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Abstract 

Mine water inrush has become one of the common water hazards in the operation 

of mining enterprises. Once mine water inrush occurs, it will not only cause huge 

economic losses, but also threaten the lives of miners. The rapid and effective 

identification of the water inrush source is the basis for taking measures to control 

the water inrush when the mine water inrush accident occurs. 

At present, the existing hydrogeochemical method is a powerful means to identify 

the source of mine water inrush. However, all kinds of methods need to be further 

studied, especially the advantages of computer technology in computing and 

simulation need to be fully utilized. In the mines of North China, there are few studies 

on the hydrochemical characteristics of mixed aquifers, especially on the 

hydrochemical types and the variation of ion concentration of mixed groundwater 

samples. Moreover, the current mine water inrush water source discrimination 

model is mostly established for a single water source. There are few studies on the 

discriminant model of mixed water inrush source, especially few studies on the 

discriminant model of mixed water inrush source based on artificial neural network 

technology. 

Therefore, taking Jinggezhuang Mine in Kailuan Mining Area as the object of 

analysis, this paper collected and collated the water quality data obtained from many 

years' observation in the mining area. Mixing simulation of water sample data was 

carried out by PHREEQC hydrochemical simulation software, and its hydrochemical 

characteristics were analyzed. The establishment method of identification mixed 

inrush water source in mining area is studied. The following conclusions are drawn: 

(1) The water quality types of aquifers in Kailuan Jinggezhuang mining area are 

analyzed by Piper Diagram. The hydrochemical characteristics of groundwater in 

Jinggezhuang Mine are generally characterized by high concentration of Ca2+, 

K++Na+, HCO-. The hydrochemical types of Ordovician limestone karst fissure 

confined aquifer (Ⅰ) and sand-gravel pore aquifer in upper Quaternary (Ⅷ) are 

mainly HCO3-Ca type, and those of sandstone fissure aquifer above coal 5 (Ⅴ)  are 

mainly HCO3-Na type. 

(2) The mix of groundwater samples were simulated hydrochemically by PHREEQC 

software in Jinggezhuang mining area. The hydrochemical types of mixed water 
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samples changed between HCO3-Ca and HCO3-Na, and the ion concentration also 

changed greatly. The main ions that changed were Ca2+, K++Na+, HCO-, which were 

anions and cations with higher ion concentration in water samples. 

(3) A TensorFlow-based artificial neural network mixed water source identification 

model is proposed. After data pre-processing and data standardization, cross-

entropy error loss function and excitation function are used to reduce errors. Then, 

ADAM Optimizer is used to optimize the identification model. Finally, the data of 

water samples are trained and tested iteratively for several times to ensure that 

training accuracy of the neural network identification model is almost 90%, and that 

the identification accuracy of the neural network identification model for mixed water 

inrush sources reaches more than 80%. 

 

Key words: 

Hydrochemical characteristics analysis; groundwater mixing simulation; water 

inrush source identification; Kailuan mining area 
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1 Introduction 

This thesis studies unsafe acts of coal mine rescue accident, as well as their causes 

and the relationship between them. 

This thesis collects and collates the water quality and hydrochemistry data obtained 

from many years ‘observation in Kailuan mining area, simulates to mix the water 

samples by PHREEQC (a hydrochemistry simulation software), analyses their hydro-

chemical characteristics, and studies the method of establishing the mixed proportion 

discrimination model of mine water inrush source. 

 

1.1 Research Background and Significance  

In the era of rapid development of coal industry, mining enterprises continue to increase 

mining intensity. The mining process makes the hydraulic connection between mine 

aquifers more complex. Various types of mine accidents occur from time to time, among 

which water accidents are particularly prominent (Qi R, 2018) . 

Water inrush is one of the main disasters that endanger coal mine production. It not 

only causes direct economic losses and seriously restricts the production efficiency of 

coal mines, but also threatens the safety of mine geologists (Zhang D, 2017). 

With the increase of mining demand, the mining depth of Kailuan mining area is 

increasing. The increase rate is about 8-12 m per year. Most of the mining areas in 

Kailuan are expected to reach a mining depth of 1000m in the future. Experiences at 

home and abroad, including Kailuan mining area, show that with the increase of mining 

depth, the in-situ stress, temperature and groundwater osmotic pressure increase 

correspondingly, the mining cost rises, and the underground working environment 

deteriorates. All these lead to the possibility of mine water inrush and other disasters 

greatly increased (Yang Z, 2011). 

When the mine water inrush accident occurs, the primary task is to identify the source 

of water inrush quickly and accurately and provide direction for the follow-up disaster 

control work. Different water-filling sources have different water-filling intensity, and the 

corresponding treatment methods are also different. Therefore, only by quickly and 

accurately determining the source of water inrush, can we take effective measures to 
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control water inrush. In the mine water inrush disaster, there are not only single water 

inrush source, but also mixed water inrush sources. The research on the hydro-

chemical characteristics of mixing mine groundwater and the method of establishing 

the discriminant model for the mixed water source of inrush water can not only gain 

valuable time for effective measures to control inrush water disaster, but also provide a 

scientific theoretical basis for more precise and effective selection of water control 

measures (Jin Z, 2016). 

Therefore, it is of great significance to study the mine groundwater mixing simulation 

and the identification of the mine water inrush multi-source, and to establish a scientific 

and effective identification model of the water inrush multi-source combining with the 

artificial neural network technology, so as to recognize the mining water inrush source 

timely and accurately after the occurrence of the water inrush and to prevent and control 

the water disaster. 

1.2 Current Research Status 

At present, the commonly used technology to distinguish mine water inrush source is 

to obtain and analyze the hydrogeochemical information contained in groundwater, and 

distinguish the water inrush source according to hydrogeochemical information 

contained in the water quality. Combined with the groundwater level and water 

temperature in different aquifers, the source of water inrush can be distinguished from 

the hydrochemical, water temperature and hydrodynamic information of water inrush. 

The most simple, rapid and common method is hydrochemical analysis, which is based 

on the parameters of conventional hydrochemical characteristics, isotopes and trace 

elements. Hydrogeochemical analysis technology has many advantages in recognizing 

the source of mine water inrush, such as rapidity, timeliness, economy and convenience 

(Liu F, 2007). 

1.2.1 Study on Water Source Identification by Conventional Hydrochemistry  

Conventional hydrochemical indexes include six major ions, hardness, alkalinity, 

temperature and pH value. Conventional hydrochemistry has some advantages, such 

as simplicity and rapidity of test method, familiarity with the site situation of Engineering 

technicians, so the research and application in this field is the most extensive and in-
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depth. Conventional hydrochemical discriminant methods include traditional 

hydrochemical analysis method and uncertain mathematical statistics method. 

In traditional hydrochemical methods, some analyze groundwater by directly describing 

the indicators, such as graphic method: Piper three-line diagram (based on the relative 

content of six major ions in water), Durov diagram, Langelier-Ludwig diagram, and one-

component range method and two-component mapping method (Montety et al., 2010; 

O'Shea & Jankowski, 2010; Zhang X, Zhang Z & Peng S, 2003). 

A large number of scholars have studied this method and applied it to identify the source 

of mine water inrush. Gui Herong (Gui H, Xu G & Song X, 2003) studied the relationship 

of concentration between SO42- and Cl- in groundwater, drew its Piper three-line map, 

analyzed and identified the water-filling conditions and water-filling sources of Taoyuan 

Coal Mine. Yang Jian (Yang J, Wang X, Li S, & Gao J, 2005) used Piper three-line 

graph analysis and mathematical statistical analysis to determine the difference of 

hydrochemical characteristics of each aquifer. The hydrogeochemical characteristics of 

Ordovician limestone aquifer, Taiyuan limestone aquifer, Shanxi sandstone fissure 

aquifer, Quaternary aquifer and coal aquifer in the groundwater system of a mine in 

Xuzhou were analyzed by conventional hydrochemical analysis method, which 

provided hydrogeochemical data source for the identification of mine water inrush 

source (Ge Z, Shen W & Bei H, 1994). The water inrush source of Xinhe Mine in Xuzhou 

City is identified based on the hydrochemical characteristics of each aquifer and the 

ratio of ion concentration in the aquifer , and the result is more accurate (Liu X, 1999). 

Yang Benshui (Yang B, Wang C & Yan C, 2003) analyzed the causes of water inrush 

in Qidong Coal Mine from four aspects: water level, water temperature, water quantity 

and water quality, and the results showed that the idea was feasible. 

A great deal of successful experience has been gained in the research of identifying 

the source of water inrush by traditional hydrochemical methods. However, it is difficult 

to improve the accuracy of identification when the source of water inrush is not single, 

the type of water quality is complex and the chemical characteristics of water inrush are 

similar. In recent years, the combination of computer technology and the introduction 

of some uncertain mathematical and statistical methods have brought new ideas to the 

identification of water inrush sources, such as grey relational degree evaluation method, 

fuzzy mathematics comprehensive evaluation method, artificial neural network 

identification technology, multivariate statistical method, etc. The research of these 
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methods makes the identification methods of water inrush sources diversified, and the 

efficiency and accuracy of the identification have been significantly improved. The 

common idea is to rank the similarity between the chemical information data of water 

inrush samples and possible water sources, or the probability of water inrush. The 

maximum final result is determined as the source of water inrush. 

Many scholars have made achievements in the research and application of grey 

relational degree evaluation method. Li Dongchen (Li D, 1995) used grey correlation 

analysis to identify the main aquifers in Baimiao Coal Mine, and used it in the 

determination of water inrush source. By studying the relationship between water inrush 

volume and water level change in each aquifer, the Grey Relational Degree Method is 

used to analyze and discriminate the super-large water inrush disaster in No. 2 617 

working face of Yangzhuang Mine. Finally, the source of water inrush can be identified 

accurately (Zhou L & Li X, 1995). Gao Weidong et al.  (Gao W, He Y & Li X, 2001; Sun 

Z & Gao W, 1995) analyzed the water inrush of Dongzhuang Coal Mine in Xuzhou 

Mining Area. The grey system theory is used to analyze the hydrochemical 

characteristics of mine aquifer, and then a water source discrimination model is 

established.  

In the application of comprehensive evaluation technology of fuzzy mathematics, Fan 

Jingzhou (Fan J, Li H, Xie F, & Pan G, 2000), Li Mingshan (Li M, 1995; Li M et al., 

2001), and Xia Xiaohong (Xia X, Zhang H & Yang W, 2002) established a discriminant 

model of Mine Water Inrush Source Based on the theory of fuzzy mathematics by 

utilizing the test data of water samples retained in the mine production process. The 

results show that the effect of the comprehensive discriminant technology of fuzzy 

mathematics is credible. 

Artificial neural network technology also plays an important role in water source 

identification. When establishing discriminant model, lithology, structure, water 

pressure, aquifer thickness and aquifer thickness are taken into account. At the same 

time, the comprehensive effects of isotope, salinity, pH and other factors are considered. 

The training and testing of water samples show that the combination of computer 

technology and hydrogeology has a high reliability (Jiang C & Zhang S, 2006; Lei X, 

Zhang J & Xie T, 2003; Li D, 1998; Wei Y, Liang H, Ren Y & Liu W, 2004). Multivariate 

statistical analysis is also a very effective method for water source identification. The 

common method is multi-class stepwise linear discriminant based on Bayesian criterion. 
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The judgement results were tested by F distribution. This method has great advantages 

in the determination of unknown water samples. It has been applied in Renlou Mine in 

North Anhui Province and Jiaozuo Mine in Henan Province, proving that the actual 

effect is very good (Chen C et al., 1996; Song X, Gui H & Chen L, 2005; Sun B, Duan 

Z & Jin H, 1999; Zhang Y & Jiang Z, 2003).  

1.2.2 Study on Water Sources Identification by Isotopes and Trace Elements  

Although the attempts of conventional hydrochemical discrimination provide a new way 

to distinguish the source of water inrush, the construction of the technology still depends 

on finding the "typomorphic" components of different aquifers. For some aquifers with 

similar water quality, this is often difficult. Although the contents of "trace elements" and 

"isotopes" in hydrochemical components are very small, they contain rich and unique 

hydrogeochemical information. Therefore, the characteristic information can be used to 

distinguish water sources. Combining with conventional components will achieve better 

discriminant effect (Bhat & Jeelani, 2015; Clark & Fritz, 1997; Davis & Ashenberg, 1989; 

Epstein & Mayeda, 1953; Gammons et al., 2006; Meng & Liu, 2016). 

The most mature technologies used in the application of isotope technology are 18O, D 

and T. 18O and D are stable isotopes with tracer function, so as to find out the cause of 

formation of regional groundwater and the relationship between recharge and drainage. 

T is a radioisotope with the function of dating. It can be used to determine the age of 

groundwater to reflect the strength of regional water cycle. The stable isotope in 

groundwater reflects the fractionation of atmospheric components before the 

precipitation enters the underground, and its content will not change with time after 

entering the groundwater. This can be used to infer the origin of groundwater, the 

mixing effect and degree of various water bodies. Therefore, many scholars have 

applied environmental isotopes to identify the source of mine water inrush, and have 

achieved many research results. Cheng Chunqi et al. (Cheng C, Ge X & Wang D, 1994) 

analyzed the environmental isotope composition characteristics of aquifer in Baishan 

mining area and found out the typomorphic components as natural tracers to identify 

the source of mine water inrush. Gui Herong and Chen Luwang (Chen L et al, 2003; 

Gui H, Chen L & Song X, 2004; Gui H & Chen L, 2005) discussed the origin, recharge, 

runoff and drainage relationship of groundwater and the hydraulic relationship between 

aquifers based on 18O, D and T environmental isotope test data in Wanbei mining area, 
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and established the isotope water source discrimination model, which provided a new 

method for water source identification. Wang Guangcai et al. (Wang G, Duan Q, Bu C, 

& Chen S, 2001) further validated and corrected the conceptual model of water flow 

system in Pingdingshan mining area by using environmental isotope (hydrogen and 

oxygen) technology. 

In the prevention and control of water inrush disaster in coal mine, the technology of 

water source identification based on trace elements is in its infancy. There are not many 

mining areas where this technology has been applied in practice (Chen L, Gui H, 2007). 

Song X, Gui H and others (Song X, Gui H & Chen L, 2004) established Bayes multi-

class linear discriminant model of trace elements based on the analysis of conventional 

ions and trace elements in main aquifer water in the study of water inrush source 

discrimination in Huaibei Coalfield. Chen Luwang et al. ( Chen L, 2003; Gui H, Chen L 

& Peng Z, 2004) collected data of groundwater samples from deep aquifers, including 

20 trace elements such as Ag, Al, As and Ba. The principal component analysis model 

of mining area in northern Anhui was established. The principal component analysis of 

trace elements in groundwater was carried out, and the groundwater composition was 

analyzed in depth. 

Although trace elements and isotopes have many advantages in studying water flow 

field and identifying water source, their detection conditions are demanding and time-

consuming. When water inrush occurs, it is necessary to distinguish the source of water 

quickly. In order to solve this contradiction, Guihe Rong and Chen Luwang studied the 

correlation between trace elements, isotopes and conventional hydrochemical 

components, in order to find out some conventional components to replace trace 

elements and isotopes. In this way, the discriminant effect is improved quickly. Trace 

elements and isotopes, due to their unique mechanism in hydrogeochemical processes, 

can make up for the weaknesses of conventional hydrochemical methods, which is an 

important research and development direction (Zhang R, 2008).  

1.3 Deficiencies of current research  

The existing hydrogeochemical methods are powerful means to identify the source of 

mine water inrush, but the study of various methods needs to be further deepened. It is 

necessary to select specific and appropriate methods in all kinds of methods according 

to the specific problems of water source identification, or to improve and innovate the 
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existing methods. In addition, the future development of water source identification 

technology should make more use of the advantages of computer technology in 

calculation and simulation. 

(1) At present, there are few studies on the hydrochemical characteristics of mixed 

aquifers, especially on the hydrochemical types and the variation characteristics of ion 

concentration of mixing groundwater. It is also rare to study the hydrochemical 

characteristics of mixing aquifers in Kailuan mining area of North China. 

(2) At present, the identification model of mine water inrush source is mostly established 

for a single water source. The research on the discriminant model of mixed water inrush 

source is relatively few. Moreover, in the study of the discriminant model of mixed water 

sources, the artificial neural network technology is seldom used to discriminate. 

1.4 Research Content and Research Methods 

This paper combines the comprehensive identification technology of outburst water 

source in the National Key Research and Development Program "Rapid Identification 

Technology and Equipment for Mine Water Inrush Source". Taking Jinggezhuang Mine 

in Kailuan Mining Area as the research area, based on the analysis of the 

hydrogeochemical characteristics of the main aquifers, the underground aquifers 

mixing process were simulated by PHREEQC hydrochemical simulation software. The 

discriminant model of mixed water inrush source is established. 

Based on the above ideas, the research contents of this paper are as follows: 

(1) Analysis of hydrochemical characteristics of Jinggezhuang mine.  

The related data of Jinggezhuang Mine in Kailuan Mining Area were investigated, 

collected and sorted out. This paper will analyze the regional geological structure 

characteristics and hydrogeological conditions of Kailuan mining area, especially the 

lithology of the aquifer and the occurrence law of groundwater in the mining area. The 

aquifer of Jinggezhuang Mine in Kailuan Mining Area will be sampled. The 

concentration of conventional anions and cations in water samples will be determined 

by experiments and analyzed, which is the basis of data acquisition for the follow-up 

study. 

(3) Hydraulic chemical mixing simulation based on PHREEQC.  



 

Identification and Simulation Study of Mixing Inrush Water Source 

Based on PHREEQC                                                                                                             Page 8 

According to the water chemical composition（Na+、Ca2+、Mg2+、Fe2+、Fe3+、Al3+、

NH+、Cl-、SO42-、CO32-、HCO3-、NO3-、NO2-）of the aquifers in the study area, the 

mixed simulation of different proportions of the aquifers in the Kailuan mining area was 

carried out based on the hydrochemical simulation software PHREEQC, Their 

hydrochemical characteristics were also analyzed. 

(4) Discrimination model of mixed water source based on TensorFlow.  

TensorFlow software and artificial neural network technology are combined to explore 

the method of establishing mixed discriminant model for mixed water sources. The 

accuracy of the model is tested by using the mixed simulated water sample data of 

Jinggezhuang mining area. 
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2 General Situation of Hydrogeology in Study Mining Area 

Kailuan mining area is located in Tangshan City, Hebei Province, with a mining history 

of 140 years. There are 11 mines in this area including Jinggezhuang Mine, 

Donghuantuo Mine, Fangezhuang Mine, Tangjiazhuang Mine, Zhaogezhuang Mine 

and Linxi Mine (Liu J, Chang J & Hun B, 2008). 

2.1 Geological Situation of Kailuan Mining Area 

The strata of Kailuan coalfield belong to North China type deposits. The coal measures 

are Paleozoic Carboniferous-Permian coal-bearing formations. The coal measure 

basement is Cambrian-Ordovician strata. The upper overburden is Cenozoic 

Quaternary. 

Kailuan coalfield belongs to concealed coalfield. It is a large NE-trending composite 

coal-bearing syncline structure. It belongs to grade IV tectonic unit in the geotectonic 

division. It is situated on the first-order tectonic unit-Sino-Korean quasi-platform and in 

the second-order tectonic unit-Yanshan subsidence zone. It is a compound coal-

bearing Syncline in the caprock structure of the Yanshan cycle, which is Tangshan and 

Jixian depression folds (grade III tectonic units). 

Kailuan coalfield includes four coal-bearing structures: Kaiping syncline, Cheshaoshan 

syncline, Jinggezhuang syncline and Xiguanyao syncline. The Kaiping syncline and 

Cheshaoshan syncline are both long-axis synclines with hidden anticlines in the middle 

of the Beiziyuan. These three constitute the framework of the coal field. Jinggezhuang 

syncline and Xigongyao syncline are secondary folds separated from the main syncline 

after the uplift of Fengshan-Chengzizhuang anticline on the northwest wing of Kaiping 

syncline. 

Kaiping syncline is a large asymmetric syncline structure. The extension length is 60 

km and the aspect ratio is about 5:1. The total area of syncline is about 800 km2. The 

axis is SE40 degree in the South and gradually turns to near EW direction to the east 

of Guye in the north. The strata in the northwest wing are steep and even inverted. The 

strata in the southeast wing are gentle, and a series of fold structures are developed. 

From north to south, there are folds includiing Dujunzhuang anticline, Lujiatuo anticline, 

Jinggezhuang syncline, Bigezhuang syncline, Nanyangzhuang anticline, Gaogezhuang 

syncline, Lixinzhuang syncline, Liu Tangbao anticline and Shengang syncline. Their 
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axes are obliquely intersected with the main syncline, forming a "side curtain" fold. The 

dip of strata is generally 10-15 degrees, rarely more than 30 degrees. There are also 

faulted structures in Kaiping syncline. The compressive and compressive-torsional 

thrust faults are mainly developed in the northwest wing of the syncline, while the 

tensional normal faults are predominant in the southeastern wing of the syncline. 

2.2 Hydrogeological Conditions in Kailuan Mining Area  

Kailuan coalfield is adjacent to Yanshan in the north, and the elevation in hilly area is 

50~400 m. There are ancient strata and sporadic coal measures strata exposed. The 

coalfield is located in the Alluvial-diluvial plain in front of the Yanshan Mountains with 

flat terrain and elevation of 3-70m. Kailuan coalfield is located in the southern margin 

of the middle section of Yanshan subsidence zone, which is an asymmetric syncline 

structure with steep north wing and gentle South wing. 

The syncline basin lies in the low mountains to the north and in the plain to the south. 

Most of the syncline basins are hidden under the Quaternary alluvium. The surface 

water system in the area is not well developed. Shahe River distributed in the eastern 

part of the coalfield and Douhe river entering the coalfield from the western part are 

seasonal rivers, which mainly play the role of draining mine water. Water-rich 

characteristics of coal-bearing sandstone aquifers, mainly fissure aquifers depend on 

the degree of structural development. The Ordovician limestone aquifer in coal 

measure basement is well developed and water-rich. It poses a certain security threat 

to the mine in this area. The recharge of aquifers in the region is mainly atmospheric 

precipitation. At the same time, the existence of aquifer structure also provides 

conditions for overflow recharge between aquifers. The huge complex three-

dimensional groundwater flow system in Kailuan mining area has multi-level 

characteristics. However, this multi-level structure is not only the result of topographic 

fluctuations, but also the deposition of heterogeneous strata. 

2.2.1 Characteristics of Regional Aquifers  

Kailuan mining area has multi-layered pore and karst-fissure water-filled aquifers 

structure which are closely related to each other hydraulically. Generally, it can be 

divided into three main water-filled aquifer groups. 

(1) Coal aquifers 
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The main water-filled aquifers in coal measures are medium-thick layered medium and 

fine sandstone fractured aquifers. Vertical fissures are well developed in these aquifers. 

Moreover, it has uniform distribution on the plane, close hydraulic connection and 

uniform confined head. Generally, it can be divided into 2 to 3 fractured aquifer 

formations with a thickness of 40 to 60m. 

(2) Water-filling aquifer of middle Ordovician super-thick carbonate rocks 

The water-filled aquifer of the middle Ordovician carbonate rocks has a large 

sedimentary thickness, usually 200-800 M. Aquifer exposed area is larger and karst is 

more developed. Rainfall infiltration recharge intensity is higher. Large-scale group hole 

pumping tests show that the water-filled aquifer of the Ordovician super-thick carbonate 

rock is rich in water. Moreover, the hydraulic connection is good, and the water pressure 

transmission is fast. The formed landing funnel is flat and extends widely. Generally, a 

unified karst water seepage field can be formed in each hydrogeological unit. The 

water-filled aquifer of the middle Ordovician super-thick carbonate rock has the most 

obvious characteristics of heterogeneity and anisotropy. Hydraulic phenomena such as 

strip-like karst runoff zones and discontinuous flow in continuous media are strong 

evidences. Middle Ordovician carbonate aquifer, as the base confined aquifer of coal-

bearing rock series, has a high water head pressure, which poses a great threat to the 

safe mining of overlying coal seams. The extent of this threat depends not only on the 

thickness, lithology and structure of the water-proof rock section from the coal seam to 

the Ordovician limestone roof interface, but also on the thickness of aluminous clay 

deposited on the undulating Middle Ordovician paleoweathering surface. 

(3) Quaternary unconsolidated porous water-filled aquifers 

The Quaternary porous water-filled aquifers with a thickness of more than ten to several 

hundred meters is unconformly covered by coal measures and Ordovician lime aquifers, 

which is like a bridge connecting the hydraulic connection between them and forming a 

special "bridge" hydrogeological condition of the deposit. Therefore, whether thick clay 

aquiclude is deposited at the bottom of Quaternary is one of the key factors to determine 

the complexity of hydrogeological conditions of such deposits. If the clay aquifer at the 

bottom of Quaternary is deposited very thin at the concealed outcrop of the bedrock 

aquifer group and even completely absent in some areas, the loose pebble aquifer is 

directly deposited on the coal measures bedrock and Ordovician limestone karst aquifer. 

Permeable or "overflow" supply conditions can be formed. 
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2.2.2 Regional Hydrogeological Zoning   

Kailuan coalfield can be divided into two hydrogeological regions: Yanshan outcrop 

area (area Ⅰ ) and piedmont plain area (area Ⅱ ). It is further divided into six 

hydrogeological sub-areas. 

Yanshan outcrop area (area Ⅰ) includes four hydrogeological sub-areas: Ⅰ1 - gneiss 

fissure water area, Ⅰ2 - karst fissure diving area, Ⅰ3 - sandstone fissure water area and 

Ⅰ4 - Quaternary Intermountain diving area. 

(1) Ⅰ1 - gneiss fissure water area 

The strata are Proterozoic gneiss and granitic gneiss. Structural weathering and 

denudation are strong, and fissures are well developed. The precipitation is recharged 

by direct infiltration and discharged in the form of falling springs with the discharge of 

1-2 l/s. Spring water supplies alluvium in Piedmont valley, and its dynamics is controlled 

by precipitation. 

(2) Ⅰ2 - Karst fissure diving area             

The lithology is the limestone of Great Wall System, Jixian System, Cambrian System 

and Ordovician System. The fracture rate is 0.9%-5.8%. The karst rate is generally 5%-

50%. The water level of limestone near mountain area is generally controlled by 

topography and season. The depth of water level is 30-70m. The water-rich 

characteristics of this area is nonuniform. The water quality type is HCO3-Ca-Mg, and 

the salinity is less than 0.3 g/l. 

(3) Ⅰ3 - Sandstone Fractured Water Zone 

Lithology is mainly Permian and Carboniferous sandstone. Fracture water seeps 

directly into the recharge area. The mine water inflow is 480~600 m3/h. 

(4) Ⅰ4 - Quaternary Intermountain diving area 

Quaternary Intermountain diving areas are distributed in Intermountain basins, and the 

thickness of Quaternary is tens of meters. Among them, the sandy gravel and pebble 

layers are rich in water. The depth of water level is generally less than 5 m. The 
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recharge includes precipitation infiltration recharge and mountain spring recharge.  The 

water quality belongs to HCO3-Ca-Mg type with salinity less than 0.5g/l. 

The piedmont plain area (area Ⅱ) includes the Permian, Carboniferous sandstone 

fissure water area (Ⅱ1) and the karst coverage area of the Piedmont plain (Ⅱ2). 

(1) Ⅱ1 - Fractured water area of Permian and Carboniferous sandstone in Piedmont 

Plain 

This area is located between the outcrop area of Kaiping syncline coal measures and 

the Ordovician limestone top boundary. The Cenozoic gravel and pebble aquifers cover 

the outcrop of Permian Carboniferous strata. Therefore, the hydraulic characteristics of 

sandstone aquifer are controlled by covered Cenozoic gravel, pebble aquifer water and 

underlying Ordovician limestone water. The latter two are the main recharge sources 

of coal aquifers. Water quality type is HCO3-Ca-Mg. Salinity is less than 0.3g/l. The 

maximum mine water inflow is 1860 ~ 2400 m3/h. 

(2) Ⅱ2 - karst coverage area of Piedmont Plain 

The area is situated on the outer side of Kaiping syncline coal measure strata. It is a 

direct contact zone between Cenozoic alluvium and Ordovician limestone. The 

structure of the bedrock in this area is complex, and the thickness of the Cenozoic 

Alluvial-diluvial layer is very large. Among them, the aquifer properties of gravel and 

pebble layers are strong. The water inflow is more than 1 L/s·m, and the maximum is 

22 L/s.m. Ordovician limestone karst fissures are well developed with strong water 

content. The water inflow is more than 1 l/s·m. There is no stable aquiclude between 

the two aquifers. There are close hydraulic connection between them. The water level 

and quality are basically the same. The water quality is HCO3-Ca-Mg type and the 

salinity is 0.1-0.3 g/l. Groundwater runs from northeast to southwest. This area is the 

most active area of groundwater in Kaiping coalfield. 

2.2.3 Recharge, Runoff and Discharge of Regional Karst Groundwater 

The low mountain and hilly area in the northern part of this area is a large area of 

exposed bedrock with an area of 1028 km2. The Great Wall, Jixian, Cambrian and 

Ordovician limestones account for more than 90%. The limestone karst fissures are 
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well developed and easy to be infiltrated by atmospheric precipitation. It is the main 

recharge area for groundwater to receive precipitation infiltration in this area. 

After recharge, part of the groundwater flows downstream to the valley in the form of 

falling springs. The other part runs downstream along karst fissures or structural 

fissures to recharge groundwater in plain areas. There is still a small amount of 

evaporation. The hydraulic gradient is steep in the north and gentle in the south. 

Because of topography, geomorphology and geological structure, there are two 

watersheds in the flow direction of groundwater in this area, which is the eastern Shahe 

watershed and the western Douhe watershed. The general groundwater flow is from 

northeast to southwest. At the axis of Kaiping syncline, the groundwater flow is blocked 

and the movement is relatively slow. 
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3 Hydraulic-chemical Mixing Characteristic Analysis Based 
on PHREEQC 

In order to further study the hydrochemical characteristics of the mixed aquifers in 

Kailuan mining area, this chapter uses the geochemical simulation software PHREEQC 

to simulate the mixed groundwater samples in the study area. The change of 

hydrochemical characteristics of groundwater during mixing process is further 

discussed. 

3.1 Introduction and Simulation Principle of PHREEQC     

3.1.1 Introduction of PHREEQC 

PHREEQC is a software specially used for hydrogeochemical simulation. The computer 

program written in C language was developed by the Geological Survey Bureau of the 

United States. The predecessor of this software is Phreeqe, which improves the 

hydrochemical simulation function by continuously developing all functions compatible 

with Phreeqe and Netpath. Because of its powerful function, PHREEQC is often used 

in various hydrogeochemical simulation tasks, including forward and reverse path 

simulation, mixing simulation, evaporation and redox reaction. Therefore, it is applied 

to almost all equilibrium thermodynamics and chemical kinetics problems in the 

interaction system of water, gas and rock. 

Water in underground aquifers is a solution of multiple solutes. Elements in solution can 

be described by a series of equations in PHREEQC, including water activity, ionic 

strength, charge balance of solution, mass balance of adsorbent surface, etc. During 

the simulation, the input commands are selected according to different equations 

describing the chemical reaction process. 

PHREEQC hydrochemical simulation software includes four parts: input file, output file, 

selective output file and database. The input file is a text file that gives commands for 

model reading and simulation, and is written by users. The output file is the result file 

after the software operation. Selective output files can select output results according 

to user needs. The database file provides expressions for ionic mineral constants and 

soluble precipitation, redox, dynamic equilibrium chemical reactions, etc. (Zhang P, 

2017). 
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3.1.2 Simulating Principle of PHREEQC-Law of Mass Action 

The law of mass action is the basis of hydrogeochemical simulation calculation. It 

means that the driving force of a chemical reaction is related to the concentration of the 

reactant and the concentration of the product. The hypothetical responses are as 

follows: 

aA + bB ⇔ 𝑐𝐶 + 𝑑𝐷 

In the above formula, a is the number of moles of reactant A, b is the number of moles 

of reactant B, c is the number of moles of biological C and d is the number of moles of 

biological D. When the above reaction method reaches equilibrium, the following 

relationship exists: 

[𝐶]𝑐 + [𝐷]𝑑

[𝐴]𝑎 + [𝐵]𝑏
= 𝐾 

In the formula: [] represents the activity of the reactant or product, and K is the 

thermodynamic equilibrium constant. In the formula above, the left side of the equal 

sign is also called activity product. When all the components involve in the reaction are 

ions, it is called ion activity product, which will be expressed by IAP.  

In non-ideal solution groundwater, activity is the corrected value of the measured 

concentration of various components, which can be expressed by the following 

expressions: 

α = γ ∙ c 

In the formula, α represents activity with no dimension. c is the measured concentration 

of the constituents participating in the chemical reaction in units of mole per liter. γ is 

the activity coefficient. In hydrogeochemical simulation studies, Bayer-Shocker 

equation is often used to calculate activity coefficient γ. The activity coefficients γ of 

groundwater are usually less than 1. The specific calculation equations are as follows: 

tan 𝛾 =
−𝐴 ∙ 𝑍2 ∙ √𝐼

1 + 𝐵𝑎√𝐼
 

Ion strength I is calculated by the following formula: 

I =
1

2
∑ 𝑍𝑖

2 ∙ 𝑐𝑖 
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𝑐𝑖 − The concentration of ion i in mmol/L; 

𝑍𝑖 − Electric charge Number of ion i; 

In order to understand the reaction state between minerals and groundwater aqueous 

solution in the process of water-rock interaction, the saturation index SI of minerals in 

aqueous solution should be calculated. The formula for calculating the saturation index 

SI is as follows: 

SI = log
𝐼𝐴𝑃

𝐾
 

IAP is the product of anionic and cationic activities of minerals in water. 

K is the thermodynamic equilibrium constant at a certain humidity. When the saturation 

index SI of a mineral in water is bigger than 0, the mineral is in a supersaturated state 

and then precipitates. When the saturation index SI = 0, the mineral is in equilibrium. 

When the saturation index SI is less than 0, the mineral is unsaturated and dissolves 

(Wang L, 2012). 

3.1.3 Simulating Principle of PHREEQC- Reaction Kinetics 

Most studies on chemical reactions are based on thermodynamic equilibrium. It is 

assumed that the reaction system is a stable closed system independent of time. But 

this assumption is flawed. The law of thermodynamics cannot answer the time required 

for a reaction to reach equilibrium. Therefore, when the simulated reaction is slow, 

reversible, irreversible or inhomogeneous, the reaction kinetics, the rate at which the 

chemical reaction proceeds or reaches equilibrium, should be taken into account at the 

same time. 

(1) Reaction Kinetics of Different Chemical Processes 

Different chemical reactions have different half-lives, which is like isotope decay. Half-

life is the time spent when half of the reactants react to produce the reaction products. 

The half-life is recorded as t1/2 and the retention time of groundwater is recorded as tR. 

When t1/2 < tR, it can be considered that the system is in equilibrium state, which can be 

simulated by thermodynamic equilibrium. When t1/2 > tR, the system is not in equilibrium, 

so the dynamic model must be considered. The stability constants of acid-base reaction 

and complexation are relatively low. Some of the reactions are completed in 

microseconds or milliseconds. It is also a very fast reaction to form nonspecific 
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adsorption of disordered surface films. Thermodynamic equilibrium models are needed 

to solve these fast reactions. The reaction rate of ion exchange is mainly related to the 

bonding mode and the type of exchanger. Exchange reactions occurring only at the 

edge of particles, such as kaolinite, are the fastest. Exchanges that need to enter the 

mineral layer, such as montmorillonite, or those that need to enter the tight matrix layer, 

such as illite, proceed relatively slowly. The dissolution and precipitation reactions vary 

according to the situation. Some take only a few hours, while others take thousands of 

years to complete. Some reactions take thousands of years before half of the reactants 

are converted. So there are great differences in this reaction. For redox reaction, if there 

is no catalyst, its half-life will be longer. In conclusion, the kinetic reaction model needs 

to be considered for these slow reactions (Merkel, 2005). 

(2) Calculation of reaction rate 

The reaction rate is a decrease in the concentration of reactants or an increase in the 

concentration of reactants per unit time along the groundwater flow. Normally, the 

reaction rate of positive reaction, taking A+B→C as an example, is not the same as that 

of reverse reaction C→A+B. The reaction kinetics of the whole reaction is actually the 

sum of the positive reaction rate and the inverse reaction rate, as follows: 

𝑣+ = 𝑘+ ∏(𝑋𝑖)
𝑛𝑖

𝑖

 

𝑣− = 𝑘− ∏(𝑋𝑖)
𝑛𝑖

𝑖

 

𝐾𝑒𝑞 =
𝑘+

𝑘−
= ∏(𝑋𝑖)

𝑛𝑖
𝑒𝑞

𝑖

 

V+ is the rate of positive reaction. 

V- is the velocity of the inverse reaction. 

K+ is the rate constant of positive reaction. 

K- is the velocity constant of the inverse reaction. 

X is a reactant or a reaction product. 

n is the stoichiometric coefficient. 

Keq is the equilibrium constant. 
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In general, the chemical reactions we study are not completed in one step, but through 

several consecutive steps. At this time, the reaction rate of the whole reaction is 

controlled by the slowest one-step chemical reaction. 

(3) Factors affecting the reaction rate 

Firstly, the reaction rate is closely related to the concentration of reactants and products. 

According to the collision theory, when the concentration is high, the probability of 

collision between ions will be higher, so that the reactants will transform faster. But not 

all collisions can cause reactions. The precondition for the reaction is that the molecule 

must have a suitable position to overcome certain activation energy, which is the energy 

that must be overcome in the reaction. In addition to the concentration, there are many 

factors affecting the reaction rate, such as pH value, temperature, organic composition 

and content, catalysts and surface active substances. Langmuir (1997) gave activation 

energies for different chemical reactions. The activation energy range of physical 

adsorption is 2-6 kcal/mol. The activation energy of diffusion in dissolution is less than 

5 kcal/mol. The activation energy of mineral dissolution and precipitation ranges from 8 

to 36 kcal/mol, while the activation energy of ion exchange is more than 40 kcal/mol. 

Plummer et al. (1978) obtained the rate equation of carbonate dissolution and 

precipitation: 

𝑅𝑐𝑎𝑙𝑐𝑖𝑡𝑒 = 𝐾1 ∙ {𝐻+} + 𝐾2 ∙ {𝐶𝑂2} + 𝐾3 ∙ {𝐻2𝑂} − 𝐾4 ∙ {𝐶𝑎2+}{𝐻𝐶𝑂3
−} 

K1, K2 and K3 are constants in the formula, which are temperature dependent. They are 

used to describe positive reactions. 

𝐾1 = 100.198−444.0/𝑇𝐾，𝐾2 = 102084−2177.0/𝑇𝐾 

When the temperature is less than or equal to 25℃, 𝐾3 = 10−5.86−317.0/𝑇𝐾 

When the temperature is larger than 25℃, 𝐾3 = 10−1.1−1737.0/𝑇𝐾 

K4 is used to describe adverse reactions, 𝐾4 = 1 − (
𝐼𝐴𝑃

𝐾𝑐𝑎𝑙𝑐𝑖𝑡𝑒
)

2

3 

IAP is the product of ionic activity and Kcalcite is the solubility product of calcite (Wang L, 

2012). 
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3.2 Sampling and Data Acquisition 

3.2.1 Groundwater Hydrochemical Data   

Groundwater is a complex mixture containing many substances. In the lithosphere, 

groundwater is often closely related to rocks, influencing and reacting with each other. 

The water relationship between the earth's various spheres is complex, but there are 

certain rules to be found. There are also some differences in the chemical components 

and concentration relationship between their contents in different environments. 

Therefore, its chemical composition indicates the specific geological environment 

characteristics. The major hydrochemical data studied at home and abroad are 

groundwater constant ions, trace elements and isotopes. At present, there are six kinds 

of constant ions in groundwater chemical analysis, Na++K+, Ca2+, Mg2+, Cl-, SO42-, 

HCO3-. Through the study and analysis of these conventional ions, the source of 

groundwater can be determined (Wu Y, 2018). 

Ca2+ is the main cation in low salinity groundwater. With the increase of salinity, the 

relative content of calcium ions decreases rapidly. This is due to the low solubility of 

calcium sulfate and calcium carbonate, resulting in the precipitation of gypsum and 

calcite. Ca2+ is derived from weathering and dissolution of carbonate sediments, 

gypsum sediments, magmatic rocks and metamorphic rocks containing calcareous 

minerals. The source and distribution of Mg2+ in groundwater are similar to that of 

calcium. Mg2+ comes from sediments containing magnesium carbonate (dolomite, marl), 

and weathering and dissolution of magnesium minerals in magmatic and metamorphic 

rocks (Yidana & Banoeng, 2010). 

(Mg ∙ Fe)2𝑆𝑖𝑂4 + 2𝐻2𝑂 + 2𝐶𝑂2 → 𝑀𝑔𝐶𝑂3 + 𝐹𝑒𝐶𝑂3 + 𝑆𝑖(𝑂𝐻)4 

𝑀𝑔𝐶𝑂3 + 𝐻2𝑂 + 𝐶𝑂2 → 𝑀𝑔2+ + 2𝐻𝐶𝑂3
− 

Na+ is the main cation in high salinity water. It is a dissolved sodium salt, such as 

sedimentary rock salt, which can also be obtained from seawater. In magma and 

metamorphic areas, it is dissolved by weathering from sodium minerals. Acidic magma 

contains a large number of sodium-bearing minerals, such as albite. Therefore, with the 

participation of CO2 and H2O, low mineralized groundwater with Na+ and HCO3- as the 

main ions will be formed. K+ comes from dissolved salts of potassium-bearing 

sediments and weathering and dissolution of potassium-bearing minerals in magmas 
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and metamorphic rocks. The source and distribution characteristics of K+ and Na+ in 

groundwater are similar, but the content of the former in groundwater is much less than 

that of the latter. This is because K+ is involved in the formation of secondary minerals 

(hydromica, montmorillonite and taenite) which are insoluble in water and are easily 

absorbed by plants. Generally, the two minerals are combined and analyzed (Li, Hui, 

Wu, Zhang, & Zhang, 2013). 

Cl- is derived from the dissolution of rock salt or other chlorides in sedimentary rocks 

and weathering dissolution of chlorine-bearing minerals (chlorinated apatite 

Ca5(PO4)3Cl and sodalite NaAlSiO4∙NaCl) in magmatic rocks. Seawater also recharges 

groundwater. Sometimes wind from the sea brings frothy sea water to the land and 

leaching of volcanic eruptions, which also increases the content of Cl- in groundwater. 

The content of Cl- increases with the increase of salinity, which can be used to explain 

the degree of mineralization of groundwater (Yue et al., 2014). 

SO42- comes from the dissolution of gypsum (CaSO4·2H2O) or other sulfate 

sedimentary rocks. Or the oxidation of sulfides causes S, which is formerly insoluble in 

water, to dissolve in large quantities in the form of SO42- in water. Coal measures strata 

often contain a lot of pyrite, so the groundwater flowing through these strata often takes 

SO42- as the main ion (WangBian & Gao, 2014). 

2FeS2 + 7𝑂2 + 2𝐻2𝑂 → 2𝐹𝑒𝑆𝑂4 + 4𝐻+ + 2𝑆𝑂4
2− 

𝐻𝐶𝑂3
−  is almost the main anionic component in low salinity water. It comes from 

carbonate-bearing sedimentary rocks and metamorphic rocks (such as marble). In the 

magmatic and metamorphic rock areas, 𝐻𝐶𝑂3
− mainly comes from weathering and 

dissolution of aluminosilicate minerals (albite and calciferous feldspar). 

𝐶𝑎𝐶𝑂3 + 𝐻2𝑂 + 𝐶𝑂2 → 𝐶𝑎2+ + 2𝐻𝐶𝑂3
− 

𝑀𝑔𝐶𝑂3 + 𝐻2𝑂 + 𝐶𝑂2 → 𝑀𝑔2+ + 2𝐻𝐶𝑂3
− 

𝑁𝑎2𝐴𝑙2𝑆𝑖6𝑂16 + 𝐶𝑂2 + 𝐻2𝑂 → 2𝐻𝐶𝑂3
− + 2𝑁𝑎+ + 𝐻4𝐴𝑙2𝑆𝑖2𝑂9 + 4𝑆𝑖𝑂2 

CaO ∙ 2𝐴𝑙2𝑂3 ∙ 4𝑆𝑖𝑂2 + 2𝐶𝑂2 + 5𝐻2𝑂 → 2𝐻𝐶𝑂3
− + 𝐶𝑎2+ + 2𝐻4𝐴𝑙2𝑆𝑖2𝑂9 

In addition, the total salinity (or total dissolved solids, TDS) is often used as a 

conventional hydrochemical index. 
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3.2.2 Sampling and Testing  

During many years of production, a large amount of hydrogeological data has been 

accumulated in Kailuan mining area. In order to study the hydrochemical characteristics 

of groundwater mixing, the data of aquifer water samples used in this project were 

collected at Xiajinggezhuang Mine, Kailuan Mining Bureau, Tangshan City, Hebei 

Province. The water quality data of the water samples analyzed are mainly from the 

pebble pore confined aquifer at the bottom of Quaternary alluvium, the roof sandstone 

fissure aquifer of coal measure stratum 5, the 12 to 14 sandstone fissure aquifer of coal 

measure stratum, and the Ordovician limestone fissure confined aquifer of coal 

measure sedimentary basement. 

The water samples collected in this study were used to determine their hydrochemical 

indicators. The test items mainly include pH, Na+ (Na++K+ is replaced by Na+ because 

of its low K+ content and similar chemical properties to Na+), Ca2+, Mg2+, Cl-, SO42-, 

HCO3-. The method of pH determination is glass electrode method, HCO3- test is acid-

base indicator titration method, Cl- and SO42- test is ion chromatography method, Ca2+ 

and Mg2+ test is EDTA titration method, Na+ test is flame atomic absorption 

spectrophotometry. 

 

3.3 Hydrochemical Simulation by PHREEQC 

Mixing simulation can be realized by using PHREEQC hydrogeochemical simulation 

software. Mixing function can simulate the mixing of two water samples in different 

proportions, and ultimately get the water sample information in equilibrium state. 

Forward simulation can use the given composition of water samples and ion 

concentration to simulate the mixing equilibrium. The specific contents of ions in 

saturated water samples were calculated. 

In the main aquifer water samples, four groups of water samples with representative 

characteristics are selected in each aquifer for two-to-two mixing, and the mixing ratio 

is from 1:9 to 9:1. 
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3.3.1 Selection of Mixed Water Samples   

Taking Jinggezhuang Mine as an example, water samples from representative aquifers 

are selected for hydrochemical mixing simulation. 

Ordovician limestone karst fissure confined aquifer (Ⅰ), sandstone fissure aquifer above 

coal 5 (Ⅴ) and sand-gravel pore aquifer in upper Quaternary (Ⅷ) are selected as 

representative aquifers, and four representative water samples are selected for each 

aquifer. 

The hydrochemical information and hydrochemical types of the selected aquifers are 

shown in Table 1 Hydrochemistry information of the Ordovician limestone aquifer water 

samples, Table 2 Hydrochemistry information of the sandstone fissure aquifer water 

samples, Table 3 Hydrochemistry information of the Quaternary alluvial aquifer water 

samples. 

Hydrochemical 

indices 

Water sample  

O1 O2 O3 O4 

pH 7.84 7.85 8.00 8.10 

Na+（mg/L） 11.63 10.90 11.16 5.58 

Ca2+（mg/L） 46.35 31.75 43.55 36.41 

Mg2+（mg/L） 12.70 10.66 19.11 8.27 

Fe2+（mg/L） 0.00 0.00 0.00 0.00 

Fe3+（mg/L） 0.00 0.00 0.04 0.04 

Al3+（mg/L） 0.00 0.03 0.37 3.01 

NH+（mg/L） 0.00 0.00 0.00 0.00 

Cl-（mg/L） 18.96 7.72 7.27 7.76 

SO42-（mg/L） 15.71 7.00 12.96 9.25 

HCO-（mg/L） 153.30 133.40 209.95 154.18 

NO3-（mg/L） 30.34 9.00 2.64 3.94 

NO2-（mg/L） 0.00 0.00 0.01 0.03 

Table 1 Hydrochemistry information of the Ordovician limestone aquifer water samples 
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Hydrochemical 

indices 

Water sample  

S1 S2 S3 S4 

pH 8.00 8.30 8.30 8.40 

Na+（mg/L） 77.81 88.66 72.54 79.12 

Ca2+（mg/L） 26.59 34.28 31.24 15.17 

Mg2+（mg/L） 12.77 6.08 9.85 13.22 

Fe2+（mg/L） 0.00 0.00 0.00 0.00 

Fe3+（mg/L） 0.04 0.04 0.04 0.06 

Al3+（mg/L） 1.03 1.69 1.16 1.01 

NH+（mg/L） 0.00 0.00 0.00 0.00 

Cl-（mg/L） 19.40 17.94 16.00 17.96 

SO42-（mg/L） 10.89 15.00 10.48 9.87 

HCO-（mg/L） 257.79 261.81 254.19 275.42 

NO3-（mg/L） 0.26 0.53 0.26 0.18 

NO2-（mg/L） 0.00 0.00 0.00 0.00 

Table 2 Hydrochemistry information of the sandstone fissure aquifer water samples 
 

Hydrochemical 

indices 

Water sample  

C1 C2 C3 C4 

pH 7.80 7.90 8.00 8.00 

Na+（mg/L） 28.98 26.97 61.69 47.75 

Ca2+（mg/L） 42.66 41.41 52.23 44.71 

Mg2+（mg/L） 16.05 20.35 12.45 9.83 

Fe2+（mg/L） 0.00 0.00 0.00 0.00 

Fe3+（mg/L） 0.04 0.04 0.04 0.08 

Al3+（mg/L） 1.03 0.50 0.76 0.20 

NH+（mg/L） 0.00 0.00 0.00 0.00 

Cl-（mg/L） 12.90 7.76 18.43 22.77 

SO42-（mg/L） 22.64 15.90 22.01 9.97 

HCO-（mg/L） 242.18 250.02 287.05 250.94 

NO3-（mg/L） 0.88 0.88 0.69 1.63 
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NO2-（mg/L） 0.01 0.01 0.02 0.02 

Table 3 Hydrochemistry information of the Quaternary alluvial aquifer water samples 
 

3.3.2 Hydraulic-chemical Mixing Simulation by PHREEQC 

When mixing water samples from different aquifers, all combinations of four 

representative water samples from each aquifer and four representative water samples 

from another aquifer are considered. The mixing ratios were 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 

7:3, 8:2 and 9:1, respectively. The simulated mixing of water samples in the confined 

aquifer of the Ordovician limestone karst fissure confined aquifer (Ⅰ), sandstone fissure 

aquifer above 5 coal (Ⅴ) and sand-gravel pore aquifer in the upper Quaternary (Ⅷ) is 

shown in Table 4 Mixed assemblages of representative water samples from each 

aquifer. 

Aquifer Samples Mixing 
ratio Aquifer Samples Mixing 

ratio Aquifer Samples Mixing 
ratio 

Ordovician 
limestone 

aquifer 

and 

sandstone 
fissure 
aquifer 

O1:S1 1:9-
9:1 

Ordovician 
limestone 

aquifer 

and 

Quaternary 
alluvial 
aquifer 

O1:C1 1:9-
9:1 

sandstone 
fissure 
aquifer 

and 

Quaternary 
alluvial 
aquifer 

S1:C1 1:9-
9:1 

O1:S2 1:9-
9:1 O1:C2 1:9-

9:1 S1:C2 1:9-
9:1 

O1:S3 1:9-
9:1 O1:C3 1:9-

9:1 S1:C3 1:9-
9:1 

O1:S4 1:9-
9:1 O1:C4 1:9-

9:1 S1:C4 1:9-
9:1 

O2:S1 1:9-
9:1 O2:C1 1:9-

9:1 S2:C1 1:9-
9:1 

O2:S2 1:9-
9:1 O2:C2 1:9-

9:1 S2:C2 1:9-
9:1 

O2:S3 1:9-
9:1 O2:C3 1:9-

9:1 S2:C3 1:9-
9:1 

O2:S4 1:9-
9:1 O2:C4 1:9-

9:1 S2:C4 1:9-
9:1 

O3:S1 1:9-
9:1 O3:C1 1:9-

9:1 S3:C1 1:9-
9:1 

O3:S2 1:9-
9:1 O3:C2 1:9-

9:1 S3:C2 1:9-
9:1 

O3:S3 1:9-
9:1 O3:C3 1:9-

9:1 S3:C3 1:9-
9:1 

O3:S4 1:9-
9:1 O3:C4 1:9-

9:1 S3:C4 1:9-
9:1 

O4:S1 1:9-
9:1 O4:C1 1:9-

9:1 S4:C1 1:9-
9:1 
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O4:S2 1:9-
9:1 O4:C2 1:9-

9:1 S4:C2 1:9-
9:1 

O4:S3 1:9-
9:1 O4:C3 1:9-

9:1 S4:C3 1:9-
9:1 

O4:S4 1:9-
9:1 O4:C4 1:9-

9:1 S4:C4 1:9-
9:1 

Table 4 Mixed assemblages of representative water samples from each aquifer 
 

With the mixing function MIX in PHREEQC, the hydrochemical information of the above 

water samples can be input and saved. The mixing ratio is set to 1:9, 2:8, 3:7, 4:6, 5:5, 

6:4, 7:3, 8:2 and 9:1. The equilibrium term of the possible products is added and the 

mixed water sample is preserved. The chemical information that needs to be output 

such as constant ion weight and pH of each mixed solution are needed to select and 

set. Finally, save the file and click Run button to simulate to get and save the results. A 

total of 432 water samples were obtained after mixing. 

Because of the limited space, this paper takes mixing simulation of water sample O1 
from Ordovician limestone karst fissure confined aquifer (I) and water sample C1 from 
sand-gravel pore aquifer in the upper Quaternary (Ⅷ) as an example to illustrate. The 

mixing simulation results are processed and the severity is converted into concentration 
information. The mixing results are shown in the  

Table 5 Mixing simulation results of water sample O1 and C1 in Jinggezhuang Mine.. 

 

Mixing 

ratio 
1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 

pH 7.51 7.52 7.53 7.54 7.55 7.56 7.57 7.59 7.60 

Na+ 

mg/L 
27.27 25.53 23.79 22.06 20.32 18.58 16.85 15.11 13.37 

Ca2+ 

mg/L 
38.02 38.70 39.38 40.06 40.74 41.41 42.08 42.74 43.39 

Mg2+ 

mg/L 
15.52 15.19 14.86 14.53 14.20 13.87 13.54 13.21 12.88 

Fe2+ 

mg/L 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe3+ 

mg/L 
0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.00 
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Al3+ 

mg/L 
0.93 0.82 0.72 0.62 0.52 0.41 0.31 0.21 0.10 

NH+ 

mg/L 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cl- 

mg/L 
13.53 14.14 14.74 15.35 15.96 16.56 17.17 17.78 18.38 

SO42 

mg/L 
21.95 21.25 20.56 19.87 19.17 18.48 17.79 17.09 16.40 

HCO- 

mg/L 
225.83 217.42 209.00 200.59 192.16 183.74 175.30 166.86 158.40 

NO3- 

mg/L 
3.83 6.78 9.72 12.67 15.61 18.55 21.50 24.44 27.39 

NO2- 

mg/L 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
Table 5 Mixing simulation results of water sample O1 and C1 in Jinggezhuang Mine. 

 

3.4 Hydrochemical Characteristics Analysis of Mixing Simulation      

The hydrogeological conditions of Jinggezhuang Mine in Kailuan Mining Area are 

complex and the water-filling sources are diverse. The hydrochemical characteristics of 

different aquifers are different. After mixing, some changes have taken place in the 

hydrochemical characteristics of the aquifer samples, which are different from the 

original ones. 

3.4.1 Hydrochemical Characteristics of Water Samples  

(1) Ordovician limestone karst fissure confined aquifer (Ⅰ) 

This aquifer is more than 600 m thick, mainly located in the southeastern part of the 

well field. The lithology of the aquifer is leopard skin limestone and dolomitic limestone. 

The development of limestone fissures is increased because of the contact between 

tectonism and quaternary alluvium. The water inflow of the aquifer ranges from 0.664 

to 1.553 L/s·m, with an average of 1.108 L/s·m. The permeability coefficient is 2.3227 

- 4.9458 m/d, with an average of 3.63425 m/d. The aquifer is rich in water. 

According to drilling data, the borehole enters within 100 meters of Ordovician 

limestone. The above properties do not change significantly with depth. There are two 

aquifers between Ordovician limestone and 12-2 coal seam, namely K2 - K6 and K6 - 12 
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coal-rock fissure aquifers, whose thickness is 100m and 20m respectively. The 

hydrochemical characteristics Piper three-line diagram of the representative water 

samples of this aquifer are shown in Figure 1. 

 

Figure 1 Piper three-line diagram of Water Samples in Ordovician Limestone Aquifer 
 

(2) Sandstone fissure aquifer above 5 coal (Ⅴ)  

The aquifer is located in the upper boundary of the Damiaozhuang Formation 5 coal 

and Tangjiazhuang Formation of the Lower Permian. The average thickness of this 

layer is 100m. Lithology is mainly siltstone and sandstone, and sandstone cements are 

mostly calcium, silica and argillaceous. The rock fissures in this formation are well 

developed and mainly inclined fissures. It belongs to fractured aquifer with weak water-

rich characteristic. The aquifer can be divided into lower part (VA) and upper part (VB): 

The lower part (VA): This part is located at 0 - 60 m above 5 coal. It is fluvial facies 

sandstone and has scouring contact with underlying strata. In the western and central 

part of the minefield, coal strata are scoured directly to coal 5 or 6, or even to coal 7 or 

8. The unit water inflow in this part is 0.05-0.092 L/s·m. The permeability coefficient is 

2.552 m/d. It is a fractured aquifer with weak water-rich. 
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The upper part (VB): This part is located at 60 - 100 m above 5 coal. The roof of this 

part is directly connected with the weathering zone of bedrock. The unit water inflow in 

this section is 0.087 L/s·m. The permeability coefficient is 1.722 - 2.059 m/d. It is 

fractured aquifer with weak water-rich. 

This aquifer is exposed in the second level roadway of the mine. The maximum water 

inflow is 9.9 m3/min during construction, and then decreases gradually. At present, the 

second level of mining has basically ended, so this aquifer does not affect the mining 

activities in this mining area. The hydrochemical characteristics Piper three-line 

diagram of the representative water samples of this aquifer are shown in Figure 2. 

 

Figure 2 Piper three-line diagram of Water Samples in sandstone fissure aquifer 
 

(3) Sand-gravel pore aquifer in the upper Quaternary (Ⅷ) 

The thickness of the aquifer is 100 - 379.67m. It is composed of unequal grains of gravel, 

pebble and clay. Among them, 80% are coarse sand and gravel, 10% are pebble and 

10% are clay. The aquifer is relatively homogeneous, but the amount of clay in the 

gravel is different, which results in different properties of water-rich. The aquifer is well 

developed in the southeastern part of the well field. It almost contacts with the bedrock 

directly to recharge the bedrock aquifers. In the lower part of the northwest part of the 
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stratum, clay layers directly cover the bedrock. The clay layer has good water 

resistance. Due to this clay layer, there are two forms of recharge relationship between 

this aquifer and 5 coal roof sandstone fractured aquifer: skylight type and overflow type. 

The hydrochemical characteristics Piper three-line diagram of the representative water 

samples of this aquifer are shown in Figure 3. 

 

Figure 3 Piper three-line diagram of Water Samples in Quaternary alluvial aquifer 
 

3.4.2 Hydrochemical Characteristics of Mixed Simulated Water Samples  

(1) Hydrochemical types 

AqQA software was used to analyze the hydrochemical characteristics of water 

samples mixed in different proportions. The hydrochemical Piper diagram of the original 

water sample and the mixed water sample was drawn. The changes of hydrochemical 

types after mixing were analyzed. 

After mixing the water samples of the Ordovician limestone karst fissure confined 

aquifer (Ⅰ) and Sand-gravel pore aquifer in the upper Quaternary (Ⅷ), the 

hydrochemical type has not changed. It is still HCO3-Ca type. Water sample O1 from 

Ordovician limestone karst fissure confined aquifer (Ⅰ) and water sample C1 from Sand-
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gravel pore aquifer in the upper Quaternary (Ⅷ) mix in different proportions as shown 

in Figure 4. 

 

Figure 4 Piper Diagram of Water Sample O1 and C1 Mixed in Different Proportions 
 

After mixing the water samples of Ordovician limestone karst fissure confined aquifer 

(Ⅰ) and Sandstone fissure aquifer above 5 coal (Ⅴ), the hydrochemical types of water 

samples changed from HCO3-Ca type to HCO3-Na type. 

The mixing results of the water samples O1 from Ordovician limestone karst fissure 

confined aquifer (Ⅰ) and the water samples S1 from Sandstone fissure aquifer above 5 

coal (Ⅴ) in different proportions are shown in Figure 5. 
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Figure 5 Piper Diagram of Water Sample O1 and S1 Mixed in Different Proportions 
 

After mixing the water samples of Sand-gravel pore aquifer in the upper Quaternary 

(Ⅷ) and Sandstone fissure aquifer above 5 coal (Ⅴ), the hydrochemical types of water 

samples changed from HCO3-Ca type to HCO3-Na type. 

The mixing results of the water samples C1 from Sand-gravel pore aquifer in the upper 

Quaternary (Ⅷ) and the water samples S1 from Sandstone fissure aquifer above 5 coal 

(Ⅴ) in different proportions are shown in Figure 6. 
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Figure 6 Piper Diagram of Water Sample C1 and S1 Mixed in Different Proportions 
 

(2) Variety of Ion Concentration  

Data statistics software Origin was used to analyze the hydrochemical characteristics 

of raw water samples mixed in different proportions. The line chart of the concentration 

distribution of conventional ions including the original water sample and the mixed water 

sample were drawn. The change of conventional ion concentration in aquifers after 

mixing was analyzed. 

Water samples from Ordovician limestone karst fissure confined aquifer (Ⅰ) and Sand-

gravel pore aquifer in the upper Quaternary (Ⅷ) have mixed. With the increase of 

mixing ratio, the concentration of HCO3- ions increased the most, followed by Na+ ions 

in solution. The concentration of other ions did not change much. 

Water sample O1 from Ordovician limestone karst fissure confined aquifer (Ⅰ) and water 

sample C1 from Sand-gravel pore aquifer in the upper Quaternary (Ⅷ) mix in different 

proportions as shown in Figure 7. 
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Figure 7 Line Chart of Water Sample O1 and C1 Mixed in Different Proportions 
 

Water samples from Ordovician limestone karst fissure confined aquifer (Ⅰ) and 

Sandstone fissure aquifer above 5 coal (Ⅴ) have mixed. With the increase of mixing 

ratio, the concentration of HCO3- and Na+ ions changed greatly, which increase range 

was very large. The second is Ca2+ ions in solution, which decreases in a certain range. 

The concentration of other ions did not change much. 

The mixing results of the water samples O1 from Ordovician limestone karst fissure 

confined aquifer (Ⅰ) and the water samples S1 from Sandstone fissure aquifer above 

5 coal (Ⅴ) in different proportions are shown in Figure 8. 
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Figure 8 Line Chart of Water Sample O1 and S1 Mixed in Different Proportions 

 

Water samples from Sand-gravel pore aquifer in the upper Quaternary (Ⅷ) and 

Sandstone fissure aquifer above 5 coal (Ⅴ) have mixed. With the increase of mixing 

ratio, the concentration of Na+ ions changed greatly, which increase range was very 

large. The second is Ca2+ ions in solution, which decreases in a certain range. The 

concentration of other ions did not change much. 

The mixing results of the water samples C1 from Sand-gravel pore aquifer in the upper 

Quaternary (Ⅷ) and the water samples S1 from Sandstone fissure aquifer above 5 coal 

(Ⅴ) in different proportions are shown in  
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Figure 9 Line Chart of Water Sample C1 and S1 Mixed in Different Proportions 
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4 Research on Identification Model of Inrush Water Source  

There are various ions in groundwater. The composition of groundwater varies greatly 

under different conditions. When water inrush occurs, the water source is usually not a 

single aquifer, but a mixture of underground aquifer water sources. This will make us 

face enormous challenges in identifying the source of water inrush. In this case, 

uncertain mathematical models emerge as the times require. It can better simulate the 

uncertainty of groundwater to a certain extent, thus increasing the reliability of 

discrimination. 

In Kailuan mining area, there are differences in the recharge and drainage of aquifers, 

acidity and alkalinity, which leads to the different types and contents of ion components 

in groundwater. Through the mixed simulation method described in Chapter 4, a large 

number of water samples of Jinggezhuang mine aquifer are simulated by 

PHREEQC.The mixed simulated water sample data are selected and sorted out as the 

input layer data of the mixed water source discrimination model. The establishment 

method of artificial neural network hybrid water inrush source identification model is 

studied, and the accuracy of water source identification is verified, which provides a 

scientific means for mine water hazard prevention and control. 

Artificial neural network has the characteristics of self-organization, self-adaptation and 

fault-tolerance. It is widely used in system pattern recognition, classification, prediction 

and so on. The application of artificial neural network (ANN) to mine water inrush source 

identification will give full play to its unique advantages, which has certain application 

value and significance (Xu X & Wang G, 2016). 

4.1 Basic Ideas of BP Neural Network   

The early development of artificial neural networks (ANNs) was driven by the desire to 

simulate the learning process of biological systems, including the human brain. 

Consistency is an important concept in nonparametric estimation. The uniform 

estimator is an estimator that converges asymptotically to the estimated object (e.g. 

regression function) under large sample size. When the sample size tends to be infinite, 

the uniform estimator is a model, which can approximate the objective function with 

arbitrary precision. In other words, when there is enough data available, there is an 
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unbiased model. Many researchers at home and abroad have proved that artificial 

neural network can approximate any function to the desired accuracy. 

Therefore, many early studies of artificial neural networks focused on their ability to 

accurately learn the data sets presented (i.e. training sets). Although the above work 

tends to focus on function approximation, early research in the field of classification 

includes the design of neural networks to achieve the goal of complete and correct 

classification of training sets. In conclusion, these works show that the design of neural 

networks can generate unbiased estimates for given classification data. 

According to the continuity of the value of the neuron, the artificial neural network can 

be divided into two types: continuous network and discrete network. According to the 

different network structure, it can also be divided into two categories: namely the 

Feedback Network and the Feedforward Network. The hierarchical relationship of 

feedforward network is very clear. The information flow flows from input layer to output 

layer in one direction (Li D et al., 2015). 

BP (Back Propagation) neural network is a multi-layer feedforward network trained by 

error back propagation algorithm. It was proposed by Rinehart and McClelland in 1986. 

BP neural network can learn and store a large number of mapping relationships without 

revealing the mathematical equation of input-output mode mapping relationship in 

advance. The steepest descent method is used to adjust the weights and thresholds of 

the network through back propagation, and finally iterate to minimize the sum of 

squares of errors of the network. 

It is necessary to adjust the weights of the network through repeated and continuous 

cycles in order to make it more reasonable. Therefore, in order to obtain the allowable 

error range, we need to debug repeatedly when constructing the neural network (Qi R, 

2018). The structure sketch of BP neural network is shown in Figure 10. 
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Figure 10 The schematic diagram of BP neural network structure 
 

BP neural network mainly relies on the back propagation of the output layer error to the 

hidden layer to get the expected value of the output layer. 

In order to make the output error as small as possible, the gradient descent method is 

used to calculate and adjust the weight of the neural network. The expression of error 

function is as follows: 

E =
1

2
∑(𝑇𝑘 − 𝑂𝑘)2 

Tk is and are target values, and Ok is output values. 

The gradient descent method affects the weight by changing the gradient error: 

∆𝑊𝑖𝑗 = −𝜂 ×
𝜕𝐸

𝜕𝑊𝑖𝑗
 

𝜂 is learning efficiency. 𝜕𝑊𝑖𝑗 is expressed in the following formula: 

𝜕𝐸

𝜕𝑊𝑖𝑗
= −𝛿𝑗

𝑛 ∙ 𝐴𝑖
𝑛−1 

The gradient error can be obtained as follows: 

∆𝑊𝑖𝑗 = 𝜂 ∙ 𝛿𝑗
𝑛 ∙ 𝐴𝑖

𝑛−1 

The connection weight 𝑊𝑖𝑗 will affect the output layer result 𝐴𝑖
𝑛−1. The error signal is 

represented by 𝛿𝑗
𝑛 , which is related to the connection weight 𝑊𝑖𝑗 . After a series of 

calculations, 𝛿𝑗
𝑛 can quickly identify whether j is a neuron in the output layer. If so, the 

following formula holds: 

δ𝑗 = (𝑇𝑗 − 𝑌𝑗) ∙ 𝑌𝑗 ∙ (1 − 𝑌𝑗) 
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If j is a neuron in the hidden layer, the following formula holds: 

δ𝑗 = |∑ 𝛿𝑖 ∙ (𝑊 − ℎ𝑦)ℎ𝑗

𝑗

| ∙ 𝐻ℎ ∙ (1 − 𝐻ℎ) 

Hh is the value of the hidden layer. The weight equation is as follows: 

𝑊𝑖𝑗
𝑚 = 𝑊𝑖𝑗

𝑚−1 + ∆𝑊𝑖𝑗
𝑚 = 𝑊𝑖𝑗

𝑚−1 + 𝜂 ∙ 𝛿𝑗
𝑛 ∙ 𝐴𝑖

𝑛−1 

In fact, the error signal is equivalent to the expected output minus the actual output 

value. The weight of the network is dynamically adjusted in the process of error back 

propagation, which reduces the network discrimination error gradually (Lee, 2008; 

LiouHuang & Yang, 2008; Jiang S, Sun Y, Yang L, & Ling C, 2007).  

4.2 Establishment of BP Neural Network Model for Recognition of 
Water Inrush Source     

In order to create a neural network for identifying water inrush sources, sample data 

should be selected first. In the study area, aquifer water samples which may be the 

source of water inrush are collected. The main data are hydrochemical characteristics, 

including pH, concentration indicators of Ca2+, Mg2+, K++Na+, HCO-, Cl-, SO42-. A certain 

number of representative water samples are selected in each aquifer as raw water 

sample data. Using the hydrochemical simulation software PHREEQC, the original 

representative water samples of different aquifers are simulated by the method 

mentioned in Chapter 4. Mixing proportions can be selected from small to large (e.g. 

1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1). The water sample data after mixed simulation 

is used as the data set of the neural network model. 

Based on TensorFlow software, about 85% of the mixed water samples in this data set 

are selected as training samples of the neural network, and the remaining 15% of the 

water samples are used as validation samples. Ca2+, Mg2+, K++Na+, HCO-, Cl-, SO42-, 

and pH were taken as seven hydrochemical characteristics of water samples. An initial 

BP neural network is established based on TensorFlow. 

The algorithm of establishing a BP neural network discriminant model based on 

TensorFlow software includes the following steps: Firstly, the data are standardized 

and normalized to values between 0 and 1. Next, the input neurons are input to 
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establish the input layer. The error is calculated by the error loss function, and the cross-

entropy loss function is selected. 

Thirdly, gradient descent method is used to optimize the discriminant model, and ADAM 

Optimizer is used as the optimize algorithm. Finally, the treated water sample data are 

trained and tested. The number of iterations is 5000 - 10000, which ensures the 

accuracy of the neural network discriminant model. 

4.2.1 Data Preprocessing Method 

When using TensorFlow software to build a BP neural network discriminant model, the 

data should be pre-processed first. Scaling data to a small specific interval is called 

normalization of data. Converting data into dimensionless pure values can not only 

eliminate the influence and limitation of units on data, but also facilitate the comparison 

and weighting of data in different units or scales. The most typical one is mapping data 

to [0,1] interval. 

Min-max standardization is the most commonly used method of data normalization. 

Min-max standardization, also known as 0-1 standardization, is a linear transformation 

of data, so that the transformed data range falls into the [0,1] interval. The conversion 

function is as follows: 

𝑥∗ =
𝑥 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
 

Max is the maximum value of sample data and min is the minimum value of sample 

data. The code used is: 

def Normalization(x): 

return [(float(i)-min(x))/float(max(x)-min(x)) for i in x] 

4.2.2 Error Loss Function 

When the neural network model of water inrush source identification is established, the 

cross-entropy loss is chosen as the error loss function. 

Cross-entropy loss is a common loss function in classification tasks. Although many 

researchers have used the square error cost function in practice, the cross-entropy loss 

function has several theoretical advantages. Firstly, the square error assumes the 
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Gauss target data, which is contrary to the given binary target training neural network 

classifier. On the other hand, the measurement based on entropy is specially developed 

for binary objectives. This may significantly affect the effectiveness of neural network 

prediction. Secondly, the square error can be controlled by outliers at some points with 

very large errors. Cross-entropy has little influence on logarithmic linear error function. 

Thirdly, the square error function depends on the square of absolute error. At the same 

time, the cross-entropy error depends on the relative error of network output. Therefore, 

cross-entropy may perform better in both large and small target values, because they 

often lead to similar relative errors. This shows that the cross-entropy function performs 

better than the square error function in estimating the small posteriori probability(Kline 

& Berardi, 2005). 

The connotation of cross-entropy refers to the difference between the actual output and 

the expected output. That is to say, the smaller the value of cross-entropy is, the closer 

the distribution of expected output is to that of actual output. If the expected output 

probability distribution is p(x), the actual output probability distribution is q(x), and the 

cross-entropy is H(p, q), then: 

𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥) 𝑙𝑜𝑔 𝑞(𝑥)

𝑥

 

In BP neural network, the activation function is needed to convert multiple linear inputs 

into non-linear relations. Because the expression ability of linear model is often 

insufficient in the face of the actual application, the activation function can introduce 

non-linear factors. Otherwise each layer of neural network only does simple linear 

transformation, and the multi-layer input superposition is still linear transformation, 

which can not meet the actual needs. 

When using TensorFlow to establish the identification model of Water Inrush Source 

Based on neural network, two hidden layers of neural network are selected., the 

Sigmoid activation function is recommended for the selection of cross-entropy loss 

function in the process of data transfer between the input layer and the first hidden layer, 

and between the first and the second hidden layer. 

The expression of Sigmoid activation function is as follows: 

σ(𝑧) =
1

1 + 𝑒−𝑧
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The image of function  σ(𝑧) is shown in Figure 11 Cross-Entropy Simoid Activation 

Function Curve. 

 

Figure 11 Cross-Entropy Simoid Activation Function Curve 

The use of cross-entropy loss function and Sigmoid activation function will ensure that 

the neural network model keeps a high gradient state when it converges. The function 

characteristics of Sigmoid itself lead to the problem that the convergence speed of the 

model is very slow when the training results are close to the real value. Because the 

cross-entropy loss function is a logarithmic function, it can remain in a high gradient 

state when it approaches the upper boundary. The slope of the upper boundary and 

the lower boundary decreases very quickly, which can improve the problem. 

When data transfer between the second hidden layer and the output layer, the Softmax 

activation function is selected for the Softmax regression. 

It’s supposed that the original output of the neural network is y1, y2, ..., yn, then the 

output after the Softmax regression processing is as follows: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖) = 𝑦𝑖
′ =

𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝑛
𝑗=1

 

The output mode is changed from a single node to a probability value. 
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4.2.3 Model Optimization by Gradient Descent Method 

When the neural network model of water inrush source identification is established, the 

gradient descent method is used to optimize the model to minimize the error function. 

ADAM algorithm is used as the optimizing algorithm. 

In order to improve the convergence of this gradient descent method, it is a common 

method to introduce the adaptive step size. The adaptive step size is a numerical 

process for solving continuous problems, which is a step discretization process. 

ADAM optimization algorithm is one of the most popular gradient descent optimization 

algorithms. It is implemented in common neural network frameworks, such as 

TensorFlow, Caffe or CNTK. Kingma and BA prove that the Adam optimizer is faster 

than any other optimizer through experiments (see Figure 12 Comparison of different 

optimizer by training of multilayer). Ruder, Sebastian (Ruder, 2017) said: " ADAM is the 

first multi-layer neural network to be trained on MNSIT images so far, which may be the 

best overall choice compared with different optimizers." All these points show the 

importance of neural network optimization program and the superiority of ADAM 

optimizer. 
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Figure 12 Comparison of different optimizer by training of multilayer  
neural networks on MNIST images 

(1) Method of Moments 

Moment method is based on adaptive step size. First, we define our weight change 

rules. 

Definition 1 (Weight Change Rule) 

Let w ∈ 𝑅𝑛  be the weight vector of the neural network, e(w) be the error function, 

and  η ∈ 𝑅+  be the step size. In addition, let t ∈ N  be the timestamp of the current 

training step. Then w(t) is the weight vector in the training step t. 

w(𝑡 + 1) = 𝑤(𝑡) + ∆𝑤(𝑡) 

∆𝑤(𝑡) = −
𝜂

2
∇𝑤𝑒(𝑤(𝑡)) 
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When using the rules in the definition, the errors of the neural network can be minimized 

by increasing the weight. The shape of ∇𝑤(𝑡) depends on the method chosen. The 

moments method adds a part of weight to the gradient descent step, which changes 

from the previous timestamps. 

Definition 2 (Method of Moments) 

Let α ∈ 𝑅+ be the decay rate of the old weight change. All other parameters are defined 

according to Definition 1. Weight change will be defined as follows: 

∆𝑤(𝑡) = −
𝜂

2
∇𝑤𝑒(𝑤(𝑡)) + 𝛼∆𝑤(𝑡 − 1) 

In order to attain convergence of the method of moments, the restriction α ∈ [0, 1] 

should be applied. 

(2) ADAM-Optimizer  

The adaptive moment estimation (ADAM) was invented by Kingma and Ba and is 

nowadays one of the most popular step size methods in the area of neural networks. 

The algorithm is defined as follows. 

Data：𝜂𝑡 =
𝜂

√𝑡
 as step size, 𝛽1, 𝛽2 ∈ (0,1) as decay rates for the moment estimates, 

𝛽1,𝑡 ≔ 𝛽1𝜆𝑡−1 with 𝜆 ∈ (0,1), 𝜖 > 0, 𝑒(𝑤(𝑡)) as the initial weight vector. 

Set 𝑚0 = 0 as initial 1st moment vector 

Set 𝑣0 = 0 as initial 2nd moment vector 

Set t = 0 as initial time stamp 

while w(t) not converged do 

t = t + 1 

𝑔𝑡 = ∇𝑤𝑒(𝑤(𝑡)) 

𝑚𝑡 = 𝛽1,𝑡𝑚𝑡−1 + (1 − 𝛽1,𝑡)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 
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𝑤(𝑡) = 𝑤(𝑡 − 1) − 𝜂𝑡

𝑚̂𝑡

(√𝑣𝑡 + 𝜖)
 

end 

return w(t) 

Their experiments show that the convergence speed of Adam optimizer is much faster 

than that of other optimizers for multi-layer or convolutional neural networks. 

4.3 Verification of Water Inrush Source Identification in 
Jinggezhuang Mine     

According to the method of building neural network water source identification model 

mentioned above, the mixed water source identification model of Jinggezhuang Mine 

is established to verify the feasibility of this method. The data source of the model is 

the water sample of underground aquifer in Jinggezhuang mining area which is mixed 

by PHREEQC hydrochemical simulation software according the method mentioned in 

Chapter 4. The water samples of different aquifers are mixed in different proportions as 

the classification basis. 

Taking the three aquifers of Ordovician limestone karst fissure confined aquifer (Ⅰ), 

sandstone fissure aquifer above coal 5 (Ⅴ) and sand-gravel pore aquifer in upper 

Quaternary (Ⅷ) as representative aquifers, the mixing ratio can be 2:8, 4:6, 6:4 and 

8:2. There are 12 categories totally. The classification can be found in Table 6 Water 

Source Classification Table of Mixed Water Source Identification Model. 

Catogary 
number 

Inrush water souce Mixing ratio 

1 Ordovician limestone water Ⅰ and sandstone fissure water V 2:8 

2 Ordovician limestone water Ⅰ and sandstone fissure water V 4:6 

3 Ordovician limestone water Ⅰ and sandstone fissure water V 6:4 

4 Ordovician limestone water Ⅰ and sandstone fissure water V 8:2 

5 Ordovician limestone water I and quaternary water Ⅷ 2:8 

6 Ordovician limestone water I and quaternary water Ⅷ 4:6 

7 Ordovician limestone water I and quaternary water Ⅷ 6:4 

8 Ordovician limestone water I and quaternary water Ⅷ 8:2 

9 Sandstone fissure water V and quaternary water Ⅷ 2:8 
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10 Sandstone fissure water V and quaternary water Ⅷ 4:6 

11 Sandstone fissure water V and quaternary water Ⅷ 6:4 

12 Sandstone fissure water V and quaternary water Ⅷ 8:2 

Table 6 Water Source Classification Table of Mixed Water Source Identification Model 

There are 12 neurons in the output layer. Each neuron is a 12-dimensional vector, 

which is (1,0,0…, 0), (0,1,0，…, 0), …, (0 ,0，…, 0,1,0) and (0 ,0，…, 0,0,1), corresponding 

to each water source category. 

128 mixed water samples were selected for each category of inrush water source from 

mixed simulation water samples by PHREEQC. A total of 1536 water samples were 

collected from 12 categories of water inrush sources, which contribute to the 

discriminant model database. 200 water samples were selected as test data, and 

remaining 1336 water samples were used as training data. The pH, concentration of 

Ca2+, Mg2+, K++Na+, HCO-, Cl-, SO42- ions were taken as seven hydrochemical 

characteristics of water samples. 

Firstly, the min-max method is used to preprocess the data and standardize it. With the 

help of TensorFlow library function, an initial BP neural network with seven inputs 

(corresponding to seven hydrochemical characteristics) and 12 outputs (corresponding 

to 12 types of water sources) containing two hidden layers is established. 

The number of neurons in the input layer is [7], the number of neurons from the input 

layer to the first hidden layer is [7,14], the number of neurons from the first hidden layer 

to the second hidden layer is [14,10], and the number of neurons from the second 

hidden layer to the output layer is [10,12]. Then set the placeholder of water type and 

category, as well as the weights and biases of each layer. Activation function is used to 

connect all layers of network. The transfer function of the first and second hidden layer 

is `Sigmoid', and the transfer function of the output layer is `Softmax'. 

hidden_opt1 = tf.matmul (X, W1) + B1  

hidden_opt1 = tf.nn.sigmoid (hidden_opt1)  

hidden_opt2 = tf.matmul (hidden_opt1, W2) + B2  

hidden_opt2 = tf.nn.sigmoid (hidden_opt2) 

hidden_opt3 = tf.matmul (hidden_opt2, W3) + B3 

hidden_opt3 = tf.nn.softmax (hidden_opt3) 
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The parameters set of the neural network are shown in Table 7 Parameter Setting Table 

of Neural Network. 

Attributes Set value Default value 

Training steps 10000 100 

Interval parameters for displaying 

training results 

100 25 

Training target error 0.05 0 

Nodes of first layer 14 7 

Nodes of second layer 10 7 
Table 7 Parameter Setting Table of Neural Network 

The initial loss value and the correct rate of loss function are calculated in the model. 

The ADAM-Optimizer algorithm in gradient descent method is used to optimize the 

model and minimize the error function. Iterative training and testing are followed, and 

the loss and accuracy of each step are recorded. Iterative training and test functions: 

for i in range (lr) : 

    #batch = xy_data.train.next_batch (batch_size) 

    batch_input = xy_data_train[:test,:7] 

    batch_labels = xy_data_train[:test,7:]  

    training_loss = sess.run (opt, feed_dict = {X: batch_input, Y: batch_labels}) 

    record_loss[i] = sess.run(loss, feed_dict={X: batch_input, Y: batch_labels}) 

    accuracy_data[i] = sess.run(accuracy, feed_dict={X: batch_input, Y: 

batch_labels}) 

    test_accuracy[i] = sess.run(accuracy,feed_dict={X : xy_data_test[:,:7], Y: 

xy_data_test[:,7:]}) 

    if i % 1000 == 0 : 

        train_accuracy = accuracy.eval (session = sess, feed_dict = {X: batch_input,Y: 

batch_labels}) 

        print ("step : %d, training accuracy = %g " % (i, train_accuracy)) 

After 10,000 iterations, the final model error of the neural network is small. The error 

loss of the neural network is shown in Figure 13 Error Loss Curve of Neural Network 

Model during Iteration. After training of 1336 mixed water sample data, the accuracy of 
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training results is high, approaching 90%. See Figure 14 Training Accuracy Curve of 

Neural Network Model. 

After testing 200 mixed water samples, the test accuracy can also meet the 

requirements, which is more than 80%. See Figure 15 Test Accuracy Curve of Neural 

Network Model. The discriminant accuracy of TensorFlow-based neural network hybrid 

water source discriminant model can meet the demands, which can provide guidance 

for actual mine water inrush identification. 

 

Figure 13 Error Loss Curve of Neural Network Model during Iteration 
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Figure 14 Training Accuracy Curve of Neural Network Model 
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Figure 15 Test Accuracy Curve of Neural Network Model 
 

4.4 Error Analysis 

The training accuracy of Jinggezhuang Neural Network Mixed Water Source 

Discrimination Model is almost 90%, and the testing accuracy is over 80%, which can 

be improved in the future. There may be two reasons for the miscarriage of justice: 

(1) Quantity of mixed water sample data 

There are 12 categories of water sources and 1536 mixed water samples in the model, 

which means there are 128 samples for each category. Compared with the number of 

water source categories, the quantity of data in each category is slightly insufficient. If 

the number of samples of each category of water source can be increased In the future 

practical application of this discriminant model, the training and testing accuracy will be 

further improved. The discriminant accuracy will be also improved accordingly. 

(2) Differences between different categories of data 

In this research model, each category data of water source is simulated from mixing 

different aquifers in different proportions. Therefore, there is not enough difference 
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between different categories of water samples data, which results in slight similarity 

between different categories. To a certain extent, this affects the accuracy of the neural 

network identification model and increases the probability of misjudgment. If the 

requirement of mixing proportion identification is not so accurate like Jinggezhuang in 

actual application of mining area, the accuracy of identifying inrush water source will 

further increase. 
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5 Conclusions and Innovation    

5.1 Main Research Conclusions       

Taking Jinggezhuang Mine in Kailuan Mining Area as the object of analysis, this paper 

collected and collated the water quality data obtained from many years' observation in 

the mining area. Mixing simulation of water sample data was carried out by PHREEQC 

hydrochemical simulation software, and its hydrochemical characteristics were 

analyzed. The establishment method of identification mixed inrush water source in 

mining area is studied. The following conclusions are drawn: 

(1) The water quality types of aquifers in Kailuan Jinggezhuang mining area are 

analyzed by Piper Diagram. The hydrochemical characteristics of groundwater in 

Jinggezhuang Mine are generally characterized by high concentration of Ca2+, K++Na+, 

HCO-. The hydrochemical types of Ordovician limestone karst fissure confined aquifer 

(Ⅰ) and sand-gravel pore aquifer in upper Quaternary (Ⅷ) are mainly HCO3-Ca type, 

and those of sandstone fissure aquifer above coal 5 (Ⅴ)  are mainly HCO3-Na type. 

(2) The mix of groundwater samples were simulated hydrochemically by PHREEQC 

software in Jinggezhuang mining area. The hydrochemical types of mixed water 

samples changed between HCO3-Ca and HCO3-Na, and the ion concentration also 

changed greatly. The main ions that changed were Ca2+, K++Na+, HCO-, which were 

anions and cations with higher ion concentration in water samples. 

(3) A TensorFlow-based artificial neural network mixed water source identification 

model is proposed. After data pre-processing and data standardization, cross-entropy 

error loss function and excitation function are used to reduce errors. Then, ADAM 

Optimizer is used to optimize the identification model. Finally, the data of water samples 

are trained and tested iteratively for several times to ensure that training accuracy of 

the neural network identification model is almost 90%, and that the identification 

accuracy of the neural network identification model for mixed water inrush sources 

reaches more than 80%. 

5.2 Innovations       

The extraction method of mixing ratio of Water Inrush Source in Kailuan mining area 

was established. With PHREEQC hydrochemical simulation software, mixing of 



 

Identification and Simulation Study of Mixing Inrush Water Source 

Based on PHREEQC                                                                                                             Page 55 

groundwater samples was simulated in Jinggezhuang mining area, and the 

hydrochemical characteristics of mixed water samples of aquifers were studied, which 

is of innovative significance for the study of the hydrochemical characteristics of the 

mixed water source of mine water inrush in Kailuan Mining Area. 

Based on the water sample data after hydrochemical mixing simulation, a method of 

establishing the identification model of hybrid water source based on TensorFlow 

artificial neural network was proposed. This paper completed the discriminant study on 

the source and proportion of mixed water inrush in mine, and provides a new way to 

discriminate the source of mixed water inrush in mine area. 
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