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Kurzfassung 

Diese Diplomarbeit wurde als unterstützende Literatur für die Computational 

Continuum Mechanics Lehrveranstaltung an der Montanuniversität Leoben verfasst. 

Sie soll vor allem Bachelor- und Masterstudenten den Umgang mit der Software Open 

FOAM erleichtern. In dieser Arbeit werden die Grundlagen von Wärmeübertragung, 

sowie die analytischen und numerischen Herangehensweisen für Probleme der 

Wärmeleitung behandelt. 

Das erste Problem gibt eine Einführung in die Wärmeleitung mit Hilfe einer 

zweidimensionalen (2D) Platte im Gleichgewichtszustand. Um eine numerische 

Lösung zu erhalten, wird eine Schritt für Schritt Anleitung für dieses Beispiel in 

OpenFOAM gegeben. Desweiteren werden die Ergebnisse dieses OpenFOAM Falles 

mit den theoretischen Berechnungen verglichen und mögliche Ursachen für die 

vorhandenen Fehler erläutert. 

Das zweite Beispiel behandelt den eindimensionalen (1D) Gleichgewichtszustand 

eines Wärmeleitungsproblems im Falle eines isolierten Zylinders. Dieser Teil der 

Diplomarbeit beschreibt den Effekt des kritischen Isolationsradius einer nicht planaren 

Geometrie, im Falle einer Abkühlung eines heißen dünnen Rohres auf die 

Umgebungstemperatur. Die detailierte Beschreibung mit allen Programmiercodes 

werden ebenfalls angeführt. Am Ende dieses Kapitels werden die analytischen und 

numerischen Lösungen miteinander verglichen. 

Als drittes Beispiel wurde ein instationäres eindimensionales (1D) 

Wärmeleitungsproblem, der Abschreckungsprozesses einer Stahlplatte gewählt. Wie 

bei den vorherigen Fällen werden die theoretischen und rechnerischen Lösungen 

präsentiert. Weitere Recherchen dieses Problems geben eine Erklärung für die 

auftretenden Fehler zwischen den Lösungen. 

Im letzten Teil dieser Diplomarbeit wird die Wärmeübertragung in einem komplexen 

dreidimensionalen (3D) Gebilde simuliert. Dies soll zeigen, dass eine komplexe 

Geometrie durch die gleiche Herangehensweise behandelt wird, wie ein selbiges 

Problem bei einfacheren Körpern. 
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Abstract 

This master thesis serves as a support for the Computational Continuum 

Mechanics course for advanced undergraduates and first-year graduate students 

at Montanuniversitaet Leoben. It discusses the fundamentals of heat transfer 

phenomenon, and the analytical and numerical approaches to heat conduction 

problems are reviewed. 

The first problem introduces steady state heat conduction in two-dimensional (2D) 

slab. In order to obtain a numerical solution, the step-by-step description of this 

case in OpenFOAM is given. Then the results of the OpenFOAM case are 

compared to theoretical calculations, and possible reasons for the existing errors 

are noticed.  

The second example examines the one dimensional (1D) steady state heat 

conduction problem in terms of cylinder insulation. This part describes the effect of 

critical insulation radius in case of non-planar geometries when a hot thin pipe is 

cooled down to an ambient temperature. The detailed set up with all codes to run 

a successful case are presented. At the end of this chapter the comparison between 

the analytical and numerical solution is performed. 

Dealing with 1D transient heat conduction problem, quenching a steel plate process 

is taken as the third case. As with the previous cases, the theoretical and 

computational solutions are shown. Further investigation of the problem offers the 

explanation of certain errors in the numerical solution. 

The last part, heat transfer in a complex three-dimensional (3D) figure, is simulated 

in order to show that in spite of the complicated geometry a problem shall be 

approached in the same manner as a problem in simpler forms. 
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1 INTRODUCTION 

While designing a wide range of industrial processes and equipment petroleum 

engineers face the issues of heat transfer, such as convection and conduction heat 

transfer, thermal conductivity, phase transformations and others. Nowadays the 

science uses different approaches to analyse and enhance heat transfer for single 

and multiphase systems by basic heat transfer concepts, the fundamental modes of 

heat transfer, implementing thermophysical properties of materials, numerical 

methods, computational methodologies, modelling and simulation.  Nevertheless, 

some methods like analytical solutions due to its limitations are not applicable for 

cases that are more complex.  

For example, in the case of materials that have thermal conductivity, which varies 

slightly with temperature, constant thermal conductivity is generally assumed. 

However, if temperature change is substantial or the thermal conductivity varies 

greatly with temperature, the assumption of constant thermal conductivity may lead 

to significant errors in the solution. Therefore, when modelling and simulating 

temperature distribution for such problems, non-linearities caused by temperature-

dependent thermal conductivity have to be accounted for by the numerical 

computation. 

In the present thesis work, both analytical and numerical solutions are observed for 

steady-state and transient heat conduction problems, and simple 1 and 2-

dimensional examples are investigated using the computational fluid dynamics 

software OpenFOAM. 

1.1 Problem Definition 

During the past decades the importance of new methodology for attacking the 

complex problems caused by heat transfer has increased, and this technology is 

called Computational Fluid Dynamics (CFD). In this computational approach, the 

equations that govern a process of interest are solved numerically. Although 

experimentation and theoretical methods continue to be important, especially when 

the flows involved are very complex, the trend is clearly toward greater precision 

using computer-based predictions. Due to the enhanced computer power, the 

general understanding of the capabilities and limitations of algorithms has 

increased.  

1.2 Objective 

This thesis is intended to serve as a text for a part of Computational Continuum 

Mechanics (CCM) course for advanced undergraduates and/or first-year graduate 

students at Montanuniversitaet Leoben. This guide, even though without warranty 

that all the details of the subject are covered, will help a learner to understand basics 

of the topic and explain how to set up the first cases of heat conduction problems 

by him/herself.  
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Therefore, the material has been divided into two parts. The first part presents basic 

concepts and introduces the reader to the fundamentals of finite volume method and 

OpenFOAM general working process. The second part consists out of three different 

heat conduction cases, for which numerical method is applied, and the results are 

further compared with a known analytical solution.  

For a better understanding of the numerical approach to solve a problem in fluid 

mechanics and heat transfer the more complex 3D model is constructed, and based 

on this geometry heat transfer due to conduction in the body is simulated.  

In the conclusion part of the thesis, all the results are summarized. Furthermore, 

advantages and disadvantages of computational method are revised with its 

limitations and constraints.  
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2 FUNDAMENTALS 

As this thesis focuses on development of reliable numerical solutions for heat 

conduction problems, the basics of these topics are described first. Furthermore, 

the analytical solution approach for addressed problems of heat transfer is 

discussed. For a better understanding of the workflow and results of the solutions, 

the OpenFOAM software’s general structure is observed.  

2.1 Heat Conduction 

Where temperature differences exist between two or more objects, and they are not 

isolated from each other, then heat will flow from the point of higher temperature to 

the point of lower temperature until the temperatures are equalized. This 

phenomenon in science is called heat transfer. There are different modes of heat 

transfer marked: 

 Conduction is consequence of electron vibrations between the rigidly fixed 

molecules in the lattice of a solid substance or of direct molecular interaction 

in liquid and gases.  

 Thermal convection is a heat transfer from one point to another by a fluid 

movement.  

 Thermal radiation is electromagnetic radiation generated by the thermal 

motion of charged particles in body.  [1] 

Conduction, as it was mentioned above, is the transmission of heat through a 

substance without noticeable motion of a substance itself. Heat could be conducted 

through gases, liquids, and solids. When talking about liquids, conduction is a 

primary heat transfer mechanism whilst there is zero bulk velocity in the fluid. In non-

transparent solids, conduction is the only possible mode of heat transfer. In the 

gases, the kinetic energy of the molecules is associated with the property called 

temperature. In higher temperature regions, gas molecules have higher velocities 

than same molecules in lower temperature zones. The random motion of molecules 

leads to collisions and an exchange of energy and momentum. If temperature 

gradient is present in the gas, those molecules through random motions and 

collision transfer some of energy to molecules in the low temperature region. [2] 

The situation in liquids with heat conduction is more complex than in gases due to 

the tighter spacing between molecules, however, the mechanism of heat transfer 

itself is the same. Hence, molecular force and bonds have an effect on the energy 

transmission between molecules. [2] 
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Figure  1: The mechanism of heat conduction in different substances [3] 

Heat conduction in solids, on the other hand, is believed to happen due to motion of 

free electrons, lattice waves, and magnetic disturbance. The motion of free electrons 

can take place only in those substances, which are considered to be good electrical 

conductors, such as silver, gold, and cooper. The theory below this statement is that 

heat can be transported only by electrons, or so-called electron gas, which can 

easily move through the metal lattice (similar process to electricity conduction). 

Figure  1 shows the different mechanisms of heat conduction in solids, gases and 

liquids. 

In a substance, the molecular energy of vibration is transmitted between nearby 

atoms or molecules from a region with high to low temperature. These physical 

phenomena can be seen from lattice waves or energy being transmitted be a gas 

composed of particles, known as phonons. Phonon motion happens due to diffusing 

through the lattice in the same way as the electron gas. This is another considerable 

factor in conduction through non-metals. However, it is at the least importance for 

heat conduction in metals.  

Another important factor for heat conduction in solids can be effects of magnetic 

dipoles between adjacent atoms, which can also result in energy transmitting. This 

effect in physics is called electromagnetic radiation, and when the material has little 

capacity of absorbing energy, the conduction of heat is significantly dependent on 

the mentioned physical phenomenon.  

Even though it is very important to understand all the factors influencing heat 

conduction, however, the objective of this master thesis is to show how 

mathematically describe macroscopic effects of heat transfer via conduction mode 

rather than microscopic activities of molecules associated with this mode.  Different 
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mathematical methods will be considered further in this work, such as numerical and 

analytical solutions.  

2.1.1 Fourier’s Law of Heat Conduction 

In order to describe the phenomena of conduction on the macroscopic level with the 

disregard to molecular structure of matter, the experiments were run and then the 

relationship between the heat flux and temperature gradient was derived. [4] 

The experimental setup is shown in Figure  2. A slab of material is in contact with a 

heat source with temperature T1. The upper surface of the slab is in touch with 

cooling water system, which has the lower temperature T2. The contact area 

between hot plate and sink is A, and heat conducted through the slab towards the 

cooling water from the heat source perpendicular to the area. If the assumption is 

that the system is at steady state and temperature is measured at each point of the 

slab and then plotted, this slope can be described as 𝑑𝑇/𝑑𝑥. The same experiment 

with different materials of the slab would show the same trend of the slope, thus 

empirical correlation between these parameters can be derived. 

 

Figure  2: Experiment for observing Fourier’s Law of Heat Conduction [3] 

The empirical Fourier’s law of conduction describes the relationship between the 

heat flow and the temperature field. This law has the following vector form:  

 𝑞" =  −𝑘∇𝑇 (1) 

where the temperature gradient is a vector normal to the isothermal surface and the 

heat flux vector 𝑞" shows the heat flow per unit time and per unit area of the surface 

and minus represents the direction of flux, which is from the warmer to colder object. 

The proportional constant k is the thermal conductivity of the media in [
𝑊

𝑚∗𝐾
]. [5] 

Thermal conductivity is a property of a material, whose number indicates how fast 

heat can be conducted through the material and includes all the molecular effects 

contributing to the conduction mode of heat transfer. For most substances, thermal 

conductivity varies with temperature. 
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2.1.2 The General Heat Conduction Equation 

The general differential equation of conservation of energy can be applied to 

describe the physical process of heat conduction 

 𝜕

𝜕𝑡
(𝜌𝑐𝑇) + ∇⃗⃗ ∙ 𝑞 − 𝑄 = 0 

(2) 

where T – temperature at any point and any time t, c – specific heat [
𝐽

𝐾
] or [

𝑘𝑔∙𝑚2

𝐾∙𝑠2
] , 𝜌 

– mass density [
𝑘𝑔

𝑚3
] , 𝑞  – heat flux, Q – heat energy generated per unit volume per 

unit time. More can be done, if one applies Fourier’s Law mentioned in the chapter 

2.1.1 for the heat flux 𝑞  in terms of the temperature. The equation of heat energy 

then becomes  

 𝜕

𝜕𝑡
(𝜌𝑐𝑇) = ∇⃗⃗ ∙ (𝑘∇⃗⃗ 𝑇) + 𝑄 

(3) 

In addition, this differential equation can be written in one, two or more dimensions. 

Most heat transfer problems encountered in practice can be written as one 

dimensional situations due to its simplicity, however, that is not always the case. 

The governing equation mentioned above can be developed in different coordinate 

systems. Figure  3 shows the three-dimensional heat conduction problem in the 

Cartesian coordinate system. 

 

Figure  3: Three-dimensional heat conduction through a rectangular volume 

element [4] 

The small rectangular element with density of the body 𝜌, specific heat c, length, 

width, and height is assumed and shown in Figure  3. A conservation of energy for 

a small time interval ∆𝑡 then will be expressed as  
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(
𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 
𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 
𝑎𝑡 𝑥, 𝑦, 𝑧

) −

(

 
 

𝑅𝑎𝑡𝑒 𝑜𝑓 
ℎ𝑒𝑎𝑡 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑎𝑡 𝑥 + ∆𝑥,
𝑦 + ∆𝑦,
𝑧 + ∆𝑧 )

 
 
+ (

𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
𝑖𝑛 𝑡ℎ𝑒
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

)

= (
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒
𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 

𝑖𝑛 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

) 

(4) 

When assumption is made that thermal conductivity is constant in time, this equation 

will look in the differential form, as shown 

 𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
+
𝑄

𝑘
=
1

𝛼

𝜕𝑇

𝜕𝑡
 

(5) 

where 𝛼 is the thermal diffusivity of the material and can be found as 𝛼 =
𝑘

𝜌𝑐
. 

Note that in case of 1-dimensional heat conduction, the derivatives with respect to 

y and z drop out and the eq. (5) will be reduced to the equation for a plane wall. The 

same procedure can be applied for 2-dimensional problems.  

2.2 Boundary and Initial Conditions 

The heat conduction equations above were developed using an energy balance 

inside the medium, and they remain the same regardless of the thermal conditions 

on the surfaces of the medium. Thus, the differential equations do not bring any 

information related to the surface conditions of this media, such as the surface 

temperature or a specific heat flux. However, it is known that conditions on the 

surfaces influence the heat flux and the temperature distribution in a medium, and 

in order to complete the definition of a heat conduction problem the thermal 

conditions at the boundaries shall be set up, defined as the boundary conditions.  

To describe a heat conduction problem completely, two boundary conditions for 

each direction shall be specified. Therefore, two boundary conditions are necessary 

for 1D problems, and four boundary conditions for 2D problems.  

In addition, to solve a differential heat conduction equation and see temperature 

distribution along the medium the temperature at the beginning of the process shall 

be defined. Usually it is specified at time t=0 and called the initial condition. 

Nevertheless, only one initial condition is required regardless of the dimension to 

define a heat conduction problem.  

In Cartesian coordinates, the initial condition can be written in its general form 

 𝑇(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧) (6) 

where the function 𝑓(𝑥, 𝑦, 𝑧) shows the temperature distribution in the media at the 

beginning. Under steady state conditions, the heat conduction equation does not 

include time derivatives, and consequently, no need to specify initial conditions. [5] 
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There are three general types of boundary conditions existing: Dirichlet, Neumann 

and Mixed conditions.  

 Dirichlet Boundary Conditions. It sets up the temperature at the boundary. 

For one-dimensional case it will be in form of [6]:  

 𝑇(𝑥 = 0, 𝑡) = 𝑇𝑏𝑐1(𝑡) (7) 

This means that at the left side boundary of the system the temperature is a 

specified function of time. If it is constant over time, then it will take form:  

 𝑇(𝑥 = 0, 𝑡) = 𝑇𝑏𝑐1 (8) 

This, on the other hand, means that the system is touching the infinite heat 

source with constant temperature.  

1D systems requires two boundary conditions specified. The right-hand-side 

boundary for the 1D problem with the system of the length L will look like:  

 Neumann Boundary conditions. They say that at one of the boundary sides 

there is a heat flux instead of temperature. It will take the form like:  

 𝑑𝑇

𝑑𝑥
(𝑥 = 𝑜, 𝑡) =

𝑑𝑇(𝑡)

𝑑𝑥
 𝑎𝑡 𝑏𝑐1 

(10) 

 If the heat flux is constant over time, the boundary condition will be:  

 𝑑𝑇

𝑑𝑥
(𝑥 = 𝑜, 𝑡) =

𝑑𝑇

𝑑𝑥
 𝑎𝑡 𝑏𝑐1 

(11) 

In this particular case the system is touching an infinite heat source that 

maintains a constant flux of heat into the system regardless of the 

temperature.  

The second boundary condition [5] for this case be of the form:  

 𝑑𝑇

𝑑𝑥
(𝑥 = 𝐿, 𝑡) =

𝑑𝑇

𝑑𝑥
 𝑎𝑡 𝑏𝑐2 

(12) 

 Mixed Boundary conditions. It is a mixture of the two boundary conditions 

described above. [6] For 1D case it will take a form of:  

 𝑑𝑇

𝑑𝑥
(𝑥 = 𝑜, 𝑡) + 𝑇(𝑥 = 0, 𝑡) = (𝑇(𝑡) +

𝑑𝑇

𝑑𝑥
 ) 𝑎𝑡 𝑏𝑐1 

(13) 

 

2.3 Steady State and Transient Regimes 

Another important factor to mention while investigating heat conduction is the 

situation one deals with. Generally, a heat conduction study may be divided into two 

groups, steady state models and transient models. A steady state model is simpler 

 𝑇(𝑥 = 𝐿, 𝑡) = 𝑇𝑏𝑐2(𝑡) (9) 
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to solve, since the solution varies only along spatial coordinates, but not along the 

time axis as the time derivative is equal to zero. On the other hand, transient models 

are built to investigate the time dependency of heat conduction problems. [7] 

2.4 Analytical Solutions 

Analytical solution is generally the best approach to receive the outcome of a 

problem with stricter formulation, where all the parameters explicitly influence the 

results.  

Analytical solutions to heat conduction problems are mainly solving the PDE eq. (2), 

namely the heat equation within a homogeneous solid, under appropriate initial and 

boundary conditions (this may include convective and radiative terms). The simplest 

analytical solutions refer just to the simple one-dimensional planar problem ignoring 

the dissipation and convection [5]:  

 𝜕2𝑇

𝜕𝑥2
−
1

𝛼

𝜕𝑇

𝜕𝑡
= 0 

(14) 

However, more practical analytical solutions refer to enriched two-dimensional PDE 

with heat sources and a possible coordinate-motion:  

 1

𝑟𝑛
𝜕

𝜕𝑟
(𝑟𝑛

𝜕𝑇

𝜕𝑟
) +

𝜕2𝑇

𝜕𝑧2
−
𝜌𝑐𝜗

𝑘

𝜕𝑇

𝜕𝑧
+
∅(𝑟, 𝑧, 𝑡)

𝑘
−
1

𝛼

𝜕𝑇

𝜕𝑡
= 0 

(15) 

where n describes the geometry (n=1 for cylindrical, n=2 for spherical) and 𝜗 is the 

velocity of solid material relative to a z-moving reference frame.  

There are several different approaches to find analytical solution of PDE: dimension 

reduction, reduction by similarity, separation of variables, Green’s function integral, 

Laplace transform and so on. [8] Even though it can be mathematically difficult to 

solve such PDEs, however, it is very important for general understanding of thermal 

problems, set-ups of correct boundary and initial conditions and to cross check using 

more practical numerical solutions.  

2.5 Numerical Solutions 

The one of the objectives of this thesis is to develop a numerical method for solving 

heat conduction problems at steady state and transient regimes. The basis of 

numerical methods is the idea of discretization. An analytical solution to a partial 

differential equation gives us the value of T as a function of the independent 

variables (x, y, z, t). The result of the numerical solution, on the other hand, is a 

discrete number of T values in the domain. These points are called grid points, or 

nodes, or cell centroids. The process, where governing general equation is 

converted into an equation for each discrete number of T, is the discretization 

process and the methods applied in this process are called discretization methods 

[9].  
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The development of numerical methods focuses on both the derivation of the 

discrete set of algebraic equations, as well as a method of their solution. Another 

point is to make profile assumptions, so how T changes from node to node. Most 

common method for those assumptions are local neighborhood surrounding 

assumptions, but not over entire domain.  

To convert one differential equation into a set of discrete algebraic equations 

requires the discretization of space, and that can be done by mesh generation. Mesh 

generation divides up the entire domain into the cells, and each of those cells would 

be bound to discrete value T, which are computed by algebraic equation [10]. 

The most popular and wide-spread numerical methods, from simplest to complex, 

may be divided into two major groups:  

 Integral methods, when the integral energy equation 
𝜕𝐸

𝜕𝑡
= 𝑄 +𝑊 is solved, 

instead of differential heat equation.  

 Differential methods, when the heat equation is solved, but not the integral 

energy equation. [11] 

2.5.1 Finite Volume Method 

The computational procedure in this master thesis was chosen to be Finite Volume 

Method (FVM). In order to understand this method, first, the differential form of the 

general transport equation is observed. A general variable ∅  is introduced for all 

fluid flow equations. The equation will take then form:  

 𝜕(𝜌∅)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌∅𝑢) = 𝑑𝑖𝑣(𝛤 𝑔𝑟𝑎𝑑∅) + 𝑆∅ 

(16) 

which can also be written as:  

(
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 
𝑜𝑓 ∅ 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

) + (

𝑁𝑒𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑓𝑙𝑜𝑤
 ∅ 𝑜𝑢𝑡 𝑜𝑓 
𝑓𝑙𝑢𝑖𝑑 
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

)

= (

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
𝑜𝑓 ∅ 𝑑𝑢𝑒 𝑡𝑜 
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

) + (
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
𝑜𝑓 ∅ 𝑑𝑢𝑒 𝑡𝑜 
𝑠𝑜𝑢𝑟𝑐𝑒𝑠

) 

(17) 

The equation (16) can be also called transport equation of property ∅. It describes 

different transport processes in the system: on the right side of the equation are 

diffusive(𝛤 = 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑡𝑒𝑟𝑚) and source (𝑆 ) terms, on the left – temporal and 

convective terms. 

So the equation (16) is the beginning point for computational procedures in the FVM. 

The next step is to integrate this equation over a three-dimensional control volume 

CV 
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∫

𝜕(𝜌∅)

𝜕𝑡
𝑑𝑉

𝐶𝑉

0

+∫ 𝑑𝑖𝑣(𝜌∅𝑢)𝑑𝑉
𝐶𝑉

0

= ∫ 𝑑𝑖𝑣(𝛤 𝑔𝑟𝑎𝑑∅)𝑑𝑉
𝐶𝑉

0

+∫ 𝑆∅𝑑𝑉
𝐶𝑉

0

 
(18) 

 

Applying the Gauss’ divergence theorem and integrating over a small time interval 

∆𝑡 with respect to time 𝑡 the most general integral form can be written: [12] 

 
∫ (

𝜕

𝜕𝑡
∫ 𝜌𝜒𝑑𝑉
𝑉𝑚(𝑡)

0

)𝑑𝑡
𝑡+∆𝑡

𝑡

+∫ [∮ (𝜌𝑢𝜒)𝑛𝑑𝑆
𝜕𝑉𝑚(𝑡)

0

] 𝑑𝑡
𝑡+∆𝑡

𝑡

= ∫ [∮ (𝜌𝛤𝜒∇𝜒)𝑛𝑑𝑆
𝜕𝑉𝑚(𝑡)

0

] 𝑑𝑡
𝑡+∆𝑡

𝑡

+∫ [∫ (𝑆𝜒(𝜒))𝑑𝑉
𝑉𝑚(𝑡)

0

] 𝑑𝑡
𝑡+∆𝑡

𝑡

 

(19) 

 

2.5.2 Mesh Terminology and Types 

The domain of interest is divided into the cells by meshing. The certain terminology 

exists describing the mesh as it is shown in the Figure  4.  

 

Figure  4: Mesh Terminology [13] 

The fundamental unit of the mesh is the cell (sometimes called the element). 

Associated with each cell is the cell centroid. A cell is surrounded by faces, which 

meet at nodes or vertices. In three dimensions, the face is a surface surrounded by 

edges. In two dimensions, faces and edges are the same. A variety of mesh types 

are utilized in practice.  

The fundamental unit of the mesh is the cell (sometimes called the element). 

Associated with each cell is the cell centroid. A cell is surrounded by faces, which 

meet at nodes or vertices. In three dimensions, the face is a surface surrounded by 

edges. In two dimensions, faces and edges are the same. A variety of mesh types 

are utilized in practice. [13]  
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 Figure  5: Block-structured Mesh [13] 

In this master thesis the block-structured mesh will be used, which is showed in 

Figure  7. Here, the mesh is divided into blocks, and the mesh within each block is 

structured. This will be done using the mesh generation utility blockMesh supplied 

with OpenFOAM. The principle behind blockMesh is to decompose the domain 

geometry into a set of 1, 2 or 3 dimensional, hexahedral blocks. Edges of the blocks 

can be straight lines, arcs or splines. The mesh is defined as a number of cells in 

each direction of the block. [14] 

 

Figure  6: Diagram of a block [14] 

2.5.3 Accuracy, Consistency, Stability and Convergence  

It is also important to mention the certain properties of all numerical methods.  

Convergence describes how the numerical solution approaches the exact solution 

as the grid spacing, control volume size or element size is reduced to zero. 
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Theoretically it can be difficult to achieve, and so Lax’s equivalence theorem is used. 

This theorem states that if the method is both consistent and stable, the numerical 

method is convergent. However, this applies for linear problems only.  

If the numerical solution includes a set of algebraic equations, which are equivalent 

to the original governing equation as the grid spacing tends to be zero, then 

numerical method is consistent. [12]  

Stability, on the other hand, is a property of the path to solution. To solve a problem, 

steady state for example, initially a set of algebraic equations is obtained. Then the 

method to solve these equations is chosen between iterative or direct. Depending 

on the properties of the method, solution errors may increase or decrease. An 

iterative solution method is unstable if it doesn’t show a solution as a discrete set. 

Accuracy compares a numerical solution to an exact solution of equation. However, 

in most cases, the exact solution is unknown, and then truncation error of a 

discretization method is introduced. “The truncation error of a discretization scheme 

is the largest truncation error of each of the individual terms in the equation being 

discretized.” [13] The order of discretization is described by n. Nevertheless, the 

truncation error does not show how high is the error of each certain mesh, but it 

presents a decrease of the error with mesh refinement. This means, that the 

methods of high orders still may show inaccurate results in the mesh. [13] 

2.5.4  OpenFOAM 

Computational fluid dynamics software OpenFOAM (Open Source Field Operation 

and Manipulation) is a C++ library developed by OpenCFD.ltd. The working process 

in OpenFOAM is divided into three parts as shown in Figure  7. [14] 

 

Figure  7: Overview of OpenFOAM environment [14] 

The OpenFOAM dictionary files are used to define a specified case. Those files 

describe all the necessary, physical and numerical, conditions to solve the problem 

[14]. The file structure is explained in Figure  8. Before the running the case, the file 

includes three basic directories. In the time directory with the folder notation 0, the 

boundary and initial conditions are specified. In the constant folder the physical 
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properties shall be specified. The mesh properties, such as boundaries, points, 

cells, faces are saved in the folder polyMesh. The system folder describes the 

solution procedure with the three files in it: 

  

Figure  8: The file structure of a case in the OpenFOAM [14] 

fvSchemes describes the discretization method, which is chosen for each particular 

case.  

fvSolution includes the solver and equations, which are to be solved. As well the 

tolerances and relaxation factors can be stated here.  

controlDict contains the time set-up. All the parameters, which will be changing over 

time, will be stated here. Here is the description of either it is steady state or transient 

regime being observed. [14] 

Later, the step-by-step description of setting a case in OpenFOAM will be given. 

2.5.4.1 Numerical Schemes 

The fvSchemes dictionary (shown in Figure  8) sets up the numerical schemes for 

derivatives appearing in the equation to be run. OpenFOAM offers not only linear 

interpolation, even though it is most effective in many cases, but also other 

interpolation schemes for all the terms in an application. [14] 

The first choice of discretization is standard Gaussian finite volume integration which 

is based on summing values of cell faces. Those values, in turn, are interpolated 
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from cell centers. Then there is once again a choice of interpolation scheme, with 

special schemes designed for particular derivatives.  

The set of terms with specified numerical schemes is subdivided into the categories 

listed in Table 1. Further explanation of setting up a case in OpenFOAM will be given 

in chapter 3.1.4.5. 

Table 1: Main keywords in fvSchemes 

Keyword Category of mathematical terms 

interpolationSchemes Point-to-point interpolations  

snGradSchemes Component of gradient normal to a cell face 

gradSchemes Gradient 

divSchemes Divergence 

laplacianSchemes Laplacian 

timeSchemes First and second time derivatives 

 

2.5.4.2 Solution and Algorithm Control 

The equation solvers, tolerances and algorithms are specified in the fvSolution 

directory in the system folder of any OpenFOAM case. This directory includes a 

code describing a set of subdirectories, such as: solvers, relaxationFactors, PISO, 

SIMPLE.  

The solvers is the first subdirectory to be specified. The code starts with a keyword 

of each variable being solved in the particular equation. In this master thesis 

laplacianFoam application is used, thus, T is the only entry in this file directory. The 

solver shall be selected through the solver keyword from the options presented in 

Table 2. 

Table 2: Types of solvers in OpenFOAM directory fvSolution 

Solver code Type of solver 

PCG/PBiCGStab Stabilized preconditioned (bi-)conjugate gradient, for both 

symmetric and asymmetric matrices. 

PCG/PBiCG Preconditioned (bi-)conjugate gradient, with  PCG for 

symmetric matrices, PBiCG for asymmetric matrices 

smoothSolver solver that uses a smoother 
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GAMG generalized geometric-algebraic multi-grid 

diagonal diagonal solver for explicit systems 

 

Generalized geometric algebraic multi-grid is used in the cases observed in this 

master thesis. The principle behind this type of solver is that it generates a quick 

solution on the mesh with a small number of cells; maps this solution onto a finer 

mesh; uses it as initial guess to obtain an accurate solution on the fine mesh. This 

method is faster than standard methods, especially in solving the Laplace equation.  
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3 NUMERICAL FORMULATION 

In this chapter, the three different cases of heat conduction, both in steady state and 

transient conditions, are observed. Firstly, the description of a case is given, 

followed by the analytical solution of such a case. As a second part of the problem 

analysis, the detailed set up of the case is presented in order to show how to receive 

the numerical solution of a problem in OpenFOAM and further post-processing. To 

sum up, the comparison between the analytical and numerical solutions are 

provided with the discussion of possible reasons of deviations in results. 

3.1 Steady State Conduction in 2D 

The first example of solving heat transfer equation will be steady-state heat 

conduction in 2D Slab, shown in Figure  9. 

3.1.1 Description of the Case 

A uniform square section with length and height of 1 meter and width of 0.1 meter 

is observed. This slab has constant temperature at the side 4 (𝑇 = 𝑇1) of 1, the sides 

1 and 2 are assumed to be adiabatic. The condition at the side 3 can be described 

as 
𝜕𝑇

𝜕𝑥
+ ℎ𝑇 = 0, where ℎ =

ℎ𝑓

𝑘
 with ℎ𝑓 as heat transfer coefficient over x=1. 

 

Figure  9: Steady State problem in 2D slab [15] 

3.1.2 Governing Equation  

For steady state conduction the general form of heat transfer equation can be written 

as:  

 ∇. (𝛼∇𝑇) = 0 (20) 

In case of steady state conduction in a slab, the equation (5) will take a form of the 

Laplace equation. This equation applies with assumptions, that there is no heat 

generated and the thermal conductivity remains constant [16] 
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 𝜕2∅

𝜕𝑥2
= 0 

(21) 

Boundary conditions are described in the chapter above. 

3.1.3 Analytical Solution  

The analytical solution of eq. (3)  for the given case was solved in [16] as:  

 𝑇 = 2ℎ∑
cos(𝑝𝑖𝑥)𝑐𝑜𝑠ℎ[𝑝𝑖(1−𝑦)]

[(𝑝𝑖
2+ℎ2)+ℎ] cos(𝑝𝑖)cosh (𝑝𝑖)

∞
𝑖=1 , (22) 

where “the 𝑝𝑖 are the positive roots of the transcendental equation” [17]:  

 𝑓(𝑝) = 𝑝 𝑡𝑎𝑛𝑝 − ℎ = 0 (23) 

If to take h=10, the analytical solution will take a form as presented in Figure  10. 

The comparison of analytical solutions and numerical solutions, which are given in 

the source [16], are given later.  

 

Figure  10: Analytical solution for the 2D slab. Temperature distribution [17] 

3.1.4 Preprocessing 

As it was mentioned before in chapter 2.5.4, all the data required to simulate a case 

in OpenFOAM is stored in a case directory.  

The first step in the simulation process is to create the case directory, named Slab 

for example. Hint: there must not be any spaces in the file directory names.  

The constant directory contains physical properties of the object and a polyMesh 

folder where a full description of the mesh will be stored. In the system directory are 

the files with setting parameters associated with the solution procedure. The 0 

directory contains the initial and boundary conditions set up. After running the case 

the time-directories will appear containing the solutions for each time step. 
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To set up the files inside the directories, one can use a text editor, for example 

NotePad, and write the files from the scratch. However, it is recommended for this 

case to copy similar case from tutorials folder and modify it according to the 

particular simulation parameters. For this problem a case 

tutorials/basic/laplacianFoam/flange can be copied and modified.  

3.1.4.1 Mesh Generation 

OpenFOAM always uses 3D meshes and solves the case in 3 dimensions by 

default. To solve 2D problem, 3D mesh still must be generated with two dimensions 

matching the geometry of the Slab and the third one is arbitrary. So the heat will 

transfer only through x- and y-axis. To create a mesh, the file in system directory 

named blockMeshDict should be created.  

The entries, which are shown in Appendix 1, mean: 

 convertToMeters. The default unit for the coordinates are meters. If other 

coordinates are required, for example centimeters, 1 shall be changed to 

0.01.  

 vertices. Here the vertices of the mesh are defined, starting from 0. There 

are 8 vertices in this case making up together a hexadron block.  

 blocks. This part has several entries, which define the mesh block and its 

division. The order of the vertices, which define a single block, must be written 

by the rules of right-handed coordinate system. The first vertex defines the 

origin of the local coordinate system. In the second entry of blocks the 

number of cells in each direction is specified. The third entry defines cell 

expansion ratio along a direction or an edge, so it is a ratio between the first 

and the last cell. There are different codes possible, like simpleGrading or 

edgeGrading. However, in this example only simpleGrading is used, which 

specifies expansion ratios in x, y and z directions.  

 edges. This entry is used to describe the edges joining to vertex points. If 

nothing is specified, straight lines are assumed as default.  

 boundary. Here the boundary of the mesh is broken into patches. These are 

the regions where boundary conditions will be applied. After each name of 

the patch, the boundary type is specified. The empty type instructs 

OpenFOAM to solve the problem in other two dimensions. The generic type 

patch does not state any special information. Face entry specifies one of 

several vectors, which contains vertices of the faces assigned to the 

corresponding patch. [14] 

Once the blockMeshDict is set up, the terminal of OpenFOAM should be open. Then 

the case directory shall be browsed with the command cd work/Slab/ and then 

command blockMesh can be entered, as shown in Figure  11. 
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This command will create the file blockMesh in constant directory. Also the result 

can be observed in the Paraview software, which is used for post-processing. Later, 

the detailed description how to use this software will be given, in chapter 3.1.6. 

 

Figure  11: Terminal in OpenFOAM 

3.1.4.2 Boundary and Initial Conditions Set Up  

The next step of the simulation is to introduce boundary and initial conditions of 

temperature field. For each field of interest there is a corresponding file inside the 0 

folder.  

There are three main entries in this file: 

 dimensions. This entry specifies the dimensions of all the variables. Each 

position is assigned to a specific unit. 

Table 3: Properties assigned to their position in the entry 

Position Property 

1 Mass [kg] 

2 Length [m] 

3 Time [s] 

4 Temperature [K] 

5 Quantity of substance [mol] 

6 Current [A] 

7 Luminous intensity [cd] 

 

 internalField. This entry defines the initial internal field. uniform sets the 

specified value (0) to all the internal elements. For steady-state cases this 

doesn’t affect the final solution, but may have an impact on the stability and 

resolution speed. 
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 boundaryField. Introduces the boundary conditions at each of the patches, 

which were defined in blockMeshDict.  

o frontAndBack. empty is used in case of 1D and 2D cases. Since the 

mesh OpenFOAM produces is always 3D, this entry type means that 

the z-axis is chosen as arbitrary.  

o bottom. fixedValue applies a single value (273) to the boundary.  

o top and left. zeroGradient sets the normal gradient (±
𝜕𝑇

𝜕𝑦
) to 0, 

establishing the adiabatic condition at sides 1 and 2. 

o right. Type groovyBC is introduced in the library swak4Foam [18]. It 

allows to set non-uniform boundary conditions without programming. 

gradientExpression strings with the gradient to be used if a Neumann 

condition is needed. Defaults to zero.  fractiontExpression says if the 

face is at Dirichlet (1) or Neumann (0) condition.  

The temperature field file is shown in Appendix 2. 

3.1.4.3 Physical Properties 

The only physical property OpenFOAM needs for this case is the thermal diffusivity 

of the material (the parameter 𝛼 from the heat equation), which is defined within 

transportProperties and named DT. The unit, which could be depicted in this code 

as well, is [
𝑚2

𝑠
]. The code is the following: 

DT              DT [ 0 2 -1 0 0 0 0 ] 0.1; 
 

3.1.4.4 Time Settings 

The parameters, which control the time of simulation and the input/output of the data 

are written in the controlDict file. In this case the time controls relate to the number 

of iterations. The used code is shown in Appendix 3 

Some of the important entries here: 

 startFrom. Controls the start of the simulation. The keyword startTime 

instructs the solver to begin the simulation always from scratch. Also there is 

the possibility to enter latestTime keyword, which would begin the simulation 

from the latest stored time-folder. 

 stopAt. Controls the end-point of the simulation. endTime entry here says to 

stop after 30 sec of simulation. 

 deltaT. Defines the time-step. In steady-state problems every step is an 

iteration. 

 writeControl. Controls the timing of the write output file.  

 purgeWrite. Specifies a limit on the number of output time-directories stored. 

0 is for no limitations.  
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 libs. Allows OpenFOAM to use a specific library mentioned. This library was 

introduced in chapter 3.1.4.2 to describe special boundary conditions.  

3.1.4.5 Discretization and Linear Solver Set Up 

The finite volume, as it was mentioned in chapter 2.5.1, was chosen to be 

discretization method. This method will be specified in the fvSchemes file. The 

fvSolution file specifies the linear equation solvers and tolerances and other 

algorithm controls. 

The code in the file fvSchemes is shown in Appendix 4 

In this file it is important to change the ddtSchemes entry to Euler. This will mean, 

that the result will represent a stable solution achieved after some transient 

behavior.  

The code in the file fvSolution is shown in Appendix 5 

3.1.5 Running the Simulation 

Having prepared the case files, the solver can be run by typing in the case directory: 

laplacianFoam 

This will generate files in the time directory for each time-step.  

In order to observe the results in visualization software, one more step should be 

done in the same case directory:touch slab.foam 

This will generate a blank file in the case directory with the file extension .foam.  

3.1.6 Post-processing 

Having the case solved in OpenFOAM, it is a good idea to visualize results in 

Paraview software. This software is an open-source, multi-platform data analysis 

and visualization application. The file with the .foam extension can be opened in 

Paraview and then the button apply can be clicked. Now Paraview is ready to display 

the results. In Figure  12 are shown some of the basic controls, which should be 

changed: T-field to be colored and Surface With Edges.  

 

Figure  12: Some basic post-processing controls 
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Figure  13: Temperature distribution in the Slab 

Figure  13 shows the result of the solution. However, in order to compare the 

analytical solution results, given in [17], with results of OpenFOAM solution, the data 

should be interpolated. To do so, the solution as cell values are presented by 

choosing in coloring control button T-field in cells. Figure  14 presents the cell values 

of the solution calculated with the FVM. 

 

Figure  14: The cells values calculated by the FVM 
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Then the uppermost line in Paraview the Filters tool is chosen, Point interpolation 

 Point Volume Interpolator. In order to produce isolines corresponding with the 

analytical solution, the 10 color sets are chosen in Edit color map Number of Table 

Values. Figure  15 presents the final result, which now can be compared to the 

analytical solution. 

 

Figure  15: Solution with interpolated point values with 10 color sets 

3.1.7 Result and Discussion  

The result shows a relatively low percentage error between the analytical and the 

numerical solution, although the chosen mesh is coarse. However, an error of 

roughly 2% is observed near the sides 3 and 4. The rapid temperature change 

occurs near these regions, thus, the discretization of the problem is rather crude. 

Bayley, et al.[17] mentions that the convergence of analytical solution, similar to the 

numerical solution, is also slow in this region.  
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Figure  16: Temperature distribution in the Slab calculated in OpenFOAM 

 

Figure  17: Temperature distribution in the Slab calculated analytically 

Figure  16 and Figure  17 present the OpenFOAM and analytical solutions, where 

the error of 2% for the sides 3 and 4 can be depicted.  
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3.2 Critical Radius of Insulation 

The second example will describe a possible effect in case of non-planar geometries 

when adding an insulating layer over a hot thin wire or hot sphere, cooled to an 

ambient fluid, which can be described by critical radius. This effect means that the 

increase in heat transfer area by the additional layer overcomes the effect of a small 

thermal conductivity of the cover, as shown in Figure  19. 

3.2.1 Description of the Case 

A cylinder with the radius of r1=15 mm has an insulation layer with thermal 

conductivity of 𝑘 = 0,155 
𝑊

𝑚∗𝐾
 of the radius r2=30 mm [19]. At the surface of the 

cylinder the temperature is T1=100 °C. The heat flows from the hot cylinder through 

the insulation to the ambient medium, consequently the steady state regime of heat 

conduction was assumed and all the heat is uniformly distributed. All air gaps were 

neglected. The condition at the surface of insulation is assumed as natural 

convection. Radiation and forced convection were not observed in this case, since 

it would reduce significantly the critical radius. [20] 

 

Figure  18: Critical radius of insulation material, 1D Steady state conduction 

problem [2] 

The temperature of the ambient medium is T2=29 °C, convective heat transfer 

coefficient h=10 [
𝑊

𝑚2∗K
] [21]. 

3.2.2 Analytical Solution 

As an illustration, the heat flow from a hot wire of radius r1 with a fixed TR , exposed 

to an ambient fluid of 𝑇∞ and convective coefficient of h=const, through an insulating 

layer of conductivity k  between r1 and r2 is calculated as: 

 𝑄(𝑟2 ≥ 𝑟1) = 𝑘2𝜋𝐿
𝑇𝑟1−𝑇(𝑟)

ln
𝑟2
𝑟1

= ℎ2𝜋𝑟2𝐿(𝑇(𝑟) − 𝑇∞) = 2𝜋𝐿
𝑇𝑟1−𝑇∞

1

𝑘
ln
𝑟2
𝑟1
+

1

𝑟2ℎ

   

𝜕𝑄

𝜕𝑟
= 0, 

1

𝑟𝑘
−

1

𝑟2ℎ
= 0  𝑟|𝑄𝑚𝑖𝑛 =

𝑘

ℎ
 

(24) 
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Figure  19: Critical radius of insulation for non-planar geometry [22] 

For the spherical geometry the critical radius will be 𝑟|𝑄𝑚𝑖𝑛 =
2𝑘

ℎ
. However, this 

critical radius matter only in case of small dimensions of cylinders or spheres, for 

instance, for wires and pipes with diameter smaller than 20 mm [22]. Based on the 

parameters described in the case description, the 𝑟|𝑄𝑚𝑖𝑛 = 0,0155 𝑚𝑚. 

3.2.3 Preprocessing  

Same as with the example above (Chapter 3.1), all the data required to simulate a 

case in OpenFOAM is stored in a case directory.  

The first step in the simulation process can be to copy the case directory, named 

Radius for example. The constant directory contains physical properties of the 

object and polyMesh folder where a full description of the mesh will be stored. In the 

system directory are the files with setting parameters associated with the solution 

procedure. The 0 directory contains the initial and boundary conditions set up. After 

running the case, the time-directories will appear containing the solutions for each 

time step. 

3.2.3.1 Mesh Generation 

This case will be assumed as 1D steady state heat conduction because of the same 

temperature distribution in x and y directions due to cylinder symmetry. The z-axis 

is taken as arbitrary, such as in the case Slab. 
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To create a mesh, the file in system directory named blockMeshDict should be 

created.  

The codes, which are entered in the file, mean the same as described in chapter 

3.1.4.1. However, since it is a cylinder, the special entry should be defined as: 

 edges. This entry is used to describe the edges joining to vertex points. If 

nothing is specified, straight lines are assumed as default. In the case of a 

cylinder, the edges have to be specified. Each edge must be described with 

at least one interpolation point, which the circular arc will intersect. For hollow 

cylinder example, 16 arcs are assigned.[14] 

The blockMeshDict code for this case is shown in Appendix 6, Appendix 7 and 

Appendix 8. 

Once the blockMeshDict is set up, the terminal of OpenFOAM should be opened. 

Then the case directory shall be browsed with the command cd work/Radius/ and 

then command blockMesh can be run. 

This command will create the file blockMesh in the constant directory. Also the result 

can be observed in Paraview software, which is used for post-processing.  

3.2.3.2 Boundary and Initial Conditions Set Up  

The next step of the simulation is to introduce boundary and initial conditions of 

temperature field. For each field of interest there is a corresponding file inside with 

0 folder.  

The first two entries (dimensions and internalField) in this file shall be the same as 

in the case Slab. 

However, the third entry boundaryField shall be changed. 

 boundaryField. Introduces the boundary conditions at each of the patches, 

which were defined in blockMeshDict.  

o in. fixedValue is used to specify the hot temperature at the surface of 

the cylinder. This temperature was assumed to be constant over time.  

o out. groovyBC type of boundary is used in order to describe the natural 

convection at the surface of insulation 

o Left and right. zeroGradient sets the normal gradient (±
𝜕𝑇

𝜕𝑦
) to 0, 

establishing the adiabatic condition at the outermost sides of cylinder. 

The temperature field file is shown in Appendix 9. 

3.2.3.3 Physical Properties 

The only physical property OpenFOAM needs for this case is the thermal diffusivity 

of the material (the parameter 𝛼 from the heat equation), which is defined within 

transportProperties and named DT. For the case of critical radius of insulation, the 
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thermal diffusivity of insulation layer is specified in this file. The unit, which could be 

depicted in this code as well, is [
𝑚2

𝑠
]. The code is the following: 

DT              DT [ 0 2 -1 0 0 0 0 ] 0.00015; 
 

3.2.3.4 Time Settings 

The parameters, which control the time of simulation and the input/output of the data 

are written in the controlDict file. In this case the time controls relate to the number 

of iterations. Here all the entries have the same role as in the case with slab. The 

used code is shown in Appendix 10. 

3.2.3.5 Discretization and Linear Solver Set Up 

The finite volume, as it was done also for the case Slab, was chosen to be 

discretization schemes. This method will be specified in the fvSchemes file. The 

fvSolution file specifies the linear equation solvers and tolerances and other 

algorithm controls. 

The code is not shown, since it looks the same as in the case before and the file 

can be simply copied.  

In the file fvSchemes it is important to change the ddtSchemes entry to steadyState 

This will present the stable solution over all run time. 

The code in the file fvSolution is the same as in chapter 3.1. 

3.2.4 Running the Simulation 

Having prepared the case files, the solver can be run by typing in the case directory: 

laplacianFoam 

In order to observe the results in visualization software, one more step should be 

done in the same case directory: touch radius.foam 

3.2.5 Post-processing 

The file with .foam extension can be opened in Paraview and then the button apply 

can be clicked. 
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Figure  20: Temperature distribution in the insulation layer of the cylinder 

The settings of Paraview may not allow to view the temperature distribution in full 

color. In order to obtain the colorful picture, as in Figure  20, the left mouse button 

should be clicked on the mesh, and then the option Edit color is chosen. On the right 

side of Color map editor the button Rescale to visible range can be selected.  

3.2.6 Result and Discussion  

Plotting the heat transfer rate Q [W] as the function of the insulating material r [m] 

gives the graph (Figure  21). The numerical solution gives the same value for the 

critical radius of insulation of the cylinder, however, there is a slight error in the heat 

energy between OpenFOAM and analytical results due to the temperature 

differences.  
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Figure  21: Comparison of OpenFOAM and analytical results 

The error in the temperature distribution may be decreased by certain grid 

refinement techniques. On the one hand, a finer grid would give the very precise 

solution with further accurate heat energy calculations. Nevertheless, the objective 

of this problem was rather to study the radius of insulation than to be precise in the 

calculation, which due to a refined mesh would increase the computation time. The 

coarse grid was still relevant to be applied in this study.  
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3.3 Transient Heat Conduction in 1D 

Heat conduction problems involving time mostly lead to parabolic PDEs. In this 

chapter, the 1D transient heat conduction problem will be observed with further 

comparison of analytical and numerical solutions.  

3.3.1 Description of the Case 

An infinite steel plate of infinite size in y-axis with thermal diffusivity 𝛼 =

0,00003𝑚
2

𝑠⁄  and thermal conductivity 𝑘 = 36
𝑊

𝑚 °𝐾
 [23] of thickness L=5 cm, initially 

at an uniform temperature of 𝑇 = 𝑇𝑖 = 1 𝐾 , is suddenly immersed in an fluid bath at 

𝑇∞ = 0 𝐾. Convection heat transfer coefficient between the fluid and the surfaces is 

ℎ = 36
𝑊

𝑚2 °𝐾
.This problem is also called in the literature as “quenching” [17]. Since 

the initial temperature is uniform, for the analytical solution only one half of the plate 

will be considered, and the coordinate origin will be the center-line. The ratio of h/k 

for the simplification is taken as 1. 

 

Figure  22: An infinite steel plate [22] 

3.3.2 Governing Equation  

This case can be described by Fourier’s 1D transient heat conduction equation [24]:  

 𝜕𝑇′

𝜕𝑡′
= 𝛼

𝜕2𝑇′

𝜕𝑥′2
 

(25) 

where 𝑡′, 𝑥′, 𝑇′are dimensional time, distance and temperature, 

with the initial condition:  

 𝑇 = 1 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1, 𝑡 = 0 (26) 
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And the boundary conditions: 

 
𝑘
𝜕𝑇

𝜕𝑥
= ℎ𝑇 𝑎𝑡 𝑥 = 0, 𝑡 > 0 

𝑘
𝜕𝑇

𝜕𝑥
= −ℎ𝑇 𝑎𝑡 𝑥 = 1, 𝑡 > 0 

(27) 

3.3.3 Analytical Solution  

Using the variables in dimensionless form is one of common techniques to solve 

parabolic equations, in case of transient heat conduction for instance. One solution 

can often be used for similar problems with very different linear dimensions, thermal 

conductivities, and temperatures. The transient equation (25) applied to an uniform 

rod of length L with 𝑇𝑖 at zero time can become dimensionless with following 

variables [25]: 

 
𝑥 =

𝑥′

𝐿
,   𝑇 =

𝑇′

𝑇𝑖
, 𝑡 =

𝛼𝑡′

𝐿2
  

(28) 

 𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
    

(29) 

 

The next step to analyze the system is to calculate the Biot number (Bi). This will 

characterize the problem as lumped or not lumped system. The numerical value of 

Bi is a criterion which indicates the importance of conduction and convection in 

temperature distribution of an object being cooled or heated by convection at its 

surface [26]. Figure  23 shows the physical meaning of Bi, when 𝐵𝑖 ≪ 1 the heat 

transfer due to conduction can be neglected, and on the other hand, when 𝐵𝑖 ≫ 1, 

the heat conduction is primary mechanism of heat transfer.  

 

Figure  23: Comparison of temperature profiles in two plates cooled by the same 

fluid [27] 
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𝐵𝑖 =

𝑅𝑐𝑜𝑛𝑑
𝑅𝑐𝑜𝑛𝑣

=
ℎ 𝐿𝑐
𝑘

 
(30) 

where 𝐿𝑐 =
𝑉

𝐴
=
𝐴∗2𝐿

2 𝐴
= 𝐿 is a characteristic length  defined as the ratio of the volume 

of the body to its surface area and L is a half thickness of the plate in this case. For 

the problem observed in this master thesis, 𝐵𝑖 ≫ 0,1 is true. Thus, lumped system 

analysis is not applicable and the temperature gradient in the body is not negligible. 

[22] 

The analytical solution to this problem, given in [17], represented in form of series, 

which, on its turn, is rapidly convergent.  

 

𝑇 = 4∑
𝑐𝑜𝑠 [2𝑝𝑖 (𝑥 −

1
2)]

𝑒4𝑝𝑖
2𝑡(3 + 4𝑝𝑖

2)cos (𝑝𝑖)
,

∞

𝑖=1

     0 ≤ 𝑥 ≤ 1 

(31) 

where 𝑝𝑖 are the positive roots of the equation 𝑝 tan(𝑝) =
1

2
.  

3.3.4 Preprocessing 

Repeating the first step of the previous simulation, the case directory shall be 

created named Transient.  

Furthermore, this case directory will be modified in order to show the 1D transient 

heat conduction problem, described in chapter 3.3.1. 

3.3.4.1 Mesh Generation 

Since the problem described is 1D, which is the same as the previous case, a 3D 

mesh will be created by blockMesh utility, and then the dimensions with no solutions 

will be depicted as arbitrary. To create a mesh, the file in system directory named 

blockMeshDict should be created.  

The entries in the blockMeshDict code have the same meaning as in chapter 

3.1.4.1. The code (Appendix 13) is modified in order to obtain the plate 

representation with the z-axis as arbitrary. The solution will be done in x-axis, 

however, the y-axis is constructed in order to show the correct domain.  

Once the blockMeshDict is set up, the mesh can be run and, then stored in the 

constant directory.  

3.3.4.2 Boundary and Initial Conditions Set Up  

The next step of the simulation is to introduce boundary and initial conditions of 

temperature field. For each field of interest there is a corresponding file inside with 

0 folder.  
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 internalField. This entry defines the initial internal field. uniform sets the 

specified value (1) to all the internal elements, since initially the plate at the 

constant hot temperature. 

 boundaryField. Introduces the boundary conditions at each of the patches, 

which were defined in blockMeshDict.  

o frontAndBack, top and Bottom. empty is used in case of 1D and 2D 

cases. Since the mesh OpenFOAM produces is always 3D, this entry 

type means that the z-axis is chosen as arbitrary.  

o right and left Type groovyBC is used on the left and right sides of the 

plate in order to set up the condition of sudden cooling process of an 

object by the surrounded fluid (natural convection only is taken into 

account). 

The temperature field file is shown in Appendix 17. 

3.3.4.3 Physical Properties 

The only physical property OpenFOAM needs for this case is the thermal diffusivity 

of the material (the parameter 𝛼 from the heat equation), which is defined within 

transportProperties and named DT. The unit, which could be depicted in this code 

as well, is [
𝑚2

𝑠
]. The code is the following: 

DT              DT [ 0 2 -1 0 0 0 0 ] 0.03; 
 

3.3.4.4 Time Settings 

The parameters, which control the time of simulation and the input/output of the data 

are written in the controlDict file. In this case the time controls shall be set up 

carefully, because the solution is heavily dependent on time. The used code is 

shown in Appendix 16. 

The entries in the controlDict code have the same meaning as in the Chapter 

3.1.4.4. The code is modified in order to achieve the solution after 2 minutes of 

sudden cooling of the plate. The time intervals were chosen in such a manner that 

the analytical and numerical results could be compared.  

3.3.4.5 Discretization and Linear Solver Set Up 

The finite volume, as it was mentioned in chapter 2.5.1, was chosen to be 

discretization schemes. This method will be specified in the fvSchemes file. 

fvSolution file specifies the linear equation solvers and tolerances and other 

algorithm controls. 

The code in the file fvSchemes is shown in Appendix 15. 

In this file it is important to change the ddtSchemes entry to Euler. This will mean, 

that the result will represent a transient solution over the run-time. 
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The code in the file fvSolution is shown in Appendix 16. 

3.3.5 Running the Simulation 

Having prepared the case files, the solver can be run by typing in the case directory: 

laplacianFoam 

This will generate files in the time directory for each time-step.  

In order to observe the results in visualization software, one more step should be 

done in the same case directory: 

touch Transient.foam 

This will generate a blank file in the case directory with the file extension .foam.  

3.3.6 Post-processing 

The file with the .foam extension can be opened in Paraview and then the button 

apply can be clicked. Figure  24 presents the solution for the first time step (whereas 

Figure  25 shows the solution for the last step) with the temperature distribution over 

the whole domain. In case the domain is colored only in red or blue, it is a good idea 

to Rescale to visible range (in Chapter 3.2.5 it was discussed in more detail).  

 

Figure  24: The 1D transient problem OpenFOAM solution of the first time step 
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Figure  25: The 1D transient problem OpenFOAM solution of the last time step 

3.3.7 Result and Discussion  

Figure  26shows the comparison between the analytical and OpenFOAM solution, 

where the x-axis is the dimensionless distance x/L and y-axis is the temperature in 

[K]. Seven time intervals are constructed in this graph with the base line 

representing analytical solutions and the dashed line for numerical solutions.  
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Figure  26: The graphical comparison between the analytical and OpenFOAM 

solution 

The high accuracy of the results is achieved throughout, and the greatest error is 

less than 1%. This means that this implicit calculation gives stable, convergent and 

accurate solution [28]. 
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3.4 Transient Heat Conduction in 3D  

The last case is performed in order to show the capability of a numerical approach 

to solve heat conduction problems in more complex 3D geometries.  

3.4.1 Description of the Case 

A flange, initially at an uniform temperature of 𝑇1 = 273,15 𝐾, is heated up from the 

inner part of raised face with constant temperature of 𝑇1 = 573,15 𝐾, The geometry 

is represented in Figure  27: Paraview visualization of Flange mesh. 

3.4.2 Preprocessing 

Repeating the first step of the previous simulation, the case directory shall be 

created named Flange.  

Furthermore, this case directory will be modified in order to show the transient heat 

conduction problem in the 3D complex geometry. 

3.4.2.1 Mesh Generation 

The 3D mesh for the Flange problem is not possible to construct with the same utility 

as in the previous cases. Due to its complexity the flange mesh should be 

constructed using either snappyHexMesh or cfMesh utility, or open source software 

to generate a mesh file, which can be later on opened in OpenFOAM. The tutorials 

how to use those utilities are given in the Bahram, et. al [29], however, for this master 

thesis the toolbox Ansys is used to develop a mesh representing the Flange problem 

(Figure  27). 

 

Figure  27: Paraview visualization of Flange mesh 
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3.4.2.2 Boundary and Initial Conditions Set Up  

The boundary and initial conditions of temperature field are introduced in Appendix 

18.  

 internalField. This entry defines the initial internal field. uniform sets the 

specified value (273,5) to all the internal elements, since initially the plate at 

the constant hot temperature. 

 boundaryField. Introduces the boundary conditions at each of the patches.  

o patch 1 and patch 2. zeroGradient type sets the normal gradient (±
𝜕𝑇

𝜕𝑦
) 

to 0, establishing the adiabatic condition at outermost part of a flange. 

o patch2 and patch 4. fixedValue (for 273,15 and 573,15 values 

respectively) type is used to specify the hot temperature in the inner 

part of the flange. This temperature was assumed to be constant over 

time. 

3.4.2.3 Physical Properties 

The thermal diffusivity of the material is set up for the case (the parameter 𝛼 from 

the heat equation), which is defined within transportProperties and named DT. The 

unit, which could be depicted in this code as well, is [
𝑚2

𝑠
]. The code is the following: 

DT              DT [ 0 2 -1 0 0 0 0 ] 4e-05; 
 

3.4.2.4 Time Settings 

The parameters, which control the time of simulation and the input/output of the data 

are written in the controlDict file. In this case the time controls shall be set up 

carefully, because the solution is heavily dependent on time. The used code is 

shown in Appendix 19. 

3.4.2.5 Discretization and Linear Solver Set Up 

The finite volume, as it was mentioned in chapter 2.5.1, was chosen to be 

discretization schemes. This method will be specified in the fvSchemes file. In this 

file it is important to change the ddtSchemes entry to Euler. This will mean, that the 

result will represent a transient solution over the run-time. fvSolution file specifies 

the linear equation solvers and tolerances and other algorithm controls. The codes 

are presented in Appendix 20 and Appendix 21 

3.4.3 Running the Simulation 

The solver can be run by entering in the case directory: laplacianFoam. This will 

generate files in the time directory for each time-step.  



NUMERICAL FORMULATION 41 

   

 

In order to observe the results in visualization software, one more step should be 

done in the same case directory: touch Flange.foam. This will generate a blank file 

in the case directory with the file extension .foam.  

3.4.4 Post-processing 

The file with the .foam extension can be opened in Paraview and then the button 

apply can be clicked.  

 

Figure  28: Temperature distribution in flange, the first time step 

 

Figure  29: Temperature distribution in flange, the last time step 
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4 CONCLUSION 

This section concludes the results and evaluates a computer simulation utilization 

for solving fluid dynamics and heat transfer problems in comparison to a theoretical 

approach. A computational method to solve heat transfer problems is free of some 

of constraints imposed on other methods, such as analytical and experimental, thus, 

it might provide information that is not available by any other means. On the other 

hand, this approach also has limitations from computer storage and computation 

speed through to the inability to understand and mathematically model certain 

complex phenomena.  

In the computational method, a limited number of assumptions are made and a high-

speed computer shall be used to solve the resulting governing fluid dynamic 

equations. In order to achieve an accurate numerical solution, certain parameters 

should be described: governing equation of a problem, the functional dependence 

of temperature on space and time coordinates, boundary conditions, initial 

conditions, material properties and geometry of the body. When all information 

important for a numerical method has been defined, the temperature field can be 

calculated, and moreover, the heat flux, thermal stresses, expansion, deflection, 

design insulation thickness, heat treatment methods are possible to compute and 

analyze.  

The solution to a heat conduction problem is defined at nodes inside each cell. The 

accuracy of a CFD solution is governed by the number of cells in the grid. In general, 

the larger the number of cells the better the solution accuracy. The level of detail of 

the grid affects both the accuracy of a solution and its cost in terms of calculation 

time. To verify the results obtained by the computational method, it is important to 

compare them with the existing analytical solution. In case the conditions were set 

up correctly and the error between analytical and computed results is rather 

considerable, the decision shall be taken either to change a grid and increase 

computational time, otherwise these results are sufficient for the solution.  

As it has been seen in the case of the critical insulation radius, the certain refinement 

was necessary in order to obtain an accurate solution. Mesh refinement is a 

common practice to get a higher resolution in regions of greater interest, however, 

initially the optimal CFD result for a system shall be determined.  
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Figure 30: The accuracy of numerical solution dependence on grid refinement 

Figure 30 shows the dependence on the total number of cells in the grid of truncation 

error between the analytical precise solution and numerical solution calculated by 

OpenFOAM for the case of the critical insulation radius. The conclusion can be 

made that after certain degree of refinement the error does not considerably change, 

and that 10 cells in this case is the optimum choice.  

The ongoing advantages of computer analysis comparing to theoretical calculation 

is sufficiently impressive that the industry looks more closely in this direction. A 

computational approach works out the implications of an analytical method, and the 

user receives an end result that depends on both the mathematical model and the 

numerical method.  

Finally, the toolbox used in this thesis has several advantages in contrast to any 

proprietary software and is widely utilized in academic and industrial researches. 

First of all, it works with the accessible and modifiable source code and there are no 

licence costs, which is a great virtue for students. Likewise, OpenFOAM has 

massive capabilities to solve variety of problems in CFD and a wide range of 

applications and models ready to use.  
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ABBREVIATIONS 

CFD Computational fluid dynamics 

CCM  Computational continuum mechanics 

1D One-dimensional 

2D Two-dimensional 

3D Three-dimensional 

PDE Partial differential equation 

FVM Finite volume method 

CV Control volume 
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NOMENCLATURE 

Symbol Unit Definition 

𝑞" [
𝑊

𝑚2∗s
] heat flux vector 

𝑘 [
𝑊

𝑚∗𝐾
] thermal conductivity 

𝜌 [
𝑘𝑔

𝑚3
] mass density 

𝑐 [
𝐽

𝐾
] specific heat 

𝑄 [𝐽] heat energy 

𝛼 [
𝑚

s2
] thermal diffusivity 

𝜗 [
𝑚

s
] velocity of solid material 

𝐿 [𝑚] length 

𝑡 [𝑠] time 

ℎ [
𝑊

𝑚2∗K
] convective heat transfer coefficient 

𝑟1 [𝑚] radius of cylinder 

𝑟2 [𝑚] radius of insulation 

𝐵𝑖 - Biot number 

𝑅𝑐𝑜𝑛𝑑  heat transfer by conduction 

𝐿𝑐 [𝑚] characteristic length 

𝑅𝑐𝑜𝑛𝑣  heat transfer by convection 

𝑥, 𝑇, 𝑡 - 
dimensionless distance, temperature and 

time 

𝑉 [𝑚3] volume 

𝐴 [𝑚2] area 
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APPENDICES 

convertToMeters 1; 

vertices 

(    (0 0 0) 

    (1 0 0) 

    (1 1 0) 

    (0 1 0) 

    (0 0 0.1) 

    (1 0 0.1) 

    (1 1 0.1) 

    (0 1 0.1)  ); 

blocks 

(    hex (0 1 2 3 4 5 6 7) (10 10 1) simpleGrading (1 1 1)  ); 

edges 

( 

); 

boundary 

(    left 

    {   type patch; 

        faces 

        (            (0 4 7 3)        );    } 

    right 

    {   type patch; 

        faces 

        (            (2 6 5 1)        );    } 

    top 

    {   type patch; 

        faces 

        (            (3 7 6 2)               );    } 
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    bottom 

    {   type patch; 

        faces 

        (                        (1 5 4 0)        );    } 

    frontAndBack 

    {    type empty; 

        faces 

        (            (0 3 2 1) 

                     (4 5 6 7)        );    } 

); 
 

Appendix 1 blockMeshDict file, case “SS conduction in 2D Slab” 

dimensions      [0 0 0 1 0 0 0]; 

internalField   uniform 0; 

boundaryField 

{    frontAndBack 

    {        type    empty;    } 

    bottom 

    {        type    fixedValue; 

        value   uniform 1;    } 

    top 

    {        type    zeroGradient;    } 

    right 

    {        type    groovyBC; 

        gradientExpression "-10.*T"; 

        fractionExpression "0"; 

        value   uniform 0;    } 

    left 

    {        type    zeroGradient;    } 

} 
 

Appendix 2 Temperature field file 0, case “SS conduction in 2D Slab” 
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application     laplacianFoam; 

startFrom       startTime; 

startTime       0; 

stopAt          endTime; 

endTime         30; 

deltaT          0.1; 

writeControl    runTime; 

writeInterval   10; 

purgeWrite      0; 

writeFormat     ascii; 

writePrecision  6; 

writeCompression uncompressed; 

timeFormat      general; 

timePrecision   6; 

runTimeModifiable yes; 

libs            ("libgroovyBC.so"); 
 

Appendix 3 controlDict file, case “SS conduction in 2D Slab” 



 APPENDICES 51 

    

 

ddtSchemes 

{    default     Euler; } 

gradSchemes 

{    default     Gauss linear; } 

divSchemes 

{    default     none; } 

laplacianSchemes 

{    default     none; 

    laplacian(DT,T) Gauss linear corrected;  } 

interpolationSchemes 

{    default     linear;   } 

snGradSchemes 

{    default     corrected;   } 

fluxRequired 

{    default     no; 

    T; 

} 
 

Appendix 4 fvSchemes file, case “SS conduction in 2D Slab” 

solvers 

{    T 

    {        solver      GAMG; 

             tolerance   1e-7; 

             relTol      0; 

 

        smoother    GaussSeidel; 

 

        cacheAgglomeration true; 

        nCellsInCoarsestLevel 8; 

        agglomerator faceAreaPair; 

        mergeLevels 1;    }; 

} 

SIMPLE 

{    nNonOrthogonalCorrectors 0;  } 
 

Appendix 5 fvSolutions file, case “SS conduction in 2D Slab” 



 APPENDICES 52 

    

 

convertToMeters 0.1; 

vertices 

(  (-5.000000 -0.000000 0.000000)  

(-2.500000 -4.330127 0.000000) 

(0.000000 -5.000000 0.000000)  

(2.500000 -4.330127 0.000000)  

(5.000000 -0.000000 0.000000)  

(2.500000 4.330127 0.000000)  

(0.000000 5.000000 0.000000)  

(-2.500000 4.330127 0.000000)  

(-3.000000 -0.000000 0.000000)  

(-1.500000 -2.598078 0.000000)  

(0.000000 -3.000000 0.000000)  

(1.500000 -2.598078 0.000000)  

(3.000000 -0.000000 0.000000)  

(1.500000 2.598078 0.000000)  

(0.000000 3.000000 0.000000)  

(-1.500000 2.598078 0.000000)  

(-5.000000 -0.000000 1.000000)  

(-2.500000 -4.330127 1.000000) 

(0.000000 -5.000000 1.000000)  

(2.500000 -4.330127 1.000000)  

(5.000000 -0.000000 1.000000)  

(2.500000 4.330127 1.000000)  

(0.000000 5.000000 1.000000)  

(-2.500000 4.330127 1.000000)  

(-3.000000 -0.000000 1.000000)  

(-1.500000 -2.598078 1.000000)  

(0.000000 -3.000000 1.000000)  

(1.500000 -2.598078 1.000000) 

(3.000000 -0.000000 1.000000)  

(1.500000 2.598078 1.000000)  

(0.000000 3.000000 1.000000)  

(-1.500000 2.598078 1.000000)  ); 
 

Appendix 6 blockMeshDict file, case “Radius” 
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blocks 

( 

hex (2 10 8 0 18 26 24 16) (10 10 1) simpleGrading (1 1 1) 

hex (2 4 12 10 18 20 28 26) (10 10 1) simpleGrading (1 1 1) 

hex (12 4 6 14 28 20 22 30) (10 10 1) simpleGrading (1 1 1) 

hex (0 8 14 6 16 24 30 22) (10 10 1) simpleGrading (1 1 1) 

); 

edges 

(  arc 0 2 (-3.750000 -3.307189 0.000000)  

arc 2 4 (1.250000 -4.841229 0.000000)  

arc 4 6 (3.750000 3.307189 0.000000)  

arc 6 0 (-1.250000 4.841229 0.000000)  

arc 8 10 (-2.250000 -1.984314 0.000000)  

arc 10 12 (0.750000 -2.904744 0.000000)  

arc 12 14 (2.250000 1.984314 0.000000)  

arc 14 8 (-0.750000 2.904744 0.000000)  

arc 16 18 (-3.750000 -3.307189 1.000000)  

arc 18 20 (1.250000 -4.841229 1.000000)  

arc 20 22 (3.750000 3.307189 1.000000)  

arc 22 16 (-1.250000 4.841229 1.000000)  

arc 24 26 (-2.250000 -1.984314 1.000000)  

arc 26 28 (0.750000 -2.904744 1.000000)  

arc 28 30 (2.250000 1.984314 1.000000) 

arc 30 24 (-0.750000 2.904744 1.000000)  

); 
 

Appendix 7 blockMeshDict file, case “Radius” 
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boundary 

( 

    out 

    {   type wall; 

        faces 

        (            (0 2 18 16) 

                     (2 4 20 18) 

                     (4 6 22 20) 

                     (6 0 16 22)    ); 

    } 

    in 

    {    type wall; 

        faces 

        (          (10 8 24 26) 

                   (12 10 26 28) 

                   (14 12 28 30) 

                   (8 14 30 24)     ); 

    } 

); 

// 

 
 

Appendix 8 blockMeshDict file, case “Radius” 
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dimensions      [0 0 0 1 0 0 0]; 

internalField   uniform 0; 

boundaryField 

{     in 

    {        type    fixedValue; 

             value   uniform 373;    }     

    out 

    {        type    groovyBC; 

             gradientExpression "-1.*T"; 

             fractionExpression "0"; 

             value   uniform 273;    } 

    left 

    {        type    zeroGradient;    } 

} 
 

Appendix 9 Temperature field file 0, case “Radius” 

application     laplacianFoam; 

startFrom       startTime; 

startTime       0; 

stopAt          endTime; 

endTime         100; 

deltaT          10; 

writeControl    runTime; 

writeInterval   20; 

purgeWrite      0; 

writeFormat     ascii; 

writePrecision  6; 

writeCompression uncompressed; 

timeFormat      general; 

timePrecision   6; 

runTimeModifiable yes; 

libs            ("libgroovyBC.so"); 
 

Appendix 10 controlDict file, case “Radius” 
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ddtSchemes 

{    default     steadyState; } 

gradSchemes 

{    default     Gauss linear; } 

divSchemes 

{    default     none 

    div(phi,T) Gauss limitedLinear 1; 

} 

laplacianSchemes 

{    default     none; 

    laplacian(DT,T) Gauss linear corrected; } 

interpolationSchemes 

{    default     linear; } 

snGradSchemes 

{    default     corrected; } 

fluxRequired 

{    default     no; 

    T; 

} 
 

Appendix 11 fvSchemes file, case “Radius 
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convertToMeters 0.01; 

vertices 

(    (0 0 0) 

    (5 0 0) 

    (5 10 0) 

    (0 10 0) 

    (0 0 0.1) 

    (5 0 0.1) 

    (5 10 0.1) 

    (0 10 0.1) 

); 

blocks 

(hex (0 1 2 3 4 5 6 7) (10 10 1) simpleGrading (1 1 1) ); 

edges 

( ); 

boundary 

( 

    left 

    {        type patch; 

        faces 

        (            (0 4 7 3)        );    } 

    right 

    {        type patch; 

        faces        ((2 6 5 1)        );    } 
 

Appendix 12 blockMeshDict file, “Transient” case 
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    top 

    {        type empty; 

        faces 

        (            (3 7 6 2)               );    } 

    bottom 

    {        type empty; 

        faces 

        (                        (1 5 4 0)        );    } 

    frontAndBack 

    {        type empty; 

        faces 

        (            (0 3 2 1) 

            (4 5 6 7)        );    }  ); 

mergePatchPairs 

(   

); 
 

Appendix 13 blockMeshDict file, case “Transient” 

application     laplacianFoam; 

startFrom       startTime; 

startTime       0; 

stopAt          endTime; 

endTime         100; 

deltaT          10; 

writeControl    runTime; 

writeInterval   20; 

purgeWrite      0; 

writeFormat     ascii; 

writePrecision  6; 

writeCompression uncompressed; 

timeFormat      general; 

timePrecision   6; 

runTimeModifiable yes; 

libs            ("libgroovyBC.so"); 
 

Appendix 14 controlDict file, case “Transient” 
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ddtSchemes 

{    default     Euler; } 

gradSchemes 

{    default     Gauss linear; } 

divSchemes 

{    default     none; 

    div(phi,T)  Gauss limitedLinear 1; } 

laplacianSchemes 

{    default     none; 

    laplacian(DT,T) Gauss linear corrected; } 

interpolationSchemes 

{    default     linear; } 

snGradSchemes 

{    default     corrected; } 

fluxRequired 

{    default     no; 

    T;  } 
 

Appendix 15 fvSchemes file, case “Transient” 
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solvers 

{    T 

    {        solver      GAMG; 

        tolerance   1e-7; 

        relTol      0; 

 

        smoother    GaussSeidel; 

 

        cacheAgglomeration true; 

        nCellsInCoarsestLevel 8; 

        agglomerator faceAreaPair; 

        mergeLevels 1; 

    };  } 

SIMPLE 

{    nNonOrthogonalCorrectors 0;  } 
 

Appendix 16 fvSolution file, case “Transient” 
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dimensions      [0 0 0 1 0 0 0]; 

internalField   uniform 1; 

boundaryField 

{    frontAndBack 

    {        type    empty; 

    } 

    top 

    {        type    empty; 

    } 

    bottom 

    {        type    empty; 

    } 

    left 

    {   type    groovyBC; 

        gradientExpression "-1.*T"; 

        fractionExpression "0"; 

        value   uniform 0; 

    } 

    right 

    {        type    groovyBC; 

        gradientExpression "-1.*T"; 

        fractionExpression "0"; 

        value   uniform 0; 

    } 

} 
 

Appendix 17 Temperature file 0, case “Transient” 
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dimensions      [0 0 0 1 0 0 0]; 

internalField   uniform 273.15; 

boundaryField 

{    patch1 

    {        type    zeroGradient;    } 

    patch2 

    {        type    fixedValue; 

        value   uniform 273.15;    } 

    patch3 

    {        type    zeroGradient;    } 

    patch4 

    {        type    fixedValue; 

        value   uniform 573.15;    } 

} 

// ************************************************************************* // 
 

Appendix 18 Temperature file 0, “Flange” case 

application     laplacianFoam; 

startFrom       latestTime; 

startTime       0; 

stopAt          endTime; 

endTime         3; 

deltaT          0.005; 

writeControl    runTime; 

writeInterval   0.1; 

purgeWrite      0; 

writeFormat     ascii; 

writePrecision  6; 

writeCompression uncompressed; 

timeFormat      general; 

timePrecision   6; 

runTimeModifiable yes; 

// ************************************************************************* // 
 

Appendix 19 ControlDict file, “Flange” case 
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ddtSchemes 

{    default         Euler; } 

gradSchemes 

{    default         none; 

    grad(T)         Gauss linear; } 

divSchemes 

{    default         none; } 

laplacianSchemes 

{    default         none; 

    laplacian(DT,T) Gauss linear corrected; } 

interpolationSchemes 

{    default         linear; } 

snGradSchemes 

{    default         corrected; } 

fluxRequired 

{    default         no; 

    T               ; } 
 

Appendix 20 fvSchemes file, “Flange” case 

solvers 

{    T 

    {        solver      GAMG; 

        tolerance   1e-7; 

        relTol      0; 

 

        smoother    GaussSeidel; 

 

        cacheAgglomeration true; 

        nCellsInCoarsestLevel 10; 

        agglomerator faceAreaPair; 

        mergeLevels 2;    };  } 

SIMPLE 

{    nNonOrthogonalCorrectors 2; } 
 

Appendix 21 fvSolution file, “Flange” case 


