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Kurzfassung 

 

Gestängetiefpumpen ist das am häufigsten verwendete künstliche Förderverfahren zur 

Steigerung der Ölproduktion. Um einen guten Betrieb dieses Systems zu gewährleisten, ist 

eine kontinuierliche Überwachung der Arbeitsbedingungen unerlässlich, um ein akzeptables 

Produktivitätsniveau aufrechtzuerhalten. Das wertvollste Werkzeug zur Analyse der Leistung 

des Gestängetiefpumpen ist die Dynamometerkarte. Die Interpretation solcher Karten ist 

jedoch zeitaufwändig und erfordert das Wissen eines erfahrenen Experten. Ein neuer Trend 

kam hinzu und löste das Problem der Abhängigkeit von Zeit und menschlichem Fachwissen. 

Bei diesem Trend handelt es sich beispielsweise um Künstliche Neuronale Netze (ANN). 

In dieser Arbeit werden zwei Arten von ANN verwendet, die erste ist das Back Propagation 

Neural Network (BPNN), der als traditionell betrachtet wird, da es vor dem Einsatz zum 

Extrahieren von Merkmalen eine Merkmalsextraktion erfordert, und der zweite ist das 

Convontional Neural Network (CNN), das Bilddaten direkt verwenden kann, ohne sie vor 

dem Training zu verarbeiten. Beide Netzwerke verwenden 6132 Dynamometerkarten, die für 

BPNN wie folgt verarbeitet werden müssen; Jede Dynamometer-Karte, die durch eine in 

einem PNG-Format gespeicherte Bilddatei dargestellt wird, wurde als ein Satz von (x, y) -

Werten vorbereitet, die dann in einen Satz elliptischer Fourier-Deskriptoren umgewandelt 

werden, die die gesamte Karte vollständig beschreiben. Nach der Datenaufbereitung wurden 

die beiden Klassifizierungsmodelle für das maschinelle Lernen erstellt, mit Präzision und 

Rückruf sowie mit einer Verwirrungsmatrix und einem F1-Score bewertet und durch 

Kreuzvalidierung getestet. 

Die vorgeschlagenen Modelle werden unter Verwendung von Daten der realen 

Felddynamometerkarten trainiert und getestet. Etwa 30% dieser Karten stehen für einen 

normalen Pumpzustand der Gestängetiefpumpen und 70% für Funktionsstörungen. Die 

Daten enthalten insgesamt fünf verschiedene Pumpenzustände, Pumpe aus, Gasinterferenz, 

Leckage des Fahrventils, Auftreffen der Pumpe oben und normaler Pumpenzustand. Für das 

Training wurde der Datensatz in verschiedene Untersätze aufgeteilt, 80% der Daten wurden 

für das Training und 20% für das Testen verwendet. Sowohl das CNN als auch das BPNN 

lieferten sehr gute Ergebnisse. 

Diese Studie ist ein ursprünglicher Beitrag zu den automatischen Untersuchungen der 

Dynamometerkarten und der genauen und schnellen Erkennung von Ausfällen der 

Gestängetiefpumpen. 
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Abstract  

 

Sucker rod pumping is the most frequently used artificial lift method for boosting oil 

production. To insure a good operation of this system, a continuous monitoring of its working 

conditions is essential to maintain acceptable productivity levels.  The most valuable tool for 

analyzing the rod pumping system performance is the dynamometer card. However, the 

interpretation of such cards is time consuming and requires the knowledge of an experienced 

person.  A new trend came along and solved the problem of time and human expertise 

dependency. This trend is in instance artificial neural networks (ANN). 

 

In this work two types of ANN are used, the first one is the back propagation neural network 

(BPNN) which is considered traditional as it requires feature extraction from the data before 

using it for data learning and the second one is the convolutional neural network (CNN) 

which is able to use image data directly without processing it prior to training. Both networks 

use 6132 dynamometer cards which for BPNN requires processing as follows; each 

dynamometer card, which is represented by an image file stored in a PNG format, was 

prepared as a set of (x,y) values which are then converted into a set of Elliptic Fourier 

Descriptors which fully describe the whole card. After performing the data preparation, the 

two machine learning classification models were created, evaluated using precision and 

recall as well as confusion matrix and F1-score and tested by use of cross validation.  

 

The proposed models are trained and tested by using real field dynamometer cards data. 

About 30% of these cards represent normal sucker rod pumping condition and 70% 

represent malfunctions. The data contain in total five different pump states, pump off, gas 

interference, travelling valve leak, pump hitting on top and normal pump condition. For 

training the dataset was separated into different sub-sets, 80% of the data were used for 

training and 20% for testing.  The CNN as well as the BPNN produced very good results. 

 

This study is an original contribution to the automatically investigations of the dynamometer 

cards and the accurate and quick recognition of the rod pumping systems failures. 
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1 Introduction 

 

Artificial lift techniques are widely applied in oil industry to improve a well production 

performance. Although there are several artificial lift methods in the industry (such as 

Gas Lift, Electric Submersible Pump, Progressive Cavity Pump and Sucker Rod Pumps), 

The most commonly applied artificial lift technique is the sucker rod pump system with 

approximately 85% of the lifted wells worldwide. Figure1 shows this fact. 

 

 
 

Figure 1: Usage of Artificial Lift Systems Worldwide [18] 

Sucker rod pump failures can drastically reduce a well production capacity and can 

significantly increase the lifting costs. Hence, as soon as an anomaly is detected, proactive 

repair actions have to be scheduled as soon as possible to improve the system efficiency. 

The most popular evaluation tool used in the oil industry for the sucker rod pump system is 

the downhole dynamometer card which is a closed plot that displays the polished rod load 

versus the plunger displacement. The diagnosis of the system condition is done by 

interpreting the shape of the pump card. For example, when the pump is functioning 

properly, the card will have a rectangular shape and when a failure takes place, the pump 

card takes another representative shape. However, a continuous visualization of the pump 

card by an expert is both time consuming and prone to human mistakes. The pump card can 

be analyzed automatically by digital image classification. Recently, artificial intelligence 

technologies have been involved extensively in the automation of remote sensing 

applications. ANN (Artificial neural network) technology is applied widely in the classification 

process of remotely sensed image data. By the application of this approach, the system 

performance can be significantly improved by adjusting its operating parameters in the right 

time or by scheduling an early maintenance to reduce downtime. (Marco A. D. Bezerra, 

Leizer Schnitman, M. de A. Barreto Filho 2009)                                                                                     

The aim of this work is to investigate a set of five anomaly classes by analyzing their 

corresponding dynamometer cards, using two different types of Artificial Neural Networks, 

the first one is called the back propagation neural network (BPNN) and the second one is 

called the convolutional neural network (CNN).  
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2 Sucker Rod pump System Fundamentals  

At oil well early stages, the well is flowing naturally without any external support and the well 

is called a flowing well. (Numerical simulation of the sucker-rod pumping system 2014) 

However, after certain time, the reservoir drive energy is diminished at a point that the well is 

not able to lift fluids to the surface. At this point, an external support must be introduced to 

compensate for the well production losses, and it can be particularly an artificial lift method. 

One of these methods is a sucker rod pumping system. The history of sucker rod pump 

started with the use of wooden walking beams with a cable tool that lift and drop the drilling 

bit to drill wells. When a well stops to flow naturally, revitalizing it was quite simple; the 

previous drilling unit is slightly modified, and the drilling bit is replaced by a plunger. This 

lifting unit was driven by steam power. The wooden walking beam, cable tool and plunger 

combination launched the sucker rod pump history. Nowadays, sucker rod pumps work 

based on the same previous principle but does not rely on wooden walking beam and steam 

power Analyzing this system primarily requires an understanding of its working principle, its 

components, affecting parameters, vulnerabilities and its monitoring techniques. (Takács 

2003) 

 Working principle  2.1

 The sucker rod pump working principle is described by a pumping cycle that has two 

strokes, the upward stroke and the downward stroke, which are illustrated by Figure 2. 

At the beginning of the upward stroke and after the plunger has reached its lowermost 

position (Bottom Dead Center), the travelling valve closes by the high fluid hydrostatic 

pressure in the tubing above it. At the same time, the barrel pressure drops, and it is 

exceeded by the pump intake pressure, as a result the standing valve opens. Fluid from the 

formation flows into the barrel through it and at the same time fluid in the tubing above the 

travelling valve is lifted to the surface. This continues until the end of the upward stroke. 

During this stroke, the full weight of the liquid column in the tubing string is carried by the 

plunger and rod string connected to it. (Takács 2003) 

By the start of the downward stroke, the plunger is at its uppermost position (Top Dead 

Center). The travelling valve is closed, and the standing valve closes when formation fluid 

stops flowing to the barrel by the influence of the fluid column weight. When the plunger 

moves downward and emerges into the fluid inside the barrel, the travelling valve opens, and 

the liquid weight is transferred from the plunger to the standing valve. At the end of the 

upstroke, the rod string movement direction is reversed, and another pumping cycle begins. 

(Takács 2003) 
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Figure 2: Sucker rod pump working principle [26, p. 62]
 

 Sucker rod pump structure 2.2

A typical conventional sucker rod pump structure is shown in Figure 3. The system can be 

divided into three main sections: the surface components, the downhole pump components, 

and the sucker rod string.  

 

Figure 3: Sucker rod pump system structure [18] 



Chapter 2 – Sucker Rod Pump System Fundamentals 4 
     

 

  

 Surface components  2.2.1

The elementary surface components of a sucker rod pump are the prime move, the gearbox, 

the pumping unit and the wellhead assembly. (Rod pumping overview 2018) 

1. Prime mover 

The prime mover provides the driving power to the system and it can be an electric motor or 

an internal combustion engine which is generally a gas engine. If there is gas available, it is 

more convenient to use a gas engine although the investment cost of such an engine is 

higher than that of an electric motor since electricity costs are constantly increasing. 

However, most sucker rod pumps are driven by an electric motor with three phase power 

supply (460 volts and 60 Hz), this popularity of electric motors is due to their relatively 

moderate cost with easy monitoring and control as well as their flexibility for automatic 

processes.  

2. Gear reducer 

The gear reducer is an essential component in the pumping unit, and it represents about 50 

percent of the pumping unit investment cost. It reduces the high rotational speed of the prime 

mover to the required pumping speed, and simultaneously, increases the available output 

torque to fit the required loads.  

3. Pumping unit 

The pumping unit provides a mechanical link between the gearbox and the downhole pump 

at the horsehead and transforms the rotary motion of the first part into a reciprocating motion 

required to move the rod string upward and downward. Its preliminary components are:     

 The horsehead which transmits walking beam forces to the bridle.  

 The walking beam which by means of the equalizer is connected to the pitman and it 

works on the principle of a mechanical lever.  

 The crank arm which rotates synchronously with the gearbox slow-speed shaft 

rotation. 

 The pitman which links the crank arm to the walking beam. 

4. Wellhead assembly 

A typical wellhead assembly consists of: 

 The Polished rod which connects the walking beam to the sucker-rod string, transfer 

the pumping loads to the surface pumping unit and ensures a sealing surface at the 

wellhead to keep well fluids in the well. It holds the dynamometer survey as well. 

 The stuffing box which seals on the polished rod. 

 The flowline in which the produced fluid as well as the separated casing-annulus gas 

are discharged. 

 The pumping tee which directs the produced fluids into the flowline. 

 The check valve which prevent the produced fluid from flowing back from the flowline 

to the well.  
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 The casing vent line which is connected to the flowline and enables the casing-tubing 

annulus gas to be directed to the flowline. 

 Subsurface pump  2.2.2

The subsurface pump is mainly composed of a pump barrel, a pump plunger and two 

working valves. It can be equipped with auxiliary equipment such as valve cages. 

1. Pump barrel  

A pump barrel is a one-peace hollow tube with threads on both sides. A ball valve, called 

standing valve, which acts as a suction valve for the pump and through which well fluids 

enter the pump barrel during upstroke is coupled to it. 

2. Pump plunger 

A pump plunger is a moving part which is connected to the rod string and houses a ball 

valve, called travelling valve, which during the upstroke, lifts the liquid contained in the 

tubing. 

3. Pump valves  

They are two valves: one travelling valve which opens during downstroke to receive fluid and 

closes during upstroke to carry fluid to the surface and one standing valve which opens 

during upstroke to receive fluid formation and closes during downstroke to keep fluid within 

the barrel.  

4. Valve cages  

It is an auxiliary equipment to be set on the travelling or standing valve and it controls the 

lateral and vertical valves movement, meaning that the valve is not capable of moving off its 

central pathway. As a result, pump valves are prevented from hitting their respective valve 

seat and a wear both for the ball and seat is prevented. 

 Sucker rod string  2.2.3

The sucker rod string is the backbone of the sucker rod pumping string, it is the mechanical 

link between the surface driving equipment and the bottom hole pump. It is mainly composed 

of individual sucker rods and rod joints. It may be also equipped with auxiliary components 

such as rod guides and sinker bars. (Takács 2015) 

1. Sucker rods 

They are individual rods that are connected to each other until the pumping depth is reached. 

Rods could be made of steel or fiberglass.  The major types of steel rods are continuous 

rods; hallow rods, rod tubes or flexible rods. In general, steel rods have some disadvantage 

such as a heavy weight which increases the surface power requirements and limits the 

pumping depth; steel rods are also susceptible to corrosion. That is why they are normally 

heat-treated during manufacturing to increase their corrosion resistance. However, 

Fiberglass rods overcome the previous disadvantages since they have much lighter weight 

which will decrease the energy costs and may demand of a smaller pumping unit.  
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They have also an inherently high corrosion resistance which reduces the workover costs. 

However, fiberglass rods have some drawbacks such as the temperature limitations, the low 

mechanical damage resistance and the high investment cost compared to steel rods. 

2. Rod joints 

They are connections that ensure the rod string integrity. They are mainly composed of pins 

and couplings which are prone to material fatigue caused by load fluctuations during 

pumping operation. This demand a proper rod makeup to insure a high resistant joint against 

repeated loading and unloading  

3. Rod guides  

They are small equipment attached to the rod string in different positions and they have 

many benefits; they centralize the rod string which decreases the material fatigue and 

prevent the friction, wear and rod-tubing contact. It can also be used with rod rotators to 

clean the tubing from paraffin accumulation. Rod guides are normally made of strong plastic 

materials which make it a corrosion resistant. 

4. Sinker bars 

They are simply heavy sections of steel rods that are connected both to the rod string lower 

section and the upper bottomhole pump extremity. Their function is to increase the rod load 

which boosts the pumping rate. They are also used to prevent the rod lower part bucking 

during the downstroke as well as eliminating excessive compressive loads on the rod string. 

 Sucker rod pump monitoring 2.3

The most common and valuable tool to assess the sucker rod pump performance is 

analyzing dynamometer cards. In addition, well testing is used to evaluate the well inflow 

performance, echo-meters are addressed to find the annular casing-tubing fluid level by 

means of acoustic waves and pump valves check test is used to ensure proper pumping 

operation.  

 Dynamometers                                     2.3.1

The dynamometer is an instrument that records rod loads versus the rod displacement or the 

pumping time and results in a closed load-travel diagram.  Since the loads registered by the 

dynamometer represents the pumping system overall acting forces, this is a valuable mean 

to evaluate the downhole pump as well as the surface pumping unit operation. Therefore, it is 

possible to detect and analyse the different pumping system failures which allow for 

production optimization and decision on a workover necessity, it is also possible to assess 

the prime mover energy requirements and reduce the overall lifting costs, it also allows for 

the pumping unit adjustment in terms of counterbalance. Dynamometer surveys can mainly 

be classified into surface dynamometers and downhole dynamometers.  (Takács 2015) 
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 Fluid level monitoring  2.3.2

 

The most common method to locate the casing tubing fluid level is the echo meter or echo 

sounder. It sends an acoustic pressure wave that travels down along the tubing casing 

annulus column to the Fluid Level by generating an Acoustic Pressure Pulse that travels 

down the well, reflects off every depth where it encounters a cross sectional change caused 

by tubing collars, well fluids, casing liners, perforations,…., The reflected sound waves are 

picked up, recorded and converted to electrical signals by an internal microphone  inside the 

fluid gun recorded on a paper or by electronic means. The plot of the acoustic reflection is 

called the acoustic trace as showed in figure 3. An evaluation of the reflected signals reveals 

the fluid level inside the tubing casing annulus. The further time taken by the wave to be 

reflected to the surface, the deeper the fluid level is. The determination of the fluid level is as 

follows: either by counting the collar signals above the fluid level and then related to the well 

records or by means of both reflection time and wave acoustic velocity as eq.1 [27, p. 472] 

states:   

  
      

 
                                                     (1) 

Where:    is the wave reflection time in s,    is the wave acoustic velocity in ft/s and   is the 

fluid level in ft. 

Determining the fluid level in the tubing casing annulus; other than assessing the well 

performance, it allows for the quantification of the amount of pumpable liquid above the 

pump and the bottomhole pressure. Figure 4 presents an example of a fluid level trace as 

showed in echo meter’s software.  Every local peak reflects tubing colors, casing colors, 

perforations...  The red "C" line represents the last collar depth and eventually the "LL" line 

which is situated just before the triangle shape display indicates the fluid level within the 

casing-tubing annulus. (Downhole Diagnostics 2018) 

 

 

Figure 4: An echo-meter fluid level trace [6]
 

 Production testing  2.3.3

Sucker rod pump production rates calculation is crucial for the well inflow performance 

behavior analysis. This is accomplished directly either by liquid rates measurements with 

gauges in tanks or using lease automatic custody transfer (LACT) or indirectly using the 

downhole pump card which delivers the plunger effective stroke length.  
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As eq2 [27, p. 472] states, multiplying the plunger effective stroke length by the plunger 

cross sectional area will deliver the produced fluid volume during one pumping cycle. 

(Takács 2015) 

                                                          (2) 

Where:     is a one pumping cycle fluid volume,     is the plunger cross sectional area   and 

    is the plunger effective stroke length.  Any stroke length loss for example due to tubing 

stretch or pump leakage must be considered in the effective stroke length determination.    

 Pump valves condition check  2.3.4

Proper sucker rod pump operation is directly affected by the condition of the standing and the 

traveling valves. Both valves operation depends on a proper seal between their seats and 

balls. However, due to mechanical damage, corrosion, or other operational problems, a valve 

ball and seat seal can be easily damaged.  Therefore, it is crucial to frequently check the 

condition of the pump valves by means of a dynamometer. 

 

The standing valve test 

 

The standing valve test is used to check the standing valve condition for leaks, and it is 

performed with a dynamometer which is placed on the polished rod. First, the pumping unit is 

stopped during a pumping cycle downstroke (at about three-quarters of the way down). At 

this point, the dynamometer measures the actual polished rod load while the standing valve 

is closed, and the traveling valve is open. Since liquid load is fully carried by the standing 

valve, the recorded polished rod load represents the buoyant weight of the rod string only. If 

the standing valve has no anomalies, the polished rod load remains steady when repeating 

the record and in case the standing valve is leaking, pressure below the traveling valve will 

be progressively reduced and slowly the travelling valve will close. A part of the load which 

was initially carried by the standing valve is transferred to the travelling valve which will lead 

to an increase in the polished rod load. The rate of load increase shows the severity of the 

standing valve leak condition. (Takács 2015) 

 

The traveling valve test 

 

The TV test is done with the same arrangement as the standing valve test but with a 

pumping unit stopped on the upstroke (near the top of the stroke). When the pumping unit is 

stopped, the dynamometer records the polished rod load while the traveling valve is closed, 

and the standing valve is open. The recorded polished rod load represents the sum of the 

rod string weight in well fluids and the fluid load acting on the plunger. The standing valve is 

open and carries no load.  If the traveling valve is working properly, then the polished rod 

load will not change with time and if it is leaking, the pressure between the two valves will 

increase progressively and the standing valve will close eventually. Fluid load which was 

carried by the plunger and the rod string will be transferred to the standing valve and the 

tubing. This is deduced when the new polished rod load is always higher than the load 

measured later. The rate of load decrease is an indication of the traveling valve leaking 

severity. (Takács 2015) 
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 Sucker rod pump failures  2.4

Any equipment failure is defined as an undesired event in which the equipment performance 

is not meeting the target expectation any longer. In other words, an equipment fails when it 

becomes unable to perform its intended task or function properly or when it stops completely 

working. A failure can be caused by a single sudden event or by a progressive event or by a 

combination of dependent events. For the case of sucker rod pump, failures can happen 

easily progressively and seamlessly, and the consequences are tough which in worst cases 

demand a workover rig for downhole equipment servicing which is time and cost consuming. 

That is why failure analysis and detection are the first step to work on failures prevention. 

Before digging into analyzing the different failures that can affect a rod pumping system, it is 

convenient to point out our system vulnerabilities. 

 Sucker rod pump vulnerabilities  2.4.1

Despite its wide range of applications, its relatively high efficiency (50 to 75 percent) and its 

constant development, the sucker rod pump system suffers from several limitations (Takács 

2003), the most important ones are as follows: 

 Operating pumping depth which cannot exceed 16.000 ft, due to the limited 

mechanical strength of the rod string because of the high weight of the steel rods. 

 Maximum operating pumping capacity which is 6000 bpd. 

 Deviated wells present a problem as well since friction of metal parts can create 

mechanical damage both for tubing and rod string. 

 Free gas at pump intake is detrimental to the pump production capacity and reduces 

the pump volumetric efficiency. 

 Corrosion which is generated by the contact of the steel material and the produced 

fluids that might contain chloride, sulfide, oxygen… dissolved in it, and this is 

destructive to the material and may lead to mechanical damage. 

 Sand and abrasive particles carried with the formation fluid stream which causes a 

rapid abrasive wear of the barrel, plunger and valves. 

 Paraffin deposition which restricts the well production and difficult to be removed.  

 

 

 

 

 

 

 



Chapter 2 – Sucker Rod Pump System Fundamentals 10 
     

 

  

 Failures analysis 2.4.2

Diagnosing the sucker rod pump failure ontology need to be precise and accurate and 

requires including all contributors to a given failure. To do so, it is convenient to construct a 

so-called fault tree which is a diagram that illustrate the relationship among different failures 

with its corresponding causes and which might include several levels, meaning that the 

previously mentioned contributors can be on their turn the consequence other contributors.  

 Fault tree analysis definition  2.4.2.1

Fault tree analysis is a deductive procedure which analyses an undesired event and causes 

contributors using a top-down workflow and Boolean logic to evaluate a failure history and to 

understand a system failure hierarchy. The main purpose of the fault tree analysis is to 

identify failure contributors before the failure occurrence. The construction of the fault tree 

results in a logic diagram that shows all the possible contributors to an undesired event. The 

major undesired event is at the top. In our case, it is the sucker rod pump failures which are 

divided into four major categories. The logical analysis is backward from top to below. Each 

input event has an output event which by itself can be an input that generates further output 

events. The logic process continues until the generated output event is an independent or 

undeveloped event that has no contributors, or its causes are not yet recognized. (Wikipedia 

2019b) 

 Fault tree failure analysis representation  2.4.2.2

Sucker rod pump failures are mainly divided into four groups: pumping unit failures, sucker 

rod string failure, tubing failure and the subsurface pump failure. It is convenient to construct 

their four representative fault trees. (ZHANYU GE 1998) 
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 Pumping unit failure  

 

Figure 5: Sucker rod pumping unit failure fault tree representation [34, p. 111]
 

 Tubing failure 

 

Figure 6: Sucker rod pump tubing failures fault tree representation [34, p. 112] 
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 Rod string failure 

 

Figure 7: Sucker rod pump rod string failures fault tree representation [34, p. 113]
 

 Subsurface pump failure 

 

Figure 8: Sucker rod subsurface pump failures fault tree representation [24, p. 114]
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 Failures detection 2.4.3

The most reliable and widely used method for the sucker rod pump failures detection is the 

analysis of the dynamometer cards. As many failures are characterized by a typical card 

shape, it is straightforward to detect a problem if it is correctly reflected on the dynamometer 

screen. As mentioned before, conventional hydraulic and mechanical dynamometers require 

the transformation of the pump card from surface to subsurface while electronic 

dynamometers directly display the subsurface card.  

 Dynamometer cards  2.4.3.1

Before listing the different dynamometer cards, it is convenient to have an idea how to read 

such cards. Figure 9 represents a dynamometer card schematic. 

 Pump card interpretation 

 

Figure 9: Reference pump card [26, p. 333] 

At point 1, the plunger is at the bottom and the two valves are closed. Between 1 and 2, the 

plunger starts to be lifted by the beginning of the upstroke and take all the fluid load   . At 

point 2, the standing valve opens to allow the entrance of the formation fluid to the pump. 

From 2 to 3, the upstroke is still taking place and rods carry the full load   . At point 3, the 

standing valve closes as the plunger stop going further from the barrel and the downstroke 

begins. Between3 and 4, the plunger starts to move downwards and the fluid load    is 

transferred from the rod string to the tubing. At this point, unanchored tubing will stretch. At 4, 

the travelling valve opens when the barrel pressure exceeds the pump displacement 

pressure. From 4 to 1, the barrel fluid is discharged into the plunger until the downstroke is 

finished and new pumping cycle begins at point1. (Sucker rod pumping short course 2018) 
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 Typical Pump cards 

The following table displays the major and common dynamometer cards. 

Table 1: Typical pump cards [27, p. 489] 

Failure Explanation Dynamometer card shape 

                         

Healthy pump 

                                                                  

The pump is working properly. 
 

Unanchored 

tubing 

                                                                

The tubing stretches which 

decreases the stroke length. 
 

 

Gas 

interference 

 

The barrel is filled with both 

liquid and gas. The pump is 

partially filled, and the intake 

pressure gets higher.  

 

Gas locked 

pump 

                                                                

The barrel is totally filled with 

gas. Both valves remain 

closed and the production 

stops.  

 

Fluid pound 

                                                                    

The pumping rate is higher 

than the formation production 

rate. The Pump is 

incompletely filled during 

upstroke. 

 

 

Choked pump 

                                                             

The pump intake is plugged 

and the flow through the SV is 

zero or less than the plunger 

displacement.  

 

Leaking 

standing valve 

                                                                 

This results in a premature 

loading at the beginning of the 

upstroke and in a delayed 

unloading at start of the 

downstroke.  
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Leaking 

travelling valve 

                                                                

This results in a delayed fluid 

picking up and in a premature 

unloading.  

                              

Worn out pump  

                                                                 

Both the SV and TV, plunger 

and barrel are worn out. 
 

                                      

Friction 

                                                                    

An excessive friction along the 

rod string which can be 

caused by a too viscous fluid 

and high pumping speed.  

 

Plunger tagging  

                                                                     

The Plunger is hitting on top 

or bottom. This is due to 

improper pump spacing or a 

non-suitable stroke length.  

 

Sticking 

plunger 

                                                                 

The plunger is stuck at some 

position along the well and the 

load spike shows where the 

plunger has stopped.   

 

Bent or sticking 

barrel 

                                                                 

The barrel is defected at some 

position. When the plunger 

reaches this section on the 

upstroke, the rod load 

increases and vice versa on 

the downstroke.  

 

Worn or split 

barrel 

                                                                  

The barrel is defected at some 

point. When the plunger 

reaches this section on the 

upstroke, the rod load 

decreases.  

 

Delayed TV 

closing 

 

The TV does not seat when 

the upstroke begins. 
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Hole in barrel or 

plunger pulling 

out of the barrel 

 

The load decreases as the 

plunger reaches the barrel 

hole. 

 

 

 

 Fluid level monitoring  2.4.3.2

The fluid level monitoring has numerous applications. The most important and common ones 

are: 

1. If the fluid level is low:  it means that the intake pressure is low, and the well is pumped off, 

actions to be taken are dropping the pump seating depth, reducing the SPM, or verifying 

that the run-time is properly calibrated, so the pump is not pounding fluid. 

2. If the fluid-level is high:  the pump efficiency is low. It might be time to increase the pumping 

capacity. Additionally, the high fluid level might be an indication that the corrosion inhibition 

is not working properly. 

3. Fluid level determination also helps in finding casing leaks, whether that knowledge comes 

from an abnormally high fluid level or a high anomalous up-kick on the Fluid Level Trace 

(indicating a potential hole). (Downhole Diagnostics 2018)  
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3 Sucker Rod Pump System Surveillance  

Sucker rod pump surveillance is performed by a process control system which allows for 

remotely tracking the well and equipment parameters that reveal the overall system 

performance. This process control system is constituted of three functional groups that 

communicate with each other. The first group performs the sensing activities which are 

performed by sensors and actuators. For the sucker rod system, the most important sensors 

are the rod load and the rod position sensor. The second group is mainly the pump off 

control system and the third group oversees operator control and supervisory control as well 

as alarming. The core of this group is SCADA system which creates an interface between 

the control device and the operator.  

 Group1: sensing function 3.1

As mentioned earlier, rod pump parameters sensing is about measuring the performance 

relevant parameters of our system such as, the rod load, the rod position, the wellhead and 

casing pressure and temperature, the fluid flow rate…  Only the rod load and the rod position 

measurements will be described as they are specific to the rod pump system.  

 Rod Load measurement 3.1.1

The rod load can be measured by a mechanical, hydraulic or electronic dynamometer. 

1. Mechanical measuring device 

Its essential component is a steel ring which is placed between the carrier bar and the 

polished rod clamp and which fully support the polished rod load. The resulting ring’s 

deflection is recorded on an attached paper to a rotating drum. Since the rotation of the drum 

is controlled by the polished rod’s vertical movement and the deflection of the steel ring is 

proportionally related to the polished rod load, the traced record represents the polished rod 

load against its displacement. The major disadvantage of this device is the need to stop the 

pumping unit before the steel ring is installed on the polished rod. (Anthony Allison 2015) 

2. Hydraulic measuring device 

Opposed to the mechanical device, the hydraulic load measuring device can be installed 

without the need to stop the pumping unit. The dynamometer is composed of two load-

sensing hydraulic pistons positioned between the shoulder of the spacer and the carrier bar. 

First, hydraulic pressure is applied to the pistons. Pistons lift the spacer off the carrier bar 

and the polished rod load is fully taken by the hydraulic pistons.  As a result, the polished rod 

load variations lead to hydraulic pressure variations, which are recorded by a stylus that 

magnifies the displacement of a spring-retarded piston.  A plot of polished rod load versus 

polished rod position is recorded on a paper attached to a rotated drum since the rotational 

angle of the drum is proportional to the polished rod displacement. The major limitation of the 

hydraulic dynamometer is the accuracy which can be reduced as the measuring spring gets 

weaker. (Takács 2015) 
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3. Electronic beam mounted strain gauge 

As the name states, the relevant component of this sensor is a beam strain gauge which 

is placed on the walking beam. It measures changes in the rod load by measuring the 

changing in the walking beam. A strain gauge is a resistive transducer that converts a 

mechanical elongation induced by a force into a resistive change. Figure 10 represents 

an instrumented beam pump and the element E is the strain gauge position in a rod 

pumping system. A beam mounted strain gauge does not require polished rod to be 

clamped off during installation or replacement. It also eliminates the risk of cable damage 

during normal operation or workover. (Anthony Allison 2015) 

 

 

Figure 10: Instrumented sucker rod pumping system [1] 

The most important weak point of the beam mounted strain gauges is its poor accuracy 

which is caused either by a low proportionality between strain gauge output and load on 

the polished rod or by the additional forces other than the polished rod load which affect 

the measured strain such as changes in the beam temperature that causes beam 

expansion and contraction and eventually may leads to errors in the dynamometer card. 

4. Electronic Polished rod load cell  

As it is clear on Figure 9, the electronic polished rod load cell is Element B and it is installed 

directly on the polished rod below the carrier bar. it measures the polished rod loads by strain 

gauges as follows: when radial strain is produced by the polished rod axial loads, it is 

recorded by the cell and is converted into electric voltage signals which are linearly 

proportional to the polished rod load. Polished rod load transducers have easy application 

and the cell sensitivity is almost constant with time. However, major limitation of this sensor 

is the cable which is susceptible to damage during operation which may lead to 

measurements errors because of drift of calibration. (Anthony Allison 2015) 
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 Rod position measurement 3.1.2

Devices for position measurements could be a simple position switch, an inclinometer or an 

accelerometer. 

1. Position switch  

It is a simple and inexpensive mean to measure polished rod position and as it is illustrated 

by Figure 11, main components of the device are a reed switch which is embedded in a 

stainless-steel wand and attached to the pumping unit base and a magnet which is attached 

to the inside of the crank arm. The working principle is such as when the magnet passes in 

front of the wand, the switch closes and sends a signal containing a reference position value 

to the rod pump controller once per stroke through a cable service tool. The top of stroke 

position must be calibrated to effectively construct the remaining stroke position points. that 

is why an error may occur when the calibration is not modified after a change in the SPM or 

in stroke length or in counterbalance. However, even with a good calibration, the position 

switch will produce low quality position measurements. (Anthony Allison 2015) 

 

 

Figure 11: position switch rod load sensor [1]
 

2. Inclinometer  

An inclinometer is shown by Figure 9 as element D. It is a measuring device attached to the 

walking beam and it is used to measure the angle of the beam as it varies throughout the 

stroke. It relates changes in beam angle to changes in polished rod position. The sensor 

installation position is important because a wrong installation will generate a nonrealistic 

dynamometer card must. In fact, a proper installation is on the right side (wellhead to the 

operator’s right when looking at the unit) since it generates an increasing voltage during the 

upstroke and not the opposite case which will lead to a reversed dynamometer card. (Takács 

2015) 
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3. Accelerometer 

An accelerometer is a very small unit permanently attached to the load sensor. It measures 

the polished rod’s instantaneous acceleration accurately. The polished rod position is 

obtained by integrating the acceleration twice with respect to time. An accelerometer is an 

accurate and reliable sensor because its resolution is a function of the data sampling 

frequency and can thus be almost continuous and can instantaneously detect minor changes 

in polished rod velocity. (Takács 2015) 

 Group2: Pump off controller 3.2

A sucker rod pump off controller is an intermittent controller which provides an automatic 

operation as follows: When the pump is operating at a rate more than well inflow, the liquid 

level in the well drops below the pump intake depth, the pump barrel is partially fill up with 

fluids during the upstroke. As a result, during the following downstroke, the pump plunger will 

hit the fluid level in the barrel, what cause the phenomenon of fluid pound and the well is said 

to be pumped off. At this point, the controller detects the fluid level decrease and shut off the 

pumping unit for a period until the fluid level rises again in the annulus before restarting the 

unit. This process is described by Figure 12.   

 

 

Figure 12: Sucker rod pump off control diagram [33, p. 7]
 

 

A pump off controller can be a stand-alone POC which provides local control at the wellhead 

by periodic on-site adjustments, or it can be connected to a (SCADA) system central 

computer that receives the collected data and send back control instructions through 

communications channels. The second type will be explained in the next section. (XIE LU 

2014) 

A pump off controller can perform different tasks. These include fluid level testing, Flow/No-

Flow sensing, vibration detection, and Polished Rod Load and Position sensing.   

The fluid level in the tubing casing annulus is detected by means of surface sonic pulses as 

discussed in section 2.3. The level is automatically monitored such as the pumping unit is 
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stopped when the level drops to or below the pump intake depth and it restarted when 

enough fluid has accumulated in the annulus. The vibration detection has a simple 

mechanical principle that when an important pumping unit vibration is detected, a controlling 

device stops the prime mover as a vibrating unit means a pump off condition. A flow/ no flow 

sensor is installed on the flowline. In this case, pump off condition is detected by the 

decrease in the flowrate along the flowline and the pumping unit is stopped. The previous 

three systems are considered inaccurate and unreliable compared to the polished rod load 

and position sensing system. (Takács 2015) 

This system relies on the polished rod load and position cells. Both are explained in section 

2.1. However, a complete pump off control system requires in addiction a control interface to 

which the load cell and the position cell transmit their sensed data. The control interface after 

gathering and processing load and position data, it displays the dynamometer card. The 

control interface is placed at the well location and displays calculated and plotted outputs for 

the operator through a graphics display. In addition, it allows for the operator to set the 

pump-off point, a set position and load value at which the well is considered “pumped off.” 

The operator configures also the number of times the dynamometer card can travel outside 

the pump-off point before the control interface automatically stops the pumping unit. As well 

as the down time value once the well pumps off until the unit restarts. In addition to 

constructing the dynamometer cards, the controller interface stores them for later or real time 

analysis. When hooked to a field supervisory control and data acquisition system (SCADA) 

system, the stored large amounts of data, in addition to the sucker rod pump system 

anomalies detection; it provides a well management and operation control opportunity by the 

central supervisory computer data analysis. Although the popularity of pump off controllers, 

this system still has some disadvantages listed above: 

 

 When the pump is off, the reservoir flow into the wellbore builds a liquid level in the 

casing, it’s the objective of the controller. However, this created backpressure on the 

producing formation. 

 

 The repetitive cycle of shutting off the pumping and restarting, requires for each cycle 

a maximum power usage at the restarting phase and creates a significant shock on 

the pumping unit as well as on the rod string and the downhole pump. 

 

 If the well is producing fines or solids, the pumping unit downtime is an opportunity for 

the solids to settle and this cause the plunger to be stuck. 
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 Group 3: Operational Control  3.3

An operational control of a large process can be achieved only by a supervisory control and 

a data acquisition (SCADA) system. SCADA system is in fact a critical tool to remotely 

control, investigate and manage the performance of industrial facilities located at different 

remote sites.  The system is composed of hardware and software. The hardware part which 

is represented by Figure 13 is composed of a remote terminal unit (RTU) and a master 

terminal unit (MTU). The RTU collect data from sensors or other data sources and performs 

a control response with a programmable logic controller (PLC) which can be a 

microprocessor or a single-board computer.  The MTU oversees data analyses and human 

machine interaction. (XIE LU 2014) 

Eventually, RTU and MTU are directly connected via communication channels. The three 

parts of SCADA system hardware are described individually in the following sub titles. 

Concerning the software part, it is composed of programs and databases of the MTUs, 

scripts running on PLCs and graphical user interface (GUI) for human-machine interaction.   

 

Figure 13: SCADA system architecture [33, p.4]
 

 Remote Terminal Unit (RTU) 3.3.1

As mentioned before, RTU gathers wells operational data at each remote site and transfers it 

back to MTU via communication channels. It also launches signals to actuators for response 

control. However, traditional RTUs are not capable of performing calculations. They are like 

human beings who have eyes, ears and hands, but no heart. That is why; data processing 

and storage must be done separately on MTUs. This may lead to several issues such as 

failure of the communication between the RTU and the MTU as well as low feedback control 

efficiency since it is governed by network speed. These issues are solved nowadays thanks 

to the rise of programmable logic circuits (PLCs) such as a microprocessor. This improves 

the communication between RTU and MTU because it is possible to off-load the 

communication channel and the MTUs by performing calculations locally.  Remote terminal 

units are also known as remote telecontrol units. (ZHANYU GE 1998) 
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 Master Terminal Unit (MTU) 3.3.2

A master terminal unit is an indispensable component of a SCADA system. It is also known 

as host computer or data server and it is connected to the remote terminal unit via 

communication channels for data and information exchange.  An MTU is responsible for 

gather data from RTUs, storing data, displaying information and in certain cases it also 

oversees processing data and giving feedback control signals to RTUs. The communication 

between the MTU and RTU is bidirectional; however, the key difference between the two 

components is that the RTU is regarded as a client which provides data required by the 

server. An MTU normally includes a relational database management system (DBMS) such 

as SQL-Server or MySQL used for storing a significant amount of field data and supporting a 

variety of user queries. However, with huge number of sensors generating data continuously, 

cloud storage and cloud computing might be included into future SCADA systems to provide 

solutions in the cloud environment. (Master Terminal Units (MTU) in SCADA systems 2011) 

 

 Communication Channels 3.3.3

RTUs and MTUs are interconnected via communication channels, which will constrain the 

speed and security at which data acquisition and control can be performed. These channels 

typically include copper cables, fiber optic cables, leased circuit, radio links and/or a 

combination of these techniques.  However, after the revolution of WWW, Ethernet TCP/IP 

has been increasingly used by modern SCADA systems since it overcomes the limitations of 

analogue communications in terms of continuity and speed of data transfer and provides 

higher flexibility in terms of expansion and configuration. Developments of wireless sensor 

networks (WSNs) nowadays make it possible to construct wireless SCADA systems that 

provide stable and reliable information distribution and long-distance monitoring. Wireless 

technologies include GSM, GPRS, 3G/4G, WiMAX, WI-Fi, Bluetooth, ZigBee, and UWB.  

Many considerations in SCADA system communication channels in terms of security 

includes access control, firewalls, intrusion detection, key management, as well as operating 

system security. Optimization of SCADA systems communication channels is possible by 

upgrading the communication from the RTU-MTU level to RTU-RTU level. (Falah H. 

Zawahemah 2002) 

 

 Integration of reservoir and facilities constraints 3.4

Global operating conditions of the sucker rod pump system need to be performed to insure a 

complete verification of the system status and to have a clear way to establish an 

optimization plan. The integrated analysis of the pumping system must include all the 

following elements: the pumping surface equipment, well downhole components equipment 

and eventually the reservoir.  
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Figure 14: production system of a rod pumped well [27, p. 398]
 

The mutual analysis of the sucker rod downhole pump, the reservoir and the surface facilities 

together, is easily performed by a system nodal analysis. This methodology helps to design 

and study the pump system with a proper consideration for the well inflow performance. 

Figure 14 represents a schematic model of a pumping well displaying the different 

components of the production system separated by nodes.  System nodal analysis shows 

that the reservoir, the well bottom, the sucker rod pump, and the surface facilities including 

the pumping unit and the wellhead are linked in series. That means that the same flow rate 

must flow through all components. By considering a two-component system; including the 

pumping system and the reservoir, an analysis of the reciprocating effect between the two 

components helps to determine the system effective production rate. On one hand, the 

pumping system performance is characterized by which is called performance curves, which 

are constructed by Schmidt and Doty and represents the reachable production rates 

depending on the pumping conditions (plunger size, stroke length, pumping speed …)  

versus the pump setting depth. Performance curves takes into considerations the surface 

equipment characteristics, the rod string specifications and the overall pump operating mode. 

On the other hand, the reservoir inflow performance is described by a modified IPR curve 

which displays the production rate versus the annulus liquid level. By superimposing the two 

components curves, their intersection points determine the attainable production rates for 

specific pumping conditions. (Takács 2015) 

The method is clarified by Figure 15 which represents an example of a pump performance 

curve for a system with a C-228D-213-100 pumping unit, a 1,25inch plunger diameter, grade 

D rods and a rod string with API 86 taper. Horizontal lines display the pumping system 

performance and each line corresponds to a specific stoke length and pumping speed while 

the inclined straight line represents the modified IPR reservoir performance with a 3000 ft 

well depth, a PI of 0,46 bpd/psi and a 1000ft static fluid level. The intersection of both curves 

delivers the possible achievable production rate with the corresponding pump setting depth. 
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The maximum attainable flow rate in the example, is 250 bpd with 73-inch stroke length and 

4,5 strokes per minutes pumping mode. (Takács 2015) 

 

 

Figure 15: System performance curve sheet for a pumping system with a C 228D-213-100 unit, a 1.25 

in plunger, API 86 rod string and Grade D rods [27, p. 403]
 

 Sucker Rod Pump Optimization 3.5

The objective of a sucker rod pump optimization is to maximize the profits from rod pumped 

wells with minimum pumping costs. To do so, the first step is to design suitably the overall 

pumping system and operate it effectively then the existing design can be adjusted if some 

changes promise improvements. In the next section, some good practices to properly 

operate the beam pump system are listed and justified followed using the variable speed 

drive in the sucker rod pumping system and its contribution to the optimization. 

 Sucker rod pump best practices 3.5.1

Good sucker rod pump system practices are listed below in a categorical manner. (Rowlan et 

al.) 

Preliminary practices 

 Size the pumping unit and the prime mover in a way to match the well loads to be 

lifted. 

 Sustain a good volumetric efficiency via a proper match between the reservoir inflow 

capacities and the pump production abilities. 

 Continuously check the pump condition by valve checks. 

 Check the well’s productivity, the downhole pump performance, the prime mover 

performance, the downhole gas separator performance and the rod and beam unit 

loading. 
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Rod string considerations 

 Rod string design must handle a worst-case scenario: highest SPM, highest loads, 

highest production rates… because the well conditions changes continuously, and 

the design must be suitable for all conditions. 

 Integrate rod guides to the rod string which prevent rod/tubing wear and improve rod 

string and tubing life. 

 Select the rod guides type and material based on the well conditions, for example, 

gassy wells require nylon guides and high rate and deviated wells require molded on 

rod guides. 

 The number of rod guides per rod section must be well selected because excessive 

number may cause significant turbulence and rod stiffness which may cause 

premature rod failure. 

Pump considerations 

 Rod top anchor pumps are suitable for low production and sandy wells and rod 

bottom anchor pumps are preferred for deep wells. 

 For high volume production wells, casing pump or tubing pump are the best choice. 

 If the pump efficiency is low, the pumping system production capacity must be 

reduced, and the opposite is true. 

 In case of gas interference, try longer stroke or smaller pump, increase pump intake 

through higher fluid level, separate gas before entering the pump intake through 

downhole separation or use a two-stage valve to reduce traveling valve hydrostatic 

pressure.  

 In case of a deviated well, set the pump below the kick off point for better gas 

separation. 

     Try to limit the pump leakage to not more than 2-5% of the production.  

Gas Separation Best Practice 

     The pump intake should be below the gas entry point into the well.  

     A typical poor boy separator should only be selected for low rates (~50-150 bpd). 

     Properly size the gas separator because an improperly sized separator is worse 

than no separator as it can trap gas into the pump and as a result the separator 

becomes gas locked. 

Pumping unit considerations  

 Pumping unit loading should be checked by dividing the polished rod load (lbs) by the 

unit structure rating (100 lbs) and it must be between 40 and 70. If it is lower, the unit 

is too big for the desired application and this condition will increase power 

consumption. And if it is higher the unit is too small, and it will not be able to lift the 

desired fluid rate. (Daryl Curtis 2009) 

 

 Gearbox loading must be checked by dividing the peak upstroke torque by the 

gearbox loading and it should be below 85%. If it is higher, the gearbox is likely to be 

able to withstand the loads and a new unit design must be considered. (Daryl Curtis 

2009) 
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     Pumping unit must be checked for abnormal sounds, grease or oil leaks. 

     The stuffing boxes tightness must be checked to prevent wear on polish rod and      

significant output horsepower from motor. 

Fluid Level Detection 

   Perform annulus fluid level measurements on a regular scheduled basis. 

   Compare fluid level information with dynamometer cards to confirm if a well is really 

operating in a pumped off condition. 

Casing Pressure 

    Maintain low casing pressure because high casing pressure restricts flow from the 

formation as a high fluid level does.  

 

 Variable Speed Drive 3.5.2

 

One of the existing opportunities to reduce pumping system energy consumption is the 

integration of a variable speed drive to the pumping system. A pumping unit is typically 

driven by an induction motor type AC which is characterized by an electricity frequency 

dependent speed, and logically the pumping speed is changed by varying the power 

frequency. Hence, a suitable control of the driving frequency provides that the well pumping 

rate continuously matches the reservoir inflow since pump displacement is proportional to the 

pumping speed. Electric frequency is normally regulated by a variable speed drive as follows; 

the power supply sends an alternating voltage at a constant frequency to the VSD to be 

rectified to a direct voltage and to be synthesized to produce a current that fluctuates 

depending on the load on the unit. To perform this function, a typical variable speed drive is 

composed of a rectifier that converts the AC voltage into a DC voltage, a DC control section 

that creates a smooth DC waveform, and an inverter that output an AC voltage at a selected 

frequency. A variable speed drives typically woks mutually with the pump-off control system 

as follows; operational data of one pumping cycle are inputted to the POC which outputs a 

control signal to the VSD to regulate the pumping speed by altering the received constant 

frequency power into a variable frequency one fed into the motor. The adjusted pumping 

speed ensures that the production capacity of the system matches the inflow rate from the 

reservoir. A typical POC with VSD configuration is represented by Figure 16.  The DBR 

component in the arrangement is a dynamic braking resistor which is responsible for the 

regenerative power dissipation as heat. Regenerative power is a power that cannot be sent 

back through the VSD to the power supply and it is created by negative torques which 

enforces the motor to become an electric generator for portions of the pumping cycle. 

(Takács 2015) 
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Figure 16: Arrangement of POC and VSD devices for pumping speed control [27, p. 416]
 

The VSD with the POC perform an automatic operation to maintain a continuous matching of 

the system’s pumping capacity to changing reservoir inflow conditions. This operation is 

more practically explained by Figure 17 which displays a pump card with a rectangular 

deadband that represents a reference area to the POC.  The operational mechanism is as 

follows: 

 

 If pump fillage falls within the set deadband, the VSD unit keeps the pumping speed 

constant.  

 

 When the pump fillage values to the left of the deadband, the VSD unit slows down 

the unit because pump-off condition is approached and the capacity of the pumping 

system is decreased, consequently, liquid level in the annulus rises and pump fillage 

increases.  

 

 When the pump fillage falls to the right of the deadband, the VSD speed up the 

pumping unit because the reservoir inflow has over increased and the pump capacity 

must be boosted to match the reservoir inflow and to reduce the liquid level in the 

annulus.  

 

Figure 17: Operational principle of a well manager unit [27, p. 417]
 

,  
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4 Sucker rod pump failure analysis with machine learning  

Dynamometer card which is a plot of the sucker rod string load versus the plunger 

displacement, has become a powerful tool to classify the sucker rod pump system's 

conditions, since each condition can be characterized by a representative card shape. 

However, the conventional method to analyze these dynamometer cards by visual 

interpretation imposes several drawbacks which paved the way to machine learning and 

particularly to the artificial neural network to be raised and deployed in the automatic analysis 

of the sucker rod pump dynamometer cards investigations in an effective and quick way. 

(Corsano 1994) This work is an opportunity to explore artificial neural networks and their use 

in pump cards analysis by going through its complete deployment cycle from acquiring the 

cards datasets passing through their preparation and application to build two types of neural 

networks. The evaluation, validation, selection and testing of the two models will be 

performed with many techniques in order to assess the performance and effectiveness of 

machine learning networks in card shapes classification. (Marco A. D. Bezerra, Leizer 

Schnitman, M. de A. Barreto Filho 2009)  

 

 Motivation 4.1

Traditionally, sucker rod pumping failure diagnosis is a process of visually interpreting the 

pump dynamometer card by experts. However, there are two clear disadvantages related to 

this conventional method. The first one is that the success of this method is directly 

dependent on the skill and experience of the analyst and even the most experienced analyst 

can be misled into an incorrect diagnosis. The other drawback is that this method is time-

consuming, which cannot adapt to the modern automatic data acquisition and diagnosis 

techniques. Moreover, if the dynamometer cards expert is responsible for many wells in an 

oil field, the accuracy and speed of visual troubleshooting of the sucker rod pump will be 

significantly affected. Therefore, the operational efficiency of the sucker rod pumping system 

can be greatly enhanced using machine learning techniques for automatic diagnosis. These 

techniques allow faster repairs and even preventive interventions, automatically identifying 

the sucker rod pump failures allows for anticipating the problems and taking early corrective 

and prevention measures for it. (Nazi et al. 1994) 

 

 Objective 4.2

The main objective of this work is to build two different neural network algorithms which are 

able to analyze the performance of the sucker rod pump via classifying a representative 

pump card into five different conditions. And by evaluating and testing the two networks, the 

objective is to assess their performance and to emphasize their effectiveness in 

automatically detecting and identifying whether a sucker rod pump is working properly or 

suffers from a specific problem.  
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5 Procedure  

This study is divided into six modules. Each module has a big impact on the overall 

performance of any problem. These six modules are represented by Figure 18. 

 

 
 

Figure 18: Machine learning procedure  

Each module contains some steps. The work is found to be as follows: 

 

 Collection of real field dynamometer cards which are pre-classified by experts. 

 Selection of a feature extraction method and construction of its corresponding 

algorithm. 

 Application of the feature algorithm to the gathered dynamometer cards. 

 Splitting of the dataset into train and test data. 

 Building of two types of neural networks. 

 Evaluation of the two model’s performance using specific metrics. 

 Validation of the two models using a validation technique.  

 Selection of the best model configuration for both networks. 

 Testing of the two models against different pumping conditions. 

 

 

 Programming Software 

This research requires programming processes. Thus, it needs certain software for that 

purpose. The deployed programming language is Python3, which is a well-known and 

powerful programming language in data analysis and in machine learning in general. Besides 

the programming language software, a programming library is required. A programming 

library which is called Keras was selected for this research since it contains all the required 

packages for constructing the BPNN and the CNN models. 

Data 
Assembly 

Feature 
Extraction 

Classification 
Model 

Construction 

Model 
Evaluation  

Model 
Validation 

and Selection 

Model 
Testing 
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6 Implementation of the procedure 

As mentioned previously the procedure for analyzing sucker rod pump dynamometer cards 

consists of image data assembly, feature extraction, classification model construction, model 

evaluation, model validation, model selection and model testing. 

 Data Assembly 6.1

Data was collected from different fields in Brazil and it was provided by Prof. Dr. Leizer 

Schnitman from Electronic Engineering and Computing Department at the Federal University 

of Bahia in Brazil. The dataset consists of pre-classified 6132 dynamometer cards which 

represent five different pump conditions as shown in Table 2. This dataset will be spitted 

such as 80 % will be used for model training purposes and 20% will be deployed for model 

testing purposes. 

Table 2: Dataset 

Pump condition Number of cards Pump card example 

 

Normal condition 

 

1863 

 

 

Fluid pound 4120 

 

Plunger hitting up 48 

 

Leaking travelling valve 84 

 

Gas interference 17 

 

 

It is essential to point out that the gas interference pump cards are not reliable because they 

do not represent a gas interference condition besides the fact that its number is very low for 

model training purposes. It will be proved later that this category of pump cards will not be 

correctly classified by the networks, especially by the back propagation neural network.
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 Feature extraction 6.2

“In machine learning, pattern recognition and in image processing, feature extraction starts 

from an initial set of measured data and builds derived values intended to be informative and 

non-redundant, facilitating the subsequent learning and generalization steps, and in some 

cases leading to better human interpretations. Feature extraction is a dimensionality 

reduction process, where an initial set of raw variables is reduced to more manageable 

groups (features) for processing, while still accurately and completely describing the original 

data set.” (Wikipedia 2016) 

There are important criteria for a feature extraction technique to be used (Rushin Shah 

2014). In fact, a feature extraction technique must: 

 

1. Reflect the nature of the data in a way that two images with the same shape must 

have the same descriptors. 

2. Be stable in terms of invariance to rotation, scaling and translation. 

3. Be robust against noise and distortion. 

4. Capture critical relevancy, which means that the feature extraction technique should 

only contain information about what makes the analyzed object unique. 

 

Elliptical fourier descriptors (EFDs) extraction, which is a technique that represents a closed 

contour by an n-dimensional feature vector which fully describe the whole card, was found to 

be the best feature extraction technique as it satisfies the above listed criteria. 

Elliptical Fourier analysis (EFA) is a technique which extracts the EFDs coefficients of a 

chain-encoded contour. For this reason, the first step before the implementation of the EFA 

is to extract the dynamometer cards contour coordinates. 

 Dynamometer cards contour coordinates extraction 6.2.1

As mentioned previously, the pump card contour coordinates extraction is a necessary step 

before creating the elliptical Fourier descriptors. The contour of an image, based on the 

boundary pixels, can be represented by points which are characterized by (x,y) coordinates. 

Each column of the card image matrix is walked through until a first boundary pixel which is 

characterized by a non-zero value is found. From this pixel, the whole card contour is tracked 

by following the neighboring boundary pixels until all the boundary pixels are visited. At this 

point, a list of (x,y) positions of all the boundary pixels will be recorded. The resulting amount 

of points generated for each pump card is 101 points. Figure 19 represents an original pump 

card and its corresponding representation of its contour by boundary points.  

 

 

Figure 19:  Original pump card and pump contour with boundary points 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
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 Elliptical Fourier Descriptors implementation 6.2.2

The implementation of the EFD analysis requires several steps. (Frank P.Kuhl 1981) 

1. Extracting the Boundary Chain representation 

The previously determined (x,y) coordinates which represents a pump card contour is 

changed into  their corresponding    ,  ) which are defined as the links between every 

successive points. The sum of the links between the points can be computed from eq.3 [10] 

and eq.4 [10].                                                                                                                                                                    

                                               ∑    
 
                                                                                   (3) 

                                              ∑    
 
                                                                                   (4) 

Where:  

 : The index of the chain link.  

𝑥𝑝: Links summation on x-axis.  

𝑦𝑝: Links summation on y-axis. 

 

2. Defining the Third Parameter 

Afterwards, by assuming that the contour points are followed at a constant speed, a third 

parameter    , is defined, which is the required time to traverse the p links in the chain. It is 

represented by eq.5 [10]    

                                               ∑    
 
                                                                                  (5) 

Where:                                                                                                                                            

P: The index of the chain link.                                                                                                              

  : The time required to traverse a single link. 

3. Elliptic Fourier coefficients extraction 

 

Starting from a random point on the contour, the Fourier series representation is appropriate 

because the contour can be traveled through several times. The Fourier series expansion for 

the x projection of the chain code of the complete contour is defined as the sum of apparent 

displacements in x direction and it is represented by eq.6 [10]: 

                          )  ∑ *     (
    

 
)        (

    

 
)+ 

                                                           (6) 

Where: 

 : The period (Summation of all T increments). 

 : The number of the harmonic that we’re looking at.     

 : The total number of harmonics.     

  ,   : The Elliptic Fourier coefficients of the nth harmonic.       

 

The time derivative is periodic with period and can be represented by the Fourier series as in 

eq.7 [10] 



Chapter 6 – Implementation of the Procedure 34 

   

  

                               

                    ̇  )  ∑ *     (
    

 
)        (

    

 
)+ 

                             (7)                                         

Where:    

                                           
 

 
∫  ̇  )    (

    

 
)  

 

 
                                                               (8) 

   
 

 
∫  ̇  )    (

    

 
)   

 

 
                                                               ( ) 

 ̇  ) is also obtained directly from its definition as: 

                   ̇  )  ∑  
   

 
     (

    

 
)  

   

 
      (

    

 
) 

                                                   (10) 

The Elliptic Fourier coefficients are obtained by solving the two equations of  ̇  ), eq.11 [10] 

and eq.12 [10].  
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Where:                                                                                                                                             

  ,   : The Fourier coefficients of the nth harmonic.                                                                      

 :  The period (Summation of all T increments).                                                                             

 : The number of the harmonic that we’re looking at.                                                                          

 : The total number of links.                                                                                                            

  : The sum of links on x-axis.                                                                                                                       

 : The index of the chain link.                                                                                                          

  : The lengths of the chain at the path link.     

The same procedures are applied for y direction. Accordingly,    𝑎𝑛𝑑   are determined as 

shown in Equations eq.13 [10] and eq.14 [10]. 
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Where:    

  ,   : The Fourier coefficients of the nth harmonic. 

 : The period (Summation of all T increments). 

 : The number of the harmonic that we’re looking at.  

 : The total number of links.                                                                                                                                                                              

  : The sum of links on y-axis.                                                                                                                       

 : The index of the chain link.                                                                                                          

  : The lengths of the chain at the path links. 
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4. Machine Learning Input Vector construction 

 

The number of selected elliptical Fourier descriptors is 15 and each descriptor provides 4 

coefficients,  ,   ,    and   . Therefore, a matrix of [15×4] values is produced representing 

60 EFDs coefficients. These 60 descriptors form a feature vector      ,   ,    

,  …    ,    ,    ,    ) which fully describes a selected pump card. As mentioned previously, 

this vector is used as an input to the back propagation neural network. 

 Fourier Descriptors Application 6.2.3

The generated elliptic Fourier descriptors showed good results in the pump card shape 

approximation. Figure 20 illustrates the results of the EFDs in approximating a fluid pound 

pump card with 15 harmonics. The approximated card is the last one in the right down corner 

of figure 20. 

 

  

Figure 20: Constructed Elliptical Fourier descriptors 

As it can be seen from Figure 20, the four terms of the elliptical Fourier spectrum, calculated over 

15 harmonics, are sufficient to represent the dynamometer card shape with high accuracy. The 

number of harmonics should be properly selected to represent the most complex shape in the 

sample. (Frank P.Kuhl 1981) 
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 Model Construction 6.3

Two types of artificial neural network are deployed to classify a sucker rod pump condition 

based on the shape of its dynamometer card. As mentioned previously, the aim of this work is to 

classify the dynamometer cards into five different classes. Different types of ANNs are applied 

in the field of images classification. In 2009, Alsmadi et al. concluded that the back propagation 

neural network is the best one among the multi-layer perceptron algorithms. (Suliman and 

Zhang 2015) However, convolutional neural network is the one known for its application in 

computer vision as it allows for direct image deployment without transforming it to a different 

descriptive form that has lower dimensionality. For this reason, these two networks were 

selected for building a pump cards classifier. The main difference between both networks lays in 

the network architecture and the ability of scaling to full images. In fact, in the case of BPNN, 

the input is a single vector which is transformed through a series of hidden layers. Each hidden 

layer has a set of independent neurons and each neuron is fully connected to all neurons in the 

previous layer, the output layer is a fully-connected layers and it represents the classification 

results. (Daphne Cornelisse 2018) Scaling to full images with significant dimensions is beyond 

the capability of a BPNN. In contrast to the CNN, this is possible because the network deploys 

3D volumes of neurons. Meaning that, unlike the BPNN, the layers of a CNN have neurons 

arranged in 3 dimensions: width, height, depth. Moreover, For CNN, the neurons in a single 

layer is only connected to a small region of the layer before it, instead of all the neurons in a 

fully-connected way. At the end, the full image will be reduced into a single vector of class 

scores. Both networks will be later further described. Figure 21 illustrates the difference 

between a BPNN and a CNN in terms of network architecture. (Daphne Cornelisse 2018) 

  

 

Figure 21 BPNN and CNN architecture [3] 
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 Back propagation neural network 6.3.1

The back propagation neural network was first proposed by Paul Werbos in the 1970s and it 

was reviewed in 1986 by Rumelhart and McClelland, and after that back propagation became 

widely known and used.  BPNN principle as well as its implementation procedure to construct a 

model for the dynamometer card five classes classification is presented. (Suliman and Zhang 

2015) 

 Back propagation neural network Principle 6.3.1.1

Back propagation neural network is a bidirectional multi-layer neural network. As its name 

states, after generating an output value, the BPNN compares the actual input to the desired 

output. Then, it propagates the connection weights back to the input layer for adjustment in 

order to gradually correct the error. The connection weights adjustment stage in known as the 

network training process, which by the end of the execution stage, will be fixed and the network 

will be ready to directly calculate the outputs that correspond to a new input data. (Sidat Asiri) 

Figure 22 represents BPNN architecture. 

 

(Sidat Asiri)

 

Figure 22: BPNN architecture [24]  

 

 

The network consists of three types of layers: 

 

1. The input layer which receives, scale and distribute the analyzed signal to the 

processing elements of the next layer. 

 

2. The hidden layers which processes the inputs and sends the results to the output layer. 

 

3. The output layer tells about the input image corresponding class.  
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For classification problems, usually, the number of input layer neurons corresponds to the 

number of the input images number bands and the number of the output neurons corresponds 

to the number of the predicted classes; however, the number of the hidden layer neurons and 

also the number of the hidden layers itself cannot be precisely determined because there is no 

rule or guideline to determine this number. (Suliman and Zhang 2015) 

 

As mentioned before, the BPNN is a bidirectional network because it should be trained by 

examples before it can be used. The training process aims to adjust the connection weights and 

neurons thresholds by using training data sets. Figure 23 describe in detail a BPNN workflow.  

 

 

Figure 23: BPNN workflow [25] 

 

The execution stage of the trained networks will be implemented by fixing the initial connection 

weights and thresholds. The normalized training samples are introduced into the input neurons 

where they are scaled and transferred to the hidden layer. The received input signals at the 

hidden layer neurons are processed to calculate an output which will be transferred to other 

neurons by an activation function. This process will continue from one layer to another until the 

actual output signals are produced at the last layer which contains the output neurons, where 

the training error is judged to be acceptable or not; if it is acceptable, the training is finished, and 

weights and thresholds are fixed. If not, the weights and thresholds are adjusted and fed to the 

network to start a new training cycle. (Suliman and Zhang 2015) 
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 Back propagation neural network construction  6.3.1.2

 

In this work, the network input layer represents the input set which consists of the Elliptical 

Fourier descriptors, hence, the number of neurons in this layer is the same as the number of the 

(EFDs) and the output layer represents the five different classes to be predicted. And 

concerning the network hidden layer, both its number and its neurons number are chosen by 

trying different configurations and selecting the best one. Table 3 displays the number of 

neurons for each layer of the constructed ANN model. 

 

Table 3: Constructed BPNN model configuration 

Layer type Number of neurons 

Input layer 60 

Hidden layer 100 

Hidden layer 100 

Hidden layer 100 

Output layer 5 
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 Convolutional neural network 6.3.2

Convolutional neural networks are a powerful type of neural network that is used primarily for 

image classification. (Nameer Hirschkind, Jyo Pari, Jimin Khim) The design of convolutional 

neural networks takes inspiration from the human visual cortex where visual information is 

processed. The visual cortex contains many receptors which detect light in overlapping regions 

of the visual field. Each receptor processes its input in the same way by the same convolution 

operation. CNN design is based on the same specifications. Similar to the back propagation 

neural network, Convolutional Neural Network is constituted of neurons that have learnable 

weights , but has a different architecture. (Joshi 2016) 

 Convolutional Neural Network Principle 6.3.2.1

The best way to understand CNN working principle is to explore its architecture which is 

represented by Figure 24: 

 

Figure 24: CNN architecture [29] 

From Figure 24, it is clear that the network is constituted of 3 layers: 

1. Convolution layer  
 
The main function of the convolution layer is to collect the representative features of an image 

which is represented by a 2D-matrix characterized by a set of pixels which are contained into 

grids. Convolution multiplies this matrix by a filter or kernel which is represented by a 2D matrix 

with a selected dimension. The output representation is a feature map and the number of applied 

filters dictates the number of obtained feature maps. It is easier to visualize a filter as a window 

of a certain size sliding over the dimensions of an image and change each image pixel value as 

it goes. Figure 25 shows the convolution layer function. (Daphne Cornelisse 2018; Wikipedia 

2019a) 
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Figure 25: Convolution layer [16] 

2. Pooling layer 
 

Pooling layer performs a down-sampling operation on an input representation. The main 

common pooling is called and as its name states, after dividing the operated input by splitting it 

into equal parts. It takes the maximum value from a selected region. (Wikipedia 2019d)The 

purpose of pooling is dimensionality reduction, which in turn helps in reducing computational 

load and prevent over-fitting which happen when the network memorizes the data instead of 

learning patterns in it. It shows perfect training results but fails when it is tested on a new data. 

Figure 26 will clarify this idea; each color box within the matrix represents a subsample. 

(Daphne Cornelisse 2018) 

 

 

Figure 26: Pooling layer [29] 

3. Fully Connected layer 

The fully connected layer is a regular feed-forward network which produces the output containing 

the classification result.  

 Additional layer which is the flatten layer, is required between the last pooling or 

convolution layer and the fully connected layer. It flattens the output from the previous layer 

by converting it from a matrix representation to a vector representation. 
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 Convolutional Neural Network Construction 6.3.2.2

The Constructed CNN in this research is based on the previously described workflow. Table 4 

and 5 Table represent the network set parameters and the network architecture respectively. 

 

Table 4: CNN setting parameters 

Parameter Size 

 

Input image dimensions           

 

(96,112) 

Number of filters 32 

Filter size (3,3) 

Pooling area for max pooling size (2,2) 

 

 

Table 5: Constructed CNN model architecture 

 

The input dynamometer cards to the network are characterized by a matrix composed of 96 

rows and 112 columns, which will be convolved with 32 filters having a size of (3,3). Afterwards, 

the output image matrix will be pooled with a pooling area size of (2,2). The network is 

composed of 6 layers: 2 convolution layers, 2 pooling layers, a flattening layer and a fully 

connected layer. Concerning the activation function, Relu function is used for the convolution 

layer because, logically if the convolution layer collects features inside the image by looking if the 

pixel is present or not within the visited grid, it is convenient to use a function that returns 0 if it 

receives any negative input and it returns the value back if it encounters any positive value x. 

However, Softmax function is used for the fully connected output layer since it is a function that 

takes as input a vector of K real numbers, and normalizes it into a probability 

distribution consisting of k probabilities. (Wikipedia 2019c) 

 

Type of layer Activation function 

                                                                     

Convolution 

                                                                          

Relu 

Pooling layer - 

Convolution layer Relu 

Pooling layer - 

Flattening layer - 

Fully connected layer Softmax 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
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 Model Evaluation 6.4

After creating the two models, it is convenient to evaluate them. The addressed property which 

is evaluated is the accuracy which is simply the proportion of correctly classified dynamometer 

cards. For this purpose, confusion matrix and precision, recall and F1 score are deployed. 

 

 Confusion matrix  6.4.1

Confusion matrix is a specific table that allows for the evaluation of artificial neural network 

models accuracy by visualizing the proportion of correct classifications. The matrix has two-

dimensions; one dimension is indexed by the target class while the other is indexed by the 

predicted class (or vice versa).  Figure 27 represents presents a typical confusion matrix layout 

for a multi-class classification task, with the classes Ai and i=1...n. In the confusion matrix, Nij 

represents the number of samples belonging to class Ai but classified as class Aj. Confusion 

matrices of this research relative to the two constructed networks are illustrated in the section of 

model validation and selection. (Deng et al. 2016) 

 

 

Figure 27: Confusion matrix [5] 

In this work, there are five pump cards classes:  

1. Normal condition (N) 

2. Leaking travelling valve (TV)  

3. Hitting up plunger (HP) 

4. Gas interference (GI) 

5. Fluid pound (FP) 

 

Figure 28 shows an example of a constructed confusion matrix resulted by the BPNN on the 

test set. When we focus on the matrix rows; in the first row, the network has classified one card 

as a fluid pound which is a normal condition. In the third row, the network classified the entire 12 

hitting up condition cards correctly. In contrast to the forth row, where the network failed to 

classify all the gas interference condition cards. This, as mentioned from the beginning, is due 

to the low quality of the cards representing the gas interference since they represent normal 

condition instead of gas interference condition. In addition, the small number of cards belonging 

to that category prevents the network from being well trained to recognize this class. Figure 29 

represents an example of a constructed confusion matrix resulted by the CNN on the test set 

also. It shows that the CNN in this example succeeded in predicting correctly almost all the 

cards. 
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Figure 28: BPNN confusion matrix 

 

 

Figure 29: CNN confusion matrix 
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 Precision, recall and F1 score 6.4.2

In order to describe precision recall and F1 score, it is convenient to define the generalized 

version of the confusion matrix which is a binary confusion matrix. It is for instance a two by two 

table which includes four outputs produced by a binary classifier which means that class labels 

can take only two possible values: positive or negative. The correctly and incorrectly positive 

predicted classes are called true positives and false positives, respectively. Similarly, the 

correctly and incorrectly negative predicted classes are called true negatives and false 

negatives. Table 6 shows a binary confusion matrix layout which simply contains the number of 

instances that belongs to one of these four categories. (Wikipedia 2019d) 

Table 6: Binary Confusion Matrix [23] 

Results Actual class 1 Actual class 0 

Predicted class 1 True Positive False Positive 

Predicted class 0 False Negative True Negative 

 

The precision is the ratio of the number of relevant extracted records to the total number of 

irrelevant and relevant extracted records, and in our case, it represents the percentage of the 

number of cards with a certain condition which are correctly classified out of the correctly and 

incorrectly predicted cards. Eq.15 [22] represents the mathematical form of the Precision. 

(Shruti saxena 2018) 

                                                         
             

                            
                                             (15) 

The recall is the ratio of the number of relevant extracted records to the total number of the 

relevant extracted records in the database and it represents in our case the percentage of the 

number of cards which are correctly classified out of all the cards specific to the predicted 

condition. Eq.16 [22] represents the mathematical form of the Recall.  

                                                        
             

                            
                                               (16) 

Precision is a measure of how good predictions are with regard to false positives whereas the 

recall is a measure of how good the predictions are with regard to false negatives. F1- score is a 

third parameter which can be derived from the precision and recall and the higher the F1-score 

is, the higher the accuracy of the network is. (Sarang Narkhede 2018) 

F1-score is computed based on eq.17 [22] 

                                                          
                

                
                                                          (17) 
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Figure 30 and Figure 31 represents a plot which displays the precision, recall and F1 score 

relative to the illustrated confusion matrices in the previous section for the BPNN and for the 

CNN respectively. 

 

Figure 30: Precision, recall and F1- Score for BPNN 

 

Figure 31: Precision, recall and F1-score for CNN 

When comparing the two graphs of precision, recall and F1-score to their corresponding 

confusion matrices, it is easy to notice that the two results match each other. In fact, the perfect 

prediction results of the CNN are reflected by Figure 31, where the precision, recall and F1-

score are perfect too (equal to one). For the case of the BPNN, as mentioned previously, the 

gas interference condition in not predicted at all which is proved by the zero value of the 

precision, recall and F1-Score. Regarding the hitting up plunger condition, which was perfectly 

predicted based on the confusion matrix, the precision, recall and F1-score value which is 1 

confirmed this perfect prediction. Concerning the other three conditions, they showed good 

results in the confusion matrix and with the precision, recall and F1-score as well. 
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 Model Validation and Selection 6.5

Model validation is a method for checking the stability of our constructed neural network models. 

Both the BPNN and the CNN are validated by k-fold cross validation. The advantage of K-Fold 

cross validation method is that there is no necessity to remove a part of the data for validation 

which may cause the loss of important patterns from the dataset. Later, model selection is an 

automatic method to find a further optimized model. 

 K-Fold Cross-Validation 6.5.1

Cross-validation is a resampling procedure which is used to evaluate the skill of a machine 

learning algorithm on unseen data. Its governing parameter to be chosen is the denoted k which 

refers to the number of groups that a given data is to be divided into. This approach involves 

randomly dividing the set of observations into k groups, or folds, of equal size. The first fold is 

treated as a validation or testing set and the model is fit on the remaining k − 1 parts. Figure 32 

illustrates the splitting of the data into k parts.(Matthew Terribile 2017) 

 

Figure 32: K-Fold cross validation [15] 

“The choice of k is usually 5 or 10, but there is no formal rule. As k gets larger, the difference in 

size between the training set and the resampling subsets gets smaller. As this difference 

decreases, the bias of the technique becomes smaller.” (Jason Brownlee 2018) 

For this reason, the K value in this work was selected as 5 because three out of the five 

analyzed conditions have a small dataset and it is convenient to deploy 5 k value instead of 10.  
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The k-fold cross validation procedure in this research is represented by Figure 33 and is as 

follows: (Jason Brownlee 2018) 

1. The dataset is spit into 5 parts. 

2. 1 part out of 5 of the datasets, which is represented by blue color in Figure 33, was taken as a 

test dataset and the remaining 4 parts, which are represented by red color was attributed to the 

training data set. 

3. The model is fitted on the training set and evaluated on the test set. 

4. The test set is rotated 5 times and the previous steps are repeated. 

5. For each iteration, evaluation metrics as the precision, recall and F1 score and the confusion 

matrix are retained. (Eijaz Allibhai 2018) 

 

 

 

Figure 33: 5-Fold cross validation [8] 
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 Model Selection 6.5.2

Model selection is done by creating a loop function which creates three different models for 

each cross-validation round, from which the best model is selected based on its corresponding 

F1-Score and then it is saved. The model which has the highest value of F1-score is the one to 

be selected.  We have five cross validation rounds and two types of neural networks: the BPNN 

and the CNN. Three models are generated at each cross-validation step and one of the three 

models is selected. As a result, 30 models are generated, and 10 models are selected and 

saved. The loop function chooses the best model from a list of candidate models following the 

workflow which is described by Figure 34:  

 

Figure 34: Model selection procedure 

First model is created by setting the initial weights of the network. Then, the accuracy of the 

model is estimated by the F1-score. The computed F1-score of the first model is assumed to be 

the highest value which means that model 1 is set to be the best model at the beginning of the 

process. A second model is created by changing the initial network weights and its 

corresponding F1-score is calculated. At this stage, if the new F1-score value is higher than the 

previous one, the second model is assigned to be the new best model; otherwise, the best 

model will remain assigned to the first model. Similarly, a third model is created, and its F1-

Score is computed. If the new F1-Score value is higher than the two previous F1-Score values, 

model 3 will be the new best model. Finally, the selected best model is saved in order to be 

loaded later for testing. 

 

 

 

Model 1 F1-Score 1 
Best model= 

Model1 
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F1-Score 2 

If F1-Score2>F1 
Score  1 =>  
New  best 

model=Model 2 

Model 3 F1-Score 3 

If F1-Score3> 
max(F1 Score1, 
F1-Score2)   => 

new best 
model=Model 3 

Save best 
model  
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 Model testing  6.6

After building the BPNN and the CNN, the two models are saved to be loaded later for testing 

over different five dynamometer cards in order to check their performance. The five following 

figures display one card for each pump condition with the corresponding true label, predicted 

label and the result of the prediction if it is correct or false. 

 Back Propagation neural network testing 6.6.1

                          

           Figure 35: Fluid pound card testing                             Figure 36: Normal card testing 

                          

                 Figure 37: Hitting up card testing                                Figure 38: Leaking TV card testing 

                                                                              

Figure 39: Gas interference card testing 
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 Convolutional neural network testing 6.6.2

                                     

          Figure 40: Fluid pound card testing                              Figure 41: Normal card testing 

                                        

         Figure 42: Leaking TV card testing                              Figure 43: Hitting up card testing 

                                                                        

Figure 44: Gas interference card testing
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7 Results and Discussion 

 Results 7.1

The results are displayed for the back propagation neural network and the convolutional 

neural network. 

 Back Propagation Neural Network results 7.1.1

Table 7: Back propagation neural network results 

 

X-Val N LTV HU GI FP N LTV HU GI FP N LTV HU GI FP

1 N 376 0 0 0 4 374 2 0 0 3 373 0 0 0 4

LTV 0 20 0 0 0 0 20 0 0 0 0 20 0 0 0

HU 0 0 7 0 0 0 0 7 0 0 0 0 7 0 0

GI 0 0 0 0 3 0 1 0 0 2 0 0 0 0 3

FP 1 0 0 0 818 2 0 0 0 817 2 0 0 0 817

2 N 359 2 0 0 3 357 2 0 0 5 356 1 0 0 5

LTV 0 25 0 0 0 0 25 0 0 0 0 25 0 0 0

HU 0 0 12 0 0 0 0 12 0 0 0 0 12 0 0

GI 0 1 0 1 0 0 0 0 1 1 0 2 0 0 3

FP 2 3 0 1 819 2 0 0 0 823 3 5 0 0 817

3 N 360 0 0 0 2 361 2 0 0 1 393 0 0 0 2

LTV 1 10 0 0 5 0 16 0 0 3 0 10 0 0 5

HU 0 0 10 0 0 0 0 10 0 0 0 0 10 0 0

GI 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

FP 4 0 0 0 832 6 3 0 0 827 4 0 0 0 832

4 N 393 2 0 0 7 395 2 0 0 5 399 2 0 0 1

LTV 0 8 0 0 0 0 8 0 0 0 0 8 0 0 0

HU 0 0 6 0 0 0 0 6 0 0 0 0 6 0 0

GI 2 0 0 0 7 3 0 0 0 6 3 3 0 0 3

FP 2 0 0 0 799 3 0 0 0 798 3 1 0 0 797

5 N 350 0 0 0 9 350 0 0 0 9 353 2 0 0 6

LTV 0 12 0 0 3 0 12 0 0 3 0 15 0 0 0

HU 0 0 13 0 0 0 0 13 0 0 0 0 13 0 0

GI 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0

FP 0 3 0 0 835 0 3 0 0 835 0 2 0 0 836

F1-Score = 0.78F1-Score = 0.76

F1-Score = 0.77F1-Score = 0.77

F1-Score = 0.75 F1-Score = 0.78

F1-Score = 0.76

F1-Score = 0.8 F1-Score = 0.79 F1-Score = 0.8

F1-Score = 0.77

F1-Score = 0.74

F1-Score = 0.77

F1-Score = 0.88 F1-Score = 0.93
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 Convolutional Neural Network results 7.1.2

Table 8: Convolutional Neural Network results 

 

 

 

X-Val N LTV HU GI FP N LTV HU GI FP N LTV HU GI FP

1 N 362 0 0 0 1 376 0 0 0 1 396 0 0 0 1

LTV 0 25 0 0 0 0 20 0 0 0 0 20 0 0 0

HU 0 0 12 0 0 0 0 7 0 0 0 0 7 0 0

GI 0 0 0 2 0 0 0 0 0 2 0 0 0 3 0

FP 0 0 0 0 819 0 0 0 0 819 1 0 0 0 818

F1-Score = 0.99 F1-Score = 0.99 F1-Score = 0.99

2 N 362 0 0 0 0 362 2 0 0 0 362 1 0 0 0

LTV 0 25 0 0 0 0 25 0 0 0 0 25 0 0 0

HU 0 0 12 0 0 0 0 12 0 0 0 0 12 0 0

GI 0 0 0 2 0 0 0 0 2 1 0 2 0 2 0

FP 2 0 0 0 823 1 0 0 0 824 1 0 0 0 824

F1-Score = 0.99 F1-Score = 0.99 F1-Score = 0.99

3 N 362 0 0 0 0 362 2 0 0 0 362 2 0 0 0

LTV 0 16 0 0 0 0 16 0 0 0 0 16 0 0 0

HU 0 0 10 0 0 0 0 10 0 0 0 0 10 0 0

GI 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0

FP 0 0 0 0 836 0 0 0 0 836 0 0 0 0 836

F1-Score = 1 F1-Score = 1 F1-Score = 1

4 N 402 0 0 0 0 402 0 0 0 0 402 0 0 0 0

LTV 0 16 0 0 0 0 8 0 0 0 0 8 0 0 0

HU 0 0 6 0 0 0 0 6 0 0 0 0 6 0 0

GI 2 0 0 6 1 0 0 0 8 1 0 0 0 8 1

FP 0 0 0 0 801 0 0 0 0 801 0 0 0 0 801

F1-Score =0.96 F1-Score = 0.99 F1-Score = 0.99

5 N 358 0 0 0 1 358 0 0 0 1 358 0 0 0 0

LTV 0 15 0 0 0 0 12 0 0 0 0 15 0 0 0

HU 0 0 13 0 0 0 0 13 0 0 0 0 13 0 0

GI 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

FP 0 0 0 0 838 0 0 0 0 838 1 0 0 0 838

F1-Score = 0.99 F1-Score = 0.99 F1-Score = 0.99
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  Discussion 7.2

Results for both networks are displayed by table 7 and table 8. Both tables contain the 

confusion matrices of the three created models for each cross-validation round for the two 

networks (BPNN and CNN). The tables show also the F1-Score value related to each 

confusion matrix. The F1-Score, as described in the section of model selection, is the 

parameter on which the network is based on to decide which model out of the constructed 

three ones has performed better. When comparing the two tables. The F1-Score, which are 

highlighted in the tables, correspond to the best selected model based on the model 

selection workflow which was described previously. 

 BPNN and CNN comparison 7.2.1

The BPNN model has been developed and optimized with several scenarios of different 

number of layers, number of nodes (only in the hidden layer as the input and output layer 

nodes number is fixed as mentioned previously), activation functions and initial weights 

value. For the CNN case, the same thing has been done by trying different number of filters; 

filter dimensions, number of convolution and pooling layers, activation functions and different 

pooling area sizes. Each case during this study produced different results, which has 

achieved different prediction accuracies. Therefore, the program must be designed and 

optimized in such a way that it can produce the best prediction by combining the most 

optimum parameters. The network configuration of both CNN and BPNN, which results in the 

best performance in terms of accuracy, has been retained to be evaluated, validated and 

tested. The model evaluation was performed by generating the confusion matrices of the 

prediction results. Precision recall and F1-score was also analyzed for each pump card 

category. Concerning the validation, it was performed by the cross validation with five 

iterations to validate the model stability and reliability. The testing is just the application of the 

constructed model on different dynamometer cards with different classes and visualization of 

the model output, which will tell each time if the prediction is correct or not. Until now, it 

seems to be that the best model has been selected. However, an alternative work has been 

done to optimize the retained model. This work consists of generating three models which 

differ just in terms of the initial weights, at each cross-validation step. Then, prediction results 

of the three models were compared to retain the best model and discard the two others. 

Table 7 and Table 8 summarize these results. It is obvious that the convolutional neural 

network has a better performance than the back propagation neural network. The BPNN 

accuracy range is between 0.76 and 0.93 and the CNN accuracy varies from 0.96 and 1. The 

source of this important difference in terms of accuracy is the working principle of the two 

networks. Indeed, which makes the CNN way better is the fact that it analyzes the 

dynamometer cards as they are, and it does not demand an alternative representation of the 

cards to be used for learning and testing. However, the BPNN requires an additional 

representation with less dimensionality. In this work, this was given by the elliptical Fourier 

coefficients vector which represents the cards in a different form. It can be noticed from the 

confusion matrices, that the gas interference condition, especially with BPNN, is not 

predicted at all most of the times. This, as mentioned from the beginning, is because of the 

small size of data which represent this condition. Moreover, the gas interference cards are 

not reliable, not only because of the dataset small size, but also because they do not 

correspond to the label attributed to them. In contrast to the CNN, which in many instances, 

showed its ability to predict that condition class. This is due the CNN principle which works 

by analogy with the human visual cortex. In addition, it is obvious that the five cross 
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validation produced good outputs and there is no fluctuation in terms of the prediction results 

which may indicate that the two models are not stable and cannot be reliable. However, the 

CNN showed better stability, not only because the five cross validation results are 

convenient, but also because even among the three created models at the same cross 

validation round. Since the two models produced very good results for the BPNN and 

excellent results for the CNN, and this is due to the working principle of the two networks and 

not because of the model’s configuration. It is convenient to make recommendations 

regarding the dataset. 

 Recommendations  7.2.2

Since the data quality directly affects the model classification prediction results, class labels 

for each card, size of the datasets as well as data distribution, should be attributed a primary 

concern. In fact, small dataset as well as a non-descriptive data and non-equally distributed 

data classes along the dataset will affect both the training of the network. And as the testing 

process is based on the training phase, the prediction efficiency may not be reasonable. 

Moreover, in this research, the dataset was divided only into a training and test set and there 

was not some data retained for testing the model on a new pump cards which are never 

encountered by the network. In this work, this is not done because the data classes are not 

equally classified among the dataset and there are classes, for example gas interference and 

hitting up plunger conditions, which have a small number of cards. However, generally it is 

recommended to keep a part of the dataset from the beginning to assess the model skill on a 

new data. 
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Conclusion 

 
Although this study involves several findings, the followings are the most important points 

and conclusions of this research: 

 

1. The traditional concept of manually visualizing the sucker rod pump card is time and 

effort consuming and it does not cope with the automatic data generation technology. 

Therefore, automated diagnosis of pumping systems is a must nowadays. 

 

2. A descriptive representation for the dynamometer cards was constructed. In this 

research, it is the elliptical Fourier descriptors.  

 

3. Two models have been developed to classify five downhole pumping conditions of the 

sucker rod pump using Artificial Neural Networks (ANN). These too models are the back 

propagation neural network and the convolutional neural network. 

 

4. Different networks setups were evaluated until the best configuration was reached for 

both types of networks. 

 

5. Models with best configurations were investigated in terms of stability and reliability by a 

model validation technique. 

 

6. Optimization procedure has been implemented to construct the most powerful ANN 

models. 

 

7. This research has proved that machine learning techniques are able to predict the sucker 

rod pump condition with high accuracy which was in this work, 96% for BPNN and 100% 

for the CNN. 

 

8. The results have shown that the convolutional neural network (CNN) is more accurate 

than the Back propagation Neural Network (BPNN). 
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ANN Artificial Neural Network 
BPNN Back Propagation Neural Network 
CNN Convolutional Neural Network 
EFDs        Elliptical Fourier Descriptors 
EFA Elliptical Fourier Analysis 
SCADA Supervisory Control and data Acquisition 
LACT Lease Automatic Custody Transfer 

POC Pump-off Controller 

MTU Master Remote Unit 
RTU Remote Terminal Unit 
DBMS   Database Management System 
GUI Graphical User Internet 

WSN Wireless Sensor Networks 
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X-VAL       Cross Validation 
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