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TITEL Abstract

Abstract

The throughput is an important indicator for the performance of logistics systems, and a good

estimation of the throughput allows a more precise planning of resources. In this Master’s

Thesis, regression analysis is applied to predict the throughput for the order picking process

in a warehouse for beverages. At first, an introduction to mathematical modelling is given

and different types of regression analysis as well as methods to evaluate and compare different

models are presented. Then the initial situation and the available data of the application

are presented and regression analysis is used to analyse the influence of the various input

parameters on the performance of the picking process. Based on the result of this analysis,

individual linear models for the operators are created which are used to predict their future

performance. Finally, a procedure is described to estimate the throughput of the picking

process by using these linear models. The evaluation of this procedure shows that it is possible

to achieve a small reduction of personnel costs and to earlier inform the employees about

changes in their working time.
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1 Introduction

1.1 About warehouse optimisation

In today’s highly competitive world, a good logistics performance is crucial for a company’s

success. Customers expect high quality, low costs and promptness of logistics services. Ware-

houses are a core element in the material flow between producers and customers. Thus, their

effective and efficient operation has a high impact on quality, costs, time and flexibility which

are the most important objectives in any logistics system.

Some of the characteristic challenges that need to be mastered to ensure an efficient operation

of a warehouse are:

• Incoming deliveries are often not regular and cannot be planned in advance.

• The high variety in the assortment of goods requires a lot of different transport, handling

and storage facilities.

• The throughput of some articles is subject to high fluctuations.

• Customers order small quantities that have to be assembled and summarised quickly.

• A lot of orders have to be finished and their sequence has to be optimised to ideally use

the existing capacities.

• The system parameters are constantly changing.

Because of the high complexity of modern storage and distribution systems, computer-aided

management systems are needed to handle warehouse operations. Those systems provide

functionalities helping to monitor, control and optimise warehouse operation processes.

An ideal operation of a storage and distribution system is achieved if all customer orders can

be fulfilled completely and on time. This has to be done under changing conditions, using as

little time and resources as possible [5].

Because of the challenges listed above, it is not always easy to run the system in a way that

its resources are used ideally. Mathematical prediction methods can help to better understand

a system and therefore to make it more predictable. This enables the warehouse managers

to set the right steps under changing conditions and as a consequence, to prevent over- or

under-capacity.
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1.2 About this Master’s Thesis

In this Master’s Thesis mathematical methods, namely regression analysis, will be applied

to predict the throughput for the order picking process in a warehouse for beverages. In a

warehouse for food-products the throughput of a process step can vary a lot due to different

influencing factors. The main goal of this Master’s Thesis is to identify these influencing

factors for the order picking process step and to create a model that predicts the throughput

for a certain configuration of these influencing factors, i.e. the throughput for a certain time

under certain conditions.

This model shall afterwards be implemented in the software solution redPILOT which is a

web application that helps to optimise logistics operations. It is based on warehouse process

modelling and is designed to help managers and planners to fulfil their tasks more efficiently

so that they can keep the system running smoothly.

Currently the throughput of a process step, which is the basis for the allocation of resources,

is set statically based on experience. It is not updated if external conditions are changing. The

aim is to adapt this throughput based on the configuration of some influencing factors.

To analyse the relationship between the throughput and different influencing factors, different

types of data will be used. Firstly, data about performance, time, operators and weather

conditions which is available in the redPILOT database is analysed. Additionally, data from the

customer’s warehouse management system is evaluated. This data contains order information

that is not yet available in the redPILOt database, e.g., the planned time of an order which

is a measure for the complexity of an order. For the analysis this data is provided in Excel

spreadsheets but later it shall be directly transferred from the WMS to the redPILOT database.

In this Master’s Thesis, at first a general introduction about mathematical models is given

and their different types as well as methods for their evaluation are described. Afterwards,

regression analysis, which will later be used to analyse the data and to predict the throughput,

is treated in more detail. Different types of regression models are presented and methods

for the estimation of the model parameters as well as for the evaluation of the model are

described.

Finally, the methods described in the previous chapters are applied in the use case described

above. At first plots are made to get a first overview of the data and simple regression models

are created to identify the most relevant influencing factors. Different linear models to predict

the actual time for certain orders using the identified influencing factors as input parameters

are created, compared and the most appropriate one among them is chosen. This model is

then used to predict the throughput for the order picking process step. Finally, an evaluation

of the prediction of the throughput based on this model is done.
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2 Mathematical Modelling

2.1 What is Mathematical Modelling?

According to [4], generally speaking, the aim of creating a model is to represent a complex

real system or process. A model describes the most important aspects of a certain object in

a certain context. The purpose of creating a model can either be to only describe the system

or to also predict its future behaviour which is usually the case for mathematical models.

Mathematical methods play an important role as a universal language to formulate models and

as a tool for the evaluation of different models. Thus, mathematical modelling can be seen as

a process consisting of understanding a problem and creating a model, as well as calculating,

interpreting and validating the results. This process is repeated until the defined goals are

achieved.

The first step, the analysis of the problem, is necessary to precisely define the question that

shall be answered. The whole problem can be divided into smaller sub-problems that are easier

to solve. Furthermore, simplifying assumptions can be made, e.g., parameters that have only

a very small influence on the output of the system can be neglected.

To find an appropriate mathematical model, first, the relevant system and model parameters

have to be defined. The system parameters describe properties of the system and are predeter-

mined whereas model parameters describe the properties of the model and have to be defined.

To give information about the state of a system, state parameters are needed. All the state

parameters together define the current state of a system. Some of the state parameters can

also be unknown. Next, it has to be analysed which relationships exist between the system

parameters, the state variables and the unknown parameters.

The created model then should be analysed. It should be made sure that the problem is

properly represented. Very often it cannot be proved that the output of the model is correct

but its plausibility can be checked using numerical calculations. For example, special cases

where the solution of the problem is known can be analysed. Furthermore the sensitivity of

the model with respect to noise in the input data should be evaluated.

After the calculation and simulation of the results of the model, it has to be validated and

interpreted. At first it has to be checked whether the formulated mathematical problem has

been solved. Then the mathematical results can be transferred to the real world application

and it can be analysed if they correspond to the observations. After this process it should be

clear if the model is appropriate or if it has to be adapted before it can be used. In the second
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case it is necessary to repeat some or all of the steps described above.

2.2 Types of Mathematical Models

Mathematical models can be classified according to different criteria. Regarding mathematical

structures, it can be distinguished between dynamic models where at least some state pa-

rameters are time-dependent and static models that describe the time-independent structure

of systems or optimisation problems. Another differentiation that can be made is between

discrete and continuous models as well as between deterministic models where the same input

parameters always result in the same output and stochastic models where the results cannot

be predetermined. In real world applications it often occurs that some state parameters are

discrete and some continuous and that parts of the model are static and other parts dynamic.

So, the differentiation between those types is often not very clear.

Another way to classify models is the approach of solving the problem. Such approaches can

for example be linear or non-linear equation systems, differential equations, finite state ma-

chines, etc. A specific type are optimisation problems where an objective function is maximised

or minimised.

Furthermore, models can be grouped by the characteristics of the phenomenon they describe,

e.g., growth processes, transport processes or vibrations and waves.

There are different goals for a modelling process which is another possibility to distinguish

between different types of models. One possible goal is to facilitate decision making by pro-

viding a prediction for the consequences of different decisions. Generally, creating predictions

of the future behaviour of a system is a common goal of a modelling process. Another goal

can be the optimisation of a system according to certain criteria. Other possible goals are,

e.g., simulation, pattern recognition or verification of a hypothesis.

Models can also be divided into white-box, grey-box and black-box models. White-box mod-

els are derived from known principles and are fully specified. In contrast, grey-box models

are based on plausible assumptions of the relations between the parameters of the observed

system. Black-box models do not describe the inner structure of the system but only model

relationships between its input and output [4].

The goal of the model that shall be found in this Master’s Thesis is to predict the output

of a system. Some of the input parameters are this discrete, others continuous. The output

variable is continuous. As the output cannot be definitely predicted from the values of the

input parameters, we need a stochastic model. The main purpose is to predict the output

given the values of a set of input parameters but it would be desirable to also find relations

between the parameters.
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2.3 Accuracy of Mathematical Models

To select the best of several given models, measures to determine the quality of a model are

necessary. For the different model types there are different measures to assess the accuracy

of the model but there are also some basic concepts to measure the quality of a fit that can

be used for different model types.

For regression models (i.e. the output variable is continuous) the most used quality measure

is the mean squared error (MSE). If yi is the true response value for the ith observation and

f̂(xi) is the prediction for this observation, then the MSE is given by

MSE =
1

n

n∑

i=1

(yi − f̂(xi))
2. (2.1)

It quantifies how much the predicted response values differ from the real response values. If

the MSE is small, the prediction is good. Usually the MSE is computed using the same data

that has been used to create the model (training data). But in fact, we are more interested

on how well our model performs for new data. To get this information, we have to apply our

model on some test data where the values of the response variables are known but have not

been used to train the model. This test MSE can differ significantly from the training MSE.

For example, if the model is very closely adjusted to the training data, it is very often not

general enough to correctly predict the response values of new data. So, the training MSE is

very low because the model perfectly fits the training data but the test MSE is high because

the test data slightly differs from the training data so that the model does not fit anymore.

This phenomenon is called overfitting. If test data is available, we can easily avoid overfitting

by computing the test MSE instead of the training MSE [6]. Methods that can be used if not

enough data is available are presented in Chapter 2.4.

The MSE on the test data (x̃1, ỹ1), ..., (x̃n, ỹn), which is given by

1

n

n∑

i=1

(ỹi − f̂(x̃i))
2, (2.2)

is also called generalisation error. If the complexity of the model increases, the generalisation

error decreases first as the training error, but starts increasing at a certain point while the

training error continues to decrease.

If we have the training data vector D (x1, y1; x2, y2; ...; xn, yn) and the function fD that

minimises the error on the training data, the expected net error on the test data ED((ỹi −
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fD(x̃i))
2) can be written as a sum of three terms:

ED((ỹi − fD(x̃i))
2) =Eỹi

((ỹi − Eỹi
(ỹi|x̃i))

2)+

ED((Eỹi
(ỹi|x̃i) − ED(fD(x̃i)))

2)+

ED((ED(fD(x̃i)) − fD(x̃i))
2)

(2.3)

where ED(fD(x̃i))) is the compact notation for ED(fD(x̃i))|x̃i), i.e. we are averaging over

all possible training vectors D keeping x̃i fixed. The first term of this sum is the unavoidable

error which occurs due to noise in the data. The second term is called bias. As this part of

the error is mainly caused by the restrictive choice of F , the bias decreases for larger, more

complex F . The third term, the variance, measures the extent to which fD(x̄i) as a function

of D varies from ED(fD(x̄i)), its average over D. This term goes to zero for n → ∞ for

most traditional statistical schemes. If we work with finite, fixed n, the error usually becomes

larger for more complex F . [2].

Thus, as the bias decreases for more complex F and the variance increases for more complex

F , low bias and low variance are contradictory goals. For creating a good model we have to

find a good balance between bias and variance which is called bias-variance trade-off.

2.4 Model Evaluation

After creating a model, we want to know how well it will predict the response values for new

data. As already mentioned above, a low error on the training data does not guarantee that

the model is a good predictor for new data. If enough data is available, we can simply split the

data into a training dataset and a test dataset and compare the predicted values and the true

response values for the test dataset. But often an appropriate test dataset is not available, so,

we have to find other ways to evaluate the quality of the model. In this chapter, methods to

assess the quality of the predictor and to choose the best among several models are presented.

2.4.1 Cross-validation

Cross-validation is a technique where the dataset is divided into several subsets and one of

the subsets is used as a test dataset and the other subsets are used as training data. In k-fold

cross-validation the dataset D is randomly split into k mutually exclusive subsets Dt (called

folds). The predictor is created, tested k times and each time a different fold is used for the

testing. Each time t ε 1, 2, ..., k the training dataset is D\Dt and Dt is used for testing. In

complete cross-validation the folds are created using all
(

m
m/k

)
possibilities for choosing m/k

instances out of m. A special case of complete cross-validation is leave-one-out where the

quantity of folds is equal to the quantity of instances in the whole dataset. Usually, complete

cross-validation is too expensive. So, only a single split of the data into the folds is used.
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In stratified cross-validation the folds contain approximately the same proportions of specific

response values as the original dataset. This type of cross-validation is used for classification

to ensure that each of the folds contains approximately the same amount of examples for the

different classes [7].

2.4.2 Akaike’s Information Criterion and Bayesian Information

Criterion

The Akaike’s Information Criterion (AIC) combines the Log-likelihood of a given parameter

vector θ = (θ1, ..., θp)′ and a penalty for complex models. It is given by

AIC = −2l(θ̂) + 2p (2.4)

where l(θ̂) is the maximum value of the Log-likelihood function and 2p a penalty term for the

number of parameters to avoid overfitting. When several models are compared, the model

with the smallest value of the AIC is chosen. A variation of the AIC that includes a different

penalty term is the corrected AIC. It is given by

AICcorr = −2l(θ̂) +
2n(p + 1)

n − p − 2
(2.5)

where n is the sample size.

The Bayesian Information Criterion (BIC) has a very similar form as the AIC. It is defined as

BIC = −2l(θ̂) + log(n)p. (2.6)

Thus, only the penalty term is different. In the BIC more complex models receive a much

higher penalty and are therefore less likely to be selected [3].
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3 Regression Analysis

Regression is one of the most common techniques to analyse empirical problems in economy,

social and life sciences. There are several different types of regression models. In this paper,

different types of linear regression will be presented.

We look for the influence of one ore several so-called independent variables on the so-called

dependent variable. Usually, the model does not exactly represent the data and the relationship

between the input and output parameters can only be approximated [3].

3.1 Linear Regression Models

Linear regression is a simple but very useful approach for predicting a quantitative response.

According to [6], it can be used to answer questions such as:

• Is there a relationship between certain parameters?

• How strong is this relationship?

• Which of the input parameters have an effect on the dependent variable?

• How accurately can the effect of each input variable on the dependent variable be

estimated?

• How accurate are the predictions for the dependent variable?

• Is the relationship linear?

• Are there interaction effects between the input variables?

3.1.1 The Classical Linear Model

As it is given in [3], we are interested in the influence of some independent variables x1, ..., xk

on a dependent variable y. The relationship between x1, ..., xk and y is modelled using a

function f(x1, ..., xk) and is overlaid by some random noise ε. Using additive noise we get

y = f(x1, ..., xn) + ε. (3.1)

Our goal is to estimate the unknown function f .

In linear models the following assumptions are made:

Montanuniversität Leoben 14 Julia Lahovnik
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1. f is a linear combination of the co-variables, i.e.

f(x1, ..., xk) = β0 + β1x1 + ... + βkxk. (3.2)

The parameters β0, β1, ...βk are unknown and have to be estimated. Using the vectors

x = (1, x1, ..., xk)′ and β = (β0, ..., βk)′ we can write

f(x) = x′β (3.3)

We can also model non-linear relationships by transforming the input variable. We can

define a new variable zj = g(xj), e.g. zj = log(xj), and use this new variable instead

of xj in equation 3.2.

2. Additivity of the noise: This assumption seems to be restrictive but is at least approx-

imately fulfilled in applications. An alternative to additive noise is multiplicative noise

which is for example used in exponential models. Most models with multiplicative error

terms can easily be written as models with additive noise using variable transformation

(e.g., by taking the logarithm).

To estimate the unknown parameters β the observations yi and xi = (1, xi1, ..., xik)′, i =

1, ..., n are used. For each observation we get the equation

yi = β0 + β1xi1 + ... + βkxik + εi = xi
′β + εi. (3.4)

Using the vectors y =




y1

...

yn


 and ε =




ε1

...

εn


 and the design matrix

X =




1 x11 . . . x1k

...
...

...

1 xn1 . . . xnk




we can write the n equations from 3.4 as

y = Xβ + ε. (3.5)

We assume that X is full rank, i.e. its columns are linearly independent. This condition is

necessary to get a unique estimate for β.

For the vector ε the following assumptions are made:

1. The average noise is zero, i.e. E(ε) = 0 .

2. The variance of the noise is constant for all observations, i.e. Var(εi) = σ2. If this
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condition is fulfilled, the errors are homoscedastic. If the residuals are heteroscedastic,

this can be a sign that the model is not appropriate. Furthermore, we assume that

the errors are uncorrelated, i.e. Cov(εi, εj) = 0 for i 6= j. So, we get the covariance

matrix Cov(ε) = E(εε′) = σ2I. This assumption is often violated for time series and

longitudinal data because not all explaining variables can be included in the model since

they are either not observable or not recorded.

3. The co-variables are stochastic so that all assumptions can be seen as conditioned by the

design matrix. The assumptions on the errors must hold conditioned by X: E(ε|X) = 0.

4. The noise is (approximatively) normally distributed, i.e. ε ∼ N(0, σ2I). If we assume

normally distributed noise, we talk about a classical linear normal regression.

The co-variables only influence the expectation value of y. The variance σ2, respectively the

covariance matrix σ2I, is independent from the co-variables.

Based on the estimation β̂ an estimate for the expected value E(yi) for yi is given by

Ê(yi) = ŷi = β̂0 + β̂1xi1 + ... + β̂kxik = x′

iβ̂. (3.6)

The difference between the true value yi and the estimated value ŷi, the residual ε̂i, is given

by

ε̂i = yi − ŷi = yi − x′

iβ̂. (3.7)

If we summarise the residuals to a vector, we get

ε̂ = y − Xβ̂. (3.8)

The partial residual for the co-variable xj is defined as

x̂j,i = yi − x′

iβ̂ + β̂jxij = ε̂i + β̂jxij. (3.9)

In this residual the influence of all co-variables except for xj is removed.

As already mentioned above, we can also model non-linear relationships using linear models.

One method to do so is variable transformation. In this case we use the regression model

yi = β0 + β1g1(xi) + ... + βkgk(xi) + εi (3.10)

where the gj can be any function. It has to be defined before the estimation of the parameters.

This gives us the linear model

yi = β0 + β1zi1 + ... + βkzik + εi (3.11)
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where zij = gj(xi) − ḡ with

ḡ =
1

k

k∑

j=1

gj(xi). (3.12)

The subtraction of f̄ centres β̂jzij around zero.

Another method is the use of a polynomial model:

yi = β0 + β1zi + β2z
2
i + ... + βlz

l + ... + εi (3.13)

By defining the new variables xi1 = zi, xi2 = z2
i , ..., xil = zl

i we get the regression model

yi = β0 + β1xi1 + β2xi2 + ... + βlxil + ... + εi. (3.14)

To include categorical co-variables in the model we can use the so-called dummy coding. To

model the effect of a categorical variable with c levels c−1 dummy variables which are defined

by

xi1 =





1 xi = 1

0 otherwise
... xi,c−1 =





1 xi = c − 1

0 otherwise
(3.15)

for i = 1, ..., n are included in the regression model:

yi = β0 + βi1xi1 + ... + βi,c−1xi,c−1 + ... + εi (3.16)

One category of x is used as a reference category and is not represented by one of the dummy

variables in the model. The estimates for the other categories are compared to this reference

category.

If the effect of one co-variable depends on the value of at least one other co-variable, an

interaction between co-variables occurs. For the input variables x and z and the dependent

variable y we can create the regression model

yi = β0 + β1x + β2z + β3xz + ε. (3.17)

The terms β1x and β2z are called main effects and the term β3xz is the interaction between

x and z. If β3 = 0, there is no interaction and the effect of one co-variable does not depend

on the value of the other one.

3.1.2 Estimation of the parameters

The most popular method to estimate the regression coefficients β is the least squares method.

As described in [3], when using this method, the sum of the squared difference between the
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estimate and the actual value

LS(β) =
n∑

i=1

(yi − x′

iβ)2 =
n∑

i=1

ε2
i = ε′ε (3.18)

is minimised with respect to β.

To find the minimum of LS(β) we first rewrite 3.18:

LS(β) = ε′ε = (y − Xβ)′(y − Xβ) = y′y − 2y′Xβ + β′X′Xβ (3.19)

Then we differentiate with respect to β:

∂LS(β)

∂β
= −2X′y + 2X′Xβ (3.20)

Differentiating a second time gives 2X′X. As the design matrix X is linearly independent,

X′X is positive definite and we can get the minimum by setting 3.20 to 0. So, the least

squares estimate β̂ is the solution of

X′Xβ = X′y. (3.21)

As X′X is positive definite, it is also invertible and we get the LS estimate

β̂ = (X′X)−1X′y. (3.22)

Another method to estimate the coefficients is the maximum likelihood method. For normally

distributed noise ε we get y ∼ N(Xβ, σ2I) and the Likelihood is

L(β, σ2) =
1

(2πσ2)

n/2

exp(− 1

2σ2
(y − Xβ)′(y − Xβ)). (3.23)

The Log-likelihood is

l(β, σ2) = −n

2
log(2π) − n

2
log(σ2) − 1

2σ2
(y − Xβ)′(y − Xβ). (3.24)

If we maximize the Log-likelihood with respect to β, we can neglect the first two summands

because they do not depend on β. Maximising − 1
2σ2 (y − Xβ)′(y − Xβ) is the same as

minimising (y − Xβ)′(y − Xβ). Thus, the maximum likelihood estimate is equal to the least

squares estimate.

Based on the estimate β̂ = (X′X)−1X′y for β we can estimate the expected value for y as

ŷ = X(X′X)−1X′y = Hy. (3.25)

H = X(X′X)−1X′ is called the prediction matrix or hat-matrix. It has the following properties:
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• It is symmetric.

• It is idempotent.

• rank(H) = tr(H) = p where p is the number of coefficients

•
1
n

≤ hii ≤ 1
r

where r is the number of rows in X with identical xi.

• The matrix I − H is also symmetric and idempotent with rank(I − H) = n − p.

The prediction matrix is used in the definition of the standardised and studentised residuals.

These residuals are needed because the residuals themselves are neither homoscedastic nor

uncorrelated. The residuals are usually used to check if the model assumptions are valid but

heteroscedastic residuals do not necessarily mean that the noise is also heteroscedastic. We

get the standardised residuals, which are homoscedastic if the model assumptions are correct,

by dividing the residuals by the estimated standard deviation:

ri =
ε̂i

σ̂
√

1 − hii

(3.26)

The studentised residuals are defined by

ri =
ε̂i

σ̂(i)

√
1 − hii

= ri(
n − p − 1

n − p − r2
i

)1/2 (3.27)

where σ̂(i) is an estimation for σ̂ that is not based on the ith observation.

The variance σ2 can be estimated using the maximum likelihood method. We have already

defined the Likelihood L(β, σ2) and the Log-likelihood l(β, σ2) for the linear model. By

partially differentiating 3.24 with respect to σ2 and setting to zero we get

∂l(β, σ2)

∂σ2
= − n

2σ2
+

1

2σ4
(y − Xβ)′(y − Xβ) = 0. (3.28)

If we replace β by the estimate β̂, this gives

− n

2σ2
+

1

2σ4
(y−Xβ̂)′(y−Xβ̂) = − n

2σ2
+

1

2σ4
(y−ŷ)′(y−ŷ) = − n

2σ2
+

1

2σ4
ε̂′ε̂ = 0 (3.29)

and therefore

σ̂2
ML =

ε̂′ε̂

n
. (3.30)

The expected value of the squared sum of residuals is

E(ε̂′ε̂) = (n − p) ∗ σ2. (3.31)

So,

E(σ̂2
ML) =

n − p

n
σ2 (3.32)
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which means that the ML estimate for σ2 is not unbiased and therefore rarely used.

An unbiased estimator for σ2 is

E(σ̂2) =
1

n − p
ε̂′ε̂. (3.33)

It is called the Restricted Maximum Likelihood (REML) estimator and it can be shown that

3.33 maximises the marginal likelihood

L(σ2) =
∫

L(β, σ2)dβ. (3.34)

The least squares estimates have some important geometric properties:

• The estimated values ŷ and the residuals ε̂ are orthogonal, i.e. ŷ′ε̂ = 0.

• The columns of X and the residuals ε̂ are orthogonal as well, i.e. X′ε̂ = 0.

• On average the residuals are zero, i.e.

n∑

i=1

ε̂i = 0 respectively
1

n

n∑

i=1

ε̂i = 0 (3.35)

• The average of the estimated values ŷi is equal to the average of the observed values

yi.

• The regression hyperplane goes through the centroid of the data, i.e.

ȳ = β̂0 + β̂1x̄1 + ... + β̂kx̄k (3.36)

where x̄j is the mean of all the values given for the variable xj.

From these properties we can derive a formula for the variance analysis:

n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

ε̂2
i (3.37)

By dividing by n respectively (n − 1) we get

s2
y = s2

ŷ + s2
ε̂ (3.38)

which shows that the variance of the observed values s2
y can be decomposed into the variance

of the estimated values s2
ŷ and the variance of the residuals s2

ε̂.

This variance analysis formula is used in the definition of the coefficient of determination, also

called coefficient of variation or coefficient of correlation, which gives information about the
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quality of the fit. It is defined by

R2 =

∑n
i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2

= 1 −
∑n

i=1 ε̂2
i∑n

i=1(yi − ȳ)2
. (3.39)

If R2 is close to one, the sum of the squared residuals is small and the model fits the data

very well. An R2 of zero means that that
∑

(ŷi − ȳ)2 = 0 which means that the estimate for

yi is always equal to the average ȳ and therefore independent of the explaining variables.

In general the coefficient of determination becomes larger when more input variables are

included. Therefore, the coefficient of determination should only be used if all models have

the same dependent variable y and the same number of regression coefficients.

3.1.3 Hypothesis tests and confidence intervals

It is given by [3] that we assume that εi ∼ N(0, σ2), which makes the construction of exact

tests and confidence intervals much simpler, but the tests and confidence intervals are also

robust to small deviations from the normal distribution. For large data sets they also remain

valid if the noise is not normally distributed.

The most common statistical hypotheses are:

• Test on the significance of an input variable:

H0 : βj = 0, H1 : βj 6= 0 (3.40)

• Test of a sub-vector β1 = (β1, ..., βr)
′:

H0 : β1 = 0, H1 : β1 6= 0 (3.41)

• Test on equality:

H0 : βj − βr = 0, H1 : βj − βr 6= 0 (3.42)

Those three tests are special cases of the test for general linear hypotheses

H0 : Cβ = d, H1 : Cβ 6= d (3.43)

where C is a r × p matrix with rank(C) = r ≤ p. That means that for H0 r linearly

independent conditions are valid.

To find an appropriate test for the general problem (3.43), we follow the subsequent procedure:

1. Calculate the sum of squared residuals SSE = ε̂′ε̂ for the full model

2. Calculate the sum of squared residuals SSEH0
= ε̂′

H0
ε̂H0

for the model if the null

hypothesis is true, i.e. the restriction Cβ = d is fulfilled.
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3. Evaluate the relative difference between the sum of squared residuals in the restricted

model and the full model:

∆SSE

SSE
=

SSEH0
− SSE

SSE
(3.44)

As the fit for the restricted model can be at the most as good as the full model, the difference

SSEH0
− SSE is always greater than or equal to zero. The smaller the difference is, the

more similar are the results for the two models and the higher is the probability that the null

hypothesis is not rejected. The actual test statistic is given by

F =
1
r
∆SSE
1

n−p
SSE

=
n − p

r

∆SSE

SSE
(3.45)

where r is the number of restrictions, i.e. the number of rows in C. For a defined level

of significance α the null hypothesis is rejected if the test statistic is bigger than the (1-α)

quantile of the corresponding F-distribution:

F > Fr,n−p(1 − α). (3.46)

For the specific test problems described above the test statistics are listed below:

• Test on the significance of an input variable (t-test):

H0 : βj = 0, H1 : βj 6= 0; j = 1, ..., p (3.47)

In this case F is given by

F =
β̂j

2

V̂ar(β̂j)
∼ F1,n−p. (3.48)

We can also use the t-statistic

t =
β̂j

sej

(3.49)

where sej = V̂ar(β̂j)
1/2 is the estimated standard deviation of β̂j. The null hypothesis

is rejected if

|t| > t1−α/2(n − p). (3.50)

For the more general hypothesis

H0 : βj = dj, H1 : βj 6= dj; j = 1, ..., k (3.51)

the modified test statistic

t =
βj − dj

sej

(3.52)

can be used.
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• For the test of a sub-vector β1 = (β1, ..., βr)
′

H0 : β1 = 0, H1 : β1 6= 0, (3.53)

the test-statistic is given by

F =
1

r
β̂1

′

Ĉov(β̂1)
−1 ∼ Fr,n−p. (3.54)

The estimated co-variance matrix of the sub-vector β̂1 consists of the corresponding

elements of the co-variance matrix σ̂2(X′X)−1.

• Test of the hypothesis "No relationship":

H0 : β1 = β2 = ... = βk = 0, (3.55)

i.e. no co-variable has an impact on the output. If H0 is valid, the LS-estimation only

consists of the estimation β0 = ȳ. SSEH0
is given by

SSEH0
=

n∑

i=1

(yi − ȳ)2 (3.56)

and the test statistic F is

F =
n − p

k

R2

1 − R2
. (3.57)

Based on these tests we can construct confidence intervals for one single parameter βj, j =

0, ..., k respectively confidence ellipsoids for a sub-vector β1 of β. To find a confidence interval

for βj presuming normal distribution, we use the test statistic t = (β̂j − dj)/sej for the test

of the hypothesis H0 : βj = dj. The null hypothesis is rejected if |t| > tn−p(1 − α/2). The

probability to reject H0 if it is actually true is α. Thus, for H0

P (|t| > tn−p(1 − α/2)) = α. (3.58)

The probability that H0 is not rejected is given by

P (|t| < tn−p(1 − α/2)) = 1 − α. (3.59)

This is equal to

P (β̂j − tn−p(1 − α/2) ∗ sej < βj < β̂j + tn−p(1 − α/2) ∗ sej) = 1 − α (3.60)

and we get the interval

[β̂j − tn−p(1 − α/2) ∗ sej, β̂j + tn−p(1 − α/2) ∗ sej]. (3.61)
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The confidence interval for a sub-vector β1 can be constructed the same way and is given by

{
β1 :

1

r
(β̂1 − β1)

′Ĉov(β̂1)
−1(β̂1 − β1) ≤ Fr,n−p(1 − α)

}
. (3.62)

A confidence interval for the expected value µ0 = E(y0) of a future observation y0 at the

point x0 is given by

x′

0β̂ ± tn−p(1 − α/2)σ̂(x0(X
′X)−1x0)

1/2. (3.63)

If we are interested in finding an interval which has a high likelihood to contain the future

observation y0, we use a prediction interval which is in general much larger than the confidence

interval. For a future observation y0 at x0 and a confidence level of 1 − α, it is given by

x′

0β̂ ± tn−p(1 − α/2)σ̂(1 + x0(X
′X)−1x0)

1/2. (3.64)

3.1.4 The general linear model

The classical linear model that has been treated so far is a special case of the general linear

model. We replace

Cov(ε) = σ2I (3.65)

by

Cov(ε) = σ2W (3.66)

where W is a positive definite matrix. If the noise is heteroscedastic but uncorrelated, we get

W = diag(w1, ..., wn). (3.67)

The variance of the noise is Var(εi) = σ2
i = σ2wi. If the LS-estimate β̂ = (X′X)−1X′y is

used for the general linear model, we get

E(β̂) = β Cov(β̂) = σ2(X′X)−1X′WX(X′X)−1. (3.68)

This means that the LS-estimate is still unbiased but the covariance matrix does not correspond

to the covariance matrix for the classical linear model which implies that the variances for the

regression coefficients and therefore also the tests and confidence intervals are incorrect.

There are different methods to get better estimates for the general linear model. One of them

is the weighted least squares method where the dependent variables, the design matrix and

the noise are transformed so that they conform to a classical linear model. For the use of this

method the matrix W has to be known in advance.

For uncorrelated heteroscedastic errors, i.e. Cov(ε) = σ2W = σ2diag(w1, ..., wn) we can

multiply the noise εi by 1/
√

wi and get the noise ε∗

i = εi/
√

wi which has the constant

variances Var(ε∗

i ) = σ2. The dependent variable and the co-variables have to be changed
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accordingly: y∗

i = yi/
√

wi, x∗

i0 = 1/
√

wi, x∗

i1 = xi1/
√

wi, ..., x∗

ik = xik/
√

wi. This gives us the

classical linear model

y∗

i = β0x
∗

i0 + β1x
∗

i1 + ... + βkx∗

ik + ε∗

i (3.69)

with homoscedastic errors ε∗

i . This corresponds to a left multiplication of the model equation

y = Xβ + ε by the matrix W1/2 = diag(1/
√

w1, ..., 1/
√

wn). The estimate for β is given by

β̂ = (X′W−1X)−1X′W−1y. (3.70)

It can be shown that this estimate maximises the weighted sum of least squares

n∑

i=1

1

wi

(yi − xi
′β)2. (3.71)

Observations having a higher variance receive a lower weight than those with low variance.

The expected value E(β̂) is β and therefore the LS estimate is unbiased. The REML-estimate

for σ2 is

σ̂2 =
1

n − p
ε̂′W−1ε̂ (3.72)

and is also unbiased.

This method can also be used for an arbitrary covariance matrix σ2W. The matrix W1/2 is

not unique but can be computed using the spectral decomposition

W = Pdiag(λ1, ..., λn)P′. (3.73)

An application of the weighted least squares method is for grouped data. If several vectors

of co-variables xi are the same, we summarise them to one vector and note the number of

repetitions ni of the observation xi and the average ȳi of the values of the dependent variable.

The covariance for the noise is then given by Cov(ε) = σ2diag(1/n1, ..., 1/nG) where G is the

number of groups [3].

3.1.5 Selection of the model and the input parameters

One of the most important questions to be answered when a regression model is created is

which of the input parameters should be included. It should be avoided that irrelevant variables

are included in the model because this makes the model unnecessarily complex and increases

its variance. As described in Chapter 2.3, a good trade-off between a low variance and a low

bias has to be found to receive a model that is sufficiently complex to represent the data but

simple enough to have a low variance and to give a good generalisation.

In Chapter 3.1.2, the coefficient of determination was described as a measure for the quality

of a fit. It is given by [3] that it always increases when more co-variables are included and

therefore it is not an appropriate tool for the comparison of different models. The adjusted
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coefficient of determination includes a correction for the number of parameters so that it does

not automatically increase when a new co-variable is included. It is given by

R̄2 = 1 − n − 1

n − p
(1 − R2) (3.74)

where p is the number parameters in the model (including the intercept) and n the number

of observations.

Another measure for the selection of a model is Mallows’s Cp. It is defined as

Cp =

∑n
i=1(yi − ŷiM)2

σ̂2
− n + 2|M | (3.75)

where ŷiM is the estimation for yi when certain parameters are used, σ̂2 is the estimated

variance for the model including all variables and M is the number of included variables (i.e

M = p − 1).

The methods described in Chapter 2.4 can also be used for the selection of a regression model.

E.g. we can use the Akaike’s Information criterion which is given by

AIC = −2 ∗ l(β̂M , σ̂2
M) + 2|M + 1| (3.76)

where l(β̂M , σ̂2
M) is the maximum value of the Log-likelihood for a model including M variables,

i.e. the Log-likelihood if the ML estimates β̂M and σ̂2
M are used. According to [3], for a linear

model with normally distributed noise the AIC we get

−2 ∗ l(β̂M , σ̂2
M) = n log(σ̂2

M) +
1

σ̂2
M

(y − XM β̂M)′(y − XM β̂M)

= n log(σ̂2
M) +

1

σ̂2
M

∗ ε̂′

M ε̂M

= n log(σ̂2
M) +

nσ̂2
M

σ̂2
M

= n log(σ̂2
M) + n.

(3.77)

We receive

AIC = n ∗ log(σ̂2
M) + n + 2|M + 1|. (3.78)

For σ̂2 the ML-estimate σ̂2 = 1/nε̂′ε̂ is used where ε̂ is the expected value of the residuals.

The BIC can be calculated using the following formula:

BIC = n ∗ log(σ̂2) + log(n)|M |. (3.79)
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3.1.6 Model analysis

According to [3], after the first estimate the model has to be evaluated concerning its ability

to represent the data. The first step of the evaluation is to check if the model assumptions

are correct. In general, for a linear regression model the following assumptions are made:

• Homoscedasticity: To check if the assumption of homoscedastic variances is correct,

residual plots or test for heteroscedasticity such as the Breusch-Pagan test can be used.

• Uncorrelated noise: Correlated noise can be detected by plotting the noise over the time

and by using statistical tests such as the Durbin-Watson test.

• Linearity: Non-linear relationships can be detected by plotting the standardised respec-

tively studentised residuals over the estimated values. Furthermore the partial residuals

can be used.

• Normal distribution: To check for normal distribution Q-Q-plots can be used. In this

plots the empirical quantiles are plotted over the theoretical quantiles of the distribution.

If the data corresponds to the distribution, the points should be close to a line with a

slope of 45 ◦.

If the model assumptions are not correct, it is possible that the model does not represent the

data but this is not necessarily the case. Even if some of the model assumptions are violated,

the representation of the data can still be reasonably good.

The next step is to check for collinearity of the co-variables. Highly correlated co-variables

cause inaccurate estimations with high variance and should thus be avoided. If we look at the

formula for the variance of βj

Var(β̂j) =
σ2

1 − R2
j

∑n
i=1(xij − x̄j)2

, (3.80)

where Rj is the coefficient of determination of a regression for xj over all other input parame-

ters, we can see that for a high correlation of xj with the other explaining variables (measured

by R2
j ) the variance increases. If R2

j is close to one, the variance becomes very high and the

estimate for βj is very inaccurate.

To check for collinearity the variance inflation factor can be used:

VIFj =
1

1 − R2
j

(3.81)

It indicates by which factor the variance of β̂j is increased due to the linear dependency. The

higher the correlation between xj and the other co-variables, the higher R2
j and VIFj. The

problem of collinearity can be solved for example by leaving out some of the co-variables or

by summarising the affected variables to one variable.
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Another important step of the model analysis is the analysis of outliers. Outliers are observa-

tions that do not fit to the model and therefore have high residuals. They can strongly influence

the estimates and the deductions made and can be detected by looking at the so-called "leave

one out" residuals which are given by

ε̂(i) = yi − ŷ(i) = yi − x′

i(X
′

(i)X(i))
−1X′

(i)y(i) (3.82)

where X(i) is the design matrix without the ith row. Those residuals are based on estimates

where the ith observation is not considered. By standardising we get the studentised residuals

r∗

i =
ε̂(i)

σ̂(i)(1 + x′

i(X
′

(i)X(i))−1X′

(i)xi)1/2
. (3.83)

In this equation σ̂(i) is the variance estimated without using the ith observation. For a cor-

rectly specified model, the studentised residuals follow a t-distribution with n − p − 1 degrees

of freedom (n is the number of observations, p the number of parameters). For a given sig-

nificance level α we can compare the α/2-quantile respectively the 1 − α/2-quantile of that

t-distribution with the value of the residual r∗

i . If it is smaller than the α/2-quantile or larger

than the 1 − α/2-quantile, the observation can be considered as an outlier.

Outliers should be closely observed because they can be a hint for errors in the data or deliver

information that has not been known yet. To reduce the influence of outliers, so-called robust

methods can be used (see Chapter 3.1.7).

Next to outliers, also observations that have a high impact on β̂ and ŷ should be identified.

Often these observations are outliers that strongly influence the estimated parameters. To find

especially influential observations, the leverages or the Cook’s distances can be computed.

The leverages are the diagonal elements hii of the prediction matrix H = X(X′X)−1X′ and

have values between 1/n and one. A leverage close to one means that the variance is very

small and the regression line is certainly close to that point, no matter what values the other

observations have. Thus, this observation has a high impact. Ideally, the leverages should be

equally distributed.

If ŷ(i) is an estimate based on all observations except for the ith one and p is the number of

parameters, then the Cook’s distance is given by

Di =
(ŷ(i) − ŷ)′(ŷ(i) − ŷ)

p ∗ σ̂2
. (3.84)

Observations with Di > 0.5 can be considered as noticeable and if Di > 1 the observation

should necessarily be inspected.
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3.1.7 Robust Regression

The main disadvantage of the Least Squares method is that it is very vulnerable to outliers.

As the errors are squared, high residuals caused by outliers can have a strong impact on the

estimates. Therefore, estimators that are robust to outliers have been developed.

According to [11] there are three different types of outliers:

• Vertical outliers which have a very high error term but are within the "normal" range in

the space of the explanatory variables;

• Good leverage points which are outliers in the space of the explanatory variables but are

close to the estimated regression line;

• Bad leverage points which are far away from both, from the regression line and from

most other points in the space of the explanatory variables;

Riani et al. [9] divide robust regression methods into three classes:

1. Hard (0,1) Trimming: In the Least Trimmed Squares (LTS) method the sum of squares

of the residuals of h observations is minimised. Thus, the amount of trimming is defined

by the trimming parameter h.

2. Adaptive Hard Trimming: In this case the value of h is determined by the data. One

starts with a very robust fit using a low h and then adds more and more observations

until all of them are included. This is called Forward Search. During the search different

parameters, such as measures of fit, are monitored and afterwards the most appropriate

model is chosen.

3. Soft Trimming (downweighting): In Soft Trimming Methods observations that are far

away from the centre of the distribution receive less weight. Some examples for soft

trimming, notably M-estimators and derived methods, will be presented below.

One possibility to reduce the influence of outliers is to minimise the absolute values of the

residuals:

β̂L1
= argmin

β

n∑

i=1

|ri(β)| (3.85)

This method, called median regression, protects against vertical outliers but not against bad

leverage points. M-estimators are a generalisation of median regression. They also consider

other functions than the absolute value:

β̂L1
= argmin

β

n∑

i=1

ρ

{
ri(β)

σ

}
(3.86)

where ρ() is a loss function which is even, non-decreasing for positive values and less increasing

than the square function. M-estimators are implemented using an iteratively reweighted Least
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Squares algorithm. We assume that σ is known and define weights ωi = ρ(ri/σ)/r2
i . Equation

3.86 can be rewritten as

β̂L1
= argmin

β

n∑

i=1

ωir
2
i (β). (3.87)

However, the weights are a function of β and therefore unknown. To start the LS algorithm,

the weights can be computed using an initial estimate β̂ for β. This algorithm converges to

the global minimum of 3.86 only for monotone M-estimators which are not robust against bad

leverage points [11] .

A popular M-estimator is the so-called Huber estimator. Its objective and weight functions

are given by

ρ(r) =





0.5r2 |r| ≤ t

|r|t − 0.5r2 |r| ≥ t
(3.88)

and

w(r) =





1 |r| ≤ t

t/|r| |r| ≥ t
(3.89)

where t is a tuning constant to achieve the desired efficiency [1].

It is given by [11] that higher robustness can be achieved by minimising a measure of dispersion

that is less sensitive to extreme values than the variance. This class of estimators is called

S-estimators. For the ordinary least squares method the goal is to minimise the variance σ̂2 of

the residuals, which can be written as 1/n
∑n

i=1(ri/σ̂)2 = 1. To increase the robustness, the

square function can be replaced by another loss function that is less sensitive to large residuals.

The estimation problems consists of finding the smallest robust scale of the residuals. The

robust dispersion σ̂S satisfies
1

n

n∑

i=1

ρ

{
ri(β)

σ̂S

}
= b (3.90)

where b = E{ρ(Z)} with Z ∼ N(0, 1). The S-estimator is the value of β that minimises σ̂S:

σ̂S = argmin
β

σ̂S{r1(β), ..., rn(β)} (3.91)

3.2 Generalised Linear Models

Linear models are especially suitable for regression analysis where the dependent variable is

continuous and can be modelled approximately with a normal distribution. Besides, it has to be

possible to describe the expected value of the dependent variable as a linear combination of -

possibly transformed - co-variables. Generalised linear models also assume a linear relationship

between the input variables and the dependent variable but the dependent variable does not

necessarily have to be continuous or have normally distributed values. They have the following

common properties [3]:
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1. The expected value µ = E(y|x) of the dependent variable y is connected with the linear

predictor η = x′β through a response function h respectively a link function g = h−1:

µ = h(η) respectively η = g(µ) (3.92)

2. The distributions of the dependent variables (e.g. normal distribution, Poisson distribu-

tion) can be written in the form of a single-parameter exponential family. The density

of a single-parameter exponential family for the dependent variable y is given by

f(y|θ) = exp

(
yθ − b(θ)

φ
ω + c(y, φ, ω)

)
(3.93)

The parameter θ is called canonical parameter. The function b(θ) has to fulfil the

condition that f(y|θ) can be normalized and the that b′(θ) and b′′(θ) exist. φ is a

dispersion parameter and ω a known value (usually a weight).

3.2.1 Binary Regression

If we have the data (yi, xi1, ..., xik), i = 1, ..., n for a binary dependent variable y that is coded

with 0 and 1 and the co-variables x1, ..., xk, we are looking for

πi = P (yi = 1|xi1, ..., xik) = E(yi|xi1, ..., xik). (3.94)

I.e., we want to determine the conditional probability for yi = 1 given the values of the co-

variables xi1, ..., xik. In binary regression models the probability πi is linked with the linear

predictor ηi through a relationship of the form

πi = h(ηi) = h(β0 + β1xi1 + ... + βkxik). (3.95)

The function h is a strictly monotically increasing distribution function so that always h(η) ∈
[0, 1] and the relationship can be written in the form of

ηi = g(πi) (3.96)

by using the inverse function g = h−1. h is the response function and g = h−1 is the link

function. Different functions can be used to model the relationship:

• Logit model:

π =
exp(η)

1 + exp(η)
⇔ log

π

1 − π
= η (3.97)

• Probit model:

π = Φ(η) ⇔ Φ−1(π) = η (3.98)
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where Φ is the distribution function of the standardised normal distribution

• Complementary log-log model:

π = 1 − exp(− exp(η)) ⇔ log(− log(1 − π)) = η (3.99)

[3]

3.2.2 Regression for Count Data

Count data occurs when the number of certain events during a time period or the frequencies

in contingency tables are analysed. The dependent variables yi have values from 0, 1, 2, ...

and are independent for given co-variables xi1, ..., xik. If all events appear very often, an

approximation with a normal distribution can be sufficient. But usually discrete distributions

considering the special characteristics of count data are the most appropriate. The most

common approach is too use the Poisson distribution [3]:

Pλ(k) =
λk

k!
e−λ (3.100)

There are different types of Poisson regression models:

• Log-linear Poisson model: yi|xi ∼ Pλi
(k) with

λi = exp(xi
′β) respectively logλi = xi

′β (3.101)

• Linear Poisson model:

λi = ηi = xi
′β (3.102)

• Model with an overdispersion parameter:

E(yi|xi) = λi = exp(xi
′β), V ar(yi|xi) = φλi (3.103)

where φ is the overdispersion parameter .

3.2.3 Models for Positive Continuous Dependent Variables

The classical linear model

yi = x′

iβ + εi, E(εi) = 0, Var(εi) = σ2 (3.104)

is appropriate especially in cases where the errors εi are at least approximately normally dis-

tributed. In that case, the dependent variables yi are independent for a given input vector xi
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and normally distributed with

yi|xi ∼ N(µi, σ2), µi = E(yi|xi) = x′

iβ. (3.105)

In many applications the dependent variables cannot have negative values and their distribution

is right skewed. On possibility to use the methodology of linear models in that case is to take

the logarithm of the dependent variable and to use a linear model for ȳ = log(y), i.e.:

ȳi = x′

iβ + εi respectively ȳi|xi ∼ N(x′

iβ, σ2). (3.106)

The original variable y is log-normally distributed with

E(yi) = exp(x′

iβ + σ2/2), Var(yi) = exp(2x′

iβ + σ2)(exp(σ2) − 1). (3.107)

We can insert the LS estimate β̂ and the estimated variance σ̂2 for the linear model. When

transforming back using the exponential function, there can be considerable distortions at the

estimation µ̂i = exp(η̂i) = exp(x′

iβ + σ2/2) .

Therefore it could be better to assume a gamma distribution with the expected value E(yi) =

µi and the scale parameter ν for the dependent variables yi|xi. The variance Var(yi) = σ2
i is

Var(yi) = µ2
i /ν (3.108)

For the non-negative, gamma-distributed dependent variables E(yi) = µi > 0 is valid. There-

fore, instead of a direct linear approach a multiplicative exponential model

yi = exp(ηi) = exp(x′

iβ) = exp(β0) exp(β1xi1) · ... · exp(βkxik) (3.109)

with the response function h(η) = exp(η) is used [3].

3.3 Mixed Models

Mixed models include random effects or coefficients in the predictor η = x′β. Therefore

they are also called random effect models. Important applications of mixed models are the

analysis of longitudinal or cluster data. Longitudinal data is data that is collected if repeated

observations of individuals or objects are made. Cluster data is gained if several objects

from one primary unit (cluster) are selected and the values of the corresponding variables

are collected. For each individual respectively for each cluster we have i = 1, ..., m repeated

observations

(yi1, ..., yij, ..., yin, xi1, ..., xij, ..., xin). (3.110)
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For longitudinal data yij is an observation of the individual i at time tj, whereas for cluster

data yij is the value of the dependent variable for the jth object of the cluster i. To model the

effects that are specific for the individuals or clusters, the linear predictor ηij = x′

ijβ for the

observation yij is extended to ηij = x′

ijβ + u′

ijγi. uij is a sub-vector of the covariables and

γi the vector for the random effects. An advantage of this type of model is that correlations

due to repeated observations for one individual or cluster are considered [3].

3.3.1 Mixed Linear Models for Longitudinal Data and Cluster Data

For longitudinal data

(yij, xij), i = 1, ..., m, j = 1, ..., ni (3.111)

where m is the number of individuals or clusters and ni the number of observations for

individual/cluster i with observation at the times ti1 < ... < tij < .. < tini
, we receive a model

of the form

yij = x′

ijβ + u′

ijγi + εij. (3.112)

In this equation xij is a vector of covariates where one component is 1 to include a constant

β0. The vector uij also includes a 1 and can additionally contain components that are already

included in xij. The vector γi stands for the specific deviation of one individual from the

coefficients β that are estimated for the whole population. In matrix notation a mixed linear

model (MLM) for longitudinal and cluster data is given by

yi = Xiβ + Uiλi + εi, i = 1, ..., m (3.113)

where yi is the ni-dimensional vector of the dependent variables for the individual respectively

the cluster i, m is the number of individuals/clusters, Xi and Ui are (ni × p)- and (ni × q)-

dimensional design matrices for known covariates, β is the p-dimensional vector of the fixed

effects, λi is a q-dimensional vector for the random effects and εi is an ni-dimensional error

vector. The following assumptions about the distributions are made:

λi ∼ N(0, D) εi ∼ N(0, Σi) (3.114)

λ1, ..., λm, and ε1, ..., εm are independent. Thus, the effects that are specific for the individuals

respectively the clusters are considered as random values that are independent and normally

distributed. The covariance matrix for the random effects is

D =




τ 2
0 τ01 . . . τ0q

τ10 τ 2
1 . . . τ1q

...
...

...

τq0 τq1 . . . τq




. (3.115)
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The covariances τkl represent dependencies between the random effects, the values of the

diagonal elements τkk how far the individual effects the spread around the global effects [3].

3.3.2 The general linear mixed model

It is described in [3] that if we summarise all observations, the model can be written in a more

compact form. We define the vectors

y =




y1

...

yi

...

ym




, ε =




ε1

...

εi

...

εm




, γ =




γ1
...

γi
...

γm




(3.116)

of all dependent variables, error terms and random effects. The design matrices are given by

X =




X1

...

Xi

...

Xm




, U = diag(U1, ..., Ui, ..., Um). (3.117)

The linear mixed model is given by

y = Xβ + Uγ + ε (3.118)

with 
γ

ε


 ∼ N




0

0


 ,


G 0

0 R




 (3.119)

where the covariance matrices are block-diagonal:

R = diag(Σ1, ..., Σi, ..., Σm), G = diag(D1, ..., Di, ..., Dm). (3.120)

3.3.3 Estimation of the Parameters

A common estimator for the parameters of the linear mixed model is the Best Linear Unbiased

Predictor (BLUP) described in [10]. The estimates are linear because they are linear functions

of the data, unbiased because the average value of the estimate is equal to the average value

of the quantity being estimated and best because they have the minimum squared error among

linear unbiased predictors. It is assumed that the variance-covariance structure is known except

for a constant σ2.
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The BLUP estimates are defined as the solutions of the following simultaneous equations:

X′R−1Xβ̂ + X′R−1Uγ̂ = X′R−1y (3.121)

U′R−1Xβ̂ + (U′R−1U + G−1)γ̂ = U′R−1y. (3.122)

If X is full rank, the covariance matrix of estimation errors is

E




β̂ − β

γ̂ − γ




β̂ − β

γ̂ − γ




′

 =


X′R−1X X′R−1U

U′R−1X U′R−1U + G−1




−1

σ2 (3.123)

3.3.4 Hypothesis tests

Usually, primarily test for the fixed effects are made. The test for one component βj of β

H0 = βj = dj H1 : βj 6= dj (3.124)

can - assuming an approximately normal distribution for β̂ - be made using a confidence

interval for β̂j. If dj is not in the confidence interval H0 is rejected. Equivalently the test

statistics

tj =
β̂j − dj

σ̂j

(3.125)

where σ̂j is the square root of the jth diagonal element of the covariance matrix for β̂ can be

used. For big samples a normal distribution of tj is assumed and H0 is rejected if |tj| > z1−α/2,

where z1−α/2 is a quantile of the standard normal distribution.

More general hypotheses of the form

H0 : Cβ = d H1 : Cβ 6= d (3.126)

can be tested using the Wald statistics

w = (Cβ̂ − d)′(CVC′)−1(Cβ̂ − d) (3.127)

where V is the covariance matrix of β and therefore CVC′ the covariance matrix of Cβ̂ − d.

It measures the weighted difference between Cβ̂ and d. If H0 is true, it should be small [3].

3.4 Regression Analysis in R

R is an open source project that has been developed specially for statistical computing. It

provides an environment with a lot of built-in functions for interacting with data as well as

a language for programming. It also includes several functions for regression analysis. The

basic function for regression analysis is the lm function which can be used to estimate the
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4 Application

4.1 Description of the Use Case

We are examining a warehouse for beverages where the order picking is done manually, i.e

employees go or drive through the storage area to collect the different articles of an order.

An order can consist of only one article or of several different articles. Of each article one or

several units have to be picked. The work is done in two shifts which are planned by shift

managers. To support the shift managers with the allocation of the operators, the redPILOT

software is used.

As already mentioned in the introduction, the methods described in the previous chapters shall

be used to predict the throughput, i.e. the units processed during a certain timespan, of the

order picking process step for a certain time in the future, given certain conditions. At first,

different input parameters are analysed to find the most relevant among them. Using these

input parameters, a model shall be created to estimate the throughput.

4.1.1 Initial Situation and Goals

The estimated throughput for a process step is an important input factor for the planning

process. Based on this estimation the number of operators is determined and the available

operators are allocated to the different shifts. A better estimation of the throughput can help

to improve the shift planning and to allocate the operators for the system and the time they

are needed.

Currently the throughput of one operator is set statically and based on experience by a plan-

ner and is not updated if operational conditions are changing. Depending on the expected

orders for different weeks, the number of operators needed is estimated based on this static

throughput. In this Master’s thesis it will be evaluated if there are input parameters that have

an impact on the throughput of the order picking process step. The information about the

influencing factors shall then be used to predict and automatically configure the throughput

for a certain time in the future.

Based on discussion with planners and experts in warehouse optimisation, the following possible

influencing factors have been identified:

• Operators: As the picking is done manually, the individual performances and the mo-

tivation of the operators have a big impact on the throughput.
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• Time: The throughput can vary over the year, on different days of the week and at

different hours of the day.

• Weather: The weather conditions could have an influence on the throughput.

• Order structure: The composition of the orders (e.g., types of goods, number of

articles per order, ...) is also influencing the throughput.

4.1.2 Available Data

The data that is analysed comes from different sources: The redPILOT database provides

information about the performance during a specific timespan, the operators, the weather

conditions and about the orders that need to be finalised at a certain time. The performance

and order information are available from June 2016 until now, the information about weather

conditions beginning with June 2017. This data is stored in an SQL database. The values of

the following input parameters are available:

• Performance of a certain operator at a certain time and day: The performance, i.e. the

number of packing units processed, is given for intervals of one minute which are given

by a timestamp for the start and end time. From this timestamp the month, the hour

of the day, the day of the week and other time parameters can be deduced.

• Information on the operators: A specific operator is identified by a unique id. Opera-

tors belong to operator groups (e.g. full-time personnel, part-time employees, contract

workers) and have competences for different process steps. Those competences indicate

for which process step an operator should preferably be allocated. The higher the com-

petence of an operator for a specific process step is, the higher is the likelihood that

he will be allocated for this process step. Operators can also have additional skills such

as first-aider or fire protection officer and they can decide if they are ready to do paid

overtime or not. This information could be a measure for the motivation of an operator.

• Orders: In the redPILOT database only information about order quantities are available,

which means that we do not know anything about the articles contained in the order or

the complexity of the order. There are two different types of quantities: the total order

quantity and the quantity of orders that have to be finalised. Both quantities are given

for intervals of one hour. The total order quantity gives the total number of orders that

are registered in the system at that hour of the day whereas the quantity of orders that

have to be finalised indicates the number of orders that have to be finished within the

given interval. Both quantities are given as a number of packing units.

• Weather conditions: The minimal and maximal temperature on a certain day as well as

the noon temperature and the weather conditions (sun, rain, fog, etc.) are stored in the

database.
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Table 4.1 gives a list all the analysed parameters from the redPILOT database.

Table 4.1: Descriptions of the items in the redPilot database
Variable Description Type unit Availability
Performance Number of packing units Performance information Packing Unit Starting with June 2016
Month Month Time information - Starting with June 2016
Hour Hour of the day Time information - Starting with June 2016
Day Day of the week Time information - Starting with June 2016
Factor overtime premium Information about overtime premium Time information - Starting with June 2016
Distance to holiday Days until next holiday Time information - Starting with June 2016
Operator id Internal id for an operator Operator information - Starting with June 2016
Personal Number Personal number of the operator Operator information - Starting with June 2016
Operator group id Group the operator belongs to Operator information - Starting with June 2016
Competence KOM Competence for process step order picking Operator information - Starting with June 2016
Number other competences Competences for other process steps Operator information - Starting with June 2016
Number skills Additional skills Operator information - Starting with June 2016
Paid overtime Willingness for overtime hours Operator information Yes/No Starting with June 2016
Order quantity total All current orders Order quantity information Packing units Starting with June 2016
Order quantity finalise Orders to be finalised Order quantity information Packing units Starting with June 2016
Min Temperature Minimal temperature on that day Weather information ◦C Starting with June 2017
Noon Temperature Temperature at noon Weather information ◦C Starting with June 2017
Max Temperature Maximal temperature on that day Weather information ◦C Starting with June 2017
Weather Weather conditions on that day Weather information - Starting with June 2017

Additionally, data from the warehouse management system that gives information about the

orders that are realised during the order picking can be delivered. The following tables will be

used:

• Comparison of planned times and actual times: In this table the planned time for an

order, the operator who fulfils the order, the timestamps of when the operator started

respectively finished the order as well as the planned and actual packing units the orders

consist of are available. The planned time gives information about the complexity of an

order. It is the sum of the estimated times for all the steps needed to fulfil the order.

Therefore, the difference between the planned time and the time the operator needs

can give information about the performance of an operator. Very performant operators

usually fulfil the orders in less than the plan time whereas less performant operators have

a higher likelihood to need more time than planned.

• Order information: Usually one order consists of several articles that have to be picked.

This table gives information about the articles included in an order that has to be fulfilled

by an operator.

This data is not stored for a longer period of time, so, it is only available from the end

of January (comparison of planned and actual times) respectively the beginning of February

(order information) until now. It is delivered in Excel spreadsheets and then loaded into an

SQL tables.

Table 4.2 summarises the relevant variables from the customer’s WMS system.

Figure 4.1 shows an entity-relationship diagram diagram of the raw data from both, the

redPILOT database and the data from the warehouse management system. Each operator

belongs to an operator group. An operator group consists of several operators whereas one

operator can only belong to one operator group. Therefore there is an 1:n relationship between
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Table 4.2: Descriptions of the items of the additional data from the WMS
Variable Description Type unit Availability
User number Personal Number of the operator Operator information - Starting with end of January (gap of 11 days)
Company information if internal or external operator Operator information - Starting with end of January (gap of 11 days)
GroupRef Reference to a customer order Order structure information - Starting with end of January (gap of 11 days)
Units planned Number of planned units for an order Order quantity information Packing units Starting with end of January (gap of 11 days)
Actual units Number of actually picked units for an order Order quantity information Packing units Starting with end of January (gap of 11 days)
Planned time Planned time for an order Order structure information Minutes Starting with end of January (gap of 11 days)
Revised planned time Updated planned time for an order Order structure information Minutes Starting with end of January (gap of 11 days)
Actual time Time actually needed to fulfil an order Time information Minutes Starting with end of January (gap of 11 days)
Timestamp start Time when the order was started Time information Time Starting with end of January (gap of 11 days)
Timestamp end Time when the order was finished Time information Time Starting with end of January (gap of 11 days)
Article Number ID of an article Order structure information - Starting with beginning of February (gap of 17 days)
Number distinct articles Number of different articles in one order Order structure information - Starting with beginning of February (gap of 17 days)

operators and operator groups. One operator has many performance records which are given

for intervals of one minute. The relationship between the operators and the performances is

1:n because one performance record only belongs to one specific operator. One record in the

operator table gives information about one specific operator. It contains his or her id, personnel

number, competences, skills, willingness for paid overtime and the id of the operator group he

or she belongs to. One performance record consists of two timestamps, the start of the interval

and the end of the interval, the operator id and the number of packing units processed. The

orders are given for intervals of one hour which are defined by two timestamps. At latest at the

time of the timestamp_end the orders to finalise have to be finished. The weather information

is given for days which are indicated by a date. From the timestamps in all the tables time

information like day of week, month or hour can be derived which can be used to connect

performances, orders and weather. Furthermore there are two tables that give information

about overtime premium and holidays. One record in the planned times table coming from

the WMS consists of an id (groupRef), two timestamps (start and end time of the order),

planned and revised planned time and planned and actual units. Furthermore the personnel

number of the operator who executed the order is given which can be used to connect this

table to the operator information. One operator executes several orders and therefore this is

an 1:n relationship. Between the planned times and the order information there is also an 1:n

relationship, i.e one order with a specific planned time consists of several articles which are

given in the order information table. One row corresponds to one item that is picked and it

is connected to the planned times by the groupRef value. The timestamp_start in this table

indicates when the operator has received the information that he has to pick this article, the

timestamp_end gives information when it has been confirmed that the article has been picked.

The planned times and the order information can also be connected to the performances and

the order quantities using the timestamp.
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• Performance orders: This table contains the performance during a certain hour on a

certain day and the number of orders for that time. The dataset contains information

from June 2016 to December 2017 and has around 2300 entries.

• Planned times: This table contains data that gives information about the planned and

actual times for a specific order. Each rows stands for an order that is executed by a

certain operator. The entries include the personnel number of the operator, information

if he or she comes from a temporary employment agency, a reference to a customer

order, the original planned times and quantities, revised planned times (if the originally

planned order cannot be fulfilled and therefore the calculated time to fulfil the order

changes, the planned times are updated), actual quantities and actual start and end

time of the order. The actual fulfilment times as well as the absolute and relative

differences between planned and actual times have been calculated. It includes data

from 20th of January 2018 to the 8th February 2018 and the 19th of February 2018 to

the 28th of April 2018 and contains about 105000 observations.

• Order information: This table contains detailed information about the orders. One

row corresponds to one article that has to be picked. It includes the article number and

description, a reference to a customer order, the user number (personnel number of the

operator) as well as the planned and actual number of items that have to be picked.

Furthermore, the planned and actual times of the orders and their absolute and relative

differences are given. This dataset includes is given from the 2nd of February 2018 to

the 9th of February 2019 and the 26th of February 2018 to the 28th of April 2018 and

includes around 564000 entries.

• Distinct articles This table provides the same information as the planned times table

and additionally includes the number of distinct articles an order contains. The data

is given for the same period as the order information data and contains about 76000

entries.

The gap where no data for the planned times respectively the order information is available

occurs because the data is not stored automatically for a longer timespan and therefore has

to be stored manually which has not been done during that time.

In Table 4.3 all tables of aggregated data, the included variables and the the availability of the

data are listed.

Figure 4.2 shows an ER-diagram of the aggregated data. The data from the redPILOT

database has been aggregated to 4 different tables (Time data, Performance operators, Per-

formance weather and Performance orders) which are all connect via time attributes (e.g. date,

hour of the day). The data from the warehouse management system has been aggregated in

three different tables (Planned times, Order information, Distinct articles). Those three tables

are all connected via the groupRef value. The relationship between the planned times and the
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Table 4.3: Tables of Aggregated data
Data Variables Available period Number rows
Time data Performance per hour, Month, Day of

week, Hour, Factor overtime premium,
Distance to holiday

June 2016 - December 2017 8000

Performance operators Operator id, Operator group id, Compe-
tence KOM, Number other competences,
Number skills, Paid overtime, Perfor-
mance per hour and operator

June 2016 - December 2017 93300

Performance weather Min temperature, Noon temperature,
Max temperature, Weather, Performance
per day

June 2016 - December 2017 93300

Performance orders Order quantity total, Order quantity fi-
nalise, Performance per hour

June 2017 - December 2017 160

Planned times Operator id, personnel number, Com-
pany, GroupRef, Planned units, Planned
time, Actual Units, Revised planned time,
Actual time, Absolute/Relative difference
planned time - actual time

20th of January - 8th Febru-
ary, 19th of February - 28th of
April

105000

Order information GroupRef, User number, Article number,
Planned time, Revised Planned time, Ac-
tual Time, Absolute/Relative difference
planned time - actual time

2nd of February - 9th Febru-
ary, 26th of February - 28th of
April

564000

Distinct articles Operator id, personnel number, Com-
pany, GroupRef, Planned units, Planned
time, Actual Units, Revised planned time,
Actual time, Absolute/Relative difference
planned time - actual time, Number dis-
tinct articles

2nd of February - 9th Febru-
ary, 26th of February - 28th of
April

76000

distinct articles table is a 1 to 1 relationship, i.e. one record in the planned times table belongs

to one record in the distinct articles table. The relationship to the order information table is

1 to n, i.e. there are several records in the order information table which belong to one record

in the planned times and distinct articles table.

4.2.2 First Tests on redPILOT data

To get an overview of the data, plots are very helpful. They can indicate which input parameters

have a significant influence on the dependent variable and how the values are distributed.

Besides, regression analysis is used to evaluate the influence of the different input variables on

the performance.

4.2.2.1 Weather Data

First, we have a look on the data about the weather conditions. It could be possible that under

certain weather conditions, for example very hot weather, working is harder and therefore the

performance is lower. We will examine the influence of the average temperature and the

weather conditions on the performance for one day. The Q-Q-Plot (Quantile-Quantile-Plot)

shows if the values are approximately normally distributed. If the points are close to the 45◦

line as it is the case in for the daily performance (see Figure 4.3), a normal distribution can
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competences, we furthermore cannot conclude that a specific number of competences leads

to higher performance. Figure 4.17 shows a boxplot for the performance over the number of

skills. We can see that there are only three different values for the number of skills: 0, 1 and

2. For one and two skill(s) the performance values seem to be relatively homogeneous whereas

for no skills there are a lot of outliers. This can be explained by the fact that there are a

lot more operators who have no skills. There are 118 operators with no skills, two operators

with one skill and eight operators with two skills. Therefore we have a lot more observations

for zero skills which leads to a higher variety of values and it is not really possible to draw a

conclusion about the impact of the number of skills on the performance.

Figure 4.15: Performance over compe-
tence process step order
picking

Figure 4.16: Performance over number of
other competences

4.2.2.3 Order data

The next input parameters that are analysed are the two variables for order quantities: the

total order quantity and the order quantity to be finalised. The dependent variable is the

performance per hour.

In Figure 4.18 we can see that the different performance values are relatively equally distributed

Figure 4.17: Performance over number of skills
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over the different values for the total order quantity. If we create a linear model for the

performance over the total order quantity, we receive a coefficient of 0.0066 for the order

quantity which means that the performance only increases very little if the order quantity

increases. Furthermore the adjusted R2 is only 0.02 which means that very little of the

variance in the performance is explained by the variance of the total order quantity.

Figure 4.19 shows the performance over the number of orders to finalise. It can be seen that

this number is very often zero or very small and that we have a wide range of performance

values for these small order quantities. The many small values occur because the quantities of

orders that have to be finalised are not spread evenly over the hours of the day. Often, there

is one hour at the end of the day where the quantity of orders that have to be finished is very

high and during the rest of the day the numbers are small. This does not mean that all those

orders are actually done during that hour, it can rather be seen as a deadline. This makes

this input parameter not very valuable for creating a model. As it can be expected, creating a

linear model does not reveal any correlation. The coefficient for the order quantity to finalise

is very small and has a very high p-value (0.87).

Figure 4.18: Performance over total order
quantity

Figure 4.19: Performance over order quan-
tity to finalize

4.2.2.4 Time data

In this section we analyse the influence of the time when the order is executed on the per-

formance. This time we analyse the data for the whole year to also identify possible seasonal

fluctuations. The performance is aggregated per operator and per hour. In the Figures 4.20

and 4.21 we can see that the performance of the operators is lower for certain hours of the day

whereas the performance seems to stay constant over the year. The next figures show that

the performance is almost equal from Monday to Saturday (day 2-6) but higher on Sunday

(day 1) and that it is higher when the factor for overtime premium is 1.75 which is the case

for Sunday evening. Thus, this plot gives the same information as a combination of Figure

4.20 and Figure 4.22. As it can be seen in Figure 4.24, the distance to the next holiday does

not seem to have any influence. The performance values for the different numbers of days are

relatively evenly distributed.

If we create a linear model with dummy variables for the different hours and use the aver-
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Figure 4.20: Performance over hour Figure 4.21: Performance over month

Figure 4.22: Performance over day of week
Figure 4.23: Performance over factor over-

time premium

age performance as a reference value, we get high p-values (greater than 0.25) for all hours.

This means that in none of the hours the performance differs significantly from the average

performance. If we do the same for the day of the week, we get similar results: For all the

coefficients we get p-values greater than 0.45 which means that the performance on none

of the days is significantly different from the average performance. Concerning the factor of

overtime premium, it can be observed that for the factors 1.25 and 1.75 the performance

differs significantly from the performance at the time without any overtime premium whereas

the performance for the time with factor 2 is not significantly different. The coefficient for

the factor 1.25 is -11.9 which means that the average performance is a bit lower whereas for

the factor 1.75 the coefficient is 190 and thus the average performance is a lot higher. The

p-values for those coefficients are very small (10−16) which means that the difference seems

to be significant. For the factor 2 the coefficient is 6.2 and the p-value is 0.38 which means

that the performances are very similar.

4.2.2.5 Conclusion

From the analysis done so far we can conclude that the performance of the individual operators

seems to be significantly different. Besides, the performance seems to vary for the different
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Figure 4.24: Performance over distance to holiday

hours of the day. It also seems to be higher on Sunday. Thus, we have possibly found

some factors that influence the throughput but the information is not sufficient to predict the

future throughput for a certain configuration. Besides, there are many factors which are not

considered yet. We do not know if some operators have to do "harder" tasks and therefore

have a lower performance or if the reason for the lower performance is that they a working

slower. So, we need some information on the difficulty of the orders to be able to make better

judgements on the influencing factors.

4.2.3 Analysis of Planned Times

4.2.3.1 Analysis of Whole Dataset

The planned time for an order is a guideline during which amount of time the operator should

be able to accomplish an order. The salary of the operators partly depends on the fulfilment

of this planned times. Thus, the fulfilment of the planned times can be a good measure for

the performance of an operator. For this first analysis the data from the 20th of January to

the 8th of February and from the 19th of February to the 17th of March will be used which is

the data that is available so far. This dataset contains around 52000 observations.

At first we will analyse the relationship between the planned and the actual times, i.e. if the

actual times are usually higher, lower or approximately equal as the planned times and how big

the differences are. Figure 4.25 and Figure 4.26 show the frequencies of certain values for the

absolute and relative differences between the planned times and the actual times for specific

orders (in minutes). We can see that most of the values are positive which means that the

time the operator needed was lower than the planned time. Only for a few orders the actual

time was higher than the planned time. We also can see that there are some outliers where

the actual time was a lot higher than the planned time. Furthermore we observe that in the
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Figure 4.25: Histogram absolute
differences Figure 4.26: Histogram relative differences

histogram for the relative differences there are a lot of values between 0.8 and 1. If we have

a closer look at the data, we find that many of the relative differences are exactly 1 and that

the corresponding actual times are zero whereas the planned time is bigger than zero. The

reason for these zero values is that there are some orders where the operator does not have

to move and therefore can confirm the order the same time as he starts it. The values for

the planned times of this orders, however, are not zero which causes a relative difference of

100%. As these values could distort the results of the analysis, we do not use them for creating

the models which reduces the amount of data by around 10%. If we look at the histograms

Figure 4.27: Histogram absolute differ-
ences without zero values

Figure 4.28: Histogram relative differences
without zero values

for the absolute and relative differences for the data without the zero values for the actual

time (Figures 4.27 and 4.28), we can see that there are now much fewer values between 0.8

and 1 for the relative difference and that the distribution of the absolute differences has also

changed. Most relative differences now lie between 0.4 and 0.8.

Figure 4.29 shows the values of the actual times over the planned times for a sample of 500

observations. We can see that the relationship between the planned and the actual times

seems to be relatively linear with some outliers. The red line is a regression line fitted to the

data using least squares approximation. The coefficient for the planned time is approximately

0.863 which means that if the planned time increases by 1, the actual time increases by on

average 0.863. The p-values for both coefficients (intercept and slope) are very small which

means that there seems to be a significant between the planned and the actual time. The

adjusted R2 is 0.321 and therefore, only around 32.1% of the deviation in the actual time is
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4.2.3.2 Separate Models for Different Operators

For some operators we have only a few observations which makes it difficult to derive general

rules from the values of the data of these operators. Therefore we will only create models for

operators where we have a least 100 observations. Instead of the original 63 operators we only

use the data of 54 operators.

If we plot the actual times over the planned times separately for each operator, we can see

that the relationship between the input (planned times) and the output (actual time) seems

to be much more linear than if we look at the data for all operators at once. Figure 4.32

shows plots for the actual times over the revised planned times (i.e. the planned times for

the orders the operators actually fulfilled which can have changed on a very short-term basis)

for 4 different operators. In this figure there are still some outliers but the data points are in

general much closer to a virtual regression line.

Figure 4.32: Actual times over planned times for 4 different operators

We can again use the linear model function with the formula actual time ∼ planned time

to create the different models for all the operators. Figure 4.33 shows the intercepts and slopes

of the different models created. For some operators the slope is greater than 1 whereas for

other it is smaller than 1. Thus, for some operators the time they actually need - on average -

increases by more than 1 when the planned time increases by 1 and for others the increase of

the actual time is smaller than the increase of the planned time. This again shows that there

are significant differences between the operators. The mean squared error on the training data

for the "combined" model consisting of the single models for all operators is 9.215.

In Figure 4.33 the coefficients of the linear models are sorted with respect to the slopes and

we can see that there seems to be an anticorrelation between the slopes and the intercepts of

the models for the different operators, i.e. the higher the slope of the model, the smaller the

intercept. Figure 4.34 and Figure 4.35 show the distribution of the values of the planned times

and the actual times. We can see that most of the values of the planned times lie between

5 and 15 minutes and most of the values of the actual times lie between 0 and 10 minutes.

In Figure 4.36 and Figure 4.37 which show the distribution of the planned respectively the
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Figure 4.33: Intercepts and slopes of the different linear models

actual times of the orders done by four different operators we can see that the distribution

of the planned times of all four operators is relatively similar to the distribution of all orders

whereas the distribution of the actual times varies among the four operators. However, the

range within which most values of the actual time can be found is similar for all four operators.

As in the distribution of the actual times of all the orders, most of the values lie between 0

and 10 minutes. The observations we can make for those four operators are also true for

most of the other operators. This means that for all the operators most of the data points

lie in the same area of the graph but their distribution within this area is different. Therefore,

the regressions lines for the different operators lie within a similar area of the graphs but their

slopes are different. Lines with higher slopes intercept with the y-axis of the coordinate system

at a lower position which leads to the anticorrelation.

Figure 4.34: Histogram of the planned
times Figure 4.35: Histogram of the actual times

If we look at the plots in Figure 4.32, we can see that for all the 4 different operators shown

there are some outliers, i.e. data points that lie far from most other points. The least squares

estimation used by the lm function is very vulnerable to those outliers because the errors are
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Figure 4.36: Histogram of the planned
times Figure 4.37: Histogram of the actual times

squared. To weaken the influence of those outliers, robust regression methods (see Chapter

3.1.7) can be used. As before, we use the data for operators who have at least 100 observations.

For each operator we fit a linear model using the rlm function in R which uses the Huber

M-estimator to fit the linear model. If we combine the different models to one model as we

did before and compute the MSE on the training data, we get a value of 8.422. This is slightly

higher than the one for the LS linear model. The reason is that the robust estimation gives

less weight to the outliers and therefore lies further apart from these points which leads to

high error terms for them. Figure 4.38 shows the differences between the coefficients for the

linear models fitted by LS regression (black) and the models fitted using robust regression

(red) ordered by the slopes of the linear models. The points of the corresponding models for

one operator are always above each other. We can see that for some operators the differences

between the coefficients using the different methods are very small whereas for other operators

the points lie further apart. In general, the slopes for the models fitted by robust regression

are lower than those for the models fitted by LS regression which is again caused by the lower

weights of outliers.

Figure 4.38: Comparison intercepts and slopes lm and rlm

Another way to deal with outliers is to exclude those data points from the data that is used

to create the model. To identify outliers we can choose two different approaches: We can

eliminate points which are far away from the regression line by looking at the studentised
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residuals or we can eliminate those points that have a high impact on the estimation of the

coefficients, i.e. those points that "pull" the line in a certain direction. Usually those points

are also outliers. The impact can be measured by computing the leverage of the data points

with respect to the linear model.

We exclude all the data points where the absolute value of studentised residual is larger than

4 times the mean value of the absolute values of studentised residuals. How many data points

we exclude, depends on their distribution. For most models the number of points that are

eliminated lies between 5 and 20. When using the leverages, we proceed in a similar way:

we exclude all data points where the leverage is more than 4 times larger than the mean of

the leverages. The two methods eliminate approximately the same number of observations

but the data points excluded are in general not the same. For example, in the model for the

first operator using the leverages, the 8th observation (planned: 29.88, actual: 16) is excluded

whereas using the studentised residuals, it is kept. For this pair of values the planned time is

relatively high and therefore on the x-axis it lies relatively far away from the other points and

has thus a high impact on the estimation of the parameters. For the 6th data point (planned:

18.16, actual: 18) we have the reverse case: It is kept using the leverages and excluded using

the studentised residuals. For this point the planned time lies in the normal range but the

difference between the planned and actual time is smaller than for most other values and

therefore the point lies far away from the regression line.

4.2.3.3 Comparison of the Models

We can now compare the coefficients we get for the models by using the different methods.

Figure 4.39 shows the estimated values for some of the coefficients using the 4 different

methods described. The first four columns contain the values for the slopes, the other four

columns the values for the intercepts of the linear models. We can see that - similarly to the

models fitted by robust regression (second column) - the slopes for the models fitted using the

data without the data points with high studentised residuals (forth column) we get lower slopes

than for the models fitted using all the data. In contrast, the coefficients for the models fitted

for the data set where observations with high leverage are excluded are sometimes higher,

sometimes lower than for the models where the whole data set was used. The MSEs on the

training data for the two new models are 9.35 (without points with high residuals) and 9.26

(without points with high leverage). Comparing the MSEs on the training data does not give

meaningful information about the quality of the models because we do not know how well

they work on new data. Therefore we apply the models on a test data set to compare the

qualities of the predictions. In a new dataset we are likely to find data for operators for which

we have not created a model. To make predictions for these operators, we can use the models

that have been created using the same methods but not separately for each operator but for

all operators at once. As a test dataset we use the observations from the 19th of March until

the 24th of March. This dataset contains about 8000 observations. For two of the operators
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4.2.3.4 Analysis of other influencing factors

We now know that the operators have a significant influence on the relationship between the

planned times and the actual times and we can analyse if there are other influencing factors.

As for the data from the redPILOT database, we can examine if there are time variables that

have an influence on the performance.

First, we have a look at the hour of the day. We make boxplots for the different operators for

the relative differences between the planned time and the actual time at the different hours of

the day. Figure 4.40 shows plots for four different operators which indicate that there are some

differences for the different hours. To see if there are really significant differences between the

Figure 4.40: Relative differences planned time - actual time over hour of the day

hours of the day, we can include dummy variables for the different hours in our linear models.

We take one hour as reference and test if the other hours differ significantly from it. If we use

the linear model function for the formula actual time ∼ planned time + hour, we get

models where the coefficient for each hour gives information how much the intercept for this

hour differs from the intercept of the reference hour. For all operators these coefficients have

high p-values and the adjusted R2 only increases very little or even decreases in comparison

with the models that only includes the planned times (formula: actual time ∼ planned

time). We can also include an additional interaction term planned time*hour to see if the

coefficient for the planned time depends on the hour of the day. Similarly as before, we get

mostly high p-values. Thus, we can conclude that the influence of the hour of the day does

not seem to be significant.

Next, we can analyse the differences in performance for different days of the week. We proceed
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as we did before and first have a look a the boxplots of the differences between planned and

actual times over the day of the week for the different operators. In Figure 4.41, which shows

Figure 4.41: Relative differences planned time - actual time over day of week

the plots for four operators, we can see that the differences for the different days of the week

seem to be very small. This impression is confirmed by the summaries for the linear models

created with the linear model function for the formula actual time ∼ planned time +

day of week. Almost all p-values are large which means that the variable does not have a

significant influence.

4.2.3.5 Conclusion

From the results of the analyses performed above, we can conclude that the performance of the

operators are significantly different. The differences between the planned times and the actual

times that are needed to execute an order differ depending on the operator who is responsible

for the execution. We thus know that, to make a good prediction for the throughput of

the order picking process step, we have to consider the differences between the individual

operators. Depending on which operators are working, it will be higher or lower. In contrast,

the hour of the day and the day of the week do not seem to have a significant influence on

the performance.

4.2.4 Analysis of Order Information Data

4.2.4.1 Analysis of Articles

In addition to the data analysed in the previous chapter, more detailed information about the

orders is available, for example we know of which articles the order consists. We can analyse

if there is any difference between the different articles concerning the difference between the

actual time and the planned time, i.e. if there are some articles for which it is more likely that
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the operator will not fulfil the order within the planned time if they are included in the order.

For our analysis we use a dataset where the information about the planned and actual times

has been combined with the order information. Each row contains the information about one

article (article number and description), the picking times for that specific article as well as

the planned and actual times of the order to which the article belongs and the operator that is

executing this order. The dataset contains the data from the 2nd of February until the 9th of

February and from the 26th of February until the 17th of March which includes about 235000

observations. As we did for the analysis of the planned times data before, we will exclude rows

where the actual time is zero which reduces the dataset by around 10000 entries.

There are more than 1800 different articles and for some of them we have only very few

observations. Similarly as we did for the operators, we will exclude those articles from our

analysis because from those few observations we cannot make any general conclusions. We

only analyse articles for which we have at least 30 observations which leads to a dataset with

around 220000 rows containing information for 1338 different articles.

As there are so many different articles, we cannot use a boxplot anymore to get a first idea of

the differences between them. But as we already did for the operators, we can create a linear

model with dummy coding for the relative difference between planned and actual times over

the article number. The output of the summary of that model gives us information if there is

a significant difference between the first article which is taken as a reference category and the

rest of the articles. We can see that some of the coefficients do have low p-values and thus

this article is significantly different from the reference article but many of the articles have high

p-values and are therefore similar to the reference. If we use the average relative difference

as a reference instead of one specific article, we get relatively high p-values (above 0.05)

for all the articles which means that for none of the articles the average relative difference

between planned time and actual time seems to be significantly different from the overall

average relative difference. Although the variations of the relative differences between planned

and actual times do not seem to be that significant, we can still try to make some kind of

categorisation of the articles. It does not make sense to treat each article separately but we

can try to find out if there are some articles where the actual times are frequently higher than

the planned times and others where the order is often fulfilled a lot faster than scheduled.

To get an overview of the values of the relative differences between planned and actual time,

we can have a look at the histogram of the values. We can see that most of the values are

positive, i.e. the actual time is shorter than the planned time and that most of the values

lie below 0.8. So, we can define three categories: 1: "relative difference < 0"; 2: "0 <=

relative difference < 0.8"; 3: "relative difference >= 0.8"; To find out if there are any articles

that fall into a certain category more frequently than the others, we first assign one of the

three categories to each row and then we analyse how many observations for a specific article

fall into a certain category. As we have a different number of observations for each article,

we analyse the relative frequencies for the categories, i.e. how many percent of the orders
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Figure 4.42: Relative differences planned time - actual time

containing the article fall into a specific category.

At first we have a look at the histogram for the relative frequencies of the first category (see

Figure 4.43). This histogram shows for how many articles the relative frequency of orders with

category 1 lies within a certain range. We can see that for most of the articles less than 20%

of the observations have a higher planned time than actual time. Therefore we will consider

articles having a relative frequency for category 1 which is higher than 0.2 as "slow" articles.

Figure 4.43: Relative frequencies category 1

Next, we can do the same for category 3. In Figure 4.44 we can observe that usually less

than 10% of the relative differences between planned and actual time are higher than 0.8. So,

we will categorise articles where the relative frequency is more than 0.1 as "fast". All articles

that are neither categorised as "slow" nor as "fast" are considered as "normal". Figure 4.45

shows a boxplot for the relative differences between planned and actual times for the different

Montanuniversität Leoben 64 Julia Lahovnik



TITEL Chapter 4. Application

categories of articles. It seems as if there are significant differences between the observations

for articles of the different categories.

Figure 4.44: Relative frequencies category 3

Figure 4.45: Boxplot relative differences over category article

For each order we can now count how many "slow" and "fast" articles it contains and analyse

if those two numbers have an influence on the relationship between the planned and the

actual time. We can create a linear model for the formula actual time ∼ planned time

+ number slow + number fast on the full dataset (without observations where the actual

time is zero) to see if the number of "slow" respectively "fast" articles has an impact on the

actual time. All the coefficients have low p-values, the residual standard error is 3.29 which

is slightly lower than for the linear model only including the planned times (3.33) and the

adjusted R2 is 0.2897 which is slightly higher than for the model without those coefficients

(0.2723). That indicates that including the number of "fast" and "slow" articles can slightly
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improve the prediction.

4.2.4.2 Number of Articles per Order

Apart from the articles themselves, another factor that has an influence on the relationship

between the planned times and the actual times could be the number of articles per order. If

an order contains more articles, the planned time itself increases because it is the sum of all

necessary steps to fulfil an order. Additionally, if more different articles have to be picked, the

operator is also more likely to encounter some problems and therefore not to be able to fulfil

the order within the planned time. It is thus sensible to include the number of different articles

per order into our model. We can again compare the model including the new coefficient for

the number of different articles to the model where the planned time is the only predictor

using the data for all operators without entries where the actual time is zero. The p-value for

the additional coefficient is small, the residual standard error is 3.004 and the adjusted R2 is

0.4079. Thus, the quality of the prediction can be clearly improved.

If we additionally add the two coefficients for the categories of the articles (formula for the

linear model: actual time ∼ planned time + number distinct articles + number

slow + number fast), we can achieve a small further improvement: The residual standard

error is 2.984 and the adjusted R2 is 0.4159.

4.2.4.3 Separate Model for Each Operator

As we have seen in chapter 4.2.3, we can improve the quality of the prediction by creating a

separate model for each operator. This time we will add the coefficients for the numbers of

distinct articles and articles categorised as "slow" respectively "fast". Again we will only create

models for operators where at least 100 observations are available and remove entries where

the actual time is zero. For each operator we can create three different models to analyse the

impact of the different input parameters:

• One model where the planned time is the only predictor (formula: actual time ∼
planned time)

• One model additionally including the number of distinct articles per order (formula:

actual time ∼ planned time + number distinct articles)

• One model including the number of distinct articles as well as the number of "slow" re-

spectively "fast" articles (formula:actual time ∼ planned time + number distinct

articles + number slow + number fast)

If we look on the output of the summary function for the models created using the linear model

function in R, we can see that the coefficient for the number of distinct articles always has a

low p-value. Thus, this parameter has a significant influence on the actual time. For the two
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4.2.4.4 Conclusion

From the analyses performed before we can gather that the structure of the orders has a

significant influence on the difference between the planned time and the actual time. Especially

the number of distinct articles has a strong impact. By including this parameter into our model,

we can clearly improve the quality of the prediction. There are also some differences between

the articles themselves. We have discovered that for some articles the actual time is more often

higher than the planned time than for most other articles. In contrast, if some other specific

articles are included in an order, the operator is more likely to finish the order in a lot less time

than planned. If we add the number of these articles contained in an order to our model, it

seems that we can achieve a small further improvement. However, this improvement is not as

clear as for the number of distinct articles. Therefore, some further analysis is necessary.

4.3 Model for estimating the actual times

4.3.1 Model selection

Our previous analyses have shown that there are some differences in the performance of

different operators and thus, it makes sense to create a separate model for each operator.

Furthermore, we have seen that the number of articles per order has a significant influence on

the fulfilment of the planned time. The higher the number of articles per order, the higher is

the actual time is compared to the planned time. Therefore it seems reasonable to include this

input parameter into our model. Besides, there might also be a small effect that is caused by

the articles that are contained in an order. We measure this effect by counting the number of

"slow" and "fast" articles as described in Chapter 4.2.4.1. It is not clear if these two parameters

have a significant influence on the output variable (the actual time) and should be added to

the model. To decide if we should include those two variables, we can use cross-validation.

For the selection of the model we can now use a dataset containing observations from the 2nd

of February to the 8th of February and from the 26th of February to the 21st of April , which

means we have information about around 65700 orders. To assure that each of the folds used

in the cross-validation process contains a representative sample of the data for training as well

as for testing, we shuffle the data. We compare six different models:

1. A linear model fit by least squares approximation only for the actual time over the

planned time (formula: lm(actual time ∼ planned time))

2. A linear model fit by least squares approximation for the actual time over the planned

time and the number of distinct articles (formula: lm(actual time ∼ planned time

+ number distinct articles))

3. A linear model fit by least squares approximation for the actual time over the planned
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time, the number of distinct articles and the number of "slow" and "fast" articles (for-

mula: lm(actual time ∼ planned time + number distinct articles + number

slow + number fast))

4. A linear model fit by robust regression (Huber M estimator) only for the actual time

over the planned time (formula: rlm(actual time ∼ planned time))

5. A linear model fit by robust regression (Huber M estimator) for the actual time over

the planned time and the number of distinct articles (formula: rlm(actual time ∼
planned time + number distinct articles))

6. A linear model fit by robust regression (Huber M estimator) for the actual time over the

planned time, the number of distinct articles and the number of "slow" and "fast" arti-

cles (formula: rlm(actual time ∼ planned time + number distinct articles

+ number slow + number fast))

During the training phase we eliminate observations where the actual time is zero to avoid

distortions. In the part of the data that is used for testing we of course keep these values

because if we apply the model to make predictions on new data, we do not know which of

the observations will have an actual time of zero. Furthermore, in each fold we only create

models for operators where we have at least 100 observations. To predict the actual time for

operators in the test data where we do not have a specific model, we use the model that is

created using the same formula on the data for all operators in that fold. If the predicted value

for the actual time is below zero, we set it to zero. To select the most appropriate model from

our candidates, we compare their mean square errors. As it is recommended by Kohavi [7],

we use ten-fold cross-validation for selecting the model. This number of folds provides a good

balance between the bias and the variance of the results of the cross-validation.

To select the best model, we compare the averages of the mean squared errors derived from

the predictions on the test data in each of the folds. We get the following results:

1. lm(actual time ∼ planned time): mean(MSE) = 7.25

2. lm(actual time ∼ planned time + number distinct articles): mean(MSE)

= 5.78

3. lm(actual time ∼ planned time + number distinct articles + number slow

+ number fast): mean(MSE) = 5.71

4. rlm(actual time ∼ planned time): mean(MSE) = 7.38

5. rlm(actual time ∼ planned time + number distinct articles): mean(MSE)

= 5.91
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6. rlm(actual time ∼ planned time + number distinct articles + number slow

+ number fast); mean(MSE) = 5.82

We can see that the third model has the lowest average MSE but the results are similar for

some of the models. The MSE for the second model, which is simpler than the third one,

is just slightly higher whereas the MSE for the simplest model, the one only including the

planned time, is much higher. The difference between the results for the second and the third

model are so small that we cannot really say that the second model is the better one. We will

therefore apply the principle of Ockham’s razor and choose the more simple one of the two.

We will thus create a linear model for each operator using the revised planned time and

the number of distinct articles in the order as input parameters. Some of the operators are

employed at a temporary employment agency. We do not have any influence on those operators

because the plans for them are made by their employer. Therefore we will not create models

for those operators. As in the cross-validation process, we will only create separate models for

operators where we have at least 100 observations. Additionally we will create a model using

the same input parameters for the whole dataset which can be used to make predictions for

operators where we have not enough observations for a separate model. For the estimation of

the coefficients for the two variables we will use least squares approximation.

4.3.2 Model creation and evaluation

The dataset used for the creation of the models contains observations from the 2nd of February

to the 8th of February and from the 26th of February to the 28th of April. It has about 76300

entries. Before we create our models, we split the available data into one dataset for training

and one for testing. In total we have data for 55 days, the data for 28 days is used for training

and the data for the remaining 27 will later be used for testing. In the training dataset we

remove the observations for operators from the temporary employment agency, in the test

dataset we keep them. This gives us a training dataset containing about 31600 entries and a

test dataset containing around 37000 entries.

As we did before, we do not use observations where the actual time is zero for training. After

removing the zero values, about 21000 observations for the actual model creation process are

left. Among the 45 internal operators there are 34 where we have more than 100 observations

and for who we thus create a separate model. In all those 34 models for one single operator as

well as in the model for the whole dataset, the coefficient for the number of distinct articles

has a p-value below (mostly far below) 0.05 which means that the significance level for which

we can reject the null hypothesis that the input parameter does not have an impact on the

output is very low. The p-values for the planned time are higher than 0.05 in five of the

models which means that for those operators the influence of the planned time is not that

significant. The residual standard errors lie between 1 and 6.5. Our estimates for the actual

times are thus likely to differ from the real actual times by a few minutes. Most of the values
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for the adjusted R2 lie between 0.35 and 0.65 which means that between 35 and 65% of the

variation in the output variable can be explained by the model.

One of the assumptions made for linear models is that the average noise is zero. In the 5th

column of Figure 4.48 the mean of the residuals is given. It is always very small which means

that this assumption holds for all our models. Another assumption for the classical linear

model is a normal distribution of the residuals. This can be verified by looking at quantile-

quantile-plots. Figure 4.47 shows the Q-Q-plots for four different operators. We can see that

the residuals are close to the line which indicates normally distributed values within a certain

range but for higher values the points get further away from the line. This means that the

assumption of normally distributed residuals only holds within a certain range. To check if

the model assumption of homoscedasticity holds for the different linear models, we can apply

the Breusch-Pagan (BP) test. In this test the null hypothesis that all error terms have the

same variance is tested against the alternative hypothesis that this is not the case and we

thus have heteroscedastic noise. For 12 of the models the p-value of this test is greater than

0.05 which means that we do not reject the null hypothesis at a significance level of 0.05 and

therefore homoscedasticity can be assumed. In the other models we can find heteroscedastic

noise. Furthermore we can apply the Durbin Watson (DW) test to check if the noise is

uncorrelated. The null hypothesis of this test is that the autocorrelation of the noise is 0. At

a significance level of 0.05 this hypothesis holds for 19 of our 34 models. In the other models

the null hypothesis can be rejected at this significance level which means that there seems to

be some correlation in the noise. We can also check if there is a collinearity between the two

input parameters. As explained in Chapter 3.1.6, this can be done by calculating the variance

inflation factor (VIF). The variance inflation factor for all our models is between 1.5 and 2.5

which means that there does not seem to be a serious collinearity.

Figure 4.47: Q-Q-Plot of the residuals of the linear models for four operators

Figure 4.48 shows the values of the p-values, the RSE, the adjusted R2, the mean value of the
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Figure 4.50: Histogram of the residuals

by creating a linear model with two predictors, the planned time and the number of distinct

articles, for each operator. The least squares approximation which we have used to estimate

the coefficients (intercept, coeff1, coeff2) has lead to negative estimates for the intercept

for all models. As a consequence we receive negative predictions for the actual time if the

planned time and the number of distinct articles are small. This happens in about 11.9% of

the predictions in out test dataset. So far we have set those values to zero after the prediction.

We can try to achieve a better model by including the restriction to allow only positive values

for the actual time in our model. Instead of minimising

n∑

i=1

(actual_timei − (intercept + planned_timei ∗ coeff1 + distinct_articlesi ∗ coeff2))
2, (4.1)

we minimise the cost function

n∑

i=1

(actual_timei − max(0, intercept + planned_timei ∗ coeff1 + distinct_articlesi ∗ coeff2))
2

(4.2)

where actual_timei, planned_timei and distinct_articlesi are the planned and the actual time

respectively the number of distinct articles of a certain order.

This means that we already exclude negative values for predicted values of the actual time

during the estimation of the parameters. We can take the coefficients we estimated before as

starting points and try if we can improve the prediction of the actual times by varying them

a little bit. We can calculate the cost function of the original estimated and the changes

estimate to see which one is better. If the variation results in a reduction of the value of the

cost function, we adapt the values of the coefficients. We try different intercepts in an interval

of [original estimate - 3; original estimate +3] with a step size of 0.2 and different values for

the coefficients of the slope of the planned time and the number of distinct articles in a range
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This model shall now be used to estimate the necessary working time of specific operators for

some given orders.

If we make a very short-term prediction, the real orders are already available. The prediction is

made at the beginning of a shift to estimate the time that is needed to fulfil the given orders.

It shall give the shift manager the information if the available operators can finish the orders

within their scheduled working time or if more or less time than planned is needed. Based on

this information the shift manager can ask the employees to stay longer than planned or to go

home earlier. If the shift manager can make these decisions already at the beginning of the

shift and not only one or two hours before the end of the shift, he can inform the operators

earlier which helps to prevent dissatisfaction among them. Additionally, if employees go home

earlier, personnel costs can be saved.

If we want to predict the throughput of a shift more time in advance, the real orders are not

available yet. Therefore, reference data has to be used. For each week of the year a reference

week, i.e. a week from the past which is similar to this week, is defined. Currently these

reference weeks are used in redPILOT to get reference data for the number of units that have

to be done. In the future also reference data for the order structure shall be available. As

this reference data is real data from the past, it has the same format as the data used in the

short-term forecast. Therefore the same procedure can be used to estimate the throughput.

4.4.1 Calculation of the Throughput

Our goal is to estimate how much time is needed to fulfil certain orders. The input data that

is available is a list of orders that have to be processed which contains the planned time, the

number of distinct articles and the number of packing units for each order. It is not known

in advance which operator will do which orders. In general an operator who has finished one

order will just receive the next order from the list. There is only some optimisation done by

the Warehouse Management System which tries to avoid that the next article to be picked is

very far away. Furthermore, we also do not know which or how many of the orders will be

done by operators from the external employment agency. There is only a contract with the

agency how many packing units the external operators have to process. If we subtract this

number from the sum of the units for all orders in the list, we know how many units have to be

done by the internal operators. To predict how much time the allocated (internal) operators

will need to finish this amount of orders, we need an estimate for how many orders they can

do within a certain time, i.e. the units per hour which they can process given a certain order

structure. If we sum up the units per hour of all operators working during a certain shift,

we get the throughput per hour for that process step, given certain conditions, namely the

allocated operators and the structure of the orders.

As already mentioned above, we do not know in advance which operators will do which of the

orders given in the list. We will therefore calculate the throughput for each operator using
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all orders. We thus assume that each of the operators receives the same "mix" of orders.

By using the model described in the previous chapter we can get an estimate for the time a

specific operator will need for an order. To estimate the time he needs to fulfil several orders,

we also have to consider the time between the orders. It is not realistic to assume that the

operators will do one order after another. There will usually be some time between the orders.

So, to get a realistic estimation of the throughput per hour, we also have to examine those

order transition times.

4.4.1.1 Order transition times

To examine the transition times between the orders, we can use the same dataset we have

used for training the linear models. As for the creation of models, we only use the data of

operators where we have at least 100 observations.

The transition time is the time between the end of one order and the start of the next order

an operator has done. We do not know if this time is a planned break, a waiting time or an

unplanned interruption, e.g. because of technical problems. The majority of these transition

times (about 86%) lies between 0 and 10 minutes. Usually, for each operator once per shift

we can see a larger value (around 45 minutes) which corresponds to the planned break time.

There are also a few outliers which are larger than 100 but these values only amount for 0.3%

of all values.

For the estimation of the throughput we will use the average transition time for those operators

where we have at least 100 observations and the overall average for those operators where we

only have few observations. For most of the operators the average transition time lies between

4 and 7 minutes but we have three outliers where the average transition time is higher than

10 minutes. The overall average is about 5.5 minutes.

4.4.1.2 Estimation of the Throughput

As already described above, our input dataset is a list of orders containing the following

information for each order:

• the planned time (minutes)

• the number of distinct articles

• the planned units (packing units)

Additionally we know how many packing units will be done by external operators and which

internal operators will work at which time. Using our linear models for the different operators

and the transition times, we can follow the subsequent procedure to calculate the throughput:

1. Estimate the actual times for all the orders for each operator. For operators with at

least 100 observations in the training dataset their specific coefficients are used, for the
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other operators the linear model generated on the whole dataset for all operators is

used. These models contain an intercept, a coefficient for the input parameter "planned

time" (coeff1) and a coefficient for the input parameter "distinct articles" (coeff2). If

the predicted value for the actual time is smaller than zero, it is set to zero. For operator

i and order j, we get the formula:

actual_timeij = max(0, intercepti+coeff1i∗planned_timej+coeff2i∗number_distinct_articlesj)

(4.3)

2. Sum up all the estimated actual times for all n orders:

sum_actual_timesi =
n∑

j=1

actual_timeij (4.4)

3. Add the transition times. For operator i for whom the average transition time transition_timei

calculated based on the training data we get:

sum_timesi = sum_actual_timesi + (n − 1) ∗ transition_timei (4.5)

4. Divide the sum of the planned units for all n orders by the sum of the times and multiply

by 60 to get the throughput per hour:

sum_units =
n∑

j=1

planned_unitsj (4.6)

throughputi =
sum_units

sum_timesi

∗ 60 (4.7)

5. To get the units the operator can do during the shift, we can multiply the throughput

by the planned working time of the operator which can be the whole shift or only some

hours:

units_working_timei = throughputi ∗ working_timei (4.8)

6. If we sum up the units for all operators, we can get the units that can be done during

the whole shift:

units_shift =
∑

units_working_timei (4.9)

As already mentioned above, by using this procedure we make the assumption that employees

have to do approximately the same "mix" of orders. In Figure 4.53 we can see a comparison

of the average number of units contained in an order for a specific operator and the average

throughput per hour of that operator. We can see that there are some operators who seem

to be mainly doing orders with only a few units. By looking at the order information data we
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4.4.2.1 Assumptions

To evaluate the model, we have to make some simplifying assumptions. Those assumptions

mainly concern the measures taken as a consequence of the prediction as well as the cost

savings or additional costs for correct or incorrect predictions. The result of the prediction will

be presented to the shift manager and he or she can decide how to react. For our evaluation

we assume that two different measures are taken:

• Tell one, several or all operators that they can leave one or several hours earlier

• Tell one, several or all operators that they should stay longer

In reality the shift manager could also make other decisions, such as to do some cleaning or

maintenance work if orders are finished early, or to call additional operators if orders cannot

be finished.

Furthermore we assume that the working time reduction or additional working time is spread

evenly among the employees. If we discover for example that we need two hours of working

time less than it was planned, we send two people home one hour earlier and not one person

two hours earlier. If only one ore some and not all people can go home earlier, the decision

who can go home earlier will be made by the shift manager. For his decision he will probably

consider criteria such as overtime hours or personal duties of the employee. In our evaluation

we will therefore determine the number of operators that can leave earlier in a way that even

if the best operators (the operators with the highest throughput according to our prediction)

leave, the work can still be done. Similarly, we will determine the number of operators that

have to stay longer in a way that even if the weakest operators (the operators with the lowest

throughput according to our prediction) stay, the orders can be fulfilled. Moreover, we assume

that the costs per hour for all operators are the same and therefore concerning the cost savings

or additional costs it does not make any difference which operators leave early or stay longer.

4.4.2.2 Creation and use of the prediction

To make our prediction we use the following input data:

• A list of orders containing the planned time, the number of distinct articles and the

number of packing units for each order

• A schedule for the shift including the information which operators will work during which

timespan (the whole shift or a part of it)

We use the procedure described in Chapter 4.4.1.2 to estimate the throughput. As an output

of this procedure we get an estimation of how many units can be processed within the planned

working time of the allocated operators given a certain mix of orders. Besides, we also have

an estimation of the throughput per hour for each operator for that order structure. To decide
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which measures shall be taken, we compare the possible throughput of all operators for the

whole shift to the number of units that has to be done. This number is the sum of the

planned units for all orders in the list minus the number of packing units that is planned for

the operators of the temporary employment agency:

units_todo = sum_units − planned_units_external (4.10)

We calculate the difference between the possible units, i.e. the units the operators can do

during their scheduled working time (units_shift), and the units to be done:

diff_units = units_shift − units_todo (4.11)

Depending on the value of that difference, different measures are taken.

• Positive difference:

– If the difference is smaller than the highest one of the estimated throughputs per

hour for the different operators, no action is taken.

– If the difference is bigger than the highest one of the estimated throughputs per

hour for the different operators, one operator is sent home one hour earlier.

– If the difference is bigger than the sum of the two highest throughputs, two oper-

ators are sent home one hour earlier.

– ...

– If the difference is bigger than the sum of all estimated throughputs, all operators

are sent home one hour earlier, i.e. the shift ends one hour earlier.

– If the difference is bigger than the sum of all estimated throughputs plus the highest

one of the estimated throughputs, one operator is sent home two hours earlier and

all the other operators are sent home one hour earlier.

– ...

• Negative difference:

– If the absolute value of the difference is smaller than the lowest one of the estimated

throughputs per hour, one operator stays one hour longer.

– If the absolute value of the difference is higher than the lowest one of the esti-

mated throughputs per hour but lower than the sum of the two lowest estimated

throughputs, two operators stay one hour longer

– ...
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– If the absolute value of the difference is smaller than the sum of all estimated

throughputs but bigger than the sum of all estimated throughputs except for the

highest, all operators have to stay longer and the shift ends one hour later.

– If the absolute value of the difference is bigger than the sum of all estimated

throughputs but smaller than the sum of all estimated throughputs plus the highest

one, one operators has to stay two hours longer and the other operators have to

stay one hour longer.

– ...

4.4.2.3 Check for the correctness of the prediction

To check if our prediction was correct and the measures taken were good, we can use the real

working time and the sum of actually processed units for the operators given in our test dataset.

As in the determination of the measures to be taken, we also assume that the operator(s)

with the highest throughput leave earlier and the one/those with the lowest throughput stay

longer. To validate the prediction, the following steps have to be done:

• Calculate the real throughputs of the operators by dividing the sum of the units they

have done by their working time. For operator i:

actual_throughputi =

∑ni

j=1 actual_unitsij

working_timei

(4.12)

It might be the case that an operator who was planned for a certain shift did not actually

work during that shift and therefore we cannot calculate his actual throughput for that

shift. In that case, we take the average throughput of all the working days of that

operator in the test dataset.

• Find the best/weakest operators

• Reduce/augment their working time according to the measures described before

• Multiply the actual throughputs for the different operators by the changed working times:

units_working_time_newi = actual_throughputi ∗ working_time_newi (4.13)

• Sum up the units for all the operators:

units_shift_new =
∑

working_time_newi (4.14)

We can than compare the possible units after our changes (units_shift_new) according to the

real throughputs of the operators to the units that have to be done. If we have reduced the
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working time for one or several and the number of possible units is still higher than the number

of units to be done, our decision was correct and we can save personnel costs. In contrast, if

the number of possible units is now lower than the number of units to be done the decision

was incorrect. To check if the decision to let operators stay longer was correct, we have to

calculate the number of possible units for the originally scheduled working times (which - due

to short-term changes done after receiving the actual orders - will usually not be equal to the

actual working time we can see in the test dataset) of the different operators. If the number of

the possible units for the original schedule was lower than the number of units to be done and

the number of units that can be done after the changes is higher than the units that have to

be done, the decision to let some operators stay longer was correct. However, if the number

of units that could be done according to the original plan is higher than the number of units

to be done, it was not necessary to let anybody stay longer and our decision was incorrect.

The decision is also incorrect if the number of units that can be done after the changes is

smaller than the number of units that have to be done.

4.4.2.4 Evaluation of Costs

Two different cost factors will be considered for the evaluation of the throughput prediction:

personnel costs and operator satisfaction. For a warehouse where the order picking is done

manually, personnel costs are one of the biggest cost factors. Therefore, this is one of the

areas where the highest cost savings are possible. Furthermore, the operators have a high

impact on the performance of the whole system and therefore it is important that they are

satisfied and motivated. If we can already inform them about changes in their working time at

the beginning of the shift, we can make them more content, if we give them wrong information

they will get more dissatisfied.

For the evaluation of personnel costs we assume that even if we have told them that they can

go home earlier at the beginning of the shift, we can still withdraw that decision and tell them

to stay for the whole working time to avoid that orders are not finished. However, if we tell

them at the beginning of the shift that they have to stay longer, they will actually stay longer

and we therefore have additional personnel costs.

4.4.2.5 Results of the evaluation

For our evaluation we make predictions for 43 different shifts, we take the measures described,

check for their correctness as described above and calculate the changes of operator satisfac-

tion and personnel costs. For the calculation of the personnel costs, we assume a cost per

hour of 22.5 euros.

Table 4.5 shows the results of the evaluation. The first column indicates the start time of the

shift, i.e. the date and if it was a morning or afternoon shift. The second column shows the

sum of the planned working times in hours for all operators of the shift. In the third column
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Table 4.4: Potential costs

Go home earlier Stay longer
Correct pre-
diction

Personnel costs: -cost per
hour*number hours reduced
Operators happy: +1 for all
operators
Operators angry: 0

Personnel costs: neutral
Operators happy: +1 for all
operators
Operators angry: 0

Incorrect
prediction

Personnel costs: neutral
Operators happy: +1 per cor-
rect information
Operators angry: +1 per in-
correct information

Personnel costs: +cost per
hour*number hours added

Operators happy: +1 per
correct information
Operators angry: +1 per
incorrect information

the sum of the working times after the measures taken based on the prediction are given. The

column "Ideal WT" gives the ideal working time calculated base on the actual throughputs.

The next three columns show the units that have to be done and the possible units based

on the actual throughputs for the planned working time and the changed working time. The

measure that has been taken after the prediction is given in the seventh column, followed by

a column that gives information if it was correct. The next two columns show how many

operators we have given a correct information about their working time (operators happy) and

how many we have informed incorrectly (operators angry). In the last column the change of

personnel costs is given.

For three shifts the estimated throughput (i.e. the number of possible units) is lower than

the units that have to be done and we therefore decide to let operators stay longer. If we

calculate the possible units based on the actual throughputs of the operators, we can see that

this decision was correct because the orders could not have been finished within the scheduled

working time. We can also see that the number of units that can be done after our changes of

the working times of the operators is still lower than the number of units that have to be done

which means that we did not add enough hours and therefore the measure was not entirely

correct. In one of those three shifts the number of units that have to be done is not a lot

higher than the number of possible units for the changed working times and we therefore have

informed some operators correctly about their working time. For four of them this information

was that the working time stays the same and for two of them that they have to stay one hour

longer. However, five other operators also had to stay longer although we did not give them

that information at the beginning of the shift. In the other two shifts the number of units that

has to be done is a lot higher than the possible units after the changes and we therefore gave

all operators a wrong information.
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In one shift we did not take any action. For all the other shifts the estimated throughput is

higher than the units that have to be done and we therefore have reduced the working times of

the operators. In most of the cases (28 shifts) this decision is basically right, i.e. the number

of units that can be done according to the actual throughputs is also higher than the units

that have to be done. But we have reduced the working times too much and therefore the

number of possible units after the changes is lower than the number of units that have to

be done. In 16 of those shifts all of the operators actually have to stay longer than we have

told them at the beginning of the shift. Thus, we give the operators a wrong information, the

operator satisfaction decreases and we cannot save personnel costs. In the other shifts the

number of possible units after the changes is only a bit smaller than the units that have to

be done which means that we gave a correct information to some and a wrong information to

other employees. In those shifts we can also reduce personnel costs because some operators

go home earlier. In total we reduce the costs by 1147.5e. We give wrong information to

operators 408 times and correct information 57 times.

Table 4.5: Results evaluation
Shift start WT plan h WT new h Ideal WT Units todo Possible units plan Possible units new Measure Correct Operators happy Operators angry Personnel costs
2018-03-08 06:00:00 64 64 81 17280 13701 13701 none no measure 0 0 0
2018-03-08 15:00:00 88 53 62 14781 21363 12738 go home earlier no 2 9 -45
2018-04-07 05:00:00 132.75 80.75 109.75 23149 28367 16868 go home earlier no 0 15 0
2018-04-20 05:00:00 81 42 47 11704 19721 10198 go home earlier no 6 5 -135
2018-03-03 05:00:00 96.75 69.75 82.75 17600 20932 14708 go home earlier no 0 11 0
2018-02-27 06:00:00 108 67 99 18483 20566 12557 go home earlier no 0 14 0
2018-02-27 15:00:00 80 41 55 11725 17278 8651 go home earlier no 0 10 0
2018-04-05 05:00:00 122 98 126 26380 25802 20249 go home earlier no 0 14 0
2018-04-05 15:00:00 72 68 77 18932 17761 16456 go home earlier no 0 8 0
2018-03-20 05:00:00 115 64 86 17661 23816 12961 go home earlier no 0 14 0
2018-03-20 15:00:00 90 55 64 15148 21235 12643 go home earlier no 1 9 -22.5
2018-04-09 05:00:00 103 89 108 24742 23879 20455 go home earlier no 0 12 0
2018-04-09 15:00:00 96.75 85.75 92.75 21275 22169 19637 go home earlier no 4 7 -90
2018-04-17 05:00:00 112 91 116 25406 24792 19734 go home earlier no 0 13 0
2018-04-17 15:00:00 96.75 66.75 68.75 16771 23874 16140 go home earlier no 9 2 -202.5
2018-04-24 05:00:00 129 110 131 31743 31577 26586 go home earlier no 0 15 0
2018-04-24 15:00:00 105.75 81.75 93.75 20224 23081 17843 go home earlier no 0 12 0
2018-02-03 05:00:00 123.75 94.75 118.75 24131 25155 19091 go home earlier no 0 14 0
2018-03-16 06:00:00 74 35 42 10530 19453 8889 go home earlier no 4 7 -90
2018-03-02 06:00:00 58 44 71 12572 10231 7565 go home earlier no 0 9 0
2018-02-02 06:00:00 61 47 57 12895 14076 10467 go home earlier no 0 9 0
2018-03-07 06:00:00 48 39 47 10218 10776 8543 go home earlier no 0 6 0
2018-03-07 15:00:00 88 90 95 25436 23425 23730 stay longer no 6 5 0
2018-03-05 05:00:00 69 65 83 16910 14149 13057 go home earlier no 0 8 0
2018-03-05 15:00:00 96.75 91.75 103.75 23534 22100 20655 go home earlier no 0 11 0
2018-03-10 05:00:00 90 71 79 16403 18909 14729 go home earlier no 2 8 -45
2018-04-03 05:00:00 112 50 61 13805 25152 11076 go home earlier no 2 11 -45
2018-04-03 15:00:00 90 48 52 12091 21287 11221 go home earlier no 6 4 -135
2018-03-17 05:00:00 117 74 90 20013 26214 16180 go home earlier no 0 13 0
2018-03-28 05:00:00 78 63 72 17271 18865 15023 go home earlier no 0 9 0
2018-03-28 15:00:00 90 94 118 26725 20591 21191 stay longer no 0 10 0
2018-03-19 05:00:00 106 83 103 21221 22183 17038 go home earlier no 0 13 0
2018-03-19 15:00:00 90 53 65 15742 22324 12866 go home earlier no 0 10 0
2018-02-28 06:00:00 100 64 89 16580 18934 11761 go home earlier no 0 13 0
2018-02-28 15:00:00 64 58 81 16642 13140 11737 go home earlier no 0 8 0
2018-03-01 06:00:00 78 72 96 19566 15954 14365 go home earlier no 0 10 0
2018-03-01 15:00:00 62.75 47.75 60.75 12468 12952 9706 go home earlier no 0 8 0
2018-02-26 05:00:00 110 77 112 19585 19436 13123 go home earlier no 0 13 0
2018-02-26 15:00:00 81 50 63 14414 18577 11276 go home earlier no 0 9 0
2018-04-25 05:00:00 105 97 105 27973 28504 25871 go home earlier no 4 8 -90
2018-04-25 15:00:00 99 78 86 20587 23869 18594 go home earlier no 3 8 -67.5
2018-04-19 05:00:00 96 103 124 28240 21790 23058 stay longer no 0 11 0
2018-04-19 15:00:00 96.75 81.75 84.75 23268 26949 22437 go home earlier no 8 3 -180
Sum 57 408 -1147.5

As we always reduced the working time of the operators by too many hours or did not add

enough hours, we can try if we can achieve better results by using a more conservative pre-

diction. An easy approach would be to multiply the estimated amount of possible units by a

certain factor 0 < f <= 1 and then use the same procedure as described before to determine

the measures. We can try different values for f and compare the results. Table 4.6 shows

a comparison of the number correct and incorrect decisions as well as the sums of personnel
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costs and operator satisfaction for values of f between 0.8 and 1. We can see that the num-

ber of incorrect decisions decreases with the value of f . The reduction of personnel cost first

increases as the factor decreases, but for f = 0.8 it is lower than for f = 0.85. In contrast,

the operator satisfaction is the highest for f = 0.8 because for this value of f we have the

highest number of correct decisions. Furthermore we can see that the lower the factor is, the

more often we increase the working times. For f = 0.8 we already have some shifts where we

unnecessarily increase the working times and therefore have additional personnel costs. If we

further decrease the value of f , the number of incorrect decisions will start increasing again

because we will unnecessarily increase the number of working hours.

In our table we can see that the operator satisfaction is the highest for f = 0.8 whereas the

Table 4.6: Comparison of different estimates for the possible units
Factor Measure go home earlier Measure stay longer Number correct decisions Number incorrect decisions Personnel costs Operators happy Operators angry

1 39 3 0 42 -1147.5e 57 408
0.95 37 4 2 39 -3082.5e 134 320
0.9 33 10 10 33 -6120e 236 237
0.85 29 12 18 23 -7605e 290 157
0.8 25 18 23 20 -6637.5e 367 106

reduction of personnel costs is the highest for f = 0.85. It thus seems that the two goals

to increase operator satisfaction and to reduce personnel costs are contradictory. If we make

more conservative predictions, we are less likely to give wrong information but we also reduce

the working times by fewer hours and can therefore not always exploit the cost reduction

potential. If we want to achieve the highest possible number of "happy" operators for our test

dataset, we have to chose a factor of 0.8. To get the highest possible reduction of personnel

costs (-7762.5e), we have to choose f = 0.84. A factor of f = 0.83 seems to provide a good

balance between operators satisfaction and reduction of personnel costs. We give correct in-

formation to operators 340 times and incorrect information 133 times and we can reduce the

personnel costs by 7357.5e.

We can use some new test data that has not been used yet to test if this factor is really

appropriate and which cost reductions and changes of operator satisfaction we can achieve.

This new test dataset contains data for the time between the 1st of June and the 15th of

June which means that we have 15 shifts for which we can evaluate the prediction. Table 4.7

shows the results of this evaluation. We can see that we decide to let operators stay longer

four times which is basically always correct but twice we did not increase the working time

enough. In the other shifts we sent people home some time earlier. Six times the measure is

fully correct and the units to be done can be fulfilled within the changed working time. Once it

was correct to reduce the working time but we reduced it too much and four times we decided

that operators can go home earlier although it was actually necessary that they stay longer

or stay the planned time. In total we could achieve a reduction of personnel costs of 2520e.

We gave employees the right information 114 times and wrong information 58 times. We can

thus conclude that we can achieve a small reduction of personnel costs and also an increase

of operator satisfaction by applying the procedure described to predict the possible units for a
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shift and by multiplying this quantity by a factor of 0.83.

Table 4.7: Results evaluation new test data
Shift start WT plan h WT new h Ideal WT Units todo Possible units plan Possible units new Measure Correct Operators happy Operators angry Personnel costs
2018-06-01 05:00:00 80 77 87 16923 15784 14951 go home earlier no 1 10 -22.5
2018-06-02 05:00:00 96.75 84.75 100.75 20240 19663 17172 go home earlier no 0 11 0
2018-06-04 05:00:00 114 128 130 30325 26615 29749 stay longer no 11 2 0
2018-06-04 15:00:00 96.75 71.75 65.75 13741 20520 14992 go home earlier yes 11 0 -562.5
2018-06-05 05:00:00 113 130 123 26961 24910 28349 stay longer yes 13 0 0
2018-06-05 15:00:00 87.75 69.75 67.75 12810 16877 13178 go home earlier yes 10 0 -405
2018-06-11 05:00:00 91 88 95 22169 21367 20439 go home earlier no 4 7 -90
2018-06-11 15:00:00 96.75 114.75 99.75 26653 25880 30467 stay longer yes 11 0 0
2018-06-12 05:00:00 93 85 91 19399 19761 17801 go home earlier no 5 6 -112.5
2018-06-12 15:00:00 105.75 103.75 100.75 23420 24999 24400 go home earlier yes 12 0 -45
2018-06-13 05:00:00 97 85 97 18811 18877 16555 go home earlier no 0 12 0
2018-06-13 15:00:00 105.75 104.75 100.75 25314 26876 26489 go home earlier yes 12 0 -22.5
2018-06-14 05:00:00 93 99 109 22154 18937 19895 stay longer no 1 10 0
2018-06-14 15:00:00 105.75 85.75 81.75 19372 25321 20199 go home earlier yes 12 0 -450
2018-06-15 05:00:00 81 45 42 9471 18688 10228 go home earlier yes 11 0 -810
Sum 114 58 -2520

We can compare these results to the results we get if we use a static value for the throughput

of one operator to estimate the the necessary time to finish the orders as it is currently done

in the redPILOT application. This throughput is configured as 240 units per hour. To get the

appropriate working time for a certain shift we simple divide the number of units that have to

be done by the configured throughput. If the estimated necessary working time is lower than

the planned working time, we send some random operators home earlier, if it is higher, we let

some random operators stay longer. The calculation of the units that can actually be done

before and after the changes is done as before. In Table 4.8 we can see that the number of

possible units after our changes is almost always lower than the number of units that have

to be done. It thus seems that on average the actual performance of the operators is lower

than the configured throughput. By using this kind of prediction with a static throughput of

240 we give correct information to the operators 75 times and we can reduce the personnel

costs by 1035e. Both numbers are lower than those achieved by using the linear models to

estimated the throughputs.

Table 4.8: Results evaluation with static throughput new test data
Shift start WT plan h WT new h Ideal WT Units todo Possible units plan Possible units new Measure Correct Operators happy Operators angry Personnel costs
2018-06-01 05:00:00 80 71 87 16923 15784 13981 go home earlier no 0 11 0
2018-06-02 05:00:00 96.75 85 100.75 20240 19663 17172 go home earlier no 0 11 0
2018-06-04 05:00:00 114 127 130 30325 26615 29657 stay longer no 10 3 0
2018-06-04 15:00:00 96.75 58 65.75 13741 20520 12144 go home earlier no 3 8 -67.5
2018-06-05 05:00:00 113 113 123 26961 24910 24910 none no measure 0 0 0
2018-06-05 15:00:00 87.75 54 67.75 12810 16877 10592 go home earlier no 0 10 0
2018-06-11 05:00:00 91 93 95 22169 21367 21734 stay longer no 9 2 0
2018-06-11 15:00:00 96.75 112 99.75 26653 25880 30060 stay longer yes 11 0 0
2018-06-12 05:00:00 93 81 91 19399 19761 17176 go home earlier no 1 10 -22.5
2018-06-12 15:00:00 105.75 98 100.75 23420 24999 23019 go home earlier no 9 3 -202.5
2018-06-13 05:00:00 97 79 97 18811 18877 15457 go home earlier no 0 12 0
2018-06-13 15:00:00 105.75 106 100.75 25314 26876 26970 stay longer no 11 1 22.5
2018-06-14 05:00:00 93 93 109 22154 18937 18937 none no measure 0 0 0
2018-06-14 15:00:00 105.75 81 81.75 19372 25321 19404 go home earlier yes 12 0 -562.5
2018-06-15 05:00:00 81 40 42 9471 18688 9278 go home earlier no 9 2 -202.5
Sum 75 73 -1035

4.4.2.6 Conclusion of the evaluation

In this chapter it has been presented how the linear models created before can be used to

predict the throughput of a process step on a short-term basis given a certain list of orders

and a certain allocation of operators. We have seen that by using the described approach
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to estimate the throughput we often receive a too optimistic prediction and therefore take

measures that seem to be wrong according to the results of our evaluation. We have therefore

introduced a factor f by which we multiply the estimate for the units that can be done during

the shift. Using a test dataset we have analysed different values for f and have found out that

a factor of 0.83 seems to provide a good balance between the goal to exploit the potential

for personnel cost reductions and the goal to give correct information to the employees. We

have tested this factor using a new test dataset and have seen that we can improve operator

satisfaction and reduce personnel costs by using the procedure described above to estimate the

throughputs of the operators and by multiplying the estimated units for one shift by f = 0.83.

Furthermore we have seen that we can achieve better results than those we get if we use the

currently configured static throughput to make the prediction.

We can thus conclude that the use of our linear models in combination with the described

method to get an estimation for the throughput can bring some benefits in terms of reducing

personnel costs and increasing operator satisfaction. The disadvantage of the procedure is

that it assumes that the real orders are already available which is only true for a very short-

term prediction, i.e. a prediction for the same day or maybe the next day. An approach

how to make a prediction longer in advance is presented in the next chapter. Furthermore it

has to be highlighted that we have made a lot of assumptions for the evaluation. E.g. we

have only taken two different measures (let operators stay longer or send them home earlier),

we have always spread the hours reduced or added evenly among the operators and we have

assumed that the costs for all employees are the same. In reality, based on the results of the

prediction, the shift manager could also decide to take other measures, such as to do cleaning

or maintenance work. Furthermore he or she could decide to send one person home two hours

earlier instead of two persons one hour and there are different groups of employees for which

the cost per hour is not the same.

Therefore, to really make a valid statement about the benefits of the use of the prediction,

the procedure has to be used in practice and reviewed by shift managers and planners. Those

people can then say if it helps them to make correct decisions and to ideally use the available

resources.

4.4.3 Long-term prediction

The throughput prediction is especially useful if we can make it some time, i.e. one or several

weeks, in advance during the planning phase. In this phase the schedule for a shift is created

which means that operators are allocated and the duration of the shift is fixed. A good

prediction of the throughput can help to optimise the use of resources and to avoid short-term

changes. E.g., the planner can replace full-time employees by part-time employees if less time

is needed or request temporary helpers if the units cannot be finished within the shift by the

previously allocated operators. Thus, if we know longer in advance what the throughput in
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a shift will be, much higher cost saving can be achieved than with a prediction done on a

short-term basis.

The procedure described and evaluated above can only be used if the real orders are already

available. This information is only available for the same day. So, if we want to make a

prediction for a longer time frame, we have to replace this data. Therefore we store reference

data that can in the future be used to use the throughput prediction as it is described above.

For each week of the year a reference week is defined. This reference week is a week in the

past that was similar than this week. E.g., for the Easter week of this year the Easter week of

the last year can be used. As the data containing the planned times and the order information

has not been collected in the past, it is only available for this year and we thus do not have

reference data for all weeks. We therefore cannot fully evaluate the long-term prediction but

the procedure will be shown in an example.

4.4.3.1 Example long-term prediction

One of the days contained in the test dataset used in the evaluation for the short-term pre-

diction is the 5th of March. For the week from the 4th of March to the 10th of March and

the week from the 11th of March to the 17th of March the same reference week is used. The

data for this reference week is not available but in our training dataset we can find the data

for the 12th of March. As the two weeks have the same reference weeks, they can be seen as

similar and we can therefore use the data for the 12th of March as a reference data for the 5th

of March. Of course, in reality this is not possible because the 12th of March is after the 5th

of March but for this example, we will pretend that the data for the 12th is data from the last

year.

The 12th and the 5th of March are Mondays which means there are two shifts. We analyse the

morning shift which lasts from 6 a.m. to 2 p.m.. The input for the throughput prediction are

the order list from the reference day, i.e. the orders processed in the morning shift of the 12th of

March, and the schedule for the morning shift of the 5th of March, i.e. the operators and their

planned working times. Using this input data we can apply the procedure described in Chapter

4.4.1.2 to estimate the throughputs per hour of the different operators and subsequently the

units that can be processed within the shift. According to this estimation, 18438 units can be

done by the operators within their planned working times. In total, 29716 units have to be

done within the shift and 6000 units shall be done by operators of a temporary employment

agency. Therefore, 23716 units have to be done by the internal employees which is more than

they can do according to our estimation. This means that we have to increase the number of

working hours of some operators. According to the procedure described in Chapter 4.4.2.2,

we have to increase the working time by 20 hours in total, which means that we increase the

working time of four operators by three hours and the working time of the other four operators

by two hours.

Now we can use the actual data for the morning shift of the 5th of March to check if the

Montanuniversität Leoben 88 Julia Lahovnik



TITEL Chapter 4. Application

estimation and the measures taken were correct. At first we can analyse if the reference data

and the real data are similar and if it was therefore appropriate to use the reference data for

the prediction. In the reference dataset the order list contains 983 orders with a total of 29716

units to be done whereas in the actual dataset the list contains only 765 orders with 22975

units. On both days 6000 units are planned for the employees of the temporary employment

agency which means that 23716 respectively 16975 units have to be done by the internal op-

erators. Thus, on our reference day more units had to be done during the morning shift than

on the day for which we make the prediction. Also relevant for the accuracy of our estimation

is the structure of the orders. Figure 4.54 and Figure 4.55 show histograms for the planned

Figure 4.54: Histogram planned minutes
reference data Figure 4.55: Histogram planned minutes

minutes of the orders in the reference data respectively the actual data. We can see that the

distributions are relatively similar but in the reference data there are more orders where the

planned time is between 8 and 10 minutes whereas in the actual data there are more orders

where the planned time is between 10 and 13 minutes. This means that in the actual data

there are more orders where the planned time is longer and which therefore seem to be more

complex. In the next two figures, Figure 4.56 and Figure 4.57, histograms for the number of

planned units per order in the two different datasets are shown. The two distributions seem

to be very similar. As the histograms for the reference data and the actual data are relatively

similar for the planned minutes as well as for the planned units, its seems to be appropriate to

use the data of the reference day to estimate the throughput for the "new" day.

As already mentioned above, 16975 units have to be done by the internal operators on the 5th

of March, the day for which we make the prediction. We use the actual working times of the

operators and the units actually processed by them to calculate the actual throughputs as we

did in the evaluation of the short-term model (see Chapter 4.4.2.3). If we multiply the actual

throughputs by the working times of the operators and sum up the units, we get the units

that can be done within the shift. For the originally planned working time we get a number

of 14104 units that can be done, for the increased working time we get a number of 17929
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Figure 4.56: Histogram planned units ref-
erence data Figure 4.57: Histogram planned units

units. Thus, it was correct to increase the working time but we increased it too much because

our reference dataset contained more orders than the actual data.

In this example we did not multiply the estimated possible units by any factor as it was pro-

posed in the previous chapter. If we use a factor f = 0.83 which seemed to be a reasonable

value in the short-term prediction, we increase the working times of the operators by 32 hours

in total and can receive a number of 20655 units that can be done according to the actual

throughputs. Thus, we add even more unnecessary working time.

4.4.3.2 Conclusion long-term prediction

If we make a prediction one or several weeks in advance when the real orders are not known yet,

we of course have to cope with some uncertainty. We can replace the real orders by reference

data but as we have seen in our example, the reference data does not always perfectly represent

the real data. E.g., in the example the reference data contained a lot more orders than the

real data and we therefore added too many hours of working time which causes unnecessary

personnel costs. But our basic prediction, i.e. that more working time than scheduled is

needed, was correct and by using this prediction we can at least avoid having to look for

operators that are willing to stay longer on a short-term basis.

Of course, one example is not enough to make a valid statement about the use of the approach

described above to make a prediction during the planning phase. But our example indicated

that it can bring some benefits but it is of course not as reliable as a prediction when the

real orders are already available. It is thus advisable to use the short-term prediction at the

beginning of the shift to check if the allocation made based on the long-term prediction is

appropriate for the actual orders and to make adjustments at the beginning of the shift if the

planned working times seem to be too high or too low.
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5 Conclusion

The aim of this Master’s Thesis was to find factors that are influencing the throughput, i.e.

the number of units processed during a certain time, of manual order picking and to create

a model to predict the throughput for this process step for a certain time given a certain

configuration of input parameters.

In the first chapters of this thesis a general introduction to mathematical modelling has been

given and regression analysis has been presented as a method to analyse the relationship

between an output variable and one or several input parameters. Different types of regression

as well as methods to analyse the results and compare different models have been presented.

In the fourth chapter these methods have been used to analyse the relationship between the

throughput and different input parameters. At first, the initial situation and the available data

have been described. Afterwards the data from the different sources has been analysed. The

analysis of the data from the redPILOT database has lead to the conclusion that the operators

have a significant influence on the throughput but that this dataset does not contain enough

information to make a reliable prediction of the throughput. Therefore, data from a different

source, namely the customers warehouse management system (WMS), has been used. In this

dataset the planned time for an order and the articles contained in that order are given which

gives information about the complexity of an order. We have analysed different models to

predict the actual time of an order based on the planned time and other input parameters.

Finally we have decided that a linear model for each operator using the planned time and the

number of distinct articles as predictors to estimate the actual time is the most adequate.

As our cost function is not exactly the same as the cost function that is minimised for the

estimation of the coefficients of the linear model, we have varied those coefficients a little bit

to see if this leads to an improvement of the prediction.

The coefficients we received in this process have then been used to predict the units that can

be done during the working time of specific operators given a list of orders containing the

planned time, the number of planned units and the number of distinct articles for an order.

Measures that are taken based on the result of this estimation have been defined and the

quality and the benefits of the prediction have been evaluated. We have seen that the use

of the procedure can lead to a small reduction of operator costs and can help to improve the

satisfaction of the employees by informing them earlier about changes in their working time.

But the procedure can only be applied if the real orders are already available which is why it

can only be used on a very short-term basis. Therefore, additionally an approach to estimate
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the throughput longer in advance has been presented.

In the evaluation process we have made a lot of assumptions which are not valid in real working

conditions. E.g., the shift manager could take much more different decisions than those two

we used in our evaluation. Furthermore, already now the shift managers make some decisions

to send people home earlier or to let them work longer than planned. These decisions are

made based on the order list and based on their personal experience. One of the benefits of

the procedure described above could be that it provides a standardised procedure to estimate

how much time is needed to fulfil the orders that have to be done and to give a guideline for

the decisions that are made based on this estimation. Currently the decisions made depend

a lot on the experience and the abilities of the shift manager. A standardised procedure can

help to keep a constant quality of decisions and therefore reduce instabilities and irregularities.

But, as already mentioned above, it is necessary to evaluate the procedure in practice to see

if it really brings some benefits. It has to be used by shift managers in their everyday work to

see if it can help them to make appropriate decisions.

To make a prediction more time in advance, which can lead to much higher cost savings than

a prediction on a very short-term basis, more reference data has to be collected. We need at

least the data for one full year to have reference data for all weeks. Using this data we can

apply the procedure described in Chapter 4.4.3 and evaluate the quality and the benefits of

this prediction.
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Glossary

(x̃1, ỹ1), ..., (x̃n, ỹn) test data with only one input parameter.

(x1, y1; x2, y2; ...; xn, yn) training data with only one input parameter.

β vector of coefficients of a linear model.

θ vector of input parameters.

ε vector of residuals.

f̂(xi) predicted value for the ith observation.

X design matrix of a linear model.

xi vector containing the values of all the input parameters for observation i.

y vector of all response values.

n number of observations (number of entries in a dataset used for creating a model; in

application: number of orders).

p number of input parameters of a model.

yi response value for the ith observation.

actual time Time (minutes) that has actually been needed by the operator to fulfil an order.

planned time Time (minutes) to fulfil an order that is estimated by the WMS.

revised planned time Value of planned time that has been updated after short term changes

in the order.

throughput number of units processed during a certain timespan (usually one hour).
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