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Thermal and Thermomechanical Responses Prediction of
a Steel Ladle Using a Back-Propagation Artificial Neural
Network Combining Multiple Orthogonal Arrays
Aidong Hou, Shengli Jin,* Harald Harmuth, and Dietmar Gruber
To facilitate industrial vessel lining design for various material properties and
lining configurations, a method, being composed of the back-propagation
artificial neural network (BP-ANN) with multiple orthogonal arrays, is
developed, and a steel ladle from secondary steel metallurgy is chosen for a
case study. Ten geometrical and material property variations of this steel
ladle lining are selected as inputs for the BP-ANN model. A total of 160
lining configurations nearly evenly distributed within the ten variations space
are designed for finite element (FE) simulations in terms of five orthogonal
arrays. Leave-One-Out cross validation within various combinations of
orthogonal arrays determines 7 nodes in the hidden layer, a minimum ratio
of 16 between dataset size and number of input nodes, and a Bayesian
regularization training algorithm as the optimal definitions for the BP-ANN
model. The thermal and thermomechanical responses of two optimal lining
concepts from a previous study using the Taguchi method are predicted with
acceptable accuracy.
1. Introduction

Steel ladles, which consist of refractories and steel construction
components, act as transportation vessels and refining units in
the steelmaking industry. Refractory linings protect steel shells
from steel melt, and reduce heat loss from the steel shells. Awell-
lined steel ladle offers efficient temperature control of the steel
melt, and is beneficial to the steel quality and productivity.[1–4]

The performance of a steel ladle is influenced bymany factors;
for instance, material properties, lining thicknesses, and process
conditions. Efforts have been made to evaluate the performance
of steel ladle linings from thermal and thermomechanical
viewpoints using finite element (FE) methods, especially taking
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into account the application of insulation
and preheating time.[5–10] Integrated con-
sideration of lining concepts for a steel
ladle is also of importance to support steel
industry 4.0 in refractory application.[11,12]

Recently, the authors applied the Taguchi
method to optimize lining design config-
urations with FE simulations within a
defined variable span of lining thickness
and material properties.[5] The impact of
factors on the thermal and thermomechan-
ical responses was quantitatively assessed
using the analysis of variance and signal-to-
noise ratio. Finally, two optimal lining
concepts were proposed, which showed a
substantial decrease in heat loss through
the cylindrical steel shell and the thermo-
mechanical load at the hot face of the
working lining. This approach offers a
primary tool to assess the significance of
variables and select the optimal lining concept among the
defined values of variables. Nevertheless, the instantaneous
prediction of thermal and thermomechanical results of several
proposed lining concepts after assessment is also desirable for
efficient design of lining concepts, which are included in the
defined span, but were fully or partly excluded from the defined
values in the dataset used for training.

The artificial neural network (ANN) provides a promising
technique to fulfil this target, and is one of the most extensively
used methods in prediction based artificial intelligence and
machine learning.[13] It can be categorized as feed forward or
recurrent. In contrast to recurrent neural networks, a feed
forward neural network processes information from the input
nodes, through the hidden nodes to the output nodes, without
the information transfer process among the hidden nodes.[14]

Multilayer perception is usually preferable in feed forward
neural networks trained with different error-back propagation
(BP) algorithms.[15] This type of ANNs has advantageous
characteristics; for instance, generalization, adaptation, and
robustness.[16] It is successfully applied in materials engineering
to predict the mechanical properties of materials,[17–19] lifetime
limited by fatigue crack propagation, and chemical compositions
of alloys.[15,20]

The predictive quality of an ANN model depends on the
quality of the dataset, and on the architectural parameters,
including the number of hidden layers and nodes per layer, and
the training algorithms.[21] It is important to collect data in a way
that ensures they are representative in the entire variable space
by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1. Flowchart of a methodology to predict thermal and
thermomechanical responses of a steel ladle.

Figure 2. Finite element (FE) model geometry.
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with low influence from noise; the minimum size of a training
dataset largely depends on the complexity of the problem and
applied ANN architectures.[21] The minimum dataset size is
approximately proportional to the total number of free
parameters divided by the fraction of errors permitted.[22] For
instance, with an error allowance of 10%, the training dataset
size shall be about 10 times the number of weights and biases in
the network. For complex models, the minimum size of a
training dataset may deviate from this rule.[23]

The numbers of hidden layers and nodes in each layer are
significant parameters affecting the performance of an ANN
model. With a larger number of hidden layers or nodes, an ANN
model canyieldmore accurate training results and is able tomodel
more complicated relationships, while it also increases the risk of
over-fitting. In contrast, with a smaller number of hidden layers or
nodes, anANNmodelmay be insufficient to depict the underlying
relationships.[24] Several empirical equations are proposed to
define the node number in a hidden layer.[25]

Nout < Nhid < Ninp ð1Þ

Nhid � 2=3 Ninp þ Nout ð2Þ

Nhid � 2 Ninp ð3Þ

whereNinp,Nhid, andNout are the node number of an input layer,
hidden layer, and output layer, respectively.

The training algorithm for the back-propagation procedure
also affects the performance of an ANNmodel. It is used to tune
the weights in the network so that the network performs a
suitable mapping process from inputs to outputs.[24] The error
function (E) represents a measure of network performance; E is
defined as the mean square error between the outputs from
network and the target values:

E ¼ 1
Nt

XNt

i¼1
di � yi
� �2 ð4Þ

where Nt is the total number of training samples, i is the sample
index, di is the actual value of the i

th training sample, and yi the
predicted value of the ith training sample.

Many training algorithms have been developed to minimize
the error function with different strategies.[26–28] For instance,
gradient descent algorithms offer the possibility to define
learning rate and momentum for the steepest descent during
back-propagation. In contrast with gradient descent algorithms,
conjugate gradient algorithms utilize the previous gradient
search direction to define the present one; quasi-Newton
algorithms use a Hessian matrix to define the descent direction;
the Bayesian regularization algorithm minimizes the linear
combination of squared errors and weights by applying the
Levenberg-Marquardt algorithm. To identify which training
algorithm is better is non-trivial; nevertheless, a good training
algorithm should show acceptable robustness, computational
efficiency, and generalization ability.

The present work aimed to develop a methodology for
applying a reliable back-propagation (BP) ANN model to predict
the thermal and thermomechanical responses of a steel ladle
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within a defined variable space. Multiple orthogonal arrays were
employed to generate lining configurations for FE simulations
and BP-ANN model training. The sufficiency of the dataset,
feasible node number in the hidden layer for a case study with 10
variables, and the training algorithms were investigated. Later, a
BP-ANN model with optimized settings was applied to predict
the results of two lining concepts proposed in the Hou et al.[5]
2. Methodology

A flowchart of this methodology for predicting the thermal and
thermomechanical responses of a steel ladle is illustrated in
Figure 1, and includes lining configuration design, FEmodeling,
and BP-ANN model training and prediction.
2.1. Finite Element Model and Boundary Conditions

Figure 2 depicts a simplified two-dimensional model represent-
ing a horizontal cut through the slag-line position in the upper
part of the steel ladle. The outer diameter of the steel ladle was
1.828m for all of the establishedmodels. Themodel consists of a
two-half brick working and permanent lining, an insulation
lining, a fiberboard, and a steel shell. The circumferential
expansion allowance between bricks was 0.4mm. Variations
were lining and steel shell thicknesses, thermal conductivity, and
Young’s modulus of lining materials.

FE-modeling of the steel ladle, taking into account elastic
material behavior, was performed using the commercial code
019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Abaqus. The simulation included the preheating of the working
lining hot face to 1100 �C over 20 h, and a subsequent thermal
shock caused by tapping the steel melt of 1600 �C into the ladle.
After a refining period of 95min proceeded a 50min idle period.
Displacement of linings was allowed in the radial direction and
constrained in the circumferential direction with a symmetry
condition. The heat transfer between the liquid melt and hot face
of the working lining, the cold end of the steel shell, and the
atmosphere was defined as being temperature-dependent using
the surface film condition function (Table 1) in Abaqus. The
interfaces between linings were crossed by heat flux, and a heat
transfer coefficient allowing for radiation and convection was
applied.
Table 2. Geometrical and material property variations for the selected ladle.
2.2. Sample Screening Approach

Orthogonal arrays are highly fractional factorial designs that
yield a minimum number of experimental runs. With orthogo-
nal array design, the combination of each level of two or more
variables occurs with equal frequency.[29]

Multiple orthogonal arrays were applied to arrange the level
combination of the ten factors within various defined variable
spaces. The definition of values in the respective span of a
variable in each orthogonal array was arbitrary, and an even
distribution of the values in the maximum span was designed.
Detailed variations and the associated intervals are listed in
Table 2. Nine of the studied factors had four levels, and the
thickness of the steel shell had two levels. A total of 5 variable
spaces were defined; thus, 5 mixed-level orthogonal arrays L32
(49� 21) with 32 runs were implemented accordingly, which
yielded the total dataset size of lining configurations equal to
160. The lining configurations according to the orthogonal array
containing the maximum or minimum level value constituted
the boundary space, termed space A, and were used only for BP-
ANN model training. The lining configurations from the other
four orthogonal arrays were named as spaces B, C, D, and E. The
maximum level values of all 10 factors in spaces B, C, D, and E
were defined in a descending order, and their minimum level
Table 1. Film coefficient (W m�2 K�1) defined in the finite element
(FE) model.

Temperature
(�C)

Hot face of working
lining

Temperature
(�C)

Cold end of steel
shell

10 10 10 10

150 60.1 50 10

250 99 150 15

350 149.9 250 21

400 181.1 350 27

650 409.5 400 32

700 472.3 650 50

800 617.8 700 70

1000 998.5 1000 140

1200 1517 1600 400

1600 3052.3 2000 400
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values were in an ascending order accordingly. Spaces B-E were
used for BP-ANN model training and testing.
2.3. BP-ANN Model Establishment and Parameter Study
Design

The BP-ANNmodel wasmade of three layers with various nodes:
one input layer, one hidden layer, and one output layer. Nodes in
the former layer were connected to each node in the latter layer,
as shown in Figure 3. Input variables (X) were introduced to the
network as a vector corresponding to the nodes in the input layer.
These input variables weremultiplied by their respective weights
(W) and plused a bias (b) constant, yielding a summation (S) for
each node of the hidden layer, as shown in Equation (5). An
activation function was used to limit the amplitude of the
summation of each hidden layer node, which is the input for the
output layer nodes, as depicted by Equation (6). A hyperbolic
tangent sigmoid activation function (tansig) was applied as
shown in Equation (7).

Sk ¼
XNinp

j¼1
WjkXj þ b ð5Þ

Ok ¼ f Skð Þ ð6Þ

f tansig ¼
1� e�2Sk

1þ e�2Sk
ð7Þ

where j is the input factor index, k is the node index in the hidden
layer, Sk is the summation at the kth node in the hidden layer, f
is the activation function, Wjk is the weight of the j

th input at the
kth node, Xj is the j

th input, b is the bias, and Ok is the output of
the kth node in the hidden layer. The information transfer
Ladle
linings

Range of variable
values

Label of
factors

Thickness (m) Working

lining

0.03–0.27 X1

Permanent

lining

0.05–0.14 X2

Insulation 0.003–0.042 X3

Steel shell 0.015–0.035 X4

Thermal conductivity

(Wm�1K�1)

Working

lining

1.5–10.5 X5

Permanent

lining

1.0–10.0 X6

Insulation 0.05–1.55 X7

Young’s modulus (GPa) Working

lining

25–115 X8

Permanent

lining

5–110 X9

Insulation 0.1–39.1 X10
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Figure 3. Topology of a three-layer artificial neural network.

Table 3. Training algorithms employed in this study. [30]

Training
algorithm

Brief
description

GDX Gradient descent with momentum and adaptive learning rate

back-propagation

CGB Conjugate gradient back-propagation with Powell-Beale restarts

CGF Conjugate gradient back-propagation with Fletcher-Reeves

updates

CGP Conjugate gradient back-propagation with Polak-Ribi�ere updates

SCG Scaled conjugate gradient back-propagation

BFG BFGS quasi-Newton back-propagation

OSS One-step secant back-propagation

BR Bayesian regularization back-propagation

Table 4. Tests for the design of BP-ANN model architectural
parameters.

Test Architectural factors of

BP-ANN model

Testing

parameters

1 The number of nodes in

hidden layer

12 (from 1 to 12)

2 Dataset size 3 groups (96, 128, and 160 samples)

3 Training algorithms 8 (GDX, CGB, CGF, CGP, SCG, BFG, OSS, BR;

available in Matlab)

www.advancedsciencenews.com www.steel-research.de
between the hidden layer and output layer followed the same
mathematical process, and in the present paper a linear
activation function (purelin) was applied:

f purelin ¼ Sm ð8Þ

where m is the node index in the output layer, and Sm is the
summation at the mth node in the output layer.

Before ANN training starts, the input variables of the network
must be defined. When the ranges and units of input variables
are different from each other, it is wise to normalize input data to
mitigate the influence of magnitudes. In the present study, input
variables were normalized (Xi) to a scale of 0.1–0.9 using the
following equation for a variable x:

Xi ¼ 0:1xmax � 0:9xmin þ 0:8xi
xmax � xmin

ð9Þ

where xmax and xmin represent the maximum and minimum of
the variable x.

To determine the optimal BP-ANN architectural parameters
for thermal and thermomechanical responses, three tests were
carried out with temperature response and parameters opti-
mized sequentially. Afterwards, thermomechanical responses
were used to test the generality of the established BP-ANN
model. Training was terminated by reaching any defined
criterion; for instance, the minimum performance gradient
(10–5), the minimum target error (0), or a maximum number of
epochs (one epoch includes one forward pass and one backward
pass of all the training samples, 10 000 as default value if there is
no explicit definition).

First, a test was performed to explore the optimal node
number in the hidden layer. All 160 samples were used for BP-
ANN training, and the training algorithm was a gradient
descent with momentum and adaptive learning rate back-
propagation (GDX; Table 3). The number of nodes in the
hidden layer varied from 1 to 12. The objective of the second
test was to identify the minimum sample size for the lining
concept study. The dataset was divided into three groups, which
steel research int. 2019, 1900116 1900116 (4 of 8) © 2
contained 96, 128, and 160 samples. All three groups included
32 samples in boundary space A. The residual samples in each
group were the combination of any two, three, and four variable
spaces except boundary space A. Eight training algorithms
(Table 3) in the Deep Learning Toolbox of Matlab[30] were
employed individually in the third test to detect the training
algorithm most favorable for the steel ladle. A summary of
these three tests is listed in Table 4.

Leave-one-out (LOO) cross validation and figures of merit
were employed in these three tests to quantitatively assess the
performance of the established BP-ANN model. LOO applies
one sample for prediction and the residual samples of the entire
dataset for training. Four quantities were used: maximum
relative error (RE_MAX), mean relative error (MRE), relative root
mean squared error (RRMSE), and coefficient of determination
(B), as shown in Equations (10)–(13):

Maximum relative error of all testing samples:

REMAX ¼ Max
di � yi
�� ��

di

� �
ð10Þ

Mean relative error : MRE ¼ 1
n

Xn

i¼1

di � yi
�� ��

di
ð11Þ

Relative root mean squared error:

RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xi¼1

n
di � yi
� �2q
�d

ð12Þ
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Coefficient of determination : B ¼ 1�
Xi¼1

n
di � yi
� �2

Xi¼1

n
di � �d
� �2 ð13Þ

where n is the number of testing samples, yi is the predicted
value of the ith testing sample by the BP-ANN model with LOO,
di is the response value of the ith testing sample from FE
modeling, and �d is the mean response value of all testing
samples received from the FE modeling.
Figure 5. Performance assessment of the back-propagation artificial
neural network (BP-ANN)model for temperature prediction with different
dataset sizes and by applying the GDX (gradient descent with momentum
and adaptive learning rate back-propagation) training algorithm.
3. Results and Discussion

3.1. Node Number in the Hidden Layer

The BP-ANN model predicts the temperatures at the steel
shell at the end of the idle period with various numbers of
nodes in the hidden layer with epochs of 1000. Low values of
RE_MAX, MRE, and RRMSE, and a larger value of B are
desirable. Dimensionless calculation was performed for each
quantity relative to its largest value. As shown in Figure 4, the
node number in the hidden layer affects BP-ANN perfor-
mance in a complex manner. Generally speaking, cases with
node numbers of 4-7 and 9 showed satisfying results.
Although the case with the node number 7 showed slightly
higher RE_MAX, its MRE and RRMSE were the minima
among the 12 cases.

Therefore, for an input layer with 10 nodes, node number 7 of
the hidden layer was proposed for the further study. This result
was consistent with a previously stated rule,[25] which defines
that the node number of the hidden layer shall be approximately
equal to two thirds of the node number in the input layer plus the
node number in the output layer, as stated in Equation (2). In the
present study, this rule yielded 7.67.
Figure 4. Performance assessment of the back-propagation artificial
neural network (BP-ANN)model for temperature prediction with different
node numbers in the hidden layer and by applying the GDX (gradient
descent with momentum and adaptive learning rate back-propagation)
training algorithm.

steel research int. 2019, 1900116 1900116 (5 of 8) © 2
3.2. Dataset Size

Seven cases with different combinations of orthogonal arrays
were defined to test the appropriate dataset size for reliable BP-
ANN models to predict the temperature response. The dataset
size of ABC, ABD, and ABE is 96; that of ABCD, ABCE, and
ABDE is 128, and that of ABCDE is 160. The dimensionless
performance of BP-ANN models for the seven cases is
represented in Figure 5. In general, better performance was
achieved by increasing the dataset size. The BP-ANNmodel with
Figure 6. Performance assessment of the back-propagation artificial
neural network (BP-ANN) model for (a) temperature prediction based
errors, and (b) computation time with different training algorithms.

019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 5. Thermomechanical responses prediction performance of BP-ANN models with CGF and BR.

End
temperature

Maximum tensile
stress

Maximum compressive
stress

Criteria CGF BR CGF BR CGF BR

RE_MAX (%) 7.15 7.15 16.62 12.43 3.12 4.09

MRE (%) 1.02 1.76 2.43 2.37 0.93 0.78

B 0.9967 0.9908 0.9279 0.9348 0.9963 0.9966

Mean elapsed time of one LOO test (s) 2.15 0.86 3.16 1.12 1.38 0.68

www.advancedsciencenews.com www.steel-research.de
96 samples from spaces of A, B, and E showed good prediction
performance; Given the worse performance was of ABC and
ABD, a conservative minimum sample size for the present study
was 160, which is 16 times the number of inputs.
3.3. Training Algorithms

Eight training algorithms to predict end temperature at the cold
end of the steel shell were employed individually in order to train
the BP-ANN model with the above determined architectural
parameters. Besides RE_MAX, MRE, and B, the mean elapsed
time for training 159 samples and prediction of one sample in
LOO tests was additionally applied to evaluate the efficiency of
the model. The performance results are presented in Figure 6.
Lower error values, larger B, and shorter computation time are
favorable. As shown in Figure 6a, the RE_MAX and MRE from
the cases with algorithms CGF, SCG, OSS, and BR were less
than those from GDX, CGB, CGP, and BFG, and showed
acceptable coefficients of determination. However, calculations
with algorithms SCG and OSS were time consuming
(Figure 6b). Therefore, the algorithms CGF and BR were
proposed for further study.
3.4. Extension to Thermomechanical Response Study

To finalize the model infrastructure, the above-determined BP-
ANNmodel with 7 nodes in the hidden layer and 160 samples in
the dataset was trained, using both CGF and BR, to predict
thermomechanical responses. Table 5 summaries the prediction
performance comparison of algorithms CGF and BR in thermal
and thermomechanical responses. The BP-ANN model trained
using BR performed better than the model with CGF for the
maximum tensile stress and compressive stress. Therefore, a
BP-ANN model with BR was proposed for the steel ladle study.
Table 6. Two proposed optimal lining concepts with different insulation m

Thickness (mm) Thermal conductivity (W m�

Working lining 155 9

Permanent lining 52.5 2.2

Insulation (Lining concept 1) 37.5 0.5

Insulation (Lining concept 2) 37.5 0.38

Steel shell 30 50

steel research int. 2019, 1900116 1900116 (6 of 8) © 2
It isnoteworthy that thepredictionperformanceof thisBP-ANN
model with BR for maximum tensile stress is inferior to that for
end temperature and maximum compressive stress. A previous
study[5] showed that 7 of the 10 defined factors contribute 91% to
the maximum tensile stress, followed by 5 factors contributing
94% to the end temperature, and 1 factor contributing 93% to the
maximumcompressive stress. Thehigh dimensionality occurring
in the factor-response space increases the complexity of the
problem and results in under-fitting. Conversely, if themaximum
tensile stress prediction was used for parameter study, one could
expect over-fitting of the end temperature and maximum
compressive stress. An alternative could be establishing the BP-
ANNmodels with regard to the individual response, instead of the
three responses. Nevertheless, the RE_MAX for the maximum
tensile stress was 12.43%, which is less than the 15% empirical
error toleranceof prediction.[19,31,32]Moreover, theMSEwasas low
as 2.37%; therefore, the BP-ANN model was sufficient for the
research requirements.
3.5. Prediction with the Optimized BP-ANN Model

The optimal configuration of theBP-ANNmodel contains 7 nodes
in the hidden layer, and applies the Bayesian regularization
method,with 160 samples for training.The configurations and the
results of the comparison of predicted values for two proposed
lining concepts are given in Table 6 and Table 7, respectively. The
temperature difference between the BP-ANN model and the FE
results was 4K for lining concept 1, and the BP-ANN model
predicted the same temperature as the FE modeling of lining
concept 2. The maximum tensile stress differences between BP-
ANNprediction andFEmodeling for the two lining conceptswere
62 and 37MPa, representing 4.1% and 2.4%, respectively. The
differences in maximum compressive stress between BP-ANN
prediction andFEmodeling for the two lining conceptswere 5 and
2MPa, representing 0.97% and 0.39%, respectively.
aterials. [5]

1K�1) Young’s modulus (GPa) Thermal expansion coefficient (10�6K�1)

40 12.0

45 5.0

3 6.0

4 5.6

210 12.0
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Table 7. Comparison of simulated and predicted values of two proposed optimal lining concepts from FE modeling and BP-ANN.

Steel shell temperature
(�C)

Maximum tensile stress
(MPa)

Maximum compressive stress
(MPa)

FE modeling Prediction FE modeling Prediction FE modeling Prediction

Lining concept 1 280 276 1495 1433 512 517

Lining concept 2 259 259 1539 1576 517 515

www.advancedsciencenews.com www.steel-research.de
4. Conclusion and Outlook

A BP-ANN model was developed to predict the thermal and
thermomechanical responses of a steel ladle considering 10
geometrical and material property variations of ladle linings. The
optimized architectural parameters of the proposed BP-ANN
modelwere 7 nodes in the hidden layer, a dataset size not less than
16 times thenumber of inputnodes, andaBayesian regularization
trainingalgorithm.TheLOOtests for 128 samples showed that the
coefficientofdeterminationof theendtemperature, themaximum
tensile stress at the steel shell, and the maximum compressive
stress at thehot face of theworking liningwerehigh.Theproposed
BP-ANNmodelwas furtherutilized topredict the responsesof two
lining configurations proposed by previous work, and the high
prediction accuracy confirmed the reliable performance of the
BP-ANN model.

As an alternative to the conventional trial-and-error method,
the numerical investigation of lining concepts for a given
industrial vessel can be beneficial in saving time, materials, and
labor by avoiding unnecessary industrial trials. On the other
hand, the BP-ANN method allows an efficient search for
optimized lining concepts for vessels from both energy savings
and better thermomechanical performance points of view.

The proposedmultiple orthogonal arrays and BP-ANNmethods
developed in the present paper are also promising for the
optimization of ironmaking and steelmaking processes and
material recipe development. Especially, the application ofmultiple
orthogonal arrays is an advanced tool to achieve a representative
variations-response space, which defines the establishment of BP-
ANN model and affects the prediction performance.
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