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Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere
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Abstract

A common problem in seismic tomography is to assess and quantify
data uncertainties. The Bayesian approach to inverse problem by
means of Markov Chain Monte Carlo (McMC) method samples rele-
vant parts of the model space and provides an quantitative overview
of the uncertainty of all model parameters. This method is very
computing power intense and one important issue is to optimize the
efficiency of the method. In this study, we investigate the difference
between velocity-based and slowness-based McMC in refraction to-
mography. Whereas velocity in surface wave phase velocity inversions
typically varies no more than by a factor of two, variations in refrac-
tion tomography can amount to a factor of ten, and the difference
between slowness and velocity perturbations becomes more releveant.
Because slowness is proportional to travel time, model perturbations
need no arbitrary scaling relations. In our experiments, the associated
perturbations are more uniform and show better mixing properties
compared to velocity based McMC. We also investigate multivariate
perturbations based on a projection of a single perturbation through
the resolution matrix. Our tests show that these lead to higher ac-
ceptance ratios and/or greater step length.
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Zusammenfassung

In seismischer Tomographie ist es üblicherweise sehr schwierig die
Datenunsicherheiten abzuschätzen und zu bewerten. Dieser Bayess-
chen Ansatz zur inversen Theorie durch Markov Ketten Monte Car-
lo (McMC) beprobt relevante Bereiche des Modelraumes und lie-
fert damit einen quantitativen Überblick über die Datenunsicher-
heiten aller Modelparameter. Diese Methode ist sehr recheninten-
siv und ein wichtiger Aspekt ist es die Effizienz dieser Methode zu
steigern. In dieser Studie wird der Unterschied zwischen geschwin-
digkeitsbasierter und langsamkeitsbasierter McMC in refraktionss-
eismischer Tomographie untersucht. Während die Geschwindigkeit
bei Oberflächenwelleninversionen nicht mehr als um den Faktor Zwei
variiert, können die Variationen in refraktionsseismischen Tomogra-
phien einen Faktor von Zehn ausmachen und der Unterschied zwi-
schen langsamkeits- und geschwindigkeitsbasierten Perturbationen ist
dadurch relevanter. Da die Langsamkeit proportional zur Laufzeit ist,
benötigen die Modellperturbationen keine willkürliche Skalierungen.
In unseren Experimenten sind die Perturbationen gleichmäßiger und
zeigen bessere Mischungseigenschaften im Vergleich zur geschwindig-
keitsbasierten McMC. Wir untersuchen auch multivariate Perturba-
tionen, basierend auf der Auflösungsmatrix. Unsere Versuche zeigen,
dass dadurch größere Akzeptanzraten und/oder größere Schrittweiten
zustande kommen.
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Chapter 1

Introduction

One commonly used technique is the deterministic linearized approach to
seismic travel time tomography. This approach provides a single model so-
lution with inadequate uncertainties. It is very difficult to assess the quality
and to quantify the uncertainties in this solution. Because the seismic inverse
problem is non-linear a variety of models exist and this non-uniqueness is not
captured by the linearized approach.
In contrast to this method the probabilistic approach is fully non-linear.
It samples the whole model space and provides a quantitative overview of
the uncertainty of the model parameters. When we have a large number of
models which all explain the data more or less equally well we can answer
some different interesting questions. Like, what is the chance to have a
low velocity zone at a certain level, or in what depth it is likely to have a
high velocity layer. These are questions that are important, for example, in
exploration. For each model parameter we can plot a histogram and asses
the distributions. One problem in Markov chains is convergence issue: When
has a random walk visited enough points in the model space, so that the
probability density is sufficiently sampled? This is a very broad topic which
can not be answered with this thesis, but there are some tools to determine, or
compare, the convergence speed of Markov Chains. The Bayesian approach
to inverse problem is a very computing power and time intense method, and
how long to run a Markov chain depends on the type of problem and is
difficult to determine.
In this thesis the efficiency of slowness based Marcov chains will be compared
to velocity based Markov chains. To evaluate the efficiency we made test runs
with a well known synthetic model and also with real refraction seismic data
from the Salzach valley. While the synthetic model is a known model, at
the real data test model we can still compare the performance of the Markov
chains. The model parameters for inversion have to be carefully selected and
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Chapter 1. Introduction

this is a quite challenging iterative process. While for the known synthetic
test model it is quite easy to parametrize the model, it is more difficult for
the Salzach test model. But at least there are some studies with reflection-
and-refraction travel time tomography (Bleibinhaus et al., 2010) and more
detailed images derived by acoustic full waveform inversion (Bleibinhaus
& Hilberg, 2012) from the Salzach valley to evaluate the result.
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Chapter 2

Inverse Theory

The inverse theory is a method of estimating model parameters from data.
The fundamentals of that topic can be read in several books like Menke
(1989), and Tarantola (2005), Shearer (2009) or Aster et al. (2013)
and there is many more literature. In this chapter I will give only a very
rough overview for a better understanding of the following chapters.

Figure 2.1: Schematic representation of the inverse problem

2.1 Inverse Problem

Overall, the inverse problem is to find a model m that is consistent with the
observed data d (Figure 2.1). G is a N ×M Jacobi matrix ( ∂d

∂m
), where N

is the number of data and M is the number of model parameter. G−g is
the generalized inverse, because G−1 can not generally be computed. The
forward problem describes the opposite direction and the forward operator
G connects the data and model parameters through a physical theory (eg.

3



Chapter 2. Inverse Theory

calculating the travel time with an existing model). Most geophysical prob-
lems are non-linear to some degree and they get solved through a sequence
of small linear inverse steps. With the damped least squares inversion it
is possible to approximate a non-linear problem with small iterative linear
steps that converge to a final model. This single solution does not reflect
the uncertainties of the model parameters and its non-uniqueness. Because
of that non-uniqueness a variety of models can describe the observed data
within the given measurement accuracy.

2.2 Deterministic Methods

Some fundamentals of the deterministic inversion will be discussed in this
chapter. It is relevant for this thesis because the deterministic solution will
be used as starting model for the probabilistic inversion and is also necessary
for calculating the resolution matrix. As starting model for the Markov Chain
any model can be chosen, but the deterministic solution has the advantage
that it shortens the burn-in phase. One can assume that the solution of the
deterministic inversion is close to the equilibrium distribution (Fontanini,
2016).

2.2.1 Damped Least-Squares Solution

Most geophysical problems are mixed-determined, this means some model
parameters are over determined while others are under determined. This
problem demands a reasonable balance between simplicity of the solution
and data fit. This can be achieved with the damped least squares solution:

G−g = [GTG+ λI]−1GT (2.1)

where I is the identity matrix and λ is an empirical damping factor, that
weights the relative importance of errors and solution norm (Gubbins, 2004).
λ can be determined empirically with an trade-off test. A big damping factor
generates a simple model, which is not very detailed. Small damping values
generate complex models that overestimate the given limited data. With the
linearisation assumptions where made that do not reflect the reality and this
could lead to an inaccurate result.

2.2.2 Resolution Matrix

The resolution matrix R stems from the deterministic solution and describes
the relation between the true model and the damped calculated model. It
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Chapter 2. Inverse Theory

will be used for the multivariate updating scheme. It is a square M × M
symmetric matrix, where M is the number of parameters. The resolution
matrix is defined as

R = G−gG (2.2)

where G−g is the general inverse and G the data kernel. An example is given
in figure 2.2. The off-diagonal elements not equal zero show the dependency
with the diagonal elements. Without damping the resolution matrix would be
the unit matrix. The resolution matrix for the damped least square solution
is calculated with

R = (GTG+ λI)−1GTG (2.3)

The damping number λ will be taken from the damping test of the velocity
based deterministic inversion.

Figure 2.2: A graphical representation of an exemplary resolution matrix

2.3 Probabilistic Methods

Probabilistic methods sample the model space using random perturbations.
These methods are totally non-linear and provide a quantitative overview
of the uncertainties of all model parameters. The simplest method is a ex-
haustive search which explores the whole model space. It randomly samples

5



Chapter 2. Inverse Theory

and evaluates the models. This method is very computing power intense.
Another strategy is to sample just the important parts of the model space
with the Bayesian approach.

2.3.1 Bayesian Inference

In the Bayesian approach

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(2.4)

p(m|dobs) is the probability density we desire or the posteriori, the probabil-
ity that the model is correct given a data set d,
p(dobs|m) is called the likelihood function that measures the level of fit be-
tween measurements and the prediction made using the model m
p(dobs) is the probability that the data is observed and
p(m), the priori is any kind of information on the model m that we can in-
clude in our inversion process, that are independent from our measurements:
for example previous studies, physical geological knowledge or limiting of the
velocity field.

2.3.1.1 The likelihood function

The likelihood function (Equation 2.5) is a function which quantifies the
ability of a model to fit the observed data.

L(m) = p(m|dobs) =
1

N∏
i=1

(σd
i

√
2π)

exp[−E(m)] (2.5)

The Cost function E(m) (Equation 2.6), is a weighted L2 misfit of the ob-
served data dobsi and the calculated data dprei where σd

i is the estimated data
uncertainty.

E(m) =
1

2

N∑
i=1

(dobsi − d
pre
i

σd
i

)2
=

1

2

N∑
i=1

(dobsi −Gm
σd
i

)2
(2.6)

6



Chapter 2. Inverse Theory

2.3.2 Markov Chain Monte Carlo

A Markov chain is a stochastic process that produces a sequence of variables
or models where each model is just dependent of the previous one. Every
new sample in the chain is created through a small random perturbation of
the previous one. The core of the Markov chain is the Metropolis-Hastings
algorithm.

2.3.2.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm was develeoped by Metropolis & Ulam
(1949), Metropolis et al. (1953) and Hastings (1970). It is used to ob-
tain a sequence of random samples from a probability distribution for which
direct sampling is difficult. The trial model gets compared to the current
model via its ratio. The schematic application of the Metropolis-Hastings
algorithm in the code is used as follows:

γ = L(mtrial)
L(mcurr)

if γ ≥ 1, accept proposed mtrial

if γ < 1, a random number u ∈ U [0, 1] gets generated
if γ > u, accept mtrial

else reject mtrial

The efficiency of the algorithm depends strongly on the step size of the model
perturbation. If the model perturbation is small the distance of one model
to the other one is also small, and the model is very likely to get accepted.
With a too big perturbation the acceptance rate is low and many models get
rejected.

2.4 Perturbation

In velocity domain the perturbation has to be scaled to a proper size, be-
cause small perturbations at shallow model parameters, where the velocity
is usually small, lead to relative big changes in travel time and hence to big
differences of the likelihood. The new proposed model is very unlikely to get
accepted. At deeper model parameters perturbations of high velocity model
parameters lead to small changes in likelihood and therefore the proposed
model is more likely to get accepted. Furthermore deeper model parameters
have typically longer offsets, and the offset dependent weighting also leads
to a higher acceptance. In slowness domain the change in slowness is direct
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Chapter 2. Inverse Theory

proportional to the travel time and hence the change of the likelihood, which
is also a function of the weighted travel time residuals. This means that the
perturbation size in slowness domain does not need to be scaled. Therefore
the estimated standard standard deviation of the model parameters σm

i is
proportional to the change of travel time:

σslowness
i ∝ ∆t (2.7)

The slowness based model parameters get perturbed with an Gaussian den-
sity distribution and the standard deviation should be set to achieve an
appropriate acceptance ratio between 20 - 30% (Gelman et al., 1996).
Roberts et al. (1997) suggest in their paper an acceptance rate of 23.4%
for ”optimal efficiency”.

2.5 Compensation of the perturbations

In Metropolis-Hastings algorithm, normally one parameter gets perturbed
and only one model parameter of the model vector changes:

mtrial = m+ nσm
i ei for n ∈ N [0, 1] (2.8)

where m is the current model, mtrial the trial model and σm
i is the standard

deviation of the ith model parameter. The variable n is normally-distributed
random number with unity standard deviation. For slowness based pertur-
bation σm

i gets exchanged with σm, because the standard deviation can be
assumed to be the same at every model parameter, because the change of
the model parameter is direct proportional to the change of travel time and
therefore proportional to the change of likelihood.
In the multivariate updating scheme developed of Fontanini (2016) the
applied perturbation gets compensated:

mtrial = m+ nσm
i ei − anσm

i g(Rij) (2.9)

where g(Rij) gets computed by using some functional of the resolution matrix
and a is a scaling factor of the applied compensation. These compensations
were applied to the other model parameters in the opposite direction. It al-
lows bigger perturbation size while the change of likelihood is still kept small
and the acceptance rate is therefore higher. Fontanini (2016) introduced
four different functional:
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Chapter 2. Inverse Theory

Functional 1: g(Rij) =
M∑
j 6=i

Rijei (2.10)

Functional 2: g(Rij) =
M∑
j 6=i

RijRiiei (2.11)

Functional 3: g(Rij) =
M∑
j 6=i

Rij

Rii

ei (2.12)

Functional 4: g(Rij) =
M∑
j 6=i

Rij
n∑

j 6=i

Rij

ei (2.13)

Tests showed that functional 3 leads to the best results (Tauchner, 2016).

2.6 Comparison of Markov Chains

One important question is how long to run a Markov chain in order to obtain
observations from a stationary distribution. Was the runtime long enough to
have a sufficient number of models? Which Markov chain converges faster?
This are very difficult questions to answer and that is a very broad topic, but
we can do several things to investigate this issue. In this thesis just some of
the most important aspects will be discussed.

2.6.1 Acceptance rate

As rule of thumb the acceptance rate of an efficient Markov chain should be
between 20 and 30% (Gelman et al., 1996). New generated models with
very small perturbations have a similar good likelihood and a high chance to
get accepted. With small perturbation the Markov chain explores very slow
the model space, because a lot of chain members were needed to generate
uncorrelated models. On the other hand a high step length and therefore
a small acceptance rate produces fast uncorrelated models. The algorithm
wastes a lot of calculation time for models that get rejected. In Both cases

9



Chapter 2. Inverse Theory

the Markov chain is likely to get stuck in local minima. Consequently the
acceptance rate should be maintained in the suggested range. Also a higher
acceptance rate is desirable, because with a higher acceptance rate the per-
turbation size and step size can be further increased.
To make those two different perturbation methods comparable the perturba-
tion was set to a specific value to achieve nearly the same acceptance rate.
The Markov chain with the bigger step size is therefore more efficient, when
comparing the two chains with the same acceptance rate together. The step
size from slowness and velocity based Markov chains where both calculated
in slowness domain. Hence the slowness values were used to determine the
distance from one model to the other.

2.6.2 Acceptance rate at each model parameter

The acceptance rate for each model parameter is also very important, because
some Markov chains with an overall good acceptance rate seems to perform
well, but there can still be some model parameters that lie outside of the
recommended range of the acceptance rate. This can lead to a situation
where the forward solver wastes a lot of calculation time for perturbations
that get rejected anyway. At the same time the Markov chains needs a lot
of steps for other model parameter to get uncorrelated parameter. A look
at each model parameter is done to determine how many perturbations of a
certain model parameter get accepted. In the formula

αj =
Kj

Ktrial
j

(2.14)

the acceptance rate αj is the acceptance rate of the model after perturbing
the jth model parameter. Kj is the number of accepted model and Ktrial

j is
the total number of trial models after perturbing the jth model parameter.
In a good Markov chain the acceptance rate of all model parameter should
be the same size.

2.6.3 Distance between two models

The distance between two models is defined as the L2-norm:

||∆s|| =

√√√√ M∑
j=1

∆s2j (2.15)
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||∆s|| is the distance between two models expressed in slowness. sj are the
slowness parameters. Basically it measures the distance of one model to the
other model one. A Markov chain with a bigger step size samples the model
space faster and is therefore desirable. Thus, for reason of comparability the
distances in velocity domain were also calculated in slowness.

2.6.4 Simple Graphical Methods

In this thesis some simple graphical methods were used to assess the conver-
gence of a Markov chain. They provide a quick overview of the convergence
and are very simple to implement.

2.6.4.1 Trace plots

To compare the efficiency of the Markov chain trace plots of single parameters
are very useful. It allows us to see if certain parameters have sufficient state
changes and shows the values the parameters took during runtime of the
chain. It also allows us to see if a parameter wanders around of its mean
value, which indicates that the chain has converged. In the synthetic test
it will be expected to bounce around the known real value of the model
parameters. Trace plots give a good and quick qualitative overview of the
performance of a Markov chain. Even Markov chains with an theoretical good
acceptance rates between 20-30% can have bad mixing properties which can
be quick identified by looking at trace plot. One parameter can have too big
proposals that gets often rejected while at the same time another parameter
can have narrow proposals that nearly always get accepted. These time series
plots give a quick overview about the mixing properties.

2.6.4.2 Autocorrelation function

The autocorrelation function standardizes the values of the autocovariance
and is a given by

ρj(k) =

K−k∑
l=1

(ml
j − m̄j)(m

l+k
j − m̄j)

K∑
l=1

(ml
j − m̄j)2

(2.16)

where K is the number models and m̄j the overall mean of the jth model
parameter. The equation is approximated for reasonably large K. The cor-
relation coefficient ρj(k) shows the correlation of a variable j at position l
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and l + k in the chain, where k is the lag between both variables. High
autocorrelation within chains indicate slow mixing and therefore slow con-
vergence. The autocorrelation shows how correlated a parameter with itself
at a lag k is. In the example of an autocorrelation plot (Figure 2.3) it shows
that the first uncorrelated lag is approximately at 15. The green lines rep-
resent the confidence interval of 95% and autocorrelation values beyond this
interval were considered to be significant. For later analysis just the first
uncorrelated lag will be from interest.

Figure 2.3: The autocorrelation plot of a single parameter.

With the autocorrelation function the Effective Sample Size (ESS) can be
calculated. This heuristic method was proposed by Radford Neal in Kass
et al. (1998). The ESS is usually defined as

ESSj =
K

1 + 2
∞∑
k=1

ρj(k)
(2.17)

where K is the number of samples in the chain. Practically the summation
to infinity will be truncated, when the autocorrelation ρ(k) is below the con-
fidence interval. The effective sample size measures the approximate number
of independent samples in a group of partially dependent ones. It is a stan-
dard sample quality measure based on asymptotic variance (Brooks et al.,
2011).

2.6.4.3 Cumulative Mean

Also a good visual indication for the convergence of a Markov chain are
cumulative mean plots for single parameters. For every parameter the cu-
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mulative mean will be computed as the mean of all samples values up to and
including that given iteration (Smith, 2001). A a value of a chain which
has not reached its stationary distribution could may change after a long run
time, when the Markov chain enters or leaves a local minimum. By the fact
that the cumulative mean gets divided by an ever rising number, the mean
will always stabilize.
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Chapter 3

Model Parametrization

For this work the simulr16 code by Bleibinhaus (2003) which was modified
by Fontanini (2016) to run Markov Chains algorithms was used. The code
was reprogrammed to perturb in slowness domain.

3.1 Inverse grid

A model in the simulr16 framework is parametrized by a set of irregularly
distributed velocity nodes, which where set by the user. The black crosses in
figure 4.2a represent the model parameters for the inversion grid.

3.2 Forward grid

For the forward modelling a finite-differences-eikonal solver of Vidale (1990)
with modifications of Hole & Zelt (1995) is used, because it is fast and
calculates the first arrivals with sufficient accuracy. The eikonal solver needs
a fine rectangular sub grid and this is calculated in two steps. First a coarse
regular grid gets interpolated from the irregularly distributed nodes with
a nearest neighbour interpolation. In the second step a fine sub grid gets
interpolated with a bilinear interpolation.

3.3 Slowness vs. velocity and the interpola-

tion problem

If the Bayesian inversion is done in slowness domain it would be consistent
to interpolate the fine sub grid for the eikonal solver also in slowness domain.
The eikonal solver would also not require to convert the fine velocity grid in
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a slowness grid to calculate the time grid. In this work the slowness pertur-
bations get compared with velocity perturbations and a linear interpolation
of slowness and velocity values at the same grid would lead to different re-
sults, because slowness is by definition the reciprocal of velocity. Therefore
a linear interpolation of slowness is equivalent with a harmonic interpolation
of velocity which would lead to smaller interpolation values. As result the
velocity values of the model parameter would be shifted slightly to a higher
value. These model parameter with the higher values and lower interpolated
values would lead to a different result for the travel time calculation and
hence a different likelihood. This reciprocal error prohibits a comparison of
these two grids with each other.
To this issue it was decided to interpolate in velocity domain linear and in
slowness domain harmonic, because velocity is more common in geophysics
and it was easier to compare the results during the modification of the code
to previous results.
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The Synthetic Test

4.1 Test model

The test model is a known synthetic seismic model (Figure 4.1) of Fontanini
(2016) and it has a 3-layered structure. The total lenght of the model is 120m
with a maximum depth of 36m. The acquisition geometry is 12 sources
and 23 receivers evenly distributed on the surface with a 5m spacing . The
synthetic travel times have been computed with the FAST algorithm (Zelt
& Barton, 1998) and a gaussian random noise has been added to the data
using a standard deviation of 5% of the noiseless travel time (Fontanini,
2016). The model parametrization from Fontanini (2016) was adapted, but
got modified.

Figure 4.1: The synthetic test model (Fontanini, 2016).

Two lowest model parameter got removed and the model parameters above
got slightly shifted downwards. The previous parametrization made the rays
deflect just above the very lowest model parameters which allowed them to
accept arbitrary values. Figure 4.2 shows the deterministic solution and the
ray coverage from the synthetic test model. The model parameter get referred
by numbering from left to right and top to bottom. Model parameter 1 lies
on the very top at the left side and 23 is the lowest right mode parameter.
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The estimated standard deviation of the data to calculate the likelihood was
set 0.5 ms for σd

min and 5.0 ms for σd
max which refers to the minimum and max-

imum offset. Values for offsets in between were linear interpolated. Travel
times values from large offsets are more uncertain than from small offsets
and they are less constrained, so they are weighted by this data standard
deviation. The start model of the Markov chain is the deterministic solution
(Figure 4.2c). The test runs with compensations were set to the same set-
tings and use the functional 3 (Equation 2.12). This functional shows the
best performance.
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(a) Deterministic Solution

(b) Ray coverage

(c) The mean model of the probabilistic inversion

Figure 4.2: The deterministic solution (a) of the synthetic test model of
Fontanini (2016) with the model parametrization, its ray coverage (b) and
the mean model(c).
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4.1.1 Prior and perturbation scaling

In velocity domain Fontanini (2016) pointed out, that the magnitude of
perturbation has a fundamental influence on the performance of Metropolis-
Hasting based Markov chain Monte Carlo algorithms. To ensure good mixing
properties it has to be carefully scaled. The main advantage in slowness
domain is that there is no need for an empirical perturbation scaling. Just a
scaling of the global perturbation size has to be done to achieve a reasonable
acceptance rate. The applied priors were summarized in table 4.1:

Prior Slowness domain Velocity domain
(mj)min 0.1 s/km 0.1-1.0 km/s
(mj)max 3.33 s/km 1.0-6.0 km/s
σm
j 0.14 s/km 0.055-0.305 km/s

Table 4.1: The prior information.

Velocity domain

For velocity based perturbations a low-informative prior was used which lim-
its the p-wave velocity to a reasonable depth-depended range (Table 4.1).
The minimum and maximum velocity at the top and at the bottom of the
model is set by the user and the limits in between get linear interpolated.
Here the model parameters get perturbed with an depth dependent Gaussian
density distribution. Depth dependent standard deviation is calculated with
the formula:

σm(z) = c∆v(z) (4.1)

∆v(z) is the prior velocity range at each depth and c is a global perturbation
constant which has to be set. A proper scaling increases the acceptance rate
of shallow model parameters and decreases it at the deeper model parameters.
The main disadvantage is, that a suitable velocity prior for optimal scaling
assumes good prior knowledge. Nonetheless it can be estimated very roughly
or the prior knowledge can come from other independent measurements.
Therefore a velocity prior was set in the configuration file with vmin = 0.1 km/s
and vmax = 1.0 km/s at the top and vmin = 1.0 km/s and vmax = 6.0 km/s at
the bottom. The factor c (Equation 4.1) was set to 0.061. With these set-
tings an acceptance rate of 22.95% was achieved, which is comparable to the
accepatance rate of the slowness based Markov chain. All important settings
were summarized in table 4.1.
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Slowness domain

For slowness based Markov chains the prior is even less informative. Just
the minimum possible slowness will be set by the user and for the maximum
value the slowness in air gets assumed. The prior was set to an minimal
slowness of 0.1 s/km which correspondents to an velocity of 10 km/s and to
3.33 s/km, the slowness in air as maximum.
The standard deviation of the perturbation size was set to 0.014 s/km to
achieve an acceptance rate of about 23.04%. The perturbation size is the
same at every model parameter, because the change in slowness is direct
proportional to the change in travel time.

4.2 Comparing slowness vs. velocity

4.2.1 Step size

The average Euclidean Distance between two models is 0.088 s/km for the
slowness based and 0.063 s/km for the velocity based Markov chain. This is
an improvement for the step length of nearly 40% and it shows that in slow-
ness domain the average step size is larger while both chains have the same
acceptance rate. Consequently the slowness based Markov Chain explores
the model space more efficient.

4.2.2 Trace plots

4.2.2.1 Plots of the model parameters

The trace plots from the slowness based Markov chain (Figure 4.3a) show the
slowness of all 23 model parameters over 1 million iterations. The perturba-
tion pattern is uniform, every parameter gets more or less equal frequent per-
turbed and the magnitude of perturbation size does not change with deeper
model parameters. In comparison to the velocity based perturbations (Fig-
ure 4.3b) there is a very big variation at deeper model parameters, while
the variation and frequency of change from shallow model parameters is very
low.
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(a) Slowness domain

(b) Velocity domain

(c) Slowness domain

(d) Velocity domain

Figure 4.3: Figure (a) and (b) show the trace plots of all model parameter
and figure (c) and (d) show the first 20,000 iterations of some chosen model
parameter at certain depths.

It can be better seen in figure 4.3c and figure 4.3d, where some model param-
eters at certain depths were highlighted for the first 20,000 iterations. Figure
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4.4 reflects the frequency of change and figure 4.5 reflects the magnitude of
variation over 1 million iterations.
The acceptance rates of certain model parameters show very different results
in slowness and velocity domain (Figure 4.4). In an optimal Markov chain
all acceptance rates should approximately have the same value. The model
parameters with the worst acceptance rates were the weakest members in
the chain. The parameters with too low or too high acceptance rates are
not sufficient sampled, and the applied perturbation size is not appropriately
scaled. Slowness domain (Figure 4.4a) in comparison to velocity domain
(Figure 4.4b) shows that acceptance rates of all model parameters are more
uniform. In velocity domain, the well constrained shallow model parame-
ters get very seldom accepted, because the perturbation size at these model
parameters is probably too big. This reflects the problem of empirical pertur-
bation scaling where the size was not ideally adjusted. It would be a matter
of improved perturbation scaling which has to be applied to every model pa-
rameter as accurate as possible to perform optimal acceptance rates to every
model parameter in velocity domain. But this would require prior knowl-
edge of every model parameter in advance. The deeper model parameter get
very often perturbed in velocity domain which has to do with a relative too
small perturbation size. Judging from this the Markov chain has bad mixing
properties. On the one hand a very low acceptance rate with relative too big
perturbations and on the other hand we have relative small perturbations
with high acceptance rates, even though the overall acceptance rate appears
to be in the optimal suggested range. A more detailed look at figure 4.4a
shows that model parameter 1, 5 and 18 get more often perturbed and are
probably the least constraint model parameters in the model. Indeed model
parameter 1 and 5 lie at the very top right and left corner of the model,
and model parameter 18 just at the top of the synclinal structure, where
there are only a few rays. In slowness domain it can be seen that poorly
constrained model parameters, like that at the margin of the model or in the
low velocity area in the synclinal structure get more often perturbed. Which
can lead to the question if the perturbation at this model parameters could
be increased further. Perturbations of model parameter 22 and 23 seem get
seldom accepted even one may think they are very poorly constrained, be-
cause just rays from far offset hit this region. The perturbation size at this
model parameter seems to be relatively too big. The perturbation size is not
optimally scaled even in slowness domain.
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(a) Slowness domain

(b) Velocity domain

Figure 4.4: The acceptance rate α for each model parameter

Not only the frequency of change increases with depth in velocity domain,
also the standard deviation from the parameters (Figure 4.5). While the
standard deviation in velocity domain is proportional to the velocity value
of the model parameter (Figure 4.5b) the standard deviation of the slowness
perturbation (Figure 4.5a) does not increase with depth, bearing in mind that
the slowness values from the parameters decrease with depth. The poorly
constraint model parameter 18 within the synclinal structure has the highest
standard deviation.
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(a) Slowness domain

(b) Velocity domain

Figure 4.5: The standard deviation of the model parameters in slowness (a)
and velocity (b) domain

4.2.2.2 Autocorrelation

Figure 4.6a compares the first uncorrelated lag of slowness and velocity based
Markov chains for all model parameters. A smaller lag means that a certain
parameter is earlier uncorrelated and is therefore desirable. Especially at
the shallow model parameters in slowness domain the model parameter are
much more uncorrelated. At deeper model parameters velocity based Markov
chains get slightly better. While the difference for uncompensated chains at
deeper model parameter is quite big, the difference for the compensated
chains is quite insignificant. It has to be considered that in velocity domain,
most of the accepted models stem from the deeper parts of the model and
even with much more samples the effective sample size is about the same
order like in slowness domain (Figure 4.4).
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(a) First uncorrelated lag

(b) Effective sample size

Figure 4.6: Comparison of the first uncorrelated lag (a) and the effective
sample size (b) for each model parameter in velocity and slowness domain

4.2.2.3 Cumulative mean

The cumulative mean plots provide an indication if the Markov chain has
already converged to a stationary distribution. All model model parameters
were plotted over 1 million iterations (Figure 4.7 and 4.8). Both figures show
a thinned chain with a finning of 100. The slowness based chain (Figure 4.7a)
seem to get saturated faster than the velocity based (Figure 4.7b) which
seems to stabilize after 500,000 iterations especially at model parameters
with intermediate velocities.
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(a) Slowness domain without compensation

(b) Velocity domain without compensation

Figure 4.7: Comparison of the cumulative mean plots
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(a) Slowness domain with compensation

(b) Velocity domain with compensation

Figure 4.8: Comparison of the cumulative mean plots
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4.2.3 Probability distributions

To make the histograms of the model parameter comparable they were all
plotted in velocity domain (Figure 4.9 to 4.12). The bin size is 0.05 km/s.
Figure 4.2a shows where the model parameter are located. Model parameter
1 at the top margin of the model and model parameter 18 in the low velocity
zone within the synclinal structure should be poorly constrained. Model
parameter 22 is expected to be also poorly constrained, because of its far
offsets. The histogram of model parameter 22 is very broad in velocity and
slowness domain, but it is slightly broader in slowness domain and there
are more accepted values between 1 km/s and 3 km/s in slowness domain
(Figure 4.9d and 4.11d). The applied perturbation in slowness domain seems
to be slightly relative bigger compared to velocity (Figure 4.10d and 4.12d).
The low acceptance rate at this model parameter (Figure 4.4a) confirms
that the applied perturbation size at this model parameter is relatively too
large. If we compare slowness (Figure 4.9c and 4.11c) and velocity (Figure
4.10c and 4.12c) the poorly constrained model parameter 18 has a slightly
broader distribution and a higher acceptance rate in slowness domain and
this suggests that the model parameter seems to have a slightly too small
perturbation size in slowness domain.

(a) Model parameter 1 (b) Model parameter 10

(c) Model parameter 18 (d) Model parameter 22

Figure 4.9: Histograms of 4 different model parameter from the slowness
based uncompensated Markov chain
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(a) Model parameter 1 (b) Model parameter 10

(c) Model parameter 18 (d) Model parameter 22

Figure 4.10: Histograms of 4 different model parameter from the velocity
based uncompensated Markov chain

(a) Model parameter 1 (b) Model parameter 10

(c) Model parameter 18 (d) Model parameter 22

Figure 4.11: Histograms of 4 different model parameter from the slowness
based compensated Markov chain
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(a) Model parameter 1 (b) Model parameter 10

(c) Model parameter 18 (d) Model parameter 22

Figure 4.12: Histograms of 4 different model parameter from the velocity
based compensated Markov chain

4.2.4 Spatial interpolation of probability distributions

When we normalize the binned occurrences with the total number of oc-
currences, we call them probability density functions (PDF), although they
are, indeed, probability distributions but the shape is the same as that of
a PDF. For a visualization of spatial trends, it makes sense to interpolate
the PDF between different parameters (using the same linear rule as the
interpolation of the values of the parameters). The PDF is referred as the
solution in Bayesian inversions. It shows all possible values the parameters
can take. Figure 4.13 shows the probability density function at profile posi-
tion 25m. Slowness PDF was converted to velocity to make it comparable
with the velocity inversion. All figures show that shallow model parameter
have a more narrow distribution than deeper parameters. Shallow parame-
ters with a small offset have a low σd

i and are therefore weighted heavier in
the likelihood function (Equation 2.5). The probability density functions for
all Markov chains are more widely for deeper parameter.
One may notice the the narrow distribution at a depth of 17m between
two broader distributions and may think the values at this level are better
constrained, but this can be explained by neighbouring model parameters.
Model parameters next to each other are typically correlated, if one value
gets smaller, the other value is getting bigger.
In all 4 probability density function plots there is just an marginal difference.
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Slowness based Markov Chains seem to tend to explorer a bigger area in the
model space. If the probability density functions of slowness inversion gets
overlaid with the velocity inversion it can be seen that the slowness domain is
slightly broader. At the deeper model parameters there are more outliers in
slowness domain (Figure 4.13a). This outliers are maybe linked to the local
minima approximately between iteration 350,000 and 370,000 (Figure 4.3a).
This highlights the strong non-linearity of inverse problems. Also with the
velocity based Markov chain it can happen to get into such local minima.
Because of the fact that this happened in slowness domain the question
occurs, if the standard deviation of the deep model parameter should be
smaller.
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(a) Slowness domain without compensa-
tion

(b) Velocity domain without compensa-
tion

(c) Slowness domain with compensation (d) Velocity domain with compensation

Figure 4.13: The probability density function for profile position 25m
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4.2.5 Covariance matrix

The diagonal elements visualize the variance of each model parameter and the
off-diagonal elements show the covariances to other model parameters. The
covariance is easily explained, for example if a model parameter has a slightly
lower value the neighbouring model parameter is more likely to get an higher
value to maintain the travel time. The covariance matrix can be misleading,
because it depends from the magnitude of the values. For velocity values
the covariance increases with depth while in slowness domain the opposite
is generally the case. Therefore the covariance matrix gets normalized. For
the normalized covariance the values of the standard deviations of the model
parameters get divided by their mean values. We derive relative covariances:

covrel(mi,mj) =
σm
i σ

m
j

m̄im̄j

(4.2)

By dividing the diagonal elements which refer to the variance of the model
parameter with the squared mean value we also obtain a relative variance.
The absolute variance and covariance in slowness domain seem just to slightly
increase with depth, while in velocity domain the increase is very strong and
correlates with the magnitude of values of the model parameters (Figure
4.14). The increase of the relative covariance with depth is larger in slowness
domain compared to velocity (Figure 4.15). This confirms that the relative
perturbation size in slowness domain is slightly bigger than in velocity domain
and this leads to the lower acceptance rate (Figure 4.4) of deep or far offset
model parameters. The poorly constrained model parameter 18 within the
synclinal structure has also prominently high covariances and variances in all
matrices, just in figure 4.14b and 4.14d it is concealed by the neighbouring
high values. In all matrices a slightly decrease of covariance for compensated
runs can be seen when comparing with uncompensated.
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(a) Slowness domain without compensa-
tion

(b) Velocity domain without compensa-
tion

(c) Slowness domain with compensation (d) Velocity domain with compensation

Figure 4.14: Model covariance matrix

34



Chapter 4. The Synthetic Test

(a) Slowness domain without compensa-
tion

(b) Velocity domain without compensa-
tion

(c) Slowness domain with compensation (d) Velocity domain with compensation

Figure 4.15: Normalized model covariance matrix

4.2.6 Conclusion

In our synthetic test the slowness based Markov Chain shows a much better
performance in comparison to velocity based Markov chains. The step size
is increased by approximately 40% at the same acceptance rate. The mixing
of the model parameters is much more uniform in terms of frequency and
perturbation size. The main advantage is that less prior knowledge is needed
and no arbitrary perturbation scaling has to be done. The cumulative mean
in velocity domain stabilizes much later than the cumulative mean in slowness
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domain. The autocorrelation plots also suggest that slowness based Markov
chains reach faster the stationary distribution. For shallow model parameters
the effective sample size in slowness domain is much bigger, and needs half
of the time to get uncorrelated values. In deeper parts of the model the
difference is not so significant and the performance gets slightly better for
velocity domain. Maybe the standard deviation for the model parameters in
slowness domain should not be constant and it would be better to have a
smaller perturbation size at deeper model parameters.

4.3 Comparing compensated vs. uncompen-

sated

Comparing compensated slowness and velocity based Markov chains lead
to similar results like uncompensated chains. Therefore in this chapter the
performance improvements in terms of acceptance rate and step size will be
examined.

4.3.1 Acceptance rates and step size

For the slowness based compensated Markov chain the acceptance rate gets
increased by 1.52% and the step size is more than 6% larger. In velocity
based Markov chains the increase of acceptance rate (1.38%) and steps size
(11%) is quite similar.

Uncompensated McMC Slowness based Velocity based
Acceptance rate 23.04 % 22.95 %
Avg. L2-Distance 0.0879 km s 0.0632 km s

Compensated McMC Slowness based Velocity based
Acceptance rate 24.56 % 24.33 %
Avg. L2-Distance 0.0936 km s 0.0702 km s

Table 4.2: Performance comparison between slowness and velocity based
Markov chains after 1 million iterations.

Compensated and uncompensated Markov chains have qualitative similar
results. Overall acceptance rate increases, but mostly at model parameters
with still high acceptance rates (Figure 4.4). For poorly constrained model
parameter there is even a decrease of acceptance rate, as a consequence of
the fact that compensations at well constrained model parameter are more
likely to get rejected. For example the model parameter 23 with the lowest
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acceptance rate in slowness domain the acceptance rate decreases further
(Figure 4.4). The same result can be observed for model parameters 2, 4, 5,
6, 7 and 10 in velocity domain.

4.4 Discussion and Conclusion

The slowness based Markov chain shows a far better performance compared
to the velocity based. With a similar acceptance rate the step size is much
higher. The biggest advantage is, that the model parameters get much more
uniform perturbed. There is no need for perturbation scaling. While in ve-
locity domain the frequency of perturbations increases with depth, because of
an improper perturbation scaling, in slowness domain bad constraint model
parameters seem to get perturbed more often. There is also slight gain in
performance due to the compensations but the numbers are not very encour-
aging. This is consistent with the findings of Fontanini (2016). Perhaps,
this inefficiency is intrinsic to the method. Another possibility is that the
compensation functions might need further adjustments. For example, they
might perform better when weighted by the ray length.
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The Salzach test model

5.1 The test model

The real data came from a seismic acquisition across the Salzach valley to the
west of Zell am See. It is a 3000-m-long seismic line which runs at each end
a few hunded meters on bedrock. 10 Hz vertical-component geophones were
spaced at 10 m and eight explosive shots were spaced at an average of 400 m
(Bleibinhaus & Hilberg, 2012). Figure 5.1 shows the deterministic solu-
tion and its model parametrization. The model shows an almost symmetrical
concave valley with mostly unconsolidated sedimentary infill. At the north-
ern side of the profile there is a region were the seismic line is interrupted for
300 m because of the highway and the railway (Bleibinhaus & Hilberg,
2012). Because of the lack of receivers in this region there is an area of low
ray coverage just below the subsurface. The deterministic solution is used
as start model again, to shorten or even skip the burn-in phase. Functional
3 was used for the compensated test run with a compensation factor of 0.2.
The applied prior is summarized in table 5.1.
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(a) Deterministic Solution

(b) Ray coverage

(c) Mean model

Figure 5.1: The deterministic solution of the real data test model (a) with
the model parametrization, its ray coverage (b) and the mean model (c) with
a 1.5 km/s contour line.

39



Chapter 5. The Salzach test model

5.1.1 Data uncertainty

To asses the data uncertainty the seismic traces were examined to estimate
the picking uncertainty. The picking uncertainties were guessed, by qualita-
tively evaluating the seismic traces and how accurate it is possible to pick the
first arrivals. This method is quite arbitrary and subjective, but it is quite
easy to identify traces where the first arrivals are very unsure, due to noise
or low frequencies. The range where the first arrival pick possibly lies gets
estimated. At most of the traces, especially at short offsets the first arrivals
are easy to identify and the data uncertainty was estimated to a low value.
Some first arrivals on the other hand were difficult to identify, because of
their low frequencies and the noise that can occur, especially at far offsets.
These values were estimated to a high data uncertainty. For each shot the
user could set 4 uncertainty coordinate points where the x-coordinate refers
to the offset and the y-coordinate to the picking uncertainty. The first and
the last point refers to the minimum and maximum picking uncertainty for
each shot and for the points in between the values get linear interpolated
(Figure 5.2). Overall data was very good and accurate and the estimated
picking uncertainty was mostly far below 10 ms. Just shot 3 with its low
frequencies has a significant higher picking uncertainty. The outlier in figure
5.2 refers to shot 3, where the first arrivals were very difficult to determine.

Figure 5.2: The picking uncertainty for the Salzach model
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5.1.2 Prior and perturbation scaling in slowness do-
main

Slowness domain

The standard deviation of the parameter perturbation was set to 0.025 s/km.
As prior a minimum slowness of 0.1 s/km and as maximum slowness the speed
of sound in air was set.

Velocity domain

The depth dependent perturbation scaling was not applied. As shown in
the deterministic solution (Figure 5.1) there are very shallow high velocity
model parameters. The fact that the bedrock reaches the surface is not
only seen in the deterministic solution also in real during the measurement
as written in previous studies (Bleibinhaus & Hilberg, 2012). A scaled
perturbation size would lead to very high acceptance rates with very low
velocity variations at the shallow high velocity layers. The perturbation size
of the model parameters where scaled with the outcome of the deterministic
solution. The Gaussian density distribution with a standard deviation set by
the user gets multiplied by the model parameter velocity which was calculated
in the deterministic solution. When scaling the perturbation size relative to
the deterministic solution one major assumption has to be taken into account
and this is a very strong prior which is not applied in the slowness based
inversion. All setting were summarized in table 5.1.

Prior Slowness domain Velocity domain
(mj)min 0.1 s/km 0.3 km/s
(mj)max 3.33 s/km 10.0 km/s
σm
j 0.025 s/km vdet ∗ 0.037

Table 5.1: The prior information.

5.2 Comparison slowness vs. velocity

5.2.1 Step size

The average Euclidean Distance of one model to the next proposed and
accepted model in every iteration 0.0112 s/km for the slowness based and
0.0111 s/km for the velocity based Markov chain. This is just a marginal
difference of the step length of about 1.8%, but it has to be considered that
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the size of the velocity perturbations were scaled with the parameter values
of the deterministic inversion. No scaling has to be done for slowness domain.

5.2.2 Trace plots

5.2.2.1 Plots of the model parameters

The trace plots (Figure 5.3) show the slowness and velocity of all 24 model
parameters plotted over 2 million iterations. The perturbation pattern in
slowness domain (Figure 5.3a) seems to be less uniform in terms of pertur-
bation frequency and size. While the model parameters within the bedrock
seem to be very well constrained other model parameters within the valley
filling seem to wander up and down. This trend can also be seen in the
synthetic model where the perturbations of the lowest parameters get rarely
accepted. In figure 5.3a model parameters 13, 14 17 and 21 were highlighted
in black color. This model parameters are located near to each other in the
valley filling and seem to be correlated. In terms of model parametrization it
should be considered to make a less dense node grid in this area. The trace
plots for the velocity inversion (Figure 5.3b) seem to show a more uniform
perturbation pattern than in slowness. Some arbitrary chosen parameters
zoomed in for the first 100,000 iterations (Figure 5.3c and 5.3d) also high-
light the more uniform perturbation pattern of the velocity based Markov
chain. The velocity perturbation is perfectly scaled and the mixing proper-
ties for slowness domain seems to be less efficient. Figure 5.4 shows how many
percent of the models got accepted by perturbing a certain model parame-
ter. The results in slowness and velocity domain seem to be quite similar.
If we compare both results it shows that model parameters 10, 19, 20, 22,
23 and 24 which lie within the bedrock have a much lower acceptance rate
in slowness domain. Again this suggests not to apply the same perturbation
size at every model parameter and scale it with their summed ray length.
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(a) Slowness domain

(b) Velocity domain

(c) Slowness domain

(d) Velocity domain

Figure 5.3: Figure (a) and (b) show the trace plots of all model parameter
and figure (c) and (d) show the first 100,000 iterations of some arbitrary
model parameters at certain depths
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(a) Slowness domain

(b) Velocity domain

Figure 5.4: The acceptance rate α for each model parameter

The standard deviation for velocity (Figure 5.5b) is mainly increasing with
depth. In slowness domain (Figure 5.5a) outliers with higher standard de-
viation can be seen better, while the standard deviation does not increase
with depth. Also the model parameters which lie within the bedrock have
the lowest standard deviations. Again this suggests that the perturbation
size should be scaled to a smaller value.
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(a) Slowness domain

(b) Velocity domain

Figure 5.5: The standard deviation of the model parameters in slowness (a)
and velocity (b) domain

5.2.2.2 Autocorrelation

Figure 5.6a compares the first uncorrelated lag of slowness and velocity based
compensated and uncompensated Markov chains for all model parameters.
For all chains the the autocorrelation decreases strongly when performing a
compensated Markov Chain, especially for the slowness based chain, when
we take a look at model parameter 21 to 24. Overall the velocity based
Markov chain is performing slightly better, in particular at the deeper model
parameters. The Effective sample size is much bigger for the velocity based
Markov Chains, just at some few parameters the slowness based compensated
Markov Chain performs better.
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(a) First uncorrelated lag

(b) Effective sample size

Figure 5.6: This plots compare the slowness and velocity

5.2.3 Cumulative mean

Normally the cumulative mean should converge quite fast, just because of
the fact that it gets divided by a bigger number. Two model parameters in
the slowness parametrization without compensation (Figure 5.7a) seem to
change their slowness values after a very long run. To change the mean value
after so many iterations the change in slowness must be significant. The mean
value seem to stabilize very late, after about 1.6 million iterations. One of
these parameters is model parameter 21 which has a very broad distribution
(Figures 5.9c - 5.12c).
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(a) Slowness domain without compensation

(b) Velocity domain without compensation

Figure 5.7: Comparison of the cumulative mean plots
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(a) Slowness domain with compensation

(b) Velocity domain with compensation

Figure 5.8: Comparison of the cumulative mean plots
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5.2.4 Probability distributions

Model parameter 21 at the lowest part of the valley filling seems to have the
broadest distribution in all 4 Markov chains, like it was expected (Figure
5.9c - 5.12c). Model parameter 1 has a very narrow distribution (Figure 5.9a
- 5.12a), but perturbations get very often accepted. The perturbation size
is considered to be relatively too small. The model parameters 20 and 23
lie within the bedrock and have a broader distribution, but perturbations at
these parameters get very often rejected (Figure 5.4). In slowness domain the
histograms are slightly narrower (Figure 5.9b, 5.9d, 5.11b and 5.11d) com-
pared to velocity (Figure 5.10b, 5.10d, 5.12b and 5.12d). The small standard
deviation in slowness domain (Figure 5.5a) also shows that a smaller pertur-
bation should be applied. Perturbations in this case seem to be relatively
too big. The same issue occurs at all the other model parameters within the
bedrock.

(a) Model parameter 1 (b) Model parameter 20

(c) Model parameter 21 (d) Model parameter 23

Figure 5.9: Histograms of 4 different model parameter from the slowness
based uncompensated Markov chain
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(a) Model parameter 1 (b) Model parameter 20

(c) Model parameter 21 (d) Model parameter 23

Figure 5.10: Histograms of 4 different model parameter from the velocity
based uncompensated Markov chain

(a) Model parameter 1 (b) Model parameter 20

(c) Model parameter 21 (d) Model parameter 23

Figure 5.11: Histograms of 4 different model parameter from the slowness
based compensated Markov chain
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(a) Model parameter 1 (b) Model parameter 20

(c) Model parameter 21 (d) Model parameter 23

Figure 5.12: Histograms of 4 different model parameter from the velocity
based compensated Markov chain

5.2.5 Spatial interpolation of probability distributions

Figure 5.13 shows the probability density function at profile position 1.33 km.
The slowness based probability function was converted to velocity to make
it comparable with the velocity inversion. There is just a marginal difference
in these plots. Slowness based Markov Chains seem to tend to explore a
quite bigger area in the model space. The probability density function is
slightly broader. Overall the probability density functions are very narrow
with the given data uncertainty. At a depth of −0.6 km and −0.67 km there
is a relative broad probability density, which reflects the fact that the PDF
goes through the model parameter 12 and 16.
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(a) Slowness domain without compensa-
tion

(b) Velocity domain without compensa-
tion

(c) Slowness domain with compensation (d) Velocity domain with compensation

Figure 5.13: The probability density function for profile position 1.33 km
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5.2.6 Covariance matrix

Model parameter 21 shows a very strong covariance with the model param-
eters 13, 14 and 17 (Figure 5.14a) at the slowness based uncompensated
Markov chain. This strong covariance is slightly decreased in the compen-
sated chain (Figure 5.14c). In velocity domain the covariance and increases
with depth and velocity (Figure 5.14b an 5.14d).

(a) Slowness domain without compensa-
tion

(b) Velocity domain without compensa-
tion

(c) Slowness domain with compensation (d) Velocity domain with compensation

Figure 5.14: The model covariance matrix

The relative covariance (Figure 5.15) in all four matrices are quite similar, the
only small difference is the slightly smaller covariance in both compensated
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chains.

(a) Slowness domain without compensa-
tion

(b) Velocity domain without compensa-
tion

(c) Slowness domain with compensation (d) Velocity domain with compensation

Figure 5.15: The normalized model covariance matrix

5.3 Comparing compensated vs. uncompen-

sated Markov Chains

As seen in the previous section, the qualitative convergence assessment tools
show that compensated Markov chains perform better than uncompensated.
The model parameters are less correlated, step size gets increased and the
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chance that a proposed model gets accepted is higher. The step size is slow-
ness domain gets increased by approximately 2% and the acceptance rate
is 1.73% higher at the same time. In velocity domain the difference is even
bigger. Nearly 9% higher step size and a 3.02% higher acceptance rate. Like
in the result of the synthetic test model, the greatest improvement of ac-
ceptance rate occurs at the poorly constrained model parameters where the
acceptance rate already was very high. Model parameters with low accep-
tance rate stay at the same value, which is not desirable for a good Markov
chain.

Uncompensated McMC Slowness based Velocity based
Acceptance rate 23.21 % 23.59 %
Avg. L2-Distance 0.0112 km s 0.0111 km s

Compensated McMC Slowness based Velocity based
Acceptance rate 24.94 % 26.61 %
Avg. L2-Distance 0.0115 km s 0.0121 km s

Table 5.2: Performance comparison between slowness and velocity based
Markov chains after 2 ∗ 106 iterations.

5.4 Summed ray length

The results show that the perturbation size is not correctly scaled in slowness
domain, especially at the model parameters 4, 5, 10, 20, 22, 23 and 24 with
the lowest acceptance rates. The idea came up to divide the perturbation
with the summed ray length of the model parameters. The summed ray
length can be derived through the G-matrix, by summation of the columns.
It clearly shows that the model parameters with the lowest acceptance rates
(Figure 5.4a) correlate with the highest values of the summed ray lengths
(Figure 5.16). The ray lengths in this plot were normed by the largest value
(Model parameter 10). In this master thesis there was not the time to make
another chapter with some test runs and comparisons to verify this outcome,
but it is quite obvious that this perturbation scaling will lead to a better
result.
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Figure 5.16: The relative ray lengths at each model parameter

5.5 Discussion and Conclusion

In this real data test the velocity based Markov chains show a slightly better
performance. The functional for the compensation behaves different for slow-
ness and velocity compensations and in this work I did not test out which
compensation size gives the best acceptance rate and step size. Before I made
the test run I decided to use the same functional with the same scaled com-
pensation term instead of benchmarking the best performing scaling factor
for both chains. The resolution matrix for slowness is slightly different to
the resolution matrix in velocity domain and both were used for the com-
pensation, so a different result can be expected. Figure 5.17 compares short
test runs with different compensation scaling. It shows that the acceptance
rate (Figure 5.17b) and step size (Figure 5.17a) have the maximum size at a
compensation factor of about 0.8. This is just an example plot for another
Markov chain with functional 1 for the compensation.
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(a)

(b)

Figure 5.17: In figure (a) the scaling factor for the compensation term is
plotted against the step size. Figure (b) shows the scaling factor against the
acceptance rate.

Another in my opinion more likely reason for the worse performance of the
slowness based Markov chain is the applied prior. The perturbation size is
not correctly scaled, especially for the model parameters within the bedrock.
When we take a look at the model parameters with a very low acceptance
rate it shows that model parameter 10, 19, 20, 22, 23 and 24 lie within
the much faster bedrock. Rays tend to run around low velocity zones like
the valley filling and towards high velocity zones. Figure 5.1b shows the
more dense ray concentration at the bedrock compared to the valley filling.
These model parameter are much more constrained and change of one of
these model parameter lead to a high change in likelihood because travel
times at nearly all receivers got influenced. The same issue was noticed in
the synthetic model, at model parameters 22 and 23 (Figure 4.2a) where we
have a similar situation. The acceptance rates at these model parameters
where still the lowest (4.4a). In the synthetic model this effect was clearly
notable but not that significant. Compared to the Salzach test model the
synthetic test model has a much more uniform ray coverage.
These leads to the question, if the perturbation is really proper scaled. The
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slowness is proportional to to travel time, but the acceptance rate depends on
the change of likelihood of the model. The likelihood depends on change of all
travel times and if there are more rays affected by one model parameter the
change of likelihood is bigger. So the proportionality can be better expressed
by the equation:

σslowness
i ∝ ∆t

li
(5.1)

where the standard deviation σslowness
i of the ithmodel parameter in slowness

domain is proportional to the change of travel time ∆t divided by the summed
ray length li at the ith model parameter. The summed ray length can be
obtained through the G-matrix, by summation of the columns. Figure 5.16
shows the summed ray lengths at each model parameter. It clearly shows
that model parameter 10, 20, 22, 23 and 24 with the lowest acceptance rates
have the highest values. Those five parameters have the largest difference in
acceptance rate when comparing velocity and slowness based Markov chains.
Also model parameter 4, 5 and 6, which have low acceptance rates and high
ray lengths, would benefit from this perturbation scaling.
The compensation seems to have a positive effect for the slowness based
Markov chains. Figure 5.6a shows that the autocorrelation gets slightly de-
creased in velocity domain, but leads to a huge difference in slowness domain.
The model parameters are connected to each other through the compensation
term. This fact prevents the poorly constrained parameters against large
changes, because compensations of well constrained model parameters in
the apposite direction are less likely to get accepted. The model parameter
pretend to have more uniform mixing properties, but not because of a proper
perturbation scaling, which would be desirable for a good Markov chain.
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Discussion and conclusions

One of the biggest advantages of a slowness based Markov chain is that there
is no need to scale the perturbation size, because the applied perturbation is
direct proportional to the change of travel time. In velocity domain the per-
turbation needs to be scaled somehow, which requires either prior knowledge
or assumptions.
In the synthetic test model with its uniform ray coverage the slowness based
Markov chain showed a much better mixing performance. In velocity domain
there are model parameters, where the applied perturbation is either too
small or too big, which in both cases lead to bad mixing performance. For
velocity domain the acceptance rate and step size of each model parameter is
mainly controlled by the applied perturbation size, which has to be carefully
set by the user. For slowness this issue can be omitted.
In the Salzach test model, where velocity of the model parameter does not
increase just with depth, the perturbation size had to be scaled relative to the
values of the deterministic solution. Prior knowledge should preferably come
from an independent source and not from the data itself. The velocity based
model performed slightly better. It turned out that in slowness based Markov
chains it is easier to qualitatively assess bad constrained model parameters.
For example in a non uniform inversion grid like in simulr16 the grid can be
modified for a more appropriate model parametrization.
The Salzach model showed that the perturbation scaling of slowness has still
more room for improvement. It has been shown that the model parameter
with the lowest acceptance rate correlate with the reciprocal of the summed
ray lengths.
The resolution matrix based compensated Markov chain shows that the pro-
posed models have a higher chance of getting accepted. Also the step size
from one model to the next accepted model is bigger. The qualitative analysis
from the plots show that the effective sample size is also increasing because
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the model parameters of the proposed models show a much lower autocorre-
lation. The third functional proposed by Fontanini (2016) with the scaling
of the perturbation term (Tauchner, 2016) showed the best performance,
in terms of overall acceptance rates and step size, but it turned out that this
functional is not a good choice for a poorly constrained model parameter. A
Markov chain is just as good as its weakest member, so it has to be considered
to use another functional.
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Outlooks

During the work on this master thesis issues in connection with the pertur-
bation scaling and compensation aspects came up, but also some ideas which
are particularly interesting for further investigation.

7.1 Improvement of perturbation scaling

The perturbation scaling aspect has room for further investigation and im-
provements. In both test models there is a reason to assume that the pertur-
bation should be better scaled. The low acceptance rates at model param-
eters with high summed ray lengths leads to the conclusion that these two
aspects are strongly related. It is possible to derive the ray lengths through
the G-matrix of the deterministic inversion and to use that result to scale
the perturbation size for the probabilistic inversion. The perturbation size
will be more appropriate for each parameter and the acceptance rates will be
much more uniform. This scaling factor can be used as prior derived through
the deterministic solution. During the probabilistic inversion the ray paths
will slightly change, so it would be conceivable to recalculate and update the
perturbation size every ith iteration. By recalculating the values of the ray
lengths during the run of the Markov chain the perturbation sizes would also
get independent from the values of the deterministic solution, which is then
just used as a starting point.
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7.2 Improvement of the compensation term

7.2.1 Improvement of the functional

It turned out that functional 3 is not the best functional for poorly con-
strained model parameters. Functional 2 should perform better when per-
turbing a poorly constrained model parameter, because the compensation
size at the well constrained model parameters is smaller and therefore bigger
perturbations are more likely to get accepted.
The increase of acceptance rate in compensated chains mainly occurred at
model parameters which already had high acceptance rates. Either another
functional or also a scaling of the compensations with the summed ray lengths
could be useful, because the compensation term has the same proportional-
ity like the perturbation itself to the change of likelihood. Again this scaling
aspect very likely leads to further improvement of the performance of the
multivariate updating scheme and should also be considered for further in-
vestigation.

7.2.2 Covariance matrix as compensation term

Instead of using the resolution matrix for the compensation term, the idea
came up to use the covariance matrix. The covariance of the model param-
eters can either be extracted out of the deterministic solution of simulr16 or
from the result of another similar Markov chain.
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