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Abstract

This thesis presents a new approach to curve reconstruction from over constrained gradients.
This type of problem arises when measuring deformation of structures using inclinometers.
The new methods investigated are based on discrete orthonormal polynomials and a method
of synthesizing constrained basis functions, whereby the constrained basis functions span the
complete space of all possible solutions. Furthermore, they are ordered in increasing mode
number, which supports a simple solution for spectral regularization.

Two new methods are derived for the reconstruction of curves from gradients. The first
reconstruction method uses admissible functions for regularization, the second method is
of variational nature. Monte Carlo simulations are presented which verify the principle
of the numerical approach. Additionally a real inclinometer measurement system for the
measurement of a deflected beam was implemented and an independent optical system was
constructed for measurement validation. The real measurements confirmed the correctness of
the new approach. Furthermore, they revealed issues which are relevant for future research,
i.e., placing constraints on the interpolating functions and not on the reconstructed points.

Index Terms

curve reconstruction from gradients, discrete orthonormal polynomials, admissible functions,
inclinometers, inverse boundary value problem
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Kurzfassung

Diese Diplomarbeit präsentiert einen neuen Ansatz zur Kurvenrekonstruktion von überbes-
timmten Gradienten. Diese Aufgabestellung entsteht bei der Verwendung von Inklinome-
tern (Neigungssensoren) für die Messung der Durchbiegung von Strukturen. Die unter-
suchten Methoden basieren auf diskreten, orthonormalen Polynomen und auf einer Methode
zum Generieren von Ansatz Funktionen unter Randwertbedingungen. Die Ansatzfunktio-
nen für Randwertbedingungen spannen den Raum aller möglichen Lösungen für die Durch-
biegung auf. Zusätzlich sind die Ansatzfunktionen sortiert nach aufsteigendem Polynomgrad,
wodurch die einfache Anwendung spektraler Regularisierung ermöglicht wird.

Zwei neue Methoden zur Kurvenrekonstruktion wurden hergeleitet. Die erste Rekonstruk-
tionsmethode verwendet gültige Funktionen für Regularisierung, die zweite Methode basiert
auf Variationsrechnung. Zur Verifizierung der numerisch hergeleiteten Ansätze wird eine
Monte Carlo Simulation verwendet. Zusätzlich wurde ein praktischer Prüfaufbau erstellt.
Dieser dient als echtes Inklinometermesssystem zur Messung der Durchbiegungen eines Balkens.
Ein unabhängiges, optisches Messsystem wurde zur Messverifizierung verwendet. Die echten
Messungen bestätigen die Richtigkeit der neuen Ansätze. Darüberhinaus zeigten sich während
der Messdatenauswertung relevante Themen für weitere Forschung, wie die Verwendung
der Randwertbedingungen an interpolierenden Funktionen und nicht an den rekonstruierten
Punkten.

Schlagwörter

Kurvenrekonstruktion von Gradienten, Diskrete Orthogonale Polynome, Gültige Funktionen,
Inklinometer, Inverse Randwertproblem
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0.1 Summary

This diploma thesis is dealing with curve reconstruction from gradients, e.g. inclinometer
measurements, which is essentially an inverse problem. Inclinometers are instruments used
to measure gradients, commonly known as slope or tilt, of an object with respect to gravity.
They have a wide field of application, e.g. civil engineering, mechanical engineering, aircraft
industry, geoscience; they are used to monitor ground subsidence [22] and deformation of
structures [18],[35].

The reconstruction of a curve from gradients is fundamentally an inverse problem. If, in
addition, there are constraints placed on the curve, e.g. in the case of a cantilever, the
measurement is an inverse boundary value problem. This diploma thesis presents new ap-
proaches for curve reconstruction from gradients allowing for regularization, least-squares
fittings, with orientational and positional constraints. The methods presented deliver nu-
merical solutions for Inverse Boundary Value Problems and Inverse Initial Value Problems.
The numerical integration of an over-constrained system is possible and easy to implement.
The solution to the inverse problem is a simple matrix multiplication; the exact number
of computations required is known a-priori, which makes this method suitable for real-time
computations.

In this thesis two different solution approaches are derived and verified; one reconstruction
solution uses admissible functions for the boundary value problem; the second solution is
of variational nature. Both solutions are formulated for the deformation of both continuous
structures and piece wise linear approximation of structures. The proposed methods were
verified using numeric simulations in MATLAB, which were performed for both continuous
and non-continuous rods.

A test apparatus has been designed and implemented with the aim of determining the via-
bility of the newly proposed methods in conjunction with the use of commercially available
sensors. The test system consists of a deformable beam, whereby different constraints can
be applied. In addition, an optical reference measurement was developed, which enables
the comparison of the reconstructed curve to the optically measured curve. A series of n
inclinometers is mounted along the beam, which provides a means of measuring the local gra-
dient. The inclinometer data is acquired using a Digital Bus. The measured data is stored in
an SQL Database. The computational reconstruction using the inclinometer data measured
in the laboratory is performed in MATLAB, whereby the Data is directly retrieved from the
SQL Database. The optical reference measurement is also performed using MATLAB and
evaluated using Image Processing and Polynomial fitting with Basisfunctions. The measure-
ment and the reconstructions are compared in order to verify the methods introduced in this
thesis. The discrete solutions to curve reconstruction from gradients presented in this thesis
have been verified by both numerical simulations and physical experiments. The methods
are viable for real-time measurements of structure with constraints.
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Chapter 1

Introduction

Monitoring structures and deformations is becoming fundamental in many parts of engineer-
ing. Typical elements for such purposes are theodolites and optical laser rangefinders. These
instruments need permanent view of the object, which diminishes its field of application.
For example in monitoring train tracks, bridges or heavy machinery under grounds, as well
as in the monitoring of ground subsidence, a perfect view is not always given. This, and
additionally the reduction of costs of inclinometers as well as their constantly improving
accuracy, is why scientists revert to inclination measurements for this field of application.

The inclination displayed by inclination measuring instruments and sensors is based on the
gravitation and has been used already in ancient times for the reconstruction of buildings or
navigation at seas. The simplest and best known inclination measurement is the water level.
Due to higher accuracy, better resolution, reliability and the possibility of application in
automatic systems, the use of electronic inclination measurements, be it of inductive or ca-
pacitive nature, is becoming more popular [16]. Nowadays inclination measuring instruments
are used for

• measuring an inclination,

• measuring the straightness of a line, e.g. of a machine guide way,

• measuring the flatness of a surface and

• long-term monitoring of objects.

Typical examples of the use of inclinometers in mechanical engineering is the detection
of slanting in construction machines, the levelling in agricultural and commercial vehicle
technology as well as the tracking of the position of the sun for solar panels. Furthermore
they find use in monitoring of deformation of structures [18] and in wind energy turbines
for both, monitoring [15] and alignment adaptation [2] purposes. Inclinometer measuring
systems are indispensable in geotechnical monitoring of earth subsidence [10].

The essential difficulty in inclinometer measurement evaluation lies in the numerical inte-
gration, in the reconstruction of an element’s deflection. Even more so, when boundary

12
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conditions and other constraints are given for the reconstructed curve. This type of problem
falls into the general class of curve (or surface) reconstruction from gradients (or gradient
fields), with the possible fulfilment of combined Dirichlet and Neumann boundary conditions.

Basically, there are two general cases of curve reconstruction from gradients:

1. reconstructions without constraints;

2. reconstructions with positional (Dirichlet) or derivative (Neumann) constraints.

In geoscience there are many applications for both types of inclinometer measurements.
Landslide investigation and monitoring slope stability [22] for example, are measurements
which can be linked to type one. In order to monitor landslides, inclinometer probes are
inserted in hollow casings using guide wheels to ensure correct alignment (see Figure 1.1).
The hollow casings are placed deep enough into the ground, where they perform the same
movement as their surroundings. When monitoring ground slippage there are no constraints
to be placed onto the curve, as there are no fixed points along the measurement baseline.
The movement of the earth is detected by the change of the inclinometer values. An ad-
ditional measurement has to be performed in order to account for the constant of integration.

When monitoring rigid structures, positional and/or derivative constraints are given and
need to be taken into account. In this case the reconstruction of the curve is characteristic
of type two. For example, the deflection of a simple cantilever is subject to both positional,
y(0) = 0, and derivative constraints ẏ(0) = 0, ÿ(0) = 0. Furthermore, constraints may be
homogeneous, as in the case of the cantilever, or non homogeneous. In this case the incli-
nometers are mounted onto the structure where they measure the gradient (local slope) of the
structure at the position where it is mounted. Reconstructing the change of the inclinometer
values delivers a curve showing the change of the structure. An example of an application of
the reconstruction of rigid structures is the monitoring of heavy machinery. Due to the ma-
chine’s physical properties, the positional, first and second derivative constraints are known
and can be placed on the structure.

Much research has been done in the field of numeric curve reconstruction [30, 6]. Burdet and
Zanella [6], for example, tested two methods: direct polynomial approximation functioned
but was prone to large errors since it did not permit a least squares approach; they then
resorted to using a linear combination of possible deflection curves which were pre computed
for the structure. This approach gave superior results. There are two dangers associated
with their approach:

1. The set of possible deflection curves used are not complete, i.e. they can not model all
possible deformations.

2. The curves used are all bending modes of the structure. Consequently, the method
provides no possibility of detecting an unexpected deformation, i.e. a deformation
resulting from damage to the structure and its constraining elements.
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Figure 1.1: Principle of inclinometer probe operations, after [10].

Xingmin et al. [18] implements a least squares approximation with Lagrange interpolating
polynomials for the inclinometer values and perform polynomial integration to obtain the
deflection curve, but without regularization. This method can neither accommodate orien-
tational constraints, nor implement regularization.

A simply supported beam was considered by Van Cranenbroeck [35]. He computed the
explicit polynomial curves associated with the beam and the associated derivative curves.
The inclinometer values are used to determine the coefficients of the derivative curve and
the original curve is deducted implicitly; the method cannot implement least-squares fitting
or regularization. Furthermore it uses the Euler-Bernoulli-Equation for the reconstruction.
This accounts for a restriction to Euler-Bernoulli solutions. Therefore the reconstruction is
applicable only for known deformations and loads.

A more general problem was reported by Golser [11], where inclinometers were used to mea-
sure rail track subsidence. This application has both orientational and positional constraints
on the solution. He proposed a local approximation technique, similar to a Savitzky-Golay
approach [33], whereby three inclinometer values were used to determine the solution at
the center point of the three measurements. This solution does not implement general con-
straints and does not ensure a global least square minimum fit. In addition, it is limited to
local second order curves.

The fundamental underlying problem in the measurement of the deformation of structures
using inclinometers is the reconstruction of a curve from its local derivatives in the presence
of constraints. The inclinometers measure the local gradients of the deformed curve, where
the fixed points in the structure correspond to boundary values. It is an iterative method
and does not provide for regularization. Additionally, since the structures will in general
have multiple fixed points, i.e., multiple boundary values, the Runga-Kutta method must be
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extended with the method of Shooting [32]. Shooting has the problem, in particular in the
presence of noise, that the multiple solutions may not be mutually convergent. The simple
Shooting method fails completely under such conditions. It then needs to be extended in
some manner so as to accommodate arbitration between the different solutions. Usually
some form of averaging is used to obtain the ”best” solution [32].

In 2005 an ASTM standard for monitoring ground movement [19] was established. It pro-
vides a detailed information on the installation of the test apparatus, as well as on the
procedure of the measurement and the calculations necessary for the reconstruction of the
unconstrained system. As the standard is written for monitoring ground movement, which
is a reconstruction of Type 1, the article does not cover constraints which may or may not
need to be placed onto a structure/ system.

This thesis presents two new procedures for the reconstruction of deflection curves of arbi-
trary structures from inclinometer measurement data. The main focus lies in defining and
evaluating several new solutions for curve reconstruction, in both variational and gradient
space; both, constraints and regularization are supported. The solution is numerically ef-
ficient and by definition, suitable for real-time computations. Two new solutions to curve
reconstruction are derived. The constraints associated with specific structures are utilized
for regularization of the solution. The methods are applicable for uniformly, as well as non
uniformly spaced nodes. The different solutions are numerically tested using synthetic data.
In addition, a laboratory measurement set-up modelling the deformation of a beam was de-
signed and implemented. This enables physical verification of the results. Inclinometers are
mounted onto the metal sheet and deliver the values used for the reconstruction.



Chapter 2

Framework

2.1 Boundary Value Problems and Initial Value Prob-

lems

Modern computer driven sensor systems are spatially and temporally discrete. The general
monitoring structure is of continuous nature. This requires a discrete solution to systems
of equations which represent a continuous system. In the case of inclinometers the first
derivative of position with respect to space, i.e. the slope, is measured. If the structure is
additionally subject to constraints, e.g., immovable pillars etc., the measurement problem
becomes an inverse boundary value problem. An algebraic solution of such problems requires
three fundamental elements:

1. Continuous basis functions which are sampled at discrete points form discrete orthonor-
mal basis function sets. Such basis functions enable the correct calculation of properties
of continuous systems from discrete observations;

2. A method of generating admissible functions, which fulfil the constraints of the bound-
ary or initial value problem;

3. Linear differential operators of sufficient accuracy to enable the direct algebraic solution
of differential equations.

2.2 Continuous and discrete basis functions

Considerable research has been performed on discrete polynomials and their synthesis [24,
37, 38, 36, 17, 39, 40, 1]. The research was primarily in conjunction with the computation of
moments for image processing. Gram [13] introduced the concept of continuous polynomi-
als which form unitary discrete polynomial basis when sampled at discrete points. He also
showed their application to least squares approximation of continuous polynomials from a

16
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finite set of discrete observations. The polynomials were synthesized via a three term rela-
tionship in a process which is now called a Gram-Schmidt orthogonalization1. The recurrence
relationship for the Gram polynomials is,

gn(x) = 2 αn−1 x gn−1(x)−
αn−1
αn−2

gn−2(x), (2.1)

whereby,

αn−1 =
m

n

(
n2 − 1/2

m2 − n2

)1/2

(2.2)

and
g0(x) = 1, g−1(x) = 0 and α−1 = 1, (2.3)

the computation is performed for equidistant discrete nodes xk lying on the real axis,

x = −1 + (2k − 1)

m
, 1 ≤ k ≤ m, (2.4)

where m represents the number of rods; note these points do not span the full range [−1, 1].
The basis functions are scaled by

√
m yielding a unitary basis set. Indeed this procedure

generates orthonormal polynomials; however, the process is unstable with respect to numer-
ical roundoff errors, so that previously a complete set of discrete polynomials with small
enough errors could not be synthesized for a large number of nodes and/or for polynomials
of higher degree [28]. The first solution for the generation of virtually perfect polynomial
basis sets of arbitrary size can be associated with Mukundan [23]; however, the errors in this
algorithm— although very small — are concentrated at lower degree polynomials.

2.3 A numerically stable recurrence relationship

All polynomials, both complex and real2 can be synthesized from a functional analysis point
of view using a three term recurrence [9]. A new numerically stable two step recurrence
procedure [27] was introduced in 2008. This procedure enables the synthesis of orthonormal
basis functions from arbitrary nodes located within the unit circle in the complex plane. Fur-
thermore, the procedure is stable with respect to numerical errors, e.g., a Gram polynomial
of degree d = 1000 can be generated and the maximum error corresponds to the numerical
resolution of the data type being used for the computations — in the case of MATLAB the
maximum error corresponds to the spacing of floating point numbers, i.e., eps = 2.22E− 16.

The two step recurrence procedure is formulated as a vector-matrix algebraic computation.
The following nomenclature is used: gn is a vector containing the Gram polynomials of
degree n computed at all nodes; Pn is a matrix formed by concatenating the first n basis
functions, i.e., Pn � [p1, . . . ,pn]; the symbol ◦ represents the Hadamard product3.

1”The method of generating n orthogonal vectors from n linearly independent vectors is called the Gram−
Schmidt process”[7]

2Some examples of polynomials generated from specific nodes are: the Fourier basis can be synthesized
from nodes which are evenly spaced along the unit circle in the complex plane; the discrete cosine basis
functions are produced when the Tchebychev nodes, and the Gram polynomials are generated from nodes
evenly spaced on the real axis.

3The Hadamard product of the vectors a and b, i.e., c = a ◦ b is implemented in MATLAB as: c = a. ∗ b.
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Step 1: An initial estimate, i.e., for the nth polynomial is generated using,

pn = αn x ◦ pn−1 + βn pn−2. (2.5)

This basis function is subject to numerical errors which, if not eliminated, accumulate with
further computations of the recurrence relationship.

Step 2: The unwanted correlations are eliminated using a complete re-orthogonalization,

pn = pn − P n−1
(
P T

n−1 pn

)
, (2.6)

=
(
I − P n−1 P T

n−1
)
.pn, (2.7)

The components P n−1 P T
n−1 is a projection onto the basis functions P n−1; I − P n−1 P T

n−1
is the projection onto the orthogonal complement. The correct computational sequence is
given in Equation 2.6. Finally the vector is renormalized to ensure a unitary basis,

pn =
pn

‖pn‖2 . (2.8)

Basis function sets synthesized in this manner fulfil the condition,

Pn
T Pn = In. (2.9)
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2.3.1 Runge Phenomenon

The Runge phenomenon is well known; it describes the tendency of interpolation polynomials
to exhibit excessive oscillations at the edges of an interval. The effect can be demonstrated
using the Runge function,

f(x) =
1

1− 25x2
, (2.10)

defined on the interval [−1 ≤ x ≤ 1]. It is easily verified that irregularly spaced nodes are
required if stable interpolation results are to be achieved.

Figure 2.1: This Figure shows the Runge function, in black. The upper graph shows the
Runge function generated on 100 evenly spaced points x. The graph below shows the Runge
function generated on 100 unevenly distributed points x. Here the cosine function was used
to generate the unevenly distributed points, whose density becomes greater as the function
approaches −1 and 1. It is clearly to be seen, that the ends of the bottom graph have
lower tendency to oscillations, which corresponds to an optimal nodes placement for this
polynomial fit.

2.3.2 Optimization of Covariance Propagation

The derivation of the equations for covariance propagation is given in Section 2.10. At this
stage the effect of node placement on covariance propagation is shown. To demonstrate
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this effect, the case of monitoring the deformation of a cantilever using inclinometers4 is
considered. The monitoring of structures using inclinometers is an established technique [18],
a good overview can be found in [22]. The present standards, e.g. [19] do not deal with the
solution of such measurements when a system is constrained. A framework for the solution
of such problems [29] was proposed in 2008. However, none of these publications consider the
use of optimal sensor placement with the aim of minimizing the variance of the measurement
result.

The first three constrained polynomial basis functions which fulfil the constraints associated
with a simple cantilever are shown in Figure 2.2. These polynomials were generated by
applying constraints to a complete set of Gram polynomials. They are unitary and admissible
functions for the solution of the inverse boundary problem of determining the bending of a
cantilever from inclinometer measurements.

Figure 2.2: The first three constrained polynomial basis functions which fulfil the constraints
associated with a simple cantilever. These admissible functions fulfil the boundary conditions
y(0) = 0, ẏ(0) = 0 and ÿ(0).

The variance of the solution along the length of the beam depends on the placement of the
sensors, which corresponds to the placement of the nodes. This means that with the same
sensors and noise levels, a measurement with better confidence interval can be achieved using
optimal placement of the sensors and the basis functions computed for the corresponding
nodes. The variances of the reconstructions of the first mode of the cantilever with uniformly
spaced sensors and with sensors placed at points corresponding to the Tchebychev points
are shown in Figure 2.3.

4A cantilever has been chosen for this example to be in contrast to the oscillatory behaviour shown in
the previous point. The cantilever measurement problem is dealt with in more detail later in this paper.
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Figure 2.3: Variance of the cantilever deformation reconstructed from inclinometer mea-
surements, assuming independent and identically distributed noise for the sensor perturba-
tions. The reconstruction is performed using constrained basis functions, red: with uniformly
spaced sensors (nodes); blue: with the same number of sensors but with a continually closer
spacing approaching the end of the cantilever.

2.3.3 Basis Function Design

The ability of the new synthesis procedure to generate discrete orthonormal basis functions
from arbitrary nodes enables the design of customized basis functions for specific applica-
tions. In this manner the performance of the solution to inverse problems can be optimized
with respect to noise propagation and numerical efficiency. This is of particular interest
when signals, which are not well described by either the Fourier transform, Discrete Co-
sine transform (DCT) or Gram basis functions, need to be analysed. One example for such

signals is the Taylor function x(− 1
2
). When modelling the Taylor function with one of the

listed basis functions above, the model will not be satisfying, as problems such as the Runge
phenomenon will occur. This is when custom basis functions come in handy. Consider, for
example, the custom basis functions shown in Figure 2.4. They have been designed for the
detection of a specific time limited signal emanating from an acoustic resonator mounted in
the mould of an injection moulding machine. The basis functions model the characteristic
envelope of the oscillations and the characteristic frequencies.

Knowing this characteristic envelope of the oscillation, we can generate a complex set of nodes
which fits our example (see Figure 2.5). The placement of the nodes on the complex plane was
performed using polar coordinates. The radius determines the magnitude envelope for the set
of complex basis functions and the angular coordinate determines the instantaneous phase.
The resulting complex discrete basis functions are in perfect quadrature, this eliminates the
need for an all-pass filter [21] in the implementation of an optimal signal detector and it
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Figure 2.4: The real (red) and imaginary (blue) components of the first three complex basis
functions. The real and imaginary components are in quadrature to each other and bounded
by one and the same envelope. This makes the functions locally shift invariant. These
functions were designed specifically to detect a transient acoustic event in the monitoring of
an injection-moulding machine.
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Figure 2.5: The required placement of the nodes on the complex plane for the generation of
the basis functions shown in Figure 2.4.

ensures that the detection process is locally shift invariant.

2.4 Synthesizing derivatives of discrete basis functions

To solve differential equations and inverse problems it is necessary to have both the basis
functions and their derivatives available. The generation of the derivative of the basis func-
tions via derivatives of the recurrence relationships is known for the Legendre and Tchebychev
polynomials [20]. The procedure is extended here to the generalized recurrence relationship,

pn = α
(
pn−1 ◦ x

)
+ P n−1 β. (2.11)

Taking the derivative with respect to x yields,

ṗn = α
(
ṗn−1 ◦ x+ pn−1 ◦ ẋ

)
+ Ṗ n−1 β. (2.12)

The values of α and β are already computed during the synthesis of the basis functions.
Consequently, the derivatives of the basis functions Ṗ can be computed simultaneously with
basis functions p with marginal additional numerical effort. This procedure is independent
of the placement of the nodes.
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2.5 Differentiating Matrices D

A differentiating matrix D which computes the numerical derivatives of a vector for each
entry, i.e., ẏ = Dy, is required if linear differential operators are to be formulated in an
algebraic method. The generation ofD, with sufficient accuracy, is the central issue in finding
good algebraic solutions to differential equations and inverse boundary value problems. It
is an issue which is not given sufficient attention in present literature. The quality of the
solution stands and falls with the quality of D.

There are numerous problems associated with the usual three point estimates, as embodied
by the gradient function in MATLAB5: The estimate is only of degree two accurate which is
insufficient if we are solving problems whose solutions are of higher degree. Furthermore, the
band-diagonal matrix is only of degree one at the ends of the support. This is particularly
damaging if constraints are to be placed on the boundaries of the solution.

Given a complete set of basis functions P and their derivatives Ṗ , they are related by
differentiating matrix D in the following manner [29],

Ṗ = DP . (2.13)

Now defining the regularized differentiating matrix Dr,

Dr � Ṗ P T = DP P T. (2.14)

If the matrix P is complete, i.e., P P T = I then Dr = D.

If for example P is a truncated basis set, then Dr is a regularizing differential estimator, a
projection of D onto the span of the basis functions contained in P .

A differentiating matrix should be rank-1 deficient, i.e., it should have a single null vector
- the constant vector. However, the condition number of a differentiating matrix increases
with the degree of the polynomial being considered, this is a fundamental property of such
matrices. At some point the matrix starts to have additional null spaces which are asso-
ciated with numerical limitations, this effect is shown in Figure 2.6. Synthesizing D using
Equation 2.14 is stable using computation in double format up to degree d = 33. The ad-
ditional null spaces associated with the numerical resolution are a problem when solving
inverse problems. Consider solving the simple integration problem, e.g., integrating over a
number of inclinometer measurements ẏm to obtain a deflection,

Dy = ẏm. (2.15)

Solving for y yields,
y = D+ ẏm + null {D} α. (2.16)

where, D+ is the Moore Penrose pseudo inverse and null {D} is the null space of D re-
spectively. If numerical null spaces are present in addition to the constant vector, they will
lead to incorrect solutions of the simple task of performing numerical integration and the
numerical approach will be absolutely unsuitable for more complicated inverse problems.

5The differentiating matrix implicitly used within MATLAB can be obtained for an n point vector with
the following command [D, Gx] = gradient(eye(n));
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Figure 2.6: Rank deficiency of the differentiating matrix D as a function of the number of
nodes when D is synthesized using Equation 2.14. The matrix D is rank-1 deficient, as it
should be, up to 33 nodes.

To alleviate this problem, a local differentiating matrix is used when a large number of
points, e.g. n > 20, is required. A generalized algorithm to generate local differentiating
operators, which also works for irregularly placed nodes, were formulated. This requires
different estimators at each point along the computation. However, it is important to note
that, since the nodes do not change, these operators can be computed a-priori and do not
need to be generated at run-time; for this reason a more general approach, which enables the
use of varying basis functions for the differential operator instead of using the same Basis
function for the entire differential operator, was considered superior at the cost of numerical
efficiency.

The differentiating matrices used in this thesis are local operators with a predefined support
length ls and a number of basis functions nb. This enables the generation of both regularizing
and non-regularizing operators. Only odd support lengths are supported, since for even ls
the derivative is valid at interstitial points. The matrix D for an n point computation has
three implicit partitions:

1. the top partition of the matrix is calculated using the end point equations for the
beginning of the support for ns = (ls − 1)/2 points,

2. the middle part is a band diagonal matrix, with nb points, where nb = (2ns+1)/(n−ns),
for which a center point computation is required, and

3. the last part is, again, calculated using an end point equation for the end of the support
for ns points.

The structure of the three portions of D for the example of ls = 5 and n = 10 is shown in
Equation 2.17. All computations of the local derivative are of length ls, ensuring a constant
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(a) Global differentiating matrix (b) Local differentiating matrix

Figure 2.7: On the left hand side a differentiating matrixD for n = 10 points is computed for
the positive right half set of Tchebychev points. On the right hand side, a local differentiating
matrix D with ls = 5 for n = 10 points is computed for the positive right half set of
Tchebychev points.

approximation degree d = ls − 1.

D5,10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + + + + 0 0 0 0 0
+ + + + + 0 0 0 0 0
+ + + + + 0 0 0 0 0
0 + + + + + 0 0 0 0
0 0 + + + + + 0 0 0
0 0 0 + + + + + 0 0
0 0 0 0 + + + + + 0
0 0 0 0 0 + + + + +
0 0 0 0 0 + + + + +
0 0 0 0 0 + + + + +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.17)

Each of the three portions is generated by segmenting a local portion xl of length ls from x,
the vector of nodes, and generating the local differentiating matrix Dl(xl)

Dl(xl) = Ṗ (xl)P (xl) (2.18)

for (xl). At the start the top ns rows of Dl are used to form the top portion of D. In the
band diagonal portion a Dl is generated at each point and the center row of Dl is transferred
to the appropriate position in D and at the bottom, the last ns rows of Dl are used.

A local differentiation matrix for n = 10 generated for the positive right half Tchebychev
points with ls = 5 is shown in Figure 2.7a. The condition number of the local differentiating
matrix is two orders magnitude lower than for the global solution. The operator will be
precise for functions up to degree d = 4; e.g., the deflection of a cantilever with uniform load
is a quartic equation, so this operator would be sufficient.
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2.6 Generating Admissible Functions

Admissible functions are functions which fulfil the constraints associated with a boundary-
or initial-value problem. A homogeneous constraint requires the solution or some property of
the solution, e.g., a derivative, to be zero at a specific location. The approach taken here is
to define a set of constrained orthonormal basis functions Pc which span the complete space
of all possible solutions which fulfil the constraints. Consequently, any admissible function
ya is a linear combination of the basis functions contained within Pc,

ya = Pc s (2.19)

where, s is the vector of coefficients; more formally s is the spectrum of ya with respect to
Pc.

The constraints associated with initial- and boundary-value problems can all be formulated
as linear operators. Once again, using the constraints for the cantilever for demonstration
purposes: the first constraint y(0) = 0 requires the first value of y to be zero, formulated as

yT
a c1 = 0 (2.20)

with c1 = [1, 0, . . . 0]T ; the second constraint ẏ(0) = 0 requires the first derivative at the
beginning of the beam to be zero. Using D, as derived in the previous section, the present
constraint formulated as,

yT
a DT(1, :) = 0 (2.21)

and consequently c2 = D(1, :)T . Similarly, the third constraint, ÿ(0) = 0, can be defined
c3 = D2(end, :)T . All three constraints are concatenated to form a constraint matrix C =
[c1, c2, c3]. If any admissible function is to be generated, all the constrained basis functions
must fulfil the constraints, i.e.,

Pc
T C = 0 (2.22)

The task now is to generate a set of orthonormal constrained basis functions Pc from a com-
plete orthonormal set of basis functions P such that the conditions Pc

T C = (P X)T C =
XT P T C = 0 , Pc

T Pc = I are fulfilled and the lower triangular portion of X is zero.
If each admissible function fulfils the constraints, then P T C spans the null space of XT.
Applying the QR-decomposition on the Matrix P TC delivers the matrices Q1 and R1:

Q1 R1 = P T C. (2.23)

The matrix Q1 can be split into two partitions, where p is the rank of C:

1. Q1s = Q1 (:, 1 : p) containing the span of P T C

2. Q1n = Q1 (:, p+ 1 : end), containing the null space of P T C
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R1 is an upper triangular matrix, with zero entries in the bottom rows from p+ 1 until the
end. The matrix Q1n already contains the vectors of the null space of P T C, yet there is
still need for further ordering of the matrix. This is done by using an RQ-decomposition:

R2 Q2 = Q1n. (2.24)

R2 is the matrix X which is used for the computation of Pc:

Pc = P X (2.25)

1 [Q, R] = qr( P’ * C );

2 %

3 p = rank( C );

4 %

5 Q2 = Q(:,p+1:end);

6 %

7 [X,Q3]=rq( Q2 );

8 %

9 Pc = P * X;

10 %

Source Code 2.1: Code for the synthesis of the constrained basis functions.

The MATLAB code for the implementation of the constrained basis functions is presented
in Source Code 2.1. This formulation is completely generic and valid for any boundary
value problem. It delivers a complete set of admissible functions which span the space of
all solutions to the boundary conditions, i.e., all possible admissible functions are linear
combinations of Pc.

The matrix C defines the null-space of the constrained basis functions Pc. However, it does
not uniquely define the basis functions. Given n points and nc = rank {C } constraints,
there is a solution space of dimensionality ns = n − nc. There are multiple different sets
of orthonormal vectors which form a vector basis set for this space. The basis functions
P , from which Pc = P X are derived, provide the structure for the vector basis set. This
is demonstrated using the example of a doubly held beam with the constraints y(0) = 0,
ẏ(0) = 0, y(1) = 0 and ẏ(1) = 0. In Figure 2.8 two sets of constrained basis conditions
are shown: the first derived from the discrete cosine basis functions and the second from the
Gram polynomials. The two sets of basis functions are clearly different.
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Figure 2.8: The first three constrained basis functions of Pc for a doubly held beam with
the constraints, y(0) = 0, ẏ(0) = 0, y(1) = 0 and ẏ(1) = 0. The basis functions in red are
derived from the discrete cosine basis functions, in blue the basis functions from the Gram
polynomials are shown.
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2.7 Boundary Value Problems

A boundary value problem is characterized by a differential equation and one or more bound-
ary conditions. For example, the computation of the deflection of a doubly held beam is such
a problem: the Euler-Bernoulli differential equation describes the bending,

d2

dx2

(
EI

d2y(x)

dx2

)
− q(x) = 0, (2.26)

where y(x) is the deflection of the beam and q(x) is the distributed load. The constraints on
the ends are: y(0) = 0, ẏ(0) = 0, y(1) = 0 and ẏ(1) = 0. Consider the specific case when,

d4y(x)

dx4
− λ y(x) = 0. (2.27)

The discrete equivalent of which is

D4 y − λy = 0. (2.28)

This is, by definition, an eigenvector problem. The eigenvectors ofD4 are the bending modes,
which unfortunately cannot be computed directly. As is also the case with Sturm-Liouville
type problems, where the direct computation delivers unstable results6. However, the concept
of constrained basis functions can be applied to this problem and yield stable results. The
solution to the problem is a linear combination of a set of constrained basis functions y =
Pc s, where s is the spectrum with respect to Pc. Substituting into Equation 2.28 yields,

{
D4 Pc − λPc

}
s = 0. (2.29)

Multiplying by Pc
T yields,

{
Pc

T D4 Pc − λ I
}
s = 0. (2.30)

Since Pc is orthonormal, the eigenvalues of Pc
T D4 Pc are the same as for D4. Given s an

eigenvector of Pc
TD4 Pc, the eigenvectors ye of D

4 can be computed as,

ye = Pc s. (2.31)

That is, s is the spectrum of the eigen-functions with respect to the constrained basis func-
tions. In Section 2.6 it was shown that the constrained basis functions are not unique.
Consequently it is now necessary to determine the best set of constrained basis functions for
a specific boundary value problem. The spectra of the eigenfunctions of the above example
are given in Tables 2.1 and 2.2. From this data it is clear that fewer constrained Gram

6This is easily verified by generating the matrix D in MATLAB and computing directly the eigenvalues
and eigenvectors of D4.
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Modes
1 2 3

1 −0.99989 0 −0.014991
2 0 0.9981 0
3 −0.01507 0 0.99075
4 0 0.061566 0
5 −0.00043537 0 0.1343
6 0 −0.0034509 0
7 0 0 −0.012428
8 0 0 0
9 0 0 −0.00068759
10 0 0 0

Table 2.1: The first 10 coefficients of the spectrum of the first 3 eigenfunctions of Equa-
tion 2.29 with respect to the constrained Gram polynomials.

Modes
1 2 3

1 0.97419 0 0.22546
2 0 −0.93801 0
3 −0.20827 0 0.87975
4 0 −0.30903 0
5 −0.07647 0 0.36243
6 0 −0.13385 0
7 −0.035054 0 0.1746
8 0 −0.067349 0
9 −0.01823 0 0.093476
10 0 −0.037233 0

Table 2.2: The first 10 coefficients of the spectrum of the first 3 eigenfunctions of Equa-
tion 2.29 with respect to the constrained discrete cosine functions.

polynomials are required to describe the bending modes than for the constrained discrete
cosine basis. This will enable a higher degree of regularization without loss of accuracy.
Consequently, for this example, the constrained Gram polynomials are the basis of choice.

2.8 Inverse Boundary Value Problems

Inverse boundary value problems occur when a measurement is performed on the behaviour
of an inverse system described by a boundary value problem. Given the measurements,
one wishes to determine their causes or some other properties of the system. Consider the
monitoring of constrained structures using strings of inclinometers; the deflection y(x) of
the structure from the measured local gradients ẏm(x) is to be computed, while fulfilling the
boundary conditions. One proceeds to the solution as follows.
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2.8.1 Determine the constrained basis functions

The methods presented in Sections 2.6 and 2.7 are used to determine the most suitable set
of constrained basis functions Pc for the boundary value problem being considered.

2.8.2 Inverse problem as a least squares problem

The measurement problem is now formulated as a least squares vector problem. The solution
is formulated as a linear combination of the constrained basis functions, y = Pc s and
the relationship between the desired result y and the vector of measurement values ẏm is
formulated,

ẏm = Dy, (2.32)

= DPc s. (2.33)

Solving for s,

s = {DPc}+ ẏm (2.34)

and evaluating y yields a solution to the boundary value problem,

y = Pc {DPc}+ ẏm. (2.35)

Now defining L � Pc {DPc}+ yields,

y = L ẏm. (2.36)

This is a very significant result. It states that the solution to the inverse problem of per-
forming measurements on a system described by a boundary value problem can be solved as
a linear matrix operator L. This operator is invariant given a specific measurement problem
and can be computed a-priori, so that at run-time it is only necessary to perform one matrix
multiplication. The worst case number of FLOPS required to perform this computation for
n sensors is,

W (n) = (2n− 1) n. (2.37)

For example, given a string of n = 31 sensors W (n) = 1891 FLOPS are required to solve
the inverse problem. This is a very modest number of operations, but more importantly it
is constant and known a-priory. This makes this method suitable for real-time embedded
computations.
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2.9 Regularization

”In general terms, regularization is the approximation of an ill-posed problem by a family of
neighbouring well-posed problems.” [8]. In any real world system uncertainties are present
and need to be taken into account. When modelling real world applications it is necessary
to find a good approximation to a vector x satisfying an approximation equation

Ax ≈ y, (2.38)

where y is the measurement result perturbed by noise. A may be a discrete approximation,
or a matrix of basis functions at given points. This kind of problem arises in many fields of
science and the vector x has a solution of the form

x = A+ y, (2.39)

where A+ is the Moore Penrose Pseudo Inverse of A. It ensures a solution which is of
minimum norm. However, it is only one of many different solutions. The function given in
Equation (2.39) is a solution using the least squares method, which is a so called regularization
techniques. Regularization techniques are used to obtain meaningful solution estimates for
such problems [25]. This form of regularization is a very basic method and a standard
approach to the approximation solution of overdetermined systems. It means that the overall
solution minimizes the sum of squared residuals, where a residual is the difference between
an observed and the fitted value:

min

y
E = ||Ax− y||2, (2.40)

where || · || is the Euclidean norm. Another very typical method of regularization is the
Tikhonov regularization, after Andrey Nikolayevich Tikhonov. In order to be able to give
preference to a certain solution with desirable properties, the regularization term is included
in the minimization:

E = ||Ax− y||2 + ||αΓx||2, (2.41)

where Γ is the Tikhonov matrix that can be chosen to suit the current problem. In most
cases, though, it’s an identity matrix. The solution to this regularization can be written out
as seen in Equation (2.42).

x = (ATA+ αΓT Γ)−1 AT y (2.42)

These are the two most important kinds of regularization. There are many methods which can
be used to implement regularization. In this thesis we limit regularization to the application
of the least squares differences method as well as the use of admissible functions. To do so,
our desired solution y is split into a homogeneous and a particular solution; the particular



CHAPTER 2. FRAMEWORK 34

solution containing information of constraints and the homogeneous solution consisting of a
matrix of basis functions and its spectrum (see Equation (2.55)).

2.10 Covariance propagation for linear operators

The covariance Λy of a vector y is defined as,

Λy � {y − E(y)} {y − E(y)}T , (2.43)

where E(y) is the expected value of y. If y = Lx, then,

Λy = {Lx− E(Lx)} {x− E(Lx)}T , (2.44)

= L {x− E(x)} {x− E(x)}T LT (2.45)

= LΛx L
T, (2.46)

where Λx is the covariance of the vector x. Consequently, the covariance propagation can
be computed for all the solutions presented in this paper, because they are all implemented
as linear operators.

2.11 Mathematical Framework to the Solution of a Bound-

ary Value Problem

The problem encountered is the availability of the inclinometer measurement and the wish to
find the original curve’s deflection knowing the position, as well as other boundary values, at
some points along the curve. This means, a special class of inverse boundary value problems
is treated. The system being monitored, typically a structure, is modelled by a boundary
value problem,

Ly − λy = 0 given C y = d.

Whereby, L is the linear differential operator for the system, λ represents the eigenvector of
y and C is the constraint matrix of the form

C = [c1, c2, c3, ..., cn] , (2.47)

ci representing a vector of constraints. The vector d represents the boundary values, i.e.

ci
T y = di. (2.48)
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The system considered in this thesis is being monitored by a vector of n sensors. The ith

sensor is at the position xi, and yields the measurement value ẏmi, which is perturbed.
The concatenation of the measurement values ẏmi forms the measurement vector ẏm

T =
[ẏm1, ẏm2, ..., ẏmn] and the position vector xT = [x1, x2, ..., xn]. The relationship between
the measurement vector ẏm and the dependent variable y is also governed by a differential
equation

Lm y − (ẏm + ε) = 0, (2.49)

where ε represents the perturbation obtained due to noise. Measurements with inclinometers
are a special case of this type of problem, where Lm = D, the differential matrix. Therefore,

Dy − (ẏm + ε) = 0. (2.50)

The task now is to determine the optimal y. As will be seen, there are a number of figures
of merit with respect to which optimality can be determined. The simplest solution to the
measurement problem is to solve the differential equation

dy

dx
= ẏm (2.51)

Consequently,

y(x) =

∫
ẏm dx+ c0, (2.52)

c0 being the constant of integration. As we have a discrete number of sensors, a discrete
solution to integration must be formed. The problem can be formulated as a least squares
problem:

E =
min

y
||Dy − (ẏm + ε)||22. (2.53)

The solution to this problem is well known [12]:

y = D+(ẏm + ε) + null{D}α. (2.54)

For the specific problem at hand, it is known that null{D} = 0, which is why this term is
neglected in the calculations in this thesis. In order to simplify calculations, the perturbation
ε is left aside as a vector for itself. Instead it is assumed that the vector of the inclinometer
measurement ẏm, is, as any real world measurement, perturbed.

This method takes no advantage of the information contained in the equation for the bound-
ary value problem, which could be used for regularization. It may be used as a base for
comparison of other solutions. In order to include perturbation and add regularization to
the problem, we use admissible functions. The admissible functions of the BVP used in our
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measurements are defined as a combination of the particular and the homogeneous solution,
yc and yh respectively, i.e.,

y = yc + yh. (2.55)

Here yc represents a truly arbitrary function fulfilling the given boundary conditions, here:
y1 and yn. As all the non significant entries vanish during the matrix multiplication, the
vector is freely selectable, with the only exception of the entries at the position of the known
boundary values. Yet it seems easiest and most lucid to use a vector full of zeros, except
for the entries at both, the beginning. and the endpoints and with the information of these
values available, the vector yc can be predefined as

yc =

⎡
⎢⎢⎢⎢⎢⎣

y1
0
...
0
yn

⎤
⎥⎥⎥⎥⎥⎦ . (2.56)

By splitting up the vector y into a particular and a homogeneous part, we can add regu-
larization to our problem, which is obtained using the homogeneous solution yh. yh fulfils
the homogeneous boundary conditions and is described by the basis functions Pc and the
spectrum s. Now we can rewrite Equation (2.55):

y = yc + Pc s. (2.57)

In this thesis, I present two ways of solving this problem. The derivation of the solution, as
well as their performance in reconstruction is presented below.

2.12 Deriving Operators for Reconstruction

While working on this thesis, two solution approaches to reconstruction were derived and
tested. Measurements performed using inclinometers deliver perturbed values for the spatial
gradient at specific points xi. Many structures can be modelled using these measurements
and curve reconstruction. In the special case of a cantilever, the deflection can be modelled
by a fourth order polynomial, as defined by the Euler-Bernoulli-Equation.

The first approach taken for the solution of the problem was the reconstruction using error
minimization in the gradient space of the curve, as both, the measurement done by the
inclinometers as well as the deflection of the beam lie in the gradient space.

This does not accompany a mean error in the space of the curve itself, which brings us to
the second solution. The second solution is a variational solution minimizing the error in
the space of the curve.
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The function y used for demonstration of the reconstruction in this section is a function of
arbitrary values between zero and one (see Figure (2.9)). It is assumed that the first and
the last values of y are known and can be used for reconstruction purposes. This means
that the constraints placed on each reconstruction for the current problem are positional
constraints. The particular solution yc is defined as explained in Equation (2.56). In the
following examples, only positional constraints at the beginning and the end point were
defined. Hence, the constraint matrix CT is defined as follows:

CT =

[
1 0 ... 0 0
0 0 ... 0 1

]
; (2.58)

The constraints matrix is a combination of all constraint vectors. The constraint vectors
contain information about the position of the constraint as well as of the nature of the
constraint itself. It is necessary to note that the constraints placed onto the reconstruction
can be of varying nature. It can be a positional constraint, which is a constraint in the
space of the curve, as well as an inclination constraint, which is then in the space of the first
derivative. A constraint can be defined in any space desired. In Table 2.2 the MATLAB
source code of a constraint matrix with positional constraints on the end points, as well as
a constraint in the first derivative on the first point is listed. Furthermore the code for the
implementation of the particular solution is given.

Figure 2.9: The simulated curves y, ẏ and ẏm. The values for y are simulated using the ’rand’
function in MATLAB. The values for the vector ẏ are retrieved by applying the differential
operator D onto the vector y. ẏm is created by adding random, normally distributed noise
of the magnitude of 4% of ẏ to itself.
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1 %

2 %Define the constraint vectors

3 c1 = zeros (noPts , 1);

4 c1 (end) = 1;

5 c2 = Dc(1,:);

6 %

7 %Put the two vectors into a matrix

8 C = [c1, c2];

9 %

10 %define the particular solution

11 yc = zeros (noPts, 1);

12 yc (1) = y (1);

13 yc (end) = y (end);

14 %

Source Code 2.2: Code for the synthesis of the constraints.

2.12.1 Solution 1 - solving using admissible functions

In this section the solution of the equation using admissible functions for the BVP is inves-
tigated. This approach yields a regularization based on spectral regularization.

The functional used in Solution 1 for error minimization lies in the gradient space, i.e. in the
space of the deflection of the curve. The problem is defined by a discrete number of points,
as well as a discrete function. Writing out the discrete formulation for the error functional
yields,

E = ||ẏm −D (yc + Pc s1) ||22. (2.59)

ẏm represents the inclinometer data from the measurement, D is the differentiating matrix,
yc is the constraint vector, which, in the special case of the cantilever with constraints at
the both ends of the beam, contains information only in the first and the last entry. Pcs1
represents the desired function y, Pc being the admissible constrained basis and s1 the
unknown vector. s1 is the only unknown in this equation. In order to find a constant vector
s1 minimizing the error functional above, we derive it with respect to s1 and set it equal to
zero. This yields,

s1 = (DPc)
+ (ẏm −Dyc) + null{DPcα}. (2.60)

The vector s1 is computed using Equation 2.60 and then back substituted into Equa-
tion (2.57):

yr1 = yc + Pc s1, (2.61)
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The results of the reconstruction with Solution 1 using the derivative values, representing
the measured inclinometer data from Figure 2.9 is presented in Figure 2.10. It can be seen
that the reconstruction for this arbitrary curve is valid. The mean error of the reconstruction
is only 4% for this example.

Figure 2.10: Reconstruction of curve y using Solution 1. y is the arbitrary function which is
to be reconstructed of its calculated derivative ẏ including noise, as displayed in Figure 2.9.
yr1 is the reconstruction of the noisy function ẏm and ˙yr1 is the newly calculated derivative
of the reconstructed curve yr1. ne1 is the mean error of the reconstruction, compared to the
original function without noise.

2.12.2 Variational Solutions

The solution presented to Equation (2.59) minimizes the difference between the square of the
computed derivative and the measured gradient, i.e. the solution lies in the gradient space.
The properties of the least squares (LS) algebraic solution will ensure that the mean error in
the gradient is zero. However, this does not imply that the mean error in the curve is zero.
Consequently, the solution for the curve could be biased. The aim now is to investigate an
alternative solution which perform the LS approximation in the space of the curves.
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There is a further issue which may now need to be considered; there are two common methods
of applying inclinometers:

1. the inclinometers are mounted directly onto a structure which is deformed. In this case
the measurement is truly a gradient measurement;

2. the inclinometers are mounted onto a chain of rods. In this case the measurement is
a peace wise linear approximation to the gradient (first derivative). Such solutions are
commonly used for monitoring ground movement in bore holes [22].

Derivation of the Variational Solution

It is important to take the different differentiating matrices for each of these cases into
account. Let us define:

D: generic differentiating matrix, i.e. a discrete approximation of a differential operator
Dc: continuous differential operator (local gradient)
Dd: piece wise linear differential operator (linear approximation)

It is now also necessary to determine a method of computing a discrete indefinite integral as
required to solve the simplest differential equation,

d

dx
y(x) = m, (2.62)

m being the measured data. Integrating yields,

y(x) =

∫
{m} dx+ c0, (2.63)

c0 being the constant of integration. The error can be formulated as a discrete LS functional,

E = min
y
||Dy − ẏm||22, (2.64)

where ẏm is the discrete equivalent of m. The solution to the above equation is known to be

y = D+ ẏm + null{D}α, (2.65)

null{D}α being the discrete constant vector of integration. Now formulating the problem
of reconstructing the curve from measured local gradients. The measured curve can be
reconstructed as:

ym(x) =

∫
{m} dx+ c0. (2.66)
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Note, this is an indefinite integral. The difference to the continuous curve is then

e(x) = y(x)− ym(x) (2.67)

The functional which now describes the total error is,

E(x) =

∫ b

a

{e2} dx+ c1. (2.68)

Back substituting in e from Equation (2.67) yields,

=

∫ b

a

[∫
m dx+ c0 − y(x)

]2
dx+ c1. (2.69)

This is the equation which needs to be approximated by a discrete equivalent. The discrete
equivalent e for e is:

e = y − (
D+ ẏm + null{D}α) . (2.70)

Furthermore,

e2 = e ◦ e, (2.71)

the symbol ◦ denotes the Hadamard Product. It is now necessary to find a discrete equivalent
to the integral over e2. Given the integrator matrix Ac = Dc

+, we may define the integral
over the complete curve as,

E = [Ac(end, :)−Ac(1, :)] e
2. (2.72)

Defining

a � [Ac(end, :)−Ac(1, :)]
T (2.73)

yields,

E = aTe ◦ e. (2.74)

Unfortunately, the Hadamard operator is a non-analytic function so that differential calculus
is not directly applicable for finding an optimal solution. However, Equation (2.74) can be
reformulated as

E = eTAe, (2.75)



CHAPTER 2. FRAMEWORK 42

whereby A = diag(a). This is a weighted least squares problem and true for any of the
differential matrices D, Dc or Dd presented above. Further on in this thesis, the calcula-
tions given above will be applied to measurements performed on a laboratory set-up. The
laboratory consists of a beam which will simulate various deflections. These deflections will
be measured both by inclinometers and, for verification purposes, by the Light Sectioning
Method. This will give us the opportunity to validate the various solutions presented here.
However, in the laboratory set-up, only a gradient measurement was performed. The piece
wise linear approximation will not be dealt with in the practical part. As we will not apply
the piece wise linear approximation to the practical set-up, the solutions will be derived for
the gradient measurement.

Variational solution with spectral regularization

The operator described in this section will perform the reconstruction using minimization
in the space of the curve y, in order for the mean error to be zero in the space of the curve
instead of in the space of the gradient. The unknown of the function,

yr2a = yc + Pc s2a, (2.76)

to which we seek a solution, is the vector s2a. In equation (2.65) y was defined as y =
D+ m+null{D}α. For the calculation in this section we will define m to be the measured
data ẏm. null{D}α is 1β2 and D is replaced by the newly defined continuous differential
operator Dc. This brings us to the equation

y = Dc
+ẏm + 1β2 (2.77)

To minimize the error of the difference between y and yr2a we define the following functional
E :

E = || (Dc
+ẏm + 1β2

)− (yc + Pcs2)||22, (2.78)

where Dc
+ is the Moore Penrose pseudo-inverse of the differentiating matrix Dc. To find

s2 minimizing the error functional at hand, the error functional needs to be derived with
respect to the unknowns in this equation. There are two unknowns in the equation, which
is why the solution is not as trivial as in the previous section. Two different approaches of
deriving the two functionals are going to be dealt with in detail:

1. Solution 2a, using bloc matrices for the derivation;

2. Solution 2b, deriving the functional by either unknown.
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Solution 2a - Bloc Matrices Now we use the knowledge of solving an equation of the
form

E = || (A−Bγ) ||22. (2.79)

γ minimizing the error of Equation (2.79) is known to be γ = B+ A. The aim in this section
is to apply this knowledge to the functional from Equation (2.78). As there is not only one,
but two unknowns, both are combined in a partitioned vector γ2a:

γ2a =

[ −β2a

s2a

]
(2.80)

Now we rewrite the functional of Equation (2.78), where B is defined as B =
[
1 Pc

]
:

E = || ((Dc
+ẏm − yc

)−Bγ2a

) ||22, (2.81)

On the left hand side of the functional (Dc
+ẏm− yc) we have known matrices, on the right

hand side we have a known matrix B multiplied by an unknown constant vector γ2a, for
which we seek a solution. The solution to such a problem is known to be:

γ2a =
[
1 Pc

]+ (
Dc

+ ẏm − yc

)
. (2.82)

As β2a is a constant, and therefore only the first entry of the vector γ2a, s2a can be computed
as

s2a = γ2a (2 : end) . (2.83)

Now the reconstruction can be calculated according to Equation (2.76).

Solution 2b - Seperate Derivation The solution presented in Section 2.12.2 is a valid
solution for the reconstruction problem at hand. In order to make the calculation more
efficient, a different solution approach was considered. The functional is

E = || (Dc
+ẏm + 1β2b

)− (yc + Pcs2b)||22. (2.84)

At first the function’s derivative is computed with respect to s2b and β2b and set equal to
zero, which leads to Equations (2.85) and (2.86), respectively:

β2b =
1

n
1T

(
yc + Pcs2b −Dc

+ẏm

)
(2.85)

s2b = Pc
T
(
Dc

+ẏm − yc + 1β2b

)
. (2.86)
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Substituting (2.86) into Equation (2.85) leads to (2.87) and (2.88), where c represents the
number of constraints and n the number of points. I stands for the identity matrix, 1 for a
row vector of ones.

β2b =
1

c
1
(
PcPc

T
(
Dc

+ẏm − yc

)
+ yc −Dc

+ẏm

)
(2.87)

s2b =

(
I − 1

n
Pc

T11TPc

)−1
Pc

T

[(
I − 1

n
11T

)(
Dc

+ẏm − yc

)]
. (2.88)

Defining intermediate variables, such that

s2b = M−1Pc
TK, (2.89)

where

M � I − 1
n
Pc

T11TPc

K �
(
I − 1

n
11T

) (
Dc

+ẏm − yc

)
.

Now considering the inverse term of M ; the inverse of a function of the form

A = B − uvT, (2.90)

is known to be:

A−1 = B−1 − B−1uvTB−1

1 + vTB−1u
. (2.91)

This knowledge can be applied to find the inverse of the matrix M . Let us define

A � M

B � I

B−1 � I

u � − 1
n
Pc

T 1

vT � 1T Pc.

Back substituting these terms into Equation (2.91) and defining w � Pc
T 1, M−1 can now

be expressed as

M−1 = I −
1
n
(I(−w)wTI)

1− 1
n
wTIw

. (2.92)

Simplifying and using the information that n−wTw = c yields,
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M−1 = I +
Pc

T11TPc

c
. (2.93)

Now the term K is dealt with in more detail. Multiplying out the terms in the brackets
yields,

K =

[
Dc

+ẏm − 1

n
11T Dc

+ẏm − yc +
1

n
11T yc

]
. (2.94)

11T is an nxn matrix of ones, where n is the number of points. The computation 1
n
11T Dc

+

corresponds to calculating the mean of the columns of Dc
T . However, the columns of Dc

T

are mean free. Consequently,

1

n
11T Dc

+ = 0, (2.95)

and with this

1

n
11T Dc

+ẏm = 0. (2.96)

The multiplication of a vector of ones, 1, and the vector yc, divided by the number of
elements n delivers the mean value, i.e., ȳc. This means

ȳc =
1

n
1T yc. (2.97)

Based on latter information, Equation (2.88) can be reformulated as follows:

s2b =

(
I +

Pc
T11TPc

c

)
Pc

T
(
Dc

+ẏm − yc + 1ȳc

)
(2.98)

Having found the new s2b, we can calculate the reconstruction as follows:

y = yc + Pc

(
I +

Pc
T11TPc

c

)
Pc

T
(
Dc

+ẏm − yc + 1ȳc

)
(2.99)

PcPc
T yc delivers a matrix full of zeros, consequently,

Pc

(
I +

Pc
T11TPc

c

)
Pc

Tyc = 0. (2.100)

Now we can write the final formulation of the reconstruction s2b as follows,

s2b =

(
I +

Pc
T11TPc

c

)
Pc

T
(
D+ẏm + 1ȳc

)
. (2.101)
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Solution 2a and 2b in comparison As already stated above, Solutions 2a and 2b are
principally the same. However, due to the computation of irrelevant terms, and therefore
unnecessary computational effort in Solution 2a, it was necessary to derive Solution 2b. In
Figure 2.11 you will find the reconstruction using Solution 2 and each solution approach. It
demonstrates that Solution 2a and Solution 2b are in fact the same in terms of reconstruction
ability. The only difference in the two solutions lies in their numerical efficiency, which is
better for Solution 2b. This is the reason why s2b from Equation (2.101) will be used for
further reconstruction calculations for Solution 2.

Figure 2.11: Reconstruction of y using Solution 2a and 2b. In the first plot the original
function y and the reconstructions of its derivative yr2a and yr2b using s2a and s2b from
Equation (2.83) and (2.101), respectively, are shown. One can see that both solutions deliver
the exact same reconstruction, as well as the same mean error. In the second plot the
derivative of the vector y, ẏ, which was used for reconstruction, is displayed. Furthermore
the derivatives of the reconstructed curves were calculated according to the function ẏr2a,b =
Dyr2a,b, and plotted onto the graph.



Chapter 3

Numerical Simulation

3.1 The solutions in comparison

The examples for the reconstruction given in Section 2.12.1 and 2.12.2 have an arbitrary,
non-continuous function as its original function. This function was chosen only for demon-
stration purposes. For further verification and comparison of the alternative solutions, the
reconstructions using a polynomial function, as well as the result of a Monte-Carlo simulation
for the reconstruction of polynomials and an arbitrary function will be discussed in detail in
this section.

3.2 Reconstruction of the arbitrary function y

The most generic way of examining the reconstruction operators is to use a completely
arbitrary curve y, as can be seen in Figure 3.1. To do so, it was necessary to generate a
random vector y on 7 points, representing an arbitrary curve. Then the derivative was taken
using the differential operator Dc from Equation (2.18), which delivers the derivative, ẏ,
of the curve. Any real world measurement is perturbed in some way, so it is assumed that
the present measurement is biased by some kind of noise as well. This is why noise of two
percent of the range of ẏ is added to the derivative. It has to be said, that when computing
the derivative of a vector like y, it was observed that it has very large values at both end
points. This is why for the computation of σ these values are left aside when computing the
range of the derivative, otherwise the noise generated would be too large for the simulation
of a measurement. Adding the generated noise to the derivative ẏ provides the simulated
real life measurement ẏm, see Figure 3.1. The MATLAB code for generating such a function
is given in Table 3.1.

47
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1 %

2 % define the number of points desired

3 numPts = 7;

4 %

5 % compute the vector x

6 x = linspace(0,numPts, numPts+1);

7 %

8 % compute the arbitrary vector y and scale it

9 y = randn(numPts+1,1);

10 y = y/range(y);

11 y = y- min(y);

12 %

13 % compute the Gram Polynomials

14 [G,dG] = gramPolyDiff(numPts+1,1);

15 %

16 % compute the Differentiating matrix Dc

17 Dc = dG * pinv(G);

18 %

19 % compute the simulated measured derivatives

20 dy = Dc * y;

21 %

22 % compute sigma for noise generation

23 sigma = 0.02 * norm( dy );

24 %

25 %add noise to the derivative:

26 dym = dy + sigma * randn( numPts+1, 1);

27 %

Source Code 3.1: Code for the synthesis of the constraints.

For the current reconstruction problem, positional constraints were placed onto the beginning
and endpoint of the vector. To implement the particular solution, the position at which the
constraints were placed needs to be known. Since the function which is to be reconstructed
is in fact known, we know the positional constraints and with that the particular solution
yc can be defined according to Source Code 2.2.

The reconstruction operators are applied to the perturbed inclinometer measurement, of
which the results are given in Figure 3.2. The mean error of each reconstruction is given in
this figure. It can be seen that Operator 1 reconstructs better than Operator 2. The mean
error of Operator 1 is 0.1098, while the reconstruction using Operator 2 deviates from the
original function by a mean error of 0.14936.
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Figure 3.1: Here the function y used for reconstruction is given. The curve was generated
on 8 points (0 to 7) using the randn-function in MATLAB. ẏm, the simulated measured
derivative is plotted ontop of the simulated derivative without noise, vector ẏ is shown in
red in the bottom subplot.

Figure 3.2: In this image one can see the reconstructed points yr1,2, in red and blue re-
spectively, plotted onto the original function y. The mean error of the first reconstruction
is ne1 = 0.1098, the one of the second reconstruction is ne2 = 0.14936. This mean error is
always related to the performance of the reconstructions, as well to the noise generated when
calculating ẏm. The noise was generated with σ = 0.15583, so the mean errors ne1 and ne2

are in fact plausible results.
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In Figure 3.3 the error of each reconstruction, as well as the error of their derivatives is
presented. The course of the error is similar for both reconstructions, yet they differ in terms
of magnitude. This is caused by the distribution of the noise onto the function, which means
that the reconstruction is proportional to the measured data. The error of the beginning
and end point of the reconstructed functions yr1,2 is zero, which makes perfect sense because
that was our known boundary condition for the reconstruction. The derivatives of the
reconstructions have large errors on both edges, since the generic curve is not polynomial
and the implied nature of the matrix differential operator is polynomial. The first method of
reconstruction represents the original function best, i.e. is able to handle noise better than
the second operator.

Figure 3.3: In the upper plot, the error of the reconstruction in the space of the curve can
be observed. In the lower plot the reconstruction error of the derivatives can be seen. The
greatest error in the derivative space is at the Displacement x = 0 and x = 7. This is
caused by the differential operator D. Due to the implied polynomial nature of the matrix
differential operator the derivative at the edges of a function is especially difficult to compute.



CHAPTER 3. NUMERICAL SIMULATION 51

3.3 Polynomial Reconstruction

In the real application we are examining the deflection of structures, e.g., beams etc. These
are governed by the Euler-Bernoulli differential equation; the solutions which are known to
be polynomial in nature. Hence, deflection curves and their derivatives are synthesized from
polynomials.

The first step taken for the simulation was generating a polynomial y of degree 4 on seven
points from constrained polynomials i.e. y = Bcα, representing a deflection according to
Euler-Bernoulli. Then the steps explained in the previous sections are followed:

1. calculate derivative using operator Dc from Equation (2.18);

2. generate noise of two percent of the range of ẏ;

3. add noise to ẏ, denoted as ẏm;

4. define boundary conditions

For the problem at hand, the beginning and the end points were chosen as fixed points and
are therefore used as boundary conditions in the space of the curve. These same boundary
conditions were used for each reconstruction. The reconstruction operators are applied to
the perturbed inclinometer measurement, of which the results are given in Figure 3.5 and 3.6.
As foreseen, the mean error of each reconstruction is of the same magnitude as σ used for the
noise simulation. In fact, σ = 0.078842, where ne1 = 0.023277 and ne2 = 0.052757, which
means that during reconstruction the effective noise is diminished.

Figure 3.4: Polynomial y and its derivative ẏ, in the bottom subplot, calculated using the
differentiating matrix D. On top of ẏ the vector ẏm, representing the measured data, is
displayed in red.



CHAPTER 3. NUMERICAL SIMULATION 52

Figure 3.5: The original polynomial y and its reconstructions yr1 and yr2 in red and blue,
respectively.

Figure 3.6: In this figure the reconstruction errors are plotted. In the upper plot, the
reconstruction error E of the reconstructions in the line space can be observed. Here it can
be seen that the respective errors of each function are, at a maximum, close to two percent,
which is very small considering that the simulated original data had an error of four percent.
In the lower subplot the errors in the derivative space are plotted.
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In Figure 3.6 the error of each reconstruction, as well as the error of their derivatives is
presented. It can be seen that the error distribution is proportional for each reconstruction.
However, for Reconstruction 1 it is much lower than for Reconstruction 2. Yet, one recon-
struction is not enough to verify the operators. To be able to make a statistical statement,
a Monte-Carlo simulation is performed in Section 3.5.

3.4 Statistical evaluation

The results of the Monte-Carlo simulation are used for statistical evaluation. The recon-
structions are going to be compared in various ways. The first part is to evaluate the
reconstruction of each reconstruction point along the curve. This will give information of
whether or not there is a systematic error to be encountered. The reconstruction errors of
each point are going to be compared in terms of their

1. mean / expectation value (α1),

2. standard deviation (α2),

3. skewness (α3),

4. kurtosis (α4).

The second step is the evaluation of the entire reconstruction for each simulation. For that
the Euclidean Norm of each reconstruction is taken and afterwards compared in terms of its

1. mean value (x̄),

2. mode value (xm),

3. median value (x0.5).

This gives information of the general reconstruction ability of each reconstruction operator.

Mean / Expectation Value (α1, x̄):

”The mean or expectation value of a random variable is the sum of all possible values xi of
x multiplied by their corresponding probabilities”[5]. It is mathematically defined as

α1 = x̄ =
n∑

i=1

xiP (xi). (3.1)

Knowing the mean of the error distribution of a reconstruction operator one can make a
statement on its performance as well as on the error likely to be encountered. The lower the
mean value of the error, the better the result of the reconstruction.
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Standard Deviation (α2)

The standard deviation is defined as ”The positive square root of the variance ... It is a
measure of the average deviation of the measurement x from the expected value”.[5]. The
standard deviation has the definition:

α2 =
√
var(x) (3.2)

It defines the likelihood of the error, calculated by the mean, to occur. The standard devia-
tion has the same dimension as x and is therefore identified with the error of the measurement:

α2 = δx. (3.3)

Skewness (α3)

”The third moment about the mean is sometimes called skewness ... It is positive (negative)
if the distribution is skew to the right (left) of the mean. For symmetric distributions the
skewness vanishes” [5]. In the case of a mean error greater than zero, a positive skewness
means, that the decline on the side to zero is sharper than the decline on the right side of
the mean. The skewness of a normal distribution is zero. It is a measure of asymmetry of
the distribution function. (Also see Figure 3.7).

Figure 3.7: In this figure an example for data with normal distribution, data with positive
skew and data with negative skew is given.

Kurtosis (α3)

”The kurtosis α4 describes how strongly a bell-shaped distribution is curved and thus how
steep the peak is”[3]. Whereby a normal distribution has a kurtosis value equal to three. A
value greater than three has a steeper peak and thence fat tails. A kurtosis value smaller
than three results in a flat distribution and tails which are quite thin, see Figure 3.8.
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Figure 3.8: In the first subplot of this figure (from left to right) one can see a data distribution
with normal distribution, i.e. with kurtosis = 3. In the second subplot a data distribution
with kurtosis = 2.6, i.e. kurtosis smaller than 3 is shown. On the right a distribution with
kurtosis = 3.7, i.e. kurtosis greater than 3 is given.

Euclidean Norm

”The Euclidean norm or the absolute value of a vector is

|a| = ||a||2 = a =
√
aTa =

√∑
j

a2j” (3.4)

[5]. The norm is a function that assigns a positive length or size to each vector in a vector
space. In a 2-dimensional space where vectors are usually drawn as arrows, the Euclidean
norm assigns the length of the arrow to the vector. By taking the norm of each reconstruction
one can make a statement on the average level of achievement, i.e. the average error of
reconstruction.

Mode Value (xm)

”The mode xm (or most probable value) of a distribution is defined as that value of the
random variable that corresponds to the highest probability:

P (x = xm) = max. (3.5)

[5]. It is hence the value with the highest occurrence. The mode is not necessarily a unique
number, however in terms of the computations done in this thesis it is, because the distri-
bution of the present example is unimodal. Unimodal is a distribution with only one local
maximum.
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Median Value (x0.5)

”The median x0.5 of a distribution is defined as that value of the random variable for which
the distribution function equals 1/2:

F (x0.5) = P (x < x0.5) = 0.5” (3.6)

[5]. In other words, the median value is the value below which 50% of the values fall.
The median is resistant towards outliers, which makes it a good dispersion measure and is
therefore a good alternative to the mean value. The median value of our reconstruction
errors is considered a ’good’ result, when it is close to zero.

3.5 Monte-Carlo Simulation

The reconstructions presented up until now were simulated using functions without varying
noise. In order to be able to make statistical statements on the performance of the reconstruc-
tion functions on noise behaviour, a Monte-Carlo simulation 1 is performed. Two different
curves were used for implementation: for the first simulation a curve y with 8 arbitrary
values in the range from zero to one, for x = 0...7, is used (see Figure 3.1). The constraints
placed on the reconstruction are positional constraints on the end points; the constraints
were y(0) = 0 and y(end) = 0.5924. The second Monte-Carlo simulation is done using a
polynomial of degree 4, evaluated on 8 (x = 0...7) points with the constraints y(0) = 0.9994
and y(end) = 0, whereby y(0) represents the first, y(end) the last entry in the y-vector (see
Figure 3.4). Both simulations use the data of 10.000 reconstructions with varying noise.

3.5.1 Monte-Carlo Simulation - arbitrary curve y

The first Monte-Carlo simulation was performed using the arbitrary curve y and its derivative
ẏ see Section 3.2, Figure 3.1. It should be noted that the Gaussian noise is added to the
derivative of the curve, i.e. ẏ, and not to y. This enables the evaluation of the behaviour of
the reconstructions with respect to noise.

The results of the MC simulation for the arbitrary curve reconstruction are shown in Fig-
ure 3.9. For the simulation 10000 iterations with random noise having a standard deviation
of σma = 0.1558 was added to the simulated inclinometer measurement2. The mean recon-
struction of all simulations and the standard deviation of each node is given. The distribution
of the standard deviation is shown in Figure 3.10. For the statistic evaluation of both op-
erators, a histogram of the norm of the reconstruction error is given in Figure 3.123. The

1”The use of random numbers in computer programs is often called the Monte Carlo method” [5]. Here
the Monte Carlo Simulation is referring to a method of reconstructing a function various times in order to
be able to make a statistical statement.

2The MATLAB function randn was used to generate the vectors of random noise
3The curve fitted to the histogram is generated using the fitdist and gevpdf function provided by MATLAB
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code for fitting such a distribution function is given in Source Code 3.2. The most significant
results are:

1. both reconstruction methods are mean free, i.e. both reconstruct the expected value
of the curve correctly;

2. the statistical properties of reconstruction method 1 (a discrete Rayleigh Ritz method)
are constantly marginally better than for method 2 (a variational solution), see Ta-
ble 3.1 for a summary of the descriptive statistics.

Figure 3.9: Results of the Monte-Carlo simulation with the standard deviation of yr1 and yr2,
i.e. α21 and α22, respectively. 10000 iterations were performed. The mean reconstructions
α11 and α12 are given in blue (o) and red (x), respectively. The standard deviations α21

(blue) and yα22) (red) are plotted in bars, multiplied by a factor 3. The original function y
is given in black. The constraints placed on the reconstructions are y(0) = 0 and y(end) =
0.5924.

1 %fit distribution to the histogram of the error vector erV using ’gev’ -

generalized extreme value

2 fit = fitdist(hist(erV),’gev’);

3 %

4 %extract parameters (param(1) = k; param(2) = sigma, param(3) = mu)

5 for i = 1:3

6 param(i) = fit.Param(i);

7 end

8 %

9 %generate y

10 y = gevpdf(x,param(1),param(2),param(3));

Source Code 3.2: Code for synthesis of the distribution fit for the histogram.



CHAPTER 3. NUMERICAL SIMULATION 58

Reconstructions 1 2
mean error α1 0.0000 0.0000
standard deviation α2 0.0317 0.0358
skewness α3 0.0047 0.0088
kurtosis α4 2.9722 2.9809
mean norm error x̄ 0.0940 0.1065
mode norm value xm 0.0735 0.0866
median norm value x0.5 0.0863 0.0994

Table 3.1: Descriptive statistics of Monte-Carlo simulation of an arbitrary curve y. 10000
iterations were performed. The statistic data of the reconstruction of each point is given.
The average of the mean error at each point is zero for each reconstruction operator. The
values of the mean, standard deviation, skewness and kurtosis were computed using the
error vector of each reconstruction. The mean, mode and median values were computed
using the distribution of the Euclidean norm of each reconstruction. Reconstruction Method
1 is superior in terms of standard deviation of the error vector as well as in respect to
mean, mode and median values of the norm of the error vector. Method 2 shows better
performance in terms of kurtosis and skewness. Method 1 delivers marginally better results
for the reconstruction of an arbitrary function y.

Figure 3.10: Standard deviation of the reconstruction error of each node. The first recon-
struction has a maximum at x = 3.5. The second reconstruction looks like the inversion
of the first one and has a minimum at the same position. The average standard deviation
of all points is α2,1 = 0.0317 for Reconstruction 1 and α2,2 = 0.0358 for Reconstruction 2.
The standard deviation at the end points is equal to zero, which follows from the constraints
placed on the reconstruction.
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Figure 3.11: The mean of the reconstruction error of the arbitrary curve y at each node.
Although the reconstructions themselves are mean free, the reconstruction of each point is
not. However, it is only of Magnitude 10−4, and therefore neglectably small.

Figure 3.12: Distribution of the norm of the reconstruction error of the arbitrary curve y
for Reconstruction 1 and 2 in the top and bottom plot, respectively. The curve fitted to
the histogram is generated using the fitdist and gevpdf function provided by MATLAB. The
mean of the norm of the reconstruction error (x̄1,2), the mode of the norm of the error (xm,1,2)
as well as the median of the norm of the error (x0.5,1,2) are displayed. For the values see
Table 3.1. Method 1 delivers lower values for: mean, mode and median value.



CHAPTER 3. NUMERICAL SIMULATION 60

3.5.2 Monte-Carlo Simulation - polynomial y

In this section the Monte-Carlo simulation is performed using the reconstruction of a poly-
nomial y. The polynomial used is shown in Figure 3.13. It is a polynomial of degree 4 and
was chosen to show the behaviour of curve reconstruction on a function which represents
the deflection of a cantilever supported at one end. For each simulation noise was added
to the derivative. The noise was generated using the randn function provided by MATLAB
multiplied by a factor σm, whereby σmp = 0.0096 for the polynomial at hand. In Figure 3.15
the mean reconstruction at each node of Reconstruction 1 and 2 is plotted onto the origi-
nal function y. The mean error of each reconstruction point is smaller for the polynomial
function; it is only of magnitude 10−5 (see Figure 3.17). Unlike the mean reconstruction
error, the standard deviation for polynomials follows the same systematic as the standard
deviation for the arbitrary curve presented in the previous section (Figure 3.16). The norm
of the reconstruction error shows better results for the polynomial reconstruction. This has
two reasons:

1. the range of the derivative of the arbitrary curve is much higher and thus σa computed
is of greater magnitude than σp of the polynomial curve;

2. the basis functions used for the computation of the derivative matrix Dc as well as for
the integrator matrix Ag were Polynomial basis functions.

It is obvious that Polynomial basis functions for the computation of these two matrices
deliver better results for a polynomial than for an arbitrary function, not necessarily being
of polynomial nature. However, if the nature of the structure observed is unknown, or not
polynomial, one is advised to use different basis functions or a different way of computing
the derivative matrix Dc as well as the integrator matrix Ag, as our reconstruction methods
are valid for any basis functions desired.

In general it can be said, that Reconstruction Method 1 has marginally, however constantly,
better results than Reconstruction Method 2, no matter if the original function be of arbitrary
or polynomial nature; see Tables 3.2 for the descriptive statistics.
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Figure 3.13: Polynomial y and its derivative ẏ, in the bottom subplot, calculated using the
differentiating matrix D.

Figure 3.14: Distribution of the norm of the reconstruction error of the arbitrary curve y
for Reconstruction 1 and 2 in the top and bottom subplot, respectively. The curve fitted
to the histogram is generated using the fitdist and gevpdf function provided by MATLAB.
The mean of the norm of the reconstruction error (x̄1,2), the mode of the norm of the error
(xm,1,2) as well as the median of the norm of the error (x0.5,1,2) are displayed. For the values
see Table 3.2. Method one delivers lower, and thence better results for each, mean, mode
and median value.
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Figure 3.15: The result of the Monte-Carlo simulation of the reconstruction of the original
curve y, displayed in black. The mean reconstruction error of each node of Reconstructions 1
and 2 is plotted in blue (o), and red (x), respectively. The standard deviation of each
reconstruction point is given in blue (Operator 1) and red (Operator 2) bars, multiplied by
a factor three.

Figure 3.16: In this Figure the standard deviation of the reconstruction error of each node
is given for Reconstruction 1 (blue) and 2 (red).



CHAPTER 3. NUMERICAL SIMULATION 63

Figure 3.17: The mean reconstruction error of the polynomial y at each node. The mean
reconstruction error is of Magnitude 10−5, i.e. the reconstructions are mean free and are
therefore valid.

Reconstructions 1 2
mean error α1 0.0000 0.0000
standard deviation α2 0.0073 0.0082
skewness α3 0.0099 -0.0085
kurtosis α4 3.0398 3.0373
mean norm error x̄ 0.0217 0.0244
mode norm value xm 0.0169 0.0198
median norm value x0.5 0.0199 0.00227

Table 3.2: Result of the Monte-Carlo simulation of the reconstructions of the Polynomial
function y. 10000 iterations were performed. The statistic data of the reconstruction of each
point is given. The average of the mean error at each point is zero for each reconstruction
method. The values of the mean, standard deviation, skewness and kurtosis were computed
using the error vector of each reconstruction. The values mean, mode and median were
computed using the distribution of the Euclidean norm of each reconstruction. Reconstruc-
tion Method 1 is superior in every respect, with the only exception of the kurtosis value.
The statistical values presented confirm that Method 1 has better performance on curve
reconstruction of a polynomial of degree 4.



Chapter 4

Experimental Verification

For experimental verification of the reconstruction methods an assembly of a structure for
deflection measurement was implemented. This measurement set-up includes three inde-
pendent measurements of the deflection: the inclinometer measurement, a traversing laser
time-of-flight sensor and a traversing plane of light sensor. This arrangement enables an ob-
jective verification of the reconstruction methods. In this set-up all the variables occurring in
measurements using inclinometers, such as numerical errors, difficulty of zero-measurements,
data transfer, etc., are taken into account.

4.1 Laboratory Set-Up

The following requirements were placed on the physical assembly:

1. easily measure different deformations,

2. mount inclinometers onto the structure,

3. realize a reference measurement.

For the representation of the beam which is deflected, a metal sheet (200cmx15cmx2cm) was
chosen. This had the following reasons:

1. low bending stiffness;

2. easy to restrain;

3. ease of mounting elements onto it.

Two additional aluminium U-beams were mounted onto the structure to ensure an optimal
bending as well as the application of the Light Sectioning Method (LSM). This assembly
was mounted onto an aluminium profile on one end; the other end can either hang loosely

64
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or can be supported by two bearings which can be placed at any position along the beam.
14 inclinometers were mounted onto the metal sheet at approximately equidistant spacing.
These inclinometers measure the gradient at each respective point, delivering the gradient
measurement data ẏm.

Figure 4.1: 3D-model of assembly. To the left the linear drive is illustrated. With the help of
the linear drive the reference measurements LSM/ Time of Flight Measurement (TFM) are
performed. In the middle one can see the metal sheet with the two aluminium U-beams on
each side. The half-cylinder elements represent the inclinometers which are mounted onto
the metal sheet at equidistant spacing. The metal sheet is supported with a bearing on one
end and fixed onto the aluminium profile on the other end. The support can be shifted along
the metal sheet at any desired position.

The inclinometer data is read out by the so-called DAMOS SQL Program provided by Geo-
Data. It reads the data from the inclinometers and stores it into an SQL Database. To read
the Data saved in the SQL Database, a connection between MATLAB and the SQL Database
had to be established. For that, and ODBC data source had to be created. Windows has an
ODBC Data Source Administrator with which it is possible to establish such a connection.
The Remote Control for TCP/IP and the Named Pipes in the Microsoft SQL Server Surface
Area Configuration had to be enabled. The TCP/IP Connection Protocol had to be enabled
in the SQL Server Configuration. Further more the mode of Dynamic Ports was switched
to Static Ports. One specific port was chosen for this communication and added to all
Anti-Virus programs, yet the Anti-Hacker Module of Kaspersky Anti Virus had to be shut
down completely. The port number also had to be entered in the client configuration in the
Microsoft interface for establishing an ODBC data source.
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Two measurement methods were chosen for the verification of the measurements and com-
putations performed by inclinometers and reconstruction methods, respectively:

1. (Light) Time of Flight Measurement (TFM),

2. Light Sectioning Method (LSM).

Both measurement methods require the use of a linear traversing stage. Therefore a linear
drive is mounted parallel to the deflection beam onto the aluminium profile. The linear
drive is controlled by an OPC interface, which is controlled by MATLAB. See Figure 4.2
for a picture of the assembly and Figure 4.1 for a 3D-drawing of the assembly. For the
TFM the sensor is constantly displaced along the beam, i.e. the sensor is moving while
the measurement is performed. For the LSM the camera and laser are stopped at various
positions along the beam, because the image acquisition is time delayed and one would not
be able to determine at which position the image was taken, i.e. with which x-coordinate
the computed y-coordinate corresponds.

Figure 4.2: This image shows the metal sheet on which the inclinometers are mounted onto.
To the left one can see the linear drive, also mounted onto the aluminium profile.
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4.2 (Light) Time of Flight Measurement

The first reference measurement chosen was the time of flight measurement. For this mea-
surement method a Light Travel Time Sensor (see Table 4.2 for specific information of the
sensor) is used.

Name Light Travel Time Sensor
Original Name Lichtlaufzeitsensor
Product Number X1TA100QXT3

Distance 0.1 ... 10.2m ±1mm
Structural Shape 81x55x30mm

Light Type Laser (red)

Table 4.1: Detailed information of light travel time sensor.

This type of sensor detects the distance between an object and itself. It consists of a light
source emitting light pulses at a constant rate, and a light detector, detecting the delay of the
emitted light. The measurement uses the fact, that the distance of an object is proportional
to the reflection time by the speed of light:

d = 3 · 108 t [m], (4.1)

whereby d is the distance between the sensor and the object; t is the time covered to travel
from the sensor to the object and back. The sensor is connected to the OPC, which is
connected to MATLAB, and the distance is observed at a constant rate of time while the
sensor is moved by the linear drive (see Figure 4.3 for a better overview).

One of the problems encountered with this sensor was the accuracy. The sensor is able to
measure distances up to 10m. The accuracy of a measurement lying in a distance range of
10m is ±1mm. For this kind of measurement this is a very satisfying result. The measure-
ment at hand, though, lies in distances up to 30mm, sometimes varying only in millimetres.
Although the output signals can be adapted for this distance, the accuracy cannot. This
means that deflections varying only by a few millimetres cannot be detected with sufficient
accuracy. Because of this, the LSM was chosen as an alternative reference measurement.
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Figure 4.3: 3D Model of the assembly for the TFM set-up. The sensor is displayed as a
blue box. It was necessary to mount the sensor at a certain distance from the object to be
measured. The red line depicts the laser light emitted and observed by the sensor. During
the measurement the sensor is displaced by the linear drive and the distance between the
sensor and the metal sheet is measured at a constant rate. The green arrow shows the
position and direction of the measurement points.

Figure 4.4: Light Travel Time Sensor X1TA100QXT3 from Wenglor.



CHAPTER 4. EXPERIMENTAL VERIFICATION 69

4.3 Light Sectioning Method

4.3.1 Set-Up

The Light Sectioning Method (LSM) is an image processing method. The LSM can be
adapted for a 2D or 3D application. It is a kind of structured lighting, which implies that a
great deal of information is known about the light source as well as of the object [14]. In the
current task the position of the laser line, the object to be measured as well as its position is
known and can be adapted for application of the LSM, which allows us to use this method
for measuring the deflection of the metal sheet. The light source is a laser (see Table 4.3.1
for detailed information of the laser) which projects a plane of light. This plane of light
results in a line once projected onto the plane, i.e. the measurement object. The camera
(see Table 4.3.1 for specific data) is set up in a manner that it can view the projected laser
line on the object, see Figure 4.6 for the schematic alignment and Figure for the 3D model
of the assembly for the LSM.

Figure 4.5: Schematic set-up of the LSM. Here the plane of light produced by the laser (red)
is projected onto the thin side of the metal sheet; this results in a line once projected onto the
metal sheet. The camera is mounted in a way that it can view this projected line perfectly.
The camera’s range of vision is displayed in blue.

Name LASIRIS SNF Laser Class II
Weigth 65g

Diode power 1 to 200 mW
Wavelength 635 to 1550 nm

Intensity Distribution Uniform (non-Gaussian) lengthwise
Input Voltage 4.8 - 6.5 VDC

Table 4.2: Detailed information of laser LASIRIS SNF.

Geometrically the image observed by the camera is a perspective image. The camera is
positioned so that the optical axis is normal to the surface being observed. For this reason
the projective distortion can be neglected. To ensure a more precise image, an interference
filter matched to the wavelength of the laser is used for the image acquisition. For each
point at which an image is to be taken, the linear drive stops for a specific period of time
for the camera to take a picture of the laser line. The idea behind taking the images along
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Figure 4.6: The 3D Model of the LSM. The laser and the camera are mounted onto the
linear drive which is itself mounted onto the aluminium profile, parallel to the metal sheet.
The line projected by the laser, as well as the laser itself is given in red. The camera is
displayed in blue. The green arrow shows the direction and the positional displacement of
the camera-laser assembly.

Name Logitech QuickCamPro 9000
Device Type Web camera

Gross Sensor Resolution 2MP
Camera Type Color

Focus Adjustment Auto

Table 4.3: Detailed information of laser LASIRIS SNF.

the beam is that for each image taken, the camera position only moves in one (defined as
the x-direction) , however it does not move in the other (y-direction). This means that, once
a specific conversion factor was defined, the top of the laser line in each image corresponds
with the aluminium U-beam’s top at the respective x-coordinate; which is the deflection of
the entire assembly. This means it is necessary to find the top of the laser line in each image
to be able to find the beam’s deflection. All the images taken are stored in a MATLAB
structure for further processing. The entire image processing performed can be described as

A∗ classification−−−−−−−→ A
normalization−−−−−−−→ N

binarization−−−−−−→ B
segmentation−−−−−−−→ S

rotation−−−−→ R
center determination−−−−−−−−−−−→ ypixels,

(4.2)

and is explained in detail in the following Section.
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4.3.2 Image Processing

To actually use the data acquired by the camera, information needs to be preprocessed and
extracted from each image. To do so, various image processing steps are applied. The process
itself is of hierarchical nature; a workspace which contains a number of image objects A∗ =
{R1, ...,Rm} is defined. Then specific necessary image processing methods are applied to each
one of the images. The processes described in this section are used for computations for the
LSM described in Section 4.3.1. Firstly, the images are classified for their relevance, delivering
the set of the regions of interest A = {R1, ...,Rn}, whereby A ∈ A∗ and n ≤ m, where n and
m are the number of containing elements. The second step is the normalization of the image.
This is a method to distribute the brightness of the image over the whole available range
of pixel intensities. After the contrast was adapted, a threshold is computed and applied to
binarize the image. This is done to facilitate and speed up further computations. For noise
suppression a Morphological Operator is used. The center of gravity is computed to find a
point in the image, which can be used for curve fitting. The entire process used in the LSM
can be described as

A∗ classification−−−−−−−→ A
normalization−−−−−−−→ N

binarization−−−−−−→ B
segmentation−−−−−−−→ S

center determination−−−−−−−−−−−→ ypixels (4.3)

Region of Interest Classification

The Region of Interest (ROI) of an image is a certain element A = {R1, ...,Rn} of an image
A∗ = {R1, ...,Rm}, which contains the information used for computation purposes, whereby

A ∈ A∗ and n ≤ m, (4.4)

where n and m are the number of containing elements. This procedure can be described:

A∗ = {R1, ...,Rm} classification−−−−−−−→ A = {R1, ...,Rn}. (4.5)

There are various ways of defining a ROI. It can be found automatically by some kind of
geometric or color attribute using image segmentation, or, by hand defining specific coordi-
nates, using a-priori knowledge of the image. The data in x-direction (y-direction) is stored
in columns (rows); see Figure 4.7 for further explanations. When classifying the image by
hand the following need to be defined:

1. the minimum xmin, ymin and

2. the maximum xmax, ymax of the ROI.

Once these boundaries are defined, the image can be cropped to the desired size. An example
for this step is given in Figure 4.8. In Figure 4.8.a the original image is shown. In Figure 4.8.b
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one can see the classified image - the ROI. The MATLAB implementation for this step is
given in Source Code 4.1.

1 %Define maxima and minima in pixels

2 xmin = 700;

3 xmax = 760;

4 ymin = 210;

5 ymax = 450;

6 %

7 for i = 1 : noimages

8 %define current image as a matrix on its own

9 image_current = img{i};

10 %crop current image and store into a new structure

11 img_crop {i} = image_current(ymin:ymax,xmin:xmax);

12 end

Source Code 4.1: Code for the image cropping.

Figure 4.7: Each matrix has m rows, representing the y-dimension, and n columns, repre-
senting the x-dimension. The corrrepsonding indecis are i and j. Each element, i.e. each
pixel, has a defined position at row i and column j as well as an 8 bit brightness ranging
from zero to 255. The origin of the image, c1,1 is in the upper left corner.
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Figure 4.8: Example for the Classification Process. In a) image A∗ is given. The image A,
after classificaiton, is given in b).

Normalization

Normalization is a simple and efficient way to distribute the brightness over the whole avail-
able range of pixel intensities. The normalization yields the normalized image N:

The image A has an 8-bit encoding, i.e. normally the value of the pixels reach from zero
to 255. The problem is that due to lighting, not the entire range is utilized. The goal of
normalization is to have values between zero and one, where one represents the greatest
intensity of the original image and zero the lowest. Thus, the whole spectrum between zero
and one is used. The computation of the normalization is represented by the equation

c
(out)
i,j =

dmax − dmin

gmax − gmin

(
c
(in)
i,j − gmin

)
+ dmin. (4.6)

The MATLAB implementation is given in Source Code 4.3. In Figure 4.9 an example of this
operation is given. It can be seen that the contrast was increased on the normalized image
in Figure 4.9. After the image was normalized, the next step is the definition of a threshold
value, to be able to divide the image into two sections - the white section being the section
carrying important information, the black section being the background only.

1 %normalize the image

2 imgN = (dMax - dMin) / (gMax - gMin) * (G - gMin) + dMin;

Source Code 4.2: Code for image normalization.
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Figure 4.9: This example shows the original image to the left and the normalized image
to the right. The original image A had lower contrast, hardly any values close to zero or
close to 255. The normalized image has its data distributed between zero and one, with
the smallest value being zero, the highest being 1. The histogram was computed using 250
evenly distributed bins.

Gray-Level Segmentation

Methods which are based on the determination of a threshold are used for gray-level seg-
mentation or binary segmentation. Usually a threshold value is defined, which is used to
binarize the image, generating a bilevel image. ”A bilevel image should contain all of the
essential information concerning the number, position, and shape of objects while containing
a lot less information.” [31] The process can be described as

N
binarization−−−−−−→ B. (4.7)

This basic principle is described as

c
(out)
i,j =

{
1 if c

(in)
i,j ≥ t

0 else

where cini,j is the image pixel at the ith column (x-direction) and jth row (y-direction). If this
certain pixel value is higher than the value t - the threshold value - then the pixel value is
changed to 1 (white). Is the input pixel lower than t, then the pixel value is changed to
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zero (black). This leads to a binary or monochrome image; an image consisting only of the
values zero and one. While this can be a disadvantage because lots of information is lost,
it can be very advantageous because the image is much easier to interpret. It can be used
for binary morphology, construction of a mask or simply to identify specific objects in an
image [26]. The task is to find an appropriate threshold value t, which delivers satisfactory
results. There are various ways of finding a threshold value:

1. Self-defined Threshold, i.e., by hand,

2. Brightness Class Average,

3. Gaussian Curve Intersection.1

A Self-defined Threshold is the use of a threshold defined to fit a desired solution. ”If some
property of an image after segmentation is known a priori, the task of threshold selection is
simplified, since the threshold is chosen to ensure that this property is satisfied.” [34].

The threshold value is adapted iteratively until it fits a wanted solution. For the application
at hand, a threshold value of t1 = 0.9 was defined. The threshold value is displayed in cyan
in Figure 4.10 and the image binarized with this value is shown in Figure 4.11.a. While this
is an easy solution, it is not suitable for automation processes.

Brightness Class Average is the easiest algorithm to determine a threshold. It assumes that
the histogram of the image is of bimodal nature; this means that the histogram features
two clearly developed peaks. The histogram of the ROI shown in Figure 4.8 is given in
Figure 4.10. The two peaks are abbreviated with Ip1, representing the darker pixels with a
mean value close to zero, and with Ip2, representing the higher values, i.e. the brighter pixels
in the image. The computation for the threshold is the average of the two peak values:

t =
Ip1 + Ip2

2
. (4.8)

Creating a threshold value t by using Option 2 is simple, however it does not fit my appli-
cation as the image of the ROI has lots of scattered light, which needs to be removed. If the
threshold is defined by the mean of the maximum (one) and the minimum (zero), too much
information is removed (see Figure 4.11.b).

Gaussian Curve Intersection models the bimodal histogram as the sum of two Gaussian
distributions. This is reasonable, since the data of each class should be normally distributed.
the curves can be described as

y1(x) = Ip1e
{x−Im1

σ1
}2

and y2(x) = Ip2e
{x−Im2

σ2
}2
,

Im1,2 being the maxima of the curve. The task now is to find the intersection point of these
two curves. The intensity at which the two curves intersect is then the Gauss threshold
tg. The Gaussian curves fitted to the histogram of the ROI, as well as all the thresholds
computed are shown in Figure 4.10. In Figure 4.11.c the ROI binarized using tg is given.

1There are further methods to binarize an image, this however exceeds the scope of this thesis.
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Figure 4.10: Histogram of the image N from Figure 4.8.b, computed using 250 bins, displayed
in blue bars. There are two peaks to be observed. One at Ip1 = 0.13 and one at Ip2 =
0.99. This means the histogram is bi-modal. All threshold values computed are displayed.
Threshold 1 is the Self-defined Threshold, displayed in cyan; Threshold 2 uses the Brightness
Class Average, displayed in black; Threshold 3 is the threshold computed using the Gaussian
Curve Intersection, given in magenta. This threshold was computed using the intersection
of yg,1 and yg,2. yg,1 and yg,2 are normal distribution fits using the local mean, maximum and
standard deviaiton values.

Once the threshold value is defined, the images are binarized using this threshold value, i.e.
they are converted into an image consisting only of black and white pixels. In MATLAB
this is implemented by using the im2bw -function. See Source Code 4.3 for the MATLAB
implementation of applying a threshold.

1 %apply threshold tg

2 img_tg = im2bw(imgN,tg);

Source Code 4.3: Code for thresholding.
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Figure 4.11: ROI after binarization. Image a) uses Threshold-Method 1, i.e. the Self-
determined threshold t1 for binarization. The image T obtained by using Brightness Class
Average method is displayed in b). In c) the image T computed using Threshold-Method 3,
i.e. the Gaussian Curve Intersection.

Morphological Operators

Morphological Operators can thin, thicken, find boundaries etc. They can be used to find
contours of an object in an image [34] or to extract more information of the objects in the
image. Most morphological operators require two elements:

1. Structuring Element,

2. Object of Interest.

The structuring element defines the actual size and form of the operator. The process can
be described as

B
segmentation−−−−−−−−−−−−→

Structuring Element
S. (4.9)

The object of interest is usually the image. The two basic types of morphological operators
are erosion and dilation, whereby erosion is used for the reduction of an image, dilation for
the enhancement of the object. For the current problem, the morphological operator erode
is used to remove the noise in the image and therefore to enhance the ability to find the top
point of the laser line (LL). The difficulty here lies in finding the structuring element which
removes as much data as necessary, without throwing away too much information. The
structuring element chosen for the current problem is a 3x3 vector of ones. The MATLAB
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code for the erosion of the image previously produced by application of the Gauss threshold
is given in Source Code 4.4. The image before and after erosion is given in Figure ??
and 4.12.

1 SE = ones(3);

2 img_SE = imerode(img_tg,SE);

Source Code 4.4: Code for erosion.

Figure 4.12: Segmentation Example; in a) one can see the original image before segmentation.
In b) Image S, ROI after applying the morphological operator erosion using a 3x3 matrix
full of ones as structuring element, is displayed.

Center Determination

To be able to fit a curve using a number of images taken at specific points x, one needs
to define a specific point in the image which is taken as a reference point for the curve
computation. The process here can be described as

S
centerdetermination−−−−−−−−−−−→ ypixels,COG. (4.10)

There are various ways of finding such a point, as there are numerous different properties
encountered in images. One very common approach is using the first moment, commonly
called the Center of Gravity (COG) of the image. The ”Centroid of an area is a point in a
plane area such that the moment of area about any axis through that point is zero” [4]. The
COG, also referred to as the centroid, of a plane is the arithmetic mean position of all the
points in the shape. Hence, the coordinates p can easily be computed for any given area.
The center of gravity for a binary image is computed as
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p = [xc, yc]
T =

[∑
y,x∈R (x · cyx)∑

y,x∈R cyx
,

∑
y,x∈R (y · cyx)∑

y,x∈R cyx

]T

, (4.11)

where cyx is the intensity of the pixel at the corresponding y- and x-position. Before this
computation can be performed, the image is rotated by 5 degrees using the imrotate function,
see Source Code 4.5 for the MATLAB implementation. This is done because the LL is not
completely straight and thus the computation of the top of the LL using the COG would be
incorrect.

1 degree = 5;

2 img_rot = imrotate(img_SE,degree);

Source Code 4.5: Code for rotation of the image.

In the case of a binary image the intensity of each pixel taken into account is one, which
makes the determination of the COG a simple mean computation. The line in red shows the
column of the COG. The code for the computation of the COG in the y- and x- direction is
given in Source Code 4.6. In Figure 4.13 the COG was determined for the image given.

1 % find the position of all non-zero entries in image_rot

2 [YCoord, XCoord] = find(image_rot);

3 %find the mean of all non-zero entries

4 COGx = mean(XCoord);

5 COGy = mean(YCoord);

Source Code 4.6: Code for synthesis of COG.

Figure 4.13: The COG in the x (columns)- and y (rows)-direction.
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4.3.3 Line Fitting

The vector ypixels,COG consists of the position of the COG in each image. With this the po-
sition of the first non-zero entry in the corresponding row-vector (y-dimension) is determined
for each image. This is done using the find command in MATLAB, see Source Code 4.7.

1 top_img = find(im(:,COGx)>0,1,’first’);

Source Code 4.7: Code for synthesis of the position of the top of the LL.

This process is performed on all the images recorded during the measurement process. The
result is stored in a vector ypos which already represents the deflection of the beam in pixels.
It is known that the position of the top of the LL in the image corresponds with the real
top of the LL on the aluminium U-beam. Therefore the change of this specific point in the
y direction must cohere with the metal sheets deflection. The scaling factor from pixel to
millimetres is computed as

cconv =
lLL,lab
lLL,img

[
mm

p

]
, (4.12)

where lLL,lab is the length of the LL measured in the laboratory, in millimetres, and lLL,img is
the length of the LL in pixels. Knowing this conversion vector, the deflection in millimetres
can be computed as

ymm = ypos cconv [mm] (4.13)

To start at the position y(0) = 0, the following computation is performed:

ydef = ymm − ymm(0) [mm]. (4.14)

4.3.4 Experiments

For the experimental verification, 6 measurements were performed, whereby 2 of these 6
measurements serve as a Zero- or Reference Measurement. Two different deflections were
chosen for the other 4 measurements. The support used for the current measurements was
placed at x = 1198 [mm], whereby x = 0 [mm] is the position at which the metal sheet is
restrained onto the aluminium profile.

While putting these measurements into practice, the following difficulties had to be solved:

A major difficulty encountered during calibration of the three measurement systems to a
single coordinate system was that the beam has a significant deflection under its own weight
before any additional weights were added. Consequently, a true zero measurement for the
inclinometers where the beam is not subject to any deflection was not possible. The minimal
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deflection was considered to be the zero measurement and deflections, inclinations, were
measured relative to this position.

For the LSM, the camera, as well as the laser, can be adapted for each measurement to fit
best the current case, i.e. the scale of deflection. For example, for large deflections, the
angle at which the beam reflects the LL changes in respect to the camera as the deflection
grows. As a result, the camera may not detect the LL very well and the measurement might
be useless. This is why the camera is put into a different position from when the deflection
is greater. However, after adapting the camera, the ROI has to be newly defined. When
defining the ROI one must not neglect the fact that reflections can occur during measuring.
For example, the reflections generated by the inclinometers mounted onto the metal sheet,
as well as the reflections of the metal sheet and of the bearings, disturb the data and produce
noise in the measurement data.

Measurement 1

To generate the deflections easily, a weight of 1.1 kg was fastened onto the metal sheet. It
was placed on two different locations along the beam, Position 1 and 2.

Reference Measurement The first measurement performed is the Reference Measure-
ment. This measurement is performed for calibration purposes concerning inclinometers.
Additionally, it is useful to use a zero measurement to ensure the consistency of both mea-
surement systems used. Once the metal sheet was put into place, the inclinometer values
are set to zero using the Auto Zero-button of the DAMOS-SQL program. In Figure 4.14 the
deflection chosen for the Reference Measurement is given. This deflection is measured using
the LSM.
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Figure 4.14: In black the data received using the LSM is given. A polynomial was fitted to
this data using Polynomial basis functions and the constraints y(0) = 0 [mm] and ẏ(0) =
0 [mm]. The error of this curve with respect to the orginal data shows a standard deviation
of 0.215 [mm].

Measurement Weight at Position 1: To change the deflection quickly and without
having to move around the metal sheet too much, a weight was placed onto the metal sheet
at x = 1672 [mm], which is at the end of the metal sheet. The deflection can be observed
in Figure 4.15. To attune both measurement systems, the curve obtained by the Reference
Measurement is subtracted from the curve of the current deflection. The deflection computed
in this manner represents the deflection which is described by the inclinometer values for
the current position of the weight (see Figure 4.16 for this newly computed deflection). For
further computations only the fitted polynomial curves of the respective measurements are
used.

The inclinometer data is imported using the SQL-Database via MATLAB. The required
information is extracted from the matrix delivered by the SQL-Database and put into a
vector ẏm. Then Reconstructions 1 and 2 are applied using the constraints y(0) = 0 [mm]
and y(1198) = 0 [mm]. The inclinometers are not placed onto the beam at position zero,
because it is assumed that the inclination is zero there. However, when placing constraints
onto the basis functions for reconstruction, the constraint for the deflection at position zero
has to be placed there. This is why an additional, artificial inclination of value zero is included
in the measurement vector at position zero. This way the constraint of y(0) = 0 [mm] is
placed at the correct position. The constraint of ẏ(0) = 0 [mm] was not placed onto the
reconstruction. This is done because the distance between the artificial inclinometer value
at x = 0 [mm] and the first measured inclinometer value at x = 136 [mm] is too great. If
the constraint of ẏ(0) = 0 [mm] were applied, the second point at x = 136 [mm] would be
forced to be at position zero as well, which is incorrect. The results of these reconstructions
are plotted on top the curve given in Figure 4.16. See Figure 4.17 for the reconstructions.



CHAPTER 4. EXPERIMENTAL VERIFICATION 83

Figure 4.15: In black the data received using the LSM is given. To obtain this deflection a
weight was placed at x = 1672 [mm]. A polynomial was fitted to this data using Polynomial
basis functions and the constraints y(0) = 0 [mm] and ẏ(0) = 0 [mm]. The error of this
curve with respect to the data received from the camera shows a standard deviation of
0.274 [mm]. The entire deflection has a range of about 15 [mm], which means the fit is about
1.8% accurate.

Figure 4.16: The deflection given in red is the calibrated curve, whereby the weight of 1.1kg
is positioned at the end of the beam. The inclination at each particular point should be the
data measured by the respective inclinometer. The standard deviation of the fitted curve
amounts 0.274 [mm].
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Figure 4.17: In black, one can observe the curve obtained by the LSM for the current
deflection. Reconstruction 1 and 2 are given in red and blue, respectively. The norm as
well as the standard deviation of the error vector of Reconstruction 1 is much higher for this
deflection.

The reconstructed curve follows the same form as the curve computed using the LSM, though
with what seems an offset of about 2 [mm]. At position x = 1198 [mm] the reconstructed
curve deviates from this pattern. This is because a positional constraint of y = 0 [mm] at
x = 1198 [mm] is put onto the reconstruction. This forces the reconstructed curve to be zero
at this exact point, which it does. Additionally to an offset, it can be seen that at both end
points the reconstruction values show a great error. This error occurred because the number
of inclinometers used is not sufficient for this kind of deflection. The deformations presented
here have a range of only 2 [cm], whereby the beam itself has a length of about 1.7 [m].
This demands a very high accuracy of the inclinometers as well as the LSM. To remedy the
offset as well as the great error at both end points one can either use more inclinometers for
monitoring of the beam or place the constraints on the interpolating function and not on the
reconstructed points.

Measurement Weight at Position 2: The same weight used in the previous section
was used at position x = 739 [mm], resulting in a new deflection. This deflection is given in
Figure 4.18. The curve generated this way has a range of about 7 [mm]. This is much smaller
than the curve from the previous section. The calibrated curve is given in Figure 4.19. The
range of the calibrated curve is only 4 [mm].
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Figure 4.18: In black the data received using the LSM is given. A polynomial was fitted to
this data using Polynomial basis functions and the constraints y(0) = 0 [mm] and ẏ(0) =
0 [mm]. The error of this curve with respect to the data received from the camera shows
a standard deviation of 0.329 [mm]. The entire deflection has a range of about 6.5 [mm],
which means the fit is about 4.4% accurate. The standard deviation for the fit through the
measured data is σ2,Bf = 0.329 [mm].

Figure 4.19: In black one can observe the data of the subtraction. In red the polynomial
computed using both previously fitted polynomials is given. The range of the curve is only
about 4.5 [mm].
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Figure 4.20: In black the curve obtained by the LSM for the current deflection is given.
Reconstruction 1 and 2 are given in red and blue, respectively. The constraints y(0) = 0 [mm]
and y(1198) = 0 [mm] were placed onto the reconstructions. Both reconstructions describe
the curve’s shape very well but they seem to be shifted. Great errors can be seen at either
end of the curve. Furthermore a clear outlier can be found at x = 1198 [mm] which is the
location of the support, and the location where the positional constraint of zero is placed
onto the curve. The errors observed in this measurement are very similar to the ones from
the first measurement. There seems to be some kind of systematic error. The errors can be
diminished by appling one of the two solutions given in Section 4.3.4. For this deflection the
norm as well as the standard deviation of the error vector of Reconstruction 1 is lower than
Reconstruction 2.
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Measurement 2

Reference Measurement: In Figure 4.21 the deflection of the Reference Measurement
obtained using the LSM is given.

Figure 4.21: In black one can see the data received using the LSM. A polynomial was
fitted to this data using polynomial basis functions and the constraints y(0) = 0 [mm] and
ẏ(0) = 0 [mm]. The error of this curve with respect to the orginal data shows a standard
deviation of 0.244 [mm].

Measurement Weight at Position 1: The weight was placed onto the metal sheet at
x = 1672 [mm], which is the end of the metal sheet. The deflection is given in Figure 4.22.
The calibrated curve is given in Figure 4.23. The reconstructed curve using the inclinometer
data as well as the Reconstruction Methods 1 and 2 are given in Figure 4.24.
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Figure 4.22: The data received using the LSM is given in black. A polynomial was fitted to
this data using polynomial basis functions and the constraints y(0) = 0 [mm] and ẏ(0) =
0 [mm]. The error of this curve with respect to the data received from the camera shows a
standard deviation of 0.233 [mm].

Figure 4.23: In black the data of the subtraction is given. The polynomial computed using
both previously fitted polynomials is given in red.



CHAPTER 4. EXPERIMENTAL VERIFICATION 89

Figure 4.24: In black one can see the curve obtained by the LSM for the current deflection.
Reconstruction 1 and 2 are given in red and blue, respectively. Both reconstruction methods
used the constraints y(0) = 0 [mm] and y(1198) = 0 [mm]. It can be seen that these
constraints are perfectly fulfilled. There is an outlier at x = 1189 [mm]. The end point of
the reconstruction shows the greatest error. Both reconstructions follow the same pattern
as the reconstructions from the previous sections.

Measurement Weight at Position 2: The same weight used in the previous section
was used at position x = 739 [mm], resulting in the deflection given in Figure 4.25. The
calibrated curve is given in Figure 4.26.
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Figure 4.25: The data received using the LSM is shown in black. A polynomial was fitted
to this data using Polynomial basis functions and the constraints y(0) = 0 [mm] and ẏ(0) =
0 [mm]. The error of this curve with respect to the data received from the camera shows a
standard deviation of 0.144 [mm]. The entire deflection has a range of about 6.4 [mm], which
means the fit is about 2.25% accurate.

Figure 4.26: In black the data of the subtraction is given. In red the polynomial computed
using both previously fitted polynomials is given. The standard deviation of the error of the
fitted polynomial is 0.144 [mm]. The range of this curve is only 1.5 [mm].
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Figure 4.27: In black the curve obtained by the LSM for the current deflection is given.
Reconstruction 1 and 2 are given in red and blue, respectively. The constraints placed on this
curve are y(0) = 0 [mm] and y(1198) = 0 [mm]. These two constraints are fulfilled by both
reconstruction methods. The constraint of ẏ(0) = 0 [mm] was not used of reconstruction
because the distance between the first and second point is too great. If this constraint were
placed on the first point at x = 0 [mm] the second point at which the inclination is measured
would be forced to be zero as well, falsifying the curve computed. Great errors can be seen at
the end of the curve. The reconstruction computed using Reconstruction Method 1 is very
close to the curve’s real deformation. A great deviation can be observed at x = 726 [mm] and
at the end point. The second reconstruction method shows a shift in the vertical direction.
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Experimental Interpretation

The errors observed in the measurements performed show a systematic error for the end
points. Even though the inclination at x = 0 [mm] should be zero, the curve shows an
inclination at exactly this point. The error at the end point is inferior. The reason for this
error at the endpoints is the lacking number of inclinometers necessary to investigate the
deformations of 2 metres. To avoid this error, one can

1. use more inclinometers for monitoring of the beam;

2. place the constraints on the interpolating function and not on the reconstructed points.

The second error, observed in most measurements is the shift in the vertical direction -
positive or negative. This systematic shift probably is connected to the error at the end
points and can be prevented following Proposals 1 and 2 above. Part of the errors observed
are due to sufficient impreciseness from the inclinometers. The inclinometers tend to drift
slightly while turned on.

Despite these errors encountered, the reconstructions of the curve are very close to the
real deformation. Especially Reconstruction Method 1 delivered very good reconstructions
for all measurements. Reconstruction Method 1 systematically reconstructs better than
Reconstruction Method 2.



Chapter 5

Conclusion

This thesis has presented new approaches to the reconstruction of curves from over con-
strained gradients. This corresponds to a special case of an inverse boundary value problem.
The methods reconstruct both, Inverse Boundary Value Problems and Inverse Initial Value
Problems. Additionally, the reconstruction is a simple matrix multiplication, whereby the
computation of the Matrix M can be done a priory which makes the presented methods
suitable for real-time computations.

The proposed methods were verified using both Monte-Carlo simulations and with real in-
clinometer measurements on a deflected beam. Two independent reference measurement
systems were implemented as a means of performing an objective verification. The experi-
ments covered by this study showed that the implemented methods work under laboratory
conditions and it’s possible to detect the original curve’s deflection using inclinometer values
(or some other kind of gradient value) and the presented reconstruction operators.

The methods not only deliver a solution to the inverse problem but also deliver an estimate
for the upper-bound on the uncertainty of the reconstruction. During the final testing of the
system it was observed that placing the derivative constraints on the reconstruction points
leads to an error at the beginning and ends of the reconstruction. Placing these constrains
on the interpolating function would alleviate this problem.

There is further and future work necessary on optimal node placement i.e. sensor locations
and interpolating constraints.
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Figure 4.3: 3D Model of the assembly for the TFM set-up. The sensor is displayed as a
blue box. It was necessary to mount the sensor at a certain distance from the object to be
measured. The red line depicts the laser light emitted and observed by the sensor. During
the measurement the sensor is displaced by the linear drive and the distance between the
sensor and the metal sheet is measured at a constant rate. The green arrow shows the
position and direction of the measurement points.

Figure 4.4: Light Travel Time Sensor X1TA100QXT3 from Wenglor.



CHAPTER 4. EXPERIMENTAL VERIFICATION 69

4.3 Light Sectioning Method

4.3.1 Set-Up

The Light Sectioning Method (LSM) is an image processing method. The LSM can be
adapted for a 2D or 3D application. It is a kind of structured lighting, which implies that a
great deal of information is known about the light source as well as of the object [14]. In the
current task the position of the laser line, the object to be measured as well as its position is
known and can be adapted for application of the LSM, which allows us to use this method
for measuring the deflection of the metal sheet. The light source is a laser (see Table 4.3.1
for detailed information of the laser) which projects a plane of light. This plane of light
results in a line once projected onto the plane, i.e. the measurement object. The camera
(see Table 4.3.1 for specific data) is set up in a manner that it can view the projected laser
line on the object, see Figure 4.6 for the schematic alignment and Figure for the 3D model
of the assembly for the LSM.

Figure 4.5: Schematic set-up of the LSM. Here the plane of light produced by the laser (red)
is projected onto the thin side of the metal sheet; this results in a line once projected onto the
metal sheet. The camera is mounted in a way that it can view this projected line perfectly.
The camera’s range of vision is displayed in blue.

Name LASIRIS SNF Laser Class II
Weigth 65g

Diode power 1 to 200 mW
Wavelength 635 to 1550 nm

Intensity Distribution Uniform (non-Gaussian) lengthwise
Input Voltage 4.8 - 6.5 VDC

Table 4.2: Detailed information of laser LASIRIS SNF.

Geometrically the image observed by the camera is a perspective image. The camera is
positioned so that the optical axis is normal to the surface being observed. For this reason
the projective distortion can be neglected. To ensure a more precise image, an interference
filter matched to the wavelength of the laser is used for the image acquisition. For each
point at which an image is to be taken, the linear drive stops for a specific period of time
for the camera to take a picture of the laser line. The idea behind taking the images along
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one can see the classified image - the ROI. The MATLAB implementation for this step is
given in Source Code 4.1.

1 %Define maxima and minima in pixels

2 xmin = 700;

3 xmax = 760;

4 ymin = 210;

5 ymax = 450;

6 %

7 for i = 1 : noimages

8 %define current image as a matrix on its own

9 image_current = img{i};

10 %crop current image and store into a new structure

11 img_crop {i} = image_current(ymin:ymax,xmin:xmax);

12 end

Source Code 4.1: Code for the image cropping.

Figure 4.7: Each matrix has m rows, representing the y-dimension, and n columns, repre-
senting the x-dimension. The corrrepsonding indecis are i and j. Each element, i.e. each
pixel, has a defined position at row i and column j as well as an 8 bit brightness ranging
from zero to 255. The origin of the image, c1,1 is in the upper left corner.


