DiPLOMA THESIS

FE - simulation of chip formation in
inhomogenous materials

Author: Supervisor:

Stefan DISTLBERGER Dr. Werner ECKER

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

at the

Montanuniversitat Leoben

Materials Center Leoben

m¢L

April 2014

Affidavit

I, Stefan DISTLBERGER, declare that this thesis titled "FE - simulation of chip formation

in inhomogenous materials’ and the work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research degree

at this University.

Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly

stated.

Where I have consulted the published work of others, this is always clearly at-
tributed.

Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.
I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

“Thanks to my solid academic training, today I can walk around the earth, and enjoy

the wonders and the complexity of nature, science and life itself.”

Stefan Distlberger

MONTANUNIVERSITAET LEOBEN

Abstract

Institute of Mechanics

Materials Center Leoben
Master of Science

FE - simulation of chip formation in inhomogenous materials

by Stefan DISTLBERGER

The chip formation in today’s machining is a complex process that has not been com-
pletely understood yet. The process is defined by friction, chip formation, material,
cutting force, hole inclusions in the cut material and many more aspects. Correla-
tions between some of these aspects are analyzed in this thesis by using the commercial
finite-element software ABAQUS™ /Standard. This thesis presents a survey of today’s
simulation techniques and ways to facilitate chip formation simulations. A semi auto-
mated tool is developed which allows to simulate a 2D chip formation of a homogeneous
material or an inhomogeneous material in ABAQUS™ /Standard. The tool automates
the remeshing process to avoid severe element distortion. It also automates the time
consuming manual process of the modeling itself. The pertaining routines are coded in
Python and Fortran. To visualize results, the author provides a further tool for ren-
dering videos as well as utilities for investigating certain aspects of the process, such as
the change of the chip’s width or the contact forces over time. The influences of three
different element sizes are discussed: A decreasing element size results in a decrease of
the chip’s width, an increased rake angle of the chip and a decrease of the tool’s contact
force. A homogeneous specimen with decreasing chip thickness is simulated to inves-
tigate the decrease of the tool’s force and the decrease of the chip’s width over time.
Two models are compared: The first one shows chip formation with the chip getting in
contact with itself. The second model shows chip formation where the chip is trimmed
before self contact can occur. Both models show a change in the chip’s width and contact
length between tool and workpiece. An inhomogeneous model is presented to study the
effects of an inclusion moving through the primary deformation zone of the chip. The
size of the inclusion and the position are varied. It is confirmed that the size and the
position of an inclusion have a great impact on the chip’s formation. The results show
the formation of a sharp notch in the chip when a large inclusion is positioned near the

workpiece’s surface.

Kurzfassung

FE - Simulation der Zerspanung inhomogen aufgebauter Materialien

by Stefan DISTLBERGER

Der Spanbildungsprozess ist ein komplexer-, nicht vollstdndig verstandener Vorgang.
Aspekte wie Reibung, die Bildung des Spans, Schnittkraft und Einschliisse im Mate-
rial definieren den Prozess. In dieser Arbeit werden einige dieser Aspekte mit Hilfe der
kommerziellen FE-Softwarelosung ABAQUS™ / Standard analysiert und ein Uberblick
iiber gangige Methoden der Spanbildungssimulation gegeben. Im Zuge dessen werden
Python- und Fortran-Skripts prasentiert, mit deren Hilfe man die Spanbildung von ho-
mogenen und inhomogenen Materialien in ABAQUS™ / Standard automatisieren und
analysieren kann. Die dafiir entwickelte Routine ermoglicht ein automatisches Neuver-
netzen um kritischer Elementverzerrung vorzubeugen, sowie eine Automatisierung der

ansonsten manuellen, zeitaufwéndigen Modellierung.

Analyse- und Visualisierungsskripts ermoglichen es dem Benutzer beispielsweise Videos
zu rendern oder die Spandickenanderung und Werkzeugkrafte als Funktion der Zeit zu
beobachten. Des Weiteren wird der Einfluss unterschiedlicher Elementgréfien auf die
Simulation untersucht. Es zeigt sich, dass sich bei kleiner werdenden Elementgrofien
auch die Spandicke und Werkzeugkraft reduziert und der Span eine starkere Kriitmmung
aufweist. Eine Simulation mit homogenem Material, welches iiber die Schnittlange an
Spantiefe verliert, gibt Aufschluss iiber die Abnahme von Spandicke und Schnittkraft.
Es werden zwei Modelle verglichen, wobei im ersten der Span ungehindert in Selb-
stkontakt treten kann, wahrend im zweiten der Span getrimmt wird, um diesen Selb-
stkontakt gerade zu verhindern. Um Effekte von Einschliissen beim Durchschreiten
der priméren Deformationszone zu zeigen, wird eine Parameterstudie mit drei unter-
schiedlichen Einschlussgrofien an unterschiedlichen Positionen durchgefiihrt. Die Studie
zeigt, dass sowohl Grofle und Position des Einschlusses einen Einfluss auf die Spanbil-
dung haben. Beispielsweise bildet sich eine scharfe Kerbe, wenn ein grofler Einschluss

nahe der Werkstoffoberflache positioniert wird.

Acknowledgements

I would like to express my gratitude to the persons who have supported me and con-

tributed to this work. In particular, I owe a great deal of thanks to:

Prof. Dr. Thomas Antretter, the supervisor of this thesis, who always found optimistic

ways to look at impossible problems.

Dr. Werner Ecker, my project advisor, who had the idea for this topic and guided me

when I took a wrong turn.

Prof. Dr. Reinhold Ebner, for the opportunity to write my thesis at the Materials
Center Leoben Forschung GmbH.

My office colleagues and friends, Daniel Kiener, Martin Schloffer, Martin Pletz, Markus
Mikl-Resch, Thomas Wlanis, Christian Posch, Hans-Peter Kriickl, Martin Krobath,

Anatol Drlicek, Richard Tichy for their help, countless discussions and a lot of fun.
My best friend Harald Zlattinger, who always had an ear for my programming issues.
My family and friends for their support and friendship.

Financial support by the Austrian Federal Government (in particular from Bundesminis-
terium fiir Verkehr, Innovation und Technologie and Bundesministerium fiir Wirtschaft,
Familie und Jugend) represented by Osterreichische Forschungsforderungsgesellschaft
mbH and the Styrian and the Tyrolean Provincial Government, represented by Steirische
Wirtschaftsforderungsgesellschaft mbH and Standortagentur Tirol, within the frame-
work of the COMET Funding Programme is gratefully acknowledged.

Contents

Declaration of Authorship

Abstract

Kurzfassung

Acknowledgements

List of Figures

List of Tables

Abbreviations

1 Introduction

2

1.1 Overview 0 e e e e e
1.2 The cutting process e
1.2.1 Homogeneous cutting 0.
1.2.2 Inhomogeneous cutting
1.3 Finite Element Analysis
1.3.1 Constitutive models oL
1.3.2 Contact of the tool- chip interface, friction and heat
1.3.3 Eulerian and Lagrangian view of the continuum.
1.3.4 Methods to avoid excessive mesh distortion
1.4 Common issues reported in the literature
Methods
2.1 The finite element model L
2.1.1 Themodel e
2.1.2 Material data
2.1.3 Interaction properties used in the simulations
2.2 Numerical Methods

2.2.1 Common 2D remeshing tool

Elements:
2.2.1.1 Pythonscripts oo

iii

iv

ix

xi

xii

Contents vii
Analyse: L 24

Mesh Windows Class: 24

Reconstruct the sets: L oL, 26

ReconParts: oo 27

GetSideEdge:o o 27

Reassigning the material: 27

Adding the MAP SOLUTIONS keyword: 27

Creating amnew job:. 28

Starting a job: Lo o 28

222 Userfile e 28

2.2.3 Subroutine e 29
UVARM: . . . 29

URDFIL: o o 29

2.2.4 Interpolation L 29

2.24.1 Functionality o 29

3 Results 31
3.1 Evaluation of the mesh dependency 31
3.1.1 Remeshing versus constant mesh 31

3.1.2 Analytical verification of the simulated cutting forces. 33

3.1.3 Mesh size dependencyo 34

3.1.4 Deformation zone profiles L. 39

3.2 Homogeneous simulation results 40
3.2.1 Chip formation L 40

3.2.2 Forces and contact length o0, 40

3.3 Inhomogeneous simulation results00 0oL, 44
3.3.1 Chip formation and plastification 44

3.3.2 Effects in the primary deformation zone 46

3.3.3 Forces and contact length 0oL, 47

3.3.4 Influence of inclusion on chip fracture 50

3.3.5 Chip formation for a second cut 53

4 Discussion and Conclusion 54
A Subroutines 62
A1 URDFIL and UVARM e 62

B Python Scripts 64
B.1 Kernel Script 64
B.2 Automation Script Lo 103
B.3 Rendering Scripto 106

C Material data 125
C.1 Workpiece material data 125
C.2 Tool material data 126
C.3 Hard inclusion material data 129

Contents

C.4 Graphite material data

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2

3.3
3.4
3.5
3.6
3.7

3.8
3.9

3.10
3.11
3.12

3.13
3.14
3.15
3.16

Chipregions. o e 2
Coulomb friction model with shear stress limit. 9
Lagrangian formulation 0oL, 10
Eulerian formulation oo 11
Predefined crack path. o o 11
Remeshing. 12
ALE . o e 13
Analysis routine. L. L 15
Detailed cutting process using UL and a remeshing routine. 16
Geometry of the workpiece. Lo o 18

a) Geometry of the tool. b) Tip of the tool’s cutting edge. 18
Initial homogenous model L. 18
Homogenous chip L 19
Sketch of the inhomogeneous model. 20
Map Solution smoothing oL o 30
Remeshing versus one step simulation., 33

QR code for the videos (a) Strain rate of an inhomogeneous chip for-
mation, (b) Nodal temperature and (c¢) Equivalent plastic strain of a

homogeneous chip formation. 33
Model overview with three different mesh sizes 35
Contact status at the beginning of the second step. 36
Contact status at the end of the second step. 37
Temperature distribution comparison of three different mesh sizes. 38
Accumulated plastic strain distribution comparison of three different mesh
SIZES. . . . o 39
Strain rate distribution comparison of three different mesh sizes. 39
a) Path A through the midsection of the primary deformation zone.
b) Path B through the edge of the primary deformation zone. 40
a) Strain rate along path A. b) Strain rate along path B. 41
Tool displacement and the corresponding chip length. 42
a) Comparison of the chip’s width with and without self contact. b)
Comparison of the chip’s contact length with and without self contact. . . 43
Positions of the inclusions. Lo 44
PEEQ Plot with different inclusion sizes. 45
Change of the strain rate caused by an inclusion. 46
Change of the temperature caused by an inclusion. 47

ix

List of Figures X

3.17 Contact length change depending on the size of the inclusion. 48
3.18 a) Contact length of the biggest inclusion at different positions. b)
Contact force of the biggest inclusion at different positions. 49
3.19 a) Path through the chip on the top side of the inclusion. b) PEEQ
distribution for different inclusion-sizes. 50
3.20 PEEQ around the inclusion. 0oL 51
3.21 a) Negative hydrostatic stress distribution, b) Mises stress distribution
and c¢) equivalent plastic strain distribution on the chip. 52

3.22 Comparison between the first and second cut. 53

List of Tables

2.1 Material properties and JCM parameters 21
3.1 Equations and parameters of the analytical calculation 34
3.2 Computational stats 37
3.3 Inclusion positions 45
3.4 Damage indication L Lo Lo 52

X1

Abbreviations

2D 2 Dimensional
3D 3 Dimensional
ALE Arbitrary Lagrangian Eulerian Method

AS Automator Script
EP Elastic Plastic
FE Finite Element

FEA Finite Element Analysis

FEM Finite Element Method

HSC High Speed Cutting

JCM Johnson Cook Material Model
JCD Johnson Cook Damage Model

KS Kernel Script

PDZ Primary Deformation Zone
PEEQ Accumulated equivalent plastic strain
PL Power Law

UL Updated Lagrangian

SDZ Secondary Deformation Zone
SHPB Split Hopkinson Pressure Bar test

xii

Chapter 1

Introduction

1.1 Overview

The machining of materials is one of the most important types of manufacturing. Thus, a
deep understanding is indispensable for controlling the process. In the last two decades,
the research using FEM modeling techniques has increased rapidly [1]. Investigations
of the effects on chip formation, cutting forces, temperature distribution and tool wear
are constantly improving the efficiency and quality of cutting operations. This chapter
presents a review of the current state of the art of FE cutting simulation. Critical issues
and obstacles including constitutive laws, thermal interactions and different modeling
approaches with their advantages and limitations are discussed. Turning, milling, plan-
ing and many more of the used cutting methods can be simulated with FE-programs
like ABAQUS™. Their commonality is a tool with a cutting edge, which is in contact
with and penetrates the surface of a workpiece, resulting in a chip formation. Usually,
the real contact is three dimensional, and therefore demands a solution in the same
dimension. To simplify the contact problem, Astakhov and Outeiro [2] suggest to look
at plane contact problems, where it is assumed that displacements are restricted to the
x-y plane. Regarding Klocke and Konig [3], the machining process is categorized by the
free orthogonal cut. As is in most of the 2D-simulations, the free, orthogonal cut is used
to simplify the process, because only the main cutting edge is in contact. This geometry
provides a good representation of the chip formation on the main cutting edge of many

machining processes such as turning, milling, drilling, sawing and grinding, etc.

Introduction 2

1.2 The cutting process

A cutting process is characterized by its unique features such as extensive deformation,
high strain rates and high temperatures. During a cutting process, most of the chip’s
deformation occurs in the contact region between the tool’s cutting edge and the chip as
well as in a band, which forms from the tool’s tip to the uncut surface of the workpiece.
Those areas are called primary deformation zone (PDZ) and secondary deformation
zone (SDZ). Astakhov and Outeiro [2] divide the secondary deformation zone into two
distinctive parts of approximately equal length. A plastic zone, which reaches from the
cutting edge to the middle of the contact length, and an elastic zone, which covers the
rest of the contact length. Klocke and Konig [3] call these regions the sticking region
and the sliding region (Figure 1.1).

Rake angle

'X/ Sliding region
/ \' Sticking region

Secondary deformation zo%

Primary deformation zone

WORKPIECE

F1GURE 1.1: Regions on chip and tool.

The formation of the chip is highly depending on the material properties of the workpiece
and can be separated into two different ways of cutting through a material. First, when
cutting through a non ductile material, a forward propagating crack will form in front of
the tool’s tip. The upper flank of the crack then glides along the cutting edge and a chip
forms. The amount of plastification due to the cutting process is material dependent.

The second type of chip formation occurs, when a ductile material is cut. Instead of

Introduction 3

forming a crack path propagating forward, the material plastifies and flows around the
tool’s tip. According to Shi and Attia [1], the reliability of a finite element analysis
(FEA) is mostly depending on:

1. Material: An accurate constitutive law within the simulation is necessary to de-

scribe the unique features mentioned above.

2. Process: The contact between the cutting edge and the chip has to be described

by accurate friction and heat transfer models.

1.2.1 Homogeneous cutting

Depending on the tool’s rake angle, the friction between the cutting surface and the
velocity of the tool, the chip forms differently. In general, the chip forms gradually
and the material starts to buckle. When the tool has a negative rake angle, the cut
surface will experience compressive residual stresses. A positive rake angle like in Figure
1.1 produces tensile residual stresses on the cut surface. The severe deformations in
the primary and secondary deformation zone cause an increase in temperature. Also
the contact’s friction between tool and workpiece introduces heat. The cutting force
increases up to a point where a steady state is reached. This state is defined by a
constant contact length between the tool and the workpiece, a stable shear band in the
secondary deformation zone and a constant chip thickness. If the chip’s temperature
causes a rapid increase in the flow stress, the chip may show segmentation effects causing
the appearance of a so called lamellar chip. Without the possibility of breaking, the chip
continues to grow. This is called a flow chip. As the chip keeps growing, it bends and at
some point the chip will get in contact with itself or the workpiece. This circumstance
can cause an instability and furthermore it can cause the chip to break. Another way

that causes a chip to break or affects its formation is the presence of inhomogeneities.

Introduction 4

1.2.2 Inhomogeneous cutting

Inclusions such as carbides have a great impact on the chip formation. These inhomo-
geneities typically entail a sudden change of the mechanical properties. To account for
this behavior in the simulations one has to look closely into the cutting process. Quan
et al. [4] report on the consequences of different silicon carbides (SiC) in an aluminum
matrix. SiC particles can only be deformed elastically or break. The split particles
cause a rougher surface and an increase of the friction. Due to the higher friction at the
interface, the tool flank’s lifespan is reduced drastically. Therefore, the machinability of
SiC reinforced materials is highly dependent on the particle size. Coarse particles cause
a poor machinability, which leads to a higher tool-wear than in the case of smaller parti-
cles. When cutting a coarse particle composite, high plastic deformations of the matrix
around the particles will occur, and hence the surrounding matrix becomes strongly
hardened. Now the matrix combined with the particles show an even higher resistance
and it becomes increasingly difficult for the tool to press the particles into the matrix.
The consequence is a higher cutting force and the change of the shear angle. This may
cause fracture of the particle across its crystal boundaries. In any case, the stress field
will be non-uniform, and the thermal stress will increase caused by the friction between
the workpiece and the tool. When the SiC breaks, the cutting force drops instantly and
the SiC parts could be either pushed into the machined surface, or they could fall off
the surface. When the cutting proceeds, the shear angle decreases until another particle
appears. The remaining fragments are very hard and have abrasive effects on the tool’s
surface.

On the other hand, there are effects caused by small particles. When the tool cuts a
small particle reinforced material, the indentation of the small particles consumes less
energy. The particles will either flow along with the chip or along the interface. When
particles reach the surface of a weak matrix material, they may fall out. Quan et al. [4]
wrote that an increase in the fraction of reinforcement particles leads to a decrease in

the deformation coefficient, and an increase in the shear angle.

Introduction 5

1.3 Finite Element Analysis

There are numerous defining factors when building a FE model, such as material behav-
ior or contact properties. Shi and Attia [1] state that only a few accurate predictions
regarding the cutting force or chip morphology can be found in literature. This is re-
ferred to as the unique features observed in the cutting process, including the complex
occurrence of extreme deformations and localized temperatures in the primary and sec-

ondary deformation zones.

For a successful simulation, one has to know all the influences caused by these features
and use them properly. Some of the methods found in the literature to define those

features are discussed in this chapter.

1.3.1 Constitutive models

As mentioned in chapter 1.2, the constitutive model has a big impact on the quality of the
FE results. When modeling the cutting-process a constitutive model should represent

the material’s behavior for large strains, high strain rates and high temperatures.

Constitutive models found in the literature have mostly been developed based on ex-
perimental data to describe the material behavior inside the simulation. These data are
mostly generated in a direct way using the Split Hopkinson Pressure Bar test (SHPB)
[3], or by an inverse modeling from instrumented orthogonal milling tests [5]. SHPB
offers a range of data necessary to formulate a constitutive model, including the flow
stress &, the effective strain €, the effective strain rate € and the temperature T during

the plastic deformation.

Shi and Attia [1] summarize many of the used constitutive models. These models de-
scribe the relationship between stress and strain with respect in temperature and strain
rate. They claim that all of these models are accurate when used with slow strain rates
and show a good agreement with the experimental data. Unfortunately, this no longer
applies for high strain rates or at high temperatures. This is caused by the limitations

of SHPB, which allows strains of up to 1.0 and strain rates of less than 10* s~1, only.

The formulation used in most of the surveyed articles such as [6-8] has been devel-

oped by Johnson and Cook in 1983 [9, 10]. Their constitutive model includes isotropic

Introduction 6

strain hardening, strain-rate hardening and thermal softening, where the yield stress
o is expressed in equation 1.1. The model was evaluated by comparing it to different
experimental data, such as a cylinder impact at high velocity, since the cutting process
itself is performed at high cutting speeds. Very similar to the experimental impact con-
ditions at about 130 ms~! to 343 ms™!, the Johnson Cook Material (JCM) formulation

is suitable also for cutting simulations.

G = [A+ B (Epl)n} [1 +Cln (i)] (1 —~ ém) (1.1)

A T — T
f=(—2 (1.2)
Tm - TO
The coefficient A is the yield strength (MPa), B is the hardening modulus (MPa), C is
the strain rate sensitivity coefficient, n is the hardening exponent and m is the thermal
softening exponent. 6 is a non-dimensional factor, which is formed by using the material’s

current temperature 7', the room temperature 7y and the melting temperature T, (eq.

1.2).

Similar to the JCM the constitutive law can be described by a power law in the form
1.3, but uses the initial flow stress oy and the thermal softening coefficient v. Further

information can be found in [1, 11].

e (O ()

In the Vinh model 1.4, the thermal softening is written in an exponential form.

0 = oge"” (;)mexp <§> (1.4)

Shi and Attia [1] evaluate commonly used constitutive models they found in the open
literature and their behavior in comparison to the experimental discoveries of machin-
ing procedures. They report that some of these models cannot correctly describe the
experimental behavior of flow stress variations in the primary deformation zone. They
therefore developed a new model which is a combination of the JCM, PL and Vinh
model, named V-JC-PL model (eq. 1.5).

Introduction 7

5 = [a— bexp (—c?)] {1 +eln (:0)} (;;) B (1.5)

Example values for a high-strength, corrosion-resistant nickel chromium material are: €

=102 s7!, Ty = 293 K and the material constants ¢ = 1233 MPa, b = 4455 MPa, ¢
= 31, C' = 0.023 and v = 0.21 [1]. In their tests with a SHPB they achieved a much
better predictability than only by using each single model individually. The correct
selection of the constitutive law and its parameters is a critical step. It will define
the chip’s formation and morphology, the accuracy of the cutting force, the feed force,

temperature and tool wear (residual stress, surface roughness, micro-structure, etc.) [5].

Another formulation of the Johnson Cook model can be used to introduce damage
initiation in materials. Different modeling techniques like the use of a predefined crack
path (see chapter 1.3.4) or the simulation of chip segmentation depend on a damage
model like the Johnson Cook Damage model (JCD) [12, 13]. ABAQUS™ /Explicit
provides a special case of this criterion, which differs from the original formula published
by Johnson and Cook [10]. The damage initiation is triggered by the equivalent plastic

damage strain E% as expressed in equation 1.6.

€ A
&l = [dy + dy exp (—dsn)] {1 +dysln (6>] (1 + d56) (1.6)
0
0 is the same non-dimensional factor as in equation 1.2, d; — d5 are failure parameters
and n = —g is the stress triaxiality, where p is the pressure stress and ¢ is the Mises

equivalent stress [9].

For example, Ng and Aspinwall [14] presented an ABAQUS™ /Explicit model to sim-
ulate continued and segmental chip formation by introducing an element deletion tech-

nique with JCD.

Introduction 8

1.3.2 Contact of the tool- chip interface, friction and heat

The most important contact occurs between the main cutting edge and the chip. The
complexity of the contact situation makes it hard to obtain accurate results. The meshed
surface of the workpiece is in contact with the tool’s mesh. The convergence of the
simulation is highly depending on the quality of the mesh, especially in the contact zone.
For example, Béker et al. [15] simulated the effect of chip segmentation. They used
ABAQUS™ /Standard with a self-developed remeshing algorithm, where their mesh
changes periodically (more about remeshing see chapter 1.3.4). It has to be noted that
the remeshing disturbs the force equilibrium which must be restored at the beginning
of the new increment. This may cause initial deformations that prevent the restart of
the simulation. Therefore, they introduced so called convergence controls which they
adjusted to typical forces found in the shear zone, and used artificial damping to keep
the initial deformations small and achieve convergence. They ensured that the amount
of energy caused by the artificial damping is less than 0.1% of the total work, and can

therefore be neglected.

Along the contact surface shear forces and normal forces are transmitted as stresses. The
friction model and its coefficient are responsible for the relationship between these shear
and normal stresses. ABAQUS™offers many different models including the Coulomb
friction model, which allows to define the friction coefficient in terms of slip rate, contact
pressure, average surface temperature and provides options to define static and kinetic

friction coeflicients with a smooth transition zone.

Some of the articles use the Coloumb friction law with a friction coefficient p of 0 to 0.5
[1, 2, 11, 16-18]. Tests from Astakhov and Outeiro [2] show that a friction coefficient
up to p = 2 can be found on the tool tip. They state that the normal stress at the
tool-chip interface is zero at the point where the chip separates from the tool, and has
its maximum at the cutting-edge.

The shear stress distribution can be described with the Coulomb friction .

P is the normal force and F' is the friction force. When the stress normal to the interface

o= % and the shear stress 7 = % then the friction coefficient is defined as:

p= g = (1.7)

Introduction 9

The Coulomb friction model allows to define a shear stress limit 7,,,4., to enable sliding

in the contact zone regardless of the contact pressure stress.

Equivalent

shear stress K
/| u(constant friction coefficient)

Critical shear stress limit Tmax

Tmax

Stick region

Contact pressure

FIGURE 1.2: Coulomb friction model with shear stress limit.

Astakhov and Outeiro [2] state that there is no relative motion in most of the contact
area. Thus, they calculate a minimum friction coefficient of 0.577 for sticking condi-
tions. Therefore, when the friction model does not distinguish between the sticking and
sliding area and the sticking area covers most of the contact area, a friction coefficient
greater than 0.577 should be used for the simulation. Umbrello et al. [5] evaluate their
friction model by comparing the simulated cutting force with the experimental cutting
force. They adjust the friction coefficient until both forces match to examine the friction

conditions.

In simulations where heat is produced due to mechanical deformation, an adiabatic
thermal-stress analysis is favorable, where heat exchange can only occur inside the sys-
tem. This is only possible when the deformation of the material is faster than the time
the heat would need to diffuse through the material. The cutting process meets those
conditions due to its high strain rates, where heat is produced by the material’s defor-
mation. In ABAQUS™a fully coupled thermal-stress analysis must be used to simulate
the cutting process since the stress solution is depending on the temperature and vice
versa. Due to the inelastic heat fraction the deformation of the material produces a
heat flux adding to the thermal energy balance. By default, the amount of inelastic
heat is 90% of the product between stress and rate of plastic straining. Additionally,
the contact conditions may include properties for heat generation due to friction as well

as thermal conductance.

Introduction 10

1.3.3 [Eulerian and Lagrangian view of the continuum

When building a 2D or 3D model for a FEA the workpiece is a discretized continuum.
Klocke and Koénig [3] explain two possible ways to discretize a continuum. These two
formulations, the Lagrangian formulation and the Eulerian formulation are derived from
the basic principle of virtual work and are valid for linear and non-linear material be-

havior.

The Lagrangian formulation describes the movement of an element’s node with the ma-
terial, see Fig. 1.3. It can be split into two different formulations. The formulation
describing the system’s current configuration in relation to its initial configuration is
called "Total Lagrange formulation” (TL). That means, that the nodal-coordinates al-
ways refer to their initial position. This formulation can be used to analyze linear or
weakly non-linear material behavior. A more suitable way to deal with large strains
and non-linear material behavior occuring in the simulation of a chip formation is the
"Updated Lagrange formulation” (UL), where the current configuration of the system
is described relative to the foregoing configuration step. In contrast to the TL the UL
is an approximation procedure whose predictive quality starts to degrade when the step

size increases.

L]]]]

[L]]
[T 17T
[T 17717
[T 7777
[T 77T

LLL]
[T 177
INENNNN|

(2) (b)

FiGure 1.3: Lagrangian formulation. The nodes move with the material when the
geometry changes form (a) to (b).

Conversely, the Eulerian formulation describes the movement of the continuum through

a stationary mesh, see Fig. 1.4.

Introduction 11

Initial _ > Deformed |
material material

(a) (b)

FIGURE 1.4: Eulerian formulation. (a) The material is covered by a static mesh (b)
the material deforms while the mesh remains constant.

1.3.4 Methods to avoid excessive mesh distortion

As mentioned in chapter 1.2 the chip can form with a forward slipping crack path or it
flows around the tool’s tip. These two effects are also used as modeling method to avoid

excessive mesh distortion.

By using a predefined crack path along the cutting layer, the tool splits the material into
two separate parts. The upper part can move along the tool’s surface without experi-
encing excessive mesh distortions. This method can be used for ductile and non-ductile
materials. For example, Kalhori [16] builds an UL model in ABAQUS™ /Standard,
which he compares with experimental results using a pre-defined crack path (see Fig.

1.5).

Crack path

NI

B
i RASEARE RS inE Rnnni
TR T

TR

+
]
I
]
I

I
1
1
|

|
Il
I

|
1T 1

FIGURE 1.5: Predefined crack path.

The remeshing method (see Fig. 1.6) represents another viable approach using the
UL formulation with the material flowing around the tool’s tip. Here, the mesh often
happens to become extensively distorted. There are two possible ways to generate a new

mesh. A manually generated mesh can perfectly be adjusted to its purpose, which can

Introduction 12

help to avoid mesh related convergence problems. On the other hand, an automated

approach is helpful when a new mesh has to be generated frequently.

(a) (b)

FIGURE 1.6: (a) before the geometry gets remeshed. (b) after remeshing.

Klocke and Konig [3] state that if huge plastic deformations occur, the distorted mesh
could lead to numerial problems and instability. To allow large degrees deformation of
the material, they use the remeshing method to obtain a new undistorted mesh. After
the remeshing process, the simulated results of the old mesh have to be interpolated
onto the new mesh. The interpolation can cause a loss of accuracy when it is performed
frequently, or when the mesh-size difference is too large. Furthermore, an excessive
distortion of the primary mesh can cause numerical artefacts, or even a smoothing effect
of the interpolated data when performed repeatedly. For example, Béker et al. [15] used a
transfinite interpolation scheme, combined with an inverted Laplacian equation and a full
grid algorithm, to reduce the residual of the solution to a value less than the discretisation
error to remesh their model. After the new mesh is successfully generated, they use a
technique called MAP SOLUTION, which is integrated in ABAQUS™ /Standard, to
map the old data onto the new mesh (more information about MAP SOLUTION in
chapter 2.2.4). The influence of the used interpolation method in ABAQUS™ /Standard

is evaluated in this thesis.

The most commonly used method found in the literature combines the UL and the
Eulerian formulation forming the Arbitrary Lagrangian Eulerian formulation (ALE).
With an ALE formulation, the nodes move with the material in the same way as they
would in an UL formulation, but can at the same time adjust their position as if they were
not connected to the material. This enables the chip’s mesh to be updated freely without
distortion and without the need of any predefined crack as a-priori existing separation

line. To this end the adaptive mesh parameters have to be adjusted judiciously. ALE is

Introduction 13

very suitable for the cutting conditions in which a rounded or chamfered-edge cutting
tool is used. With ALE, coarser elements can still produce an acceptable chip thickness
and cutting forces, etc. because no failure criterion is required. In addition a broader
selection of material models is available [19]. The adjustment of the nodes can be done

before distortion effects can occur (see Figure 1.7).

[][] / [[[[[]]
L Ll
LT l [[][]
NN, L [[]]]
-> LI [f=» 1 [][]/
[1] 7 [[[[]]
L] L[[[]]]
NN L[]]]
[T [[] L[T[] []
(a) (b) (c)

FIGURE 1.7: (b) The material gets deformed, resulting in a distortion of the mesh. (c)
Repositioning of the nodes avoids distortion.

Guo and Yen [20] show a model using the ALE (adaptive meshing) method and the JCD
model to study the discontinuous chip formation in hard machining. When elements fail
due to the damage criterion, the nodes along the interface between the failed and the
remaining elements will become non-adaptive since the failed elements have already been
deleted. Thus they periodically use an adaptive meshing to control the mesh quality in
order to maintain computational efficiency. In the same year, Gadala [21] presented a
fully coupled ALE formulation for large deformation in static and dynamic problems.
Their detailed formulation and possible ways to modify ALE show its advantage for
dynamic metal forming, crack propagation and orthogonal metal cutting simulations.

Concluding, there is no general opinion on the advantages or disadvantages of UL vs.
ALE. Taking into consideration the UL with a JCD model the expected results can be
very similar to the experimental results of Vaziri et al. [22]. Moreover, this resolves the
problem of a highly distorted mesh and related software crashes by deleting elements
above a given limit thereby eliminating the numerical problems related to an adaptive
meshing procedure. On the other hand, ALE in ABAQUS™ /Explicit offers a fast and
safe procedure to reliably obtain results. However the magnitudes of temperature, strain
rate or material flow stress may be higher than those of an UL approach, also compared
to the experimental data [23]. Nevertheless, using ALE in ABAQUS™ /Explicit is

preferred in most of the reviewed articles.

Introduction 14

1.4 Common issues reported in the literature

Most of the articles state that the simulated cutting force does not match the experi-
mental data.

Ducobu et al. [24] recognize certain variations of the cutting forces, while the feed forces
almost do not show any variations. Taking into consideration differences in the metallur-
gical state and after refining their constitutive law, the quality of their results improved
in that the cutting force became similar to the measured cutting force. However, then
the feed force was slightly overestimated. Mohammed et al. [25] also showed variations
in the cutting forces. Especially at low cutting speeds, the simulated cutting force was
more than 30% smaller than the experimental cutting force. Also Zanger and Schulze
[18] report differences between the simulated and experimental forces.

In 2004, Soo et al. [26] presented a 3D ABAQUST™ Explicit model using a Lagrangian
approach. Their results show almost no differences when they compare the predicted
tangential force and feed force with the measured forces. Soehner and Joerg [27] present a
study which compares the results of Kalhori [16] simulation with ABAQUS™ /Standard,
and the results from ABAQUS™ /Explicit. They conclude that the cutting forces,
pressure and temperature simulated by the finite element software DEFORMT™T™-2D,

ABAQUS™ /Standard and ABAQUS™ /Explicit show only insignificant differences.
In this work the software ABAQUS™ /Standard with an UL is chosen for the following
reasons:
e Nodal data can be accessed with the user subroutine URDFIL, that is limited to
ABAQUS™ /Standard.

e To simulate large time increments that would be unstable in ABAQUS™ /Explicit.

e To implement a self developed automation procedure using the MAP SOLUTION
technique that is limited to ABAQUS™ /Standard.

e To be able to use fully integrated elements. Generally, only first order elements

with reduced integration can be used in ABAQUS™ /Explicit.

Chapter 2

Methods

When analyzing a cutting process with UL with periodic remeshing, one has to follow
certain steps. Fig. 2.1 shows the simplified flow diagram of these steps. First an initial
model has to be created. It contains all information such as geometry, material and
step definition. After the model has been set up the user has to start the analysis job.
The resulting data is stored inside the output database (*.odb). Then, the deformed
parts can be imported into ABAQUS™ /Standard and all model parameters have to be
reapplied onto the new parts. After rebuilding the new analysis job has to be started
but this time the field output data from the old output database is mapped onto the new

parts. After successful completion of one such cycle, the procedure starts over again.

Preliminaries Automation Process
Initial Model Output Database
Geome.try Deformed Geometry
Material Field Outputs
Step information Step Time
Interaction
Boundary Conditions ‘

Import deformed geometry
Apply Material

¥

Remesh Instances

Find Surfaces and Sets
Rebuild Boundary Conditions
Rebuild Interactions

Create new Job

¥

| * Map old Field Output

FIGURE 2.1: Analysis routine.

15

Methods. The finite element model 16

A chip simulation can consist of thousands of output databases and a manual approach
would be inefficient. Therefore an automatic procedure has been developed to automate
the steps done manually before. Fig. 2.2 shows a more detailed road map through the

chip formation procedure, valid for the manual and automated approach.

setting analysis parameters,

Build the geometric model, /
build the mesh, materials, /

interactions and boundary
conditions

y

Access old output database and map Performing coupled thermo-
the field output onto the new model mechanical analysis by ABAQUS

Field Output from
previous simulation to
map?

Obtaining the plastic strains with the Access output database
subroutine and import the
deformed parts

P Eelement >P Emax

Write results to the
output database

End of cutting
process?

FIGURE 2.2: Detailed cutting process using UL and a remeshing routine.

Methods. The finite element model 17

2.1 The finite element model

By definition, the cutting process involves large geometry-changes, which requires the
use of UL or ALE. The need of a wide variety of contact conditions as well as different
material definitions suggest to use an implicit approach, with UL and a remeshing pro-
cedure. Nevertheless, many of the cutting simulations found in the literature are using
ABAQUS™ /Explicit, mostly for convergence reasons (see for example [22]).

The implicit code checks for convergence during the iterative search for a solution.
This may not always be successful. However, one of the advantages of an implicit
approach is the availability of various user-subroutines which cannot be accessed by
ABAQUS™ /Explicit. Furthermore, the chip formation exhibits localized deforma-
tions, which demand a dense mesh to ensure good results. The computational time
of ABAQUS™ /Explicit increases strongly with a decrease of the mesh size. Moreover,
often numerical tricks like density changes or artificial viscosity are necessary to improve
performance. Therefore, the implicit approach is preferred as long as convergence can
be reached. The simulations in this thesis were carried out using a fully coupled thermo-
mechanical finite element model in order to consider the influence of temperature related

effects inside the chip.

2.1.1 The model

The model consists of two parts. The workpiece has an overall length of 52.5mm and
a height of Imm (see Figure 2.3). Since this model is intended to describe the milling
process, the uncut chip thickness decreases from 0.4mm to zero, which simulates the cut-
ting edge entering the full material and the decreasing uncut chip thickness. The uncut
chip thickness is the difference between the expected cutting path and the workpiece’s
surface. The cutting edge is split into two different rake angles. The cutting edge near
the tip has a rake angle of 10° and the tool itself is rotated by 7°, causing a negative rake
angle (see Figure 2.4). At the beginning, the cutting tool’s edge-geometry is already cut
out of the initial workpiece in order to prevent contact issues at the beginning of the

simulation. (see Figure 2.5).

18

Methods. The finite element model

0.6
A

Geometry of the workpiece. (dimensions in mm)

FIGURE 2.3:

1T

(b)

(a)
a) Geometry of the tool. b) Tip of the tool’s cutting edge.

FIGURE 2.4:

FIGURE 2.5: The cutting edge is in contact with the workpiece.

Methods. The finite element model 19

Depending on the chip’s formation, the chip may get in contact with the workpiece sur-
face, causing the simulation to abort. This can be explained by the way the preprocessor
stores geometry information: When the orphan mesh which is the deformed mesh of the
previous simulation is converted into a geometrical entity, the spline approximating the
chip’s tip outline overlaps with the uncut workpiece surface. The evolving intersection
interferes with the generation of the part and the reassembling encounters an error.

At this point, two possible scenarios can be simulated. When the chip is expected to
get in contact with itself, a rigid body is positioned right above the upper edge of the
workpiece preventing the chip geometry to penetrate into the workpiece (see Figure 2.6
(b)). If the chip is not supposed to establish contact, the tip of the chip must be removed

in periodic intervals (see Figure 2.6 (a)).

FIGURE 2.6: a) The chip gets cut each cycle or b), the chip is in contact with the rigid.

When simulating an inhomogeneous model the uncut chip thickness does not decrease
along the workpiece’s surface. This is essential for reaching the steady state condition,
where contact force and chip thickness remain constant on the one hand and to investi-
gate the influences of the inhomogeneities on the other hand (see Figure 2.7).

When the model reaches steady state, inclusions are positioned at three different po-
sitions inside the workpiece near the primary deformation zone. Depending on the
material of the inclusion, the interaction properties are different. If for example the
inclusion is the weaker phase, it will experience heavy deformation during the simula-
tion. Therefore, the inclusion must also be remeshed where the matrix is defined as the
master surface for the interaction definition. If the inclusion is harder than the matrix
material providing the orphan mesh of the inclusion would be sufficient. Then the in-

clusion’s surface is chosen as the master surface instead. The interaction formulation

Methods. The finite element model 20

between matrix and inclusion is very important. When the interface between matrix
and inclusion is allowed to separate, the matrix shows decohesion effects on the upper
and lower pole of the inclusion that may even form a crack whose flanks may for extreme
cases overlap during the remeshing. Every time this happens, the user has to rebuild
the model manually. Therefore a perfectly bonded inclusion-matrix interface i.e. a tied
contact formulation is preferred for an example study on the chip’s formation in relation

to the inclusion size and position (see chapter 3.3).

INCLUSION

WORKPIECE

FIGURE 2.7: Sketch of the inhomogeneous model.

Methods. The finite element model 21

2.1.2 Material data

The following table lists the set of material parameters for the workpiece needed for a

fully coupled thermo-mechanical simulation (see table 2.1).

Workpiece

Young’s modulus 210000. MPa
Poisson’s ratio 0.3

Density 7.8x107? kg/m?
Thermal expansion coefficient 1.2x107° K-t
Inelastic heat fraction 0.9

Conductivity 46. at 20°C W/mK

Johnson Cook parameters

A 400. MPa
B 340. MPa
m 0.15

n 1.

T 1520. °C
To 20. °C
C 0.01

€0 0.001

TABLE 2.1: Material properties and JCM parameters

The homogeneous models and the inhomogeneous models were simulated both with an
elastic-plastic tool as well as a rigid tool. The material data of the inclusions and the

elastic-plastic tool are listed in appendix C.

Methods. The finite element model 22

2.1.3 Interaction properties used in the simulations

The interaction between the chip and the cutting edge and its properties are essential for
a successful simulation. To simulate the mechanical and thermal interactions between
the workpiece and the tool, a surface-to-surface contact with a slave adjustment tolerance
of 0.001mm is used. To implement inclusions a surface-to-surface contact is used as well,
although it is defined as a tied contact, where the surface of the inclusion and the surface

of the workpiece or chip, respectively, remain glued together during the entire simulation.

A penalty formulation with a friction coefficient of 0.6 is used to impose a frictional
constraint on the tangential behavior. Relative motion of the surfaces will generally
occur. When the surfaces are sticking (i.e. 7 < Trir) [9], the magnitude of sliding is
limited to the elastic slip value which is set to 0.005 in this model. The equivalent shear
stress limit 7inqq is set to 3.6x10% MPa in order to allow sliding between the surfaces

when the limit is reached.

By default the friction power is completely converted into heat. To establish heat trans-
fer between the elastic-plastic tool and the workpiece an empiric conductance is set to a
value of 10° W/mK at zero clearance. The conductance decays to zero at a maximum

clearance of 0.1 mm.

The simulation consists of two steps. The first step is introduced in order to reestablish
the force equilibrium that may have been lost due to the Map Solution Mapping-function
(see chapter 2.2.4). In this step, the displacement of the workpiece is disabled, and
additionally contact controls with a stabilization factor of 10 are introduced to stabilize
the contact over the first step. The use of a stabilization factor greater than 10 sometimes
leads to convergence problems. The second step where cutting occurs is similar to the
first one. Here, the workpiece moves towards the tool with a displacement boundary
condition. To preclude any interference of the manual contact controls settings with
the automatic contact stabilization, the second step is always simulated without contact

stabilization.

Methods. Numerical Methods 23

2.2 Numerical Methods

2.2.1 Common 2D remeshing tool

The use of an algorithm to remesh the deformed model automatically is essential when
simulating a cutting process with UL, as element distortions become excessively large.
To trigger the remeshing routine, the value of the relative plastic equivalent strain

accumulated in the actual simulation has to exceed a user defined critical value. This
value, for cutting mostly around 0.7, is stored inside the user-subroutine UVARM. Tests
have shown that this value can be of great importance when convergence problems occur.
If the value is chosen too high, the simulation may still work but may also entail severely
distorted elements. Even though the mesh is renewed in the subsequent simulation the
data from the heavily distorted old mesh could cause erroneous stress fields which would
then be mapped onto the new mesh making convergence unlikely. If the value is set too
low, the number of simulations to reach a certain displacement and hence the calculation

time will increase.

The initial CAE File: To use the common 2D remeshing tool, an initial CAE-
file has to be generated. This file has to contain all the parameters and settings that
are needed to run the first simulation manually. Later on, the common 2D remeshing
tool will always rely on these initial CAE-file parameters. This also allows to start
simulations at any point of a valid output database and even to change the model or its
parameters. For instance, one could use a coarse mesh to reach a certain state with less
calculation time and change it later to a much finer mesh in order to study the process
in more detail. Even inclusions such as particles can be added after the chip has reached
its steady state to reduce calculation time and to use the chip in its steady state for a

parameter study.

Elements: In the used simulations, the favored element type is a 4-node plane strain
thermally coupled quadrilateral element with bilinear shape functions in ABAQUS™

denoted as CPE4T. The meshing algorithm needs also an exact specification of the
selected triangular element as input. Reduced integrated elements show hourglassing

effects at the tool edge, which cannot be completely prevented by introducing hourglass

Methods. Numerical Methods 24

controls. As large plastic strains are to be expected during the simulation, the use of fully
integrated elements is suggested to ensure high accuracy. Inside the script Automator.py
the element type of remeshable parts can be set manually. For the simulations used in

this thesis, the following commands were used:

elemTypel = mesh.ElemType(elemCode=CPE4T, elemLibrary=STANDARD)

elemType2 = mesh.ElemType(elemCode=CPE3T, elemLibrary=STANDARD)

A.setElementType (regions=(A.instances[PartList [1].cleanName+
’-’+repr (NextCaeCycle)].faces,),

elemTypes=(elemTypel, elemType2))

2.2.1.1 Python scripts

Basically, the common 2D remeshing tool comprises two python scripts. The ”kernel-
script” (KS) contains all functions to process the remeshing procedure. The ”automator-
script” (AS) contains a sequence of KS-functions and all necessary utilities which can
be adapted by the user. When the AS is executed, the initial model is analyzed by the

function startAutomaticProcedure, which executes the analysis procedure analyse.

Analyse: analyse is the first function called by the AS. Inside analyse, all instances
of the initial model are analyzed by the function analyselnstances. Their names and
attributes get saved in a list named PartList. Then, the analyse-function executes
the functions analyseSurfaces, analyseAnalysis Type, analyselnteractions, analyseBC and
nodeSetToPartList. The obtained information is stored inside the PartList-list. After a

successful analysis the AS continues.

Mesh Windows Class: Mesh windows can be used to define sections with different
mesh sizes. One can create as many mesh-windows as needed on a remeshable part. An

example how to define a mesh window can be found in the AS in appendix B.

mw=MeshWindow (’mwl’,PartList [1].cleanName+’-’+repr (NextCaeCycle) ,0.4)

This command defines a new mesh-window object, where 'mwi’ is the name of the
mesh-window-object, PartList[1].cleanName+-"+repr(NextCaeCycle) is the name of the
chosen instance and 0.4 is the global mesh-size of the instance. To find the part’s number

inside the PartList-list, one can type the following command into the CLI:

Methods. Numerical Methods 25

>>> PartList [0].name
"WORKPIECE -1"
>>> PartList [1].name

"TOOL-1"

Now, windows can be defined by two different ways. The static way to define a new

mesh window is for example:

mw.window(1.2,10,3.5,-3.9,0.03)

The first four parameters define the two coordinates of a rectangle. The upper left
edge is defined by the first two parameters and the lower right edge by the next two
parameters. The last parameter sets the seed-size inside this rectangle. Another way to
set coordinates is by referring to another part’s node. This is only possible if the part

referred to does not change its mesh.

Pi=PartList [1].cleanName+’-’+repr (NextCaeCycle)

mw.Window ((P1,800,-2),(P1,800,1.2),(P1,800,20),(P1,800,-1.2),0.01)

Here, instead of entering absolute coordinates, only the relative distance to the node
800 of the second part inside the PartList-list is set. It is also possible to use absolute

and relative coordinates at the same time.

Pi=PartList [1].cleanName+’-’+repr (NextCaeCycle)
P2=PartList [2].cleanName+’-’+repr (NextCaeCycle)

mw.Window ((P1,800,-2),(P2,202,1.2),20,-1.2),0.01)

In this example the first x-coordinate refers to the part P1 and the y-coordinate refers
to the part P2. The second x and y-coordinate are absolute coordinates. In the AS, the
number in the name of the part-instance and the part always match the number of the
next cycle. Therefore, the name consists of the clean name (without any numbers in the
name) and the number of the next job. To get the clean name, the name of the current

cycle, or the name of the part in its initial state one can type the following:

>>> PartList [0].cleanName
"WORKPIECE"
>>> PartList [0].name

"WORKPIECE -3"

Methods. Numerical Methods 26

>>> PartList [0].initialName

"WORKPIECE-1"

Finally, the function applyMW creates the mesh windows and generates the mesh based

on the user’s data.

mw.applyMW ()

Reconstruct the sets: After the deformed parts are imported and remeshed, the
old node-sets are no longer valid. To reconstruct those sets, one could use the function
createSetbyName. By creating set-names with a specified keyword at the name’s end,
the function createSetbyName can recognize those keys and search for nodes in the key-
area. There are four possible key-areas to specify an edge and four key-areas to specify

a corner:

e __B = bottom

o [=left
e R =right
e T =top

e PRB = point right bottom
e PRT = point right top
e PLB = point left bottom

e PLT = point left top

If a set-name ends with __B, createSetbyName will search for all nodes at the bottom of
the mesh. Therefore, when creating the initial-model, the use of straight edges at mod-
eled geometries could be an advantage. If a part in the assembly will not be remeshed,
the node-labels are stored and createSetbyName automatically restores the set on the
part, regardless if it is deformed or not. To do that, the function createSetbyName ac-
cesses the PartList-list to find the relationship between the part and the set-name of

the node set, which was analyzed by the function analyse.

createSetbySetName (PartList)

Methods. Numerical Methods 27

ReconParts: This function uses the methods orphanlmport, orphanImportGeo and
makelnstance, which all can be found in the KS. ReconParts opens the last ODB-file and
imports the deformed parts into the current model. When the part is set as a remesh-
part, it is imported as an orphan mesh and afterwards the orphan mesh is converted
into a geometrical entity. If the part is set as a non-remesh part, only the orphan-mesh
will be imported into the current model. If the part’s type is rigid, only the name of the
part instance will be changed inside the model in order to match the current CAE-cycle

(e.g.: 'rigid-127).

GetSideEdge: The function getSideEdge creates a surrounding surface on a mesh
by comparing the connectivities of all the elements. getSideEdge needs the part’s name
and the surface name as parameters. If the provided surface name already exists, it will
be overwritten. This is essential when a non-remesh part like a tool is used to update

the surface name.

getSideEdge (PartList [0].cleanName+’-’+repr (NextCaeCycle),

SurfaceName=’kontakt_werkzeug_s’)

When the surface of a remesh part is required one can rely on the geometry’s edges and

easily create a surrounding surface by using the following command:

A.Surface(sidelEdges=A.instances [PartList [1].cleanName+
’-’+repr (NextCaeCycle)].edges,

name=’kontakt_werkstoff_s’)

Reassigning the material: = The KS-function assignSections automatically reassigns
the materials. The reference connecting a part’s material to the part is stored in the

PartList-list.

Adding the MAP SOLUTIONS keyword: The KS-function AddMapSolutions
writes the following statement into the model-keywords and returns True if it has exe-

cuted successfully:

MAP SOLUTION, STEP=step-2,INC=24, UNBALANCED STRESS=RAMP

Methods. Numerical Methods 28

Here STEP is the last step of the model and INC is the last increment of the last
simulation. The UNBALANCED STRESS-key can be either RAMP or STEP. The key
can be changed in the KS.

Creating a new job: The KS-function createJob creates a new job with the number

of the current CAE-cycle.

Starting a job: The KS-function startJob creates a subprocess, which is opened in
a separate terminal. As long as the job runs, the terminal window will remain open.
Additionally the parameters DEL and ChkStep can be used. DEL can be set to TRUFE to
prevent an extensive amount of data. It deletes all job-files that are more than nine jobs
behind the current one, except the odb-files. ChkStep looks into the last job’s status-
file and returns True if the given step contains a valid increment. This can be useful
when slight differences in the mesh cause divergence. In this event the KS-function
startVariation can be executed to change the size of the global mesh and the mesh
windows a little bit and restart the simulation again. After four attempts to alter the

mesh window coordinates and the element size in order to converge, the AS terminates.

2.2.2 User file

User.tzt is a parameter-file for user-parameters. It allows to specify parameters like the
initial CAE-name, step name, import step and many more. The KS function StartAu-

tomaticProcedure reads the user-file and updates the predefined values.

#sample user input script#
initialCaeName=’realmatr_bcelsius_biggerMesh_Rigid.cae’
StepName=’step-2’
remesh=[’werkstoff ’,]

newBcVal={}

#orphan part properties
deformed=[’WERKZEUG’,’ WERKSTOFF ’]
importStep=1 #1 is the second step
ATV=0.005

deformedShape = DEFORMED
maxCycles=1000
globalAbstractAngle=10

abstractAngle={}

Methods. Numerical Methods 29

2.2.3 Subroutine

ABAQUS™ /Standard provides users with an extensive array of user-subroutines that
allow them to adapt ABAQUS™to their particular analysis requirements. They can
interact with the analysis at different points. To include a user-subroutine in an analysis
the user parameter can be specified when executing a job. The KS-function startJob

does that automatically. Usually the command would look like this:

abaqus job=Job-2 oldjob=Job-1 user=subroutine

UVARM: UVARM is used to determine the relative change of the plastic strain
during the simulation. UVARM accesses all calculation points of elements at each

increment in a step.

URDFIL: URDFIL reads the data from the results file (*.fil) in order to use the
information to make decisions such as when to terminate the analysis. It interacts
with the analysis between the point where the output gets written and the end of the
increment. URDFIL compares the calculated plastic strain value from UVARM with a
user defined limit (e.g. 0.7). If the relative plastic strain exceeds this limit the LSTOP

flag triggers the simulation to stop.

Both subroutines can be found in appendix A.

2.2.4 Interpolation

2.2.4.1 Functionality

The interpolation algorithm in ABAQUS™is called Mesh-to-Mesh Solution technique
and is only available in ABAQUS™ /Standard.

By providing the keyword *MAP SOLUTION the data of the old mesh will be interpo-
lated onto the new mesh. The kernel script automatically looks for the latest step and
frame to define the *MAP SOLUTION parameters. The values of the field outputs at
the nodes of the old mesh are interpolated onto nodes or integration points of the new
mesh. The nodal values can be directly associated with the new nodes. The integra-

tion point variables are in a first step extrapolated to the nodes of each element, and

Methods. Numerical Methods 30

then they are averaged over all similar elements. In a second step, the location of each
point in the new mesh in reference to the old mesh is obtained. Afterwards, in case
of element variables the nodal data are interpolated onto the integration points of each
element and in case of nodal variables the nodal data are interpolated directly onto the
new nodes. The performed averaging and extrapolation causes a smoothing of strong
gradients (Figure 2.8). Especially when the size of the new mesh in respect to the old
one is quite different. This effect can be controlled with a dense mesh in high gradient
regions such as the primary deformation zone of the cutting process. As described in
chapter 1.3.3 ABAQUS™ /Standard uses a Lagrangian formulation in which the mesh
is attached to the deforming material. The discretization can degrade when the elements
become severely distorted due to large strains. Therefore an indicator that triggers the
remeshing procedure is necessary. In this simulation the indicator is the equivalent plas-
tic strain and when triggered it causes the simulation to terminate and restart with a

new mesh (see chapter 2.2.1).

PEEQ
(Avg: 75%)
+2.378e+01

+5.833e+00
+5.250e+00
+4.667e+00
+4.083e+00
+3.500e+00
+2.917e+00
+2.333e+00
+1.750e+00

Gradient weakeningin
respect to the mesh size
difference.

ODB: Job-717.0db Abaqus/Standard 6.12-1 Fri Jul 19 20:15:16 GMT+02:00 2013

FIGURE 2.8: Smoothing of the solution gradients due to different mesh sizes.

To enable reasonable computation times, the simulations in this thesis show big mesh
size gradients. The zones where the mesh size is coarser show a strong smoothing of
the gradients as shown in Figure 2.8. A coarse mesh is only used at regions which are
of low interest and which do not affect zones of interest. The mesh size in the primary
and secondary deformation zone is small enough, that such a gradient flattening can be
avoided. This avoids an unacceptable change of the mapped results after the remeshing
procedure. The gradient flattening can also be reduced by resetting the trigger condition
to a value that remeshes earlier and at a higher similarity of the elements of a less

deformed mesh and a new mesh.

Chapter 3

Results

3.1 Evaluation of the mesh dependency

3.1.1 Remeshing versus constant mesh

Simulating the formation of a chip always includes heavy deformations of the elements
within the chip. For numerical reasons the results obtained from an excessively distorted
mesh start to deteriorate extremely. A model without remeshing and a model using the
remeshing algorithm are simulated to demonstrate the differences. Figure 3.1 shows the
contact, forces of two remeshed models and a model with a constant mesh, when the
tool is penetrating the workpiece for the first time. The remeshed models are simulated
with a rigid as well as an elastic-plastic tool. The red line represents the results for
a constant mesh and an elastic-plastic tool. Although remeshing does not take place
even after the elements show extreme distortion the analysis produces results for a
surprisingly large tool displacement. However, after three millimeters of cutting, the
contact force of the constant mesh starts to stagnate, even though the steady state has
not been reached at this point. This is the point, where element deformation is already
too severe and numerical aberrations occur. The contact forces of the remeshed models
continue to rise even at displacements where the constant mesh model has long failed to
deliver reasonable output data. The curves of the remeshed models exhibit a sawtooth-
like behavior. This effect is caused by the remeshing procedure itself. After the part
has been remeshed and simulation results and the internal variables from the previous

simulation such as the accumulated plastic strain, the temperature and the stress have

31

Results. Mesh dependency 32

been mapped onto the new mesh, a new simulation cycle starts. In the initial state of
the simulation after the remeshing process, the contact has not been established yet and
hence no contact forces are acting on the contact surface. Within the first step, the
contact forces recover again, but during this procedure the contact pairs slip slightly
relative to each other leading to numerical artifacts in the results. These artifacts cause
fluctuations in the results of e.g. flickering of the stress distribution and consequently
a flickering of the strain rate in the videos (Videos can be seen in the attached CD or
online with the QR codes in Figure 3.2). The difference between the rigid tool’s contact
force (green line) and the elastic-plastic tool’s contact force (black line) is due to the
different interactions between the tool’s and the workpiece’s material. In contrast to
the rigid tool, the elastic-plastic tool slightly displaces when it gets in contact with the
workpiece. This shift causes a change in the tool’s rake angle. Hence the material can
slip easier underneath the cutting edge which results in a decrease of the contact force.
Consequently, the temperature distribution is different which also effects the chip width.
The temperature of the workpiece in the model with the elastic-plastic tool reaches about
860°C whereas the rigid tool model exhibits temperatures of about 940°C. However, the
higher temperature enables easier shearing, which causes the chip width to increase and
therefore the contact force to increase as well. The chip width of the model with the
elastic-plastic tool is 5% smaller than the chip width in the model with the rigid tool

which results in the difference between the two force curves in Figure 3.1.

Results. Mesh dependency 33

—— Elastic-Plastic Tool

1,00E+009 5 Rigid Tool
— Constant mesh
8,00E+008 —
®©
o
L
p=
o
(e}
Z 6,00E+008
O
4,00E+008
0 10
displacement mm
FIGURE 3.1: Remeshing versus one step simulation.
(a) (b) (c)
FIGURE 3.2: QR code for the videos (a) Strain rate of an inhomogeneous chip

formation, (b) Nodal temperature and (c) Equivalent plastic strain of a homogeneous
chip formation.

3.1.2 Analytical verification of the simulated cutting forces

The cutting force simulations are validated analytically using equation 3.1, where Fj
is the cutting force, b the width of the chip, h the chipping thickness, ks the specific
cutting force, K, the cutting rake correction, K, the cutting speed correction, K; the
chip compression correction and K, the wear correction. A milling procedure with a
hard metal cutting tool is assumed. The steel CK60 with a Young’s modulus of 210

GPa and a density of 7.8 g/ cm? is used to estimate the material parameters z and ks11

Results. Mesh size dependency 34
Parameters
a 0.4 mm
h 0.8 mm
z 0.82
K, 1.2
9o 6° (for steels)
Ky 1.2
rakeangle 17°
v 220 m/min
ks1.1 2130 MPa
b b = Wl@m’zglﬁ) l 0418 mim
rarkeangte—
K, Ky =1— m=ee 9% (.835
K, K, =1.03- 3¢ 1.05
ks ks = ks11h™* 1773.8 MPa
TABLE 3.1: Equations and parameters of the analytical calculation
(The chosen parameters for the cutting force are listed in table 3.1).
Fy[N] = bhksh' " K, K, Kt Kyer (3.1)

This results in a total cutting force of F, = 936x10% N. The simulation shows a maximum
cutting force between 780x10% N and 850x10° N. Comparing these two results, the
discrepancy between analytical and numerical calculated forces is remarkably low (The

formula for the cutting force and the parameters can be found in [28])

3.1.3 Mesh size dependency

In a cutting process the main plastic deformation is concentrated in a shear band reach-
ing from the tool tip to the root of the chip. Within the shear band the high plastic
deformations causing dissipative heating lead to a temperature increase in the shear
band and consequently to a thermal softening of the material. Temperature dependent
softening effects may result in material instabilities and a mesh-dependence of the sim-
ulation results. This can be overcome by means of regularization techniques, e.g. by
introducing strain rate dependency into the material law. In this thesis, the Johnson
Cook model [10], describing strain rate sensitivity, strain-hardening/softening and tem-
perature dependency was used. Therefore an element size related mesh dependency is

expected and analyzed. From a theoretical point of view, the shear band width in the

Results. Mesh size dependency 35

primary deformation zone (see Figure 1.1) tends to zero. However, in a numerical analy-
sis the shear band spans over at least one element and furthermore the orientation of the
elements also affects the deformation zones and eventually the chip’s formation. But also
in reality a finite width of the shear band is observed which in the literature is commonly
explained by a spatial strain gradient dependency of the material behavior. Introducing
that phenomenon in a numerical algorithm regularizes the otherwise discrete nature of
the shear band. However, this is not the focus of this thesis and further investigations
would go beyond the scope. The work of Hortig [29] elaborates that topic in greater
detail. Furthermore, lowering the element size to a point where regularization effects
no longer apply was precluded due to the immense consumption of computation time.
Therefore, a parameter study with three different mesh sizes is conducted to find out
which mesh size is acceptable in relation to its computation time (Figure 3.3). When the
tool’s cutting edge penetrates the workpiece, the cutting force increases up to a steady
state, where the equilibrium between chip thickness, contact length and temperature is

reached. These parameters are highly depending on the size of the elements.

FIGURE 3.3: Primary deformation zone with three different mesh sizes. 0.05 (left),
0.02 (middle) and 0.01 (right).

The chip’s formation is simulated with a coarse mesh until it reaches a steady state.
Afterwards, the mesh covering the primary deformation zone is refined. The first chip
in Figure 3.3 shows no mesh refinement, whereas the second chip shows half the element
size of the first chip and the third chip approximately a fifth of the first element size.
In all three simulations a steady state is reached. The abrupt change in the primary
deformation zone from a coarse mesh size to a small mesh size has an impact on the
material’s plastic behavior, which causes the strain rate and thus the temperature to

increase, leading to temperature dependent softening of the material, and therefore an

Results. Mesh size dependency 36

instantaneous increase of the chip’s width. The effect decays completely when steady
state is reached again, leaving a small nose on the inner surface of the chip. The chip
with the finest mesh shows a smaller chip width compared to the coarse mesh because
the shear band is more localized and the shearing zone is more focused and therefore

has higher motion constraints than in the case of a coarse mesh.

As mentioned in section 1.2, the contact between tool and workpiece or chip, respectively,
can be separated into two distinguished areas. The slipping area, where the material
can move relative to the facing material, and the sticking area, where no relative motion
is possible. Figure 3.4 shows the beginning of the cutting step. Only the workpiece
with the chip is visible. Along the surface, the sticking areas are marked red and the
slipping areas are marked green. Areas without contact are marked black. The three
plots are arranged in the same way as in Figure 3.3. The coarse mesh shows sticking
along the surface except for the indifferent contact situation at the tool’s tip, where
slipping, sticking and contact opening can be seen. The third plot’s sticking area is
smaller than the sticking area of the other plots. This is an expected effect, because the
finer mesh causes the chip’s width to decrease and therefore the contact length decreases
as well. Hence, a stronger bending of the chip occurs. Furthermore, smaller elements
adapt better to the intricate geometry around the tool’s edge, causing a much more

accurate representation of the contact situation.

CSTATUS

Closed (Sticking)
Closed (Slipping)
Open

CSTATUS

CSTATUS
stickint Closed (Stickin
9 t 2o%ed (B

Closed
Closed (Slipping)

FI1GURE 3.4: Contact status at the beginning of the second step.

Figure 3.5 shows the slip stick distribution at the end of a simulated cycle. As the
coarse mesh’s slip stick zone distribution is judged as rather unrealistic compared to the

idealistic conditions visualized in Figure 1.1, attention is drawn to the second and third

Results. Mesh size dependency 37

Cycles Time Elements used disk space
18 70 min 4150 Elements 1.2 GB
35 8h45 min 14300 Elements 7.9 GB

7000 18000 h 54000 Elements 6800 GB

TABLE 3.2: Computational stats

plot. Comparing the slip stick areas between the three plots, the difference between
the second and third plot is much less than between the first and second plot. Two
slipping areas (green) can be found inside the sticking region of the second and third
plot. This might be caused by the elbow in the tool’s geometry, which influences the
effects in the upper and lower surfaces on the tool. Table 3.2 shows the time and the
amount of remeshing cycles needed to simulate a homogeneous chip formation with 0.7
mm displacement of the tool displacement (see tab. 3.2. Since the computation time
of the finest mesh is exponentially higher than the time needed to complete the second

mesh, the latter is used for all subsequent simulations.

CSTATUS

Closed (Sticking)
Closed (Sipping)
Gpen

CSTATUS

Closed (Sticking)
Closed (Slipping)
Gpen

CSTATUS

Closed (Sticking)
Closed (Slipping)
Open

F1GURE 3.5: Contact status at the end of the second step.

The hardly predictable contact situation also has an effect on the temperature distribu-
tion. Only areas where the contact is established are used by the friction model, which
in turn has effects on the friction related heat generation. Similar to the friction-induced
heat generation, also the inelastic heat fraction defining the heat generation caused by
plastic dissipation produces significant amounts of heat. Thus, the third plot in Figure
3.6 shows a much higher nodal temperature at the surface than the other two plots. The

maximal temperature in the first plot is about 900°C versus 1400°C in the third plot.

Results. Mesh size dependency 38

At this temperature a phase transition can be expected. Therefore, the temperature
should be less than 1400°C, otherwise some of the heat energy is used for the phase
transition. However, phase transitions are not considered in this simulation.

The primary deformation zone’s mesh-resolution increases with a decreasing element
size. Figure 3.7 shows that the accumulated equivalent plastic strain (PEEQ) is more
focused at regions with higher mesh resolution. Thus, even the refinement of the mesh
can cause adiabatic shearing due to the size effects mentioned earlier. This trend ap-
pears clearly at the refining point in plot three. Compared to the other two plots, PEEQ
is much higher in the refining zone (see Figure 3.7), which is caused by the increased
strain rate. The increase of the strain rate can be seen in Figure 3.8, where the first

plot shows strain rates of about 5x10% s~1, while the third plot’s strain rates increase to

1x10° s~ 1.

NT11
+9.0008+02

NT11
+9.008e+02

NT11
+1.403e+03

-2.5944e+02 -1.497e+02

FIGURE 3.6: Chip edge temperature distribution.

Results. Homogeneous simulation results

39

PEEQ
AV 75%)

PEEQ
(Avg: 75%)

ER, Max. Principal
(Avg: 75%)

Fiaure 3.7: PEEQ distribution.

ER, Max. Principal
(Avg: 75%)

FIGURE 3.8: Strain rate distribution.

3.1.4 Deformation zone profiles

PEE
(Avg: 75%)

ER, Max. Principal
(Avg: 75%

+0.000e+00

As an alternative indicator visualizing the impact of the different elements the strain

rate distribution is evaluated along two different paths in the primary deformation zone

revealing significant differences. Figure 3.9 shows the two paths in the chip’s primary

deformation zone, referred to in Figure 3.10. Mesh 1, 2 and 3 in that figure correlate to

the meshes shown in Figure 3.3. As expected, the strain rate of mesh 3 is higher than

the strain rate of mesh 2 and mesh 1.

Results. Homogeneous simulation results 40

(a) (b)

FIGURE 3.9: a) Path A through the midsection of the primary deformation zone.
b) Path B through the edge of the primary deformation zone.

3.2 Homogeneous simulation results

3.2.1 Chip formation

When the chip bends over to the uncut material, two possible scenarios can be simulated:
(i) ?with self contact”: The chip gets in contact with a rigid body, simulating self contact
of the chip with the surface of the uncut workpiece as mentioned in chapter 2.1.1, and

(i) ”without self contact”: the tip of the chip gets trimmed at each remeshing-cycle.

3.2.2 Forces and contact length

In Figure 3.12 (a), the chip-width over time curve shows that the decrease of the chip’s
width is almost the same within the first six milliseconds for the two considered scenarios
described above. The decrease of the chip’s width is caused by a constant decrease of
the cutting depth, which simulates the cutting in a milling process. The difference of
the chips width at the beginning of the curves is due to different mesh sizes at the
beginning of the simulation. The reason for the small kink in the curve of the model
without self contact (red plot) after four milliseconds is due to changes of the mesh for
simulation stability reasons. After six milliseconds, the chip width in the case ”with

self contact” ascends by about 0.05 mm but remains parallel to ”without self contact”

Results. Homogeneous simulation results

41

40000
1 —— Mesh1
35000 —— Mesh2
1 Mesh3
30000 |
25000 |
20000 -]

Strain Rate ER s™

0 Y T 3 T ' T g 1
0,00 0,05 0,10 0,15 0,20
True Distance mm
(a)

40000 —

i —— Mesh1

35000 —— Mesh2

i Mesh3
30000
“» 25000 -
o |

1l
© 20000 ~
©
= |
£ 15000
o |
40000 4
5000
0 Y T 3 T ' T g 1
0,00 0,05 0,10 0,15 0,20

True distance mm

(b)

FIGURE 3.10: a) Strain rate along path A. b) Strain rate along path B.

Results. Homogeneous simulation results 42

curve afterwards. This is where the chip gets in contact with the rigid body. When in
contact, the chip’s neck erects causing the contact length between the tool and the chip
to increase (see Figure 3.12 (b)). This increase also affects the primary deformation zone
and causes the chip’s width to increase. Comparing Figure 3.12 (a) with Figure 3.12
(b) suggests that a change of the contact length always results in a change of the chip’s
width.

32 4
30 .
28] —— chip length

26] —— tool displacement
24 3
22
20]
18
16
14 3
12]

displacement, length mm

NOoON B O
sl

0,000 0,002 0,004 0,006 0,008
time s

FicURrE 3.11: Tool displacement and the corresponding chip length.

Figure 3.11 shows that although the chip’s width changes in the model with self contact,
the chip’s rate of growth does not change over time. Hence follows that the material
flow of the chip is constant, even when the contact length, the temperature or the chip’s

width changes. The chip’s formation length is about 35% of the tool’s displacement.

Results. Homogeneous simulation results

43

—— with self contact

i% —— without self contact

10 //ﬂ\\ \

0,8
e \\<
E -
= 06
=)
2
Q.
= 04
[&]

0,2

0,0

0,000 0,002 0,004 0,006 0,008
time s
(a)
15 — with self contact
—— without self contact

E 1,0
S
D
c
Q
- M
S
c MM
Q
[&]

0,5

0,000 0,002 0,004 0,006 0,008

time s

(b)

FIGURE 3.12: a) Comparison of the chip’s width with and without self contact. b)
Comparison of the chip’s contact length with and without self contact.

Results. Inhomogeneous simulation 44

3.3 Inhomogeneous simulation results

The study of inhomogeneous chip formation can be of importance for realistically simu-
lating the behavior when inhomogeneities such as inclusions reach a size that influence
the process. Therefore, a study is conducted to investigate the influences of different
inclusion sizes at different positions in relation to the formation of a chip. The param-
eter study features three different inclusion sizes with a diameter of 0.15 mm, 0.1 mm
and 0.05 mm at three different positions. The cutting depth d is 0.4 mm. Their sizes in
relation to the uncut chip thickness are about 0.37d, 0.25d and 0.125d. First, a homoge-
neous reference case is simulated until the steady state is reached. Then the inclusions
are implemented into the workpiece at three different positions. The first position is
defined at 0.25d from the surface of the uncut chip. The second position 0.75d and the

third position is positioned 0.2 mm underneath the cutting path (see Figure 3.13).

End Position

Initial
Position 3

Initial
Position 2

Initial

FIGURE 3.13: Positions of the inclusions: a) 0.25d, b) 0.75d, ¢) 2 mm underneath the
cutting path.

3.3.1 Chip formation and plastification

Depending on the size and position of the inclusion, the chip forms differently. It turns
out that the position closest to the surface has the most distinctive effect. The chip’s
width decreases when the inclusion is passing the primary deformation zone and a sharp
notch forms perpendicular to the flow direction of the chip. After the inclusion has
passed the primary deformation zone the chip width starts to increase again reaching
beyond the steady state’s chip width until it finally reaches its steady state again. The
size of the sharp notch is related to the size of the inclusion and its position. Inclusions

that are placed on position 2 shown in 3.13 (b) cause a shallower notch. The same is true

Results. Inhomogeneous simulation 45

Relative inclusion size Initial position End position

0.37d 0.25d 0.39d’
0.25d 0.25d 0.35d'
0.125d 0.25d 0.31d’
0.37d 0.75d 0.79d’
0.25d 0.75d 0.78d'
0.125d 0.75d 0.78d'

TABLE 3.3: Inclusion positions

for smaller inclusions at the same position. The smallest inclusion with a size of 0.125d
has almost no effect on the chip’s formation. Figure 3.14 shows the chip for all three
inclusion sizes and the sharp notch which forms differently depending on the inclusion
size. The positions of the inclusions in regard to the uncut or cut chip width change
slightly relative to their initial position. Table 3.3 shows that an inclusion which is
positioned close to the surface is located considerably deeper inside the chip after it has
crossed the primary deformation zone. d’ is the chip width. Is the inclusion positioned
close to the cutting path, a shift towards the surface can be seen. The influence of the
size of an inclusion positioned near the cutting path is less pronounced than it is for an
inclusion positioned near the surface. In this case the shift is smaller and the size of the

inclusion shows less influence on the change of the relative position.

PEEQ
(Avg: 75%)
6,105

3
5.000

FiGuRrE 3.14: PEEQ Plot with different inclusion sizes.

Results. Inhomogeneous simulation 46

3.3.2 Effects in the primary deformation zone

When the inclusion starts to cross the primary deformation zone, it hinders the chip-
material from shearing. The material flow faces a smaller area to pass the primary
deformation zone. This results in higher strain rates near the tool tip and at the upper

side of the inclusion, which can be observed by comparing Figure 3.15 (a) and (b).

ER, Max. In-Plane Principal
(Avg: 75%)

ER, Max. In-Plane Principal

ER, Max. In-Piane Principal
D (AVg: 75%)

(AVQ: 75%)

+6.655e+03
+4.087e+03
+3.319e+03
+1,651e+03
-1.747e+01

+6.637e+03
+4.966e+03
+3.296e+03
+1.625e+03
-4.493e+01

FIGURE 3.15: Change of the strain rate in the PDZ caused by the inclusion with the
diameter 0.37d. a) before entering the PDZ, b) crossing the PDZ and ¢) leaving the
PDZ.

At first the strain rate starts to increase at the top side of the inclusion and an S-form of
the PDZ appears which becomes more distinctive at a later stage. The higher flow rate
causes a local increase in temperature on the top of the inclusion, whereas on the bottom
the opposite effect takes place. As the inclusion reaches the center of the deformation
zone it hinders the shearing. This splits the material movement into two strain rate
bands, which are situated at the top and the bottom of the inclusion. The split regions
of the primary deformation zone show a significantly lower strain rate. Since the build
up rate of the chip is constant, the expected increase of the strain rate occurs on the
opposite side where the tool interacts with the chip. When the inclusion is about to
leave the deformation zone, the strain rate in the PDZ starts to increase until the model
has reached its steady state again. The bottom of the inclusion shows a zone with lower
temperature. This lower temperature increases the chip’s width, until the steady state

has been reached again, resulting in a nose at the chip’s outer surface.

Results. Inhomogeneous simulation 47

FIGURE 3.16: Change of the temperature caused by an inclusion.

3.3.3 Forces and contact length

When the inclusion is moving through the primary deformation zone the chip’s width
decreases and so does the contact length. Now, the chip’s counterpressure against the
tool is reduced and the cutting force decreases. Additionally, the crossing position of
the inclusion can result in an advanced bending of the chip which results in an even
more decreased contact length. When the inclusion is placed at initial position 3.15 (a),
the material flow to build up the chip is hindered at the surface side, forcing it to cross
the deformation zone close to the outer surface of the chip. This results in an increased
material flow on the tool-side, which in turn causes an advanced bending of the chip.
When the inclusion crosses at the midsection of the chip, a smaller bending can be
observed. Figure 3.18 (a) shows the contact length over time with the biggest inclusion
crossing the primary deformation zone at three different locations. The contact length
at the top position experiences a decrease of the contact length of 22.7%, whereas the
middle position’s decrease of the contact length is only 9%. When the inclusion moves
underneath the tool’s edge, no significant change in the contact length is observed. Plot
(b) shows the contact force of the same process. The top position reduces the contact
force by almost 9%, the middle position by 6%. Placing the inclusion underneath the
cutting path shows also no effect on the cutting force. The shift between the three plots
is caused by the position of the inclusions. All inclusions start at the same point and
move towards the primary deformation zone. Due to the shear band orientation, the
inclusion of the top position reaches the primary deformation zone first followed by the

midsection position 0.15ms later.

Results. Inhomogeneous simulation 48

Contact length mm

L I Y 1 4 |
0,0000 0,0005 0,0010 0,0015
Time s

F1cure 3.17: Contact length change depending on the size of the inclusion.

As expected, the contact length reduction is also related to the size of the inclusion. For
the position close to the surface the biggest inclusion causes a decrease of the contact
length of 22.7%, the medium size inclusion a decrease of 13.6% and the smallest inclusion

a decrease of about 4.5% (see Figure 3.17).

Results. Inhomogeneous simulation

49

—— Top, 0.9 mm
1,15 - —— Middle, 0.7 mm
Bottom, 0.4 mm

Contact length mm

T T T T T T T T T T T T 1
0,0002 0,0004 0,0006 0,0008 0,0010 0,0012 0,0014

Time s
(a)
850 - —— Top, 0.9 mm
—— Middle, 0.7 mm
E Bottom, 0.4 m

1 o 7 T
bl | Y |

i A TN |

(AL H, i il hltw (-

i “H Tt ‘M!lmk"‘w; T W
Gt 1

|
i (M

Contact Force N
~
S
1

700 —
650 r T r T Y 1
0,000 0,002 0,004 0,006
Time s
(b)

FicURE 3.18: a) Contact length of the biggest inclusion at different positions. b)
Contact force of the biggest inclusion at different positions.

Results. Inhomogeneous simulation 50

3.3.4 Influence of inclusion on chip fracture

As mentioned in the previous section, the inclusion causes an increase in the strain
rate while it is moving into the primary deformation zone. Therefore a PEEQ of more
than 500% can be found at the top side of the inclusion. Figure 3.14 shows the PEEQ-
distributions for the three inclusion sizes. In Figure 3.19 (a) an evolution is shown for the
comparison of the amount of PEEQ on the upper pole of the three different inclusions. A
big inclusion also results in a high amount of PEEQ at the top. Additionally, each graph
shows a peak at the end of the plot, which represents the cut surface’s plastic strain (see
Figure 3.19 (b)). Beside the primary deformation zone, also the secondary deformation
zone along the cutting edge causes high plastic strains. The different positions of the

three peaks are caused by the different bending and chip thickness of the chips.

—0.15 mm
——0.10 mm
~———0.05mm

25

PEEQ -

T
0,0 0,2 0,4 0,6 0,8 1,0 1.2
Path mm

(a) (®)

FIGURE 3.19: a) Path through the chip on the top side of the inclusion. b) PEEQ
distribution for different inclusion-sizes.

High values of plastic deformation can lead to ductile damage starting with the formation
of pores under low negative or positive stress triaxiality. These pores can cause material

separation and material failure which in this case may lead to fracture of the chip.

The position where ductile damage may cause a chip separation can be calculated for
example with the damage indicator D; by Hancock-Mackenzie. It depends on the stress
triaxiality op/oeq weighted by the function 3.3 and the equivalent strain €., as expressed

in equation 3.2 [30]. Ductile fracture most likely appears at the position with the highest

Results. Inhomogeneous simulation 51

iewport: 1 ODEB:/mnvext_stefan/inhomogen...DY STATE/P1-1/Job-170.0diewport: 2 ODB: /mnvext_slefan/inhomogen...DY STATE/P1-1/Job-186.odliewport: 3 ODB:/mnbiext_stefan/inhomogen...DY STATE/P1-1/Job-210. 0l

PEEQ
(Avg: 75%)

40/000e+00 40,000 +00 +0.000e +00

;
3
%
X
=
i
v,
i
H
[
I

)

G

Ficure 3.20: PEEQ around the inclusion.

damage indicator. The dependency of the damage indicator on the equivalent strain has
to be calibrated experimentally and is expressed as the constant "C”. To calculate the

weighting function the parameter R is set to a value of 2 as in Génser et al. [30].

D,-:/fi (U—H> deeg (3.2)
Ocq
0

fi (Zf:) — Cexp <RZ};) (3.3)

To estimate the impact of the stress triaxiality caused by the inclusion, three different

elements are investigated with a simplified approach. The first position is located at
the upper side of the inclusion, the second position at the inner side of the sharp notch
witch evolves during the inclusion’s pass through the PDZ, and the third position is
located at the center of the PDZ (see fig. 3.21). The element with the highest value
of the weighting function with respect to its change of plastic deformation indicates the
position where ductile fracture will preferably occur. The most severe changes in plastic
deformation at the inclusion’s surface take place when the inclusion is moving through
the PDZ. The resulting value of the weighting function also reaches a maximum when
the inclusion is about to leave the PDZ. To calculate the damage indicator, the integral
of all measured weighting values being a function of the plastic deformation increment

has to be considered. In the cutting process the stress triaxiality at a material point

Results. Inhomogeneous simulation 52

moving through the PDZ can in a rough estimation be assumed to be constant. Hence

for the sake of simplicity in this thesis the weighting function is assumed to be constant.

S, Pressure S, Mises PEEQ

1716.976 4101.249 16.474
.00 700.000 5.000
100.000 630.000 4.500
200.000 560.000 4.000
300.000 490.000 3.500
-400.000 420.000 3.000
500.000 350.000 2.500
600.000 280.000 2.000
700.000 210.000 1.500
800.000 140.000 1.000
00.000 70.0f 0.500
1000.000 0.00 0.000

90.040

I] |
I Il I O

FIGURE 3.21: a) Negative hydrostatic stress distribution, b) Mises stress distribution
and c¢) equivalent plastic strain distribution on the chip.

Nr. op[MPa] o0c4[MPa] Triaxiality Average weight Damage indicator

1 324 698 0.46 2.5C 7.33C
2 479 637 0.75 4.5C 22.7C
3 —450 770 —0.58 0.5C 0.16C

TABLE 3.4: Damage indication

Far away from the inclusion (fig. 3.21, pos.3) only hydrostatic pressure acts on the
investigated material point and so the damage indication is very small (see table 3.4).
In the vicinity of the notch and the inclusion the material sees, in contrast to the
rest of the PDZ, a positive stress triaxiality. Since the onset of damage is depending
exponentially on the stress triaxiality and high plastic deformations, ductile fracture
of the chip is likely to start from this region. The value of the damage indicator at
the upper side of the inclusion (fig. 3.21, pos.2) is 3 times the amount of damage
inside the notch (pos.1). Hence, the direct vicinity of the inclusion is most critical for
damage initiation. Furthermore it indicates that the inclusion’s geometry and position

is indirectly responsible for the chip’s separation.

Results. Inhomogeneous simulation 53

3.3.5 Chip formation for a second cut

To get a general idea about the universal applicability of the common 2D remeshing
tool (see chapter 2.2.1), a second cutting step is simulated. Figure 3.22 displays the first
cut on the left side and the second cut on the right side. It is evident that after the
first chip has formed, the hardened surface impedes the formation of the second chip,
causing a change in the chip’s buildup. The left surface of the second chip exhibits a

highly deformed zone, leading to a decreased chip width.

PEEQ
(Avg: 75%)

(=TS SNV, []
[aTaYalalaYalH]
ooooCoOoR

H

FI1GURE 3.22: Comparison between the first and second cut.

Chapter 4

Discussion and Conclusion

The formation of the chip in today’s machining is a complex process, which demands
the development of simulation tools to predict aspects such as the formation of the chip,
cutting forces, temperature distribution or tool wear. Depending on the aspects to in-
vestigate, three different methods are commonly used in the literature for chip formation
simulations. The EULERIAN method, where the material flows through a stationary
mesh, the LAGRANGIAN method, where the mesh moves with the material points and
the ALE method, being a combination of both. The UL (Updated Lagrangian) method
of the commercial finite element software ABAQUS™ /Standard was used in this the-
sis. The large displacement during the formation of the chip causes severe distortion
of the mesh. Thus, this method demands a repeated remeshing. Since a manual ap-
proach is cumbersome and time consuming an automation method was developed using
Python-scripts. The scripts written for this thesis can be used to automate any 2D chip
formation simulation. It is not limited to the amount of inclusions, material layers or
parts. First, a parameter study regarding the mesh size dependence was conducted.
It showes that with a smaller element size the chip width decreases and higher plastic
deformations, higher strain rates and higher temperatures can be found. Inside the pri-
mary deformation zone, the strain rate of the mesh with an element size of 0.05 mm is
about 14000 s~!, whereas the observed strain rates of the mesh with the element size
of 0.01 mm are between 23000 s~! and 37000 s~!. Thus changing the element size has
a great impact on the results. The smallest element size still allowing an acceptable
computational time was chosen for all subsequent simulations. A homogeneous CAE-

model was built and simulated with these scripts. The chip of the first homogeneous

54

Discussion. Discussion and Conclusion 55

model bends and may get in self-contact with the workpiece. Once in contact, the chip
starts to rise resulting in an increase of the contact length between tool and workpiece
of about 0.12 mm and an increase of the chip’s width of about 0.05 mm compared to
the contact length and chip width of the homogeneous model without self-contact. The
contact length, force and chip width distribution remains constant after self-contact has
been established. The results are compared with a model where self-contact is prevented
by truncating the chip before self-contact can occur. The contact length and chip width
of both models show a good agreement. Small variations between the results can be
explained by slightly different element sizes used in the two simulations. The build-up
velocity of the chip reaches 35% of the tool’s velocity in both models. Finally, the in-
fluence of inhomogeneities in form of circular inclusions was investigated. A parameter
study with three different hard inclusions with a diameter of 0.37d, 0.25d and 0.125d
was conducted, where d is the uncut chip thickness set to 0.4 mm. The study includes
the effect of the three different inclusion sizes at three different positions. The first
position is 0.25d, which places the inclusion right under the workpiece’s surface. The
second position is at a depth of 0.75d, which places the inclusion right above the cutting
path of the cutting tool. The third position is underneath the cutting path. Placing
the largest inclusion at the first position has the most significant influence on the chip’s
formation. When the inclusion approaches the primary deformation zone, the contact
force decreases from about 810 MPa to 740 MPa and increases again to 810 MPa when
the inclusion leaves the primary deformation zone. The contact length deviates between
1.1 mm and 0.86 mm. The effects are less pronounced with a decreasing inclusion size
or an initial position deeper inside the material. After the inclusion has passed the
primary deformation zone the position of the biggest inclusion changes from 25% of the
uncut chip thickness to 39% of the resulting chip width. This change in position is also
influenced by the inclusion size as well as its initial position. At the inclusion poles and
at the tip of the sharp notch hydrostatic tensile stresses occur leading to positive stress
triaxialities. A simplified investigation of ductile damage shows the highest damage in-
dicator values at the inclusion poles while it is passing through the PDZ. Combined with

the high damage indicator at the notch tip it will lead to ductile fracture of the chip.

Bibliography 56

Future investigations could e.g. include a damage model being capable of simulating
the effects of ductile damage and chip fracture. Further objectives are the modeling of
the formation of the chip with a soft inclusion such as graphite and the simulation of a
second cut model to investigate the influence of ductile inclusions on chip formation in
the presence of stresses at the surface. After calibration and an experimental validation
the simulation tool shows the potential for realistically simulating cutting processes even

taking into consideration complex material laws and sophisticated process conditions.

Bibliography

1]

[4]

B. Shi and H. Attia. Current status and future direction in the numerical modeling
and simulation of machining processes: A critical literature review. Machining
Science and Technology, 14(2):149 — 188, 2010. doi: 10.1080/10910344.2010.503455.
URL http://www.tandfonline.com/doi/abs/10.1080/10910344.2010.503455.

V. P. Astakhov and J. C. Outeiro. Modeling of the contact stress distribution
at the tool-chip interface. Machining Science and Technology, 9(1):85 — 99, 2005.
doi: 10.1081/MST-200051372. URL http://www.tandfonline.com/doi/abs/10.
1081/MST-200051372.

F. Klocke and W. Konig. Fertigungsverfahren 1. Springer-Verlag Berlin Hei-
delberg New York, achte auflage edition, 2008. doi: 10.1007/978-3-540-35834-3.
URL http://www.springer.com/engineering/production+engineering/book/

978-3-540-23458-6.

Y.M Quan, Z.H Zhou, and B.Y Ye. Cutting process and chip appearance of alu-
minum matrix composites reinforced by sic particle. Journal of Materials Pro-
cessing Technology, 91(1 - 3):231 — 235, 1999. ISSN 0924 - 0136. doi: http:
//dx.doi.org/10.1016/5S0924-0136(98)00444-0. URL http://www.sciencedirect.

com/science/article/pii/S0924013698004440.

D. Umbrello, R. M’Saoubi, and J.C. Outeiro. The influence of johnson - cook
material constants on finite element simulation of machining of aisi 3161 steel. In-
ternational Journal of Machine Tools and Manufacture, 47(3 - 4):462 — 470, 2007.
ISSN 0890 - 6955. doi: http://dx.doi.org/10.1016/j.ijmachtools.2006.06.006. URL

http://www.sciencedirect.com/science/article/pii/S0890695506001507.

S.M. Afazov, S.M. Ratchev, and J. Segal. = Modelling and simulation of
micro-milling cutting forces. Journal of Materials Processing Technology,

o7

Bibliography 58

[10]

[11]

[12]

[13]

210(15):2154 — 2162, 2010. ISSN 0924-0136. doi: http://dx.doi.org/10.
1016/j.jmatprotec.2010.07.033. URL http://www.sciencedirect.com/science/
article/pii/S0924013610002335.

P.J. Arrazola and T. Ozel. Investigations on the effects of friction modeling in
finite element simulation of machining. International Journal of Mechanical Sci-
ences, 52(1):31 — 42, 2010. ISSN 0020 - 7403. doi: http://dx.doi.org/10.1016/
j-ijmecsci.2009.10.001. URL http://www.sciencedirect.com/science/article/
pii/S0020740309002033.

C. Duan, H. Yu, Y. Cai, and Y. Li. Finite element simulation and ex-
periment of chip formation during high speed cutting of hardened steel.
Applied Mechanics and Materials, 29-32:1838-1843, 2010. URL http:
//www.scopus.com/inward/record.url?eid=2-s2.0-78650796435&partnerID=

40&md5=d14cf9babl10eb59aeddbab7257b6cab42.
Dassualt System. Abaqus 6.12 analysis user manual, 2012.

G.R. Johnson and W.H. Cook. A constitutive model and data for metals sub-
jected to large strains, high strain rates and high temperatures. Proceedings of 7th

International Symposium on Ballistics, pages 12 — 21, 1983.

A. Moufki, A. Molinari, and D. Dudzinski. Modelling of orthogonal cutting with
a temperature dependent friction law. Journal of the Mechanics and Physics of
Solids, 46(10):2103 — 2138, 1998. ISSN 0022 - 5096. doi: http://dx.doi.org/10.
1016/50022-5096(98)00032-5. URL http://www.sciencedirect.com/science/
article/pii/S0022509698000325.

M. Baker. Finite element investigation of the flow stress dependence
of chip formation. Journal of Materials Processing Technology, 167(1):1
- 13, 2005. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-23144449134&partnerID=40&md5=a7bc912f6a8c8cd14a86da61b82cd1bb.

M. Béker. Finite element simulation of high-speed cutting forces. Journal
of Materials Processing Technology, 176(1 - 3):117 — 126, 2006. ISSN 0924-
0136. doi: http://dx.doi.org/10.1016/j.jmatprotec.2006.02.019. URL http://www.

sciencedirect.com/science/article/pii/S0924013606002020.

Bibliography 59

[14]

[15]

[17]

[18]

[19]

[20]

21]

E. Ng and D.K. Aspinwall. Modelling of hard part machining. Journal of Materials
Processing Technology, 127(2):222 — 229, 2002. ISSN 0924-0136. doi: http://dx.
doi.org/10.1016/S0924-0136(02)00146-2. URL http://www.sciencedirect.com/
science/article/pii/S0924013602001462.

M. Béker, J. Rosler, and C. Siemers. A finite element model of high speed metal
cutting with adiabatic shearing. Computers € Structures, 80(5 - 6):495 — 513, 2002.
ISSN 0045-7949. doi: http://dx.doi.org/10.1016/S0045-7949(02)00023-8. URL

http://www.sciencedirect.com/science/article/pii/S0045794902000238.

V. Kalhori. Modelling and Simulation of Mechanical Cutting. PhD thesis, Lulea Uni-
versity of Technology, 2001. URL http://pure.ltu.se/portal/files/155221/
LTU-DT-0128-SE. pdf.

M. Béaker. The influence of plastic properties on chip formation. Computational
Materials Science, 28(3 - 4):556 — 562, 2003. ISSN 0927-0256. doi: http://dx.
doi.org/10.1016/j.commatsci.2003.08.013. URL http://www.sciencedirect.com/
science/article/pii/S092702560300140X.

F. Zanger and V. Schulze. Investigations on mechanisms of tool wear in machining
of ti-6al-4v using {FEM} simulation. Procedia { CIRP}, 8(0):157 — 162, 2013. ISSN
2212-8271. doi: http://dx.doi.org/10.1016/j.procir.2013.06.082. URL http://wuw.

sciencedirect.com/science/article/pii/S2212827113003594.

L.-J. Xie, J. Schmidt, C. Schmidt, and F. Biesinger. 2d {FEM} estimate of tool
wear in turning operation. Wear, 258(10):1479 — 1490, 2005. ISSN 0043-1648. doi:
http://dx.doi.org/10.1016/j.wear.2004.11.004. URL http://www.sciencedirect.
com/science/article/pii/S0043164804004077.

Y.B. Guo and D.W. Yen. A fem study on mechanisms of discontinuous chip
formation in hard machining. Journal of Materials Processing Technology,
155 - 156(0):1350 — 1356, 2004. ISSN 0924-0136. doi: http://dx.doi.org/10.
1016/j.jmatprotec.2004.04.210. URL http://www.sciencedirect.com/science/
article/pii/S0924013604006119.

M.S. Gadala. Recent trends in {ALE} formulation and its applications in solid
mechanics. Computer Methods in Applied Mechanics and Engineering, 193(39
_ 41):4247 — 4275, 2004. ISSN 0045-7825. doi: http://dx.doi.org/10.1016/].

Bibliography 60

[23]

[25]

[26]

[27]

28]

cma.2004.02.019. URL http://www.sciencedirect.com/science/article/pii/

S004578250400221X.

M.R. Vaziri, M. Salimi, and M. Mashayekhi. A new calibration method for ductile
fracture models as chip separation criteria in machining. Simulation Modelling
Practice and Theory, 18(9):1286 — 1296, 2010. ISSN 1569-190X. doi: http://
dx.doi.org/10.1016/j.simpat.2010.05.003. URL http://www.sciencedirect.com/

science/article/pii/S1569190X10000833.

M.R. Vagziri, M. Salimi, and M. Mashayekhi. Evaluation of chip formation sim-
ulation models for material separation in the presence of damage models. Sim-
ulation Modelling Practice and Theory, 19(2):718 — 733, 2011. ISSN 1569-
190X. doi: http://dx.doi.org/10.1016/j.simpat.2010.09.006. URL http://wuw.

sciencedirect.com/science/article/pii/S1569190X10001966.

F. Ducobu, E. Riviére-Lorphévre, and E. Filippi. Influence of the material behavior
law and damage value on the results of an orthogonal cutting finite element model
of tibaldv. Procedia { CIRP}, 8(0):378 — 383, 2013. ISSN 2212-8271. doi: http://
dx.doi.org/10.1016/j.procir.2013.06.120. URL http://www.sciencedirect.com/
science/article/pii/S2212827113003971.

W.M. Mohammed, E. Ng, and M.A. Elbestawi. Modeling the effect of the mi-
crostructure of compacted graphite iron on chip formation. International Jour-
nal of Machine Tools and Manufacture, 51(10 - 11):753 — 765, 2011. ISSN
0890-6955. doi: http://dx.doi.org/10.1016/j.ijmachtools.2011.06.005. URL http:

//www.sciencedirect.com/science/article/pii/S0890695511001180.

S.L. Soo, D.K. Aspinwall, and R.C. Dewes. 3d fe modelling of the cutting of
inconel 718. Journal of Materials Processing Technology, 150(1 - 2):116 — 123, 2004.
ISSN 0924-0136. doi: http://dx.doi.org/10.1016/j.jmatprotec.2004.01.046. URL

http://www.sciencedirect.com/science/article/pii/S0924013604000834.

Soehner and Joerg. Beitrag zur Simulation zerspanungstechnologischer Vorgdnge
mit Hilfe der Finite Element Methode. Institut fir Produktionstechnik (WBK),

2003. URL http://digbib.ubka.uni-karlsruhe.de/volltexte/2392003.

H. Weseslindtner. Unterlagen zur Vorlesung ”Mechanische Technologie”, Teil 1,

Spanende Formgebung.

Bibliography 61

[29]

C. Hortig. Local and Non-local Thermomechanical Modeling and Finite Element
Simulation of High Speed Cutting. Schriftenreihe des Instituts fiir Mechanik: In-
stitut fiir Mechanik. 2010. ISBN 9783921823545. URL http://books.google.at/

books?id=TuVumgEACAAJ.

H.-P. Génser, A. G. Atkins, O. Kolednik, F. D. Fischer, and O. Richard. Upsetting
of cylinders: A comparison of two different damage indicators. Journal of Engi-
neering Materials and Technology, 123:94 — 99, 2000. doi: 10.1115/1.1286186. URL
http://dx.doi.org/10.1115/1.1286186.

Appendix A

Subroutines

A.1 URDFIL and UVARM

Fortran 77 Code for the used Subroutines UVARM and URDFILL.

SUBROUTINE UVARM(UVAR,DIRECT,T,TIME,DTIME,CMNAME , ORNAME,
1 NUVARM,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,
2 NDI,NSHR,COORD,JMAC,JMATYP ,MATLAYO,LACCFLA)

C
INCLUDE ’ABA_PARAM.INC’
¢
CHARACTER*80 CMNAME , ORNAME
CHARACTER*3 FLGRAY (15)
C
DIMENSION UVAR (NUVARM) ,DIRECT(3,3),T(3,3),TIME (2)
DIMENSION ARRAY (15) , JARRAY (15) , JMAC (*) , JMATYP (*) , COORD (*)
C

IF (KINC.EQ.1) THEN
CALL GETVRM(’PE’,ARRAY, JARRAY ,FLGRAY , JRCD, JMAC, JMATYP,
1 MATLAYO,LACCFLA)

UVAR (1) = ARRAY (7)

UVAR(2) = 0
END IF
IF (KINC.GT.1) THEN
CALL GETVRM(’PE’,ARRAY, JARRAY ,FLGRAY, JRCD, JUAC, JMATYP,
1 MATLAYO,LACCFLA)
UVAR(2) = ARRAY(7)-UVAR(1)

END IF
RETURN
END
SUBROUTINE URDFIL (LSTOP,LOVRWRT ,KSTEP,KINC,DTIME, TIME)

62

Appendix A. Subroutines 63

¢
INCLUDE ’ABA_PARAM.INC’
¢
DIMENSION ARRAY(513), JRRAY (NPRECD,513),TIME (2)
EQUIVALENCE (ARRAY (1), JRRAY(1,1))
PARAMETER (TOL=0.6)
¢

C FIND CURRENT INCREMENT.

c
CALL POSFIL(KSTEP,KINC,ARRAY, JRCD)
DO K1=1,999999
CALL DBFILE(O,ARRAY,JRCD)
IF (JRCD.NE.O) GO TO 110
KEY=JRRAY (1,2)
c

IF (KINC.GT.2) THEN
IF (KEY.EQ.87) THEN
IF (ARRAY (4).GT.TOL) THEN
write (7,%) ’ACHTUNG TOL’

LSTOP=1
GO TO 110
END IF
END IF
END IF
END DO

110 CONTINUE

RETURN
END

10

14

16

20

24

Appendix B

Python Scripts

B.1 Kernel Script

#!/usr/bin/env python

nwnn

This script contains all functions for the common 2D deformation in ABAQUS/

Standard.

Software compatibility: abaqus 6.121

required modules and/or scripts: xml

from odbAccess import *

from abaqus import *

from abaqusConstants import *

import os

import sys

import traceback

from xml.dom.minidom import Document
from pprint import pprint as pp

from operator import itemgetter
import subprocess

import shlex

.dom (build in module)

__author__ = "Stefan Distlberger"

__copyright__ = "Copyright 2013, Materials Center Leoben, MCL"

__credits__ = ["Stefan Distlberger", "Dr. Werner Ecker", "Martin Krobath"]
__license__ = "GPL"

__version__ = "0.309a"

64

28

30

36

4C

46

60

62

64

66

68

65

Appendix B. Kernel Script

__maintainer__ = "Stefan Distlberger"

__email__ = "stefan.distlberger@mcl.at"

__status__ = "Production" #"Developement", "Prototype"

global bugMeModus ,bugMeModus_L1 ,bugMeModus_oneLoop
bugMeModus=False # modus to get debugging print outs
bugMeModus_L1=False #L1 modus to debbug
bugMeModus_oneLoop=False

stopCriteria=False #condition to stop the cycle

HURHHHBAHH B AR R B RS H B AR BB RS H BB RS H B RS S H BB R B AR HRAHS

CurCaeCycle=1

MODELNAME=session.sessionState[session.currentViewportName][’modelName’]

M=mdb.models [MODELNAME]

A=M.rootAssembly

I=A.instances

session. journalOptions.setValues(recoverGeometry = INDEX) #shows real values
instead of the hexxode in the recovery file

session. journalOptions.setValues(replayGeometry = INDEX) #shows real values
instead of the hexxode in the replay file

PartList=[] #includes the C2dPart Objects

PartNames={}

C2DStep=’step-1’ ##USERINPUT, if it is not the only step available

CurCaeAnalysed=False

CurCaelsInit=False

NextCaeCycle=CurCaeCycle+1

JobName=""

SetList={}

#default orphan geometry properties

importStep = 1 # Step number-1. 0<=Step<=N-1 where N is the number of available
steps (Step O is the first Step)

deformedShape = DEFORMED # Shape - Possible values are UNDEFORMED and DEFORMED (
mostly deformed)

ATV = 0.005 #adjustment Tolerance for the interaction definitions (adjustive
slave nodes)

maxCycles=1000 #maximum of all cycles

globalAbstractAngle=15 #abstarction angle for the orphan geometry import

initialCaeName= ’realmatr_bcelsius_biggerMesh_Rigid.cae’

VARIATION_COUNTER=0

MAX_VARIATIONS=4

variations=False

def initModel():
global MODELNAME
global M
global A

80

82

84

90

92

94

96

98

100

102

104

106

108

110

112

114

116

Appendix B. Kernel Script

66

global I
global C2DStep
MODELNAME=session.sessionState[session.currentViewportName] [’modelName’]
M=mdb.models [MODELNAME]
A=M.rootAssembly
I=A.instances
if len(M.steps)==2:
C2DStep=M.steps.keys () [-1]

##
ANALYSE FUNCTIONS
##

def analyse():
’?’initial analyse of the model’’’
initModel ()
global PartList
global PartNames
global PartNumbers
global CurCaeAnalysed
PartList=[]
PartNames, currentCycle = analyselnstances ()
if PartNames != None:
for Part in PartNames.keys():

PartList.append (C2dPart (Part ,PartNames [Part]))
PartNumbers={}
for i in range(len(PartList)):

PartNumbers [PartList [i].namel=1i
analyseSurfaces (PartNumbers)
analyseAnalysisType (PartNumbers)
analyselInteractions ()
analyseBC (PartNumbers)
nodeSetToPartList ()

else:
print ’No part instances found in the current model: %s’ % MODELNAME
return O

CurCaeAnalysed=True

if analyseFiles():
return 1

return 1

def analyseInstances():
200
Returnes a Dictionary with the PartNames and their Cycle Version {’Part-1’:
’1?, ’Part-2’: ’101°}.
It also returns the current cycle number.

return PartNames, Cycle

118

120

122

124

128

130

132

134

138

140

142

144

148

160

162

Appendix B. Kernel Script

67

LR S)

global CurCaeIsInit
global CurCaeCycle
PartNames={}
try:
InstanceNames=[item [0] for item in I.items ()]
if InstanceNames==[]:
return None, None
except:
return None, None
if bugMeModus_L1: print ’-’x10+’ INSTANCES, NUMBER ’+’-’%10
for InstanceName in InstanceNames:
Version=InstanceName.split(’-’) [-1]
#InitName=InstanceName [:-len(’-’+str (Version))]
InitName=I[InstanceName].part.name
if InitName not in PartNames.keys():
PartNames [InitName]=Version
elif PartNames[InitName]<Version:
PartNames [InitName]l=Version
Values=[int (x) for x in set (PartNames.values())]
Cycle=Values [-1] #last value of the cycle
if bugMeModus_L1: print InstanceName, Cycle
if Cycle!=1:
CurCaelsInit=False
if Cycle>CurCaeCycle:
CurCaeCycle=Cycle

return PartNames, Cycle

def analyseSurfaces (PartNumbers) :
’?’’Writes the surface informations into the PartList Object Array ’’°
global PartList
SurfaceNames=A.surfaces.keys ()
check=[’edges’, ’elements’, ’faces’, ’nodes’]
for SurfaceName in SurfaceNames:
for lookType in check:
try:
instanceName=A.surfaces [SurfaceName].__getattribute__(lookType) [0].
instanceName
PartList [PartNumbers [instanceName]].SurfaceNames.append(SurfaceName)
break
except:

pass

def analyseAnalysisType (PartNumbers):
’?’Writes the analysisType into the PartList Object Array ’’°
global PartList
global I

164

166

170

178

182

184

188

190

192

194

196

198

200

202

204

206

208

Appendix B. Kernel Script 68

check=[’DEFORMABLE_BODY’,’EULERIAN’,’DISCRETE_RIGID_SURFACE’,”’
ANALYTIC_RIGID_SURFACE’]
checkDeform = [’DEFORMABLE_BODY’,’ EULERIAN’]
for instanceName in I.keys():
if A.features[instanceName].isSuppressed()==False:
type=I[instanceName].analysisType
if type not in check:
print ’ERROR on analysisType. The type %s is not valid.’ % type
print ’Valid types are: %s’ % check
else:
PartList [PartNumbers [instanceName]].analysisType = type
when a part is not deformable, such as a rigid its deformed state will be set
to False
for Part in PartList:
try:
if I[Part.name].analysisType in checkDeform:
Part.deformed=True
else:
Part.deformed=False
except:

if bugMeModus_L1: print °’The Part is not a valid instance: %s’ %Part.name

def analyseInteractions():
’?’’Find interactions and reference the used parts to the interaction depending
on their type: slave, master’’’
global PartList
global M
check=[SURFACE_TO_SURFACE]
for interName in M.interactions.keys():

interaction= M.interactions[interName]

if interaction.enforcement in check and interaction.__doc__[:4]!="Self’:
master = interaction.master [0]
slave = interaction.slave[0]

for Instance in PartList:
if master in Instance.SurfaceNames:
Instance.Contact.append([interName, ’master’, interaction.enforcement])
elif slave in Instance.SurfaceNames:

Instance.Contact.append([interName, ’slave’, interaction.enforcement])

if interaction.__doc__[:4]=="Self’:
master = interaction.surface [0]
slave = interaction.surface [0]

for Instance in PartLlList:
if master in Instance.SurfaceNames:
Instance.Contact.append([interName, ’master’, interaction.enforcement])
elif slave in Instance.SurfaceNames:

Instance.Contact.append([interName, ’slave’, interaction.enforcement])

def analyseBC(PartNumbers):

214

220

N
N
N

N}
N

226

228

230

232

234

236

240

246

248

Appendix B. Kernel Script 69

LR S)

Analyses the BCs of the Model and writes the found values into the PartList
Object Array.

PR

global PartList

global M

global C2DStep

BCNames = M.boundaryConditions.keys ()
check=[’nodes’,’cells’,’edges’, ’elements’, ’faces’,’referencePoints’,’vertices
7]

for BCName in BCNames:
for lookType in check:
try:
region=M.boundaryConditions [BCName].region [0]
if lookType==’referencePoints’:
instanceName=A.sets[region].__getattribute__(lookType) [0].__repr__Q).
split (’\’) [-2]
else:
instanceName=A.sets[region].__getattribute__(lookType) [0].instanceName
states=M.steps [C2DStep].boundaryConditionStates [BCName]
u=[states.ul,states.u2,states.u3,states.url,states.ur2,states.ur3]
PartList [PartNumbers [instanceName]].boundaryConditions.append([region,
BCName ,u,states.amplitude])
break
except:

pass

def analyseMovement () :
I
Analyses the already moved parts boundary conditions and stores the
displacement -values into the PartList array
I
global I
global A
initValues={}
for Part in PartList:
for BC in range(len(Part.initialBoundaryConditions)):
try:
if Part.initialBoundaryConditions[BC][0]!=Part.boundaryConditions[BC][1]:
if Part.initialBoundaryConditions[BC][1]!=Part.boundaryConditions [BC
102]1:
init=Part.initialBoundaryConditions [BC][1]
current=Part.boundaryConditions [BC] [2]
name=Part.initialBoundaryConditions [BC] [0]
Part.BCsDiff.append ([name, [current [0]-init [0],current[1]-init [1],
current [2] -init [2], current [3]-init [3], current [4]-init [4], current [5]-init
(5111

except:

%)
ot
(=}

252

262

266

268

N}
=
o

272

280

284

286

290

294

Appendix B. Kernel Script

70

if bugMeModus_L1: °’ Analyse Movement Error:’+repr (Part.name)

pass

def analyseFiles():

300

Analyses all the files needed to start the simulation.
P
global CurCaeCycle
global CurCaeIsInit
if analyseJob():
curCycle=int (mdb. jobs.keys () [0].split(’-’) [-1])
for JobName in mdb.jobs.keys():
num=int (JobName.split (’-’) [-1])
if curCycle<num:
curCycle=num
if CurCaeIsInit==False:
if curCycle!=CurCaeCycle:
return False
curJOB=mdb. jobs.keys () [0].split(’-’) [0]+’-’+str(curCycle)
if curJOB==1:
curJOB=CurCaeCycle
if not os.path.exists(curJOB+’.o0db’):
logging.error(’File Y%s.odb not found’ %curJOB)
print ’ERROR - no initial Job file found in this directory!’
return False
return True
here would be a good place to implement further analyse procedures, which
can guaranty the integrity of the next simulation cycle, such as the

appearance of odb.lck files aso...

def analyseJob():
I
Returns a True if the JobNames are all the same and just the cycle numbers are
different.
)
global JobName
o0ldJob=mdb. jobs.keys () [0] . rstrip(’-’+mdb.jobs.keys () [0].split(’-’)[-11)
for Name in mdb. jobs.keys():
newJob=Name.rstrip(’-’+Name.split(’-’)[-11)
if oldJob!=newJob:
return False
oldJob=newJob
JobName=o0ldJob

return True

##
CLASSES
##

296

298

300

302

304

306

308

310

312

314

316

318

320

322

324

326

328

330

332

334

336

Appendix B. Kernel Script 71

class C2dPart:
’?2C2dPart is a object including all informations of a part, such as BC,
interactions, remeshing, aso.’’’
def __init__(self ,name,cycle,remeshing=False, *p,**xkw):

self .remesh=remeshing
self.cleanName=name
self .name=name+’-’+str(cycle)
self.initialName=name+’ -1’
if cycle>1:

self.deformed=True
else:

self.deformed=False
self.SurfaceNames=[]
self.Contact=[] #2 dim array with interaction names, types and enforcements e
.g. [[’Contact_MP-wp’, ’slave’, SURFACE_TO_SURFACE],]
self.boundaryConditions=[]
self.initialBoundaryConditions=[]
self .BCsDiff=[] #shows the difference of the current bcs values in dependence
to its initial values
self.abstractAngle=10

self.nodeSets=[]

def __name__(self):
’?’returnes the name of the instance’’’
return self.name

def bc_info(self):

print self.boundaryConditions

#class C2dModel:
’’’ C2d Model includes informations such as interactions, BC, aso.’’’
def __init__(self ,name, *p,*xkw):

self.interactions=[]

class MeshWindow:

P

Mesh Window Object includes all the informations about the Meshwindows on an
Instance

name = name of the meshwindow object

instanceName= Name of the instanceto be meshed

GS = global seed size

During the creation of mesh windows, the given Windows will be sorted by size.
Therefore, a smaller window

will be meshed after a bigger one.

I

global A,I,M

def __init__(self ,name,instanceName ,GS,Var,VarCount, *p,**xkw):

CR1X1=0

Appendix B. Kernel Script 72

338 CR1X2=0
CR2Y1=0
340 CR2Y2=0
CR3X1=0
342 CR3X2=0
CR4Y1=0
344 CR4Y2=0

self .name=name

346 self.instanceName=instanceName
self.MeshWindows=[]

348 self.objects=0
self.tolerance=0.001

350 self .GS=GS

self .new=True

352 self .Partitions=[]
self.variations=Var

354 self.VarCount=VarCount

356 def __name__(self):
’?’’returnes the name of the object’’’

358 return self.name

360 def critArea(self ,x1,yl1,x2,y2,SG):
global CR1X1
362 global CR1X2
global CR2Y2
364 global CR2Y1
global CR3X1
366 global CR3X2
global CR4Y2
368 global CR4Y1
CR4Y1=y2-SG
370 CR1X1=x1-8G
CR1X2=x1+SG
372 CR2Y2=y1+SG
CR2Y1=y1-8G
374 CR3X1=x2-5G
CR3X2=x2+SG

376 CR4Y2=y2+SG
378 def crit(self,instanceName):
PR
380 To ensure that during the remeshprocess no vertex is bodering the calculation

this skript calculates the optimal position of the meshwindow in the of the
382 user specified tolerance!

looks for the vertices and meshwindowpositions. it compares the positions to
ensure that meshing problems wont accur.

384 7o

386

388

390

392

394

396

398

400

402

104

406

408

410

414

418

420

422

424

428

Appendix B. Kernel Script

73

Vert=1[]
Vert=I[instanceNamel].vertices
VertLen=len(Vert)
xVal=[]
yVal=[]
CritVali=[]
CritVal2=[]
CritVal3=[]
CritVal4=[]
retVal={}
for i in range(VertLen):
xVal.append(Vert[i].pointOn [0][0])
yVal.append(Vert[i].pointOn [0][1])
print xVal
print yVal
for i in range(VertLen):
if (CR1X1 < xVal[il]) & (CR1X2 > xVal[il) & (CR4Y1
yVall[il):
CritVall.append(Vert[il)
if (CR2Y1 < yVal[il) & (CR2Y2 > yVall[il) & (CR1X1
xVal[il):
CritVal2.append(Vert[i])
if (CR3X1 < xVal[il) & (CR3X2 > xVal[il) & (CR4Y1
yvall[il):
CritVal3.append(Vert[i])
if (CR4Y1 < yVal[il) & (CR4Y2 > yVal[il) & (CR1X1
xVall[il):
CritVal4d.append(Vert[i])
if len(CritVall)>1:
print "adaption of Areal"
VAL1=self.calcCritVal(CritVall ,CR1X1,CR1X2,"x")
retVal[’x1’]=VAL1
print "adapted Value: xl1= "+repr (VAL1)
if len(CritVal2)>1:
print "adaption of Area2"
VAL2=self.calcCritVal(CritVal2,CR2Y1,CR2Y2,"y")
retVal[’y1’]=VAL2
print "adapted Value: yl= "+repr (VAL2)
if len(CritVal3)>1:
print "adaption of Area3"
VAL3=self.calcCritVal(CritVal3 ,CR3X1,CR3X2,"x")
retVal[’x2’]=VAL3
print "adapted Value: x2= "+repr (VAL3)
if len(CritVal4d) >1:
print "adaption of Area4d"
VAL4=self.calcCritVal(CritVal4 ,CR4Y1,CR4Y2,"y")
retVal[’y2’]=VAL4

print "adapted Value: y2= "+repr(VAL4)

yvall[il)

xVall[il)

yvall[il)

xVall[il)

&

&

&

&

(CR2Y2

(CR3X2

(CR2Y2

(CR3X2

430

432

434

436

438

440

442

444

446

460

462

464

466

468

470

Appendix B. Kernel Script

74

return retVal

def calcCritVal(self,CritVal,EdgeCoordMIN,6 EdgeCoordMAX ,b Coord):

from operator import itemgetter

if (Coord=="x"
coord=0
else:
coord=1
CritVal.sort ()
CritValLen=len(CritVal)
Solution={} #Dictionary for the combination of Value and Index
CalcDict={}
OutputVal=0
if CritValLen>=2:
print "two or more critical vertices found --- starting adaption"
for i in range(CritVallen):
Solution[CritVal([i].index]=CritVal[i].point0On[0] [coord]
X=sorted(Solution.items (), key=itemgetter (1))
print X
for i in range(CritVallLen-1):
a=X[i+1]1[1]1-X[i]1[1]
b=X[i][11+((X[i+1]1[1]1-X[i1[11)/2)
CalcDict [al=b
X=sorted (CalcDict.items (), reverse=True)
print X
if X[0][0]==0: # if two points are exactly above each other they will be
handled as one point.
CritVallen=1
print "merging points"
else:
return X[0][0]
if CritValLen==1:
print "one critical vertex found --- starting adaption"
if (CritVal[0].pointOn[0] [coord]-EdgeCoordMIN) > (EdgeCoordMAX-CritVal[O0].
pointOn [0] [coord]):
OutputVal=EdgeCoordMIN + ((CritVal[O].pointOn[0][coord]-EdgeCoordMIN) /2)
return OutputVal
else:
OutputVal=EdgeCoordMAX - ((EdgeCoordMAX-CritVal[O].pointOn[0][coord])/2)
return OutputVal
if CritValLen==0:
print "no critical vertices found --- no adaption"
OutputVal=EdgeCoordMIN+(EdgeCoordMAX ~-EdgeCoordMIN)

return OutputVal

def calcRelCoord(self,coords,direction):

LIRS

Appendix B. Kernel Script 75

calculates the relative offset to a given Node of another instance.
476 700
global A,I
478 relativeInstance=I[coords [0]]
NodeIndex=coords [1]-1
480 offset=coords [2]
if direction2==
482 xrel=relativeInstance.nodes [NodeIndex].coordinates [0]
newCoord=xrel+offset
484 else:
yrel=relativeInstance.nodes[NodeIndex].coordinates [1]
486 newCoord=yrel+offset
return newCoord
488
490 def window(self ,X1,Y1,X2,Y2,SEED,store={}):
I
492 The coordinates can be set as relative coordinate or as static coordinate.
To set a static coordinate, the input has to be a float
494 To set a relative coordinate, a tuple has to be the input parameter.
exanple:
496 static: X1=2.3
dynamic: X1=(’Part-1-2’,345,5.2), where ’Part-1-2’ is the relative Part (not
remeshable) ,
498 345 is the Label of the Node you want refer to and 5.2 is the offset distance
in x-direction from that Node.
I
500 #this slightly variates the mesh to gain convergence in certain cases.
if self.variations==True:
502 if self.VarCount?%2==0:
SEED=SEED*0.02%*(0.5*self.VarCount)+SEED
504 else:
SEED=SEED-SEED*0.02% (0.5*self.VarCount)
506 coords=[X1,Y1,X2,Y2]
for i in range(len(coords)):
508 if type(coords[il]).__name__ == ’tuple’:
coords[i]=self.calcRelCoord(coords[i],i)
510 if self.new:
store[’counter’] = 0
512 self .new=False
if isinstance(store, dict): #checks if the dict store is allready stored
514 store[’counter’] = store.get(’counter’,0) + 1 #increase the counter by one
X1=coords [0]
516 Yi=coords [1]
X2=coords [2]
518 Y2=coords [3]
self.critArea(X1,Y1,X2,Y2,SEED)
520 adap=self.crit(self.instanceName)

528

530

540

560

562

564

566

Appendix B. Kernel Script

76

try:

X1=adap[’x1’]

X2=adap[’x2’]

Yi=adap[’y1’]

Y2=adap[’y2’]
except:

print "adaption of some directions not needed"
Id = ’id’
WindowObject={}
WindowObject [Id]=store.get (’counter’,0)
self.objects=store.get(’counter’,0)
WindowObject [’point0On2°’]1=((X2,Y2,0.),)
WindowObject [’pointOni1’]=((X1,Y1,0.),)
xc=((X1+X2)/2)
ye=((Y1+Y2)/2)
deltax=X2-X1
deltay=Y2-Y1
Area=abs (deltax)*abs(deltay)
WindowObject [’center’]=((xc,yc,0.),)
WindowObject [’size’]=Area
WindowObject [’seed’]=SEED

self.MeshWindows.append (WindowObject)

def delMW(self):
try:
self.Partitions.reverse ()
for partitionname in self.Partitions:
del A.features[partitionname]
except:
print ’not all partitions were deleted’

del self

def applyMW(self):
PR
the following lines generate the mesh.
If something isn’t working on the meshes, mostly the positions or geometry
are responsible
)
from pprint import pprint as pp
global A,I,M
instance=I[self.instanceName]
for partitionname in self.Partitions:
try:
del A.features[partitionname]
except:
pass

self.Partitions=[]

568

580

586

590

592

596

598

600

602

604

606

Appendix B. Kernel Script 77

for i in range(self.objects):
try:
mySketch = M.ConstrainedSketch(name=’mySketch’,sheetSize=200)
mySketch.rectangle (pointl=(self.MeshWindows [i][’pointOn1’][0][0], self.
MeshWindows [i] [’ pointOn1’][0][1]) ,point2=(self.MeshWindows[i][’point0On2’
1001 [0],self.MeshWindows[i][’point0n2’]1[0][1]))
A.PartitionFaceBySketch(faces=(instance.faces), sketch=mySketch)
self .Partitions.append(A.features[A.features.keys () [-1]].name)
del M.sketches[’mySketch’]
finally:

print ’partition created: MW ’+repr (i)

A.seedPartInstance (deviationFactor=0.1, regions=(instance,), size=self.GS)
tempArray=[]
for i in range(self.objects-1):
if self.MeshWindows[i]l[’size’]<self.MeshWindows[i+1][’size’]:
tempArray=self.MeshWindows [i]
self .MeshWindows [i]=self.MeshWindows [i+1]

self .MeshWindows [i+1]=tempArray

for i in range(self.objects):

SIZE=self .MeshWindows [i]l[’seed’]

for j in range(len(instance.edges)):

if (instance.edges[j].pointOn[0][0]>=self.MeshWindows [i][’pointOnil’
J[01[0]-self.tolerance) and (instance.edges[j].pointOn[0][1]>=self.
MeshWindows [i] [’pointOn2’]1[0][1]-self.tolerance) and (instance.edgesl[j].
pointOn [0] [0] <=self.MeshWindows [i][’pointOn2’][0] [0]+self.tolerance) and (
instance.edges[j].pointOn[0] [1]<=self.MeshWindows[i]l[’pointOn1’][0][1]+self.
tolerance) :
A.seedEdgeBySize (edges=(instance.edges[j]l,), size=SIZE)

#self.MeshWindows.append (self.GS)

for i in range(len(instance.faces)):
A.setMeshControls(regions=instance.faces.findAt (instance.faces[i].pointOn),
technique=FREE, elemShape=QUAD)

A.generateMesh(regions=(instance,))

#pp(self.MeshWindows)

##
REBUILD FUNCTIONS
##

def edgeSet(pos, PName ,BCName, TYPE=’horizontal’):
23
creating a set, using the geometry of the part.

pos = position in x or y direction (float)

608

610

612

614

616

618

622

624

626

628

630

632

634

636

638

640

642

644

646

648

Appendix B. Kernel Script

78

Pname = name of the part instance
BCName = name of the set
TYPE = keyword defining the x or y coordinate of pos

valid types: ’horizontal’,’vertical’
example: >>> edgeSet (0.0, WORKPIECE-1-102’,’__a’,’vertical’)
330
global I
global A
valids=[]
edges=I[PName].edges
if TYPE==’horizontal’:

for i in range(len(edges)):

if edges[i].pointOn[0][1] == pos:
valids.append(edges.findAt (edges[i].pointOn))

elif TYPE==’vertical’:

for i in range(len(edges)):

if edges[i].pointOn[0][0] == pos:
valids.append(edges.findAt (edges[i].pointOn))

else:

print ’unknown orientation: %s’ %TYPE

A.Set (edges=valids, name=BCName)

def setFromMaxSideGeom(Pname, SetName ,P0S,posVal=None,type=’node’,accuracy=0):
P
looks for nodes or edges and the highest value available.
Pname = name of the part instance
SetName = name of the set
P0OS = keyword defining the position.
possible values are: right, left, top, bottom
posVal = position where the function should look.
type = specifies the type of entities. node or edge
accuracy = value wich specifies the aberration to its base value, like 10 +/-
0.001. (accuracy = 0.001)
P
global I
global A
typeValids= [’node’,’edge’]
valids = [’right’,’left’,’top’, ’bottom’]
if POS not in valids:
print ’position invalid: %s , possible values: right, left, top, bottom’ %
Pname
return None
elif Pname not in I.keys():
print ’partname not found: %s’ %Pname
return None
else:
if len(I[Pname].edges)==0 or type==’node’:

print ’searching for nodes in part %s’ %Pname

Appendix B. Kernel Script

654 n=I[Pname].nodes
coords=[coord.coordinates for coord in n]
656 xCoords=[a[0] for a in coords]
yCoords=[a[1] for a in coords]
658 labels=[]
if POS==’right’:
660 maxX=max (xCoords)
if posVal'!=None:
662 maxX=posVal
for node in n:
664 if node.coordinates [0] <=maxX+accuracy and node.coordinates [0]>=maxX-
accuracy:
labels.append(node.label)
666 elif POS==’left’:
minX=min (xCoords)
668 if posVal!=None:
minX=posVal
670 for node in n:
if node.coordinates [0]<=minX+accuracy and node.coordinates [0]>=minX-

accuracy:

%)

labels.append(node.label)
elif POS==’top’:
674 maxY=max (yCoords)
if posVal!=None:
676 maxY=posVal
for node in n:
678 if node.coordinates[1]<=maxY+accuracy and node.coordinates[1]>=maxY-
accuracy:

labels.append(node.label)

680 elif POS==’bottom’:
minY=min (yCoords)
682 if posVal!=None:
minY=posVal
684 for node in n:

if node.coordinates[1]<=minY+accuracy and node.coordinates[1]>=minY-
accuracy:
686 labels.append(node.label)
nodeL=n[labels [0]-1:1labels[0]]
688 labels.pop (0)
for label in labels:
690 nodeL+=n[label-1:1label]
A.Set (nodes=nodel ,name=SetName)
692 else:
print ’searching for edges in part %s’ %Pname
694 e=I[Pname] . edges
xCoords=[x[0][0] for x in e.pointsOn]
696 yCoords=[x[0][1] for x in e.pointsOn]

indizes=[]

698

700

702

704

706

708

=1
—
[¥]

716

730

738

740

Appendix B. Kernel Script

80

if POS==’right’:
maxX=max (xCoords)
if posVal!=None:
maxX=posVal
for edge in e:
if edge.pointOn[0] [0] <=maxX+accuracy and edge.pointOn[0][0]>=maxX-
accuracy:
indizes.append (edge.index)
elif POS==’left’:
minX=min (xCoords)
if posVal'!=None:
minX=posVal
for edge in e:
if edge.pointOn[0] [0]<=minX+accuracy and edge.pointOn[0][0]>=minX-
accuracy:
indizes.append (edge.index)
elif POS==’top’:
maxY=max (yCoords)
if posVal!=None:
maxY=posVal
for edge in e:
if edge.pointOn[0] [1]<=maxY+accuracy and edge.pointOn[0][1]>=maxY-
accuracy:
indizes.append (edge.index)
elif POS==’bottom’:
minY=min (yCoords)
if posVal!=None:
minY=posVal
for edge in e:
if edge.pointOn[0][1]<=minY+accuracy and edge.pointOn[0][1]>=minY-
accuracy:
indizes.append(edge.index)
edgelL=e[indizes [0]:indizes [0]+1]
indizes.pop (0)
for index in indizes:
edgeL+=e[index:index+1]

A.Set (edges=edgel ,name=SetName)

’>>>def reconParts(PartList, StepName, JobName, importStep, CurCaeCycle):
odbName = JobName+’-’+repr (CurCaeCycle)+’.odb”’
for Part in PartList:
if Part.deformed:
orphanInstance = Part.cleanName.upper ()+’-’+str(CurCaeCycle)
orphanName = Part.cleanName+’-’+str(CurCaeCycle+1)
if Part.premesh:

geoName = Part.cleanName+’-’+str(CurCaeCycle+1)

orphanImportGeo (odbName, orphanInstance, DEFORMED, importStep, orphanName

, StepName, Part.abstractAngle, geoName)

746

760

762

764

766

768

-1
~
%]

778

Appendix B. Kernel Script 81

else:
orphanImport (odbName, orphanInstance, DEFORMED, importStep, orphanName,
StepName)
makeInstance (orphanName , orphanName)
A.suppressFeatures ((Part.cleanName+’-’+str (CurCaeCycle),))
else:
try:
A.features.changeKey (fromName=Part.cleanName+’-’+str (CurCaeCycle) ,toName=
Part.cleanName+’-’+str (CurCaeCycle+1))
except:
A.features.changeKey (fromName=Part.cleanName+’-1’,toName=Part.cleanName
+’-’+str (CurCaeCycle+1))
PR
def reconParts(PartList, StepName, JobName, importStep, CurCaeCycle):
odbName = JobName+’-’+repr (CurCaeCycle)+’.odb’
#staName = JobName+’-’+repr (CurCaeCycle)+’.sta’
#if os.path.exists(odbName)==False or os.path.exists(staName)==False:
print ’ERROR: Job not found or sta file missing: %s’ %odbName

return O

for Part in PartList:
if Part.deformed:
orphanInstance = Part.cleanName.upper ()+’-’+str(CurCaeCycle)
orphanName = Part.cleanName+’-’+str(CurCaeCycle+1)
if Part.remesh:
geoName = Part.cleanName+’-’+str (CurCaeCycle+1)
orphanImportGeo (odbName, orphanInstance, DEFORMED, importStep, orphanName
, StepName, Part.abstractAngle, geoName)
else:
orphanImport (odbName, orphanInstance, DEFORMED, importStep, orphanName,
StepName)
makeInstance (orphanName , orphanName)

A.suppressFeatures ((Part.cleanName+’-’+str(CurCaeCycle),))

else:
try:
A.features.changeKey (fromName=Part.cleanName+’-’+str (CurCaeCycle) ,toName=
Part.cleanName+’-’+str (CurCaeCycle+1))

odb=open0db (odbName ,read0nly=TRUE)
val=odb.steps [odb.steps.keys () [importStepl].frames[-1].fieldOutputs[’U’].

values

try:
data=[i.dataDouble for i in val if i.instance.name==Part.cleanName.
upper () +’-’+str (CurCaeCycle)]
print Part.cleanName.upper ()+’-’+str(CurCaeCycle+1)
except:
data=[i.data for i in val if i.instance.name==Part.cleanName.upper ()+’-

’+str (CurCaeCycle)]

780

~
w0
=

788

790

796

798

800

802

804

806

808

810

812

814

818

Appendix B. Kernel Script 82

print data
try:
A.translate(instancelist=(Part.cleanName+’-’+str(CurCaeCycle+1),),
vector=(data[0] [0] ,data[0][1],0.0))
except:
print ’ERROR: no translation data found in old odb data for instance ¥%s
’ %Part.cleanName.upper ()+’-’+str(CurCaeCycle+1)
print ’*’%10
except:
A.features.changeKey (fromName=Part.cleanName+’-1’,toName=Part.cleanName+’
-’+str (CurCaeCycle+1))

return 1

def orphanImport (odbName, orphanInstance, deformedShape, importStep, orphanName,
stepName) :
’?’’imports a parts orphan mesh’’’
for t in range(5):
try:
odb= openOdb(path=odbName ,readOnly=True)
except:
time.sleep (2)
lastFrame=odb.steps [stepName].frames[-1]
importframe = lastFrame.frameld
#orphan = M.PartFromOdb(fileName=odbName ,name=orphanName , instance=
orphanlnstance ,shape=deformedShape ,step=importStep ,frame=importframe)
orphan = M.PartFromOdb(fileName=odbName ,name=orphanName ,instance=orphanInstance

,shape=deformedShape ,step=importStep)

def orphanImportGeo (odbName, orphanInstance, deformedShape, importStep,
orphanName , stepName, angle, geoName):
’?’imports the geometry of a orphan mesh’’’
for t in range(5):
try:
odb= openOdb(path=odbName ,readOnly=True)
except:
time.sleep (2)
lastFrame=odb.steps[stepName].frames [-1]
importframe = lastFrame.frameld
#orphan = M.PartFromOdb(fileName=odbName ,name=orphanName , instance=
orphanInstance ,shape=deformedShape ,step=importStep,frame=importframe)
orphan = M.PartFromOdb(fileName=odbName ,name=orphanName ,instance=orphanInstance
,shape=deformedShape ,step=importStep)

geo = M.Part2DGeomFrom2DMesh (name=geoName ,part=orphan,featureAngle=angle)

def makeInstance (instName, partName):
’?’’makes an instance out of a existing part’’’

A.Instance (dependent=0FF, name=instName, part=M.parts[partName])

820

822

826

832

834

836

838

840

842

846

848

860

862

Appendix B. Kernel Script 83

def checkSuppressState():
for iPart in PartList:
try:
if A.features[iPart.initialName].isSuppressed() == False:
A.features[iPart.initialName].suppress ()
except:

pass

def getSideEdge (Instance,SurfaceName):
’?’creates a surrounding surface on an orphan mesh’’’
global A,I
edges=I[Instance].elementEdges

cedges=[x for x in edges if not len(x.getElements())>1]

sidel=[]
side2=1[]
side3=[]
side4=[]

for i in range(len(cedges)):
nl=cedges[i].getNodes () [0].label-1
n2=cedges [i].getNodes () [1].1label-1
con=cedges[i].getElements () [0].connectivity
if (nl==con[0] or n2==con[0]) and (nl==con[1] or n2==con[1]):
sidel.append(cedges[i].getElements () [0].1label)
elif (nl==con[1] or n2==con[1]) and (nl==con[2] or n2==con[2]):
side2.append(cedges[i].getElements () [0].label)
elif (nil==con[2] or n2==con[2]) and (nl==con[3] or n2==con[3]):
side3.append(cedges[i].getElements () [0]. label)
elif (nl==con[3] or n2==con[3]) and (nl==con[0] or n2==con[0]):
side4.append(cedges [i].getElements () [0].1label)
el=I[Instance].elements
sl=el.sequenceFromLabels (sidel)
s2=el.sequenceFromLabels (side2)
s3=el.sequenceFromLabels (side3)
s4=el.sequenceFromLabels (side4)
A.Surface(facelElements=s1, face2Elements=s2, face3Elements=s3, face4Elements=

s4, name=SurfaceName)

def assignSections():
global M,I,A

for part in PartList:

name=part.cleanName+’-’+str (CurCaeCycle+1)
if part.sectionName != ’None’:
if part.remesh == False:

M.parts [name].SectionAssignment (offset=0.0,o0ffsetField="’,o0ffsetType=
MIDDLE_SURFACE, region=Region(elements=M.parts[name].elements),sectionName=
part.sectionName)

else:

864

866

868

870

876

878

880

882

884

886

888

890

892

894

896

898

900

902

904

906

Appendix B. Kernel Script

84

M.parts[name].SectionAssignment (thicknessAssignment=FROM_GEOMETRY,
=Region(faces=M.parts[name].faces),sectionName=part.sectionName)

def createSetbySetName (PartList):

RIS

Creates new Sets which consists out of the same names.

The important part is the Keyword Part at the end of the set name.

region

E.g. If the Setname ends with __L, an edge will be searched on the lower side
of the instance. (meshed)

If there is a keyword like _PRB, the right bottom point will be set as a new
set .

P

global A,I

validEdge=[’__L’,’ __R’,’__B’,’ __T’]

validPoint=[’_PRB’,’ _PRT’,’ _PLB’,’ _PLT’]

for Part in PartList:

print ’Instance: ’+Part.name
PName=Part.cleanName+’-’+str (NextCaeCycle)
#Instance=I[Part.cleanName+’-’+repr (CurCaeCycle)]

for nSet in Part.nodeSets:

if nSet [0][-3:].upper() in validEdge:

pPOS=""

if nSet [0]1[-3:].upper() == ’__L’:
POS=’1left’

if nSet[0][-3:].upper() == ’__R’:
POS=’right’

if nSet[0][-3:].upper() == ’__B’:
P0OS=’bottom’

if nSet[0][-3:].upper() == ’>__T’:
POS=’top’

print ’position: ’+PO0S

setFromMaxSideGeom (PName ,nSet [0] ,P0S,accuracy=0.001)

elif nSet[0][-4:].upper () in validPoint:

if nSet [0][-2:].upper() == ’RB’:
n=findNodeMin (’RB’,PName)
A.SetFromNodeLabels (name=nSet [0] ,nodelLabels=((PName,(n,)),))
elif nSet[0][-2:]1.upper() == ’RT’:
n=findNodeMin (’RT’ ,PName)
A.SetFromNodeLabels (name=nSet [0] ,nodeLabels=((PName,(n,)),))
elif nSet[0][-2:].upper() == ’LB’:
n=findNodeMin (’LB’,PName)
A.SetFromNodeLabels (name=nSet [0] ,nodelLabels=((PName,(n,)),))
elif nSet[0][-2:].upper() == °LT’:
n=findNodeMin (’LT’,PName)
A.SetFromNodeLabels (name=nSet [0] ,nodeLabels=((PName,(n,)),))
’Set:

print ’+nSet [0]

908

910

912

914

918

920

922

924

926

928

930

934

936

938

940

942

944

946

948

950

Appendix B. Kernel Script

85

elif Part.remesh==False and Part.deformed==True:
A.SetFromNodeLabels (nodeLabels=((PName,tuple(nSet[1])),),name=nSet [0])

print ’Set: ’+nSet [0]

def findNodeMin (POS,Instance):
I
Finds the node at a given position and returnes a label.
valid POS values are: ’RB’, ’RT’, °LB’, ’LT’
I
global A,I
n=I[Instance].nodes
tempNode=n[0]
for node in n:
if POS==’RB’:
if tempNode.coordinates [0]<=node.coordinates[0] and tempNode.coordinates
[1]1>=node.coordinates [1]: tempNode=node
if POS==’RT’:
if tempNode.coordinates [0]<=node.coordinates[0] and tempNode.coordinates
[1]1<=node.coordinates [1]: tempNode=node
if POS=="LB’:
if tempNode.coordinates [0] >=node.coordinates [0] and tempNode.coordinates
[1]>=node.coordinates [1]: tempNode=node
if POS==’"LT’:
if tempNode.coordinates [0] >=node.coordinates[0] and tempNode.coordinates
[1]<=node.coordinates [1]: tempNode=node

return tempNode.label

##
INITIAL MODEL ANALYSE
##

def analyseInitCAE(initialName, overwrite=True, noPrompt=False):
import xml.dom
from abaqus import mdb
global CurDir
global M,I,A,P
global PartList
global PartNumbers
global SetList

global CurCaeAnalysed, CurCaeIsInit

CurPath = mdb.pathName
CurDir=os.getcwd ()
if CurPath==’<unnamed>’:
print ’WARNING: no cae file found in current session’

elif CurCaelIsInit==True:

960

962

964

966

968

970

972

976

978

980

982

986

988

990

992

994

Appendix B. Kernel Script 86

print ’WARNING: the current cae file is the initial cae file’
elif CurCaeAnalysed==False:
print ’WARNING: the current cae file has to be analysed before the initial
cae file (Analyse())’
else:
filepath=initialName+’.xml’
if not os.path.isfile(filepath):
getInitValues (initialName, overwrite=overwrite, noPrompt=noPrompt)
elif overwrite==True:
getInitValues (initialName, overwrite=overwrite, noPrompt=noPrompt)
try:
data=readXMLDoc (filepath)
except:
print ’ERROR: The file Y%s.xml was not found.’ %initialName

return None

if bugMeModus: print CurPath

mdb = openMdb (CurPath)

M=mdb.models [session.sessionState[session.currentViewportName][’modelName’]]
A=M.rootAssembly

I=A.instances

P=M.parts

#reading the current BCs and look for the values of the initial BCS and save
them to

#the initialBoundaryConditions Array of the PartList bbject

for instance in I.keys():

if not A.features[instance].isSuppressed():

if instance.split(’-’)[-1] != *1°:
try:
Object=PartList [int (PartNumbers [instance.rstrip(instance.split(’-")
[-11)+°1°1)]
except:

Object=PartList [int (PartNumbers [instance])]
else:
Object=PartList [int (PartNumbers [instance])]
Object.initialBoundaryConditions=1[]
try:
if bugMeModus: print Object.name
attr=data.getElementsByTagName (Object.initialName) [0]
for i in range(len(attr._get_attributes().keys())):
if str(attr._get_attributes().keys()[i]) != ’id’ and str(attr.
_get_attributes () .keys () [i]) != "SECTIONNAME":
u=eval (attr.getAttribute (str(attr._get_attributes () .keys()[i])))
if bugMeModus: print str(attr._get_attributes().keys()[i]),u
Object.initialBoundaryConditions.append([str(attr._get_attributes ()
.keys () [i]) ,ul)
if str(attr._get_attributes () .keys()[i]) == "SECTIONNAME":

996

998

1000

1002

1004

1006

1008

1010

1012

1014

1016

1018

1020

1022

1024

1026

1028

1030

1032

1034

1036

Appendix B. Kernel Script 87

Object.sectionName=str(attr._get_attributes () [str(attr.
_get_attributes () .keys () [i]1)]1.value)
except:
pass
def analyseSetFromInit0Odb (odbName):
PR
analyses the first odb, to recieve information about the sets and their parts.
This is also only possible, if the CAE file is analysed and the odb to be
analysed is the initial odb.
The initial odb has to end with the litteral 1!
VALID positions for a point are: ’Setname’+’_P’+’R , L’+’T, B’
VALID positions for an edge are: ’Setname+’__L , R , B, T’
P...Point
R...Right
L...Left
T...Top
B...Bottom
The double underlining for edgesets is the indicator for an edge set.
The _P indicates a Point.
This must be defined in the initial CAE File
P
if CurCaeAnalysed==True and odbName[-1]==’1":
try:
odb=open0db (path=odbName+’.odb’ ,readOnly=TRUE)
except:
return ’path %s not found’ % odbName
odbA = odb.rootAssembly
odbNS = odbA.nodeSets
for SET in odbNS.keys():
if len(odbNS[SET].instances)==1: #only Sets refering to just one instance
will be analysed

PNAME=0dbNS [SET] . instances [0].__repr__().split(’\’’)[-2] #name of the

part
#SNAME=0dbNS [SET].__repr__() .split(’\’’) [-2] #name of the set
SNAME=SET
ListPos=[PartNumbers[i] for i in PartNumbers.keys() if i.upper ()==PNAME
or i==PNAME] [0]
print PNAME, ListPos
if PartList[ListPos].deformed==True and PartList[ListPos].remesh==False:
SetList [SNAME]=[’None’ ,PNAME, odbNS[SET].nodes] #[’orientation,partname,
nodes]
if PartList[ListPos].deformed==True and PartList[ListPos].remesh==True:
if SNAME[-3:-1]==’__":
SetList [SNAME]=[SNAME[-1],PNAME, odbNS [SET].nodes]
elif (SNAME[-4]==’_’) and (SNAME[-3]==’P’):
SetList [SNAME]=[SNAME[-3:],PNAME, odbNS[SET].nodes]
else: print ’>INVALID SET NAME for remeshable part %s’ % PNAME

else: ’The CAE has to be analysed first in order to get its Set information’

1038

1040

1042

1044

1046

1048

1050

1052

1054

1056

1058

1060

1062

1064

1066

1068

1070

1072

1074

1076

1078

1080

Appendix B. Kernel Script 88

def readXMLDoc(filepath):
reads the XML file given in the form "filepath=C://temp//xml.xml"
and returns it as a minidom object
PR
import xml.dom.minidom as mini
if bugMeModus: print ’reading xml file: ’+str(traceback.extract_stack() [-1]1[1])

return mini.parse(filepath)

def writeXML(doc, filename):
23
writes the XML file with toprettyxml function
xml.dom.ext.PrettyPrint (doc, open(filename, "w"))
23
print doc.toprettyxml (indent="")
text = doc.toprettyxml(indent="", encoding=’UTF-8’)
try:

print ’%s’ %filename

projectFile = file(filename, ’w’)
except:
projectFile = open(filename, ’w’)

projectFile.write (text)

projectFile.close ()

def user_isSuppressed(noPrompt=False):

P

looks for the instances in the current cae file and if there are some
suppressesd features,

it will raise a prompt. The user is than able to either resume all features or
cancle the procedure and resume

just the neccessary features.

P

from abaqus import getWarningReply, YES, NO

MODELNAME=session.sessionState[session.currentViewportName][’modelName’]

M=mdb.models [MODELNAME]

A=M.rootAssembly

I=A.instances

if bugMeModus: A.featurelistInfo ()
for InstanceName in I.keys():
reply=NO
if A.features[InstanceName].isSuppressed():
if not noPrompt:
reply = getWarningReply(message=str (InstanceName)+’ is suppressed. Do you
want to resume it?’, buttons=(YES,NO))

else:

1082

1084

1086

1088

1090

1092

1094

1096

1098

1100

1102

1104

1106

1108

1110

1112

1114

1116

1118

1120

1122

1124

1126

Appendix B. Kernel Script 89

reply=YES
if reply==YES:
A.features[InstanceName].resume ()
for InstanceName in I.keys():
if A.features[InstanceName].isSuppressed():
return O

return 1

def getInitValues(initName, overwrite=True, noPrompt=False):
22
initName is the name of the initial cae file.
overwrite = True, replaces the already existing xml file.

R IS)

DIR=os.getcwd ()

FileName = DIR+"/"+initName+".xml"
if bugMeModus: print ’-’%*60
if os.path.exists(FileName) == True and overwrite==True:

if bugMeModus: print ’start analysing CAE data’
elif os.path.exists(FileName) == True and overwrite==False:
return None #if there is already a file and the user decided not to overwrite

it

doc = Document ()

mdb openMdb (initName)
MODELNAME=session.sessionState[session.currentViewportName][’modelName]
M=mdb.models [MODELNAME]

A=M.rootAssembly

I=A.instances

print ’#’*25+’ opened initial CAE ’+’#’%25

#if some features are suppressed this command will rrsume all of them
reply=user_isSuppressed (noPrompt)
if reply==0:

print ’WARNING: Some features are suppressed.\nThis may cause an ERROR, wich

is based on insufficient informations about the initial cae model.’

#create the <rootNode> base element
rootNode = doc.createElement("Instance_Settings")

doc.appendChild (rootNode)

for instances in I.keys():
if instances[-1]!="1":
print ’ERROR on instance name. The instance name has to end with the number
1>

return None

1128

1130

1136

1138

1140

1142

1144

1146

1148

1160

1162

1164

1166

1168

1170

Appendix B. Kernel Script 90

BCs={}
for instances in I.keys():

BCs[instances]=[]

BCNames = M.boundaryConditions.keys()
check=[’nodes’,’cells’,’edges’, ’elements’, ’faces’,’referencePoints’,’vertices
7]

for BCName in BCNames:
for lookType in check:
try:
region=M.boundaryConditions [BCName].region [0]
if lookType==’referencePoints’:
instanceName=A.sets[region].__getattribute__(lookType) [0].__repr__().
split (’\’7) [-2]
else:
instanceName=A.sets[region].__getattribute__(lookType) [0].instanceName
states=M.steps [C2DStep].boundaryConditionStates [BCName]
u=[states.ul,states.u2,states.u3,states.url,states.ur2,states.ur3]
BCs[instanceName].append ([region ,BCName ,u,states.amplitude])
break
except:
pass
for i in range(1l,len(BCs.keys())+1):
pname=BCs.keys () [i-1]
if bugMeModus: print pname+’+’*10
if BCs[pname]l!=[]:
Create the main <gr> element
gr = doc.createElement (str (pname))
gr.setAttribute ("id",str(i))
try:
gr.setAttribute ("SECTIONNAME",str (M.parts [I[pname].part.name].
sectionAssignments [0].sectionName))
except:
gr.setAttribute ("SECTIONNAME", "None")
for value in range(len(BCs[pnamel)):
gr.setAttribute (str (BCs [pname] [value] [1]) ,str (BCs [pname] [value]l[2]))
rootNode.appendChild (gr)
if bugMeModus: print ’complete: ’ + str(traceback.extract_stack()[-1]1[1])
##
##ELSE PART IS JUST TEMPORARY. caused by an empty BCs array, the if
statement didn’t assign the section.
##
else:
Create the main <gr> element
gr = doc.createElement (str (pname))
gr.setAttribute ("id",str (i))

try:

1174

1176

1178

1180

1182

1184

1186

1188

1190

1192

1194

1196

1198

1200

1202

1204

1206

1208

1210

1212

Appendix B. Kernel Script

91

gr.setAttribute ("SECTIONNAME" ,str (M.parts[I[pname].part.name].
sectionAssignments [0].sectionName))
except:
gr.setAttribute ("SECTIONNAME", "None")
for value in range(len(BCs[pnamel)):
gr.setAttribute (str (BCs [pname] [value][1]) ,str (BCs [pname] [valuel[2]))
rootNode.appendChild (gr)
if bugMeModus: print ’complete: ’ + str(traceback.extract_stack()[-1]1[1])
#print doc.toprettyxml (indent="")
writeXML (doc, FileName)
if bugMeModus: print ’XML file saved: ’+str(traceback.extract_stack() [-1]1[1])
print ’#’%25+’ closing initial CAE ’+’#’%25
mdb.close ()

def nodeSetToPartList():
global PartList
for Part in PartList:
print Part.name
if Part.remesh==False and Part.deformed==True:
if not ’nodeSets’ in dir(Part):
Part.nodeSets=[]
for bc in Part.boundaryConditions:
try:
Part.nodeSets.append ((bc[0],[x.label for x in A.sets[bc[0]].nodes]))
except:

print ’Error while appending NodeSet to PartList’

""" DEPRECATED, DUE TO OTHER SOLUTIONS TO PREVENT STRESS FLICKERING
def reinstateFrictionForces(StepName,PartName,contactSpecification=’’,CType="
CSHEARF) :
I
Looks for the CNORMF Parameters in the odb file and applies them onto the new
nodes .
contactSpecification: String wich indicates the Name of the Contact e.g.:’
ASSEMBLY_KONTAKT_WERKSTOFF_S/ASSEMBLY_KONTAKT_WERKZEUG_S’
if only one contact is specified contactSpecification=’"’
StepName: Name of the odb Step

PartName= Name of the instance to be restored

300

if (PartList[PartNumbers[PartName+’-1’]].remesh != True) and (PartListl[
PartNumbers [PartName+’-1’]].deformed==True) :
instanceName=PartName.upper () +’-’+str (CurCaeCycle)
delLoads=[i for i in M.loads.keys() if i.startswith(’FrN-’+PartName+CType)]
for i in dellLoads:
try: del M.loads[i]

except: pass

1214

1216

1218

1220

1222

1224

1226

1228

1230

1232

1234

1236

1238

1240

1242

1244

1246

1248

1252

Appendix B. Kernel Script

92

try:
try: del odb
except: pass
odb=open0db (path=JobName+’-’+str (CurCaeCycle)+’.o0db’,read0nly=TRUE)
except:
print ’ERROR: 0db File %s could not be opened’ % (JobName+’-’+str (
CurCaeCycle))
return O
#look, if CSHEARF is accessable
fieldOP=odb.steps [StepName].frames[-1].fieldOutputs
CSHEARFlen=len([i for i in fieldOP.keys() if i.startswith(CType)])
if CSHEARFlen > 1 and contactSpecification==’":
print ’ERROR: please specify which contact has to be analysed’
odb.close ()
return O
elif CSHEARFlen == 1:
ContCSHEAR=[i for i in fieldOP.keys () if i.startswith(CType)][0]
CSHEAR=fieldOP [ContCSHEAR]
CSHEARv=CSHEAR.values
PartV=[i for i in CSHEARv if i.instance.name==instanceName]
PartData=[(i.nodelLabel ,i.data) for i im PartV if i.data[0]!=0]
if PartData.__len__()==0:
’No friction values found in part %s’ %instanceName
odb.close ()
return O
else:
print ’Reinstate friction forces’
for force in PartData:
addForceToNode (force ,PartName+’-’+str (CurCaeCycle+1) ,CType=CType ,PN=
PartName)
odb.close ()
else:
#if more than one contact is available and reinstateFrictionForces is set
try:
CSHEAR=fieldOP [’ CSHEARF ’+contactSpecification]
except:
>ERROR: Input Error on contactSpecification in reinstateFrictionForces’
odb.close ()
return O
CSHEARv=CSHEAR .values
PartV=[i for i in CSHEARv if i.instance.name==instanceName]
PartData=[(i.nodeLabel ,i.data) for i in PartV if i.data[0]'=0]
if PartData.__len__()==0:
’No friction values found in part %s’ %instanceName
odb.close ()
return O
else:

for force in PartData:

1260

1262

1264

1266

1268

1270

1272

1274

1276

1278

1280

1282

1284

1286

1288

1290

1292

1294

1296

1298

1300

Appendix B. Kernel Script

93

addForceToNode (force ,PartName+’-’+str (CurCaeCycle+1) ,CType=CType ,PN=
PartName)
odb.close ()
else:
print ’ERROR: Part is not deformable or a remeshpart’

return O

def addForceToNode (force,instanceName ,CType ,PN):

print force,instanceName

nodesl = I[instanceName].nodes[force[0]-1:force[0]]

region = Region(nodes=nodesl,)

M.ConcentratedForce (name=’FrN-’+PN+CType+str (force [0]), createStepName=’step
-1,

region=region, cfl=force[1][0], cf2=force[1][1], distributionType=UNIFORM,

field=’’, localCsys=None)

#if two steps are present

try:
M.loads [’FrN-’+PN+CType+str (force[0])].deactivate(’step-27)

except: pass

def interpolateSurfaceForces(StepName ,PartNameData ,PartName , SurfaceName,
contactSpecification=’’,CType=’>CSHEARF’,TOL=0.1):
if (PartlList[PartNumbers[PartName+’-1’]].remesh == True) and (PartList[
PartNumbers [PartName+’-1’]].deformed==True) :
instanceName=PartNameData.upper ()+’-’+str (CurCaeCycle)
delLoads=[i for i in M.loads.keys() if i.startswith(’FrN-’+PartName+CType)]
for i in delloads:
try: del M.loads[i]
except: pass
try:
try: del odb
except: pass
odb=open0db (path=JobName+’-’+str (CurCaeCycle)+’.o0odb’,readOnly=TRUE)
except:
print ’ERROR: 0Odb File %s could not be opened’ % (JobName+’-’+str(
CurCaeCycle))
return O
#look, if CSHEARF is accessable
fieldOP=odb.steps [StepName].frames[-1].fieldOutputs
CSHEARFlen=len([i for i in fieldOP.keys() if i.startswith(CType)l])
if CSHEARFlen > 1 and contactSpecification==’":
print ’ERROR: please specify which contact has to be analysed’
odb.close ()
return O
elif CSHEARFlen == 1:
ContCSHEAR=[i for i in fieldOP.keys() if i.startswith(CType)][0]
CSHEAR=fieldOP [ContCSHEAR]
CSHEARv=CSHEAR.values

1302

1304

1306

1308

1310

1312

1314

1316

1318

1320

1322

1324

1326

1328

1330

1332

1334

1336

1338

1340

1342

1344

Appendix B. Kernel Script 94

PartV=[i for i in CSHEARv if i.instance.name==instanceName]
PartData=[(i.nodelLabel ,i.data,odb.rootAssembly.instances[instanceName].
nodes [i.nodeLabel -1].coordinates) for i in PartV if i.data[0]!=0]
if PartData.__len__()==0:
’No friction values found in part %s’ %instanceName
odb.close ()
return O
else:

PartData=[[i[0],i[1]1[0],i[1]1[1],i[2]1[0],i[2][1]] for i in PartDatal

##Y-DIRECTION -> interpolating forces in the x direction
PartData=sorted (PartData ,key=itemgetter (4) ,reverse=True) #sorted
coordinates in y direction from top to bottom
WPNODES=[[i.label,i.coordinates[0],i.coordinates[1]] for i in A.surfaces[
SurfaceName].nodes
if (i.coordinates[1]>PartData[-1][4]-TOL) and
(i.coordinates [1]<PartData [0] [4]+TOL) and
(i.coordinates [0] <=PartData[-1][3]) and
(i.coordinates [0] >=PartData [0][3])] ##[nodelabel,6coordinates] of the
remeshed part.
WPNODES=sorted (WPNODES ,key=itemgetter (2) ,reverse=True)
SUM_£fX=0 #sum of the input data forces
SUM_fY=0
for force in PartData:
SUM_fX+=force [1]
SUM_fY+=force [2]

SUM_fxNEW=0 #SUM of the workpiece forces
SUM_fyNEW=0

ForceDataWP=[] #New force array

for n in range(1,PartData.__len__()):
##force = X . direction =Y
Yi=PartData[n] [4]
YO=PartData[n-1][4]
delta¥Y=Y1-Y0
fX0=PartData[n-1][1]/2
fX1=PartDatal[n] [1]/2
deltafX=£fX1-£fX0
k_factor=deltafX/deltaY

##force = y . direction = X
X0=PartData[n-1][3]
X1=PartData[n] [3]
deltaX=X1-XO0
fYO=PartData[n-1][2]/2
fYl=PartDatal[n] [2]/2
deltafY=fY1-£fYO

1346

1348

1360

1362

1364

1366

1368

1370

1372

1374

1376

1378

1380

1382

1384

1386

1388

1390

Appendix B. Kernel Script 95

k_factor2=deltafY/deltaX

CURWPNODES=[i for i in WPNODES if (i[2]1>=Y1) and (i[2]1<=Y0)]

if len (CURWPNODES) !=0:
for m in CURWPNODES:
fxNEW=fX0+k_factor*(m[2]-YO)
fyNEW=fYO+k_factor2*(m[1]-X0)
ForceDataWP.append ([m[0], [fxNEW, fyNEW]])

for i in ForceDataWP:
SUM_fxNEW+=1i[1] [0]
SUM_fyNEW+=i[1] [1]

ScaleFaktorX=SUM_fX/SUM_fxNEW
ScaleFaktorY=SUM_fY/SUM_fyNEW

if bugMeModus: pp(WPNODES)
print ’Scale factor X:’+repr(ScaleFaktorX)

print ’Scale factor Y:’+repr(ScaleFaktorY)

NewForces=[[i[0],[i[1]*ScaleFaktorX,i[2]*ScaleFaktorY]] for i in WPNODES]
print ’*’x*10
if bugMeModus: pp(NewForces)
print ’Reinstate friction forces’
#pp (ForceDataWP)
for force in NewForces:
AddForceToNode (force ,PartName+’-’+str (CurCaeCycle+1) ,CType=CType ,PN=
PartName)
odb.close ()
else:

print ’ERROR on Part remesh or deformed’

nun

def createJob():
mdb.Job(atTime=None, contactPrint=0FF, description=’’, echoPrint=0FF,
explicitPrecision=DOUBLE, getMemoryFromAnalysis=True, historyPrint=0FF,
memory=50, memoryUnits=PERCENTAGE, model=MODELNAME , modelPrint=0FF,
multiprocessingMode=DEFAULT, name=JobName+’-’+str(NextCaeCycle),
nodalOutputPrecision=SINGLE,

numCpus=1, numDomains=1, parallelizationMethodExplicit=DOMAIN, queue=None,
scratch=’’, type=ANALYSIS, waitHours=0, waitMinutes=0)

##

ADDITIONAL FUNCTIONS

##

def printPngToFile(FileName):

from abaqus import session

1392

1394

1396

1398

1400

1402

1404

1406

1408

1410

1412

1414

1418

1420

1422

1424

1426

1428

1430

1432

1434

Appendix B. Kernel Script 96

i=1
while os.path.isfile(str(FileName)+repr(i)+’.png’) == True:
i+=1
session.pngOptions.setValues (imageSize=(400, 400))
session.printToFile(fileName=str (FileName)+repr (i), format=PNG, canvasObjects=(

session.viewports[session.currentViewportName],))

def continueProg(arg):
if arg == True:
return None
else:

sys.exit ()

def addMapSolutions():
global M
odb= openOdb(path=JobName+’-’+repr (CurCaeCycle)+’.o0db’,readOnly=True)
ostep=odb.steps.keys () [-1]
firstStep=odb.steps.keys () [0]
try:
lastFrame=odb.steps[ostep].frames [-1]
except:
print ’ERROR while trying to read the last odb file!’
return False
M.keywordBlock.synchVersions (storeNodesAndElements=False)
for mem in M.keywordBlock.sieBlocks:
if mem.startswith(’*Step, name=’+firstStep):
memID_Initial = M.keywordBlock.sieBlocks.index (mem)
M.keywordBlock.insert (memID_Initial -2, ’\n*MAP SOLUTION, STEP=’+str(len(odb.
steps))+’,INC=’+repr(lastFrame.incrementNumber)+’, UNBALANCED STRESS=RAMP’)
odb.close ()

return True

def startJob(version=’abq6121’,Del=False,ChkStep=1):

start Job fpr Linux platform

standard version is abq6121

P

import sys

if sys.platform == ’win32’:
print ’ERROR: function startJob is only for linux based platforms’

else:
mdb . jobs [JobName+’-’+str (NextCaeCycle)].writeInput (consistencyChecking=0FF)
print ’Input-File successfully generated!’
#jobmaker = file(’ jobmaker.sh’,’w+’)
#jobmaker .write(version+’ job=’+JobName+’-’+str(NextCaeCycle)+’ oldjob=’+
JobName+’-’+str (CurCaeCycle)+’ user=urdfiluvarm.f cpus=1’)

#jobmaker.close ()

1436

1438

1440

1442

1444

1446

1448

1460

1462

1464

1466

1468

1470

1472

1474

1476

1480

Appendix B. Kernel Script

97

EXECSTRING=’xterm

-e ’+version+’ job=’+JobName+’-’+str (NextCaeCycle)+’ oldjob

=’+JobName+’-’+str (CurCaeCycle)+’ user=urdfiluvarm.f

sub=subprocess.Popen(shlex.split (EXECSTRING))

sub.wait ()

#os.system (’ chmod

a=rwx jobmaker.sh’)

#o0s.system(’./jobmaker.sh’)

Logpfad=JobName+’-’+str (NextCaeCycle)+’.sta’

try:

FILE=open(Logpfad,’r’)

except:

print ’ERROR: No sta file found: %s’ %Logpfad

if os.path.exists

(Logpfad) :

Liste=FILE.readlines ()

print Logpfad+’#**’+Liste[-1]

else:

return False

if Del:

deleteO0ldData (CurCaeCycle)

if Liste[-3][3]!=ChkStep and Liste[-1].startswith(’

COMPLETED’) :
return True
else:

return False

#waitForCompletion (1,1000)

def deleteOldData (JOB):

PR RS)

deletes old job-data

RIS

import os

cpus=1 -interactive’

THE ANALYSIS HAS NOT BEEN

killJob=J0B-9 #deletes the data of the 9th job before the current job

if JOB>10:
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r
os.system(’rm -r

os.system(’rm -r

’+JobName+’-’+repr(killJob)+’.msg’)
’+JobName+’-’+repr (killJob)+’.stt’)
’+JobName+’-’+repr(killJob)+’.mdl’)

’+JobName+’-’+repr(killJob)+’.res’)

’+JobName+’-’+repr(killJob)+’ _extrapolated.mdl’)

’+JobName+’-’+repr(killJob)+’ _extrapolated.stt’)

’+JobName+’-’+repr(killJob)+’.£fil”’)
’+JobName+’-’+repr(killJob)+’.ipm’)
’+JobName+’-’+repr(killJob)+’.log’)
’+JobName+’-’+repr(killJob)+’ .prt’)
’+JobName+’-’+repr (killJob)+’.sim’)
’+JobName+’-’+repr (killJob)+’.sta’)

’+JobName+’-’+repr(killJob)+’.dat’)

1482

1484

1486

1488

1490

1492

1494

1496

1498

1500

1502

1504

1506

1516

1518

Appendix B. Kernel Script 98

os.system(’rm -r ’+JobName+’-’+repr(killJob)+’.com’)
os.system(’rm -r ’+JobName+’-’+repr(killJob)+’.res’)

os.system(’rm -r ’+JobName+’-’+repr(killJob)+’.1ck’)

#Wait for COMPETION

def waitForCompletion (TIME,ZYKLUS):

30

Parameters:

1. Logpath to the sta file

2. TIME -> periode time for the observation
3. ZYKLUS -> defines how much periodes occur

#this method looks for the sta-file of the current simulation and looks for the
Completed, notCompleted or Abbruch statement in order
#to continue the script. This is just a possibility to ensure the completion of
the simulation.
300
Logpfad=JobName+’-’+str (NextCaeCycle)+’.sta’
Completed=False
NotCompleted=False
Abbruch=False
STA=False
Zaehler=0
while STA==False and Zaehler <=ZYKLUS:
time.sleep (TIME)
try:
Logfile=file(Logpfad, ’r’)
except IOError:
Zaehler=Zaehler+1
continue
if os.path.exists(Logpfad):
STA=True
while Completed==False and NotCompleted==False and Abbruch==False:
time.sleep (TIME)
try:
Logfile=file(Logpfad, ’r’)
except IOError:
Zaehler=Zaehler+1
continue
if STA == True:
Liste=1list ()
Liste=Logfile.readlines ()
Logfile.close ()

Zeilen=1list ()

1530

1540

1560

1564

1566

1568

Appendix B. Kernel Script 99

for zeile in Liste:
Zeilen.append(zeile)
Length=len(Zeilen)
for j in range(Length):
if ’COMPLETED’ in Zeilen[j]:
Completed=True
for i in range(Length):
if ’NOT BEEN COMPLETED’ in Zeilen[il]:

NotCompleted=True

def pauseScript(ti):
import time
numObjects = 100
for i in range (numObjects+1):
milestone (’Computing’, ’Percentage’, i, numObjects)

time.sleep(float (ti)/numObjects)

def check0ldJobAccess (JobNumber ,checker=10):
check=0
while check<checker:
try:
odb=open0db (path=JobName+’-’+str (JobNumber)+’.odb’,read0nly=TRUE)
odb.close ()
return
except:
PauseScript (5)
check+=1

print ’ERROR on odb Access after s attempts’ Y%checker

def startAutomationProcedure ():

This function is the startfunction for the automation script.

import logging

logging.basicConfig(filename=’Automator.log’,level=logging.DEBUG)

logging.info(’Logfile created: 7%s’ Y%time.asctime(time.localtime(time.time()))

)
session. journalOptions.setValues (recoverGeometry = INDEX)
session. journalOptions.setValues(replayGeometry = INDEX)

AnalyseResult=analyse ()
if AnalyseResult==1:
##has to be opened by the UI if possible
if os.path.exists(’USER.txt’) and CurCaeAnalysed==True:
useUserFile=True

##maybe as UI checkbox

1580

1590

1594

1596

1600

1602

1604

1606

1608

1610

1612

1614

1616

1618

1620

Appendix B. Kernel Script 100

userFile=open(’USER.txt’,’r’)
userFileLines=userFile.readlines ()
inputUSER={}
if bugMeModus_L1: print ’-’*10+’USER FILE’+’-’%10
for line in userFilelLines:
try:
inputUSER[line.split(’=’) [0]]=eval(line.split(’=’)[1])
if bugMeModus_L1: print line.split(’=’)[0],line.split(’=")[1]
except:
pass
else:

useUserFile=False #to disable userscripting capability

if useUserFile:

try: C2DStep=inputUSER[’StepName ’]
except: C2DStep = M.steps.keys () [-1]

try: initialCaeName=inputUSER[’initialCaeName’]
except: logging.error(’initial Cae File name not found in User.txt’)
if CurCaeIsInit == False:

analyseInitCAE(initialCaeName, overwrite=True)

try: remesh=inputUSER[’remesh’]
except:
logging.warning (’No part was specified for remeshing in the User.txt’)

remesh=[]

if remesh !=[]:
for Part in PartList:
if (Part.initialName in remesh) or (Part.initialName.rstrip(’-1’) in
remesh) :
Part.remesh=True
else:

Part.remesh=False

try: globalAbstractAngle=inputUSER[’globalAbstractAngle’]

except: logging.info(’No changes in global abstract angle by the User.txt’)

try: abstractAngle=inputUSER[’abstractAngle’]
except:
logging.warning(’No abstract angles specified in the User.txt’)

abstractAngle={}

try: deformed=inputUSER[’deformed’]

1622

1624

1626

1628

1630

1632

1634

1636

1638

1640

1642

1644

1646

1648

1650

1652

1654

1656

1658

1660

1662

1664

1666

Appendix B. Kernel Script

101

except:
logging.warning(’No deformed parts’)
deformed=[]
for Part in PartList:
if (Part.initialName.rstrip(’-1’).upper() in abstractAngle):
Part.abstractAngle=abstractAngle [Part.initialName.rstrip(’-1’)]
else:

Part.abstractAngle=globalAbstractAngle

print Part.initialName.rstrip(’-1’).upper ()
print deformed
if (Part.initialName.rstrip(’-1’).upper() in deformed):
Part.deformed=True
else:
Part.deformed=False

logging.info(’Part is set to not deformable: %s’ %Part.name)

global newBCVal
newBCVal={}
try: newBcVal=inputUSER[’newBcVal’]

except: logging.info(’No changes in the Boundary Conditions by the User.txt

)

try: importStep=inputUSER[’importStep’]

except: importStep=0

try: ATV=inputUSER[’ATV’]

except: logging.info(’No global adjustments at contact nodes by the User.

txt?)

try: maxCycles=inputUSER[’maxCycles’]

except: logging.info(’No changes in maxCycles by the User.txt’)

else:
C2DStep = M.steps.keys () [-1]
##or from GUI
##if CurCaelIsInit == False:
initial Name from GUI
##newBcVal = from GUI
##importStep = from GUI
##ATV = from GUI
##maxCycles = from GUI
##abstractAngle = from GUI

M.steps[C2DStep].Restart (frequency=1, numberIntervals=0, overlay=0FF,
timeMarks=0FF)
M.steps [C2DStep].setValues (maxNumInc=10000)

1668

1670

1674

1676

1678

1680

Appendix B. Kernel Script

102

analyseInitCAE(initialCaeName ,overwrite=True ,noPrompt=True)

NextCaeCycle = CurCaeCycle+1
#start of the cycle

else: stopCriteria=True

def startVariation():

nwnn

This function initializes the current cycle and restarts with variations

mdb = openMdb (CurPath)

M=mdb.models [session.sessionState[session.currentViewportName][’modelName’]]
A=M.rootAssembly

I=A.instances

P=M.parts

os.system(’rm ’+JobName+’-’+str(NextCaeCycle)+’*’) #delete the abborted

simulation

./Appendices/KernelFunctions.py

o

~

9

11

19

21

23

29

39

41

Appendix B. Automation Script 103

B.2 Automation Script

#!/usr/bin/env python
W
This Script is the control script to automatise the deformation process in ABAQUS

/Standard.

Software compatibility: abaqus 6.121

required modules and/or scripts: KernelFunctions (v0.202)

execfile (’KernelFunctions.py’)
from odbAccess import *

from abaqus import *

from abaqusConstants import *
import time

import logging

#maybe suppressable imports
from material import *

from section import *

from assembly import *

from step import *

from interaction import *

from load import *

import mesh

from job import *

from sketch import x*

from visualization import *
from connectorBehavior import *

from abaqus import backwardCompatibility

__author__ = "Stefan Distlberger"

__copyright__ = "Copyright 2013, Materials Center Leoben, MCL"
__credits__ = ["Stefan Distlberger", "Martin Krobath"]
__license__ = "GPL"

__version__ = "0.200"

__maintainer__ = "Stefan Distlberger"

__email__ = "stefan.distlberger@mcl.at"

__status__ = "Production" #"Developement", "Prototype"

StartAutomationProcedure ()

while stopCriteria==False and NextCaeCycle<=maxCycles:

ReconParts (PartList, C2DStep, JobName, importStep, CurCaeCycle)

logging.info(’Reconstruction of the parts in Cycle %s’ %CurCaeCycle)

49

ot
o

o
~

61

63

67

69

81

83

Appendix B. Automation Script 104

if CurCaelIsInit:
mdb.saveAs (pathName=’>COMMON2D.cae’) ##the name has to be an input parameter
from GUI
CurCaelsInit=False

AnalyseInitCAE(initialCaeName ,overwrite=False ,noPrompt=True)

Changes in BC thru user input
if newBCVal!={}:
for Part in Partlist:
for BC in Part.boundaryConditions:
if BC[1] in newBcVal.keys():
BC[2]=newBcVal [BC[1]]

surfaces

##NOT YET AUTOMATED

#A.Surface(side2Edges=A.instances [PartList [0].cleanName+’-’+repr (NextCaeCycle)
].edges[0:1] ,name="kontakt_rigid_s’)

getSideEdge (PartList [0].cleanName+’-’+repr (NextCaeCycle) ,SurfaceName="
kontakt_werkzeug_s’)

A.Surface(sidelEdges=A.instances [PartList [1].cleanName+’-’+repr (NextCaeCycle)].

edges ,name=’kontakt_werkstoff_s’)

interactions
#when the sets and surfaces kept their initial name, the interactions wil be

updated automatically

meshwindows
##usually from GUI
#temporary values
#P1=PartList [1].cleanName+’-’+repr (NextCaeCycle) #referenz
mw=MeshWindow (’mwl’,PartList [1].cleanName+’-’+repr (NextCaeCycle) ,0.4)
mw.Window(1.8,10,3.5,-3.9,0.02)
mw.Window(1.2,10,1.8,-3.9,0.03)
mw.Window(3.5,10,100,-3.9,0.02)
mw.Window(1.2,-3.9,100,-4,0.02)
mw.Window(1.2,-4,100,-6,0.05)
mw.Window(-1,-3.2,1.2,-6,0.1)
mw . ApplyMW ()
if A.getUnmeshedRegions () != None:

#if the mesh wasn’t created

#approach for meshwindow displacement

half automated! the coordinate to displace has to be scripted manually

deltaU=0.1

counts=0

while A.getUnmeshedRegions() != None:

counts+=1
mw.delMW ()

mw=MeshWindow (’mwl’,PartList [1].cleanName+’-’+repr(NextCaeCycle) ,0.4)

Appendix B. Automation Script 105

89 mw.Window (2+(deltaU*counts) ,10,3.5,-3.9,0.03)

mw.Window (1.1+(deltaU*counts) ,10,2,-3.9,0.03)

91 mw.Window (3.5,-3.0,100,-3.9,0.02)

mw.Window (1.1+(deltaU*counts) ,-3.9,100,-4,0.03)

93 mw.Window (1.1+(deltaU*counts) ,-4,100,-6,0.05)

mw.Window(-1,-3.2,1.1+(deltaU*counts) ,-6,0.1)

95 mw . ApplyMw ()

if counts==

97 print ’ERROR: Not all Faces could be meshed’

break

99

elemTypel = mesh.ElemType(elemCode=CPE4T, elemLibrary=STANDARD)

101 elemType2 = mesh.ElemType(elemCode=CPE3T, elemLibrary=STANDARD)

A.setElementType (regions=(A.instances [PartList [1].cleanName+’-’+repr (
NextCaeCycle)].faces,), elemTypes=(elemTypel, elemType2))

103

sets

105 createSetbySetName (PartList)

beispiel A.SetByBoolean(name=’_MP_1’,sets=(A.sets[’_MP_1’],A.sets[’MP_TOP’]),
operation=DIFFERENCE)

107 A.Set (nodes=I[PartList [1].cleanName+’-’+repr (NextCaeCycle)].nodes ,name="’

werkzeug_all’)

109 # Section Assignment

assignSections ()

AddMapSolutions ()
113
Job

115 createJob ()

PauseScript (2)

117 checkSuppressState () #checks if initial Parts are still active
check0ldJobAccess (CurCaeCycle)

119 startJob (Del=TRUE)

121 CurCaeCycle+=1
NextCaeCycle+=1

123

if bugMeModus_onelLoop: stopCriteria = True

./Appendices/Automator.py

w

~

13

19

21

23

27

29

33

37

39

41

Appendix B. Rendering Script 106

B.3 Rendering Script

HARHBHARARAARBARRRBABRARBRRRRRABRARBRBRBHARRRHA RS H
HUHHBHARARHABHARBHHABHARBR BB R R BRA R B AR BH AR RS R AR H
I

scriptname: makeShots

copyright: MCL (c) 2013

author: Stefan Distlberger

version: 1.0

compatibility: abaqus 6.12

description:
CL Script, which provides functionallities to render Pictures or video sequences
out of abaqus and

transcode them into an output video.

required modules and/or scripts:
Scripts:

-videoRender.py ab 1.0
-pictureRender.py ab 1.0

-makeShots.bat

PlugIns:
CamPosToXML

Modules:

mplayer -svn-35935
ffmpeg-20130428

__Author__="MCL: Stefan Distlberger’
__Review__=""
__Version__=’0527,1.0"

HHRHHBHBHBHHBHBRARHBHBRHBHBRBHRBHBHBRR B RS R SRS H
######## make Shots HH#H#H#H#H#H#HHHHHHHHHHBHHBHBHBREHRY
HUHRHHBHBHBHHBHBRBHRFHFHRBHBRBRRBRBRBRRBRBRBHHH

import os, sys, traceback, shutil, time, platform, math
from odbAccess import x*
from abaqusConstants import x*

from numpy import array, dot, reshape

49

o
&

~

ot

63

69

79

81

87

89

91

93

Appendix B. Rendering Script

107

from pprint import pprint as pp

import time

BUGGY=0 #debugging level

if BUGGY!=0:
BUGME=open (’BUGMEALL . txt’,’w’)
BUGME .write (’DEBUG LOG VERSION ’+__Version__
BUGME .write (>~~~ " "~~~ rrrmomm s m s s

BUGME .write(time.asctime ()+’\n\n’)

print ’\n’

print ’=============== (DB - Frames to Video

print ’Version: ’+__Version__
print ’Author:\t’+ __Author__
print ’Review:\t’+__Review__
print ’\n’+’-’%60

print ’\nArguments:’

usage ()
cwd=os.getcwd ()
sys.path.insert (0, cwd)
odb=None

ODB_LIST=[]

##

temporary timer for performance tests

##
#TIMER
if sys.platform == "win32":
timer = time.clock
else:
timer = time.time

t0 = t1 =0

def timerstart():
global tO
t0 = timer ()

def timerfinish():
global t1
tl = timer ()

def timerseconds():
return int(tl - t0)

def timermilli():

+7\n;)

99

101

103

107

109

111

113

117

119

121

127

129

131

133

135

139

Appendix B. Rendering Script 108

return int((tl1 - t0) * 1000)
def timermicro():

return int ((tl1 - t0) * 1000000)

##
functions
##

End program
def endProg():
if odb:
odb.close ()
if BUGGY!=0:
if BUGME: BUGME.close ()
timerfinish ()
print str(timerseconds())+’ seconds’
print ’\n’

print ’=============== program finished ===============

Continue Program
def contProg():
dec=raw_input (’Do you wish to continue [y/n(default)]:’)
if (dec!=’y’ and dec!=’Y’):
endProg ()

return 1

get odbPath
def getodbPath():

PN

returns an array with the paths to all of the odb files
20
retPathArray=[]

check=False

while check==False:
odbPreName=raw_input (’\nEnter the name of the odb File to process (w/o .odb):
7)
odbRange=raw_input (’\nEnter the range of the odbs.\nIf there is only one odb
to process press ENTER.\nIf there is a range type as following [2,24]:7)
#check single 0DB file
if odbRange==’’ or odbRange=="’’":
odbName=odbPreName
if odbName==’’ or odbName=="’’":
print ’\nERROR: Entered ODB name not found...’
contProg ()
odbPath, odbName = ’’,°~’

141

143

149

161

163

165

167

169

175

181

183

185

Appendix B. Rendering Script

109

continue
if odbName.endswith(’.odb’):
odbName=odbName.rstrip(’.odb’)
odbPath=odbName+’.odb’
if not(os.path.exists (odbPath)):
print ’\n’+’-’%60
err="\nERROR:
print err
os.system(’dir *.o0db’)
print ’\n’+’-’%60
contProg ()
continue
print ’\nodb path: ’+odbPath
retPathArray.append (odbPath)
check=True
print

return retPathArray

#check multiple ODB file
else:
try:
odbR=eval (odbRange)
except:
print ’\nERROR:
contProg ()
continue
if type (odbR). ==’str’:

_hame__

print ’\nERROR:
contProg ()
continue

if odbR[1]<=o0dbR[0]:
print ’\nERROR:

contProg ()

odbPath, odbName = ’’,’”’

continue

else:

The odb file - s

- does not exist.’ % (odbPath,)

The form of the range has to be like the example:

The form of the range has to be like the example:

for odbNumber in range (odbR[0],odbR[1]+1):

if odbPreName==’’ or odbPreName=="’’":
print ’ERROR: Entered ODB name not found...’
contProg ()
odbPath, odbName = ’’,7”’

continue

if odbPreName.endswith(’.odb’):

odbPreName=odbPreName.rstrip(’.odb’)

if odbPreName.endswith(’-’):

odbPreName=odbPreName.rstrip(’-’)

odbName=odbPreName+’-’+str (odbNumber)

[2,24]1°

[2,241°

The second number has to be higher as the first number...

187

189

191

193

197

199

201

203

N
[=}
o

207

209

211

213

215

217

219

221

223

225

227

229

231

Appendix B. Rendering Script 110

odbPath=odbName+’.odb’
if not(os.path.exists (odbPath)):
print ’\n’+’-’%60
err="\nERROR: The odb file - %s - does not exist.’ % (odbPath,)
print err
os.system(’dir *.o0db’)
print ’\n’+’-’%60
contProg ()
continue
retPathArray.append (odbPath)
print ’\nodb path: ’+odbPath+’\nthe numbers range is: ’+odbRange
check=True
print ’\n===s============ DONE ==============="

return retPathArray

def setCamera (ODB_LIST):

if 1len(ODB_LIST)==0:
print ’No 0ODB path found’
endProg ()

if query_yes_no(’Do you want to set the Camera position?’):
print ’1) Adjust the camera position.\n2) Set the primary field variable and
limits.\n3) Go to Plug-ins / MCL / SaveCam... and update and export the
current state.’
contProg ()
os.system(’abaqus viewer database=’+0DB_LIST[0])
print ’\n=============== closing Abaqus ===============

else:
pass
get the path to the XML file

read XML file

def query_yes_no(question, default="yes"):

’?2Ask a yes/no question via raw_input() and return their answer.

"question" is a string that is presented to the user.
"default" is the presumed answer if the user just hits <Enter>.
It must be "yes" (the default), "no" or None (meaning
an answer is required of the user).
"

The "answer" return value is one of "yes" or "no".
I
valid = {"yes":True, "y":True, "ye":True, "no":False, "n":False}
if default == None
prompt = " [y/n] "

elif default == "yes":

233

235

239

243

245

247

249

261

263

267

269

275

Appendix B. Rendering Script 111

prompt = " [Y (default) /n] "
elif default == "no":

prompt = " [y/N (default)] "
else:

raise ValueError("invalid default answer: ’%s’" % default)

while True:
sys.stdout.write(question + prompt)

choice = raw_input ().lower ()

if default is not None and choice
return valid[default]

elif choice in valid:
return valid[choice]

else:

sys.stdout.write("Please respond with ’yes’ or ’no’ (or ’y’ or ’n’).\n")

print ’\n=============== start rendering pictures with abaqus ===============>

os.system(’abaqus viewer script=pictureRender.py’)

print ’\n=============== start rendering videos with abaqus ===============>

os.system(’abaqus cae script=videoRender.py’)

def picsToAvi(version=’mplayer-svn-35935’,FileName="output.avi",ListName="1ist.

txt",fps=25):

if os.path.exists(os.getcwd()+’\\’+version):
os.system(version+"\mencoder mf://@"+ListName+" -mf type=png:fps="+str (fps)
+" -ovc x264 -x264encopts preset=slow:tune=film:crf=5 -oac copy -o "+FileName
)
else:
print "Error while reading version, filename or/and listname"
BTN MM M e

def AviToAvi(version=’mplayer -svn-35935’,FileName="output.avi",ListName="1ist.txt
")
VidNames=""
list=open(ListName,’r’)
lines=1list.readlines ()
for line in lines:

if line.endswith(’\n’):

VidNames+=" "+line.rstrip(’\n’)
else:
VidNames+=" "+1line

if os.path.exists(os.getcwd()+’\\’+version):

281

283

285

287

289

291

295

297

299

301

303

305

309

311

313

w
~

319

321

Appendix B. Rendering Script 112
os.system(version+"\mencoder -ovc x264 -forceidx -o "+FileName+" "+VidNames
)
print version+"\mencoder -ovc x264 -forceidx -o "+FileName+" "+VidNames
else:
print "Error while reading version, filename or/and listname"
T N M e
def timeOrframeBased():
print "\nThe Video can be set as frame-based or time-based"
answer=query_yes_no ("Do you want a time-based video")
fileName=raw_input ("Please enter the name of the output file [default=’output
1)
if fileName=="" or fileName==’’:
fileName=’output’
else:
contProg ()
if answer:
makeVids ()
try:
os.system(’del odb_list.txt’)
except:
os.system(’rm -r odb_list.txt’)
AviToAvi(FileName=fileName+’.avi’)
try:
list=open(’list.txt’)
lines=1list.readlines ()
for i in lines:
os.system(’del ’+i[:-1])
except:
print "Error while trying to delete the old avi files"
else:
makePics ()
try:
os.system(’del odb_list.txt’)
except:
os.system(’rm -r odb_list.txt’)
picsToAvi(FileName=fileName+’.avi’,fps=25)
try:
os.system(’del *.png’)
except:
os.system(’rm -r *.png’)
T T M M e

##Program Start##

323

329

331

333

339

Appendix B. Rendering Script

113

0DB_LIST=getodbPath ()
setCamera (0DB_LIST)
#os.system(’echo ’+str (ODB_LIST)+’> odb_list.txt?’)
thefile=file(’odb_list.txt’,’w’)
thefile.write(’[’)
for item in ODB_LIST:
if not item==0DB_LIST[O0]: thefile.write(’,’)
thefile.write("’%s’" % item)
thefile.write(’]’)
thefile.close ()
time.sleep (1)

timeOrframeBased ()

./Appendices/makeShots.py

6

10

14

20

22

24

26

28

30

32

36

38

40

42

46

Appendix B. Rendering Script

114

HUHHRHARFRHABHSRB AR RHAE BB R RA R RSB R R R B R RSB RSB SH SRS
HARHHHARARAARBRRRARARAARARRRRBABRARARRABRRRRRHARAHH
PR

scriptname: pictureRender

copyright: MCL (c) 2013

author: Stefan Distlberger

version: 1.0

compatibility: abaqus 6.12

description:

Script to Render Pictures in corporation with makeShots.py

required modules and/or scripts:

required for: makeShots.py ab 0404,0.1

from odbAccess import *

from abaqus import session

from abaqusConstants import *

import sys, os

from xml.dom.minidom import Document
import xml.dom

import xml.dom.minidom

legend=True
state=True

title=True

RESOLUTIONS=[(640,480) ,(1280,720) ,(1600,900) ,(1920,1080) ,(2048,1152)]
QUALITY=RESOLUTIONS [1] #here you can choose between the resolutions mentioned

above

if os.path.exists(’odb_list.txt’):
file = open(’odb_list.txt’,’r’)
else:
sys.exit (0)
lines=file.readlines ()

odbList=eval(lines [0])

HAEHAHHAHAHAH AR B A HAH AR B A HAH AR B AR AR AR R A B A H R R AR A H RS RS
def _updateVP_():

global sv

60

62

64

66

68

80

84

86

90

Appendix B. Rendering Script 115

global svV1ioD

global svV1

global svViview

sv=session.viewports
svVli=sv[session.currentViewportNamel]
svVlview=svVl.view
svVloD=svV1l.odbDisplay.primaryVariable
svV1l.makeCurrent ()

svV1l.odbDisplay.display.setValues (plotState=(CONTOURS_ON_DEF,))

HURHHHBASH B AR BB RS AR R RS H B RS H BB RS SRR S B BB SRR RS H R RS S
#sets the saved variables of the vieport in viewport-1.
def setSavedViewportZoom():
updateVP()
readDoc = xml.dom.minidom.parse(’VideoSettingsl.xml’)
theNode = readDoc.getElementsByTagName ("ViewportData_2")
for e in theNode[0].childNodes:
if e.nodeType == e.ELEMENT_NODE:
nP=float (e.getAttribute ("nearPlane"))
fP=float (e.getAttribute ("farPlane"))
w=float (e.getAttribute ("width"))
h=float (e.getAttribute("heigth"))
v0X=float (e.getAttribute("viewOffsetX"))
vOY=float (e.getAttribute ("viewOffsetY"))
cPu=e.getAttribute ("cameraPosition")
cP=eval (cPu)
cUVu=e.getAttribute ("cameraUpVector")
cUV=eval (cUVu)
cTu=e.getAttribute ("cameraTarget")
cT=eval (cTu)
svViview.setValues (nearPlane=nP, farPlane=fP, width=w, height=h, viewOffsetX=

v0X, viewOffsetY=v0Y, cameraTarget=cT,cameraUpVector=cUV, cameraPosition=cP)

HURHBHBAAHHBAARBBAHRBRAHHBARHHRAH BB AR R B BRR BB RAHHRAHS

def setSavedPVarSettings ():

updateVP()

OUTPUTPOSITIONS={’U’:NODAL,’S’:INTEGRATION_POINT, ’NT11’:NODAL, PEEQ’:
INTEGRATION_POINT, CF’:NODAL,’CSHEAR1’ :ELEMENT_NODAL,’CSLIP1’:ELEMENT_NODAL,’
PE’: INTEGRATION_POINT,’LE’: INTEGRATION_POINT}

readDoc = xml.dom.minidom.parse(’VideoSettingsl.xml’)

try:
theNode = readDoc.getElementsByTagName ("ViewportData_3")

R S)

for nex in theNode [0].childNodes:

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

Appendix B. Rendering Script 116

if str(nex.nodeName) == getCurrentPrimaryVariable () [0] and str(nex.
getAttribute ("type"))==getCurrentPrimaryVariable () [1]:
svVl.odbDisplay.contourOptions.setValues (maxAutoCompute=0FF, maxValue=
float (nex.getAttribute(’max’)), minAutoCompute=0FF, minValue=float (nex.
getAttribute (’min’)))
print ’#’%26+° DONE ’+’#’%26
)
nex=theNode [0].childNodes [1]
if str(nex.getAttribute("type"))!="" and str(nex.getAttribute("type"))!=>""":
session.viewports[session.currentViewportName].odbDisplay.
setPrimaryVariable(variableLabel=str(nex.nodeName), outputPosition=
OUTPUTPOSITIONS [str (nex.nodeName)], refinement=(INVARIANT, str(nex.
getAttribute ("type"))),)
else:
session.viewports[session.currentViewportName].odbDisplay.
setPrimaryVariable (variableLabel=str(nex.nodeName), outputPosition=
OUTPUTPOSITIONS [str (nex.nodeName)],)
except:

print ’ERROR reading or setting the attributes for the primary Variable’

HURHHHBRSH B AR R B RS R B R AR H B RSB B A S SRR SH B BB SRR RS R H B RS S

def PrintPngToFile(FileName):
i=1
while os.path.isfile(str(FileName)+repr(i)+’.png’) == True:
i+=1
session.pngOptions.setValues (imageSize=QUALITY)
session.printToFile(fileName=str (FileName)+repr (i), format=PNG, canvasObjects=(
session.viewports[’Viewport: 1°],))

return i

HURHHBAAHHBRAH B BAH BB RAHH B AR B RAH BB AR R BB AR BB AR HRAHS

def setPrintNotationPositions (legend, state, title):
session.graphicsOptions.setValues(backgroundOverride=0FF, translucencyMode=2,
backgroundStyle=SO0LID,backgroundColor="#FFFFFF’)
svVl.viewportAnnotationOptions.setValues(statePosition=(1, 22),titlePosition
=(1, 9),triad=0FF,stateBox=0N, stateBackgroundStyle=0THER,
stateBackgroundColor="#FFFFFF’,stateFont=’-*-arial-medium-r-normal
—k—*k-80-k-—k-p-k-—k-x’,
titleBox=0N, titleBackgroundStyle=0THER, titleBackgroundColor=’#FFFFFF’,
titleFont=’-*-arial -medium-r-normal -*-%-80-*-*%-p-*-*-%’ 6 legendBackgroundStyle
=0THER, legendBackgroundColor=’#FFFFFF’,legendPosition=(1, 98))
if legend == True:
session.viewports[session.currentViewportName].viewportAnnotationOptions.
setValues (legend=0N)

else:

122

124

126

130

132

134

136

138

140

144

146

148

158

160

162

Appendix B. Rendering Script 117

session.viewports[session.currentViewportName].viewportAnnotationOptions.

setValues (legend=0FF)

if state == True:
session.viewports[session.currentViewportName].viewportAnnotationOptions.
setValues (state=0N)

else:
session.viewports[session.currentViewportName].viewportAnnotationOptions.

setValues (state=0FF)

if title == True:
session.viewports[session.currentViewportName].viewportAnnotationOptions.
setValues (title=0N)

else:
session.viewports[session.currentViewportName].viewportAnnotationOptions.

setValues (title=0FF)

HURHHHBAHH B AR BB RS HBRAHH B AR H BB RSB BB S H BB B B RS HRAHS
HURHBHBARARBRARBRAARBRAR R B AR R B AR BB AR R B RAH BB RAHHRAHS
#cleaning old pictures
try:
os.system(’del *.png’)
except:
os.system(’rm -r *.png’)
counter = 0
for odbName in odbList:
os.system(’echo ’+odbName)
odb=session.openOdb(path=odbName ,readOnly=TRUE,name=odbName)
session.viewports[session.currentViewportName].setValues(displayedObject=None)
session.viewports[session.currentViewportName].setValues(displayedObject=o0db)
session.viewports[session.currentViewportName].odbDisplay.display.setValues(
plotState=(CONTOURS_ON_DEF,))
setSavedViewportZoom ()
setSavedPVarSettings ()

setPrintNotationPositions (legend, state, title)

#for oSTEP in odb.steps.keys():
for oFRAME in range(len(odb.steps[oSTEP].frames)):
0STEP=o0db.steps.keys () [-1]
for oFRAME in range(len(odb.steps[oSTEP].frames)):
session.viewports[session.currentViewportName].odbDisplay.setFrame (step=o0STEP
, frame=oFRAME)
counter=PrintPngToFile (’Picture’)
odb.close ()
file = open(’list.txt’,’w’)
for i in range (0, counter):

file.write(’Picture’+str(i+1)+’.png\n’)

Appendix B. Rendering Script 118

file.close ()

164| sys.exit (0)

./Appendices/pictureRender.py

6

10

14

16

20

22

24

26

30

32

36

40

42

46

Appendix B. Rendering Script

119

HUHHRHARFRHABHSRB AR RHAE BB R RA R RSB R R R B R RSB RSB SH SRS
HARHHHARARAARBRRRARARAARARRRRBABRARARRABRRRRRHARAHH
PR

scriptname: videoRender

copyright: MCL (c) 2013

author: Stefan Distlberger

version: 1.0

compatibility: abaqus 6.12

description:

Script to Render Videos in corporation with makeShots.py

required modules and/or scripts:

only working with: makeShots.py 0404,0.1

from odbAccess import *

from abaqus import session

from abaqusConstants import *

import sys, os

from xml.dom.minidom import Document
import xml.dom

import xml.dom.minidom

legend=True
state=True

title=True

RESOLUTIONS=[(640,480) ,(1280,720) ,(1600,900) ,(1920,1080) ,(2048,1152)]
QUALITY=RESOLUTIONS [1] #here you can choose between the resolutions mentioned

above

if os.path.exists(’odb_list.txt’):
file = open(’odb_list.txt’,’r’)
else:
sys.exit (0)
lines=file.readlines ()

odbList=eval (lines [0])

HURHHFHFHAHHFHBHBHHBRBRBBRBRBRBRBBRBRBRBBRBRBRBRARS
def _updateVP_():

Appendix B. Rendering Script 120

global sv

48 global svVi1ioD

global svV1

50 global svViview

sv=session.viewports

52 svVl=sv[session.currentViewportNamel]
svVlview=svVl.view

54 svVloD=svV1l.odbDisplay.primaryVariable
svV1l.makeCurrent ()

56 svV1l.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,))

S| HHRBAHHBAAAHBAAHHBAARHRAH AR AAHH B AR AR BAR B R BH AR R EHHH S
#sets the saved variables of the vieport in viewport-1.
60| def setSavedViewportZoom():

updateVP()

62 readDoc = xml.dom.minidom.parse(’VideoSettingsl.xml’)
theNode = readDoc.getElementsByTagName ("ViewportData_2")
64 for e in theNode[0].childNodes:

if e.nodeType == e.ELEMENT_NODE:

66 nP=float(e.getAttribute ("nearPlane"))

fP=float (e.getAttribute ("farPlane"))

68 w=float (e.getAttribute ("width"))

h=float (e.getAttribute ("heigth"))

70 vOX=float (e.getAttribute ("viewOffsetX"))
vO0Y=float (e.getAttribute("viewOffsetY"))

72 cPu=e.getAttribute ("cameraPosition")

cP=eval (cPu)

74 cUVu=e.getAttribute ("cameralUpVector")

cUV=eval (cUVu)

76 cTu=e.getAttribute ("cameraTarget")

cT=eval (cTu)

78 svViview.setValues (nearPlane=nP, farPlane=fP, width=w, height=h, viewOffsetX=

v0X, viewOffsetY=v0Y, cameraTarget=cT,cameraUpVector=cUV, cameraPosition=cP)

80

B2 HHHHHHHHHHHHBHHBHBHBRBRBRBBRBRBRBHRBRBRBRBRRBRBRARH

81| def setSavedPVarSettings ():

updateVP()

86 OUTPUTPOSITIONS={’U’:NODAL,’S’:INTEGRATION_POINT, ’NT11’:NODAL, ’PEEQ’:
INTEGRATION_POINT,’CF’:NODAL, ’CSHEAR1’:ELEMENT_NODAL,’CSLIP1’:ELEMENT_NODAL,’
PE’:INTEGRATION_POINT,’LE’:INTEGRATION_POINT}

readDoc = xml.dom.minidom.parse(’VideoSettingsl.xml’)

88 try:

theNode = readDoc.getElementsByTagName ("ViewportData_3")

90 ’o

for nex in theNode [0].childNodes:

Appendix B. Rendering Script 121

92 if str(nex.nodeName) == getCurrentPrimaryVariable () [0] and str(mnex.
getAttribute ("type"))==getCurrentPrimaryVariable () [1]:
svVl.odbDisplay.contourOptions.setValues (maxAutoCompute=0FF, maxValue=
float (nex.getAttribute(’max’)), minAutoCompute=0FF, minValue=float (nex.
getAttribute (’min’)))
94 print ’#’*26+°’ DONE ’+’#’%26
96 nex=theNode [0].childNodes [1]
svV1l.odbDisplay.contourOptions.setValues (maxAutoCompute=0FF, maxValue=float (
nex.getAttribute(’max’)), minAutoCompute=0FF, minValue=float(nex.getAttribute
(’min’)))
98
if str(nex.getAttribute("type"))!="" and str(nex.getAttribute("type"))!=>""":
100 try:
session.viewports[session.currentViewportName].odbDisplay.
setPrimaryVariable (variableLabel=str(nex.nodeName), outputPosition=
OUTPUTPOSITIONS [str(nex.nodeName)], refinement=(INVARIANT, str(nex.
getAttribute ("type"))),)
102 except:
session.viewports[session.currentViewportName].odbDisplay.
setPrimaryVariable (variableLabel=str(nex.nodeName), outputPosition=
OUTPUTPOSITIONS [str(nex.nodeName)], refinement=(COMPONENT , str(nex.
getAttribute ("type"))),)
104 else:
session.viewports[session.currentViewportName].odbDisplay.
setPrimaryVariable (variableLabel=str(nex.nodeName), outputPosition=
OUTPUTPOSITIONS [str (nex.nodeName)],)
106 except:
print ’ERROR reading or setting the attributes for the primary Variable’
108
HURHHHBRHH B AR BB RS R B RS H B RS H BB RS SRR SHH B RSB B RS S H R RS S
110
def PrintPngToFile(FileName) :
112 i=1
while os.path.isfile(str(FileName)+repr(i)+’.png’) == True:
114 i+=1
session.pngOptions.setValues (imageSize=QUALITY)
116 session.printToFile(fileName=str (FileName)+repr (i), format=PNG, canvasObjects=(
session.viewports[’Viewport: 1°],))
return i
118
HURHHHBRAAHBRARHBAH BB RARH B AR B RAR BB AR R BB AR BB AR HRAHS
120
def setPrintNotationPositions (legend, state, title):
122 session.graphicsOptions.setValues (backgroundOverride=0FF, translucencyMode=2,
backgroundStyle=SO0LID,backgroundColor="#FFFFFF’)

124

128

130

132

134

136

142

144

146

148

Appendix B. Rendering Script 122

svVl.viewportAnnotationOptions.setValues(statePosition=(1, 22),titlePosition
=(1, 9),triad=0FF,stateBox=0N, stateBackgroundStyle=0THER,
stateBackgroundColor="#FFFFFF’,stateFont=’-*-arial -medium-r-normal
—k—k-80-k—k-—p-k—k-—x,

titleBox=0N, titleBackgroundStyle=0THER, titleBackgroundColor=’#FFFFFF’,
titleFont=’-*-arial -medium-r-normal -*-*-80-*-*-p-*-*-%’, JegendBackgroundStyle
=0THER, legendBackgroundColor=’#FFFFFF’,legendPosition=(1, 98))

if legend == True:
session.viewports[session.currentViewportName].viewportAnnotationOptions.
setValues (legend=0N)

else:
session.viewports[session.currentViewportName].viewportAnnotationOptions.

setValues (legend=0FF)

if state == True:
session.viewports[session.currentViewportName].viewportAnnotationOptions.
setValues (state=0N)

else:
session.viewports[session.currentViewportName].viewportAnnotationOptions.

setValues (state=0FF)

if title == True:
session.viewports[session.currentViewportName].viewportAnnotationOptions.
setValues (title=0N)

else:
session.viewports[session.currentViewportName].viewportAnnotationOptions.

setValues (title=0FF)

HURBHBARARBRARBBARRBRARRBAR R B AR BB AR R B BRR BB RAHHRAHS
HURHBHARARHARRARBRRABRARBRRRRHABRARBRRABHA BB AR AR H
#cleaning old pictures
try:

os.system(’del Vidx.avi’)
except:

os.system(’rm -r Vidx.avi’)

counter = 0

import animation
from abaqusConstants import *

import time

minFrames=5
minStepTime=1e-2

TI=1E-6

;| #scaleFactor=200

for odbName in odbList:

totalFrames=0

Appendix B. Rendering Script 123

160 totalTime=0

162 os.system(’echo ’+odbName)

odb=session.openOdb(path=odbName ,read0nly=TRUE,name=odbName)

164

session.viewports[session.currentViewportName].setValues(displayedObject=None)

166 session.viewports[session.currentViewportName].setValues (displayedObject=o0db)

session.viewports[session.currentViewportName].odbDisplay.display.setValues(
plotState=(CONTOURS_ON_DEF,))

168 setSavedViewportZoom ()

setSavedPVarSettings ()

170 #TEST

#session.viewports[session.currentViewportName].odbDisplay.contourOptions.
setValues (contourType=LINE, tickmarkPlots=0N)

172 session.viewports[session.currentViewportName].odbDisplay.commonOptions.
setValues (visibleEdges=FEATURE) #Possible values are ALL, EXTERIOR, FEATURE,

FREE, and NONE
#

174 setPrintNotationPositions (legend, state, title)

176 for s in odb.steps.keys():
totalFrames+=odb.steps[s].frames.__len__()

178 totalTime+=o0db.steps[s].timePeriod

180 #if odbName == odbList [0]:

maxTime=session.animationController.animationOptions.maxTime
182 # TI = float(getInput(’Enter the timeIncrement (current maxTime for ’+str(

totalFrames)+’ Frames is ’+str(maxTime)+’):’))

184 if totalFrames >= minFrames:

counter+=1

186 session.odbData[odbName].steps[’step-1’].setValues (activateFrames=0FF,)

session.aviOptions.setValues(sizeDefinition=USER_DEFINED, imageSize=QUALITY)

188 session.animationController.animationOptions.setValues(timeIncrement=TI,

timeHistoryMode=TIME_BASED)

session.imageAnimationOptions.setValues (vpDecorations=0N, vpBackground=0FF,

compass=0FF, frameRate=50)

190 session.animationController.setValues (animationType=TIME_HISTORY, viewports=(

>Viewport: 1°,))

session.animationController.play(duration=UNLIMITED)

192 time.sleep (2)

session.aviOptions.setValues (codecOptions=’1[16]:

enfdfgedbiaaaaaaaecaaaaaaelaaaaaa’, compressionQuality=100)

194 session.writeImageAnimation(fileName=str (counter), format=AVI, canvasObjects
=(session.viewports[’Viewport: 1°],))

else:

196 print ’To less Frames in this odb file: %s’ JodbName

print ’odb %s skipped’ %odbName

198

200

204

Appendix B. Rendering Script

124

odb.close ()

file = open(’list.txt’,’w’)

for i in range (0, counter):
file.write(str(i+1)+’.avi\n’)

file.close ()

sys.exit (0)

./Appendices/videoRender.py

[}

10

18

20

Appendix C

Material data

C.1 Workpiece material data

Input file for the workpiece’s material data.

** Stahl Werkstoff JCDN
*Material, name=Werkstoff
*Conductivity
46.,20.
*Density
7.8e-09,
*Elastic
210000., 0.3
*Expansion
1.2e-05,
*Inelastic Heat Fraction
0.9,
*Plastic, hardening=JO0HNSON COOK
400., 340., 0.15, 1.,15620., 20.
*Rate Dependent, type=JOHNSON COOK
0.01, 0.001
*Specific Heat
4.76e+08,
*User Output Variables

2,

./Appendices/ WorkpieceData.inp

125

Appendix C. MaterialData 126

C.2 Tool material data

Input file for the tool’s material data.

10

14

24

28

40

44

**x Werkzeug

* %

*Material,

name=Werkzeug

*Conductivity

95.1, 25.2

85.2, 250.9

77.8, 504.

74.6, 603.4

71.4, 702.4

68.2, 801.8

66.3, 901.5

65.4, 1001.4
*Density

1.498e-08,
*Elastic
599000., 0.227, 25.
596000., 0.234, 100.
591000., 0.238, 200.
586000., 0.231, 300.
579000., 0.226, 400.
573000., 0.239, 500.
567000., 0.231, 600.
560000., 0.234, 700.
552000., 0.23, 800.
536000., 0.23, 900.
514000., 0.23, 1000.
485000., 0.23, 1100.
*Expansion, zero=291.
4.17e-06, 80.

4.3e-06, 100.
4.42e-06, 150.
4.55e-06, 200.
4.67e-06, 250.
4.77e-06, 300.
4.85e-06, 350.
4.95e-06, 400.
5.03e-06, 450.

5.1e-06, 500.
5.16e-06, 550.
5.21e-06, 600.
5.27e-06, 650.
5.32e-06, 700.
5.38e-06, 750.
5.43e-06, 800.

16

60

64

66

68

70

~
%}

76

80

84

88

90

Appendix C. MaterialData

127

.48e-06, 850.

.55e-06, 900.

.64e-06, 950.

.71e-06,1000.

.78e-06,1050.

.94e-06,1150.

.02e-06,1200.

.09e-06,1250.

.14e-06,1300.

*

*Plastic

62.876,
125.752,
188.628,
251.504,

314.38,
377.256,
440.132,
503.008,
565.884,

628.76,
691.636,
754.512,
817.388,
880.264,

943.14,
1006.02,
1068.89,
1131.77,
1194.64,
1257.52,

1320.4,
1383.27,
1446.15,
165609.02,

1571.9,
1634.78,
1697.65,
1760.53,

1823.4,
1886.28,
1949.16,
2012.03,
2074.91,
2137.78,
2200.66,

5
5
5
5
5
5.85e-06,1100.
5
6
6
6
I

nelastic Heat Fraction

0.9,

0.
.0002333
.0003499
.0004665
.0005831
.0006997
.0008163
.0009328
.0010494
.0011659
.0012824
.0013989
.0015155
.0016319
.0017484
.0018649
.0019813
.0020978
.0022146
.0023575
.0025177
.0026804
.0028447
.0030107
.0031785
.0033484

O o o o o o o

.0035205
0.003695
0.0038721
0.0040521
0.0042353
0.0044219
0.0046124

0.004807
0.0050064

94

96

98

100

102

106

108

110

116

120

126

130

134

136

140

Appendix C. MaterialData

128

2263.
2326.
2389.
2452.

2515
2577
2640

2703.
2766.
2829.

54,
41,
29,
17,

.04,
.92,
.79,

67,
55,
42,

2892.3,

2955.
3018.
3080.

17,
05,
93,

3143.8,

3206
3269

3332.

3395

3458.

3521

3583.
3646 .
3709.
3772.

3835
3898

3961.
4024.
4086 .
4149.
4212.

4275

4338.

4401

.68,
.55,

43,

.31,

18,

.06,

93,
81,
69,
56,

.44,
.31,

19,
07,
94,
82,
69,

.57,

45,

.32,

4464.2,

4527

4589.
4652.

4715

4778.

4841

4904.
4967 .
5030.

5093
5155

5218.

.08,

97,
87,

.75,

63,

.51,

39,
26,
14,

.01,
.88,

76,

0.0052111
0.0054217

0.005639
0.0058641
0.006098
.0063421
.0065982
.0068685
.0071556
.0074631
.0077956
.0081588
.0085605

O O O O O O o o o

.0090106
0.009522
0.0101103
0.010793
.0115879
.0125099
.0135712
.0147843
.0161681
.0177551
.0195992

0
0
0
0
0
0
0
0.0217889
0.0244712
0.0279002
0.0325359
0.0391978
0.0489592
0.0619803
0.0769483
0.0926595
0.108551
0.124388
0.14006
0.155507
0.170695
0.185599
0.200207
0.214511
0.22851
242208
255615

.281604

0.

0.
0.268741
0
0.294218
0

.306601

144

148

158

160

162

164

166

168

[}

10

Appendix C. MaterialData

129

5281.
5344
5407.
5470.
5533.
5595
5658
5721
5784.
5847.
5910.
5973.
6036 .
6098.
6161
6224
6287

.99,
.87,
.74,

.86,
.74,
.61,

63, O
.5, 0
37, 0
26, 0
12, 0.
0
0
0

61, 0
49, 0.
36, O.
24, 0
11,
99,

o o o o o

9500. ,

*Specific Hea

2e+08, 2

N ONONNNN

.4e+08, 25
.7e+08, 5
.7e+08, 60
.8e+08, 70
.8e+08, 80
.9e+08, 90

3e+08, 100

* %

.31877

.330742
.342533
.354157

365628

.376959
.388162
.399245

.41022
421094
431875

. 44257

.453187
.463729
.474203
.484614
.494966

1.
t
5.2
0.9
04.
3.
2.
1.
1.

[SENS I B IS

1.

./Appendices/ToolData.inp

C.3 Hard inclusion material data

Input file for the hard inclusion’s material data.

**% Hard inclusion

*Material,

*Conductivity

95.1,
85.2,
77.8,
74.
71.
68.
66 .

25.2
250.9

504.
603.4
702.4
801.8
901.5

name=Inclusion

14

40

44

Appendix C. MaterialData

130

65.4, 1001.4
*Density

1.8e-08,
*Elastic
400000., 0.2
*Expansion, zero=291.
4.17e-06, 80.
4.3e-06, 100.
.42e-06, 150.
.65e-06, 200.
.67e-06, 250.
.77e-06, 300.
.85e-06, 350.
.95e-06, 400.

5 I NN SN

.03e-06, 450.
5.1e-06, 500.
5.16e-06, 550.
5.21e-06, 600.
5.27e-06, 650.
.32e-06, 700.
.38e-06, 750.
.43e-06, 800.
.48e-06, 850.
.56e-06, 900.
.64e-06, 950.

5

5

5

5

5

5
5.71e-06,1000.
5.78e-06,1050.
5.85e-06,1100.
5.94e-06,1150.
6.02e-06,1200.
6.09e-06,1250.
6.14e-06,1300.
I

*Inelastic Heat Fraction
0.9,

*Plastic

2e+12,0.

le+13,1.
*Specific Heat

2e+08, 25.2
.4e+08, 250.9
.7e+08, 504.
.7e+08, 603.
.8e+08, 702.
.8e+08, 801.

NN NNNN

.9e+08, 901.

S - T NN

3e+08, 1001.

./Appendices/HardIncData.inp

N

10

16

20

N
N

24

30

36

40

Appendix C. MaterialData 131

C.4 Graphite material data

Input file for the graphite’s material data.

** Graphite inclusion
*Material, name=Inclusion
*Conductivity
80., 0.
240.,100.
*Density
2.2e-08,
*Elastic
150000., 0.3
*Expansion, zero=291.
4.17e-06, 80.
4.3e-06, 100.
4.42e-06, 150.
.55e-06, 200.
.67e-06, 250.
.77e-06, 300.
.85e-06, 350.
.95e-06, 400.

[N NN

.03e-06, 450.
5.1e-06, 500.
5.16e-06, 550.
5.21e-06, 600.
5.27e-06, 650.
.32e-06, 700.
.38e-06, 750.
.43e-06, 800.
.48e-06, 850.
.55e-06, 900.
.64e-06, 950.

5

5

5

5

5

5
5.71e-06,1000.
5.78e-06,1050.
5.85e-06,1100.
5.94e-06,1150.
6.02e-06,1200.
6.09e-06,1250.
6.14e-06,1300.

*Inelastic Heat Fraction

0.9,
*Plastic
103.,0.

*Specific Heat

7.12e+08,

./Appendices/GraphiteData.inp

