6	-	-	3	-	-	-	-	104
Zhang and Wang	1.1-1.25	4-8	-	8	2	-	-	-	-	-	-	105
Zhou et al.	1.15-1.25	8-10	-	9.9-11	1.97	-	4.2-4.3	-	-	-	-	106

Table 6. Chemical compositions of F-free Boron containing mould slags in wt% [16, 34, 81-106]

(1) slag is Silica free, C/A ratio is 0.8 to 1.2, also contains 1-5 wt% ZrO2

(2) slag is Silica free, C/A ratio is 1

(3) slag is Silica free, C/A ratio is 1

(4) slag contains 1.81 wt% carbon (5) slag contains 20 wt% carbon

(6) slag contains 5 wt% Ce2O3

Some of the compositions have been developed for steel grades. However, most of these contain Li₂O due to its excellence at reducing viscosity. A slag containing 1% Li₂O has been tested for low carbon and medium carbon steel, which showed that between 5-11 wt% Na₂O contents the crystallization tendency is satisfactory [93]. For slags developed for medium carbon steel, results showed that Li₂O hinder the paragenesis of CS, C₂AS, and Ca₁₁Si₄B₂O₂, while promoting the paragenesis of low temperature phase C₁₁BS₁₄ [96]. Zhou *et al.* have developed slags for medium carbon steel that more than double the glass film layer when compared to the CaF₂-containing slag; the crystallization tendency is drastically increased when Li₂O content is increased to 3 wt%. The main phases precipitated are C₁₁BS₁₄ and C₁₄M₂S₄ [106]. A Li₂O-free slag has been industrially tested for steel in the 0.6 wt% carbon range with success [83]. A slag containing less than 2 wt% Li₂O has been developed for the continuous casting of peritectic steel [98].

Some compositions have been developed for special steel types or purposes. A substitute for a reference powder used in the steel industry has been tested, exhibiting better lubricating ability [82]. Fox *et al.* have industrially tested slag recipes for billet casting, and found that B_2O_3 has a significant effect on lowering T_{br} [84], which agreed with the findings of Zhang and Wang [105]. Qi and Liu have developed a slag composition for Ce-bearing heat resistant steel, which is required to have very low SiO₂ content to avoid chemical reaction with the steel [91]. For high-Al steel, Xin *et al.* have given a range of recipes that exhibit low viscosity and satisfactory heat flux [99]. Xiong *et al.* have proposed a slag composition for the casting of high Al-TRIP steel [100]. Several compositions are clearly developed with a reasonable target viscosity and T_m in mind. Marschall *et al.* have tested a composition with viscosity below 1 poise at 1300 °C [90]. Qi *et al.* have reported of a slag with viscosity of 2.7 poise at 1300 °C [92]. Several other F-free B₂O₃- containing slag compositions with viscosities of 2-3 poise at 1300 °C have been developed [34]. Shin and Cho have given a shear thinning slag composition [94].

Due to the usefulness of TiO₂ as a network former that is associated with not so significant increase in viscosity, the phase paragenesis in the CBS-TiO₂ system is of interest. He and Wang have examined the phase paragenesis of CTS and NCS chemical system, and showed that with increasing proportion of perovskite, critical cooling rate decreases [85]. The phase paragenesis in high-TiO₂ slag of the CTS system during industrial application has been investigated. The major phase is perovskite, and formation of CTS, TiN, Ti(C,N) are possible [16, 97]. Zhang and Liu have developed compositions showing lower crystallization tendencies than common industrial slags, and have found that its TiO₂ contents could be replaced by 2 wt% of ZrO₂, which removes the paragenesis of perovskite [104].

The glass matrix structure in a high-TiO₂-containing slag in relation to sodium and boron contents has been investigated. The boron is mostly in the BO₃ triangular configuration, but rising Na₂O contents convert BO₃ triangles to BO₄ tetrahedrals. Rising Na₂O and B₂O₃ contents both increase the number of NBO bonds. However, rising boron content increase the number of Si and Ti in Q³ configuration, while rising sodium content has the opposite effect [89]. Zhang and Cho have investigated the volatility of B₂O₃ and Na₂O content, which is increased with increasing TiO₂ content due to decrease in viscosity, and increased with increasing ZrO₂ content due to solid particles acting as nucleating site of bubble formation [103]. Wang and Shu have examined the viscosity of NTBS system by varying the Na₂O, TiO₂ and B₂O₃ contents of an industrial slag, and showed that experimental results agree with modified Riboud model to within 7% [95].

The phase paragenesis in the CASB chemical system is of interest. With rising B₂O₃ contents, the major phase shifts from C₂AS to C₃B, and crystallization could not be observed above 15 wt% B₂O₃ [101]. Yang and Zhang have shown that the major phase precipitated shifts from CS to C₁₁BS₁₄ and C₂MS₂ with increasing C/S ratio, which is desirable. However, the critical cooling rate increases when C/S ratio is larger than one, which adversely affects GFA [81]. Wang *et al.* have shown that the onset of crystallization temperature of the slag is correlated to the C/S ratio, but it has no influence on the volatility of Na₂O and B₂O₃ [97]. For SiO₂-free slags, the crystallization of C₃B is promoted by rising boron content, and the crystallization of CA is promoted by rising alkali contents [87]; with rising LiO₂ content, the crystallization of the main phase C₃B remains unchanged, but the other main phase shifts from C₃A to LiAlO₂ [88]. As can be seen in Table 6, the boron content from various authors is concentrated within 4-10 wt% range. As a summary in Table 7 the phase paragenesis in CABS system is listed. The phase formations are given for slags containing 3 wt% Al₂O₃, 7 wt% Na₂O, 2 wt% TiO₂, and 3 wt % MgO.

C/S	B2O3 (wt%)	phase formation
0.7	5	CS, S, CAS2
0.7	7	CS, S
0.7	9	CS, S
0.7	11	CS, S, C2BS
0.9	7	CS, C11BS14
1	>5	CS, C2BS, CAS2, C2AS
1.1	7	CS, C11BS14
1.2	7	CS, C11BS14
1.5	5	CS, C11BS14, C3S2
1.5	7	CS, C11BS14, C3S2, C2B, C2AS
1.5	>9	CS, C11BS14, C3S2, C2B, C2BS
>5	5	C2AS, LiAlO2, C3A, CaCeAlO4 *

Table 7. Phase formation in the CABS system [109, 110]

* phase formation depends on C/A ratio and presence of other oxides

As can be seen in Table 7, a C/S ratio of 0.7 in tandem with low B_2O_3 content results in the formation of anorthite, which is undesirable due to the devitrification tendency of anorthite. At C/S ratio of exactly 1, anorthite is a major phase across all B_2O_3 contents, which may suggest that this C/S ratio should be avoided entirely. As C/S ratio rises above 1, $C_{11}BS_{14}$ becomes the main phase, which has a low liquidus temperature. This is a desirable phase as it has been suggested as an excellent substitute for cuspidine. As the C/S ratio increases above 1.2, the phase formation becomes too complicated and therefore less desirable. The melting point is expected to reach a minimum at C/S ratio between 1.1 and 1.2 for the CABS system. However, with a Li₂O content of 1 wt% this ratio is shifted up to between 1.2 and 1.3 [111]. At C/S ratio of 1.7, the paragenesis of $C_3A_2BS_8$ and $C_6A_{12}BS_8$ are possible, which is also considered a good substitute for cuspidine [13]. However, for slags containing less than 2 wt% B_2O_3 , no paragenesis of ternary phases within the CBS system will take place [108]. At B_2O_3 content above 15 wt%, the crystallization tendency is very low, but the precipitation of CaB_2O_4 is possible [112].

For the slags with very high C/S ratios, the mineralogical composition is determined by the C/A ratio. At C/A ratios below 1, the primary phase is C_2AS . At C/A ratio above 1.5, the primary phase is C_3A . The C/A ratio of such low-SiO₂-containing slags are often controlled between 1.7 and 1.8, due to the efficiency of removing inclusion bodies [113]. In the presence of LiO₂, the paragenesis of LiAlO₂ having a high T_m will take precedence over the phases of the CAS system [81]. Jiang and Wang have shown that the crystallization tendency is highest at C/A ratio of 1 for low-SiO₂-containing slags [86].

 Na_2O content has a significant effect on the phase formation and GFA of the CABS system. Rising Na_2O content enlarges the primary field of $C_{11}BS_{14}$ at the expense of CS primary field, which is desirable. However, rising Na_2O content also encourages the paragenesis of $CaTiO_3$ and C_2MS_2 . $CaTiO_3$ has a high T_m , and compositions within the C_2MS_2 primary field are associated with lower GFA due to increasing devitrification tendency [114]. It has been suggested that the paragenesis of CaTiO₃ and C₂MS₂ could be restrained by limiting the content of TiO₂ to roughly within 4 wt%, and MgO within 3 wt%. However, a minimum in viscosity could be expected at TiO₂ contents of around 6 wt% [115]. At Na₂O content above 9 wt%, paragensis of NC₂S₃ is possible, which is not undesirable as it is another possible substitute for cupsidine. At above 11 wt% Na₂O, the primary field of CS disappears completely, which is desirable. However, it has been suggested that with a too high sodium content the GFA decreases rapidly [103]. It also decreases the amount of MgO and Al₂O₃ that can exist as solid solutions within the crystal lattices, and results in the paragenesis of spinel [116].

2.3.2. B₂O₃-free mould fluxes

With regards to steel quality, boron-free slag compositions are of interest. TiO_2 , RO, and R_2O are possible substitutes for CaF₂. Several authors have proposed possible compositions as shown in Table 8.

author	C/S	TiO ₂	Na2O	Li ₂ O	MnO	Al ₂ O ₃	K2O	MgO	Fe ₂ O ₃	carbon	Ref #
Arefpour et al.	0.94	3.24	9.32	-	6.02	2.67	0.36	6.42	4.78	1.77	82
Bezerra et al.	0.63	-	8.8	-	-	6.7	0.09	3.71	0.65	18.4	83
Esfahani and Barati	1.11	-	-	-	-	15	-	5	-	*	117, 118
Kim and Kang	0.99	-	-	-	(1)	(2)	-	0.86	-	0.2	119
Klug and Scheller	0.7	15.5	3.7	-	-	up to 5.2	-	-	-	3	120
Klug and Jung	0.7	0.29	7.28	-	0.12	7.82	1.03	2.64	2.22	6.05	121
Klug and Pereira	0.93	-	7.9	-	-	1.8	-	5.8	-	2.5	107
Qi and Liu	(3)	-	-	10-18	-	38.5-42.5	-	-	-	*	122
Takahira et al.	0.47-0.6	-	up to 10	-	up to 0.9	1.9-3.6	-	0.4-7.8	-	*	123
Xu et al.	2-5	-	-	-	-	23-43	-	7	1	*	124
Zhang et al.	0.8-1.2	10-30	-	-	-	14	-	8	-	*	125
Zhao et al.	8-10	0.18-0.26	-	-	0.18-0.21	32.5-34.2	-	12.5-12.8	-	*	126
Zhao et al.	5.5-7.5	0.1	-	-	0.08-0.15	24.6-26.5	-	9.8-13	-	*	126

Table 8. Chemistry of F-fi	ee Boron-free slag compositions	in wt% [82, 83,	107, 117-126]
----------------------------	---------------------------------	-----------------	---------------

* The amount of carbon added is not included in the publication

(1) 23 wt% metallic Mn

(2) 2.2 wt% alumina and 2 wt% metallic Al

(3) no SiO2 content, C/A wt ratio at 1, slag contains 5 wt% Ce2O3

TiO₂ and MgO have been investigated as substitutes of boron in order to decrease viscosity, and the results show that the principle factor affecting viscosity is the degree of polymerization of Si [125]. The glass morphology in dependence of C/S ratios show a linear relationship between the decadic log of critical cooling rate and the decadic log of the nose temperature in the TTT diagram [117,118]. The density of low silica-content CMAS slags increases along with increase in optical basicity [124].

Several boron-free slags have been tested industrially for specific steel types. One slag has been industrially tested for low carbon steel casting, demonstrating similar properties as the F-bearing slag it intended to replace with only half the slag consumption per ton of steel. This composition shows no crystallization tendency whatsoever [107]. Kim and Kang have devised a slag composition for high-Mn-high-Al steel [119]. Klug and Scheller have developed a TiO₂-rich slag to match the heat flux of classic CaF₂-bearing flux with good results [120]. Klug and Jung have industrially tested a recipe for Cr-Mo-Ni bearing billet casting [121]. Qi and Liu have given a silica-free slag composition for the casting of Ce₂O₃-bearing steel [122]. Takihara *et al.*

has developed a slag composition that has NC₂S₃ as the crystallization target phase [123]. Zhao *et al.* has developed two ranges of low-SiO₂ slag for the casting of high-strength low-alloy ship plates [126]. Arefpour and Bezerra have developed boron-free counterparts to their boron-containing compositions listed in Table 6 [82, 83, 107].

3. Experimental Methods

In this section the process in which promising compositions are arrived and the experimental methods for testing the slags are described.

3.1. Chemical compositions

The ternary phase diagrams of glass-forming systems are consulted to have a reasonable starting point for a chemical composition. Then, to this composition several oxides are introduced. The melting points and viscosities of chemical compositions are estimated with the program FactSage.

C/S ratio is a significant determinant of the basicity of the slag. Al₂O₃ is an inexpensive alternative network former to SiO₂. Therefore, the CAS chemical system is chosen to form the basis of the slag chemical composition. In the CAS phase diagram shown in Figure 8, the lowest invariant points occur at 1170 °C and 1265 °C. So the compositions lying within the composition triangles S-CS-CAS₂ and CS-CAS₂-C₂AS are promising. Considering the high viscosity associated with high SiO₂ and Al₂O₃ contents, and in order to arrive at the eutectic point at 1170 °C, the chemical composition enclosed within the red boundary in Figure 3 is likely to yield slags with both relatively low viscosity and melting point. For this region, the C/S ratio is between 0.76 and 0.88, which could be proposed as the boundaries for the slag composition. In this region, an exception to the generalization of Table 3 could already be observed. From point 1 to point 2 in Figure 3, with rising Al₂O₃ contents, the melting point of the composition actually decreases, although a significant corresponding increase in viscosity is expected. It is also possible that the 1335 °C invariant point of C₃A-C₁₂A₇-C₂S and 1350 °C invariant point of rable 3 compositions.

Figure 8. CAS phase diagram in weight scale [127].

MgO could lower viscosity of the slag melt; due to the alkaline mix effect, it being added at a ratio to CaO would maximize this effect. This ratio has to be determined with FactSage, and

should be different for different composition triangles in the chemical systems. The invariant points in CMS and MAS phase diagrams are all rather high at least 1331 °C (trydimite-wollastonite-CMS₂) and 1355 °C (trydimite-MS-M₂A₂S₅). However, it is reasonable to assume that these invariant points can be brought much lower than 1250 °C in a multi-component system.

TiO₂ is a good network-former substitute for as the resulting glass melt will have lower viscosity, and is likely to be present in a successful composition, i.e. up to 20 wt%. In the CaO-TiO₂-SiO₂ phase diagram, a relatively low invariant point exists at 1318 °C (trydimite-CSsphene), which makes its corresponding composition triangle a chemical region of interest. Being within this composition also avoids the paragenesis of perovskite, CaTiO₃, which has a higher melting point than sphene [128]. However, in the presence of significant amounts of MgO and alumina, this low-temperature invariant point no longer exists, as the paragenesis of sphene is no longer possible. In Figure 9a, the pseudo-ternary CaO-TiO₂-SiO₂ phase diagram with 5 wt% MgO and 10 wt% Al₂O₃ is shown. The primary fields have shifted significantly. There is no longer a primary field of sphene due to the expansion of the primary field of perovskite and the paragensis of a solid solution between C₂MS and C₂AS. The invariant point marked with 1 has a melting point of 1250 °C. Due to the direction of the liquidus lines, compositions close to the invariant point 2 should have a lower melting point than point 1. Point 1 has a C/S ratio of 0.88, and point 2 has a C/S ratio of 0.76. This gives a reasonable range of C/S ratio for a composition with a low melting point and containing at least 5 wt% TiO₂. In Figure 9b, the pseudo-ternary CMS phase diagram with 10 wt% TiO_2 and 10 wt% Al_2O_3 is shown. Here the primary field of perovskite has expanded at the expense of the CS primary field, which is desirable as perovskite has a lower melting point compared to CS. The direction of the isotherms in the primary field of perovskite indicates that rising MgO content has only marginal effect on T_m. In both pseudo-ternary phase diagrams, the melting of CS becomes incongruent. Therefore the paragenesis of CS is suppressed when slag cools down in disequilibrium [129, 130].

Figure 9. a) pseudo-ternary CTS system in weight scale (temperature in Kelvin) [129]; b) pseudo-ternary CMS system in weight scale (temperature in °C) [130]
Na₂O is a network modifier that can greatly reduce the viscosity and T_m of the slag. The paragenesis of ternary compounds in the NAS system, albeit and nepheline, is desirable due to their low melting point [131]. The eutectic point of SiO₂ and CS is reduced from 1436 °C to 1300 °C with the addition of 10 wt% Na₂O. However, rising content of Na₂O does not necessarily equate to lower T_m due to the possible paragenesis of high temperature phase. As can be seen in Figure 10, the red lines mark the proposed C/S ratio between 0.88 and 0.76 according to Figure 8. Compositions lying in composition triangle CS-NC₃S₆-NC₂S₃ have an invariant point at 1025 °C. As Na₂O content rises, the chemical composition arrives within the composition triangle CS-C₃S₂-NC₂S₃, which has an invariant point above 1250 °C. Only when the Na₂O content rises enough to enter the composition triangle C₃S₂-NC₂S₃-NC₂S₂, invariant point decreases. The sodium content of the slag most likely fall within one of these composition triangles, and thus the composition triangle CS-C₃S₂-NC₂S₃ should try to be avoided [132].

Figure 10. NCS phase diagram [132].

 K_2O could lower the viscosity, and should be introduced to the system at a ratio to Na_2O to maximize this effect due to the alkali mix effect. This ratio could be calculated with FactSage. K_2O also has the effect to significantly reduce all eutectic points. The eutectic point of SiO₂ and CS is reduced from 1436 °C to 1300 °C with the addition of 6 wt % K_2O . None of the ternary compounds in the KAS system has a high T_m . This is the same for the KCS system except for K_2CaSiO_4 . However, the existence of this compound is actually questionable. The most possibly relevant invariant point lies within the conjugation triangle of CS-S-KC₂S₆ (1090 °C) [133].

 B_2O_3 has the ability of significantly reducing the eutectic temperatures and viscosity of the melt. In the CaO-SiO₂-B₂O₃ ternary system, the invariant point of CS-SiO₂-CaB₂O₄ is only 1000 °C. As a result, boron-containing slags typically exhibit low T_m [134, 135].

3.2 Evaluation of the glass formation ability

It is useful to examine the limits of the chemical system by consulting the known glass formation regions within well-investigated phase diagrams. The glass formation region without super-quenching in the CAS system is marked in Figure 11. The C/S ratios between 0.76 and 0.88 mark the composition range that correspond to low liquidus points. The devitrification process involves the precipitation of anorthite, and the region roughly corresponds to the primary field of anorthite. The devitrification is most severe close to the representing point of anorthite. Below 7.5 wt% Al₂O₃, the glass shows no devitrification, and therefore has a relatively low crystallization tendency. However, this composition region has higher viscosity than desired for mould fluxes. Significant addition of alkalis to the chemical system is required [136, 137].

Figure 11. Glass formation region in the CAS system

The NCAS system is well studied thanks to application for the soda lime silica glass and glaze industry. With the addition of significant quantities of alkalis the glass formation region shifts significantly. One example where 30 wt% of lime is replaced by soda is shown in Figure 12. The glass formation region shifts significantly due to the high basicity of soda. The chemical compositions with C/S ratio below 0.82 no longer facilitate glass formation. It has also been reported that in this system compositions with an A/S weight ratio roughly around 0.1 exhibit low viscosities. Substituting Na₂O and K₂O mole for mole does not shift the glass formation region [134, 135, 138].

Another chemical system is considered using B_2O_3 as one of the main glass network formers. The viscosities of commercial borosilicate glass melts are around 12-15 poise at 1300 °C, which is slightly lower than that of the commercial container glass (15-18 poise at 1300 °C) [139]. The glass formation region in the $Na_2O-SiO_2-B_2O_3$ system is shown in Figure 13a. The two liquids region involves a not so well understood process during quenching when one part of the melt solidifies into glass first, resulting in a phase separation that leads to two different glass matrixes being present at the same time [140]. However, this phenomenon does not adversely affect GFA. The ideal weight ratio of Na_2O/B_2O_3 is 16/84 [141]. As the boron oxide content of the melt increases, alumina needs to be added to give a stabilizing effect to lessen the evaporation of boron. Therefore if the composition falls within the vycor glass region, the composition must be doped with alumina. When alumina is a main constituent of the slag, then the glass devitrification region in the NAS system as shown in Figure 13b becomes of concern. While nepheline is a desirable phase for the NCAS system, it is required that for the NABS system, the S/(N+A+S) weight ratio should be above 0.62, or nepheline will rapidly crystalize. This ratio is referred to as nepheline discriminator, ND [142]. As can be seen in Figure 13a, all of the vycor glass region would observe the nepheline discriminator if a small amount of alumina is added. As borosilicate compositions are nonbasic, alumina will act as a network modifier. In high-alumina borosilicate slag nepheline is the major crystallized phase [143].

Figure 13. a) Glass formation region for NBS system and b) the devitrification region for the NAS system (both in weight scale)

Commercial high-MgO boroaluminate glasses within the MgO-B₂O₃-Al₂O₃ system give another possibility for slag composition. The glass formation region is shown in Figure 14. It is not necessary for this glass system to observe the Na₂O/B₂O₃ ratio of 16/84, but the nepheline discriminator should be observed if both silica and Na₂O are present at more than 5 molar percent. The chemical composition of commercial alkaline-rich boroaluminate glass encompasses the one liquid region, which is known for very low viscosity (4-8 poise at 1300 °C). This is a nonbasic glass as the moles of nonbasic oxides still exceed that of the basic oxides. Therefore Al₂O₃ behaves as a network modifier [144].

Figure 14. Glass formation region for MAB system (molar scale)

3.3. Development of new slag compositions

In the previous sections the range of possible chemical compositions has been narrowed. Two chemical systems are proposed. The first system, hereby called the soda-lime system, lies in the primary field of pseudowollastonite in the CAS diagram with a C/S ratio of 0.82 to 0.76 as shown in Figure 8. The alumina content of the slag should be below 7.5 wt% to avoid devitrification by the precipitation of anorthite and too high viscosity values. MgO content should be restricted to avoid the primary field of C₂MS₂, which increases the crystallization tendency of the slag. Na₂O will be a major constituent of the compositions, and N/K ratio should be fixed to minimize viscosity due to the alkali mix effect. B₂O₃ could be included, with its contents likely between 1 to 4.4 wt%, as this has been stated as the most cost effective content for reducing viscosity [33]. The second system, hereby called the high-alkaline boroaluminate slag system, lies in the one-liquid region of the MAB system in Figure 14. The nepheline discriminator needs to be observed.

3.3.1. Soda-lime-silicate system

With the chemical compositions having been a narrowed down range, FactSage7.2 is used to calculate the melting point and viscosity at 1300 °C within these limits. Calculation is done in unit of moles, as this is more intuitive when thinking of the changes in glass matrix network. For the convenience of FactSage calculation, the slag is viewed as a main body made up of CaO and SiO₂, with the other oxides added in as a modification to the glass matrix at a certain ratio to SiO₂. The SiO₂ content is set at 400 moles, and CaO content at 343 moles. The numbers are rather large in order to facilitate operation. For lowering the degrees of freedom, Al_2O_3 and B_2O_3 are first excluded from this part of the calculation.

A suitable possible section calculated with FactSage for the proposed slag system is given in Figure 15. The N/K molar ratio was calculated to be 3 to maximize the alkali mixing effect. The MgO/TiO₂ molar ratio is set 2/3, as through trial and error this ratio was found to produce a

Experimental Methods

linear relationship for viscosity in terms of alkali versus earth alkaline contents (at least according to FactSage). In combination with the observed liquidus temperature lines, a suitable area for new slag composition is defined. The chemical compositions are listed in Table A1 of Appendix A.

Figure 15. Liquidus temperatures and viscosities at 1300 °C for slags within the system Na₂O-K₂O-CaO-MgO-TiO₂-SiO₂

The chemical composition at point 24 in Figure 15 (serialized as E-2018-A002) has a melting point of 1160 °C and a viscosity of 3 poise at 1300 °C according to FactSage. Because the composition of A002 resembles a commercial soda lime glass, this system is called the soda-lime silicate slag system in this thesis.

With the introduction of Al_2O_3 , B_2O_3 , FeO, and MnO into the chemical system as molar ratios to SiO₂, further chemical compositions are calculated using FactSage based on E-2018-A002 to all have melting point at 1160 ± 1 °C, and viscosity of 0.299 ± 0.001 PaS at 1300 °C. For example, when alumina is introduced into the system, the T_m and viscosity of the slag at 1300 °C rises, which is brought down by adding N and K at a molar ratio of 3. Adding MgO and TiO₂ at a molar ratio of 2/3 decreases viscosity but increases T_m, which allows the new compositions to have the same T_m and viscosity according to FactSage.

3.3.2. High-alkaline boroaluminate slag system

In this system, alumina still has an effect in increasing viscosity and melting point of the glass. Therefore the starting point for generating a slag composition is chosen where the alumina content is at a minimum. The MgO:B₂O₃:Al₂O₃ molar ratio is 4:5:1. The optical basicity of this composition is 0.530. Therefore, this is a nonbasic slag. According to FactSage, the viscosity of such a melt at 1300 °C is already quite low at just above 4.5 poise, and T_m is only 1256 °C.

Similar to the soda-lime system, other oxides such as Na₂O, K₂O, CaO, TiO₂, and SiO₂ are introduced to the system to bring the viscosity and T_m down to meet the requirements. In FactSage calculation, T_m can be brought down by substituting MgO with CaO mole for mole until the paragenesis of Mg₂B₂O₅ is no longer possible, and the composition falls within the primary field of MgB₄O₇. The substitution of MgO with CaO increases the optical basicity of the slag. However, the slag remain nonbasic, so the GFA and crystallization tendency are unlikely to be affected negatively.

Since B₂O₃ is a rather pricy raw material, it is desirable to substitute it with other cheaper network former. Alumina is not a viable candidate as this would move the composition away from the viscosity minimum. Silica is a great candidate as this would make the composition shift from alkaline rich boroaluminate glass to borosilicate glass as shown in Figure 10. The main chemical composition of the system is composed of (C+M):(B+S):A with a molar ratio of 4:5:1. This gives a basic to nonbasic oxide molar ratio of 2:3. Therefore in this case the alumina acts as a network modifier.

For lowering viscosity Na₂O and K₂O are considered. Calculating with FactSage, the alkali mixing effect is found to be not so pronounced like in the soda lime slag system. Therefore for the simplicity of the chemical system K₂O is not included in this chemical system, and only Na₂O is used to decrease viscosity. The basic to nonbasic oxide molar ratio of 2:3 is kept unchanged by the addition of TiO₂, which also lowers optical basicity. Due to this system being nonbasic, the nepheline discriminator is always observed.

3.4. Testing methods

The compositions showing the least degree of crystallization during quenching are selected for comprehensive testing on its viscosity and melting point, with rheometer, DTA, and FCT. If the viscosity and melting point of the slag meet the requirements, SHTT is conducted to construct the TTT diagram. Microscopy and XRD are conducted to identify the phase formation from FCT. The experimental flowsheet is shown in Figure 16.

3.4.1. Sample preparation

The raw materials used are of high purity. The alkalis are in the form of carbonates. The slag compositions from FactSage are converted from moles to weight fractions. The weight of each raw material for the sample is calculated based on its purity and LOI due to CO₂. The powders are grinded and homogenized in a mill. For quenching test it is heated to 1400 °C in platinum crucibles for 15 minutes, then quenched on an iron plate of room temperature. The GFA of the quenched slag is visually evaluated by observing how much of its volume has crystallized. Slags with high GFA are milled to fine powder for subsequent testing.

3.4.2. Rheometer

A rotary rheometer is used to measure the viscosity of the slag and identify its breaking temperature. The Anton Paar FRS 1800 rheometer used is of the concentric cylinder type. For each trial, 34 g of post-quenching slag sample is loaded into a corundum crucible. The sample is heated to 1400 °C with the maximum heating rate. At 1400 °C the temperature is maintained for 15 min to homogenize the melt. Then the rotor is immersed into the melt, and the rotation speed is set to 7.21 rpm. Once the rheometer gets a consistent torque measurement from the melt, the sample is cooled with 5 K/min, and measurement values are recorded until the torque reaches 0.1 Nm. The viscosity of the sample is evaluated using the following relation:

$$\mu = \frac{M}{n} * K \tag{30}$$

where M is torque in N•m, n is the rpm, and K is a correction factor. For analysis the decadic logarithm of viscosity is plotted against the reciprocal of the decadic log of temperature, and T_{br} can be determined using the method prescribed in Figure 3. Viscosity at 1300 °C is discerned from the obtained tabulated values.

3.4.3. Simultaneous thermal analysis

Simultaneous thermal analysis is used to determine the exothermal or endothermal effects taking place in a sample during heating and cooling in dependence of temperature, e.g. the liquidus or the crystal formation. The DTA apparatus used is Netzsch STA 449 F3. For each measurement, 100 mg of quenched slag is loaded for the test; an empty crucible is inserted as reference. Heating is conducted at 20 K/min until the temperature reaches 1400 °C. Then the furnace is cooled at 10 K/min to room temperature. The weight change of the slag is recorded during the experiment in order to investigate possible evaporation and therefore a modification to the chemical composition of the slag.

3.4.4. Furnace crystallization test

Furnace crystallization test is used to reduce the specific surface of the slag compared to the DTA. A further advantage is the possibility to investigate the sample after cooling to room temperature microscopically. Twenty-seven grams of quenched slag sample is weighted into a platinum crucible. A thermocouple is inserted into the slag sample to measure its temperature. Heating is conducted at 5 K/min until the temperature reaches 1350 °C. After a dwell time of 15 min at maximum temperature, the furnace is cooled at 10 K/min to room temperature. The inert reference material used for the FCT is corundum. The principle behind the measurement is rather similar to DTA. The control of the temperature by the furnace is not as accurate as DTA by comparison. However, FCT results are reliable as there is less severe material loss in the case where the slag has high alkali or B₂O₃ contents.

The obtained solidified sample is cut in half. The half with the platinum wire is made into a polished section, since the crystallization around the wire is of interest. It is used for reflected light microscopy and SEM. The other half of the sample is milled for XRD measurement.

3.4.5 Mineralogical Investigations

The crystalline phases of the slag are analyzed using XRD after grinding the slag to analytical fineness. Based on the X-ray pattern, the mineralogical phases are identified. However, XRD could not measure accurately trace mineral phases. The presence of glass phase is indicated by an increase in the background.

From the polished section, at least two representative areas are selected and images of different magnifications were recorded with the reflected light microscope. These were then investigated with the scanning electron microscope, including energy dispersive X-ray spectroscopy. Together with the XRD results the mineralogical composition of each sample can be obtained. The representative SEM images give an assessment of the major and minor phases.

3.4.6. Single hot thermocouple technique

For slags with satisfactory results from rheometer, FCT, and DTA, TTT diagrams are constructed using SHTT. The slag is quenched, milled, and pressed into a thin section for sample preparation. A U-shaped platinum wire is inserted into the furnace chamber of the SHTT and heated to 1300 °C. A suitable samples mass is positioned onto the wire. After total liquefaction it is stretched with a special stretching device within the U-shaped wire and then quenched to 700, 800, 900, and 1000 °C respectively. It is assumed that the nose temperature is located between 800 and 900 °C. Therefore, compositions showing a very rapid crystallization rate at 700 and 1000 °C are discarded from further testing. A camera is used to take photos during the testing. These are analyzed in order to obtain the crystalline fraction

of the slag area in dependence on the experimental time. For each investigated temperature, based on the crystalline area, the time for 0.5, 50, and 95% crystallinity, respectively, is obtained. Mean values out of at least 3 measurements are calculated to construct the TTT diagram.

4. Results and Discussion

4.1. Soda-lime-silicate slag system

4.1.1. Quenching results and selection of compositions

The composition at point 24 in Figure 15 exhibits high GFA from its quenching test (Figure 18a). The quenched slag is glassy exhibiting no devitrification; it has a very faint pink color due to its TiO₂ contents. This composition, serialized as E-2018- A002, seems promising. Nevertheless, the effects of Al_2O_3 on the system is studied by introducing it into composition A002 at A/S molar ratios of 3/40, 6/40, and 7.5/40, while maintaining the same T_m and viscosity according to FactSage, in a series of compositions as listed in Table 9. The molar compositions are listed in Table B1 of Appendix B. The introduction of Al_2O_3 results in the increase in optical basicity, and therefore an increase in devitrification tendency. The quenching results of these compositions are shown in Figure 18.

slag serial	[wt%]	SiO ₂	CaO	Na ₂ O	K2O	MgO	TiO ₂	Al ₂ O ₃	Λth
E-2018-A002		39.22	31.39	11.53	5.84	3.03	8.99	0	0.707
E-2018-A003		33.69	26.73	14.34	7.13	3.48	10.34	4.26	0.725
E-2018-A004		29.09	23.07	15.53	7.86	4.29	12.76	7.86	0.736
E-2018-A005		27.39	21.73	16.24	8.05	4.68	13.20	8.71	0.741
E-2018-A008		32.97	28.30	12.95	6.56	3.78	11.24	4.20	0.724
E-2018-A009		32.72	30.08	12.35	6.26	3.63	10.80	4.16	0.726
E-2018-A010		33.27	25.23	14.02	7.09	4.07	12.09	4.23	0.721
E-2018-A015		29.21	20.92	16.27	8.24	4.52	13.42	7.43	0.734
E-2018-A016		28.08	19.72	16.86	8.54	4.76	13.71	8.84	0.741

Table 9. Compositions of soda-lime-silicate system with introduction of Al₂O₃

As can be seen in Figure 17, slag A005, A008, and A009 all exhibit low GFA. This is due to their C/S ratio being too high. C/S ratio needs to be decreased corresponding to AI_2O_3 contents if high GFA is to be maintained:

$$CaO_{(mol)} = \frac{6}{7}SiO_{2(mol)} - \frac{3}{5}Al_2O_{3(mol)}$$
(31)

Slag A010 (Figure 18g) and A015 (Figure 18h) both exhibit high enough GFA to warrant further investigation along with A002. They have A/S molar ratio of 0.075 and 0.015, respectively.

Figure 17. Quenched slags of a) A002, b) A003, c) A004, d) A005, e) A008, f) A009, g) A010, h) A015, and i) A016.

MnO and FeO are introduced into the chemical system at 0.4 or 0.8 wt% with A/S molar ratios being zero, 0.075, and 0.15. The compositions have the same T_m and viscosity as A002 according to FactSage, and are listed in table 10. The molar compositions are listed in Table B2 of Appendix B. MnO and FeO contents does not have an effect on optical basicity, as slags A002, A019, and A020 share the same A/S molar ratio of 0 and Λ_{th} of 0.707; as well as slags A010, A017, and A018 with A/S molar ratio of 0.075 and Λ_{th} of 0.721; so do slags A015, A021, and A022 with A/S molar ratio of 0.15 and Λ_{th} of 0.734. The quenched slags are shown in Figure 18. Their color is obsidian due to the MnO and FeO content. It could be observed from Figure 18c and 18d that MnO and FeO in the absence of Al_2O_3 significantly reduce GFA. Out of the compositions A018 clearly exhibits the highest GFA and is selected for further testing.

Table 10. Compositions of soda-lime-silicate system with introduction of FeO and MnO

slag serial	[wt%]	SiO ₂	CaO	Na2O	K2O	MgO	TiO ₂	FeO	MnO	Al ₂ O ₃	Λth
E-2018-A017		33.19	25.17	13.69	6.93	4.03	11.98	0.40	0.39	4.22	0.721
E-2018-A018		33.12	25.11	13.37	6.77	3.99	11.85	0.79	0.78	4.21	0.721
E-2018-A019		38.61	30.90	10.66	5.40	3.43	10.20	0.40	0.40	0	0.707
E-2018-A020		38.46	30.78	10.35	5.23	3.42	10.16	0.80	0.79	0	0.707
E-2018-A021		29.15	20.88	15.94	8.08	4.47	13.28	0.39	0.39	7.42	0.734
E-2018-A022		29.11	20.85	15.63	7.92	4.41	13.12	0.78	0.77	7.41	0.734

Figure 18. Quenched slags of a) A017, b) A018, c) A019, d) A020, e) A021, and f) A022.

 B_2O_3 is introduced into the soda-lime-silicate system at B/S molar ratio of 0.075 and 0.15 with A/S molar ratio being 0 and 0.075. The compositions have the same T_m and viscosity as A002 according to FactSage, and are listed in table 11. The molar compositions are listed in Table B3 of Appendix B. B_2O_3 has the effect of significantly reducing optical basicity, and therefore the compositions have high GFA. However, slags A035 (Figure 19c) and A036 (Figure 19d) exhibit low GFA due to C/S ratio being too high. This shows that B_2O_3 has the same effect on C/S ratio as Al_2O_3 if high GFA is to be maintained:

$$CaO_{(mol)} = \frac{6}{7}SiO_{2(mol)} - \frac{3}{5}(Al_2O_{3(mol)} + B_2O_{3(mol)})$$
(32)

The quenched slags of A033, A039, and A040 exhibit high GFA showing no devitrification tendency. Compositions A033 and A040 are selected for further testing.

slag serial	[wt%]	SiO ₂	CaO	Na ₂ O	K ₂ O	MgO	TiO ₂	Al 2 O 3	B 2 O 3	۸th
E-2018-A033		32.61	23.35	14.48	7.33	3.84	11.41	4.15	2.83	0.707
E-2018-A034		32.48	24.63	14.04	7.10	3.73	11.07	4.13	2.82	0.708
E-2018-A035		32.28	26.43	13.40	6.78	3.57	10.62	4.11	2.80	0.710
E-2018-A036		32.10	27.81	12.93	6.55	3.45	10.25	4.09	2.79	0.711
E-2018-A039		37.95	28.78	11.77	5.96	3.08	9.16	0	3.30	0.690
E-2018-A040		37.23	26.66	12.27	6.21	2.81	8.35	0	6.47	0.675

Table 11. Boron-containing compositions of soda-lime-silicate system

Figure 19. Quenched slags of a) A033, b) A034, c) A035, d) A036, e) A039, and f) A040.

In summary, the chemical compositions showing good GFA and moving onto further testing are shown in Table 12.

slag serial	[wt%]	SiO ₂	CaO	Na2O	K2O	MgO	TiO2	FeO	MnO	Al ₂ O ₃	B2O3	Λth
E-2018-A002		39.22	31.39	11.53	5.84	3.03	8.99	0	0	0	0	0.707
E-2018-A010		33.27	25.23	14.02	7.09	4.07	12.09	0	0	4.23	0	0.721
E-2018-A015		29.21	20.92	16.27	8.24	4.52	13.42	0	0	7.43	0	0.734
E-2018-A018		33.12	25.11	13.37	6.77	3.99	11.85	0.79	0.78	4.21	0	0.721
E-2018-A033		32.61	23.35	14.48	7.33	3.84	11.41	0	0	4.15	2.83	0.707
E-2018-A040		37.23	26.66	12.27	6.21	2.81	8.35	0	0	0	6.47	0.675

Table 12. Soda-lime-silicate slags selected for further testing

4.1.2. Viscosity and breaking temperature

The viscosities at 1300 °C and dynamic T_{br} at cooling rate of 5 K/min of the slags listed in Table 12 are shown and summarized in Figure 20, which are compared to two CaF₂-containing common industrial slags. It could be seen that the T_{br} 's of the tested compositions are reasonably close to those of the industrial slags. However, a sharp increase in viscosity at temperatures below T_{br} often indicates high crystallization tendency. From this perspective only composition A040 exhibits a similar viscosity profile as the industrial slags. Overall it could be observed that Al_2O_3 -containg slags have relatively high T_{br} associated with high Λ_{th} , while boron-containing ones have relatively low T_{br} associated with low Λ_{th} .

In terms of viscosity, FactSage has under-predicted the viscosity of the promising composition A002 by 33%. While according to FactSage all the tested compositions should have a viscosity of 3 poise at 1300 °C, the viscosities of A010 and A015 have decreased by about 1.3 poise compared to A002, due to them having A/S weight ratio of 0.125 and 0.25 respectively. In literature it was suggested that a viscosity minima could be expected around A/S weight ratio of 0.1 (Figure 12) [135]. So the composition of A010 is relatively close to that minima. The

viscosity of A015 is kept similar to that of slag A010 due to the addition of alkalis and TiO_2 despite doubling the A/S ratio. This shows that the composition prediction method for the CAS system shown with the help of Figure 15 is a valid one.

Figure 20. Viscosity of E-2018-A002 in dependence of temperature

The viscosity of slag A018 at 1300 °C is 1.0 poise, which is the only tested slag that has lower viscosity than the industrial slags. FactSage has over-predicted the viscosity by 200 %. The entropic consideration as prescribed in equation 6 could explain the low viscosity measured. Slag A018 has almost the exact composition as slag A010 except for the addition of 0.8 wt% of MnO and FeO. Therefore, the decrease in viscosity has not been expected to be this drastic. According to literature, for silicate melts the drop in viscosity was expected to be around 0.4-0.6 poise for adding two oxides at low percentages [33]. It would be interesting to further investigate whether small percentage contents of other intermediate basic oxides would have similar effects on viscosity.

The boron-containing slags A033 and A040 have viscosities of 2.57 and 2.21 poise respectively, which satisfy the requirements. According to literature the most cost-effect B_2O_3 content range for reduction in viscosity is between 1 and 4.4 wt% [36], of which the A040 exceeds. It is likely that FactSage under-predicts the viscosity of slags in this chemical system as boron content increases.

The viscosity results showed that FactSage has been inaccurate in its prediction for this NCAS system, making using its calculation as experimental control not very reasonable. This is perhaps due to the viscosity models utilized being not entirely suitable for this chemical system.

4.1.3. DTA and FCT

The chemical compositions of the FCT specimens were measured with SEM through analysis by area scans. Then the mean value was calculated and the results compared to the original compositions. There were hardly any discrepancies (Table D1, Appendix D). Therefore the slags are chemically stable. Nevertheless, this method is not suitable for accurately measuring the boron contents of the sample.

The DTA result for slag A002 is shown in Figure 21 and 22. The DTA results for the the other slags are presented in Appendix C.

In Figure 21, the heating curve shows that as the glassy slag is heated up, a series of four detectable phase changes take place, which indicate the devitrification of the slag. The nucleation maxima are at lower temperature than the crystallization maxima, which facilitates

the devitrification process. It shows that at 1161 °C the sample is totally liquefied. This corresponds very well with the FactSage calculation of 1160 °C for the melting point. In Figure 22, the cooling curve shows that the onset of crystallization is 1006 °C, and the local minimum indicating the precipitation of the main phases is at 968 °C. There is no material loss indicated, so the sample is chemically stable. The FCT result for A002 is shown in Figure 23. It corresponds reasonably well with the DTA result, showing that the main phase precipitates at 1019 °C.

For slag A010, which has a molar A/S ratio of 0.075, solid phases are still present at 1339 °C, which does not meet the requirement of a liquidus temperature below 1260 °C. The cooling curve shows two local minima at 1116 and 875 °C respectively. This is corresponded by the FCT result (Figure D1, Appendix D), which shows the main phases precipitating at 1104 and 882 °C respectively. This suggests that the introduction of alumina has made the mineralogical composition of A010 more complex than A002.

For slag A015, which as an A/S molar ratio of 0.15, the last solid phase is detected at 1327 °C, which is similar to that of A010. There are three local minima indicating the precipitation of phases in the cooling curve. The first two minima are at 1069 and 884 °C respectively, which are similar to those found in A010. A third minimum is at 801 °C. This suggests that A010 and A015 share some main phases, but the rise in A/S molar ratios has made the mineralogical composition of A015 more complex with additional minor phases. The FCT result is shown in Figure D2 of Appendix D. It shows only one local minimum at 1075 °C, which suggests that the first minimum in the DTA cooling curve indicates the precipitation of main phases. This is not unreasonable because the exothermal heat zones are considerably smaller compared to the one at higher temperature, and therefore might not be detectable to FCT.

For slag A018, which has the nearly same chemical composition of A010 except for the addition of 0.8 wt% of MnO and FeO, the last crystalline phase is detected at 1341 °C, and the cooling curve has two local minima at 1089 and 888 °C respectively. The cooling curves of A010 and A018 are remarkably similar. This suggests that small percentages of MnO and FeO content do not have a significant impact on the main phases precipitated, which is expected. Nonetheless, they may have an effect on crystallization, suggested by the intensities of the peaks, especially at lower temperature. The FCT curve is shown in Figure D3 of Appendix D. It shows two local minima at 1061 and 845 °C respectively.

According to the DTA result of slag A033, which has both A/S and B/S molar ratios at 0.075, the last crystalline phase is detect at 1278 °C. Three local minima are present in the cooling curve. Two of these are at 1057 and 880 °C respectively, which are somewhat similar to those found in A010 and A015. A third minimum is found at 910 °C. This suggests that A010, A015, and A033 share some or all of the main phases, but the minor phases may be different. The FCT result is shown in Figure D4 of Appendix D, which shows two local minima at 910 and 810 °C respectively. There is discrepancy between the DTA and FCT, perhaps due to a 6 wt% loss in DTA while the FCT sample likely being chemically stable.

According to the DTA result of Al₂O₃-free slag A040, which has a B/S molar ratio of 0.15, the last of the crystal phase is present up to 1188 °C, which is satisfactory for the problem definition. The heating curve shows three small peaks at 155, 184, and 235 °C. These are likely volatile losses, which account for about 4 wt% of the sample. Therefore the true last solid temperature of the slag might be lower. There is a single local minima in the cooling curve at 953 °C, and the entire cooling curve is remarkably similar to that of slag A002. A chemical analysis has been performed on its FCT specimen, showing a composition of 38.05 % SiO₂, 27.47 % CaO, 3.19 % MgO, 8.99 % TiO₂, 12.56 % Na₂O, 4.96 % K₂O, and 5.32 % B₂O₃. This is very close to the original composition, and has the same C/S ratio. This shows that the boron content is chemically stable in slag A040 at least for the FCT sample.

Overall it could be observed that in DTA during heating, Al_2O_3 -containg slags form crystalline phases that are still detectable above 1300 °C. They also likely have relatively high $T_{crys, onset}$ associated with high Λ_{th} . Boron-containing slags have more favorable melting behavior, and likely have relatively low $T_{crys, onset}$ associated with low Λ_{th} .

4.1.4. XRD and SEM

The mineralogical compositions of the FCT specimens were investigated with XRD and SEM. The XRD result for A002 is shown in Figure 24. The FCT specimen contains glassy phase as indicated by the background concave. The major phases detected are perovskite (CaTiO₃), calcium titanium silicate (Ca₂TiSiO₆), bredigite (Ca₇MgSi₄O₁₆), and combeite (Na₂Ca₂Si₃O₉). Perovskite is one of the major phases expected according to literature study. The paragenesis of Ca₂TiSiO₆ is likely due to insufficient amount of Ti. It is unknown if perovskite and Ca₂TiSiO₆ share the same Bravais lattice. The presence of perovskite is expected as there is no alumina content to shrink its primary field. A polymorph of belite, bredigite, is detected, which is desirable as belite has a high T_m . Combeite belongs to the pyroxenoid group. This is of the same silicate group as CS, meaning perhaps that in this complex chemical system, its paragenesis has taken the stead of the high T_m phase CS, which is desirable. The XRD peaks of CS, C_3S_2 , and C_2S absolutely could not fit with A002.

A representative SEM image of the FCT specimen is shown in Figure 25. Five phases could be visually distinguished from colors and grain boundaries. All five distinguishable phases have significant presence in the representative image, and could be considered the main phases. According to the chemical composition, the phase marked 1 is a glassy phase; the visual appearances are that of smooth and relatively continuous bodies. A solid solution of Ca₂(Si,Ti)SiO₆ is marked with 2. A dark colored phase is NC₂S₃, marked with 3. The lightest colored phase is marked with 4, which is bredigite in chemistry. A dark colored phase, which is marked by 5, can be observed at the center of many bredigite crystal grains, but also next to phase 3. The chemistry of this phase is indicative of Ca₂SiTiO₆, making it similar to phase 2. Due to being found at the center of bredigite crystals, the crystal growth of phases 4 and 5 should involve a diffusion mechanism between the two. The differences in local diffusion driving force may explain the difference in chemistry between phase 2 and 5. The residual glassy phase contains about 0.5 wt% Al₂O₃, which likely came from impurities, while the other phases are alumina-free. It would be interesting to investigate if doping the composition of A002 with small percentages of Al₂O₃ would actually increase the amount of glassy phase.

1..... glassy phase

3..... Na₂Ca₂Si₃O₉

5..... Ca₂TiSiO₆

2..... Ca₂(Si,Ti)SiO₆

4..... bredigite

The XRD result for A010 is shown in Figure 26. The pattern is indicative of no residual glassy phase. The main phases detected are perovskite, C₂S, and combeite. The paragenesis of C₂S is particularly undesirable, as it has a T_m of 2130 °C. This explains the fact that last solid was observed at above 1300 °C during heating in DTA, and the high T_{crys,onset} of composition A010. Minor phases detected include Na₂TiO₃ and kalsilite.

The representative SEM image of the FCT specimen for A010 is shown in Figure 27. Five phases could be discerned visually. Two phases exhibit clear dendritic crystal growth pattern in their paragenesis. Of these two the white colored phase, marked by 1, is perovskite having up to one-third of Ti substituted by Si. Therefore this is not a true perovskite phase, but probably a phase in between perovskite and sphene (CaTiSiO₅). However, the XRD peaks agree with perovskite more than with sphene. The light grey phase, which have needle-like crystals, are mostly sandwiched between the perovskite crystals. This phase, marked by 2, is C₂S, which is present in a relatively pure form. The mechanism of crystal growth likely involves the crystallization of the C_2S phase first. TiO₂ diffuses out of C_2S , and perovskite crystallizes, which is followed by the diffusion of Al_2O_3 out of both C_2S and perovskite. The grey phase, marked by 3, represents Na₂TiO₃ with a significant substitution of Na by K. An interstitial phase appears dark grey, marked by 4, is a modification of combeite with significant substitution of Na by K with the approximate formula of Na1.5K0.5CaSi2O6. This N/K ratio happens to be the designed N/K ratio for minimizing viscosity (section 3.3.1). Kalsilite, marked as 5, is present in small amount with crystal grain sizes below 10 micron. It could be observed that kalsilite crystals are mostly embedded within larger Na₂TiO₃ crystals, which suggests that kalsilite precipitates due to cooling out of Na₂TiO₃ due to the decreasing solubility.

Figure 27. Representative SEM image of E-2018-A010, the phases as marked are:

1..... perovskite

2..... Ca₂SiO₄

- 3..... Na₂TiO₃
- 5..... kalsilite

4..... combeite

It was discussed in section 4.1.2 that according to DTA slag A010 and A015 would have different phases due to their A/S molar ratios being 0.075 and 0.15 respectively. This is **Results and Discussion** 45

confirmed by both the XRD result shown in Figure 28 and the representative SEM images shown in Figure 29. Combeite, a major phase in A010, could not be found in the FCT specimen of A015. However, the undesirable phase C₂S is still a main phase. The XRD pattern is indicative of no glassy phase present.

Figure 29. Representative SEM image of E-2018-A015, the phases as marked are:

1..... perovskite

3..... kalsilite

- $2.....\,Ca_2SiO_4$
- 4..... sodium magnesium aluminum silicate

5..... Na₂CaSiO₄

6..... Na₂Ca₂Si₂O₇

From Figure 29, similar dendritic growth of perovskite (marked as 1) and C₂S (marked as 2) as seen in slag A010 was observed. However, the crystal sizes are considerably smaller compared to A010. This suggests that the crystallization process takes place at lower temperatures, as the material transport is reduced and results in smaller crystal sizes. This is confirmed by the DTA result. Four further phases could be distinguished, all of which have grain sizes below 10 microns. The phase with the darkest color, marked as 3, is kalsilite. A sodium magnesium aluminum silicate phase is marked as 4. Two phases with similar appearance in the SEM image fill the interstitial spaces. The slightly darker-colored phase, marked as 5, is Na₂CaSiO₄; the lighter colored crystal, marked as 6, is Na₂Ca₂Si₂O₇. Within the sample perovskite encircles the smaller dendritic crystals almost entirely.

It was discussed in section 4.1.2 that according to DTA slag A010 and A018 would have similar main phases due to their A/S molar ratios both being 0.075. This is confirmed by both the XRD result shown in Figure 30 and the representative SEM image shown in Figure 31. The XRD pattern is indicative of no glassy phase present.

Figure 30. XRD result from FCT specimen of E-2018-A018

Also in this sample perovskite was formed in contact with the C_2S crystals. Na_2TiO_3 and combeite are further phases, which are present in lesser amounts and smaller crystals. A minor phase, kalsilite, is marked as 5, which appears at the center of Na_2TiO_3 crystals. These phases were also found in the A010 FCT specimen.

Three phases not found in A010 are minor phases whose paragenesis is due to the MnO and FeO contents. One relatively more frequently formed phase, marked as 6, was an interstitial phase between large Na₂TiO₃ and combeite crystals. This phase is K₂MgSiO₄. A phase with needle-like crystals, marked as 7, is sanidine (KSi₃AlO₈), which is very undesirable as it greatly increases the devitrification tendency of the solidified melt [134, 135]. One minor phase with similar color to KMS is merwinite (Ca₃MgSi₂O₈), marked as 8. The phase bredigite found in A002, which has a chemical composition between merwinite and C₂S, could absolutely not be detected in this sample. It is unlikely that the paragenesis of these minor phases play a major

role in the crystallization process, and A018 shares similar crystal growth mechanism with A010, as suggested by the DTA results.

Figure 31. Representative SEM image of E-2018-A018, the phases as marked are:

1 perovskite	2 Ca ₂ SiO ₄
3 Na ₂ TiO ₃	4 combeite
5 kalsilite	6 K ₂ MgSiO ₄
7 sanidine	8 merwinite

The XRD result of A033 is shown in Figure 32, which shows that the FCT specimen does not contain significant amount of residual glassy phase.

A representative SEM image of slag A033 is shown in Figure 33. The perovskite phase, marked as 1, encircles the other dendritic crystals almost entirely, similar to that of A015. It can be seen that the C_2S crystals are at the center of the perovskite crystals. The crystal grains are relatively small at below 20 microns, suggesting that the crystallization takes place at a relatively low temperature, which agrees with the FCT result showing a relatively low $T_{crys,onset}$. The phase NCS, marked as 3, is also a major phase in A033. According to its chemical composition, this phase has significant substitution of Na by K, which is due to the composition being designed to have an N/K ratio of 3. The phase combeite, marked as 4, is one of the minor phases. The phase kasilite, marked by 5, has very limited presence, and the crystal grains are below 2 microns.

Two rare interstitial phases are present. One is K₂MgSiO₄, marked as 6. This phase seems to be formed at the end of the crystallization process, because it is located between combeite and NCS, and does not show well defined crystal grains. The other phase is forsterite, marked as 7, has approximately a square-shape. Its crystal grains are small at below 2 microns. No boric binary or ternary phases have been detected. This suggests that boron has been partly implemented into the crystal structures of the aforementioned phases, but was below the detection limit of the equipment. The DTA result was indicative of boron evaporation, but the FCT result was not, which is likely due to lower specific sample surface.

Figure 33. Representative SEM image of E-2018-A033, the phases as marked are:

- 1..... perovskite
- 3..... Na₂CaSiO₄
- 5..... kalsilite
- 7..... forsterite

2..... Ca₂SiO₄ 4..... combeite

6..... K₂MgSiO₄

The XRD result for slag A040 is shown in Figure 34. A concave indicating the presence of significant glassy phase was obvious immediately after the FCT-test (Figure 35).

Figure 34. XRD result from FCT specimen of E-2018-A040

Figure 35. FCT sample of E-2018-A040

Figure 36a. Representative SEM image 1 of E-2018-A040, the phases as marked are:1..... main glassy phase2..... residual glassy phase

Figure 36b. Representative SEM image 2 of E-2018-A040, the phases as marked are:2..... residual glassy phase3..... perovskite4..... calcium titanium silicate5..... combeite

The presence of glassy phase in the FCT specimen is confirmed by the representative SEM image shown in Figure 36a. The main glassy phase with a continuous surface in the lower left corner, marked as 1, has the chemical composition of 7.5 wt% Na₂O, 3 % K₂O, 34 % CaO, 2 % MgO, 29.5 % SiO₂, 4.5 % TiO₂, and 19 % B₂O₃. SEM results indicate that this glassy phase is chemically homogeneous. The particle size of the glassy phase in the lower left corner is observed to be above 2 mm, indicating that slag AO40 likely has low devitrification tendency. Residual glassy phase embedded close to the crystallized slag is also found in Figure 35 and Figure 36, marked as 2. It has the molar chemical composition of 5.5 wt% Na₂O, 8.5 % K₂O, 21.5 % CaO, 6 % MgO, 26.5 % SiO₂, 3 % TiO₂, and 28 % B₂O₃.

The crystalline phases of A040 FCT specimen are marked in Figure 36b. The white phase is perovskite, marked as 3. The needle-like crystal phase is calcium titanium silicate, marked as 4. This is the main crystal phase, which is found in slag A002; it shows dendritic crystal growth. Perovskite grows on the surface of the calcium titanium silicate. A minor phase, marked as 5, is combeite, which has the darkest color. These crystalline phases are boron-free, which explains the high concentration of boron in the residual glassy phase. The dendritic growth of the crystals no longer involves C₂S, which is desirable. The absence of C₂S is likely the main reason for the low crystallization tendency.

Overall it could be observed that the presence of C_2S is the most detrimental factor for increasing crystallization tendency. It appears that the paragenesis of C_2S is connected to the presence of Al_2O_3 , even if the molar A/S ratio is as low as 0.075. Optical basicity is a less influential factor, as slags A002 and A033 have the same Λ_{th} , but A033 has high crystallization tendency due to its Al_2O_3 contents. However, it still plays a role, as slag A015 likely exhibits more rapid crystallization than A010 due to its higher Λ_{th} .

4.1.5. SHTT and TTT-diagram

In the SHTT test the slag of composition A002 is observed to be completely liquidus at above 1130 °C, which agrees with the DTA result. The TTT-diagram for slag A002 is shown in Figure 37. The nose temperature is between 900 and 850 °C. The time of onset of crystallization ($t_{0.5}$) at 900 °C is at 3.6 ± 0.8 sec, and t_{95} is 22 ± 3 sec, which are not remarkable in terms of low crystallization tendency. However, at 1000 and 750 °C, $t_{0.5}$ and t_{95} become magnitudes larger.

Figure 37. TTT diagram of E-2018-A002

The TTT-diagram for composition A040 is shown in Figure 38. The nose temperature is between 700 and 750 °C. The nose temperature is relatively low, which explains the relatively fine crystal grains in the A040 FCT specimen. At 700 °C, $t_{0.5}$ is 6.1 ± 1.3 sec, and t_{95} is 44 ± 13 sec. This represents a 2-fold decrease in crystallization tendency when compared to slag A002. This decrease is due to the significant decrease in optical basicity as B_2O_3 is introduced into the system.

For Al_2O_3 -containing slags, the crystallization process is observed to be rapid even at 700 and 1000 °C. This is probably due to the precipitation of C_2S crystals. It was observed, however, that slag A015 crystallizes the most rapid of all, possibly due to it having the highest optical basicity. Due to their rapid crystallization, it was unnecessary to construct TTT diagrams for these compositions. The last solids of slag A010, A015, and A018 are all observed during SHTT test to be dissolved at 1300 °C.

4.1.6. Summary for the soda-lime-silicate slag system

The effect of addition of Al₂O₃, B₂O₃, MnO and FeO on the proposed soda-lime-silicate slag system has been investigated. The results are certainly not conclusive, but some important information can be garnered. The properties of the investigated slags are summarized in Table 13.

clag	A/S	B/S	MnO and FeO	Λth	Tbr	last solid	viscosity at 1300 °C				
siag	mol/mol	mol/mol	wt%	[1]	°C	٥C	poise				
A002	0	0	0	0.707	1038	1161	4.48				
A040	0	0.15	0	0.675	953	1188	2.21				
A010	0.075	0	0	0.721	1148	1339	3.18				
A015	0.15	0	0	0.734	1116	1327	3.24				
A018	0.075	0	0.8	0.721	1157	1341	0.97				
A033	0.075	0.075	0	0.707	1152	1278	2.57				
slag		n	nineralogical con	npositio	n of FC1	specimen					
A002	glassy phas	se, bredigite	e, Ca2TiSiO6, Ca2(Ti,Si)SiO	6, NC2S	3					
A040	two glassy	phases, per	ovskite, Ca2TiSiC)6, comb	eite						
A010	perovskite,	C ₂ S, Na ₂ Ti	D₃, combeite in f	orm of N	la1.5K0.5	CaSi2O6, ka	lsilite				
A015	perovskite,	C2S, Na1.74	Mg0.79Al0.15Si1.06C	04 , NCS ,	NC2S2,	alsilite					
A018	perovskite,	C ₂ S, Na ₂ Ti	D₃, combeite, kal	silite, K2	MgSiO4	, sanidine,	merwinite				
A033	perovskite,	perovskite, C ₂ S, NCS, combeite, kalsilite, K ₂ MgSiO ₄ , M ₂ S									

Table 13. Properties of the investigated soda-lime-silicate slags

Slag A002 exhibits satisfactory properties, except for its viscosity at 1300 °C being too high. It shows low crystallization tendency, as evidenced by its FCT specimen containing residual glassy phase. The paragenesis of bredigite instead of C₂S is likely favorable to lowering crystallization tendency and T_m, as the compositions showing precipitation of C₂S all exhibit high crystallization tendency. The solidified slag does not exhibit dendritic growth pattern, and the crystal grains are of relatively small sizes, showing that the driving force of diffusion is relatively low. It would be worthwhile to alter the chemical composition of A002 to reduce its viscosity to achieve a satisfactory composition. The effects of the addition of other oxides on A002 are summarized in the following:

The addition of Al_2O_3 into this system has produced few desirable results. GFA is negatively impacted if the C/S ratio is not adjusted according to the alumina content as prescribed in equation 31. When compared to slag A002, slags A010 and A018 experience an increase of $T_{\rm br}$

by 110 °C, and an increase of temperature of last crystals by 180 °C, due to having an A/S molar ratio of 0.075. This is due to the formation of C_2S , which also results in significant increase in crystallization tendency, as evidenced by the dominant feature of dendritic growth of C_2S and perovskite in the FCT specimen of alumina-containing slags. However, the increase in A/S molar ratio from 0.075 to 0.15 does not appear to have a significant impact on T_m and T_{br} .

The one property favorably affected by the addition of Al_2O_3 is viscosity, as A010 and A015 have viscosity at 1300 °C reduced by about 1.2 poise compared to A002. However, this benefit is moot as alumina content must be reduced to the point that the crystallization of C_2S is not preferred. It would be interesting to investigate doping composition A002 with an A/S molar ratio of 1/80, which would result in an Al_2O_3 content of almost exactly 0.8 wt% (Table 15), to observe the mineralogy and whether a reduction in viscosity due to entropy considerations is possible.

The addition of MnO and FeO has no significant impact on optical basicity, which should mean that they have no significant impact on GFA. However, the addition of MnO and FeO in the absence of Al_2O_3 was found to negatively affect GFA. When acting as a network former, Al_2O_3 is known from literature study to have the effect of stabilizing the glass matrix, which could be the reason for this phenomenon.

MnO and FeO does not exhibit a notable effect on T_{br} and T_m , which is due to them not significantly altering mineralogy with only 0.8 wt% content. It was hypothesized that Mn and Fe would be incorporated into the lattices of major crystal phases as a solid solution. This was not the case however, and three minor phases including sanidine, are present in A018 while being absent in A010, although they are minor phases. It is not clear how this will affect the crystallization tendency of the slag, as the crystallization mechanism of A018 is dominated by C₂S-formation. However, sanidine of feldspar group is an indicator of high devitrification tendency according to literature [134, 135].

It would be interesting to dope slag A002 with 0.8 wt% of FeO, MnO, and Al_2O_3 to observe the change in viscosity and mineralogy. The addition of Al_2O_3 alongside FeO and MnO will result in high GFA, and the formation of sanidine should not be possible in an Al-deficient slag.

Slag A033 has similar composition to A010, and has a B_2O_3 introduced with a B/S molar ratio of 0.075. The boron content brings down the eutectic point of the composition. A significant reduction of 0.6 poise in viscosity at 1300 °C is experienced. GFA is negatively impacted if the C/S ratio is not adjusted according to the alumina content as prescribed in equation 32.

However, comparing A010 and A033, T_{br} has not been affected by the boron content. This is likely due to the crystallization mechanism still being dominated by the C₂S phase formation, which is caused by the alumina content. The dendritic growth of perovskite and C₂S is still dominant in the A033 FCT specimen.

Slag A002 and A033 have the same optical basicity at 0.707. However, A033 has higher crystallization tendency compared to A002. This suggests that optical basicity is a less important indicator of crystallization tendency compared to phase formation.

Slag A040 shows a reduction of viscosity from 4.48 to 2.21 poise at 1300 °C when compared to A002. The $t_{0.5}$ and t_{95} at respective nose temperatures are doubled, indication of a significant reduction in crystallization tendency. The nose temperature of slag A002 is between 850 and 900 °C, while for slag A040 it is between 700 and 750 °C. This suggests that the phases involved in the nucleation step of crystal growth are perhaps different. This is supported by the fact that the dominant crystals in A040 are the dendritic perovskite and Ca₂TiSiO₆. The undesirable phase C₂S is totally avoided, which results in low crystallization tendency. It is likely that as B₂O₃ content rises, the crystallization tendency would further decrease due to the drop in optical basicity. According to literature study the paragenesis of phases C₂BS and C₁₁BS₁₄ should have been possible in A040, as the FCT specimen has 5.3 wt% B₂O₃ content [109, 110].

4.2. High-alkaline boroaluminate slag system

4.2.1 Quenching results and selection of compositions

The proposed slag compositions within the high-alkaline boroaluminate slag system are listed in Table 14. For the molar compositions please refer to Table B4 in Appendix B. The quenched slags are shown in Figure 39, all of which exhibit high GFA, as no crystallization could be observed. The high GFA is likely due to the very low optical basicity of the compositions.

slag serial	[wt%]	SiO ₂	CaO	Na ₂ O	MgO	TiO ₂	Al 2 O 3	B 2 O 3	Λth
E-2018-A0123		0	15.36	0	14.19	0	15.36	54.49	0.541
E-2018-A0124		0	15.05	2.09	12.83	4.04	14.95	51.04	0.552
E-2018-A0125		0	13.70	4.12	12.03	7.97	17.30	44.88	0.559
E-2018-A0126		0	11.40	6.08	12.10	11.76	19.24	39.42	0.585
E-2018-A0130		8.76	15.37	2.71	12.46	5.24	14.86	40.60	0.567
E-2018-A0131		13.44	15.81	2.22	12.69	4.29	15.21	36.35	0.570
E-2018-A0132		17.68	15.42	2.92	12.63	5.64	15.00	30.72	0.580
E-2018-A0137		22.32	17.12	0	13.74	0	16.47	30.36	0.571
E-2018-A0138		26.37	17.14	0	13.89	0	16.57	26.03	0.576

Table 14. High-alkaline boroaluminate slag system

Figure 39. Quenched slags of a) A123, b) A124, c) A125, d) A126, e) A130, f) A131, g) A132, h) A137, and i) A138.

Although all the quenching results are promising, only compositions A124 and A138 are selected for further testing. The testing of the slag compositions has proved difficult. During FCT the melted slags have been observed to creep up the sides of the platinum crucible. The cooled FCT specimens were completely stuck to the crucible and could not be separated. Therefore polished sections have not been produced for A124 and A138. The rheometer test has not been carried out for fear of destroying the set up. The sample loaded onto the SHTT is seen to vaporize volatiles at a rapid rate, and meaningful TTT-diagrams could not be constructed.

4.2.2. DTA and FCT

The result of the DTA for composition A124 is shown in Figure D11 and D12 of Appendix D. The last solid is detected at 1024 °C, which is much lower than the FactSage prediction of 1160 °C. This deviation may be due to the considerable evaporation observed, which accounts for 18 wt% of the sample loaded. The retarded slag shows very low crystallization tendency in the cooling curve of DTA with no obvious local minima. Therefore there is no onset of crystallization temperature. This is expected due to the high boron contents. The FCT result is shown in Figure D6 of Appendix D. There is a local minimum at 602 °C during cooling. However, the FCT specimen was totally glassy post-cooling, so this local minimum is not indicative of crystallization.

The boron content of slag A138 is 26 wt%, about half of the boron content of A124. The boron content was replaced by silica. The result of the DTA experiment for A138 is shown in Figure D13 and D14 in Appendix D. Also for the sample, an intense evaporation was observed. According to the cooling curve, of the retarded sample there is a tiny minimum likely indicative of crystallization. The onset of crystallization temperature is 694 °C. However, no local minimum is observed in the FCT result shown in Figure D7 of Appendix D. The FCT specimen was visually totally glassy. The difference might be attributable to a 12 wt% sample loss during DTA due to evaporation.

In both cases, it seems that the slags remain chemically stable below 800 °C. If boron could not be harmful to product quality, it would make sense to investigate the slag after the evaporation of volatile components, since neither of the retarded slags showed any signs of crystallization.

5. Summary

The goal of this master thesis is to develop CaF_2 -free mould slag compositions having melting points below 1250 °C, a viscosity below 3 poise at 1300 °C, and relatively low crystallization tendency. Following results could be found for the investigated slags:

A boron-free composition (A002) within the soda-lime-silicate system has been found to be relatively satisfactory. Its chemical composition in wt% is 39.22% SiO₂, 31.39% CaO, 11.53% Na₂O, 5.84% K₂O, 3.03% MgO, and 8.99% TiO₂. Its T_m is 1161 °C, but its viscosity at 1300 °C is 4.48 poise. Its nose temperature is 900 °C, at which point $t_{0.5}$ is 3.6 ± 0.8 sec, and t_{95} is 22 ± 3 sec. Improvements are needed in regards to viscosity.

Alumina content at A/S molar ratio of 0.075 and 0.015 results in the paragenesis of C_2S as a major phase, which significantly raises the temperature where the last crystalline phases liquefies and also the crystallization tendency. Viscosity is significantly lowered at 1300 °C compared to A002.

The addition of small amounts of MnO and FeO did not affect the temperature of last solid, but the paragenesis of sanidine, merwinite, and K_2MgSiO_4 as minor phases is detected. The viscosity was significantly lowered. MnO and FeO seems to reduce GFA in the absence of Al_2O_3 .

 B_2O_3 content at B_2O_3/SiO_2 molar ratio of 0.075 significantly reduces viscosity and the temperature of last solid. The paragenesis of boron-containing phases is not detected.

A boron-containing composition within the soda-lime-silicate system has been found to satisfy the criteria. Its chemical composition in wt% is 37.23% SiO₂, 26.66% CaO, 12.27% Na₂O, 6.21% K₂O, 2.81% MgO, 8.35% TiO₂, and 6.47% B₂O₃. Its T_m is 1188 °C, and its viscosity at 1300 °C is 2.21 poise. Its nose temperature is 700 °C, at which point $t_{0.5}$ is 6.1 ± 1.3 sec, and t_{95} is 44 ± 13 sec. This mould slag may be used in the continuous casting of steel, if the boron content does not negatively affect steel quality due to possible redox reaction with alloying elements.

6. Outlook

The results from soda-lime-silicate system has shown some promising results. Development should focus on reducing the viscosity of slag A002 at 1300 °C, as this composition is B_2O_3 -free and exhibits relatively low crystallization tendency. Another focus should be on reducing the boron content of A040, as this composition has satisfied the requirements set out in the problem definition. The following slag compositions (molar compositions in Table B5, Appendix B) are proposed in order to find a more satisfying composition:

slag	[wt%]	SiO ₂	CaO	Na ₂ O	K2O	MgO	TiO ₂	FeO	MnO	Al ₂ O ₃	B2O3	Ath
A041		38.63	30.64	11.65	5.90	3.11	9.24	0	0	0.82	0	0.707
A042		38.46	30.51	11.01	5.58	3.03	9.01	0.80	0.80	0.80	0	0.707
A043		36.97	26.22	12.30	6.23	2.79	8.29	0	0	0.78	6.42	0.675
A044		37.07	26.55	11.47	5.81	2.80	8.31	0.78	0.77	0	6.44	0.675
A045		36.64	25.99	11.76	5.96	2.76	8.22	0.77	0.76	0.77	6.37	0.675
A046		37.53	27.41	12.19	6.18	2.83	8.42	0	0	0	5.44	0.680
A047		38.00	28.28	11.90	6.03	2.87	8.52	0	0	0	4.40	0.685

Slag A041 and A042 are developments of slag A002 with the same optical basicity as A002. A041 introduces Al₂O₃ at a small dosage of 0.8 wt% into A002, in order to examine whether the paragenesis of C₂S will take place, and if small amount of Al₂O₃ will lead to a significant reduction in viscosity due to entropy consideration. For A042, 0.8 wt% each of MnO, FeO, and Al₂O₃ are introduced into A002, in order to examine whether the reduction of viscosity as observed for A018 could be repeated, and to examine the effect of MnO and FeO on GFA and crystallization tendency. A successful composition would result in a boron-free slag in the soda-lime-silicate system.

If boron presents no negative impact on steel quality, further investigations into A040 may prove useful. Slag A043 to A045 are developments of slag A040 with the same optical basicity as A040. It would be interesting to compare the viscosities of these slags in order to investigate the effect of small contents of Al₂O₃, FeO, and MnO on A040. These three compositions are very similar to A040, so that they likely have similar mineralogical compositions and low crystallization tendency.

Slag A046 reduces the B/S ratio to 0.125. It has a basic to non-basic molar ratio of 1.025, making it a basic slag so that Ti acts as network former. It would be interesting to examine the changes in mineralogy and crystallization tendency compared to A040. In the literature study it was suggested that the optimum B_2O_3 content for reducing viscosity is up to 4.4 wt%. Slag A047 is designed to examine a slag with this particular boron content.

List of References

- 1. Wolf M.M., "Making, Shaping and Treating of Steel: Casting Volume", Association of Iron and Steel Engineers, 11th ed., (2003), Chapter 1, pp. 1-38.
- 2. Fredriksson H., Åkerlind U., "Materials Processing During Casting", Wiley, 1st ed., (2006), pp. 1-138.
- 3. Sahai Y., Emi T., "Tundish Technology for Clean Steel Production", World Scientific Publishing Company, 1st ed., (2007).
- 4. Thomas B.G., "Making, Shaping and Treating of Steel: Casting Volume", Association of Iron and Steel Engineers, 11th ed., (2003), Chapter 14, pp. 1-41.
- 5. Mills K.C., Fox A.B., Thackray R.P., Li Z., "Performance and Properties of Mould Fluxes", Ironmaking and Steelmaking, Vol. 32, No. 1, 2005, pp. 26-34.
- 6. Mills K.C., "Making, Shaping and Treating of Steel: Casting Volume", Association of Iron and Steel Engineers (AISE), Pittsburgh, 11th ed., (2003), Chapter 8, pp. 1-41.
- 7. Thomas, B.G., 2002. Modeling of the continuous casting of steel—past, present, and future. Metallurgical and materials transactions B, 33(6), pp.795-812.
- 8. Sridhar, S., Mills, K.C., Afrange, O.D.C., Lörz, H.P. and Carli, R., 2000. Break temperatures of mould fluxes and their relevance to continuous casting. Ironmaking & steelmaking, 27(3), pp.238-242.
- 9. Cho, J., Shibata, H., Emi, T. and Suzuki, M., 1998. Radiative heat transfer through mold flux film during initial solidification in continuous casting of steel. ISIJ international, 38(3), pp.268-275.
- Choi, S.Y., Lee, D.H., Shin, D.W., Choi, S.Y., Cho, J.W. and Park, J.M., 2004. Properties of F-free glass system as a mold flux: viscosity, thermal conductivity and crystallization behavior. Journal of non-crystalline solids, 345, pp.157-160.
- Cho, J.W., Emi, T., Shibata, H. and Suzuki, M., 1998. Heat transfer across mold flux film in mold during initial solidification in continuous casting of steel. ISIJ international, 38(8), pp.834-842.
- 12. Cruz, A., Chavez, F., Romero, A., Palacios, E. and Arredondo, V., 2007. Mineralogical phases formed by flux glasses in continuous casting mould. Journal of materials processing technology, 182(1-3), pp.358-362.
- 13. He, S.P., Huang, Q.Y., Zhang, G.X., Lu, Y.J. and Qian, W.A.N.G., 2011. Solidification properties of Cao-Sio2-Tio2 based mold fluxes. Journal of Iron and Steel Research, International, 18(7), pp.15-52.
- 14. Zhou, L., Wang, W., Lu, B., Wen, G. and Yang, J., 2015. Effect of basicity and B2O3 on viscosity, melting and crystallization behaviors of low fluorine mold fluxes for casting medium carbon steels. Metals and Materials International, 21(1), pp.126-133.
- Romo-Castañeda, J., Cruz-Ramírez, A., Romero-Serrano, A., Vargas-Ramírez, M. and Hallen-López, M., 2011. Thermodynamic modeling of mineralogical phases formed by continuous casting powders. Thermochimica acta, 512(1-2), pp.129-133.
- 16. Bezuidenhout, G.A., 1999. The effect of alumina pick-up on mould flux behaviour in continuous casting.
- 17. Fruehan R. J., "The Making, Shaping and Treating of Steel", Association of Iron and Steel Engineers, Pittsburgh, 11th ed., (1998), pp. 79-104.

- Seo, M.D., Shi, C.B., Wang, H., Cho, J.W. and Kim, S.H., 2015. Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses. Journal of Non-Crystalline Solids, 412, pp.58-65.
- Görnerup, M., Hayashi, M., Däcker, C.Å. and Seetharaman, S., 2004, January. Mould fluxes in continuous casting of steel–characterization and performance tuning. In Proc. 7th Int. Conf. on Molten Slags, Fluxes and Salts, Cape Town (pp. 745-752). The South African Institute of Mining and Metallurgy.
- 20. Verlag Stahleisen, "Slag Atlas", Germany, 2nd ed., (October 1995).
- 21. Mills, K. Mold powder for continuous casting. IAS (Instituto Argentino de Siderurgia) seminar, San Nicolas, Argentina, August 2003.
- 22. Persson, M., Seetharaman, S., and Seetharaman, S. Kinetic Studies of Fluoride Evaporation from Slags. *ISIJ Int*, 2007, vol. 47, pp. 1711-1717.
- 23. Carli, R., Righi, C., and Giacobbe, A. Mold fluxes fluoride content, some technological considerations. *13th IAS seminar*.
- RUSNÄKOVÄ, V., Kijac, J., Grimplini, G. and RUSŇÁK, G., 2010. ANALYSIS OF SLAG IN MOLD UNDER STANDARD CONDITIONS AND IN CASE OF STICKER TEMPERATURE ALARM OCCURENCE. ACTA METALLURGICA SLOVACA, 16(3), pp.172-180.
- 25. Fox, A.B., Mills, K.C., Lever, D., Bezerra, C., Valadares, C., Unamuno, I., Laraudogoitia, J.J. and Gisby, J., 2005. Development of fluoride-free fluxes for billet casting. ISIJ international, 45(7), pp.1051-1058.
- 26. Kim, G.H. and Sohn, I., 2012. Influence of Li2O on the viscous behavior of CaO–Al2O3–12 mass% Na2O–12 mass% CaF2 based slags. ISIJ international, 52(1), pp.68-73.
- 27. Saraswat, R., Maijer, D.M., Lee, P.D. and Mills, K.C., 2007. The effect of mould flux properties on thermo-mechanical behaviour during billet continuous casting. ISIJ international, 47(1), pp.95-104.
- Wang, Y., Sakamaki, T., Skinner, L.B., Jing, Z., Yu, T., Kono, Y., Park, C., Shen, G., Rivers, M.L. and Sutton, S.R., 2014. Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5, p.3241.
- 29. Zhang, Z., Wen, G., Tang, P. and Sridhar, S., 2008. The influence of Al2O3/SiO2 ratio on the viscosity of mold fluxes. ISIJ international, 48(6), pp.739-746.
- 30. Kalisz, D., 2014. Modeling physicochemical properties of mold slag. Archives of Metallurgy and Materials, 59(1), pp.149-155.
- 31. Bezuidenhout, Gert Adrian. "The effect of alumina pick-up on mould flux behaviour in continuous casting." (1999).
- 32. Jiang, Z.H. and Zhang, Q.Y., 2014. The structure of glass: A phase equilibrium diagram approach. Progress in Materials Science, 61, pp.144-215.
- 33. Le Losq, C. and Neuville, D.R., 2017. Molecular structure, configurational entropy and viscosity of silicate melts: Link through the Adam and Gibbs theory of viscous flow. Journal of Non-Crystalline Solids, 463, pp.175-188.
- Brandaleze, E., Di Gresia, G., Santini, L., Martin, A., and Benavidez, E. Science and Technology of Casting Process. Chapter 7. Mould flux in steel continuous casting process. 2012, pp. 205-333.
- 35. Doweidar, H., 1990. Consideration of the boron oxide anomaly. Journal of materials science, 25(1), pp.253-258.
- 36. Dingwell, D.B., Knoche, R., Webb, S.L. and Pichavant, M., 1992. The effect of B2O3 on the viscosity of haplogranitic liquids. American Mineralogist, (5-6), pp.457-461.
- 37. Zhen, Y.L., Zhang, G.H. and Chou, K.C., 2014. Influence of Al2O3/TiO2 ratio on viscosities and structure of CaO–MgO–Al2O3–SiO2–TiO2 melts. ISIJ international, 54(4), pp.985-989.
- Limbach, R., Karlsson, S., Scannell, G., Mathew, R., Edén, M. and Wondraczek, L., 2017. The effect of TiO2 on the structure of Na2O-CaO-SiO2 glasses and its implications for thermal and mechanical properties. Journal of Non-Crystalline Solids, 471, pp.6-18.
- 39. Kukharenko, S.A., Shilo, A.E., Itsenko, P.P. and Kutsai, A.N., 2010. The effect of titanium dioxide on the structure of silicate multicomponent glasses. Journal of Superhard Materials, 32(6), pp.396-405.
- 40. LaCourse, W.C. and Cormack, A.N., 1991. Structural influences on the mixed alkali effect in glasses. Tran. Am. Crystallogr. Assoc, 27, pp.211-224.
- 41. Brook, H.C., Chadwick, A.V., Mosslemans, J.F.W. and Greaves, G.N., 1999. EXAFS study of a "mixed-alkali" type effect in sodium-calcium borate glass. Radiation Effects and Defects in Solids, 150(1-4), pp.403-407.
- 42. Müller, R., Zanotto, E.D. and Fokin, V.M., 2000. Surface crystallization of silicate glasses: nucleation sites and kinetics. Journal of non-crystalline solids, 274(1-3), pp.208-231.
- Iida, T., Sakai, H., Kita, Y. and Shigeno, K., 2000. An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ International, 40(Suppl), pp.S110-S114.
- 44. Iida, T., Sakai, H., Kita, Y. and Murakami, K., 2000. Equation for estimating viscosities of industrial mold fluxes. High Temperature Materials and Processes, 19(3-4), pp.153-164.
- 45. Urbain, G., 1987. Viscosity estimation of slags. Steel research, 58(3), pp.111-116.
- 46. Dong, X.J., Sun, H.Y., She, X.F., Xue, Q.G. and Wang, J.S., 2014. Viscosity and viscosity estimation model of fully liquid slags in TiO2–Al2O3–CaO–SiO2 and TiO2–Al2O3–CaO–SiO2–MgO systems with high TiO2 concentration and low mass ratio of CaO to SiO2. Ironmaking & steelmaking, 41(2), pp.99-106.
- 47. Mills, K.C. and Sridhar, S., 1999. Viscosities of ironmaking and steelmaking slags. Ironmaking & Steelmaking, 26(4), pp.262-268.
- 48. Mills, K.C., Chapman, L., Fox, A.B. and Sridhar, S., 2001. Round robin program for slag viscosity estimation. Scand. J. Metallurgy, 30(6), pp.396-404.
- 49. Kekkonen, M., Oghbasilasie, H. and Louhenkilpi, S., 2012. Viscosity models for molten slags.
- 50. Ray, H.S. and Pal, S., 2004. Simple method for theoretical estimation of viscosity of oxide melts using optical basicity. Ironmaking & steelmaking, 31(2), pp.125-130.
- 51. Shankar, A., Görnerup, M., Lahiri, A.K. and Seetharaman, S., 2007. Estimation of viscosity for blast furnace type slags. Ironmaking & steelmaking, 34(6), pp.477-481.
- 52. Kozmidis-Petrović, A.F., 2015. Dynamic fragility and reduced glass transition temperature as a pair of parameters for estimating glass forming ability. Journal of Non-Crystalline Solids, 417, pp.1-9.
- 53. Sridhar, S., Mills, K.C., Afrange, O.D.C., Lörz, H.P. and Carli, R., 2000. Break temperatures of mould fluxes and their relevance to continuous casting. Ironmaking & steelmaking, 27(3), pp.238-242.

- 54. Reddy, R., Chaubal, P., Pistorius, P.C. and Pal, U. eds., 2017. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes, and Salts 2016. Springer.
- 55. Marschall, I., Kölbl, N., Harmuth, H. and Xia, G., 2013. Investigation of continuous casting slag films sampled on site and comparison with laboratory results. Journal for Manufacturing Science & Production, 13(1-2), pp.103-114.
- 56. KIRCHER, V., MARSCHALL, I., KÖLBL, N. and HARMUTH, H., IMPACT OF AN INCREASE OF AI2O3, TiO2 and ZrO2 ON MOLD SLAG PROPERTIES.
- 57. Zhou, L., Wang, W. and Zhou, K., 2016. A Study of the Heat Transfer Behavior of Mold Fluxes with Different Amounts of Al2O3. Metals, 6(6), p.139.
- 58. Nabiałek, M., 2016. Reduced glass-transition temperature versus glass-forming ability in amorphous alloys. Archives of Metallurgy and Materials, 61(4), pp.1957-1962.
- 59. Hartlep, T. and Ripoll, J.F., 2008. Rayleigh-Bénard convection at Pr= 120 and Ra= 106 in a large aspect ratio domain. In Center for Turbulence Research Proceedings of the Summer Program (pp. 411-416).
- 60. Stewart, B., McDonald, M., Hopkins, M. and Burniston, R., 2009. Understanding the role of mould slag and slag film in surface quality of continuously cast semis. la metallurgia italiana, (7).
- 61. Gu, K., Wang, W., Wei, J., Matsuura, H., Tsukihashi, F., Sohn, I. and Min, D.J., 2012. Heattransfer phenomena across mold flux by using the inferred emitter technique. Metallurgical and Materials Transactions B, 43(6), pp.1393-1404.
- Diao, J., Xie, B. and Xiao, J.P., 2009. Experimental investigation into radiative heat transfer characteristics for mould fluxes containing transition oxides. Ironmaking & Steelmaking, 36(8), pp.610-614.
- 63. Guang-Hua, W.E.N., Hui, L.I.U. and Ping, T.A.N.G., 2008. CCT and TTT diagrams to characterize crystallization behavior of mold fluxes. Journal of Iron and Steel Research, International, 15(4), pp.32-37.
- 64. Zhou, L., Wang, W., Ma, F., Li, J., Wei, J., Matsuura, H. and Tsukihashi, F., 2012. A kinetic study of the effect of basicity on the mold fluxes crystallization. Metallurgical and materials transactions B, 43(2), pp.354-362.
- 65. Takeuchi, A., Kato, H. and Inoue, A., 2010. Vogel–Fulcher–Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transitions for metallic glasses in liquid and supercooled liquid states. Intermetallics, 18(4), pp.406-411.
- 66. Harmuth, H. Montanuniversitaet of Leoben. Fundamental of Glass Lectures 2015.
- 67. Stulov, V.V., 2018. Temperature Differences in the Mold of a Continuous-Casting Machine with a New Cooling System. Steel in Translation, 48(2), pp.78-81.
- 68. Baird, J.A., Van Eerdenbrugh, B. and Taylor, L.S., 2010. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. Journal of pharmaceutical sciences, 99(9), pp.3787-3806.
- 69. Semykina, A., Nakano, J., Sridhar, S., Shatokha, V. and Seetharaman, S., 2011. Confocal scanning laser microscopy studies of crystal growth during oxidation of a liquid FeO-CaO-SiO2 slag. Metallurgical and Materials Transactions B, 42(3), pp.471-476.

- Mills, K.C., Courtney, L., Fox, A.B., Harris, B., Idoyaga, Z. and Richardson, M.J., 2002. The use of thermal analysis in the determination of the crystalline fraction of slag films. Thermochimica acta, 391(1-2), pp.175-184.
- 71. Klug, J.L., Hagemann, R., Heck, N.C., Vilela, A.C.F. and Scheller, P.R., 2012. Fluorine-free mould slags for slab casting: utilisation of the hot thermocouple technique to build TTT diagrams. Tecnologia em Metalurgia e Materiais, 9(1), pp.30-37.
- 72. Köbl, N. Montanuniversitaet of Leoben. Laboratory testing method 2 Lectures 2015.
- 73. Kölbl, N., Harmuth, H., & Marschall, I. (2018). Modified DHTT Equipment for Crystallization Studies of Mold Slags. Metallurgical and Materials Transactions B, 1-11.
- 74. Elisabeth Bordes-Richard, Pierre Courtine. Optical basicity: a scale of acidity/basicity of solids and its application to oxidation catalysis.. J.L.G. Fierro. Metal Oxides: Chemistry and Applications, CRC Press LLC (Boca Raton, FL, United States), pp.319-352, 2006, Chemical Industries (Volume 108). <hal-00103593>
- 75. Cha, Y.J., Kim, J.H., Yoon, J.H., Lee, B.S., Choi, S., Hong, K.S., Jeong, E.D., Komatsu, T. and Kim, H.G., 2015. Synthesis, electronic polarizability and β-BaB2O4 crystallization in BaO– B2O3–TeO2 glasses. Journal of Non-Crystalline Solids, 429, pp.143-147.
- 76. Shankar, A., Görnerup, M., Lahiri, A.K. and Seetharaman, S., 2007. Estimation of viscosity for blast furnace type slags. Ironmaking & steelmaking, 34(6), pp.477-481.
- 77. Fukushima, T., Benino, Y., Fujiwara, T., Dimitrov, V. and Komatsu, T., 2006. Electronic polarizability and crystallization of K2O–TiO2–GeO2 glasses with high TiO2 contents. Journal of Solid State Chemistry, 179(12), pp.3949-3957.
- Rodriguez, C.P., McCloy, J.S., Schweiger, M.J., Crum, J.V. and Winschell, A.E., 2011.
 Optical basicity and nepheline crystallization in high alumina glasses (No. PNNL-20184; EMSP-RPT-003). Pacific Northwest National Lab.(PNNL), Richland, WA (United States).
- 79. Yang, Y., Wu, P., Men, G. and McLean, A., 2012. Hot Metal Desulphurization Using Waste Residues from the Aluminum Industry.
- Huang, X.H., Liao, J.L., Zheng, K., Hu, H.H., Wang, F.M. and Zhang, Z.T., 2014. Effect of B2O3 addition on viscosity of mould slag containing low silica content. Ironmaking & Steelmaking, 41(1), pp.67-74.
- Yang, J., Zhang, J., Sasaki, Y., Ostrovski, O., Zhang, C., Cai, D. and Kashiwaya, Y., 2016. Insitu Study of Crystallisation Behaviour of CaO–SiO2–Na2O–B2O3–TiO2–Al2O3–MgO– Li2O Fluorine-free Mould Fluxes with Different CaO/SiO2 Ratios. ISIJ International, 56(4), pp.574-583.
- Arefpour, A., Monshi, A., Khayamian, T., Saidi, A. Investigation of viscosity's effects on continuous casting of steel mould powders containing B₂O₃, Li₂O, TiO₂, Fe₂O₃, ZnO and Na₂O. *Engineering*, 2012, 4, pp. 435-444.
- Bezerra, M.C.C., Valadares, C.A.G., Rocha, I.P., Bolota, J.R., Carboni, M.C., Scripnic, I.L.M., Santos, C.R., Mills, K., Lever, D. Impact of fluorine free mould flux use on continuous casting process. 37th steelmaking seminar ABM, Porto Alegre, Brazil, 2006.
- Fox, A., Mills, K., Lever, D., Bezerra, M.C.C., Valadares, C.A.G., Unamuno, I., Laraudogoitia, J.L., Gisby, J. Devleopment of fluoride-free fluxes for billet casting. Contribution to XXXVI Steelmaking Seminar–International. May 2005. Vitória-ES-Brazil.

- 85. He, S., Long, X., Xu, J., Wu, T., Wang, Q. Effects of crystallization behavior of mould fluxes on properties of liquid slag film. *Ironmaking & Steelmaking*, Volume 39, 2012(8), pp. 593-598.
- Jiang, B., Wang, W., Sohn, I., Wei, J., Zhou, L., Lu, B. A kinetic study of the effect of ZrO2 and CaO/Al2O3 ratios on the crystallization behavior of a CaO-Al2O3-based slag system. *Metallurgical and Materials Transactions B*, June 2014, 45(3), pp. 1057-1067.
- Li, J., Kong, B., Gao, X., Liu, Q., Shu, Q. and Chou, K., 2018. Investigation the influences of B2O3 and R2O on the structure and crystallization behaviors of CaO–Al2O3 based F-free mold flux. *Metallurgical Research & Technology*, 115(3), p.304.
- 88. Li, J., Kong, B., Galdino, B., Xu, J., Chou, K., Liu, Q. and Shu, Q., 2017. Investigation on properties of fluorine-free mold fluxes based on CaO–Al2O3–B2O3 system. *steel research international*, 88(9), p.1600485.
- Li, Z., Sun, Y., Liu, L., Zhang, Z. Modification of the Structure of Ti-Bearing Mold Flux by the Simultaneous Addition of B₂O₃ and Na₂O. Metallurgical and Materials Transactions E March 2016, Volume 3, <u>Issue 1</u>, pp 28–36.
- 90. Marshall, I., Yang, X., Harmuth, H. Fundamental investigations for the design of fluorine free mold powder compositions. <u>Advances in Molten Slags, Fluxes, and Salts: Proceedings</u> of the 10th International Conference on Molten Slags, Fluxes and Salts, 2016, pp.299-306.
- Qi J, Liu C, Jiang M. Properties investigation of CaO–Al2O3–SiO2–Li2O–B2O3–Ce2O3 mould flux with different w (CaO)/w (Al2O3) for heat-resistant steel continuous casting[J]. Canadian Metallurgical Quarterly, 2017, 56(2): 212-220.
- Qi X, Wen G H, Tang P. Investigation on heat transfer performance of fluoride-free and titanium-bearing mold fluxes[J]. Journal of Non-Crystalline Solids, 2008, 354(52-54): 5444-5452.
- 93. Zhiming Yan, Ramana G. Reddy, Xuewei Lv, Zhengde Pang & Wenchao He (2018) Structure-based viscosity model development for titania aluminosilicate slags, Ironmaking & Steelmaking, DOI: 10.1080/03019233.2018.1510876
- Shin S H, Yoon D W, Cho J W, et al. Controlling shear thinning property of lime silica based mold flux system with borate additive at 1623 K[J]. Journal of Non-Crystalline Solids, 2015, 425: 83-90.
- 95. Wang, Z., Shu, Q., Chou, K. Viscosity of fluoride free mold fluxes containing B2O3 and TiO2. Steel research int. 84, 2013(8), pp. 766-776.
- 96. Wang W, Yan X, Zhou L, et al. Influences of Basicity and Li2O on the Properties of Fluorine-Free Mold Flux for the Casting of Medium Carbon Steels[J]. Metallurgical and Materials Transactions B, 2016, 47(2): 963-973.
- Q Wang, Y J Lu, S P He, K C Mills & Z S Li (2011) Formation of TiN and Ti(C,N) in TiO2 containing, fluoride free, mould fluxes at high temperature, Ironmaking & Steelmaking, 38:4, pp. 297-301, DOI: 10.1179/1743281210Y.000000007
- 98. Wen G, Sridhar S, Tang P, et al. Development of fluoride-free mold powders for peritectic steel slab casting[J]. ISIJ international, 2007, 47(8): 1117-1125.
- 99. Xin Q, Wen G H, Ping T. Viscosity and viscosity estimate model of fluoride-free and titanium-bearing mold fluxes[J]. Journal of Iron and Steel Research, International, 2010, 17(6): 6-10.

- 100. Xiong Y U, Wen G H, Ping T, et al. Characteristics of heat flux through slag film of mold slag used for high Al-TRIP steel casting[J]. Journal of Iron and Steel Research, International, 2010, 17(5): 11-16.
- 101. Yan W, Chen W, Yang Y, et al. Evaluation of B2O3 as replacement for CaF2 in CaO–Al2O3 based mould flux[J]. Ironmaking & Steelmaking, 2016, 43(4): 316-323.
- 102. Wang, L., Zhang, J., Sasaki, Y., Ostrovski, O., Zhang, C. and Cai, D., 2017. Stability of Fluorine-Free CaO-SiO 2-Al 2 O 3-B 2 O 3-Na 2 O Mold Fluxes. Metallurgical and Materials Transactions B, 48(2), pp.1055-1063.
- 103. Zhang, Z., Sridhar, S., Cho, J.W. An investigation of the evaporation of B2O3 and Na2O in F-free mold slags. ISIJ International, 2011(51), No.1, pp. 80-87.
- 104. Zhang, Z., Li, J., Liu, P. Crystallization behaviour in Fluoride-free mold fluxes containing TiO2/ZrO2. Journal of Iron and Steel Research, International. 2011, 18(5), pp. 31-37.
- 105. Zhang L, Wang W, Xie S, et al. Effect of basicity and B2O3 on the viscosity and structure of fluorine-free mold flux[J]. Journal of Non-Crystalline Solids, 2017, 460: 113-118.
- 106. Zhou L, Wang W, Wei J, et al. Melting and heat transfer behavior of fluorine-free mold fluxes for casting medium carbon steels[J]. ISIJ International, 2015, 55(4): 821-829.
- 107. Klug J L, Pereira M, Nohara E L, et al. F-free mould powders for low carbon steel slab casting-technological parameters and industrial trials[J]. Ironmaking & Steelmaking, 2016, 43(8): 559-563.
- 108. Li, G.R., Wang, H.M., Dai, Q.X., Zhao, Y.T. and Li, J.S., 2007. Physical Properties and Regulating Mechanism of Fluoride-Free and Harmless B 2 O 3-Containing Mould Flux. Journal of Iron and Steel Research International, 14(1), pp.25-28.
- 109. Wang, Z., Shu, Q. and Chou, K., 2013. Study on structure characteristics of B2O3 and TiO2bearing F-free mold flux by Raman spectroscopy. High Temperature Materials and Processes, 32(3), pp.265-273.
- 110. Zhang, Z.T., Wen, G.H. and Zhang, Y.Y., 2011. Crystallization behavior of F-free mold fluxes. International Journal of Minerals, Metallurgy, and Materials, 18(2), pp.150-158.
- 111. Wang, L., Cui, Y., Yang, J., Zhang, C., Cai, D., Zhang, J., Sasaki, Y. and Ostrovski, O., 2015. Melting Properties and Viscosity of SiO2 - CaO - Al2O3 - B2O3 System. steel research international, 86(6), pp.670-677.
- 112. Li, J., Kong, B., Galdino, B., Xu, J., Chou, K., Liu, Q. and Shu, Q., 2017. Investigation on properties of fluorine free mold fluxes based on CaO Al2O3 B2O3 system. steel research international, 88(9), p.1600485.
- 113. Wang, Z., Shu, Q. and Chou, K., 2015. Crystallization Kinetics of CaO-SiO2 (CaO/SiO2= 1)-TiO2-10 mass% B2O3 Glassy Slag by Differential Thermal Analysis. ISIJ International, 55(4), pp.709-716.
- 114. Shu, Q., Wang, Z., Klug, J.L., Chou, K. and Scheller, P.R., 2013. Effects of B2 O 3 and Ti O 2 on Crystallization Behavior of Slags in Al2 O 3–C a O–M g O–N a2 O–S i O 2 System. steel research international, 84(11), pp.1138-1145.
- 115. Gao, Y., Bian, L. and Liang, Z., 2015. Influence of B2O3 and TiO2 on viscosity of titanium bearing blast furnace slag. steel research international, 86(4), pp.386-390.
- 116. AB, F., Gisby, J., RC, A., PD, L. and Sridhar, S., 2004. Dissolution of ZrO2, Al2O3, MgO and MgAl2O4 particles in a B2O3 containing commercial fluoride-free mould slag. ISIJ international, 44(5), pp.836-845.

- 117. Esfahani S, Barati M. Effect of slag composition on the crystallization of synthetic CaO– SiO2–Al2O3–MgO slags: Part I—Crystallization behavior[J]. Journal of Non-Crystalline Solids, 2016, 436: 35-43.
- 118. Esfahani, S., Mostaghel, S. and Barati, M., 2016. Effect of slag composition on the crystallization of synthetic CaO-SiO2-Al2O3-MgO slags: Part II-Measurement and prediction of critical cooling rate. Journal of Non-Crystalline Solids, 436, pp.29-34.
- 119. Kim M S, Kang Y B. Development of a multicomponent reaction rate model coupling thermodynamics and kinetics for reaction between high Mn-high Al steel and CaO-SiO 2-type molten mold flux[J]. Calphad, 2018, 61: 105-115.
- 120. Klug J L, Freitas S L, Pereira M, et al. Fluorinefree mould powders for billet casting– technological parameters[C]//41st Steelmaking Seminar–International. 2010: 415-424.
- 121. Klug J L, Silva D R, Freitas S L, et al. Fluorine-Free Mould Powders for Billet Casting– Technological Parameters and Industrial Tests[J]. Steel research international, 2012, 83(8): 791-799.
- 122. Qi J, Liu C, Jiang M. Role of Li2O on the structure and viscosity in CaO-Al2O3-Li2O-Ce2O3 melts[J]. Journal of Non-Crystalline Solids, 2017, 475: 101-107.
- 123. Takahira, N., Hanao, M. and Tsukaguchi, Y., 2013. Viscosity and solidification temperature of SiO2–CaO–Na2O melts for fluorine free mould flux. ISIJ international, 53(5), pp.818-822.
- 124. Xu, J., Zhang, J., Jie, C., Tang, L., Chou, K. Measuring and modeling of density for selected CMAS slag with low silica. *Journal of Iron and Steel Research, International*. 2012, 19(7), pp. 26-32.
- 125. Zhang S, Zhang X, Liu W, et al. Relationship between structure and viscosity of CaO–SiO2– Al2O3–MgO–TiO2 slag[J]. Journal of Non-Crystalline Solids, 2014, 402: 214-222.
- 126. Zhao S, He S P, Guo Y T, et al. Effect on cleanliness of molten steel with different slag systems for low alloy ship plate[J]. Ironmaking & Steelmaking, 2016, 43(10): 790-798.
- 127. Harmuth, H. Montanuniversitaet of Leoben, Non basic refractory lecture 2015.
- 128. Zhanmin, C., Xiaoyan, S. and Zhiyu, Q., 2008. Thermodynamic Modeling Software FactSage and Its Application [J]. Chinese Journal of Rare Metals, 2, pp.216-219.
- 129. Shi, J., Sun, L., Qiu, J., Zhang, B. and Jiang, M., 2017. Phase equilibria of CaO-SiO2-5wt% MgO-10wt% Al2O3-TiO2 system at 1300° C and 1400° C relevant to Ti-bearing furnace slag. Journal of Alloys and Compounds, 699, pp.193-199.
- 130. Longbottom, R.J., Monaghan, B.J. and Mathieson, J.G., 2013. Development of a bonding phase within titanomagnetite-coal compacts. ISIJ international, 53(7), pp.1152-1160.
- 131. Zhang, Z., Xiao, Y., Voncken, J., Yang, Y., Boom, R., Wang, N., Zou, Z. Thermodynamic assessment of the CaO-Na2O-SiO2 slag system. Department of Materials Science and Engineering, Delft University of Technology, 2628 CD, Delft, the Netherlands.
- 132. Pelton, A.D. and Wu, P., 1999. Thermodynamic modeling in glass-forming melts. Journal of Non-Crystalline Solids, 253(1-3), pp.178-191.
- 133. Arroyabe, E., Tessadri, R., Többens, D.M. and Kahlenberg, V., 2011. Does K2CaSiO4 Exist? A Phase-Analytical Study in the System K2O–CaO–SiO2 with Implications for the Characterization of Residual Materials. Journal of the American Ceramic Society, 94(8), pp.2652-2655.

- 134. the complete book on glass and ceramics technology (2nd revised edition), by the NIIR Board of Consultants and Engineers. 2012
- 135. Bansal, N.P. and Doremus, R.H., 2013. Handbook of glass properties. Elsevier.
- 136. Ohgaki, T., Higashida, A., Soga, K. and Yasumori, A., 2007. Eu-Doped CaAl2Si2O8 Nanocrystalline Phosphors Crystallized from the CaO–Al2O3–SiO2 Glass System. Journal of The Electrochemical Society, 154(5), pp.J163-J166.
- 137. Neuville, D.R., Cormier, L., Montouillout, V. and Massiot, D., 2007. Local Al site distribution in aluminosilicate glasses by 27Al MQMAS NMR. Journal of Non-Crystalline Solids, 353(2), pp.180-184.
- 138. Jiang, Z.H. and Zhang, Q.Y., 2014. The structure of glass: A phase equilibrium diagram approach. Progress in Materials Science, 61, pp.144-215.
- 139. Hrma, P., 2006. High-temperature viscosity of commercial glasses. Ceramics Silikaty, 50(2), p.57.
- 140. Swamy, V., Jung, I.H. and Decterov, S.A., 2009. Thermodynamic modeling of the Al2O3– B2O3–SiO2 system. Journal of Non-Crystalline Solids, 355(34-36), pp.1679-1686.
- 141. Harmuth, H. Montanuniversitaet of Leoben, Non basic refractory lecture 2015.
- 142. Rodriguez, C.P., McCloy, J.S., Schweiger, M.J., Crum, J.V. and Winschell, A.E., 2011. Optical basicity and nepheline crystallization in high alumina glasses (No. PNNL-20184; EMSP-RPT-003). Pacific Northwest National Lab.(PNNL), Richland, WA (United States).
- 143. Li, H., Hrma, P., Vienna, J.D., Qian, M., Su, Y. and Smith, D.E., 2003. Effects of Al2O3, B2O3, Na2O, and SiO2 on nepheline formation in borosilicate glasses: chemical and physical correlations. Journal of Non-Crystalline Solids, 331(1-3), pp.202-216.
- 144. Varshneya, A.K., 2013. Fundamentals of inorganic glasses. Elsevier.

Appendix A. Selected FactSage Calculations

point	Na2O	K2O	MgO	TiO ₂	μ (PaS)	Tm (Celcius)
11	159	53	32	48	0.202	1118
12	150	50	52	78	0.203	1138
13	147	49	76	114	0.201	1160
14	144	48	78	117	0.205	1178
15	142.5	47.5	83	124.5	0.205	1200
21	126	42	16	24	0.301	1189
22	123	41	24	36	0.298	1184
23	120	40	30	45	0.299	1180
24	114	38	46	69	0.299	1161
25	111	37	50	75	0.301	1165
26	108	36	60	90	0.298	1204
27	105	35	66	99	0.301	1235
31	96	32	26	39	0.401	1218
32	93	31	32	48	0.4	1208
33	90	30	38	57	0.4	1198
34	87	29	46	69	0.396	1194
35	84	28	50	75	0.401	1221

Table A1. Chemical compositions used to construct Figure 15 in section III.iii.1

CaO and SiO2 are always 343 and 400 moles respectively

The unit for oxides are in moles

viscosity is calculated by FactSage for 1300 degree Celsius

point 24 is the composition of recipe E-2018-A002

Appendix B. Slag Molar Compositions

slag serial	[moles]	SiO ₂	CaO	Na ₂ O	K2O	MgO	TiO ₂	Al 2 O 3	Σ
E-2018-A002		400	343	114	38	46	69	0	1010
E-2018-A003		400	343	165	54	61.6	92.4	30	1146
E-2018-A004		400	343	207	69	88	132	60	1299
E-2018-A005		400	343	230	75	102	145	75	1370
E-2018-A008		400	368	152.4	50.8	68.4	102.6	30	1172.2
E-2018-A009		400	394	146.4	48.8	66.2	99.3	30	1184.7
E-2018-A010		400	325	163.4	54.4	72.9	109.4	30	1155.1
E-2018-A015		400	307	216	72	92.2	138.3	60	1285.5
E-2018-A016		400	301	232.8	77.6	101	147	75	1334.4

Table B1. Slag molar compositions corresponding to Table 9 in section IV.i.1

Table B2. Slag molar compositions corresponding to Table 10 in section IV.i.1

slag serial [m	oles] SiO2	CaO	Na ₂ O	K ₂ O	MgO	TiO ₂	FeO	MnO	Al 2 O 3	Σ
E-2018-A017	400	325	159.9	53.3	72.4	108.6	4	4	30	1157.2
E-2018-A018	400	325	156.6	52.2	71.8	107.7	8	8	30	1159.3
E-2018-A019	400	343	107.1	35.7	53	79.5	3.5	3.5	0	1025.3
E-2018-A020	400	343	104.3	34.7	53	79.5	7	7	0	1028.5
E-2018-A021	400	307	212.1	70.7	91.4	137.1	4.5	4.5	60	1287.3
E-2018-A022	400	307	208.2	69.4	90.4	135.6	9	9	60	1288.6

Table B3. Slag molar compositions corresponding to Table 11 in section IV.i.1

slag serial	[moles]	SiO ₂	CaO	Na ₂ O	K ₂ O	MgO	TiO ₂	Al ₂ O ₃	B 2 O 3	Σ
E-2018-A033		400	307	172.2	57.4	70.2	105.3	30	30	1172.1
E-2018-A034		400	325	167.6	55.8	68.4	102.6	30	30	1179.4
E-2018-A035		400	351	161	53.6	66	99	30	30	1190.6
E-2018-A036		400	371	156	52	64	96	30	30	1199
E-2018-A039		400	325	120.3	40.1	48.4	72.6	0	30	1036.4
E-2018-A040		400	307	127.8	42.6	45	67.5	0	60	1049.9

Table B4. Slag molar compositions corresponding to Table 15 in section IV.ii.1

slag serial	[moles]	SiO ₂	CaO	Na ₂ O	MgO	TiO ₂	Al 2 O 3	B 2 O 3	Σ
E-2018-A0123		0	175	0	225	0	100	500	1000
E-2018-A0124	Ļ	0	183	23	217	34.5	100	500	1057.5
E-2018-A0125		0	180	49	220	73.5	125	475	1122.5
E-2018-A0126	i	0	161.5	78	238.5	117	150	450	1195
E-2018-A0130)	100	188	30	212	45	100	400	1075
E-2018-A0131		150	189	24	211	36	100	350	1060
E-2018-A0132		200	187	32	213	48	100	300	1080
E-2018-A0137	,	230	189	0	211	0	100	270	1000
E-2018-A0138		270	188	0	212	0	100	230	1000

slag	[moles]	SiO ₂	CaO	Na ₂ O	K2O	MgO	TiO ₂	FeO	MnO	Al ₂ O ₃	B 2 O 3	Σ
A041		400	340	117	39	48	72	0	0	5	0	1021
A042		400	340	111	37	47	70.5	7	7	5	0	1024.5
A043		400	304	129	43	45	67.5	0	0	5	60	1053.5
A044		400	307	120	40	45	67.5	7	7	0	60	1053.5
A045		400	304	124.5	41.5	45	67.5	7	7	5	60	1061.5
A046		400	313	126	42	45	67.5	0	0	0	50	1043.5
A047		400	319	121.5	40.5	45	67.5	0	0	0	40	1033.5

Table B5. Slag molar compositions corresponding to Table 15 in section VI

Figure C2. DTA cooling curve for slag E-2018-A010

Figure C4. DTA cooling curve for slag E-2018-A015

Figure C5. DTA heating curve for slag E-2018-A018

Figure C6. DTA cooling curve for slag E-2018-A018

Figure C7. DTA heating curve for slag E-2018-A033

Figure C8. DTA cooling curve for slag E-2018-A033

Figure C10. DTA cooling curve for slag E-2018-A040

Figure C12. DTA cooling curve for slag E-2018-A124

Figure C14. DTA cooling curve for slag E-2018-A138

Figure D1. FCT result of E-2018-A010

Figure D2. FCT result of E-2018-A015

Figure D3. FCT result of E-2018-A018

Figure D4. FCT result of E-2018-A033

Figure D5. FCT result of E-2018-A040

Figure D6. FCT result of E-2018-A124

Figure D7. FCT result of E-2018-A138

slag serial	[wt%]	SiO ₂	CaO	Na ₂ O	K ₂ O	MgO	TiO2	FeO	MnO	Al ₂ O ₃	B2O3	C/S
E-2018-A002		41.55	34.65	6.67	6.06	2.69	8.67	0	0	0	0	0.83
E-2018-A010		34.45	26.87	12.11	7.41	3.55	10.14	0	0	5.07	0	0.78
E-2018-A015		30.02	21.62	14.09	8.83	4.41	13.28	0	0	8.33	0	0.72
E-2018-A018		34.86	26.32	11.74	6.74	3.32	9.97	1.02	0.95	4.83	0	0.76
E-2018-A033		35.19	25.05	13.90	7.87	3.52	10.01	0	0	4.91	0	0.71
E-2018-A040		39.84	30.65	11.92	5.50	2.61	8.14	0	0	1.01	0	0.77

Table D1. Chemical compositions of the FCT specimens according to SEM