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Abstract

According to estimates from the Schlumberger Market Analysis 2007,

60 % of fossil conventional hydrocarbons worldwide are located in nat-

urally fractured reservoirs (NFR). In these reservoirs large volumes of

hydrocarbons have been left untouched.

Gas-oil gravity drainage (GOGD) is a well-known production method

that leads to high recoveries, while also being relatively inexpensive as

compared to other production methods. It can occur naturally during

gas cap expansion or when gas is actively injected at top of the reser-

voir. Gravitational forces then lead to a downward displacement of the

oil, where both gas and oil are present. Although this process has been

thoroughly examined for conventional reservoirs and in naturally frac-

tured reservoirs using dual continuum approaches, very few publications

exist on gravity drainage of NFR as simulated using discrete fracture and

matrix approaches (DFM). This remains an active �eld of research ex-

plored by this thesis. My primary goal is to perform sensitivity analyses

on the critical balance between capillary and gravity forces in NFR un-

dergoing GOGD and to determine when gravity drainage is a feasible and

recommended process. These questions are addressed with the help of

a proprietary reservoir simulator based on the �nite di�erence numerical

method.

Three simpli�ed models with a single vertical fracture and one more

realistic layered discrete fracture and matrix model, based on �eld obser-

vations from Door County, Wisconsin, USA, were used as input to my

simulations.

The conclusions reached for the chosen boundary conditions are that

single vertical fractures do not signi�cantly a�ect homogeneous models.

Although the fracture helps drain the near-fracture region, the rock fur-

ther away is left una�ected. Flow is mainly vertical and could be approx-

imated by a piston-like displacement. This, however, is not the case in

the more realistic model with layers. Here the fractures have a signi�cant

e�ect on the drainage speed and their presence increases recovery as com-

pared with an unfractured model. The gas preferentially �ows through

the fractures and thereby by-passes horizontal low-permeability layers en-

tering higher-permeability layers, where GOGD is initiated. The results

also indicate that GOGD is strongly in�uenced by boundary conditions .

The sensitivity analysis also con�rms the importance of well estab-

lished critical factors like �uid density contrast, oil viscosity, relative per-

meability and capillary pressure. The thesis rea�rms the high production

potential of gas-oil gravity drainage for NFR.
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Kurzfassung

Gas-Öl Schwerkraft-Drainage (GOGD) ist eine wohlbekannte Produktions-

methode, die zu hohen Gewinnungsraten führt und gleichzeitig relativ kostengün-

stig im Vergleich zu anderen Produktionsmethoden ist. Sie kann sowohl natür-

lich während der sogenannten Gas cap expansion als auch beim Einpressen

von Gas im oberen Lagerstättenteil statt�nden. Gravitationskräfte verdrän-

gen das Erdöl abwärts, bei gleichzeitiger Anwesenheit von Gas und Öl. Obwohl

dieser Prozess schon gründlich für konventionelle Lagerstätten und für natürlich

geklüftete Lagerstätten (NFR) mithilfe von Dual continuum-Modellen unter-

sucht ist, existieren sehr wenige Publikationen, welche sich mit der Schwerkraft-

Drainage mithilfe von Discrete fracture and matrix-Modellen beschäftigen. Dies

ist ein aktives Forschungsgebiet, das durch meine Diplomarbeit untersucht wird.

Mein primäres Ziel ist das Durchführen von Sensitivitätsanalysen über die

kritische Balance zwischen Kapillar- und Schwerkraft in NFR unter GOGD-

Zuständen. Ich möchte auch die Bedingungen untersuchen, wann GOGD in

NFR ein empfehlenswerter und vorteilhafter Prozess ist.

Diese Fragen werden mit Hilfe eines kommerziellen Reservoirsimulators, welcher

auf der Finite-Di�erenzen-Methode basiert, adressiert. Drei einfache Modelle

mit einer einzigen Kluft und ein realistischeres geschichtetes Discrete fracture

and matrix-Model, basierend auf Feldbeobachtungen aus Door County, Wiscon-

sin, USA, werden als Input für meine Simulationen verwendet.

Ich komme zu dem Schluss dass eine einzelne Kluft ein homogenes Model

nicht ausreichend beein�ussen kann. Die Kluft beein�usst die Region in ihrer

Nähe, weiter entferntere Zonen werden nicht beein�usst. Der Fluss ist ver-

tikal und kann als piston-like displacement angenähert werden. Dies wurde

jedoch nicht im realistischeren Model beobachtet. Hier beein�ussen die Klüfte

die Drainage-Geschwindigkeiten und können die Gewinnungsraten im Vergle-

ich zu einem ungeklüfteten Model erhöhen. Das Gas �ieÿt vor allem durch die

Klüfte und kann dadurch horizontal niedrig-permeable Schichten umgehen und

tritt vorallem in den höher-permeablen Schichten ein, wo GOGD eingeleitet

wird. Die Resultate deuten auch an, dass GOGD durch die Randbedingungen

beein�usst wird. Die Sensitivitätsanalyse bestätigen den Ein�uss von kritischen

Faktoren wie Dichtedi�erenz der Flüssigkeiten, Ölviskositäten, relativen Perme-

abilitäten und Kapillardruck. Die Diplomarbeit bestätigt das hohe Potenzial

der Gas-Öl Schwerkraft-Drainage in NFR.
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Nomenclature

So oil saturation, dimensionless

Sor residual oil saturation, dimensionless

Sw water saturation, dimensionless

Swr residual water saturation, dimensionless

Swi initial water saturation, dimensionless

Sg gas saturation, dimensionless

Se e�ective saturation, dimensionless

z z-position, L

x x-position, L

zD dimensionless z-position

g gravitational acceleration, L/t²

k permeability, L²

kr relative permeability, dimensionless

kx permeability in x-direction, L²

kz permeability in z-direction, L²

k∗ end-point relative permeability, dimensionless

f fractional �ow, dimensionless

φ porosity, dimensionless

µo oil viscosity, m / Lt

t time, t

tD dimensionless time

q �ow rate, L³/t

q̂ �ow rate per unit volume, 1/t

∆ρ density di�erence, m/L³

h height, L

A �ow area, L²

R recovery, dimensionless

GOGD gas-oil gravity drainage

SAGD steam-assisted gravity drainage

NFR naturally fractured reservoir

1D, 2D, 3D one dimensional, two dimensional, three dimensional

po oil pressure, m/Lt²

pw water pressure, m/Lt²

viii



pg gas pressure, m/Lt²

pc capillary pressure, m/Lt²

pc,thr threshild capillary pressure, m/Lt²

η pore size distribution

J Leverett J-function for capillary pressure

λ Brooks-Corey exponent parameter, dimensionless

α, n,m Van Genuchten parameters, dimensionless

NBo Bond number, dimensionless

Ngv Gravity number, dimensionless

Bw water formation volume factor, dimensionless

σ interfacial tension, m/t²

v Darcy velocity, L/t

c compressibility, Lt²/m

cφ rock compressibility, Lt²/m

ct total system compressibility, Lt²/m

Θ wetting angle, dimensionless

D depth, L

γ speci�c gravity, m/L²t²

Φ potential, m/Lt²

Φi Basis function, dimensionless

λo oil mobility, Lt/m

λw water mobility, Lt/m

λg gas mobility, Lt/m

Conversion factors

To Convert From To Multiply By

°F K TK = (TF + 459.67) /1.8

psi Pa 6.894757 E + 03

ft m 3.048 E − 01

md m² 9.869233 E − 16

lbs/ft³ kg/m³ 1.601846 E + 01

cp Pa.s 1.000 E − 03

bbl m³ 1.589873 E − 01
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1 Introduction

According to estimates more than 60 percent of the fossil conventional hydro-

carbons are estimated to be in naturally fractured reservoirs (NFR). These are

preferentially in carbonate reservoirs in the Middle East and northern Africa.

According to Nelson [2001]57 a fractured reservoir is de�ned as a reservoir

in which naturally occurring fractures either have or a predicted to have an ef-

fect on reservoir �uid �ow either in the form of increased reservoir permeability

and/or reserves or increased permeability anisotrophy. These fractures are pla-

nar discontinuities in the rock that can be produced by natural means, due to

earth stresses and tectonics, or through arti�cial means, such as well stimulation

or drilling. The matrix is the part of the porous medium, which contains most

of the �uid volume and it is intersected by the fractures. In many cases, the

matrix has a very low permeability in the micro-Darcy range and is therefore

an impediment to �ow.

A fracture can signi�cantly change the �ow behaviour because it is a high-

velocity �ow conduit and a reservoir heterogeneity with directional e�ects.40

Every reservoir can be considered to be fractured to some degree.40 The

process of drilling can create fractures in the vicinity of the wellbore and the

well itself can be considered as an arti�cial fracture. The processes of hydraulic

and acid fracturing can also create fractures. However, in some reservoirs the

existence of fractures does not play an enhancing role to the �ow process and the

fractures can be neglected, these reservoirs can be called conventional reservoirs.

Unfortunately, NFRs behave in a completely di�erent way than conventional

reservoirs. In NFRs the �ow of �uids is a complex combination of viscous,

gravity and capillary forces. Moreover, the number of parameters necessary

for modelling and simulation is much larger than in conventional reservoirs.

Obtaining those parameters for example for fractures can be also a challenging

task and not so trivial. The underlying physical principles are also more complex

than in conventional reservoirs.

There are several di�erent strategies to recover oil from fractured reservoirs.

Each of those depends on the speci�c properties of the reservoir and its frac-

ture and matrix regions. There is no general rule, but decisions have to make

on an individual basis. One method that can be water �ooding the reservoir

and producing oil mainly through the fractures. To be successful this method

requires that the water from the fractures imbibes into the matrix and oil is

drained from there.
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Another process is gas-oil gravity drainage, also known as GOGD. It can

occur in response to natural and arti�cial means. Gas is being injected into the

fractures, which due to physical reasons like capillary and gravity forces, causes

oil drainage of the fracture-adjoining matrix regions into the fracture network

through which the oil can be subsequently produced. The GOGD method has

huge potential and leads to very high oil recovery factors. It has already been

used, i.e. by PEMEX o�-shore Mexico.

Water injection and GOGD can lead to unsatisfying results and low oil

recovery rates, when they are not optimised for the target. Injecting water at

too high rates can lead to �ngering so that many regions of the reservoir remain

untouched and production is mainly water.

Previous simulations of GOGD in NFR have almost entirely been done with

dual continuum models (DCM), based on simpli�cations and idealisations. Al-

though those models are relatively easy to understand and implement, many

modi�cations to the original model have been proposed over the years to im-

prove predictions. Confusion exists over the shape factor concept and whether

fractures can be treated as a continuum. The reader may be referred to Ap-

pendix C for further details.

1.1 Literature Review

The theory of gravity drainage was established in the 1940's.

Leverett [1941]1 presented experimental data and investigated capillary ef-

fects, interfacial tension and saturation-height relationships for unconsolidated

sand. He also mentioned the boundary e�ect, a characteristic behaviour of any

discontinuity in capillary properties. His work gives a starting point for further

research by exploring the capillary e�ects.

Katz [1942]2 presented both �eld and experimental data and discussed possi-

bilities of secondary recovery, i.e. water �ooding and gas injection, in the Wilcox

sand of Oklahoma City. The signi�cance of this publication is that it deals with

the Wilcox reservoir, where gravity drainage has been a major recovery factor.

Stahl et al. [1943]3 presented as experimental study of gravitational drainage

of oil and transient height-saturation curves for unconsolidated sand from the

Wilcox region in Oklahoma. Stahl et al. are one of the �rst authors to per-

form a gravity drainage experiment and determine that the saturation to height

relationship will follow the capillary pressure form. They use �ndings from Lev-

erett [1941]1 and Katz [1942],2 substantiate it and deal with the performance of

5



certain types of reservoirs.

Cardwell and Parsons [1949]4 presented a mathematical formulation of the

gravity drainage of a wetting liquid. By neglecting capillary pressure gradient

terms they were able to solve the complicated di�erential equation analytically.

They introduced the concept of a demarcator, and could solve the saturation

pro�les in a stack over time and subsequently estimate oil recovery. The signif-

icance of their work is that they try a mathematical formulation to account for

variation in permeability to the liquid. They do not, however, take into account

capillary e�ects.

Terwilliger et al. [1951]5 conducted experimental studies on gravity drainage,

developed a mathematical formulation of the drainage process and recommended

a method to calculate the oil recovery rate. They used a Buckley-Leverett6

approach in their derivation to calculate the performance of immiscible �uid

displacement processes. Terwilliger et al. expand knowledge of gravity drainage

from previous studies of Leverett [1941],1 Katz [1942]1 and Stahl et al. [1943].3

Dykstra [1978]7 expands the Cardwell-Parson's approach to account for

residual oil saturation deriving a recovery function as a function of time. He

presents the drainage modulus, a property that can be used to predict perfor-

mance, and cross-validated his analytical results with experimental data. Dyk-

stra also presents examples of how to apply the method. His work strictly deals

with predicting oil recovery under free-fall gravity drainage.

Hagoort [1980]8 derives the governing equations for forced and free-fall gas-

oil gravity drainage processes and arrives at an expression similar to that of

Cardwell and Parsons. Forced gravity drainage refers to gas injection and con-

trolled �ow rate, which occurs when gas is injected into steeply dipping reser-

voirs. Free-fall gravity drainage, on the other hand, takes place in NFRs, after

gas injection into fractures or depletion of oil in the fractures.11 He also conducts

an experimental test to determine oil relative permeabilities from a centrifuge.

Hagoort also introduces the gravity number and capillary number in a dimen-

sionless formulation. His results indicate that oil relative permeability is a key

factor. Hagoort con�rms that gravity drainage can be e�ective-oil recovery pro-

cess in water-wet reservoirs and mentions that the magnitude of gravitational

forces relative to viscous forces, shape of oil relative permeability, and reservoir

geometry and heterogeneity as important factors.

Rossen and Shen [1989]9 describe a method of simulating gas-oil drainage

and water-oil imbibition in a dual-porosity simulator by using pseudo capillary

curves for matrix and fracture. Their work indicates the problematic use of
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dual-porosity methods and mentions that di�erent shape factors lead to di�erent

behaviours.

Saidi and Sakthikumar [1993]10 describe various aspects of gravity drainage

in fractured reservoirs, including capillary pressures and relative permeability

e�ects as well as di�usion. They emphasize on those e�ects in combination with

gas injection into the reservoirs. They also give a thorough review on research

and experimental data concerning these topics. Their work indicates 1D and

3D GOGD give same results and that the use of a fracture capillary pressure

increases recovery factor of a block. These �ndings are directly related to further

results of models in this thesis.

Schechter and Guo [1996]11 give a thorough literature review on equilib-

rium and non-equilibrium gravity drainage deriving a new mathematical for-

mulation for free-fall gravity drainage using Darcy's law and �lm �ow theory.

They also present a method to include the numerical solution of the di�usion

equation to expand their mathematical formulation to non-equilibrium gravity

drainage. The signi�cance of their work is the exact de�nition of free-fall and

forced gravity-drainage in fractured reservoirs, as well as a proposed mathemat-

ical coupling of equilibrium and non-equilibrium gravity drainage.

The interactive design of a carbon-dioxide injection pilot in Texas is pre-

sented in Schechter and Guo [1998].12 They present a methodology for matrix

and fracture characterization and conduct experiments on �uid-transfer mech-

anisms.

Li and Horne [2003]13 proposed a modi�ed model to predict the oil recov-

ery in free-fall gravity drainage and the average residual oil saturation and dis-

cussed the e�ect of pore size distribution and capillary entry pressure on gravity

drainage.

Laboratory experiments of gravity drainage in fractured rock have been

seldomly performed. Some recent studies from Zendehboudi et al. [2008;46

200945]of free-fall gravity drainage experiments indicate that the presence of

fractures is more signi�cant for low matrix permeability systems. They also

found out that the rate of liquid exchange between fractures and matrix is

dependent on the liquid level heights in the fractures and the matrix. Their

work indicates that free-fall gravity drainage seems to be stable and piston-like

displacement process; even in the pressence of fractures.

1.2 Claim

Carrying out this research is motivated by the fact that fractured reservoirs
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are still very poorly understood and modelled, even though they contain large

amounts of hydrocarbons. Discrete fracture and matrix (DFDM) models are

used more sheldomly than dual continuum models (DCM), especially in sim-

ulating gravity drainage problems. Injecting gas into fractured reservoirs and

therefore enhacing the rate of oil drainage from the matrix blocks is a highly

promising production technique. Conceptual models exist for idealized cases and

idealized matrix block shapes, however more realistic geological (i.e. discrete)

models have been rarely reviewed.

The goal of this study is to gain insight into the physics of gas-oil gravity

drainage with the help of single-porosity conceptual models and a structured

discrete fracture and matrix model, based on �eld observations from Wisconsin.

For this purpose cross-sectional gravity drainage models have been used with

the commercial CMG reservoir simulator. The primary tasks accomplished by

this thesis are (a) to perform a sensitivity analyses on the critical variables, (b)

examine the role of capillary and gravity e�ects, and (c) determine when gas-oil

gravity drainage in NFR is a feasible and recommended process.

1.3 Agenda

Chapter 1 gives an introduction to gas-oil gravity drainage. Chapter 2

explains the methodology and describes the methods used in accomplishing the

set tasks. Chapter 3 deals with the results and analysis of the simulation

results. Chapter 4 gives a discussion of �ndings from this thesis. Chapter 5

gives a conclusion and makes some recommendations concerning gas-oil gravity

drainage in naturally fractured reservoirs. Appendix A gives the .dat-�le that

was used for simulation of the Cooke model. Appendix B is an experimental

section and deals with CSMP++ reservoir simulator, that was also used for

some simulations. Appendix C gives a general overview of dual continuum

models and discusses their implications and idealizations.
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2 Methodology

Gravity drainage is a very powerful recovery mechanism with potentially

high recovery potential and e�ciencies. One of its biggest advantages is the

fact that gravity drainage is a natural process, does not need much additional

energy input and can keep the reservoir pressure high for a relatively long period.

Conditions of free-fall gravity drainage can occur when gas is injected directly

into the fracture system or when the fractures are drained from the oil. In

such a case the matrix blocks are surrounded by gas to some degree and oil

starts to drain out. However gravity drainage can be a time-consuming process,

which has to be balanced and set into relation with economic and management

considerations.

2.1 Governing Equations

Unfortunately, the exact mathematical formulations of IMEX reservoir sim-

ulator of CMG are not known and are nowhere discussed. I assume that CMG

company are reluctant to give away too much detail and harm their own busi-

ness interests. Therefore, the following sections are simply based on my own

derivations.

2.1.1 Continuity Equation

The starting point of the mathematical derivation of the equations that I

have used to simulate GOGD is the continuity equation. It can be obtained by

applying a mass balance on a in�nitely small volume object and using a Taylor

series expansion and ignoring higher order terms on the facelets and is de�ned

as

−∇ · (ρ~v) =
∂ρ

∂t
(2.1)

where ρ is �uid density in mass per unit volume, v is �uid velocity and t is

time. For incompressible �ow the right-hand side of the equation becomes zero.

The equation above is only valid for single-phase �ow and porosity of unity.

Dealing with a multi-phase �ow and a porous medium, porosity and saturation

need to be included, as well as source/sink terms to yield

−∇ · (ρα~vα) + ραq̂α =
∂ (ραφSα)

∂t
(2.2)

9



α ∈ {o, g, w}

where q hat is the source/sink term in inverse of time, S is the phase sat-

uration i.e. volume fraction of the pore space that is occupied by α (i.e. oil,

gas, water) and φ is porosity. In the equation above the gravity component is

inherent but not visible yet.

2.1.2 Darcy's law

Darcy's law is named after the French hydrologist Henri Darcy who in 1856

discovered a simple linear relationship between the �ow rate of water through

sand and the pressure gradient. The proportionality constant depends on the

�ow area, �uid properties (i.e. viscosity) and rock properties (i.e. permeability).

For petroleum engineering applications, however, the equation is written in its

multi-phase form, which is

~vα = −krα
µα

k (∇pα − ρα~g) (2.3)

where kr is the relative permeability, k is the permeability tensor, μ is the

viscosity, p is the �uid pressure and ~g = [0, 0,−g]T is the gravitational acceler-
ation vector. The relative permeability is a function of phase saturation (e.g

Brooks-Corey, Stone, Van Genuchten). The expression in the brackets is the

gradient of the �ow potential.

2.1.3 Saturation Equation

The saturation equation can be derived from Eq.2.2 with mathematical mod-

i�cations. If we assume that �uid density is constant, the rock matrix incom-

pressible (i.e. porosity is constant), and the �uids phases are immiscible then we

obtain the classical saturation equation which is similar to the Buckley-Leverett

equation6

−∇ · ~vα + q̂α = φ
∂Sα
∂t

(2.4)

If we deal with gas-oil gravity drainage, however, this simple form of the

saturation equation will not be applicable. For gas gravity drainage the equation

used will be a two-phase, slightly compressible and immiscible �ow.
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2.1.4 Immiscible Two-Phase Slightly Compressible Flow

In order to derive the immiscible two-phase slightly compressible �ow the

starting point is Eq.2.4. Especially the right hand side of the equation needs

further re�nement. Applying the product rule of di�erential calculus twice we

obtain

∂ (Sαραφ)
∂t

= Sα
∂ (ραφ)
∂t

+ ραφ
∂Sα
∂t

= Sα

[
φ
∂ρα
∂t

+ ρα
∂φ

∂t

]
+ ραφ

∂Sα
∂t

(2.5)

Since density and porosity are a function of phase pressure we can expand the

expression within the square brackets of Eq. 2.5 to account for phase pressure

φ
∂ρα
∂t

+ ρα
∂φ

∂t
= φ

∂ρα
∂pα

∂pα
∂t

+ ρα
∂φ

∂pα

∂pα
∂t

With the introduction of �uid compressibility, which is the measure of relative

density change of a �uid with pressure at constant temperature, as well as rock

compressibility

cα =
1
ρα

∂ρα
∂pα

cφ =
1
φ

∂φ

∂pα

and the insertion of Darcy velocity of Eq.2.3 into Eq.2.2 as well as the intro-

duction of phase mobility λα = krα/µα we obtain the following expression

−∇ · (−ραλαk (∇pα − ρα~g)) + ραq̂α = Sαφρα (cα + cφ)
∂pα
∂t

+ ραφ
∂Sα
∂t

(2.6)

α ∈ {o, g}

Eq.2.6 is also known as the full saturation equation. Note that in this deriva-

tion the �uid compressibilities are being treated as constant (i.e. slightly com-

pressible). If gas is desired to be treated as fully compressible then its com-

pressibility should be a function of pressure and Z-factor. We also know that

the sum of the individual saturations is unity
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∑
Sα = 1

and the mathematical de�nition of capillary pressure pcgo in an oil-gas system

pcgo = pg − po

where the subscripts g and o denote gas and oil respectively. Under the

assumption that the capillary pressure derivative with respect to time is neg-

ligibly small, individually adding up the expressions in Eq.2.6 and after some

mathematical transformations we obtain the immiscible two-phase slightly com-

pressible �ow equation

∇ ·
[
k (ρoλo + ρgλg)∇p− k~g

(
ρ2
oλo + ρ2

gλg
)

+ ρgλgk∇pcgo
]

+ ρoq̂o + ρg q̂g =
(2.7)

φ [Soρo (co + cφ) + (1− So) ρg (cg − cφ)]
∂p

∂t
+ φ (ρo − ρg)

∂So
∂t

Eq.2.7 above is stated as a pressure and saturation formulation. The perme-

ability tensor is denoted by k. The pressure p refers to the oil pressure. The

saturation is evaluated for oil and subsequently the gas saturation can be found.

Another formulation that gets rid of the saturation- time derivative can

be obtained from the knowledge that the sum of saturations is always unity.

Again, by negelecting the capillary pressure derivative with respect to time and

by de�nition of the total compressibility ct = Soco + Sgcg + cφ and the total

source term q̂t = q̂o + q̂g we obtain the so-called pressure equation33

1
ρo
∇·[ρoλok (∇p− ρo~g)]+

1
ρg
∇·[ρgλgk (∇p+∇pcgo − ρg~g)]+q̂t = φct

∂p

∂t
(2.8)

where p again denotes the oil pressure. Eq.2.8 is well suited for an IMPES

(i.e. implicit pressure explicit saturation) approach in solving the equation

numerically.

2.2 Non-Equilibrium Gravity Drainage

Non-equilibrium gravity drainage takes place when gases such as carbon

dioxide are injected that are not in thermodynamic equilibrium with the oil in
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the reservoir. In such cases both phases do not coexist in an immiscible state but

a modi�ed phase is established. The idea of non-equilibrium gravity drainage

is to inject a gas that will mix with the oil reducing the interfacial tension and

altering the capillary pressure function. If a certain layer had a height that was

smaller than the capillary threshold height, then in equilibrium gravity drainage

this layer would have been left untouched. The capillary threshold height can be

calculated by dividing the threshold capillary pressureNon-equilibrium gravity

drainage permits to drain such layers.

Unfortunately, non-equilibrium gravity drainage is more complicated be-

cause compositional e�ects need to be taken into account. Therefore there

are only few publications adressing this topic (e.g., Schechter and Guo [1996];11

Jacquin et al. [1989]55).

2.3 Gas-Oil Gravity Drainage

Naturally fractured reservoirs (NFR) often contain numerous �ssures and

fractures. In such reservoirs the use of water�ooding as a recovery method

would lead to early water breakthroughts, high water production rates and a

large amount of oil would be left untouched in the reservoir. Therefore GOGD

in NFR can be a potentially advantageous production method.

In �eld applications GOGD is established by a combination of horizontal

or vertical injector wells at the top of the reservoir and a producing well at

the bottom of the reservoir. Figure 1 presents a schematic of this process. A

horizontal injector generally is better because it intersects more vertical fractures

than a vertical but due to �nancial or mechanical constrictions a horizontal

injector is not always available.

In GOGD gas is injected at the top of the reservoir and then creates a gas-

oil interface that is displaced downwards towards the horizontal producer at

the bottom of the reservoir. Gas injection rates and oil production rates are

balanced and controlled to make sure that the entire system is dominated by

gravity e�ects. The injected gas then replaces the voidage volume created by

the simultaneous oil production.

If production and injection rates are not balanced accurately, viscous �nger-

ing, early gas breakthrough and gas coning can occur.56 This e�ects negatively

a�ects the recovery of GOGD processes.

Assuming low viscous forces GOGD can be regarded as a continuous battle

between gravitational forces that tend to displace the oil downward and capillary
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Figure 1: Schematic of GOGD in �eld applications (after Jadhawar and Sarma,
2008)56

forces ( rock-speci�c characteristic) that try to hold it back.

In theory, gravity drainage can take place in any stage of the producing life

of the reservoir. Hagoort [1980]8 mentions that GOGD �can occur in primary

stages of oil production (gas cap expansion drive or segregation drive), as well as

in supplemental stages where gas is supplied from an external source�. Ideally

the reservoir would be produced at pressures above the bubble point pressure,

where gas is still dissolved within the oil. This is positive, because oil viscos-

ity generally is smaller. Moreover, keeping the pressure in the undersaturated

region prevents shrinkage of oil in place.

GOGD simualtions in NFR have mainly been done with dual continuum

models, following certain idealisations and assumptions for computational speed.

Dual continuum models are relatively simple to implement and understand.

Such simulations have been done with both brine or oil as the wetting phase

and gas as the non-wetting phase. Terwilliger et al. [1951]5 have stated that

there is very little di�erence between displacement of oil or water by gas. Some

authors have also found out that GOGD in 3D can be closely approximated by

1D (e.g., Saidi and Sakthikumar [1993]10). This �nding supports the setup of

models within my thesis.
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2.4 Mathematical Models

In the past, several authors have tried to present mathematical models to

deal with gravity drainage. Some of these models are presented below:

Luan51 derives analytical solutions for gravity drainage by starting with the

Darcy velocity of the oil phase and the continuity equation. Moreover from the

de�nition of capillary pressure he comes up with a 1D reimbibition model for

matrix blocks of NFRs.

φ
∂So
∂t

+
∆ρoggk
µo

k
′

ro

dSo
dz

+ φ

√
k
φ

µo

∂

∂z
kroJ

′ dSo
dz

= 0 (2.9)

where J denotes the Leverett J-function. The last term of the above equation

is the capillary term, which can be neglected in some conditions and under

certain assumptions. He then introduces a capillary lenght scale and some

parameters to create a dimensionless version of the above equation.

Correa et al.49 examine the theory of gravity drainage in layered porous me-

dia. They start by mathematically describing gravity drainage in homogeneous

media. They come up with the following di�erential equation for isothermal

immiscible �ow with constant porosity and an incompressible oil phase

∂

∂z

[
kro
koro

(
4ρg − ∂Pc

∂t

)]
=

φµodSo
kkorodPc

∂Pc
∂t

where koro is the endpoint oil relative permeability value. Correa et al. then

introduce dimensionless variables for the height, time and potential and come

up with the respective dimensionless formulation. This formulation is expanded

for layered models and leads to an initial rate of drainage

qoi =
kA4ρg
µo

(
1− ho2

h

)
where k is the harmonic average permeabilitiy, h is the total height of the

model and ho2 is the threshold height as obtained from the capillary pressure

function. The above equation is however only valid for single phase �ow.

Schechter and Guo11 also developed a mathematical model to describe free-

fall gravity drainage. Based on Darcy's law and �lm �ow theory they create

a dimensionless equation for phase demarcator as a function of dimensionless

time and also present an equation for oil recovery
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R =
(

1− Swr
Swi

)
zD −

2zD
3Swi

√
FsφzD

5tD

where zD is the dimensionless position of the demarcator, Fs is the correction

factor to the Kozeny equation, Swi is the initial wetting phase saturation, and

tD is the dimensionless time de�ned as tD = keff∆ρgt/µL. The demarcator

can be regarded as the interface position between two phases. At this position

the capillary pressure is constant. The Kozeny equation is used to calculate the

pressure drop of a �uid through a bed of rock.

Li and Horne13argue that previous mathematical models to of oil production

by gravity drainage are not very successful. Therefore they propose an empirical

oil recovery model that matches and predicts oil recovery in gravity drainage

problems. The recovery is de�ned by the following expression

R =
1− Swi − Sor

1− Swi
(
1− e−βt

)
where β is a constant giving the rate of convergence, Sor is the average

residual oil saturation and Swi is the initial water saturation. The parameters

above can be obtained by a history match. Li and Horne also present an equation

for the initial oil production rate by gravity drainage. The equation can be

viewed as a multiphase extension of the single-phase oil rate formula given

previously by Correa et al.

qoi =
Akk∗ro∆ρg

µo

(
1− pd

∆ρgL

)
where pd is the entry (or threshold) capillary pressure and L is the block

height. In case of horizontal fractures the block height could be related to

fracture spacing, however, the case of vertical fractures remains unclear.

2.5 Factors A�ecting Drainage Rates

Permeability. Increased absolute permeability and especially vertical ma-

trix permeability accelerates gravity drainage (e.g. Schechter and Guo [1998]12),

but does not increase �nal recovery (e.g. for t→∞). Oil relative permeability

is a key factor in gas-oil gravity drainage (e.g. Hagoort [1980]8).

Capillary pressure. The lower the threshold capillary pressure, the smaller is

the capillary holdup zone. The shape of the capillary pressure curve determines
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the �nal recovery: The smaller the capillary pressure is and the more uniform

the grain sizes, the better is the �nal recovery and the higher is the amount of

recoverable oil. The existence of fracture capillary pressure increases oil recov-

ery from blocks (e.g. Saidi and Sakthikumar [1993]10).

Density di�erence. The larger the di�erence between density of the wetting

phase and density of the non-wetting phase the more e�cient is gravity drainage

and the higher is the �nal recovery (e.g. Saidi and Sakthikumar [1993]10). In

gas-oil gravity drainage studies the density of the gas is neglected sometimes.

The gravitational force in gravity drainage problems is directly proportional to

the absolute density di�erence of the wetting and non-wetting phases. There-

fore, GOGD seems to be a reasonable recovery mechanism for heavy oil.

Viscosity. The viscosity of the oil (i.e. non-wetting phase in GOGD) deter-

mines the production rate. The higher the viscosity the slower does the oil

drain from the matrix block. This e�ect is made advantage of in steam-assisted

gravity drainage (i.e. SAGD), where the oil viscosity should be decreased by

the injection of hot gas.

Interfacial tension. Studies have found out that the reduction in interfacial

tension increased the oil recovery (e.g. Karimaie and Torsaeter [2008]50). Inter-

facial tension is directly related to the capillary pressure and a reduction thereof

leads to a reduced capillary pressure. For miscible displacements the capillary

pressure of the phases disappears.

2.6 Fracture Capillary Pressure

Accurate knowledge of the capillary pressure curve is extremely important.

Especially in NFRs capillarity plays a crucial role in the driving mechanism;

much more than in conventional reservoirs. However, the shape and the use of

capillary pressure within fractures has been a controversial issue and has caused

a lot of disputes between scientists.

Several authors have suggested to neglect capillary pressures in fractures

and treat the phase pressures as equal (e.g. Kazemi et al. [1979];21 Fourar et

al. [1993]22). This assumption came into popularity by a publication by Romm

[1966],23 who conducted experiments of �ow between parallel plates. Treating

the capillary pressure as zero has its justi�cations in the parallel-plate idealiza-

tion, in the assumption of wide fracture apertures and hence decreasing capillary

e�ects, as well as in a simpli�cation of the governing equations. Moreover, direct

measurement of fracture capillary pressure- saturation relashionships still pose
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logistical and experimental shortcoming and di�culties.

More recent publications by Firoozabadi and Hauge [1990],24 Rangel-German

et al. [2006]25 reject the assumption that capillary pressure within the fractures

can be neglected. Their research and experiments show the opposite. Firooz-

abadi and Hauge's work found that fracture capillary pressure is both a function

of aperture and roughness of the fracture wall. De la Porte et al. [2005]26 exam-

ined the e�ect of the assumption of zero fracture capillary pressure on results

of numerical simulation of naturally fractured reservoirs and presented guide-

lines for the selection of relative permeability and capillary pressure curves in

fractures.

Figure 2: Fracture capillary pressure (after de la Porte et al. [2005])26

To sum up, although still more work on fracture capillary pressure- satura-

tion relationships is needed, I think that the general properties of the capillary

pressure curve should be the following: non-zero capillary entry pressure, almost

constant value over a large portion of the wetting phase saturation and a very

low irreducible wetting phase saturation. Further developments are necessary

to develop a fracture capillary pressure.

2.7 Signi�cance of Bond Number

The Bond number is a dimensionless number in the �eld of �uid mechanics

and gives the ratio of body (i.e. gravitational) forces to surface tension (i.e.

capillary) forces. When dealing with fractured reservoirs usually the inverse
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of the Bond number is of importance. Its e�ect has been studied by Du Prey

[1978]27 and Schechter et al. [1994]28 and is de�ned as

N−1
Bo =

Pc
Pg

=

√
k

φ

σ cos θ
4ρghf

(2.10)

where NBo is the Bond number, k and φ are matrix block permeability and

porosity, σ and θ are the interfacial tension and the wetting angle respectively,

g is the gravitational acceleration and hf is the height of the fracture. The term√
k/φ comes from the Leverett J-function and denotes a mean characteristic

pore radius. The result of the equation has no units. The inverse Bond is a

simple relationship that can help in determining the question, whether a �ow is

governed by capillary or gravity forces respectively. High values of N−1
Bo indicate

that the �ow is governed by capillarity, while low values indicate that the �ow

is gravity-driven.

Schechter et al. [1994]28 investigated the e�ect of low interfacial tensions on

drainage and imbibition. They observed that gravity drainage from a matrix

block begins when N−1
Bo is less than one. Schechter et al. also argue that chang-

ing N−1
Bo value changes the �ow regime; a high inverse Bond number indicate

capillary-driven counter-current �ow, while low inverse Bond numbers indicate

gravity-driven and segregated cocurrent �ow. Cocurrent �ows have higher rel-

ative permeability curves than counter-current �ows.
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2.8 CMG Reservoir Simulator

2.8.1 Introduction

The gas-oil gravity drainage simulations were performed with the commer-

cial IMEX® black oil simulator from Computer Modelling Group (CMG). This

section will describe the mathematical principles of the software and its limi-

tations. It will also deal with the simulation models, the boundary conditions

and the assumptions involved.

IMEX is the three-phase black-oil simulator from CMG. It includes viscous,

capillary and gravity terms in the equations. IMEX makes use of the �nite

di�erence numerical method to solve the involved partial di�erential equations.

Based on the FD technique IMEX uses Cartesian or cylindrical coordinate sys-

tems. It can solve the PDEs in explicit, fully implicit and by adaptive implicit

modes. IMEX can be used to simulate single porosity (discrete) models and

dual continuum models (dual porosity, dual permeability, MINC), which are a

model representation for naturally fractured reservoirs.

The �nite di�erence method (FD) is the oldest numerical method for the

approximation of solutions to partial di�erential equations. It makes use of the

Taylor series expansion, where a function in a future position is related to the

function of the present position and derivatives of the function at the present

position. Obviously, in order to decrease the complexity of the di�erential equa-

tion the derivative is being replaced with a di�erence quotient.

∂p

∂x
≈
4p
4x

=
p2 − p1

x2 − x1

In order to apply the FD method the Taylor polynomial needs to be short-

ened, by neglecting higher order terms and just applying the Taylor series expan-

sion till �rst order. The �nite di�erence method is therefore �rst order accurate.

To calculate the di�erences, one can use forward, backward or a combination of

both called central di�erences. The solution of the PDE is more closely approx-

imated by having a small grid size. The �nite di�erence method can be used

with several possible stencils, the two most popular being the 5-point and the

9-point formulation.
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Figure 3: Finite di�erence 5-point formulation (a) 9-point formulation (b) (after
LeVeque, 2006)36

Fig.3 above gives a graphical illustration of the di�erent stencils. The num-

ber close to the node refers to the contributions of the nodes to the �nite di�er-

ences. The 5-point formulation uses one central node and its north-south and

east-west neighbours to compute the derivatives, while the more sophisticated

9-point formulation includes all adjacent neighbours (i.e.north east- and south-

west neighbours etc.) to the central node. IMEX uses the 9-point formulation.

The �nite di�erence method can be applied to regular grids (e.g. Cartesian

grid) and leads to structured grids. Di�erent ordering of the structured grid

would lead to di�erent matrixes A to be inverted during simulation runs. In

any instance, this assembled matrix would have unzero values along certain

diagonals.

To sum up, the �nite di�erence method is the oldest numerical method to

solve PDEs, however it can only handle regular meshes. This means that the FD

method has problems in dealing with complex geological features and therefore

realistic geometries.

2.8.2 Model Building Procedure

The �rst step is the starting of the CMG Launcher, which is a project man-

agement application that allows the user to keep track of his simulations. In

the Launcher the paths and directories are speci�ed and a user-friendly menu

manages the applications. From the Launcher various di�erent applications like

STARS, Builder and IMEX can be started by a �drag and drop� method.

The reservoir model and the simulation input �les are created with the
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Builder. The Builder has a model tree view that guides the user through the

model setup in a step-by-step fashion. In the �rst step the user has to specify the

simulator (GEM, IMEX, or STARS), the working units (SI, �eld, or lab units),

the porosity model (single porosity, dual porosity, dual permeability, MINC,

or subdomain) and the simulation start date. Then the grid type, K direction

and number of grid blocks and the grid block dimensions in I-J-K-direction

need to be speci�ed. After having created the grid, it needs to be �lled with

properties. Properties include porosities, permeabilities (in I-J-K-directions),

reference depths, grid thickness, bubble point pressures, and dispersion coe�-

cients among others. Properties can be speci�ed either for the entire grid, or

for certain layers. It is also possible to access certain grid blocks manually and

change parameters.

The next step is to de�ne the component properties of the model. The user

can select between a black-oil model and a gas-water model. In this section

basically the PVT properties (e.g. solution gas-oil ratio, viscosity etc.) of the

�uids in the model are speci�ed as functions over pressure.

Then the so-called rock-�uid properties need to be de�ned. This section

refers to the de�nition of di�erent rock types (e.g. shale, limestone etc.) and the

introduction of relative permeability-functions and capillary pressure-functions.

The user can de�ne the name of the rock, the wettability of the rock (either water

wet or oil wet), relative permeability (numerical values can be entered manually

with linear interpolations in between or correlations can be used instead) and

capillary pressure curves. Relative permeability hysteresis can also be modelled.

After de�ning the rock-�uid properties, the initial conditions of the model

need to be speci�ed. This is of course necessary as to give an unique solution

to the partial di�erential equations that are solved with the CMG reservoir

simulator. The initial conditions menu are divided into 3 parts: calculation

methods, PVT region parameters, and advanced parameters. In the calculation

menu tab the user can de�ne how the block saturation is initialized (for the

models 1 to 3 user speci�ed pressure and saturation values are assigned to

each grid block). In the PVT region parameters like phase contact depths,

capillary pressure at phase contacts and datum depth for pressure need to be

de�ned among others. The advanced parameters tab deals with the gas cap

initialization.

The last required step before a simulation can be started is the numerical

section. Here the user can de�ne numerical properties and numerical solution

parameters. These include the minimum time step size, maximum time step
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cuts, linear solver precision, linear solver factorization, linear solver iterations,

and linear solver orthogonalizations among others. In real world examples the

user can de�ne those parameters to the manage the needs. If the model is huge

the user can decrease linear solver precision and numerical matrix manipulations

in order to increase simulation speed and shorten simulation runs. In our case

those numerical possibilities in CMG reservoir simulator are not fully exploited

because the used models are fairly small. A typical simulation run for models

1, 2 or 3 lasts for approximately 2 to 3 minutes.

2.8.3 Models and Boundary Conditions

For this simulation study several di�erent models have been built.

The �rst model (subsequently referred to asmodel 1) has a simple geometry

and should mimic the behaviour of a core. The simulation model used was the

gas-water approach because the CMG simulator does not o�er the possibility

of gas-oil components only. This simpli�cation seems to be reasonable since

in a real static reservoir water would at irreducible saturation and therefore

immobile. The only draining phase would be the oil.

The model is a rectangular cross-section of reservoir rock with a continuous

fracture from top to bottom. The fracture is located in the center of the reservoir

rock. The top, bottom and left and right boundaries are gas-�lled and have high

permeabilities. The rock model has no-�ow left and right boundaries (which

where established by setting the permeability to zero on the rock boundaries).

This ensures that hydrocarbon �uids can only leave the model through the

bottom, both through the fracture and the matrix.

Another simple model with a low-permeability layer on the bottom was

created (subsequently referred to as model 2). The only di�erence between

model 1 and model 2 therefore is the existence of a low-permeable bottom layer.

This would automatically lead to a decreased �uid displacement through the

matrix block and I would be able to observe the e�ect of single and multiple

fractures. The gravity head of the wetting phase would create a vertical force;

however, the existence of the horizontal low-permeable layer in the bottom would

force the oil to �ow in horizontal direction to the fracture. A picture of model

2 is displayed below (not drawn to scale).

The third model (subsequently referred to as model 3) was created to an-

alyze the e�ect of fractures when the matrix has multiple layers of di�erent

permeabilities. Model 1 can be regarded as a simpli�ed model 3. Model 3 has
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Figure 4: Conceptual picture of model 1(not to scale)
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Figure 5: Conceptual picture of model 2(not to scale)
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the same dimensions and properties as model 1. The only di�erence is that the

matrix block has a reduced permeability in its lower half. The permeability

was modi�ed between 5 md and 25 md. The upper layer's permeability was

kept constant at 50 md. That model was simulated and results were compared

between the fractured and the non-fractured case.

A more realistic fractured cross-section of an NFR analog was taken from

Cooke et al. [2006]44 and will be referred to as Cooke model. In their pub-

lication the authors examined the in�uence of stratigraphy on fracture growth

and termination and its meaning for subsurface �uid �ow processes. They in-

vestigated fracture termination for two di�erent carbonate rock sequences: one

Silurian dolomite from Door County, Wisconsin, and the other being the Cre-

taceous Austin Chalk from Texas. Cooke et al. found that the mechanical

properties of interfaces of layers control whether an initiated fracture would ter-

minate or not. Therefore, the mechanical unit thickness not only in�uences the

fracture height but also fracture spacing. This publication also mentions that

the fracture spacing is broadly proportional to fracture height and that thicker

layers therefore develop longer, widely spaced fractures than thinner layers.

Cooke et al. also address the issue of groundwater �ow. They believe that their

�nidings could be useful for estimation of equivalent porous permeability and

hydraulic conductivity and models that use discrete fracture networks.

Cooke et al. [2006]44presents various �gures in their original publication that

include sedimentary stratigraphy, mechanical stratigraphy and fracture map

among others. The original Cooke model fracture map can be found on the

top right corner on page 229 of the prementioned publication. Apart from

the fracture map the sedimentary and mechanical stratigraphies are presented.

The sequence consists mainly of Silurian dolomite and is located in the Door

Peninsula, Wisconsin.

Unfortunately, the original Cooke model is complicated due to the numerous

fractures (more than 100) and layers (about 20) of varying lenghts and thick-

nesses. As gridding of such a model is far from trivial it was decided to make

simpli�cations to ease the creating of the discrete fracture and matrix model

in the CMG reservoir simulator. Therefore, the model had to be simpli�ed,

making several assumptions:

� Fractures that terminate within mechanical units (i.e. layers) are disre-

garded.

26



� Very thin layers are disregarded.

� All layers are assumed to be horizontal.

� Fractures are assumed to be vertical.

� Only those fractures with a certain minimum lenght (i.e. in this case I

set the threshold lenght to be at least one half of layer thickness) are

considered.

� In the x-direction the coordinate of the higher fracture tip was considered.

� If certain layers with a high matrix permeability fractures were neglected.

� All fractures that penetrate multiple layers or are in contact with the

interface to layers thus establishing a �ow conduit between those were

represented.

� The fractures in the 2D model do not intersect each other in 3D. Therefore

the 2D model is believed to be an appropriate representation of 3D reality.

Giving all those simpli�cations a new representative Cooke model was cre-

ated, which consists of 8 horizontal layers and 52 vertical fractures (Fig.9). Its

dimensions are 16 by 16 meters.

While models 1 to 3 could be built by manually adjusting the properties of

the fracture grid, the realistic Cooke model could not be created in the CMG

Builder with these primitive procedures. The fractures were numbered from

1 to 52, mainly from left to right of the Cooke model. The next step was

to determine the exact position of the fractures and the extent of the layers

in terms of coordinates. This was done with the help of the help of the free

digitizing software Engauge Digitizer 4.1 by Mark Mitchell. I loaded the Cooke

model as a bitmap �le into the digitizer and de�ned three points and their

coordinates. Then the exact horizontal and vertical coordinates of the fractures

can be determined. Simple mathematical operations lead to grid cell thicknesses,

which can be entered without problems in CMG Builder.
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2.8.4 Initialization and Properties

Simulation start date needs to be speci�ed early in the model building pro-

cedure. A default simulation start date was chosen to be January 1, 2000.

The gas-water capillary pressure function for the models 1 to 3 was gen-

erated automatically by the CMG Builder with the help of correlations. For

the particular problem of course the drainage cycle of the capillary curve was

used and no hysteresis modelled. The irreducible water saturation was set at 15
percent. The plot of the gas-water capillary pressure curve is presented below.

Figure 6: Gas-water capillary pressure curve used for models 1,2, and 3

On the x-axis the water saturation as a fraction is presented, while on the

y-axis the capillary pressure of the gas-water system is presented in psi. At an

irreducible water saturation of 0.15 the gas-water capillary pressure is 10 psi.

The threshold pressure at which gas enters the model is set to 2 psi. As initially

no gas is present in the model the threshold pressure corresponds to a water

saturation of one. The �gure above is valid only for the rock material grids

of the models. For the fracture domain a gas-water capillary pressure function

of zero is assumed, which is a proper assumption because of the wide fracture

aperture. An approximation of a zero capillary pressure within the fractures is

also found in other research publications.
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Sw() Pcgw(psi)

0.15 10
0.235 6.32
0.32 4.47
0.405 3.65
0.49 3.16
0.575 2.83
0.66 2.58
0.745 2.39
0.83 2.24
0.915 2.11

1 2

Table 1: Gas-water capillary pressure values used as default in models 1,2, and
3

For the relative permeability functions the drainage cycle was used and they

were generated within CMG with the help of correlations.

Figure 7: Relative permeability used for models 1,2, and 3

On the x-axis the wetting phase saturation (i.e. in our case it is water)

is displayed in increasing order, while on the y-axis the dimensionless relative

permeabilities of gas and water are displayed. It was assumed that the end-point

relative permeabilities are one. This approximation can be considered justi�able

because at an initial water saturation of one (i.e. a fully water saturated core

with water) only water is available for �ow. For a connate water saturation

of 15 percent the gas relative permeability was set to one. The wettability of

the system was set to water-wet. The wettability character can be seen in the
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relative permeability �gure from the intersection point between water and gas

relative permeability curves. The position of the intersection point con�rms

water-wet conditions.

For the fracture domain linear relative permeability relationships were used.

The endpoint relative permeability values are one. It is assumed that in the

fracture there is a zero connate water saturation. This is a plausible assumption

for parallel-plate fractures or fractures, whose walls have a low roughness.

Figure 8: Relative permeability used for fracture

In the fracture relative permeabilities the following formulas were used.

krw (Sw) = Sw

krg (Sw) = 1− Sw

Linear relative permeability curves as de�ned above have also been used in

previous research publications.

Other properties that have been used for the default initialization purposes

for models 1 to 3 are shown below in Table 2. The properties are given in �eld

units (e.g. psi, md, etc.) because the models 1,2 and 3 were designed in �eld

units.

Table 4 presents the relationship between pressure and gas formation volume

factor that was used in the default model simulations. The gas formation volume
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Property Value

φf 0.999
φm 0.2
km 50md
kf 106md
cw 3.19387 ∗ 10−6psi−1

cφ 10−5psi−1

Tres 100°F
SGgas 0.8
ρw 62.04lbs/ft3

Bw 1
µw 1cp
Pres 500psi

Table 2: Default properties used for models 1, 2 and 3

factor (Bg) is the quotient of the gas volume at reservoir conditions and gas

volume at standard conditions. It can be viewed as an exchange rate about

how to refer reservoir volumes to surface volumes. The behaviour is absolutely

typical and consistent. The higher the pressure becomes, the lower is the gas

formation volume factor (i.e. a large pressure means that larger volumes of gas

can be compressed which results in larger surface volumes).

Table 4 presents the gas viscosity versus pressure that was used for the

default simulations. The viscosity-pressure relationship is almost linear with a

very small curvature.

For an explanaition of the used variables and abbreviations please refer to

the nomenclature.
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Pressure (psi) Bg(bbl/ft³)

14.696 0.190628
80.38 0.0344016
146.07 0.0186825
211.76 0.0127149
277.44 0.00957258
343.13 0.00763312
408.82 0.00631672
474.51 0.00536481
540.19 0.00464444
605.88 0.00408047
671.57 0.00362709
737.25 0.00325486
802.94 0.002944
868.63 0.00268071
934.31 0.00245511
1000 0.00225991

Table 3: Gas formation volume factor versus pressure

Figure 9: Fracture outcrop map of Door County,Wisconsin,(left),44 simpli�ed
model used for simulation(right). The original Cooke model fracture map can
be found on the top right corner on pg.229 of the Cooke et al. publication

The �gure above presents the original Cooke model on the left side and the

simpli�ed Cooke model on the right side that was used in the simpli�cations.

The Cooke model has dimensions of 16m x 16m. The horizontal red lines rep-
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Pressure (psi) µg (cp)

14.696 0.0106345
80.38 0.0107085
146.07 0.010804
211.76 0.0109149
277.44 0.0110394
343.13 0.0111768
408.82 0.0113272
474.51 0.0114907
540.19 0.0116677
605.88 0.011859
671.57 0.0120651
737.25 0.0122868
802.94 0.0125251
868.63 0.0127808
934.31 0.0130548
1000 0.0133481

Table 4: Gas viscosity versus pressure

resent the interfaces between the individual layers, while the vertical red lines

represent the fractures. The matrix blocks are displayed in yellow. Please no-

tice, that the colours have no meaning whatsoever and should not represent

same properties. They are just meant as a visual guidance.

Unfortunately, Cooke et al.[2006]44 do not give any numerical values for

the properties of the outcrop study in their Silurian dolomite model from Door

County,WI. They only present the mechanical and sedimentary stratigraphy

but neither give fracture apertures, nor porosities or permeabilities. This is of

course a setback in the aim of realistically modelling the example. Therefore, it

was chosen to assume numerical values for the properties that were unknown.

This was done based on several principles.

For the fracture aperture I assumed a value of 1mm. With its help an

intrinsic permeability can be de�ned with the help of

kf =
w2
f

12
=

(
10−3m

)2
12

= 8.33× 10−8m2 ≈ 83300d

I considered this value to be non-physical. I assumed that during the dolomi-

tization process this absolute fracture aperture would be modi�ed (i.e. de-

creased) by crystallization processes. Therefore I assumed that this high in-

trinsic fracture permeability would be lower; I chose a more realistic fracture
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permeability value to be 106md. Backcalculating from this fracture permeability

value I obtain an e�ective (i.e. for free-�ow) fracture aperture of 0.1mm. This

would mean that the initial fracture aperture would be 90%-blocked with crys-

tals, thus leaving eventually just 0.1mm open to �ow and therefore a fracture

permeability of 106md.

For the permeability in the matrix block regions of the Cooke model I and

my advisor Dr. Stephan Matthäi decided to use typical permeability values

for dolomites. The dark regions in �gure 3 (C) of Cooke et al. [2006]44 rep-

resent lower permeability regions, while the lighter-coloured regions represent

higher permeability regions. The darker regions are thought to represent shale

regions, which are generally characterized by low permeabilities and relatively

large crystal particles. The brighter-coloured regions are thought to represent

Silurian dolomite regions from Door County, Wisconsin. As for the permeability

extreme values of 1md (for dark regions) and 100md (for brighter regions) were
chosen.

For the porosity values I used a typical value of 0.2 for the dolomite rocks.

The fractures have a porosity that is close to unity; it was chosen to be 0.999
(CMG simulator does not allow a 100% porosity). Unfortunately, those low

permeable shale layers have an unknown porosity; therefore, I decided to use a

typical porosity value (i.e. 6%) for the fairly well-analyzed Barnett Shale (e.g.,

Utley [2005],52 Reed [2007]53) in Texas. This of course introduces a certain

amount of uncertainity.

For the relative permeability functions of the shale and dolomite regions a

Brooks-Corey model was used. In the fracture a linear relative permeability was

used. The modi�ed Brooks-Corey drainage equations use the following formulas

krw = k∗rw (Se)
3+2/η

krg = k∗rg (1− Se)1+2/η

Pc = Pc,thr (Se)
−1/η

where Se is the e�ective (normalized) saturation and η is a measure of the

maximum pore size distribution.
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Parameter Value

k∗rw 1
k∗rg 0.5
Swr 0.18
Pthr 1psi

Table 5: Brooks-Corey parameters used for initialization of shale layers in Cooke
model

Parameter Value

k∗rw 1
k∗rg 0.7
Swr 0.15
Pthr 1.5psi

Table 6: Brooks-Corey parameters used for initialization of dolomite layers in
Cooke model

2.8.5 Limitations of CMG simulator

Since IMEX is a �nite-di�erence simulator it is restricted to regular meshes

and therefore has problems in representing realistic features. Layer boundaries

that are curves can only be represented as steps. The geometry can only be

re�ned by a decrease of the global dimensions of the grid blocks. Unfortunalely,

this comes at the expense of computational e�ciency. Another setback is that

IMEX is restricted to certain model sizes and number of grid blocks. The

University of Leoben licence can handle a maximum of 50 000 grid blocks.
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3 Results / Analysis

3.1 E�ect of general parameters

In this section the e�ect of general parameters is examined, in order to gain

some insights into the process of gravity-drainage and make some sensitivity

analysis on governing parameters. The extra gain from this simulations might

be the establishment of general criteria over when gravity-drainage might be an

option of recovering the hydrocarbons.

In the �rst several simulation runs the matrix permeability [50 md, 100 md,

250 md, 500 md] was modi�ed. It generally accepted that the higher the matrix

permeability the faster does the oil drain from the model. This is absolutely

intuitive because permeability is directly related to the drainage velocity through

Darcy equation. The above mentioned principle can also be observed for the

simulated model 1. In the subsequent plot the average water saturation in

percent is on the y-axis, while the date of simulation is on the x-axis. It can be

observed that a high matrix permeability increases the drainage velocity. Please

notice also that the matrix is open to �ow; therefore the existence of a fracture

does not improve the drainage performance.

Figure 10: E�ect of matrix permeability for model 1
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The di�erence in average water saturation can be dramatic especially for the

early time-period of the simulation. The longer the simulation runs the more do

the drainage curves approach each other. In the end of the simulation the �nal

water saturation for the 50 md case it is about 35 percent; 32.4 percent, 28.5

percent and 27.7 percent for the respective cases of 100 md, 250 md, and 500

md. To sum up, matrix permeability is one of the main governing parameters

for the success of gravity drainage.

Several other simulation runs have shown that a decrease in matrix porosity

in model 1 also increases the drainage velocity. At �rst this observation seemed

odd to me, however, it is also intuitive and has a simple explanation. The

drainage velocity of the matrix block is related to the interstitial velocity, which

is the Darcy velocity divided by the porosity [u = v/φ]. The interstitial velocity
can be thought of as the velocity of the �uid within the pores. Therefore the

lower the porosity the higher will be the interstitial velocity. Generally, there

is no mathematical relation between porosity and permeability of a reservoir,

although some attempts have been made. In many cases a low porosity will

also mean a low permeability, but this is not always the case. The plot below

shows the average water saturation in percent on the y-axis and the simulation

date on the x-axis. This behaviour was obtained by keeping the permeability

unchanged, while modifying the porosity.

Figure 11: E�ect of matrix porosity for model 1
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The in�uence of the matrix porosity is not that dramatic as the in�uence of

permeability. We can, however, also observe that during the beginning of the

simulation the di�erence between the di�erent porosity cases (i.e. 0.15, 0.2, 0.25,

0.3) is larger and then decreases in the end of the simulation. The �nal average

water saturations range between 33.8 percent (0.15 matrix porosity case) and

37.5 percent ( 0.3 matrix porosity case). The porosity of the system might also

be a factor in determining the potential of gravity drainage in certain reservoirs.

Depending on the boundary conditions di�erent saturation pro�les can de-

velop.

Figure 12: Saturation pro�les for no-�ow outer boundary (left), �ow outer
boundary (middle), and no fracture (right)

All three cases are for model 1. The left pictures shows the case, where the

left and right model boundaries are no-�ow boundaries, which is achieved by

setting its permeabilities to zero. We can clearly see that the fracture causes

a spike in the saturation pro�le. This just means that the region closer to

the fracture is drained faster as compared to the region further away from the

fracture. This implies that in the region close to the fracture there is some

amount of �uid �ow from the matrix region into the fracture region. This e�ect

decreases with an increased distance away from the fracture. In the middle

picture the left and right model boundaries are assumed as to be �ow boundaries

(permeability was left unchanged at 50 md). It produces spikes in the water

saturation pro�le in the middle and at the left and right boundaries (because

they are connected to a fracture) of the model. The right picture in the �gure

shows the case where there is no fracture in the middle of the model. We can

see the vertical piston-like displacement fronts.

Plotting the average water saturation in percent over the entire simulation
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duration is consistent with observations from before: There is no di�erence in

the curves of the three cases (i.e. no fracture model, no-�ow outer boundary,

�ow outer boundary). Therefore, no matter if we have a �ow or no-�ow outer

boundary or even a model without a fracture there is no di�erence in the results.

Left and right boundaries (i.e. vertical) do not seem to make an e�ect. As for

subsequent results it will be shown that rather top and bottom boundaries (i.e.

horizontal) in�uence gravity drainage.

Another simulation was performed to verify the e�ect of capillary pres-

sure. From literature (see introduction section) it has been stated that gravity

drainage is a battle between gravity and capillary. While gravitational forces

try to expel the wetting phase downward, capillary pressure tries to hold back

the wetting phase. Capillary pressure is closely related to the grain radii and

sorting. Usually the smaller the radii of the pores the higher is the capillary

pressure and the more resistance is provided against gravity drainage. In the

simulation the default capillary pressure curve from Table 1 is used and other

modi�ed capillary curves. A very easy and neat way to modify the capillary

pressure curves without making sacri�ces on the curvature is by simply multi-

plying it with a prefactor. For this case I introduced a dimensionless variable

that I called normalized capillary pressure de�ned below. In my simulations I

changed the normalized capillary pressure between values of 0.5 and 1.5.

Pcgw,normalized =
Pcgw

Pcgw,default

The expected behaviour was con�rmed. A higher capillary pressure leads

to lower recoveries and more oil is held back. Although for the �rst couple

of months of the simulation the recovery is the same in all models, the curves

start to deviate from about 3 months onward. Final average water saturations

lie between 32.6 percent (case, where normalized capillary preccure is 0.5) and
37.3 percent (case for Pcgw,normalized = 1.5). This di�erence is quite signi�cant
and can determine the di�erence between economic and uneconomic case. Fur-

thermore, the threshold capillary pressure leads to an e�ect known as capillary

holdup. This means that at the bottom of the model there will be some wetting

phase that cannot be produced and where the wetting phase saturation is one.,

no matter what we do. The same phenomenon was observed in our simula-

tion. The capillary holdup is proportional to the capillary threshold pressure
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(i.e. threshold capillary pressure can be �converted� to capillary holdup height).

When the normalized capillary pressure was 0.5 then this zone had a height of 2
cells (which is equivalent to 2 feet), while this same height was 4 cells (equivalent
to 4 feet) for the case when normalized capillary pressure was 1. The e�ect of
the normalized capillary pressure on gravity drainage performance is presented

below.

Figure 13: E�ect of capillary pressure for model 1
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Another simulation was run as to simulate cases where the wetting phase has

di�erent densities in order to observe the e�ect of wetting phase density. In this

example the water densities were varied between 900 kg
m3 and 1050 kg

m3 . It was

shown that the e�ect is small but de�nitely not negligible. Final average water

saturations were between 34.4 percent and 36.2 percent. The simulations showed

that the higher the density of the wetting phase, which is to be drained, the

higher is the ultimate recovery and the better does gravity drainage work. This

indeed makes sense because gravity drainage depends on the gravity contrast

between wetting phase and non-wetting phase. The higher the di�erence in

densities between wetting phase and non-wetting phase the better. The weight

of the hydrocarbons is a function of its density. This speci�c characteristic

would seem to indicate that gravity drainage would be a prefered production

method for heavy-oil reservoirs.

Figure 14: E�ect of water density

The e�ect of gas gravity, which is the ratio of the gas density to the density

of air, was also examined. In the trial simulation runs the numerical value of

the gas gravity was changed between 0.6 and 1.0. The results also con�rm the

observation from above that an increased di�erence in gas and oil densities works

advantageously in favour of gravity drainage and recovery curves. Therefore,

the case where the gas gravity is lowest (at 0.6) is the best, while the case where
the gas gravity is highest (at 1.0) is the worst in terms of oil production. What

is interesting, however, to note is that the e�ect of gas density is negligibly
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small and delivers curves that are almost identical. This makes sense because

the density of gas is very low as compared to the density of the oil and therefore

these minor changes do not a�ect the results. As to sum up, the main factor

in those density considerations is the density of the oil, while the density of the

gas plays a subordinate role.

I have also plotted the saturation distribution over depth and time for model

1. The results are presented in �g.38. On the x-axis the water saturation is plot-

ted, while the height percentage∗ is plotted on the y-axis. Di�erently coloured

lines represent saturation distributions for di�erent times (in days). In the be-

ginning the entire model has a constant water saturation of 1. Then the process
of gas-oil gravity drainage starts modifying the curve. During this �transient�

time the saturation over height (or, equivalently, depth) function approaches

the drainage capillary pressure curve, which is represented in the plot as red

hollow balls. It can also be infered from the plot that for late times production

will come mainly from shallower depths, where still a signi�cant amount of the

water exists untouched. Ideally, for an in�nite time the saturation distribution

will exactly match the drainage capillary pressure curve. The results for �g.38

have been known for a long time and are in agreement with Terwilliger et al.

[1951].5

Figure 15: Change in saturation distribution with time for model 1

∗Height percentage is a normalized height. For sake of simplicity the reader can assume

y-axis of �g.38 to be height.
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3.2 E�ect of number and position of fractures

Fractures do not improve the gravity-drainage performance of model 1. It

does not play any role how many fractures and where those fractures are, all

recovery curves follow closely a very similar path. The reason for this is that the

matrix itself is open to �ow and all acting forces are mainly acting downward

(i.e. gravitational direction). The oil sees no motivation to move in a vertical

direction as to be displaced through the fracture.

Simulating model 2 has shown that the lenght and position of the frac-

ture in�uences gravity-drainage performance. The most important factor is

that the fracture is actively connected to the well and therefore establishes a

high-permeability �ow conduit through the low-permeability zone. Generally

we would expect that an increased fracture lenght has a positive e�ect on the

gravity-drainage performance. This e�ect was observed and can be con�rmed.

The longer the fracture lenght the faster is the wetting phase discharged from

the payzone. The contact of a larger portion of oil with the high-permeability

conduit displaces �uid more quickly. However, the interesting observation is

that the e�ect can be signi�cant if the fracture terminates within the low per-

meability bottomlayer or very close to it (e.g. 5 to 10 feet long fracture ). If the

fracture is longer and stretching further into the model (e.g. say 20 feet) then

the e�ect between a 20 feet and a 50 feet or 98 feet long fracture is negligible

small. For engineering purposes this means that as long as the fracture goes

through the low-permeability zone and has a certain minimum size, then the

lenght of fracture can be neglected and does not determine drainage success.

During early simulation times the fracture lenght plays a minor role in speeding

up the drainage. It must be noted, however, that at the end of the simulation

this observation is reversed; models with fractures of shorter lenghts have recov-

ered slightly more oil (di�erence lies in the range of about 0.5 percent of average

saturation).
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Figure 16: E�ect of fracture lenght for model 2

The plot above shows the above mentioned details. On the y-axis the av-

erage water saturation in percent is displayed, while on the x-axis the date of

simulation in year and month is shown.

3.3 E�ect of fracture permeability

Changing the fracture permeability between 106 and 103 md in model 1

showed no in�uence on the recovery curves. This means that as long as �ow

occurs in the vertical direction through the matrix the e�ect of the fracture is

not apparent. Only in the vicinity of the fracture the oil �ows in a horizontal

direction towards the fracture. It is interesting to observe that although the frac-

ture permeability in�uences the near-fracture matrix region and increases the

drainage-rates in those regions, the overall e�ect for the entire model is negligible

small. Similar observations have been made in experimental setups by Zende-

hboudi et al. [2009],45 who also con�rmed that liquid communication exists

only between the near-fracture vicinity matrix and the fracture, while further
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away parts of the matrix are plainly una�ected by fracture pressence. Fractures

alone therefore do not necessarily in�uence gravity-drainage processes. Flow in

model 1 is a vertical piston-like 1D displacement process. Zendehboudi

et al. [2009]45 have also found out from experimental studies that draining a

model at low withdrawal rates makes the drainage similar to a piston-like dis-

placement. The reader may also be refered to Hernandez [2002],48 who found

out that 3D �ow in gravity drainage problems can be accurately represented by

a 1D model. Furthermore, he mentions in his conclusions that �ow in lateral

directions in a gravity drainage problem is negligible. Graphically, the model

can be imagined as a glass with water, whose bottom is open to �ow. The water

just experiences a gravitational force and has no motivation to �ow to a fracture

because the bottom is open anyhow.

Model 1 has such a geometrical con�guration that the de�nition of an e�ec-

tive permeability would be with the help of a (parallel-series) weighted average

permeability. However, calculation of such an average permeability gave a very

high e�ective permeability. This result unfortunately contradicts the result from

the recovery curves and the observation that gravity drainage of model 1 no way

is a�ected by the presence of a fracture.

keff =
∑n
i=1 kiwi∑n
i=1 wi

=
106md× 0.01ft+ 50md× 50ft× 2

2× 50ft+ 0.01ft
≈ 150md

where wi is the width of respective feature i. This result could lead to

the conclusion that averaging permeabilities in naturally fractured reservoirs

in order to obtain e�ective permeabilities could be problematic. Correa et al.

[1996]49 have also pointed out that averaging permeability in gravity drainage

studies in layered porous media may be dubious.

The �gure presented here shows the in�uence of modi�ed fracture permeabil-

ities on the drainage performance. On the y-axis we can see the average water

saturation in percent, while on the x-axis the date of simulation is displayed.

All displayed curves follow the same path and we cannot observe any di�er-

ence. Just if we zoom into the results very strongly we can observe a very, very

small di�erence in the hundredths digit. As for everyday engineering purposes

this minor di�erence is insigni�cant. The plot also tells us that the drainage

has most e�ect in the �rst couple of months after the start of the simulation.

For later times that change in average water saturation becomes smaller and
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Figure 17: E�ect of fracture permeability for model 1

smaller. The �nal water saturation at the end of simulation is approximately

35 percent. Gravity drainage is a pretty e�cient recovery method, but it works

slow as compared to other recovery methods.

As seen above when the matrix blocks are open to �ow, then the fracture

permeability does not play a very signi�cant role. Even if we simulated a 1
md matrix then the fracture does not have any in�uence. Scaling the system

to an e�ective permeability based on harmonic averaging (i.e. taking into ac-

count fracture widths) does not yield satisfying results. However, something

completely di�erent is observed when we simulate model 2. Here the fracture

permeability plays a signi�cant role, as it increases the speed of the drainage

process. Basically, it can be said that the higher the fracture permeability, the

better is the drainage. The di�erence in average payzone water (i.e. wetting

phase) saturation between the individual cases can be signi�cant. At a fracture

permeability of about 1000 md the curve decreases in an almost linear fashion,

while in the other cases the curve decreases in an exponential fashion. The �nal

recovery is the same for all fracture permeabilities and lies at about 36 to 37 per-

cent. After about three years all curves (with exception of the 1000 md curve)
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follow the same path. The existence of fractures alone does not increase the

recovery rate itself, but only increases the drainage speed. The result obtained

in this simulation can be easily explained. High amounts of hydrocarbons try

to leave the model through the fracture, but if the fracture permeability is too

low the drainage is slow. Graphically it can be visualized by a train station and

large amounts of people trying to leave a city. The higher the train frequency

(representing permeability) the faster will those people (representing the oil)

be discharged. Results are plotted below. On the x-axis we have the date of

simulation, while on the y-axis we have the average water saturation in percent

and the water volume at reservoir conditions in cubic feet.

Figure 18: E�ect of fracture permeability for model 2 (on water volume)

The fracture permeabilities were then modi�ed with the simulation of model

3 (two layers reservoir and fracture). In the model the upper layer matrix

permeability was 50 md, while the bottom layer matrix permeability was lower

at 10 md. The simulation shows that the fracture permeability plays a small

role on the early time recovery, as a high fracture permeability has better �uid

transport potential. The matrix block drains faster in the beginning of the

simulation, however for later times the recovery curves follow the same path.

It is interesting to note, that the curves fall together approximately one year
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Figure 19: E�ect of fracture permeability for model 2

and one month (i.e. January 2001) after the simulation has started. This would

imply that the existence of fractures only enhances performance on the short

term. As for engineering purposes it seems as if the company has to make the

decision whether that early time extra gain would justify increased operational

costs of gravity-drainage processes.
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3.4 E�ect of fracture capillary pressure

Several simulations were performed to see the in�uence of fracture capillary

pressure. Experimental results of fracture capillary pressure curves are very

sheldom because of the di�cult experimental setup. Here, as to make life more

simple, capillary pressure within the fracture was related to the pore radii (i.e.

half of the fracture aperture in this case), interfacial tension between water and

gas and contact angle. The formula is presented below

Pcf =
2σ cos θ
rf

where σ is the interfacial tension for water-gas system, θ is the contact

angle between water and gas, and r is the fracture radius. As the fracture

aperture (and therefore fracture radius) is constant along the vertical axis, this

should automatically lead to a constant capillary pressure in the fracture. The

numerical values for the parameters of interfacial tension (σwg = 50dyne/cm) and

contact angle (θwg = 0°) were taken from Graves [2008].47 Those parameters

lead to a constant capillary pressure as function of water saturation.

Changing the fracture capillary pressure between values of 0.01psi and 0.05psi
for model 1 did not in�uence the results. This is evident because previous sim-

ulation on model 1 have shown that the fracture does not in�uence free-fall

gravity drainage. Therefore it would be absolutely inconsistent if fracture cap-

illary pressure had an e�ect on gravity drainage for this model.

The same simulation was also applied on model 2 with the same results.

No matter how much the fracture capillary pressure was changed, the recovery

curves over time looked the same. The plot of average water saturation over

time is presented below for model 2. This would lead to the notion that the

fracture capillary pressure is a force in gravity drainage processes that can be

neglected. The choice of fracture capillary pressure does not signi�-

cantly a�ect drainage rates. (Note: If we strongly zoom into the average

water saturation versus time plot we can see that the case of 0.05psi- fracture

capillary pressure drains more wetting phase from the matrix that the case of

lower fracture capillary pressures. This could lead to the assumption that the

higher the fracture capillary pressure, the better is the oil drained from the

matrix. However, the di�erence is so small that it cannot be seen with the eye

and can be safely disregarded for engineering purposes).
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Figure 20: E�ect of fracture capillary pressure on model 2

3.5 E�ect of relative permeability

During the course of work some simulations have been made as to get a

qualitative understanding of the e�ect of relative permeabilities of the gas and

the water phases. The Brooks-Corey relative permeability model (see section

3.2) was employed to compute relative permeability curves, as well as the matrix

capillary pressure curve. Necessary parameters are immobile (or residual) water

saturation, threshold capillary pressure, Brooks-Corey (abbrev. BC) parameters

for water and gas, as well as water and gas endpoint relative permeability values.

The gas residual saturation was assumed to be zero, which is a valid assumption

because gas is the non-wetting phase. The following equations were used

krw = k∗rw

(
Sw

1− Swr

)λw

= k∗rw (Se)
λw

krg = k∗rg

(
1− Sg

1− Swr

)λg

= k∗rg (1− Se)λg

with a �xed residual water saturation Swr of 0.15. Here Se is a normalized
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saturation known as e�ective saturation.

First the endpoint gas and water relative permeability values were kept con-

stant at 1, while the gas Brooks-Corey parameter λg was modi�ed for values

between 2 and 4. I on purpose decoupled the exponents λw and λg from the

exponent I used in the capillary pressure function. I did this to remove the rig-

orous restriction of exponent relationship in the original Brooks-Corey model.

A plot of average water saturation versus simulation time is presented below. It

can be seen that a higher gas BC parameter delivers better recoveries than lower

gas BC parameters. The �nal water saturations lie between 34 and 35 percent.

Altough a slight di�erence in recovery curves can be seen, the di�erence is very

small and almost negligible. If we plot the gas relative permeability and the cap-

illary pressure both as functions of gas BC parameter, we can see the e�ect and

get a clue why a high λg is advantageous. A high gas BC parameter decreases

non-endpoint gas relative permeability values, when compared to lower gas BC

parameters. This e�ect has to do little with gas-oil gravity drainage. What is

even more important is the e�ect of λg on the gas-oil capillary pressure curve.

Higher values of the gas BC parameter decrease the capillary pressure. The

capillary pressure approaches to an almost constant value with ever increasing

λg.This is related to an uniform sorting of grain sizes. I believe that the (small)

di�erence in average water saturation over time is mainly due to the e�ect of gas

BC parameter on the capillary pressure. A similar �nding is presented in Li and

Horne [2003],13 who say that �(...) average residual oil saturation increases with

the decrease in pore size dstribution index� and that �oil recovery by gravity

drainage may increase with the pore size distribution index�. Notice also that

the size of the capillary holdup region is not a�ected by the gas BC parameter (it

only a�ects curvature). However, the plot shows that gas relative permeabil-

ity (or non-wetting phase relative permeability) does not in�uence gravity

drainage performance signi�cantly. Therefore, the laboratory determination

of the non-wetting phase relative permeability is non a critical factor.

Nevertheless, carelessness is not recommended.
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Figure 21: E�ect of non-wetting phase relative permeability curvature on GOGD

Figure 22: In�uence of gas Brooks-Corey exponent on relative permeability and
capillary pressure
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Also, some simulations with changed water BC parameters (between λw = 2
and λw = 4) were performed, while the other parameters were kept constant

(e.g. Swr = 0.15, k∗rw = 1, k∗rg = 1. Pc,thr = 2 psi, etc.). A plot of gravity

drainage recovery curves for di�erent water BC parameters is presented below.

It can be clearly seen that a low λw signi�cantly a�ects the �nal recovery.

The lower the λw the more e�cient is the gravity drainage. For a water BC

parameter of 2 the �nal average water saturation is 23 percent, while it is about

35 percent for a water BC parameter of 4. While in the previous case a high gas

BC parameter improves drainage performance because it modi�es the capillary

pressure curve and therefore increase the amount of recoverable �uid, the reason

why a decreased water BC parameter is a di�erent. Decreasing the λw a�ects

the water relative permeability curve as it increases the non-endpoint values

(i.e. all values except relative permeability values at residual water saturation

and initial water saturation). This then increases the wetting-phase e�ective

permeability (i.e. product of absolute permeability and wetting-phase relative

permeability), which is a major governing factor for vertical gravity-drainage.

From the formulas above we can also see that water BC parameter does not

a�ect the capillary pressure curve. As a conclusion, it must be said that the

water relative permeability (i.e. wetting-phase relative permeability) is a

major factor on the success of gravity drainage. The oil relative permeability

has also been con�rmed to be a key factor in gravity drainage processes in

a study by Hagoort [1980].8 Therefore, I recommend an accurate laboratory

measurement of wetting-phase relative permeabilities.
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Figure 23: E�ect of wetting phase relative permeability on GOGD

Figure 24: In�uence of water Brooks-Corey parameter on relative permeability

3.6 E�ect of bottomlayer matrix permeability

Previous subsections have indicated that fractures do not in�uence gravity-

drainage performance for a one layer model (model 1). This was explained by

the openness of the matrix and the lack of horizontal �ow. The vicinity of the
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fracture experiences �ow directed towards the fracture, however, on an overall

scale this e�ect can be neglected.

If the bottomlayer is sealed or impermeable (model 2), then the fracture

has an e�ect only if it goes through the non-permeable layer; thus establishing

a pathway for the oil to escape the model. This indicates that the boundary

conditions play an important role for gravity-drainage.

Now the question arised whether gravity-drainage in a layered model with a

fracture would be di�erent to the same layered model but without a fracture. For

analyzing purposes model 3 was set up. The upper layer matrix permeability

was kept at 50 md, while the lower bottomlayer's permeability was changed

between 5 and 25 md. The observations show the following: Fractures do have

an in�uence on the recovery curves when the model is layered and has di�erent

permeabilities. The only prerequisite is that the bottomlayer has a very small

permeability as compared to the upper layer. The larger those permeability

contrasts are the bigger is the e�ect of the fracture. In the case where zone B

(i.e. lower layer) has a permeability of 25 md and zone A (i.e. upper layer) has

a permeability of 50 md, there is no clear di�erence in recovery curves between

the fractured and the unfractured model 3.

However, if we change zone B to 10 md then there exists a small di�erence in
average water saturation in the beginning of the simulation. It is clear that the

fracture quicklier drains the water from the model. The di�erence in fractured

and unfractured model 3 is even bigger if we decrease the permeability of zone

B to 5 md. However, in both cases the di�erences in average water saturation

decrease over time. There is a speci�c time, when the recovery curves between

fractured and unfractured model fall together. In the zone B 10 md case this

speci�c time is about 1.6 years after simulation start (i.e. July 2001), while it

is about 3.1 years after simulation start (i.e. January 2003) in the zone B 5 md

case.

To sum up, the lower the permeability of zone B the bigger is the in�uence of

the fractures. Moreover, the lower the permeability of zone B the later does the

characteristic time, where recovery curves are the same for the fractured and

the unfractured model, occur. This would lead to the conclusion that gravity-

drainage in fractured reservoirs would be advised for heterogeneous and layered

reservoirs, that have several low-permeability layers.

Fractured models therefore have an advantage over unfractured models on

gravity drainage performance just for layered models that have some low-
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Figure 25: E�ect of bottomlayer permeability on model 3

permeability layers. These low-permeability layers are believed to enhance

lateral �ow and to direct wetting phase towards the fracture. Experimental

tests from Zendehboudi et al.[2008]46 have come to a similar conclusion. They

found out that the e�ect of fractures on the liquid recovery is more pronounced

in systems of low-permeability matrix. If the matrix on the other hand has

quite a high permeability, then the presence of fractures is not signi�cant for

the recovery.

A possibility could be to evaluate the permeability ratio between upper and

lower layer and thereby try to make a relationship between the e�ects of frac-

tures. There should a minimum permeability ratio, when the e�ect of fractures

starts to be signi�cant. Further research is needed concerning this point.

During the course of work the question arised whether the recovery curves are

a�ected by the order of occurrence of di�erent permeability layers in vertical

direction. My expectation was that the di�erent order of layers would a�ect

the gravity drainage performance and the recovery curves. I think it would be

appropriate to assume that in cases where the higher permeable layers are at the

bottom while the lower permeable layers are at the top, the average saturation

over time would decrease faster than in an exactly opposite case (i.e. higher

permeable layer at the top and lower permeable layer in the bottom). However,
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I assumed that for later times of the simulation both cases would lead to the

same �nal recovery. So much about my expactation.

I made several simulations where I changed the order of layers as to observe

if there would be any di�erent gravity drainage behaviour. The original com-

bination of 50 md and other cases with 5, 10 and 25md were simulated. The

result is presented below.

Figure 26: E�ect of layer sequence on model 3

On the y-axis the volume of wetting phase (i.e. water) in reservoir condition

and in cubic feet is shown versus the date of simulation. The result is for the

case of 10 and 50 md. It can be seen that the recovery curves are di�erent

based on the vertical position of the layer. As expected the case where the

higher permeable layer is at the bottom drains faster for early times. This is

shown in the red line in the �gure (10_50md in the legend). However, for later

times this trend is changed and the case, where the higher permeable layer is in

the top (dashed blue line) is slightly more e�cient in terms of recovered �uid.

This is a surprising result and contradicts my expectation that in the end of the

simulation both cases will lead to the same �nal recovery.

I obtained similar results when I simulated the 5 and 50 md, as well as the 25
and 50 md models. The main deviating aspects are that the early-time di�erence
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is smaller for smaller matrix permeability quotients (e.g. could be de�ned as

the ratio between the high-perm and the low-perm layer) and the di�erence in

the late time also decreases with this decreasing ratio. I want also to mention

that there is a speci�c time, when the recovered value becomes the same for

both cases. The appearance of this speci�c time is delayed for cases when the

permeability contrast between those layers is large (and similarly vanishes if the

permeability ratio is very small).

As to sum up, the higher the permeability contrast and the permeability

ratio between the layers the greater is the di�erence in recovery curves. Also

it seems that the gravity drainage recovery curves for model 3 are a function

of the sequence of layers (i.e. recovery curves of a layer sequence A-B will not

necessarily be the same as sequence B-A). As a consequence the success of

gravity drainage is also related to the sequence of layers. The reader

may also be refered to Correa et al. [1996],49 who studied gravity drainage

in layered homogeneous models and found out that �the permeability order

a�ects gravity drainage performance in layered systems�. Further research is

recommended concerning this point and its con�rmation.
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3.7 Cooke model simulation results

After having set up the Cooke model, I performed some simulations that

were similar to those applied on models 1 to 3.

At �rst I wanted to gain some insights on the e�ect of fractures on a ho-

mogeneous model. I assumed that all the eight layers of the modi�ed Cooke

model had the same properties in terms of permeability, porosity, Brooks-Corey

parameters etc. For the permeability I assumed a value of 50md. This basically
leads to a quadratic homogeneous model with 52 vertical fractures. I compared

this special type of the Cooke model with a model that has the same proper-

ties but no fractures. Applying a free-fall gravity drainage experiment showed

that fractures do in fact have an in�uence on gravity drainage. Fractures do

not increase the �nal recovery, however, they increase the drainage speed.

This increase in drainage speed can be a crucial aspect in terms of economic

considerations. There is a time, however, where both recovery curves (fractured

homogeneous and unfractured homogeneous model) coincide. I prefer to call

this time the characteristic time. I believe that it can have signi�cance for eco-

nomic evaluation and prediction purposes. It could also give an idea whether

fracturing could be advantageous to produce the �eld by GOGD. In the 50md
matrix permeability case this time is about two and a half years after simulation

start.

I performed the same simulation with a decreased matrix permebility of

10md. In this case even after 5 years of simulation this characteristic time

was not reached. The gravity drainage recovery curves are almost parallel.

This leads to the conclusion that fractures are especially advantageous

in case of a low permeability matrix. Fractures are not that useful in

higher permeable formations. The smaller the matrix permeability the more

pronounced is the in�uence of the fractures.

In the �gure 27 we can see the average wetting-phase saturation on the y-axis

and the simulation time on the x-axis. The blue discontinuous line represents the

unfractured homogeneous case with a matrix permeability of 10md, while the red
continuous line represents a homogeneous fractured case with the same matrix

permeability. Both lines are almost parallel, and time when both curves become

indistinguishible is not reached. The other two stippled lines (Fig. 27) represent

an unfractured homogeneous (i.e. pink line) and a fractured homogeneous (i.e.

green line) case with a matrix permeability of 50md. After a simulation time of
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Figure 27: In�uence of matrix permeability on recovery in homogeneous Cooke
model

about two and a half years these curves start to overlap.

I then made several other simulations to con�rm observations made from

models 1 to 3. However, Cooke model behaves di�erently to models 1 to 3.

While if was important for the fracture to be connected to the well in the simple

model this is not true for the Cooke model. The existence of numerous vertical

fractures seems to increase the e�ective vertical permeability. For the Cooke

model without fractures the e�ective vertical permeability is 0.2 md†. As a result
drainage velocity is increased. Also there seems to be a �threshold number� for

vertical fractures: If the fracture number is smaller than this number, then the

fractures do not increase e�ective vertical permeability and the model can be

simpli�ed by only taking into account the fractures that are directly connected

to the well. If this �threshold number�, however, is surpassed then even the

fractures that are not connected to the well play a certain role and increase

e�ective vertical permeability.

The plot 53 presents water saturation as a function of simulation time. It

can be seen that the fractures, which are connected to the top and bottom

†The horizontal permeability for Cooke model was 100md and 1md for dolomite and shale

layers respectively.The vertical permeability was set to one tenth of that value
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boundaries, are the �rst to be a�ected by gravity drainage. This is intuitive

due to the large fracture permeability. Gas �rst enters the fractures that are

directly connected to the (imagined) horizontal well at the top of the model

and is transported downward (similarly, the fractures that are connected to the

horizontal well at the bottom of the model are the �rst to be depleted of the

wetting phases). The gas in the vertical fractures builds up a gravitational

force which is resisted by the capillary forces in the matrix blocks. In tiny

models, gas mainly enters the higher permeability dolomite layers, while gas

entrance rates into the lower permeable shale layers are much smaller (Fig. 28

and Fig. 29). Gas invades the matrix blocks from top and creates an almost

logarithmic non-wetting phase saturation pro�le in the matrix block. Whenever,

the gas reaches a nearby vertical fracture, this fracture almost immediately is

drained and becomes gas-�lled. In addition, the existence of vertical fractures

close to that already gas-�lled fracture �attracts� the gas and these regions

have increasingly lower wetting phase saturations. To sum up, the existence

of vertical fractures leads to gas in�ltration of higher-permeable layers while

the low permeable formations are bypassed. Di�erent layers drain at di�erent

speeds. I prefer to call this observation gas-channeling.

If I compare the Cooke model with fractures and a model that has the

same absolute and relative permeabilities and porosity but no fractures then

the di�erence becomes evident. While in the regular Cooke model the fractures

help the gas in by-passing less permeable layers, which are thus less attractive

for production, this is not possible in an unfractured case. The unfractured case

would simply be a cake layer model of di�erent permeability layers. Here the

saturation and drainage displacement pro�les are horizontal (i.e. perpendicular

to gravitational pull). Therefore no by-passing of the lower permeable layers is

possible. This drainage speed is proportional to the permeability and therefore

very low. These layers act as obstacles to the GOGD process.

While the �nal recovery is only about 8 % for the unfractured case, it is

about 35 % for the fractured case (Fig.30). At the end of the simulation, after

5.5 years, the saturations in blocks with the same depth are almost the same.

The in�uence of fractures is dramatic.

The e�ect of gas density on recovery from the Cooke model has also been

studied. The results are in agreement with results from previous studies as they

suggest that a large density contrast between wetting and non-wetting phases
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Figure 28: Water saturation for Cooke model

Figure 29: Water saturation for Cooke model
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Figure 30: E�ect of fractures on Cooke model recovery. The blue discontinuous
line represents the Cooke model with the fractures, while the red continuous
line represents the same model but with no fractures. One can clearly see the
dramatic in�uence of fractures on gas-oil gravity drainage.
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has an advantageous e�ect on recovery (e.g., Luan [1994]51). In GOGD formu-

lations gravity drainage is supported by a gravity term (4ρg = (ρo − ρg) g),
which is related to absolute density di�erence between oil and gas. The smaller

the gas density, the larger is the percentage of recovered oil. Nevertheless my

results indicate that gas density is not a very critical factor because its numer-

ical value is much smaller than the oil density. Gas density di�erences are so

small that the gas density can be assumed negligible. Table 7 shows that the

di�erence in GOGD recovery after 5 years is less than half of a percent.

SGgas = 0.8 0.9 1.0 1.1 1.2
after 30 days 1.11% 1.1% 1.1% 1.1% 1.1%
after 151 days 4.3% 4.28% 4.26% 4.24% 4.23%
after 361 days 8.92% 8.88% 8.84% 8.80% 8.77%
after 3 years 22.81% 22.72% 22.63% 22.54% 22.45%
after 5 years 32.61% 32.5% 32.39% 32.28% 32.16%

Table 7: Recovered oil for di�erent speci�c gas gravities in Cooke model

Table 7 presented the recoveries for di�erent gas densities and showed that

gas density is not an important factor simply because of the low gas densities.

The density of the wetting phase (i.e. oil), however, is a key factor that can

dramatically in�uence success of gas-oil gravity drainage. The data in table 8

con�rms the known fact, that recovery increases with a larger density di�erence

between oil and gas phases. The ideal candidate oil for GOGD would be an oil

that has a large density, while also having a small viscosity.

ρo = 750 kgm³
800 850 900

after 30 days 0.89% 0.96% 1.03% 1.09%
after 151 days 3.36% 3.63% 3.9% 4.30%
after 361 days 7.01% 7.56% 8.11% 8.92%
after 3 years 17.89% 19.38% 20.83% 22.81%
after 5 years 26.19% 28.2% 30.09% 32.61%

Table 8: Recovered oil for di�erent oil densities in Cooke model

From previous studies and already performed simulations of models 1 to 3

it is known that oil viscosity belongs to the major factors of gravity drainage

processes. This is con�rmed in the results of the sensitivity analysis that I

performed on the Cooke model. The results clearly show that increased oil vis-

cosities have a very negative e�ect on the oil recovery and greatly slow down the

64



GOGD. Arti�cial methods of decreasing the oil viscosity therefore are justi�able

(e.g. steam-assisted gravity drainage). An accurate laboratory determination

of oil viscosities is vital for GOGD and strongly recommended. Table 9 presents

the recovered oil in percent for di�erent oil viscosities and simulation times.

µo = 1 cp 1.5 cp 2.0 cp 2.5 cp
after 30 days 1.11% 0.79% 0.62% 0.52%
after 151 days 4.30% 3.02% 2.37% 1.95%
after 361 days 8.92% 6.31% 4.97% 4.14%
after 3 years 22.81% 16.65% 13.09% 10.79%
after 5 years 32.61% 24.92% 20.11% 16.84%

Table 9: Recovered oil for di�erent oil viscosities in Cooke model

I also made several simulations to examine the e�ect of fracture perme-

ability on the recovery in GOGD processes. At �rst I changed the fracture

permeability for values between 105md and 107md. The larger the fracture

permeability the faster the model is drained. For a fracture permeability of

105md the recovery after 5 years was about 32.5%, while higher fracture per-

meabilities (i.e. 500000md; 106md; 107md) had a somehow similar recovery of

about 33.9%. The results indicate that when fracture permeability reaches a

certain value, increased permeabilities do no in�uence recovery. Fracture per-

meability is only a factor when the permeability constrast between matrix and

fracture is small.

Based on the intrinsic formula from section XX, I also modi�ed fracture

capillary pressure. I made several simulations with a Pcf of 0.2kPa to 1kPa.
Assuming that the fracture width is constant the capillary pressure function is

constant over saturation. The results indicate that ultimate recovery increases

with fracture capillary pressure (for a Pcf = 0kPa the ultimate recovery

was 34.07%, while recovery was 34.77% for a Pcf = 1kPa). The reason for

this lies in the mathematical formulation of �uid transfer between fracture and

matrix‡and Saidi and Sakthikumar [1993]10 have also con�rmed this result.

Varying the pore size distribution index in the Brooks-Corey equations be-

tween of 2 to 3 in the dolomite layers also in�uences the recovery. The di�erence
observed was about 1.8%. Generally it can be said that the higher the pore size

‡The capillary term of the transfer function is based on the absolute di�erence in capil-

lary pressure between fracture and matrix. While matrix capillary pressure opposes GOGD,

fracture capillary pressure assists in GOGD by reducing this absolute capillary pressure term.
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distribution index the higher the recovery. The reason for this is both the in-

crease of relative permeability and the simultaneous decrease in the capillary

pressure curve. This means that the e�ective permeability of the wetting phase

is increased and the amount of recoverable oil is increased. High pore size dis-

tribution indices refer to a reservoir that has well sorted rock particles. These

results are in agreement with Li and Horne,13 who state that �oil recovery by

gravity drainage may increase with the pore size distribution index�. The �g-

ures below present the in�uence of pore size distributions on recovery, relative

permeability and capillary pressure.

Later, I also changed the pore size distribution index between values of 2
and 3 for the shale layers. The results also con�rm that increased pore size

distribution indices have a positive albeit small e�ect on recovery of GOGD.

Recovery was 34% for η = 3 and 33.42% for η = 2. The di�erence is about

0.58% and much smaller than in the dolomite case. This result indicates that

the determination of the pore size distribution index is important for the higher

permeable (dolomite) layers. I expected this outcome, because from previous

simulations I had observed that GOGD process was especially dependent on the

higher permeable layer and its wetting phase saturations. Saturations changes

are negligible in the shale layers and shale relative permeabilities values do not

change signi�cantly during the simulation.
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Figure 31: In�uence of pore size distribution index in dolomite on recovery from
Cooke model

Figure 32: In�uence of dolomite pore size distribution index on Krg (top left),
on Krw (top right) and Pc (bottom)
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The capillary pressure entry can be translated to a threshold columns height.

If the gas in the fracture cannot build up enough gravitational forces to overcome

this threshold capillary resistance, then the layer will not experience GOGD and

will be left behind with its original wetting phase saturation. Importantly, cal-

culations with the simple threshold formula that translates threshold capillary

pressure to column block height (using gravitational acceleration and density

di�erence of �uids) did not give the exact height of the capillary hold-up zone

as the increase of threshold capillary pressure strongly decreases recovery. To

analyse this, threshold capillary pressures were modi�ed between 1psi (red con-

tinuous line) and 3psi (pink discontinuous line) (Fig.33). Assuming that in the

ideal case the gas saturation in the Cooke model would be as large as possi-

ble, it can be said that small threshold pressures achieve this. An interesting

observation I could make is that the modi�cation of the threshold capillary pres-

sure in the dolomite layers also has an in�uence on the recovery from the low

permeability layers.

Figure 33: Figure presents the average gas saturation as a function of time and
a function of threshold capillary pressure for the Cooke model. The y-axis of
this �gure can also be regarded as recovery.
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For the Cooke model I then calculated the dimensionless gravity num-

ber.

Ngv =
(ρw − ρg) gk
µwvTφ

where vT is the total velocity, g is the gravitational constant (9.81ms2 ), and k
is the absolute permeability. The gravity number gives the ratio between gravity

to viscous forces and helps to determine whether �ow is gravity-dominated or

viscous-dominated. The gravity numberNgv has been de�ned in Hagoort [1980]8

and Juanes and Patzek [2003].54 I calculated the absolute permeability by

applying a geometric mean

k =
√
kxkz

where kx and kz are the permeabilities in x- and z-directions. Computing

total velocity in CMG requires some post processing because IMEX simulator

just gives vector components of the water and gas velocities. Therefore some

computational manipulations are needed. For the total velocity vector I used

the sum of gas and water vectors

~vT = ~vg + ~vw =

(
vgx + vwx

vgz + vwz

)

The total velocity is found from the norm of the vector

vT = ||~vT || =
√

(vgx + vwx)2 + (vgz + vwz)
2

The motivation for the computation of Ngv was to identify regions where

gravity e�ects dominated over viscous e�ects. The gravity number as a function

of time was obtained for the entire Cooke model. The results shows very high

gravity numbers in the fractures. This is logical because of the large fracture

permeability. In general, layers that were drained and whose saturations had

been lowered had higher Ngv than layers that remained untouched. At the

end of the simulations a slight relation between wetting phase saturation and

gravity number existed. I also observed that Ngv increases in close proximity

to the fractures. I assume that these regions were a�ected by gravity drainage.
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Unfortunately, the computation of gravity number did not provide too much

new information or insight.

I also plotted the wetting phase velocity components for z- and x-directions.

While models 1 to 3 show only little lateral �ow, this is not true for the Cooke

model. Here the simultaneous existence of numerous vertical fractures as well as

horizontal low-permeable layers leads to lateral �ow. Lateral �ow of gas and oil

occurs mainly in the dolomite layers with a kx of 100md. Values of velocity in

the x-direction are much smaller for the shale layers. Vertical �ow, on the other

hand, is mainly present in the fractures and to a small degree in the rock matrix.

The results indicate the �ow direction of the wetting phase in the Cooke model.

Gas enters the fractures �rst and then reaches the highly-permeable dolomite

layers, where it overcomes the resistence of rock capillary pressure entering the

rock matrix blocks. Displacement can be seen as a combined movement in the

z-direction within the fractures and the x-direction within the rock layers.
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Figure 34: Wetting phase velocity in z-direction in Cooke model. The �gure
shows that the fractures are the pathways for vertical movement.
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4 Discussion

Figures 10 and 11 present the in�uence of parmaters like permeability and

porosity on gravity drainage. They verify the already known fact that high

matrix permeabilities and low matrix porosities have a positive e�ect on GOGD.

Figure 13 con�ms that the drainage capillary pressure curve is acting to hold

back the oil in the model. It also suggests that the height of the capillary

hold-up zone can be backcalculated from the capillary threshold pressure. The

in�uence of large density di�erences between wetting and non-wetting phases

on GOGD recovery is presented and follows generally accepted trends.

Figure 15 shows the change in saturation distribution over time and model

height. The results show that the oil saturation changes over time to a �nal

curve that depends on the capillary pressure curve. This is in direct agreement

with �ndings from Terwilliger et al.[1951].5

For models with a single vertical fracture no increase in recovery was ob-

served as compared to same model with no fracture. Other simulations also

suggest that recovery of GOGD is a�ected by boundary conditions. Through-

out the study I made the observations that fractures speed up GOGD recovery,

when certain boundary conditions are present. For instance, the presence of

low permeability barriers combined with vertical fractures increases the e�ect

of fractures on GOGD. My suggestion is that those low permeability layers act

as a �ow hindrance, therefore leading to horizontal �ow towards the fracture. As

a further conclusion my results indicate that vertical fractures enhance GOGD

in heterogeneous reservoirs that have several low permeability layers.

Results also indicate that if the fracture permeability exceeds a certain value

GOGD recovery curves are identical. This would lead to the suggestion that

fracture permeability is not a critical factor if a certain fracture/matrix perme-

ability contrast is exceeded.

Further simulations seem to signal that the layer sequence (i.e. permeability

order) is a factor in recovery. This issue has already been discussed with Correa

et al. [1996].49

Simulations of the realistic discrete model indicate that fractures increase the

drainage speed and transport the gas to higher permeable layers, where GOGD

can be initiated. Fractures are especially useful in lower permeable matrix rocks.

This has also been investigated in Zandehboudi et al. [2008],46 who note that

�the pressence of fractures is more pronounced in lower matrix permeability sys-

tems�. Especially in low permeable layered formations the pressence of fractures
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can dramatically increase GOGD drainage speed. This is an important factor

that needs to be considered in terms of pro�tability and other economic aspects.

The question of hydraulic fracturing should also be addressed.

A sensitivity analysis on the general parameters (e.g. oil density and viscos-

ity, gas density) con�rms their importance for GOGD recovery. The use of a

non-zero capillary pressure in the fractures can increase the recovery that can

be expected from GOGD in NFR. This is in agreement with Saidi and Sakthiku-

mar [1993].10 However, I believe that by using a zero capillary pressure in the

fracture the user is on the safe side and can only slightly underestimate recovery.

I have the opinion that underestimating recovery is the better alternative than

a too optimistic recovery prediction.

In addition my results suggest that increased pore size distribution indices

increase GOGD recovery. I believe that the reason is the simultaneous increase

in oil relative permeability and the decrease in the matrix capillary pressure. Li

and Horne [2003]13 support that and say that �oil recovery by gravity drainage

may increase with the pore size distribution index�. Dolomites usually only have

secondary porosity. Pore sizes then are selectively uniform with some large vugs

in places.

Unfortunately, the computation of the dimensionless gravity number for the

entire model could not give any new insights. The question whether gravity

number can be a predictive tool should be addressed with care.

I calculated the e�ective permeability for models 1 to 3. Due to the fracture

the e�ective permeability is signi�cantly increased. However, my simulation

results did not correlate with the increased e�ective permeability. Calculating

the e�ective permeability for the Cooke model is very complicated and also

did not correlate with simulation results. I suggest that using the e�ective

permeability (i.e. averaging) for fractured media is of limited advantage and

should be considered with great criticism. Matthäi and Belayneh [2004]58 state

that �the keff is rarely a useful average for fractured media�.

My work disagrees with Zandehboudi et al.[2008], who mention that oil-gas

contact height in the fracture needs to be controlled. My simulations indicate

that the fractures are quickly drained from the oil and get gas �lled. This would

imply that controlling the gas-oil interface in the fracture is a challenging task.

Based on results that indicate that fractures play a minor role in cases of

high-permeability layers or when they do not penetrate low-permeability layers

I believe that simplifying the NFR analog in my proposed method is applicable

(Fig.9). Nevertheless, the representation of fractures through structured sim-
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ulators needs to be called into question. The University of Leoben license for

CMG simulator has a maximum of 50 000 grid blocks. This is a restriction of

the work. Unstructured simulators certainly have advantages over structured

simulators in terms of accurate geologic representation.

My work is one of the �rst simulations of GOGD in NFR using discrete

fracture and matrix models. It shows that simulation of GOGD in NFR with

discrete models can be a good alternative to previously used dual continuum

models, if restrictions in geometric representation of geology can be overcome.

De�nitely, further research is needed concerning DFM models.
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5 Conclusions

I have investigated the process of GOGD with the help of three simple con-

ceptual models and one more realistic model, based on �eld observations from

Door County, Wisconsin, USA. These models have been simulated with a pro-

prietary reservoir simulator and a DFM model. Following conclusions can be

reached:

� GOGD recovery increases with a higher density di�erence between oil and

gas.

� GOGD recovery increases with a decrease in oil viscosity.

� The shape of the oil relative permeability and capillary pressure curve

determine amount of recoverable oil and drainage speed.

� GOGD in models with one single vertical fracture is just in�uenced when

low-permeable layers exist that create some horizontal �ow.

� Permeability sequence of layers in�uences �nal recovery in GOGD.

� Averaging of layer and fracture permeabilities to an overall e�ective per-

meability can lead to erroneous results.

� Recovery of GOGD is a�ected by boundary conditions.

� In�uence of fractures on GOGD is especially evident for reservoirs with

lower matrix permeabilities.

� Oil recovery in GOGD increases with the pore size distribution index.

� Increased threshold capillary pressures in the dolomite layers had a neg-

ative e�ect on the GOGD recovery by increasing the capillary hold-up

zone. Wetting phase saturations in the low permeability layers were also

a�ected by changed dolomite threshold capillary pressures. In the Cooke

model a dolomite threshold capillary pressure of 1 psi leads to an ultimate

recovery of 35 %, while a Pd of 3 psi leads to recovery of 15 %.

� If the permeability contrast between matrix and fracture is large enough,

an increase in fracture permeability does not signi�cantly increase recov-

ery. In the Cooke model this permeability contrast was reached for 5E+03.
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� Use of fracture capillary pressure increases oil recovery in GOGD pro-

cesses. The use of a zero capillary pressure in the fracture can underes-

timate recovery. In the Cooke model the use of a Pcf of 1 kPa increased

ultimate recovery by about 0.8%.

� The path of the gas in the realistic discrete model is the following: It is

displaced vertically through the fractures and then horizontally enters the

higher permeability layers, where GOGD is initiated. The existence of

fractures helps the gas to bypass lower permeable layers. Fractures speed

up GOGD process in NFR.

� Simulations on the more the realistic �eld model from Door County con-

�rm the high potential of gas-oil gravity drainage in naturally fractured

reservoirs.

I can make the following recommendations for future studies and �eld

applications of GOGD in NFR:

� Laboratory experiments on gas-oil gravity drainage in fractured cores are

recommended.

� In�uence of fracture properties should be investigated.

� GOGD should also be simulated with reservoir simulators that use un-

structured gridding and can improve geometry representations of models.

Results of simulations of discrete fracture and matrix models should be

contrasted with results from dual continuum models.

� The simulation of GOGD with three-phase �ow to verify results from two-

phase �ow is recommended.

� GOGD simulation in 3D is recommended.

� Accurate measurement of critical variables like oil density, oil viscosity,

oil relative permeability and capillary pressure is recommended for �eld

applications.
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Appendix A

.dat-File used for Cooke model

INUNIT SI

WSRF WELL 1

WSRF GRID TIME

WSRF SECTOR TIME

OUTSRF WELL LAYER NONE

OUTSRF RES ALL

OUTSRF GRID BPP OILPOT PRES SG SO SSPRES SW VELOCRC WIN-

FLUX

WPRN GRID 0 OUTPRN GRID NONE OUTPRN RES NONE

**$ Distance units: m

RESULTS XOFFSET 0.0000

RESULTS YOFFSET 0.0000

RESULTS ROTATION 0.0000 **$ (DEGREES)

RESULTS AXES-DIRECTIONS 1.0 -1.0 1.0 **$ *

* **$ De�nition of fundamental cartesian grid **$ **

*** GRID VARI 125 1 84

KDIR DOWN

DI IVAR

1 4*0.166 0.001 3*0.203 0.001 0.2 0.151 0.001 0.25 0.251 0.001 0.15 0.109 0.001

2*0.22 0.001 0.2 0.285 0.001 0.215 0.001 0.23 0.001 2*0.395 0.001 2*0.039 0.001

0.2 0.389 0.001 0.142 0.001 0.185 0.001 0.235 0.001 2*0.25 0.001 0.3 0.255 0.001

2*0.106 0.001 0.113 0.001 0.016 0.001 0.2 0.201 0.001 2*0.406 0.001 4*0.245 0.001

0.032 0.001 2*0.262 0.001 0.003 0.001 2*0.116 0.001 0.2 0.317 0.001 2*0.126 0.001

2*0.104 0.001 0.219 0.001 0.11 0.001 0.1 0.141 0.001 0.3 0.391 0.001 3*0.234 0.001

0.198 0.001 2*0.172 0.001 2*0.162 0.001 4*0.188 0.001 2*0.101 0.001 0.2 0.317

0.001 3*0.121 0.166 1

DJ JVAR 1

DK KVAR 4*1 4*0.25 10*0.2 10*0.3 4*0.25 10*0.2 8*0.2 10*0.2 20*0.17 4*1

DTOP 125*0

**$ Property: NULL Blocks Max: 1 Min: 1

**$ 0 = null block, 1 = active block
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NULL CON 1

**$ Property: Porosity Max: 0.2 Min: 0.2

POR CON 0.2

*MOD

2:124 1:1 5:8 = 0.2 2:124 1:1 9:13 = 0.06 2:124 1:1 14:18 = 0.2 2:124 1:1 19:28

= 0.06 2:124 1:1 29:29 = 0.2 2:124 1:1 30:30 = 0.06 2:124 1:1 31:32 = 0.2 2:124

1:1 33:36 = 0.2 2:124 1:1 37:37 = 0.06 2:124 1:1 38:42 = 0.2 2:124 1:1 43:50 =

0.2 2:124 1:1 51:60 = 0.2 2:124 1:1 61:80 = 0.06

6:6 1:1 14:24 = 0.999 10:10 1:1 29:42 = 0.999 13:13 1:1 9:25 = 0.999 16:16

1:1 59:75 = 0.999 19:19 1:1 31:42 = 0.999 22:22 1:1 9:25 = 0.999 25:25 1:1 22:28

= 0.999 27:27 1:1 31:42 = 0.999 29:29 1:1 57:70 = 0.999 32:32 1:1 31:45 = 0.999

35:35 1:1 5:8 = 0.999 35:35 1:1 9:29 = 0.999 38:38 1:1 51:62 = 0.999 38:38 1:1

9:24 = 0.999 40:40 1:1 31:42 = 0.999 42:42 1:1 43:56 = 0.999 44:44 1:1 32:42 =

0.999 47:47 1:1 9:26 = 0.999 47:47 1:1 67:80 = 0.999 50:50 1:1 43:50 = 0.999

57:57 1:1 5:25 = 0.999 55:55 1:1 32:42 = 0.999 53:53 1:1 51:60 = 0.999 60:60 1:1

29:42 = 0.999 63:63 1:1 31:68 = 0.999 70:70 1:1 14:25 = 0.999 68:68 1:1 5:8 =

0.999 75:75 1:1 56:66 = 0.999 73:73 1:1 43:50 = 0.999 78:78 1:1 33:42 = 0.999

78:78 1:1 9:26 = 0.999 81:81 1:1 54:62 = 0.999 81:81 1:1 5:8 = 0.999 84:84 1:1

9:25 = 0.999 87:87 1:1 5:8 = 0.999 87:87 1:1 63:80 = 0.999 89:89 1:1 51:60 =

0.999 89:89 1:1 29:42 = 0.999 91:91 1:1 5:8 = 0.999 94:94 1:1 9:25 = 0.999 97:97

1:1 9:25 = 0.999 97:97 1:1 67:80 = 0.999 101:101 1:1 38:55 = 0.999 101:101 1:1

24:28 = 0.999 103:103 1:1 9:22 = 0.999 106:106 1:1 43:55 = 0.999 109:109 1:1

29:32 = 0.999 114:114 1:1 32:42 = 0.999 117:117 1:1 15:25 = 0.999 117:117 1:1

58:75 = 0.999 120:120 1:1 31:35 = 0.999

1:125 1:1 1:4 = 0.999 1:125 1:1 81:84 = 0.999 1:1 1:1 1:84 = 0.999 125:125

1:1 1:84 = 0.999

**$ Property: Permeability I (md) Max: 100 Min: 100 PERMI CON 100

*MOD

2:124 1:1 5:8 = 100 2:124 1:1 9:13 = 1 2:124 1:1 14:18 = 100 2:124 1:1 19:28

= 1 2:124 1:1 29:29 = 100 2:124 1:1 30:30 = 1 2:124 1:1 31:32 = 100 2:124 1:1

33:36 = 100 2:124 1:1 37:37 = 1 2:124 1:1 38:42 = 100 2:124 1:1 43:50 = 100

2:124 1:1 51:60 = 100 2:124 1:1 61:80 = 1

6:6 1:1 14:24 = 1e+006 10:10 1:1 29:42 = 1e+006 13:13 1:1 9:25 = 1e+006

16:16 1:1 59:75 = 1e+006 19:19 1:1 31:42 = 1e+006 22:22 1:1 9:25 = 1e+006

25:25 1:1 22:28 = 1e+006 27:27 1:1 31:42 = 1e+006 29:29 1:1 57:70 = 1e+006

32:32 1:1 31:45 = 1e+006 35:35 1:1 5:8 = 1e+006 35:35 1:1 9:29 = 1e+006 38:38

1:1 51:62 = 1e+006 38:38 1:1 9:24 = 1e+006 40:40 1:1 31:42 = 1e+0069 42:42
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1:1 43:56 = 1e+006 44:44 1:1 32:42 = 1e+006 47:47 1:1 9:26 = 1e+006 47:47

1:1 67:80 = 1e+006 50:50 1:1 43:50 = 1e+006 57:57 1:1 5:25 = 1e+006 55:55

1:1 32:42 = 1e+006 53:53 1:1 51:60 = 1e+006 60:60 1:1 29:42 = 1e+006 63:63

1:1 31:68 = 1e+006 70:70 1:1 14:25 = 1e+006 68:68 1:1 5:8 = 1e+006 75:75 1:1

56:66 = 1e+006 73:73 1:1 43:50 = 1e+006 78:78 1:1 33:42 = 1e+006 78:78 1:1

9:26 = 1e+006 81:81 1:1 54:62 = 1e+006 81:81 1:1 5:8 = 1e+006 84:84 1:1 9:25

= 1e+006 87:87 1:1 5:8 = 1e+006 87:87 1:1 63:80 = 1e+006 89:89 1:1 51:60

= 1e+006 89:89 1:1 29:42 = 1e+006 91:91 1:1 5:8 = 1e+006 94:94 1:1 9:25 =

1e+006 97:97 1:1 9:25 = 1e+006 97:97 1:1 67:80 = 1e+006 101:101 1:1 38:55 =

1e+006 101:101 1:1 24:28 = 1e+006 103:103 1:1 9:22 = 1e+006 106:106 1:1 43:55

= 1e+006 109:109 1:1 29:32 = 1e+006 114:114 1:1 32:42 = 1e+006 117:117 1:1

15:25 = 1e+006 117:117 1:1 58:75 = 1e+006 120:120 1:1 31:35 = 1e+006

1:125 1:1 81:84 = 1e+006 2:2 1:1 5:80 = 0 124:124 1:1 5:80 = 0 1:125 1:1 1:4

= 1e+006 1:1 1:1 1:84 = 1e+006 125:125 1:1 1:84 = 1e+006

PERMJ EQUALSI * 0.1

PERMK EQUALSI * 0.1

**$ Property: Volume Modi�ers Max: 1 Min: 1

VOLMOD CON 1

*MOD

1:125 1:1 81:84 = 1000 1:125 1:1 1:4 = 1000

**$ Property: Pinchout Array Max: 1 Min: 1

**$ 0 = pinched block, 1 = active block

PINCHOUTARRAY CON 1

SECTORARRAY 'PayZone' ALL

502*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0

121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1

4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0

121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1

4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0

121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1

4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0

121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1

4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0

121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1 4*0 121*1

4*0 121*1 502*0

CPOR 6.894e-005

PVCUTOFF 0
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MODEL GASWATER

TRES 150

PVTG EG 1

**$ p Eg visg 101.325 0.685271 0.0144676 554.17 3.7652 0.0145029 1007.02

6.87312 0.0145517 1459.86 10.0085 0.0146098 1912.71 13.171 0.0146753 2365.55

16.3597 0.0147473 2818.4 19.5741 0.0148254 3271.24 22.8134 0.0149091 3724.09

26.0766 0.0149981 4176.93 29.3629 0.0150923 4629.78 32.6711 0.0151913 5082.62

36.0002 0.0152953 5535.47 39.3488 0.0154039 5988.31 42.7156 0.0155172 6441.16

46.0993 0.015635 6894 49.4984 0.0157573

BWI 1.08587

CVW 0

CW 6.17547e-007

DENSITY WATER 920.506

REFPW 101.325

VWI 1

GRAVITY GAS 0.8

ROCKFLUID RPT 1

SWT

**$ Sw krw Pcgw 0.18 0 20.1603926 0.235 0.0003 16.9695127 0.32 0.0050 12.4283723

0.405 0.0207 10.6103431 0.49 0.0540 9.53534408 0.575 0.1118 8.79544671 0.66

0.2006 8.24220074 0.745 0.3271 7.80621996 0.83 0.4981 7.44993496 0.915 0.7201

7.15090739 1 1 6.89475729 SLT **$ Sl krg 0.18 0.5 0.235 0.40598 0.32 0.285138

0.405 0.1910202 0.49 0.1202926 0.575 0.069613 0.66 0.03564226 0.745 0.01503658

0.83 0.00445528 0.915 0.00055691 1 0 RPT 2 SWT **$ Sw krw 0 0 1 1 SLT **$ Sl

krg 0 1 1 0 RPT 3 SWT **$ Sw krw Pcgw 0.15 0 83.888 0.2 0.000015 37.48912 0.3

0.0011355 22.7526459 0.4 0.00836 18.0381 0.5 0.031162 15.479956 0.6 0.083230

13.80888 0.7 0.182374 12.6050 0.8 0.35040 11.6833482 0.9 0.61307 10.947584 1

1 10.3421

SLT

**$ Sl krg 0.15 0.7 0.2 0.62349604 0.3 0. 4832 0.4 0.36 0.5 0.254185 0.6 0.166012

0.7 0.0958563 0.8 0.04420 0.9 0.011769 1 0

**$ Property: Rel Perm Set Num Max: 1 Min: 1

RTYPE CON 1

*MOD

2:124 1:1 5:8 = 3 2:124 1:1 9:13 = 1 2:124 1:1 14:18 = 3 2:124 1:1 19:28 = 1

2:124 1:1 29:29 = 3 2:124 1:1 30:30 = 1 2:124 1:1 31:32 = 3 2:124 1:1 33:36 = 3

2:124 1:1 37:37 = 1 2:124 1:1 38:42 = 3 2:124 1:1 43:50 = 3 2:124 1:1 51:60 = 3
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2:124 1:1 61:80 = 1

6:6 1:1 14:24 = 2 10:10 1:1 29:42 = 2 13:13 1:1 9:25 = 2 16:16 1:1 59:75 =

2 19:19 1:1 31:42 = 2 22:22 1:1 9:25 = 2 25:25 1:1 22:28 = 2 27:27 1:1 31:42 =

2 29:29 1:1 57:70 = 2 32:32 1:1 31:45 = 2 35:35 1:1 5:8 = 2 35:35 1:1 9:29 = 2

38:38 1:1 51:62 = 2 38:38 1:1 9:24 = 2 40:40 1:1 31:42 = 2 42:42 1:1 43:56 = 2

44:44 1:1 32:42 = 2 47:47 1:1 9:26 = 2 47:47 1:1 67:80 = 2 50:50 1:1 43:50 = 2

57:57 1:1 5:25 = 2 55:55 1:1 32:42 = 2 53:53 1:1 51:60 = 2 60:60 1:1 29:42 = 2

63:63 1:1 31:68 = 2 70:70 1:1 14:25 = 2 68:68 1:1 5:8 = 2 75:75 1:1 56:66 = 2

73:73 1:1 43:50 = 2 78:78 1:1 33:42 = 2 78:78 1:1 9:26 = 2 81:81 1:1 54:62 = 2

81:81 1:1 5:8 = 2 84:84 1:1 9:25 = 2 87:87 1:1 5:8 = 2 87:87 1:1 63:80 = 2 89:89

1:1 51:60 = 2 89:89 1:1 29:42 = 2 91:91 1:1 5:8 = 2 94:94 1:1 9:25 = 2 97:97

1:1 9:25 = 2 97:97 1:1 67:80 = 2 101:101 1:1 38:55 = 2 101:101 1:1 24:28 = 2

103:103 1:1 9:22 = 2 106:106 1:1 43:55 = 2 109:109 1:1 29:32 = 2 114:114 1:1

32:42 = 2 117:117 1:1 15:25 = 2 117:117 1:1 58:75 = 2 120:120 1:1 31:35 = 2

1:125 1:1 1:4 = 2 1:125 1:1 81:84 = 2 1:1 1:1 1:84 = 2 125:125 1:1 1:84 = 2

INITIAL

USER_INPUT

DATUMDEPTH 50 INITIAL

**$ Property: Pressure (kPa) Max: 3450 Min: 3450

PRES CON 3450

**$ Property: Water Saturation Max: 1 Min: 1

SW CON 1

*MOD

1:125 1:1 81:84 = 0 1:125 1:1 1:4 = 0 1:1 1:1 1:84 = 0 125:125 1:1 1:84 = 0

NUMERICAL

DTMIN 0.000001

NCUTS 20

PRECC 1e-6

NORTH 70

SDEGREE 3

ITERMAX 80

RUN

DATE 2000 1 1 DATE 2000 1 2 DATE 2000 1 3 DATE 2000 1 4 DATE 2000

1 5 DATE 2000 1 6 DATE 2000 1 7 DATE 2000 1 8 DATE 2000 1 9 DATE

2000 1 10 DATE 2000 1 11 DATE 2000 1 12 DATE 2000 1 13 DATE 2000 1

14 DATE 2000 1 15 DATE 2000 1 16 DATE 2000 1 17 DATE 2000 1 18 DATE

2000 1 19 DATE 2000 1 20 DATE 2000 1 21 DATE 2000 1 22 DATE 2000 1
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23 DATE 2000 1 24 DATE 2000 1 25 DATE 2000 1 26 DATE 2000 1 27 DATE

2000 1 28 DATE 2000 1 29 DATE 2000 1 30 DATE 2000 1 31 DATE 2000 2 1

DATE 2000 2 2 DATE 2000 2 3 DATE 2000 2 4 DATE 2000 2 5 DATE 2000 2 6

DATE 2000 2 7 DATE 2000 2 8 DATE 2000 2 9 DATE 2000 2 10 DATE 2000 2

11 DATE 2000 2 12 DATE 2000 2 13 DATE 2000 2 14 DATE 2000 2 15 DATE

2000 2 16 DATE 2000 2 17 DATE 2000 2 18 DATE 2000 2 19 DATE 2000 2

20 DATE 2000 2 21 DATE 2000 2 22 DATE 2000 2 23 DATE 2000 2 24 DATE

2000 2 25 DATE 2000 2 26 DATE 2000 2 27 DATE 2000 2 28 DATE 2000 2 29

DATE 2000 3 1 DATE 2000 3 2 DATE 2000 3 3 DATE 2000 3 4 DATE 2000 3 5

DATE 2000 3 6 DATE 2000 3 7 DATE 2000 3 8 DATE 2000 3 9 DATE 2000 3

10 DATE 2000 3 11 DATE 2000 3 12 DATE 2000 3 13 DATE 2000 3 14 DATE

2000 3 15 DATE 2000 3 16 DATE 2000 3 17 DATE 2000 3 18 DATE 2000 3

19 DATE 2000 3 20 DATE 2000 3 21 DATE 2000 3 22 DATE 2000 3 23 DATE

2000 3 24 DATE 2000 3 25 DATE 2000 3 26 DATE 2000 3 27 DATE 2000 3 28

DATE 2000 3 29 DATE 2000 3 30 DATE 2000 3 31 DATE 2000 4 1 DATE 2000

4 2 DATE 2000 4 3 DATE 2000 4 4 DATE 2000 4 5 DATE 2000 4 6 DATE 2000

4 7 DATE 2000 4 8 DATE 2000 4 9 DATE 2000 4 10 DATE 2000 4 11 DATE

2000 4 12 DATE 2000 4 13 DATE 2000 4 14 DATE 2000 4 15 DATE 2000 4

16 DATE 2000 4 17 DATE 2000 4 18 DATE 2000 4 19 DATE 2000 4 20 DATE

2000 4 21 DATE 2000 4 22 DATE 2000 4 23 DATE 2000 4 24 DATE 2000 4 25

DATE 2000 4 26 DATE 2000 4 27 DATE 2000 4 28 DATE 2000 4 29 DATE 2000

4 30 DATE 2000 5 1 DATE 2000 5 2 DATE 2000 5 3 DATE 2000 5 4 DATE

2000 5 5 DATE 2000 5 6 DATE 2000 5 7 DATE 2000 5 8 DATE 2000 5 9 DATE

2000 5 10 DATE 2000 5 11 DATE 2000 5 12 DATE 2000 5 13 DATE 2000 5

14 DATE 2000 5 15 DATE 2000 5 16 DATE 2000 5 17 DATE 2000 5 18 DATE

2000 5 19 DATE 2000 5 20 DATE 2000 5 21 DATE 2000 5 22 DATE 2000 5

23 DATE 2000 5 24 DATE 2000 5 25 DATE 2000 5 26 DATE 2000 5 27 DATE

2000 5 28 DATE 2000 5 29 DATE 2000 5 30 DATE 2000 5 31 DATE 2000 6

15.00000 DATE 2000 6 30.00000 DATE 2000 7 15.00000 DATE 2000 7 30.00000

DATE 2000 8 14.00000 DATE 2000 8 29.00000 DATE 2000 9 13.00000 DATE

2000 9 28.00000 DATE 2000 10 13.00000 DATE 2000 10 28.00000 DATE 2000

11 12.00000 DATE 2000 11 27.00000 DATE 2000 12 12.00000 DATE 2000 12

27.00000 DATE 2001 1 11.00000 DATE 2001 1 26.00000 DATE 2001 2 10.00000

DATE 2001 2 25.00000 DATE 2001 3 12.00000 DATE 2001 3 27.00000 DATE

2001 4 11.00000 DATE 2001 4 26.00000 DATE 2001 5 11.00000 DATE 2001 5

26.00000 DATE 2001 6 10.00000 DATE 2001 6 25.00000 DATE 2001 7 10.00000

DATE 2001 7 25.00000 DATE 2001 8 9.00000 DATE 2001 8 24.00000 DATE
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2001 9 8.00000 DATE 2001 9 23.00000 DATE 2001 10 8.00000 DATE 2001 10

23.00000 DATE 2001 11 7.00000 DATE 2001 11 22.00000 DATE 2001 12 7.00000

DATE 2001 12 22.00000 DATE 2002 1 6.00000 DATE 2002 1 21.00000 DATE

2002 2 5.00000 DATE 2002 2 20.00000 DATE 2002 3 7.00000 DATE 2002 3

22.00000 DATE 2002 4 6.00000 DATE 2002 4 21.00000 DATE 2002 5 6.00000

DATE 2002 5 21.00000 DATE 2002 6 5.00000 DATE 2002 6 20.00000 DATE

2002 7 5.00000 DATE 2002 7 20.00000 DATE 2002 8 4.00000 DATE 2002 8

19.00000 DATE 2002 9 3.00000 DATE 2002 9 18.00000 DATE 2002 10 3.00000

DATE 2002 10 18.00000 DATE 2002 11 2.00000 DATE 2002 11 17.00000 DATE

2002 12 2.00000 DATE 2002 12 17.00000 DATE 2003 1 1.00000 DATE 2003 1

16.00000 DATE 2003 1 31.00000 DATE 2003 2 15.00000 DATE 2003 3 2.00000

DATE 2003 3 17.00000 DATE 2003 4 1.00000 DATE 2003 4 16.00000 DATE

2003 5 1.00000 DATE 2003 5 16.00000 DATE 2003 5 31.00000 DATE 2003 6

15.00000 DATE 2003 6 30.00000 DATE 2003 7 15.00000 DATE 2003 7 30.00000

DATE 2003 8 14.00000 DATE 2003 8 29.00000 DATE 2003 9 13.00000 DATE

2003 9 28.00000 DATE 2003 10 13.00000 DATE 2003 10 28.00000 DATE 2003

11 12.00000 DATE 2003 11 27.00000 DATE 2003 12 12.00000 DATE 2003 12

27.00000 DATE 2004 1 11.00000 DATE 2004 1 26.00000 DATE 2004 2 10.00000

DATE 2004 2 25.00000 DATE 2004 3 11.00000 DATE 2004 3 26.00000 DATE

2004 4 10.00000 DATE 2004 4 25.00000 DATE 2004 5 10.00000 DATE 2004 5

25.00000 DATE 2004 6 9.00000 DATE 2004 6 24.00000 DATE 2004 7 9.00000

DATE 2004 7 24.00000 DATE 2004 8 8.00000 DATE 2004 8 23.00000 DATE

2004 9 7.00000 DATE 2004 9 22.00000 DATE 2004 10 7.00000 DATE 2004 10

22.00000 DATE 2004 11 6.00000 DATE 2004 11 21.00000 DATE 2004 12 6.00000

DATE 2004 12 21.00000 DATE 2005 1 5.00000 DATE 2005 1 20.00000 DATE

2005 2 4.00000 DATE 2005 2 19.00000 DATE 2005 3 6.00000 DATE 2005 3

21.00000 DATE 2005 4 5.00000 DATE 2005 4 20.00000 DATE 2005 5 5.00000

DATE 2005 5 20.00000

RESULTS PINCHOUT-VAL 0.0002

RESULTS SPEC 'Permeability K' RESULTS SPEC SPECNOTCALCVAL

-99999 RESULTS SPEC REGION 'All Layers (Whole Grid)' RESULTS SPEC

REGIONTYPE 'REGION_WHOLEGRID' RESULTS SPEC LAYERNUMB 0

RESULTS SPEC PORTYPE 1 RESULTS SPEC EQUALSI 1 0.1 RESULTS

SPEC STOP

RESULTS SPEC 'Permeability J' RESULTS SPEC SPECNOTCALCVAL

-99999 RESULTS SPEC REGION 'All Layers (Whole Grid)' RESULTS SPEC

REGIONTYPE 'REGION_WHOLEGRID' RESULTS SPEC LAYERNUMB 0
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RESULTS SPEC PORTYPE 1 RESULTS SPEC EQUALSI 1 0.1 RESULTS

SPEC STOP

RESULTS SPEC 'Permeability I' RESULTS SPEC SPECNOTCALCVAL

-99999 RESULTS SPEC REGION 'All Layers (Whole Grid)' RESULTS SPEC

REGIONTYPE 'REGION_WHOLEGRID' RESULTS SPEC LAYERNUMB

0 RESULTS SPEC PORTYPE 1 RESULTS SPEC CON 10 RESULTS SPEC

STOP

RESULTS SPEC 'Porosity' RESULTS SPEC SPECNOTCALCVAL -99999

RESULTS SPEC REGION 'All Layers (Whole Grid)' RESULTS SPEC RE-

GIONTYPE 'REGION_WHOLEGRID' RESULTS SPEC LAYERNUMB 0 RE-

SULTS SPEC PORTYPE 1 RESULTS SPEC CON 0.2 RESULTS SPEC STOP

RESULTS SPEC 'Pressure' RESULTS SPEC SPECNOTCALCVAL -99999

RESULTS SPEC REGION 'All Layers (Whole Grid)' RESULTS SPEC RE-

GIONTYPE 'REGION_WHOLEGRID' RESULTS SPEC LAYERNUMB 0 RE-

SULTS SPEC PORTYPE 1 RESULTS SPEC CON 500 RESULTS SPEC STOP

RESULTS SPEC 'Rel Perm Set Num' RESULTS SPEC SPECNOTCAL-

CVAL -99999 RESULTS SPEC REGION 'All Layers (Whole Grid)' RESULTS

SPEC REGIONTYPE 'REGION_WHOLEGRID' RESULTS SPEC LAYER-

NUMB 0 RESULTS SPEC PORTYPE 1 RESULTS SPEC CON 1 RESULTS

SPEC STOP

RESULTS SPEC 'Water Saturation' RESULTS SPEC SPECNOTCALCVAL

-99999 RESULTS SPEC REGION 'All Layers (Whole Grid)' RESULTS SPEC

REGIONTYPE 'REGION_WHOLEGRID' RESULTS SPEC LAYERNUMB

0 RESULTS SPEC PORTYPE 1 RESULTS SPEC CON 1 RESULTS SPEC

STOP

RESULTS SPEC 'Grid Top' RESULTS SPEC SPECNOTCALCVAL -99999

RESULTS SPEC REGION 'Layer 1 - Whole layer' RESULTS SPEC REGION-

TYPE 'REGION_LAYER' RESULTS SPEC LAYERNUMB 1 RESULTS SPEC

PORTYPE 1 RESULTS SPEC CON 0 RESULTS SPEC STOP

RESULTS SPEC 'Grid Thickness' RESULTS SPEC SPECNOTCALCVAL

-99999 RESULTS SPEC REGION 'All Layers (Whole Grid)' RESULTS SPEC

REGIONTYPE 'REGION_WHOLEGRID' RESULTS SPEC LAYERNUMB

0 RESULTS SPEC PORTYPE 1 RESULTS SPEC CON 1 RESULTS SPEC

STOP

RESULTS SPEC 'Volume Modi�ers' RESULTS SPEC SPECNOTCALCVAL

-99999 RESULTS SPEC REGION 'All Layers (Whole Grid)' RESULTS SPEC

REGIONTYPE 'REGION_WHOLEGRID' RESULTS SPEC LAYERNUMB
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0 RESULTS SPEC PORTYPE 1 RESULTS SPEC CON 1 RESULTS SPEC

STOP
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Appendix B

CSMP++ Software: Experimental Part

Introduction

This chapter will describe an experimental simulation software, which is still

under heavy research, and which was used for some simulation purposes of this

thesis. It will give an insight into the operating principles, partial di�erential

equations that are solved, modeling work�ow and will also discuss strenghts and

weaknesses of the software.

Complex Systems Modelling Platform

Complex Systems Modelling Platform (CSMP++ or CSP)29 is an applica-

tion programmer interface (API) invented and implemented by Stephan Matthäi

during research stays at ANU, Stanford University, ETH Zurich and Imperial

College London. It is programmed in C/C++ language, makes use of the C++

Standard Template Library (STL) and takes full advantage of object-oriented

features like polymorphism and inheritance among others. It is fully compatible

with the ANSI/ISO C++ standard and can run on Windows, Macintosh and

Unix-Linux environments.

CSMP++ is based on mainly on the numerical method of �nite element,

but can also use �nite volume and �nite di�erence methods. It can work with

elements like triangles and quadrilaterals in two dimensions and hexahedral

and tetrahedral elements among others in three dimensions. For an e�cient

and realistic representation of geometry CSMP++ can also handle so-called

hybrid meshes. Complex systems platform works with an unstructured grid, as

opposed to structured Cartesian grids.

Use of �nite volume and �nite element methods to solve the governing partial

di�erential equations leads to a linear algebraic equations of the form A~x = ~b

after docretization, where ~x is the unknown solution vector, while A is the

known coe�cient matrix and~b is the known right-hand side vector. A is a sparse,

symmetrical and positive de�nite matrix which can contain millions of equations.

The system of linear equations can be solved by algebraic multigrid methods30�32

(e.g. AMG_Solver or SAMG_Solver). These methods work relatively fast
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and matrix-inversion times relate to matrix size in a nlogn fashion, where n

is the number of matrix rows or colums. The equations can also be solved by

direct methods like Gaussian elimination or conjugate gradient schemes, which,

however, work in a n2 fashion and are thus slower for solving large systems of

equations.

Complex Systems Modelling Platform can be used for the solution of a wide

area of physical problems like steady-state and transient pressure multi-phase

�ow, advection and heat dispersion, hydraulic fracturing, calcite dissolution

precipitation and others.

Equations solved by CSMP++

In chapter 2 a mathematical formulation for the immiscible two-phase slightly

compressible �ow is presented. Although Complex System Modelling Platform

solves similar equations it must be noted that CSP uses a modi�ed formulation.

The formulation closely follows the notation presented by Helmig [1997].33 The

step-by-step derivation is shown in the Appendix. In CSP no capillary conti-

nuity is assumed, which is a reasonable assumption when dealing with highly

complex and heterogenous media. In the pressure equation hydrostatic pressure

is included, but capillary pressure is not included

φct
∂p

∂t
−∇ · k [λt∇p+ ~g (λwρw + λnwρnw)]− q̂t = 0 (5.1)

where the subscripts w, nw, t denote wetting phase, non-wetting phase and

total respectively. Other variables are the same as in chapter 4. Note also

that the pressure in Eq.5.1 is not speci�ed any further and can be viewed as

the total pressure acting in the pore space of the media, while the pressure in

Eq.2.8 denotes the oil pressure explicitly.

The saturation equation includes the capillary pressure e�ects and can be

solved either explicitly or implicitly.

φ
∂Snw
∂t

+∇ ·
[
fnw~vt − λ̄k (ρw − ρnw)~g − λ̄k dpc

dSnw
∇Snw

]
− q̂nw = 0 (5.2)

In Eq.5.2 f denotes the fractional �ow f = q̂/q̂tand λ̄ = λwλnw/λt. The

pressure and saturation equations can be solved using an IMPES approach.

CSMP++ uses a hybrid �nite element- �nite volume method to solve the two

governing equations. While the �nite element method is employed to solve the
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pressure equation, the �nite volume numerical method solves the saturation

equation. The priciple will be explaimed in the following section.

Combination of Finite Element and Finite Volume Methods

Introduction

The equations that are solved by CSMP++ are complex partial di�eren-

tial equations (PDE). The pressure is a function of both position and time.

What makes things even more complicated is the higher order of the PDEs.

Mathematical sciences have extensively dealt with PDEs and their solution. By

de�nition the partial di�erential equations of the second order

a(x, y)fxx + 2b(x, y)fxy + c(x, y)fyy + g(x, y, fx, fy, f) = 0

can be divided into three types, each having di�erent preferred and recom-

mended solution techniques. The coe�cients a, b, and c are all functions of the

variables x , y. The subscripts refer to the derivative (i.e. fxx = ∂2f
∂x2 ). If we

de�ne d = ac− b2 then

d =


> 0 elliptic

= 0 parabolic

< 0 hyperbolic

describes the type of the partial di�erential equations. Numerical methods

to solve those involved equations are �nite di�erence, �nite volume and �nite

element methods. This section will give a short introduction on the available

methods and will then speci�cally explain the solution technique that is being

used by Complex Systems Modelling Platform.

Finite Volume Method

While the �nite di�erence method works with derivatives and di�erence quo-

tients and uses the actual partial di�erential equation, the �nite volume method

(FV) uses the integral form of the pressure equation. If we neglect depth then

the general single-phase pressure-di�usion equation is given by

∇k
µ
∇p+ q̂ − φct

∂p

∂t
= 0

where the variables are de�ned in the nomenclature. Then the integral form
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of the equation is

ˆ

V

(∇k
µ
∇p+ q̂ − φct

∂p

∂t
)dV = 0

and with further simpli�cations and assuming that the total compressibility

and the viscosity remain constant within the control volume then follows

ˆ

V

(∇k
µ
∇p)dV +

ˆ

V

q̂dV − φct
∂

∂t

ˆ

V

pdV = 0

and by applying the divergence theorem to relate a volume integral to a

surface integral then the �nal form is shown below

ˆ

S

(
k

µ
∇p)~ndS + q = φctV

∂p̄

∂t

where p̄ is an average pressure taken over the control volume and ~n is the

normal vector poiting out on the surface plane . Numerically, the surface integral

will boil down to a summation over the facets of the control volume.

Figure 35: Voronoi grid with control volume34

The �gure above shows such a hexagonal Voronoi grid with the control vol-

ume. The variables (e.g. pressure) are being calculated as averages across the

control volumes. The �nite volume method is widely used in reservoir simula-

tion in conjunction with so-called PEBI (or Voronoi) grids, which are hexagonal

grids, because these can represent complex geometries, as well as have an im-

proved stencil over e.g. the FD 5-point stencil. Nevertheless, the FV method is

not restricted to unstructured grids only, but can be also applied to Cartesian

grids. The strenghts of the �nite volume method lie in the fact that complex

geometries can be represented and that the FV method is a conservative numer-
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ical method (i.e. whatever �ux enters the volume also has to leave it somewhere

else). A problem with the FV method is the computation of variable values on

the interfaces of such control volumes and the subsequent upstream weighting.

During simulation runs, the CFL time-stepping criterion needs to be accounted

for numerical stability reasons.

Finite Element Method

The �nite element method (FEM) has been long known and used in solving

di�erential equations in the �elds of aeronautical and mechanical engineering.

Only recently, however, has this powerful technique been applyed to reservoir

engineering and simulation of �uid �uid within both fractured and unfractured

porous media. Similar to the �nite volume technique the FEM uses the integral

form of the governing PDE. The di�erence between these methods is that the

FEM introduces weighting functions to the integral form and the whole example

boils down to a minimization problem. In order to do this the domain over which

we wish to compute a variable is being subdivided into so-called �nite elements.

Figure 36: Triangle �nite element

Fig. 4 shows a triangular �nite element with the three nodes and the faces.

This element form can only be applied for 2D problems. The value of the

property within the element can be easily related to nodal property values. In

its present form the �nite element is very similar to a ternary plot in chemistry.

The property (i.e. pressure) of the entire element is related to the nodal property

through a linear combination as
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p̂(x, t) =
n∑
i=1

pi(t)Φi(x)

where p is the pressure at the node and p̂ the pressure of the entire element,

and Φ are the basis (or shape) functions. Notice that the important fact of the

above applied equation is the fact that the nodal pressures are just functions

of time, while the basis functions are functions of position. The basis functions

can be linear, quadratic, cubic etc. However, in our example the basis functions

are linearly warrying between the nodes with the following condition

Φi =

1 at i

0 else

.
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Figure 37: Linear FE basis functions

The �gure above shows the linear �nite element basis functions. The lin-

ear basis functions themselves can be evaluated through an easy geometrical

relationship, which boils down to the equation of a plane

Φi = aix+ biy + ci

where ai , bi, ci are constant values that are di�erent of every node, but can

be calculated with the above condition of linear variability. The x and y refers

to the coordinate position. If we assume a spacial di�erential operator L of the

following form

L(p̂) = ∇k
µ
∇p̂+ q̂ − φct

∂p̂

∂t

then the FEM approximation to the solution of pressure is obtained through

the following expression

ˆ

V

L(p̂)ΦidV → min

which is a minimization problem. In the ideal case the above expression

would equal zero.

Combined Element Volume Method

The combined element volume method (CEVM) refers to a combination of

�nite element and �nite volume methods to solve the governing equations of �uid

�ow in porous media. The character of the pressure and the transport equations

is completely di�erent. The pressure equation is a non-linear di�usion equation
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and of parabolic type (similar to heat conduction equation). The saturation

(transport equation) is of hyperbolic character. A rigid discussion of numerical

methods within CSP is presented in Geiger et al. [2003].35 This section closely

follows the refered publication.

By combining the individual phase conservation laws with Darcy's law we

get the pressure equation

φct
∂p

∂t
= ∇ · [kλt∇p] +∇ · [~gk (λnρn + λwρw)] + q̂t (5.3)

where n, w, denote non-wetting and wetting respectively. In this formulation

the pressure is the wetting phase pressure. Other variables are the same as

de�ned in the nomenclature. Eq.5.3 is a simpli�ed version of Eq.5.1. In the

equation above capillary e�ects are neglected, because they are assumed to

be insigni�cantly small when compared to the �uid pressure gradient on the

reservoir scale. Eq.5.3 is solved by using the FEM approximation to the solution

as presented on the previous page on a computational domain Ω to obtain

ˆ

Ω

φct
∂p

∂t
Φidx =

ˆ

Ω

∇·[kλt∇p] Φidx+
ˆ

Ω

∇·[~gk (λnρn + λwρw)] Φidx+
ˆ

Ω

q̂tΦidx

(5.4)

If we apply the rule as given by integration by parts for higher dimensions

we can simplify the right-hand side of Eq. 5.4. We obtain two parts: the �rst

term is an integral over the boundary ∂Ω and the second term is an integral over

the domain Ω. Using the weak formulation the integral involving the boundary

is neglected and only the integral over the domain is accounted for to obtain

ˆ

Ω

φct
∂p

∂t
Φi dx = −

ˆ

Ω

kλt∇p·∇Φi dx−
ˆ

Ω

~gk (λnρn + λwρw)·∇Φi dx+
ˆ

Ω

q̂tΦi dx

(5.5)

Notice that by this mathematical �trick� it was possible to eliminate the

del operator. The next condition is that we specify the pressure as a linear

combination of node pressures and a basis function as

p (x, t) =
n∑
j=1

pj (t) Φj (x) (5.6)

where n is the number of nodes at which the pressure is evaluated. The idea
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here is to decouple the pressure functionality from position, therefore pressure

is just a function of time. This is very similar to the separation of variables

principle used in solving ordinary (and partial) di�erential equations. As a

consequence applying a divergence to these individual node pressures would

yield zero. If we insert Eq.5.6 into Eq.5.5 and apply the product rule then we

get the following expression, which is a system of coupled ordinary di�erential

equations

n∑
j=1

dpj
dt

(t)Aij(t) = −
n∑
j=1

pj(t)Kij(t) + qi(t) (5.7)

where

Aij(t) =
ˆ

Ω

φctΦiΦjdx

Kij(t) =
ˆ

Ω

kλt∇Φj∇Φidx

and

qi(t) = −
ˆ

Ω

~gk (λnρn + λwρw) · ∇Φi dx+
ˆ

Ω

q̂tΦi dx

Aij and Kij are coe�cient matrices that change over time. These matrices

are sparse and contain non-zero values along the main dia The term qi can be

viewed as an additional term comprised of a source/sink and a gravity �ow part.

It will later be added to the right-hand side of the equation. Given a time step

4t and a superscript k that denotes the current (known) time, Eq.5.7 can be

discretized using the implicit backward Euler time scheme to obtain

n∑
j=1

pk+1
j (t)− pkj (t)

4t
Akij(t) = −

n∑
j=1

pk+1
j (t)Kk

ij(t) + qi(t)

and �nally

n∑
j=1

(
Akij +4tKk

ij

)
pk+1
j =

n∑
j=1

Akijp
k
j +4tqki (5.8)

which basically is an equation system of the type Ax = b. The variable

we are solving for is the pressure vector at time level k + 1. Notice that the
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coe�cient matrices have the superscript k and are therefore lagging behind one

iteration. By assuming that their values change negligibly small over time this

is a su�ciently accurate simpli�cation. The implicit Euler time discretization

scheme has the advantage that it does not require to ful�ll the CFL-criterion,

therefore the time steps can be larger. Eq.5.8, which yields the nodal pressures,

can accurately be solved with algebraic multigrid methods.31 The next step in

CSP is the construction of a �nite volume subgrid that is barycentically centered

around the nodes. This �nite volume is subsequently a polygon (in the case of

triangular �nite elements), whose edges are the barycenters of the �nite elements

around the central node.
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Figure 38: Barycentric �nite volumes38

In the �gure above i denotes the node, e denotes the �nite elements, while s

denotes the segments of the �nite volume. After the pressure equation has been

solved the total velocity (i.e. sum of wetting and non-wetting velocities) can be

easily calculated for the nodes with

~vt = −kλt∇p (5.9)

where k is the permeability tensor, and λt is the total mobility (i.e. sum of

individual phase mobilities). Notice that the total velocity is a vector property,

pointing into a certain direction. The individual phase velocities (e.g. for the

non-wetting phase) can be determined by

~vn =
1

1 + λw/λn
[~vt − kλn (ρw − ρn)~g]

and by making use of Eq.5.9 and the fact that the wetting-phase velocity

is the di�erence between total and non-wetting phase velocity. The velocity

evaluated above is an element vector property. Velocities are piecewise constant

and discontinuous across FE faces. After having calculated those properties the

transport (or saturation) equation needs to be solved. The saturation equation is

a non-linear advection equation and of hyperbolic character. After mathematical

manipulations it has the following form in terms of non-wetting phase

φ
∂Sn
∂t

= −∇ [fn~vt] +∇
[
λ̄k (4ρ~g +∇Pc)

]
+ q̂n (5.10)

where f is the fractional �ow, λ̄ a type of average total mobility (see section

5.3), and 4ρ is the di�erence between wetting and non-wetting phase densities.
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The �nite volume method makes use of both the integral form of the saturation

equation, as well as the Gauss's divergence theorem, that converts a volumete

integral to a surface integral by also simulataneously eliminating the del opera-

tor. Then the following is obtained

ˆ

Vi

φ
∂Sn
∂t

dVi = −
ˆ

∂Vi

[fn~vt]~ndA+
ˆ

∂Vi

[
λ̄k (4ρ~g +∇Pc)

]
~ndA+

ˆ

Vi

q̂ndVi (5.11)

Using Euler's method for the time discretization we obtain the following

(explicit) expression for the future non-wetting phase saturation

Sk+1
ni = Skni −

4t
φVi

ni∑
j=1

[
fnjvtj − λ̄jk (4ρj~g +∇Pcj)

]
njAj − qniVi (5.12)

where
∑ni

j=1 is the summation over all straight line boundary segments j of

the �nite volume Vi, 4t is the time step, and nj is the outward normal vector

to jth segment, scaled by the lenght of the segment.

Figure 39: 1D �nite-element �nite-volume discretisation of a Darcian �uid �ow39

The �gure above shows a graphical representation of a 1D dual mesh FE-

FV discretization of Darcian �uid �ow. The exact solution of a PDE (in this

case pressure) is given at the top, which is approximation with the help of a

linear �nite element solution. The pressure varies piecewise linearly between the

nodes. This leads to piecewise constant pressure derivatives within the elements,

which are discontinuous across element boundaries (i.e. at the nodes). Those

mathematical singularities are elegantly circumvented by constructing the �nite
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volumes around those nodes. By solving the saturation equation with the FV

method the pressure derivative as well as the �uxes are evaluated at element

centres, where the pressure derivative is not a singularity.

The �nite volume method has the advantage of being volume conservative

(i.e. whatever �ows into the volume has to �ow out). However, one main

disadvantage is that the time step can only be of a certain size and has to

ful�ll the Courant-Friedrichs-Lewy (CFL) condition. In addition, in Eq.5.12

certain parameters (e.g. total velocity, non-wetting phase fractional �ow etc.)

are piecewise constant within the �nite volumes, but need to be computed for

the interfaces of the FV; calculation of the �ux through the facets often causes

problems. Therefore an upwinding scheme is necessary that can compute those

interface values. The �rst-order upwinding scheme is the so-called upstream

weighting. CSP uses higher-order (2nd order) upwind schemes and slope limiters

that should prevent spurious oscillations associated with second-order schemes.

For details the interested reader is refered to Geiger et al. [2003].35

Figure 40: Numerical solution procedure

Fig.7 presents a graphical representation of the numerical solution procedure

as employed by CSMP++. During every time loop �rst the pressure equation is

solved with the help of the FE method. Next the obtained pressure �eld is used

to compute the total velocity with the Darcy equation. Later the transport (or

saturation) equation is solved with help of the FV method and phase satura-

tions are obtained. These are then used to update the multiphase (saturation-

dependent) �uid properties such as capillary pressure or relative permeability

curves among others. Then the next time loop performs the same steps.
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Modelling and Work�ow

Introduction

Complex Systems Modelling Platform is a very �exible software that can

make use of various types of input data. One very simple method is the use

of 8-bit colour-coded bitmap images that represent the geological cross-section.

Every colour on the 256-value scheme is related to permeability values from

10−21 to 10−12square-meters. Internally, CSP creates a regular two-dimensional

rectangular model with triangular �nite elements to solve the governing partial

di�erential equations. Another more sophisticated method to create geological

cross-sections is via the use of computer-aided design (CAD) software, which

faciliates the design of realistic two- or three-dimensional geological models. The

CAD model needs to be meshed with other meshing software before CSP can

perform the simulation. This section will deal with the steps necessary to build

the model, mesh the model, perform the simulation and output the results. It

will only deal with the work related to the simulation in this thesis. A good

reference is the CSP Model Building & Interface Guide.37

Geological Modelling

Modelling of the geological features such as fractures, layers and boundaries

is done with the help of Rhinoceros (McNeel & Associates). Rhinoceros is a

computer-aided design (CAD) software used in various disciplines, from con-

struction to engineering and design applications. Rhino's fundamental objects

are points, NURBS (Non-Uniform Rational B-Splines) curves, surfaces and

solids. It greatly faciliates the design of objects with various design commands

and perspective viewports.

The model used in this simulation comes from an outcrop analysis. The

�rst step of the modelling is the de�nition of relative and absolute tolerances as

well as angle tolerance in the model. These speci�ed tolerance values obviously

give a default of the model size and resolution of smallest objects. The next

step is importing or setting of the outcrop picture (as pdf- or- bitmap- �le) as a

background to the Rhino viewport. When dealing with vertical geological cross-

sections it is necessary to draw on the xy-plane in Rhino because in CSP the

positive y-axis is pointing upwards. In 2D a control rectangular surface needs

to be created, which will represent the model domain. After spliting the rect-

angular domain into four lines, these need to be named RIGHT, TOP, LEFT,
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and BOTTOM in a counter-clockwise fashion. For the simulation purpose those

lines will represent the boundaries upon which boundary and essential condi-

tions can be imposed. The next step is the drawing of the geological model by

copying the background picture of the outcrop and using the NURBS curves

to represent geological layer boundaries and fractures. The surface needs to be

cut according to geological features. Entities (e.g. layers, fractures etc.) need

to be organised into families (e.g. layerA, fracturesA etc.). In Rhino this can

be easily done by organising objects within layers, which can then be easily

manipulated. It also becomes easier to keep track of numerous entities when

they are situated on the same layer. Ideally all objects within a layer in Rhino

should have the same properties (e.g. permeability, porosity etc.). Later, for

simulation purposes, parameters can be set for those Rhinoceros layers. CSP

also gives the possibility of individually accessing objects of a particular layer.

At a �nal step before going to the meshing software intersecting curves need to

be split. This is necessary so the meshing software can work more e�ciently

and more sensible �nite elements can be created that follow the geology more

accurately and produce a more realistic model.

NURBS curves have been in use for several decades in computer-aided de-

sign, manufacturing and engineering disciplines. Their strenghts are an accurate

graphical modelling of curves, both analytical (e.g. circles, ellipse etc.) and free-

form (e.g. cars, airplanes etc.), as well as a profound mathematical background.

NURBS curves are speci�ed through the degree, control points, basis functions,

weights and knot vectors. They are a more generalised form of B-spline curves.

A pth-degree B-spline curve C(u) is a piecewise polynomial function de�ned as

following

C(u) =
n∑
i=0

Ni,p(u)Pi

where Pi are the control points, Ni,p are the basis functions, and n is the

number of control points minus one. A major di�erence between the B-spline

curve and the NURBS curve are the so-called weights that are inherent. There-

fore the de�nition of the NURBS curve is given by

C(u) =
∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

where wi denotes the weight of control point Pi. Weights are usually positive

numbers. The term in the denominator is a normalizing factor. Control points
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are needed for the computation of the NURBS curve and they can be viewed

as restrictions of curve geometry. A simple way of changing the shape of the

NURBS curve is by changing the position of the control points. If all control

points have the same weight, then the curve is said to be non-rational, otherwise

it is rational. Although in reality NURBS have the possibility of being either

rational or non-rational, most of them will be non-rational. The degree of the

NURBS curve can be any positive whole number, although degrees 1, 2, 3 or 5

are most common. Additionally, a knot vector, which speci�es the parameter

intervals over which individual curves are combined to form a B-spline, is needed

to display the curve. The i -th basis function of degree p is de�ned recursively

according to

Ni,0(u) = 1 if ui ≤ u ≤ ui+1, 0 else

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

whereNi,0(u) is a step function equal to one only within the interval [ui, ui+1]
and zero elsewhere. Similarly from curves also NURBS surfaces can be ex-

tracted. However, this is computer memory expensive and not necessary for

two-dimensional examples. NURBS surfaces only come into importance when

modelling geometry in a 3D domain.
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Figure 41: Quadratic B-spline basis functions (a) NURBS curve (b)37

The �gure above shows quadratic B-spline basis functions and their respec-

tive intervals. Moreover, the NURBS curve as well as the control points are also

being displayed below. The shape of the curve is determined by the position of

the control points, the weights and the degree of the basis functions.

To sum up, NURBS curves are an excellent tool of modelling complex geology

and various other free-forms both accurately, as well as on a solid mathematical

basis. NURBS curves are continuous and di�erentiable everywhere, except on

the knots.

Meshing

Before we can import the geometry from Rhinoceros to mesh it in the mesh-

ing software, it needs to be converted to a readible format. This is done using

Tetin, an executable programme and preprocessor of the ICEM CFD mesh gen-

erator. Meshing the geometry is done with ANSYS ICEM CFD 11.0. ANSYS

ICEM CFD is a commercial meshing software, that guides the user through the

required tasks in a step-by-step fashion. ANSYS ICEM CFD can work with a

variety of complex free-form geometries including NURBS among others. Other

strenghts of the software include the robust meshing algorithms used, availabil-

ity of various di�erent types of meshes (e.g. triangles, quadrilaterals etc. for
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2D; tetrahedra, hexahedra etc. for 3D).

The �rst task is to create points, wherever two curves intersect or touch.

This is done to enable an e�cient and accurate mesh, and to prohibit mesh-

ing errors such as holes, missing internal faces or negative volumes. It is also

very important that two points are not very close to each other, because this

could lead to some weird elements with unfavourable aspect ratios. ANSYS

then requires global scaling factors and local scaling factors that determine the

maximum size of the elements within a group. Other parameters that need to

be speci�ed are the mesh type and method, as well and surface and curve mesh

setup parameters. Then the mesh, which in our example consists of triangles,

is computed. Unfortunately, in some case the mesh will be unsatisfactorily for

export to CSMP. Errors include holes, uncovered and missing faces, or dupli-

cate elements. A useful tool is to visually examine the generated mesh and to

colour the mesh according to quality. Usually, lower-quality elements are found

at interfaces of groups or boundaries, and fracture tips. ANSYS also has an

automatic mesh check and repair command, which increases the mesh quality.

After all those tasks are done and the mesh has a high quality, the results need

to be output to CSP.

ANSYS has the option of exporting the mesh directly to CSP. It produces

two �les, which have the model name and the extentions of *.asc and *.dat.

The asc-�le can be opened with a text programme and contains the individ-

ual information about the regions and the mesh element types, as well as the

number of elements. Every �nite element has a individual numbering and an

element type (e.g. bar, triangle etc.). The dat-�le cannot be opened with a text

programme, but it contains information about the connectivity of the elements.

This is necessary for setting up the basis functions, for integration and solving

the di�erential equations.

Setup of Con�guration and Regions Files

The next step in the simulation process is the setup of the con�guration

�le. The con�guration �les must have the model name and the extention �-

con�guration.txt�.

The general style of the con�guration �les is the following: First the global

material properties are set, which are valid for the entire model. They include

information about model properties like permeability, porosity, �uid viscosity

and initial saturation as well as relative permeability model among others. The

next portion of the �le speci�es local material properties, which are valid only for
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the region in the model. Those local properties can be assigned to the subregion

boundary, interior or the complete subregion. Local properties do not need to

be de�ned if they have the same value as the default (global) properties. The

next section de�nes the essential conditions on model boundaries. These can

either be Dirichlet or Neumann boundary conditions are necessary to have an

unique solution to the di�erential equations. In the gravity-drainage example a

gas injection rate and saturation is de�ned to the top of the model. Permeability

of the top and bottom most triangle elements can also be speci�ed, in order to

mimic the behaviour of the horizontal injection and production wells. For a 2D

model two numerical values are needed for the essential boundary conditions,

which denote maximum and minimum values. Usually these two values will be

equal; if not CSP assumes a linear variation between those two values along

the boundary. The last blocks of the con�guration �le are essential �ags and

the computational settings. The computational settings �rst de�ne the time

stepping algorithm (i.e. conservative, daring, aggressive etc.) and the duration

of the simulation, as well as the output time of the results.

Whenever CSP reads the con�guration �le it automatically checks the values

for the properties and whether those properties do exist. If a value range is

exceeded, the variable from the con�guration �le will be set to the nearest range

speci�ed in a �le called �CSP-2phase-variables.txt�. This is useful in order to

quickly detect typos or unphysical property values.

Another �le necessary for the simulation has the model name and the ex-

tention �-regions.txt�. It speci�es which regions of the model are used. Other

discretized regions in the *.asc-�le are ignored. A regions-�le is only necessary

for models built within ANSYS ICEM. After �nishing the con�guration and

regions �les the simulation can be started by clicking on the CSP executable

programme, which produces the data output.

Data Output

Data output in CSP can be de�ned within the source code, prior to produc-

ing the executable programme. It can be done either through the VTK or the

JPEG interfaces. In this thesis properties like absolute �uid pressure, gas satu-

ration and total mobility among others were observed and output via the VTK

interface. During the simulation CSP constanlty monitors the de�ned properties

for the output times as speci�ed within the con�gurations �le. These data set

are recorded in *.vtk �les that can easily be visualized through the MayaVi soft-

ware (mayavi.sourceforge.net) or ParaView software (www.paraview.org). Both
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provide the user with various data analysis options like histograms, plots or

calculators. Apart from that CSMP++ records certain properties in text �le

format with the extensions �-monitored_regions.txt�, �-�ow&ranges.txt� and �-

saturation_gas.txt�.

The only setback is that the VTK format does not support the display of

scalar element properties. Therefore CSP outputs the element properties as

point data to VTK. These can be connected via a Delauney triangulation if a

continous �eld is to be displayed. Unfortunately, material boundaries will be

blurred through this approach. Vector quantities like �uid velocities can be

displayed with so-called glyphs.29

Reservoir Case Study

Continuous Fracture

Before actually performing the gravity-drainage simulation on an actual

model, I decided to perform some preliminary simulations in order to check,

whether the the software gives realistic results. In the �rst example I wanted to

perform a basic simulation of gravity-drainage.

The quadratic model has a height and width of 100 ft (30.48m). It is divided

into two equal regions called toplayer and bottomlayer. Both layers have the

same properties, with the exception that the toplayer has a lower permeability

than the bottomlayer. Running vertically all the way to the bottom is a fracture

that has a width of 1cm, a porosity of 1 and a permeability of 10^-11 m² (10

000 md). The fracture is located exactly at the middle of the model. Due to

the relatively narrow fracture, the fracture cannot be seen on the plot, which

displays the permeability below.

Into this model gas is injected at the top through a horizontal injector well

and produced exactly at the bottom through a horizontal well. At the top of

the model the nodal �uid volume source (i.e. injection rate) and the oil and

gas saturations are speci�ed, while at the bottom only the pressure is �xed (i.e.

constant pressure boundary) at 3.44738*107 Pa (5000 psi). The left and right

boundaries are no �ow boundaries. Table 10 gives a summary of the material

properties and the initial conditions used in the default simulation.

For the fracture a linear Brooks-Corey relative model was used. A note on

the top boundary condition: For a gravity drainage process another boundary

condition could be to set the pressure constant at the top. The only prerequisite

is to have such a high top boundary pressure as to make sure that the gas enters
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Figure 42: Permeability of continuous fracture model

the fracture.

Parameter Value

X dimension 30.48 m
Y dimension 30.48 m
Porosity 0.25

Oil density 1000 kg/m³
Gas density 100 kg/m³
Oil viscosity 10-3 Pa.s
Gas viscosity 10-5 Pa.s

Total compressibility 10-7 Pa-1

Brooks Corey Parameter 2.0
Well permeabilities 10-10 m²

Toplayer permeability 10-14m²
Bottomlayer permeability 10-13 m²
Fracture permeability 10-11 m²
Fracture porosity 1.0
Fracture aperture 0.01 m

Nodal �uid volume source 2.1505*10-7 m³/(m.s)
Initial oil saturation 0.95
Initial gas saturation 0.05

Table 10: Material properties for default simulation

If we plot the saturation over time, we obtain the following �gures.
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Figure 43: Gas saturation of continuous fracture model after 2.5 days

Figure 44: Gas saturation of continuous fracture model after 13.9 days
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Figure 45: Gas saturation of continuous fracture model after 27.8 days

From those �gures above we can see the changes in gas saturation over time.

In our drainage processes we are trying to increase the gas saturation as much

as possible to recover a higher amount of oil. Oil saturation is one minus the gas

saturation. Gas enters the system at the top boundary, but has no chance to

enter at the toplayer �rst. The reason for this is the relatively low permeability

of 10 md. Therefore the gas preferentially �oods the high-permeability fracture

and is being transported down to the bottomlayer. After reaching a threshold

height the gas �rst enters in the bottomlayer and starts to displace the oil. By

doing so, the gas also increases the total mobility of the pore �uids which in

turn also enhances the drainage process.
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Figure 46: Bottomlayer fracture gas saturation after 16.67 hrs

The picture above shows that gas starts to enter the bottomlayer after about

16 hours and after reaching a threhold height of about 8.5 meters. The dis-

placement front in the bottomlayer has a mushroom pro�le. After some time

the drainage process also begins in the toplayer. Here, however, the displace-

ment front does not have this mushroom shape but is horizontally constant (i.e.

piston-like). Another observation that I make is that on the interface between

the toplayer and the bottomlayer a highly gas-saturated region develops, which

however does not extend to the left or right model boundary. The drainage

e�ciency is better within the higher permeable layer. Obviously the fracture

enhances the transport of the gas to the advantageous (high-permeable) regions

and acts like an accelerator to the drainage process.

The �gure above shows the integrated gas saturation (i.e. gas volume in
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Figure 47: Integrated gas saturation over time

cubic meters) over time for the perspective regions. The gas volume within the

fracture �rst increases and after reaching an apex decreases and forms a trough

and �nally stabilizes for a constant value. My explanation for this would be

that due to the injection the gas volume increases in the fracture. The trough

then appears after gas has started to �ow into the bottomlayer. Finally, there

is a stabilization of gas present in the fracture. For small times in the beginning

of the simulation the bottomlayer has more gas present than the toplayer. The

reason for this is the fact that we are injecting gas directly from the top of the

model and gas preferentially enters in the bottomlayer �rst. Then for about

45 days of the simulation it is true that more gas is present in the toplayer,

however for later times of the simulation more gas is present in the bottomlayer.

From this observation I can make the assumption that for early times the oil

displacement seems to be better in the toplayer. Probably, this is due to the gas

entering more uniformly, whereas in the bottomlayer the gas enters in a bubble-

or mushroom-like form. However, on the long term the displacement e�ciency

is better for the bottomlayer, which seems to be natural due to the higher layer

permeability.

A note on symmetry: If we cut the model vertically along the fracture, the

left and right sides should be mirror-symmetric. Due to di�erent meshes on left

and right sides this symmetry does not appear in the pictures.
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Figure 48: In�ow and out�ow over time for continuous fracture model

The �gure above presents the total �uid in�ow and out�ow of the model.

This can be thought of as injection and production rates. The in�ow stays

constant, which is not surprising because we �xed the injection rate on the top.

The out�ow which is mainly oil is increasing over time. The numerical value of

the in�ow is di�erent to the nodal �uid volume source because the nodal �uid

volume source is only the gas �uid volume injected for each node and normalized

per 1 meter, while the in�ow itself gives the total �uid amount injected at the

top. Another observation that can be made is that the volume of �uid injected

is larger than the volume of �uid produced. This happens because we have

a slightly compressible model with gas being more compressible than oil. For

incompressible �uids injection and production rates would be equal.
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Figure 49: E�ect of bottomlayer permeability (100 md,200 md,500 md) on gas
saturation after 13.89 hrs

The �gure above shows the vertical gas saturation pro�les for di�erent bot-

tomlayer permeabilities after about 13.89 hours. The toplayer properties have

not been changed. The pro�le is drawn in ParaView software between points

(2,0,0) and (2,-15.24,0). The di�erent lines represent bottomlayer permeabili-

ties of 100md, 200md and 500md. We can see that the higher the bottomlayer

permeability the better and more e�cient is the gas-oil gravity drainage process

(i.e. more oil can be recovered).

The bottomlayer permeability also has an e�ect on the threshold height that

needs to be build up before gas can enter the bottomlayer. Usually the higher

the permeability the lower is the gas threshold height and the more easy can the

gas enter the formation. This behaviour is shown in the �gure below. It shows

the gas saturation pro�le within the fracture in the bottomlayer. For the blue

line (permeability of 500 md) the threshold height is about 8.2 meters, while it

is higher at about 8.4 meters for the black line (100 md) and for the red line

(200 md). The di�erence in threshold height between the 100 md and the 200

md case can barely be seen with the naked eye but also con�rms that higher

permeability decreases the threshold height. This observation has been made

already in earlier research.40

I also changed the nodal �uid volume source from 2.1505* 10-5 to 2.1505

*10-11 m³/ms to see whether it in anyway a�ected the saturation pro�le. I was

surprised to see that obviously the nodal �uid volume source does not a�ect the
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Figure 50: E�ect of bottomlayer permeability (100md, 200md, 500md) on
threshold height

outcome in any way.

From previous research40 on gas-oil gravity drainage it is known that the

density contrast between oil and gas plays an important role in determining

drainage e�ciencies. I tried to con�rm this observation by performing simula-

tions with changes in the oil densities. The gas density was left unchanged at

100 kg/m³, while the oil density was set to 800 kg/m³, 900 kg/m³, 1000 kg/m³

and 1100 kg/m³. The �gure belov shows the gas saturation on the vertical line

from (2,15.24,0) to (2,-15.24,0) at the end of the simulation run for about 92

days. We can see that the higher the density contrast between wetting and non-

wetting phase the higher is the gas saturation and therefore the better is the

drainage performance. A denser oil has a larger weight and therefore is more

easily drainage out of the model. If we observe the �gure below we can see that

the density contrast plays a negligible role exactly on the top of the model and

on the interface between toplayer and bottomlayer.

Another simulation was performed to observe the e�ect of the oil viscosity

on the gravity drainage. The oil viscosity was changed from 1.2*10-3 to 10-3and

10-4Pas. It was found that an increased oil viscosity has a negative e�ect on

the drainage e�ciency. The less viscous the oil the higher recoveries can be

expected. Especially within the toplayer the e�ect of increased oil viscosities

can be observed and is signi�cant. The lower the oil viscosity the faster is
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the toplayer drained. For the bottomlayer, however, the gas enters to form a

mushroom-like pro�le which is quickly changed to a cone or pyramid-like gas

pro�le. My suggestion is that the high permeable layer combined with a low

viscous oil leads to this phenomenon. Apparently, a lower viscosity oil is better

drained from a reservoir that has lower permeability. The �gure below shows the

gas saturation pro�le across the vertical line from (2,15.24,0) to (2,-15.24,0). It

con�rms the observation made above. On the next page also the gas saturation

histograms are presented for oil viscosity values mentioned above. We can also

clearly see that the lower viscous oil shifts the gas saturation histogram values

to the right (advantageous conditions).

Figure 51: E�ect of oil density on gas saturation

Figure 52: E�ect of oil viscosity on gas saturation

To sum up, those performed simulations have con�rmed the validity and

correctness of the 2D reservoir simulator executable program for the gas-oil

gravity drainage example.
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Figure 53: Gas saturation histogram for di�erent oil viscosities

Discontinuous Fracture

As we have already seen the 2D reservoir simulator already gives satisfying

results for the continuous fracture model. However, in the next step I wanted to

perform exactly the same simulations with the same initial and boundary con-

ditions on a model that has a fracture that is not running continuously through

the toplayer and the bottomlayer. In this model, which I call discontinuous

fracture model, the fracture is running vertically through the toplayer and the

bottomlayer. It, however, ends and starts 2 meters before the TOP and the

BOTTOM boundaries. Therefore the fracture has a lenght of 26.48 m and a

width of 1 cm. The initial default simulation properties are presented in Table

1. A conceptual picture of the model is presented below (dimensions not to

scale).

Figure 54: Conceptual picture of discontinuous fracture model
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If we plot the gas saturation for di�erent time steps we get the following

plots.
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Figure 55: Gas saturation of discontinuous fracture model after 2.5 days

Figure 56: Gas saturation of discontinuous fracture model after 13.9 days
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Figure 57: Gas saturation of discontinuous fracture model after 27.8 days

Those gas saturation plots clearly indicate that �rst the gas enters in the

toplayer and has no access to the fracture. Even after about 13.9 days of in-

jection the gas has not yet reached the fracture. Gas reaches the fracture after

approximately 20 days and quickly is transported towards the bottomlayer. Due

to the high permeability the gas enters the bottomlayer region. One interesting

observation, however, is that the created saturation pro�le within the bottom-

layer changes during the simulation. In the beginning it has an upside-down

pyramid shape, which then changes to conical and �nally pyramid shape.

Figure 58: In�ow and out�ow over time for discontinuous fracture model
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Appendix C

The Dual-Continuum Model

The principles of the dual-continuum model were formulated by Barenblatt

et al.[1960], who recognized that in�ltration theory at that time could not ad-

equately describe �ow in porous media, that was fractured to some degree. By

simplifying the problem and making certain assumptions he was able to derive

an equation for the �uid pressure within the fractures. Therefore the equations

for a porous media with double-porosity are derived.The di�erence between the

dual-continuum model and previous models is the introduction of two pressures

(i.e. for fracture and for matrix) for each point in space. Continuum models by

de�nition assume the existence of a representative elementary volume (REV),

the smallest volume over which a certain parameter will become a representa-

tive value for the whole model. Therefore the REV concept ensures that mean

properties (i.e. permeability, porosity etc.) can be used.

Several important characteristics of naturally fractured reservoirs can be

captured with the use of a dual-continuum model:43

� Higher permeability as obtained from core measurements.

� Early breakthrough of injection �uids

� Flow predominantly comes from a small portion of the open interval

� Flow experiences a high directionality

� Produced rates are not directly proportional to drawdown

The dual-continuum model can be basically divided into two models: the dual-

porosity and the dual-permeability model. Both models have di�erent under-

lying assumptions and work di�erently well for certain examples. Whether a

dual-porosity or a dual-permeability formulation is prefered for a particular

reservoir should be decided individually.

The dual-porosity (also known as the sugar cube) model assumes that the

fractures are interconnected and form a continuum. The sugar cubes are thought

to represent the matrix blocks. These matrix blocks are not connected to each
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other. Therefore, viscous �ow can only occur through the fractures and between

fractures and matrix but not between matrix blocks themselves. The �uid

volume transfer between matrix and fracture is evaluated with the use of transfer

functions, which take into account so-called shape factors among others. Its

name is derived from the fact that the governing equations have two porosities

(i.e. matrix, fracture).

The other model is known as the dual-permeability model. In this case,

however, communication between the matrix blocks is allowed. Therefore �ow

in the dual-permeability model occurs in the fractures, in the matrix blocks

themselves and between matrix and fracture. The dual-porosity model can be

viewed as a more specialized dual-permeability model, where the �ow between

matrix blocks equals zero. To sum up, the dual-permeability model is more

complicated than the dual-porosity model and therefore used more sheldom in

publications and research. Its name is derived from the fact that the governing

equations here are mainly based on the two permeabilities (i.e. matrix, fracture).

In general, studies and research have shown that for the horizontal cross-section

a dual-porosity formulation is applicable, while a dual-permeability formulation

is prefered for the vertical cross-section.

The derivation of the dual continuum model is pretty straightforward. By

principle the steps presented above in this previous sections of this chapter are

followed. The starting point is the continuity equation, which is individually

manipulated for the fracture and the matrix regions independently. Those indi-

vidual portions (i.e. for matrix and fracture systems) can be combined by the

introduction of a shape factor. This shape factor's main aim was to model the

�uid (and later heat) �ow from the matrix to the fracture and vice versea. War-

ren and Root [1963] formulated the single-phase equations and applied them

to pressure transient testing to gain some insights into characteristic behaviour

of (dual-porosity) naturally fractured reservoirs. Kazemi et al. [1976] extended

those di�erential equations to immiscible black-oil �uids (i.e. oil and water) and

two-phase �ow. The extra equations needed for multi-phase conditions are that

the sum of all saturations is one and the coupling of wetting and non-wetting

phase pressure through the de�nition of capillary pressure.

The dual-porosity formulation for three-phase �ow (oil, water and gas) is

presented below. The nomenclature is taken from Kazemi notes.42

∇ (kφλw)f (∇pof − γw∇D −∇pcwof )− τw + q̂wf = (5.13)
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φf

[
Swf (cφ + cw)f

∂pof
∂t

+
∂Swf
∂t

]

∇ (kφλo)f (∇pof − γo∇D)− τo + q̂of = (5.14)

φf

[
Sof (cφ + co)f

∂pof
∂t

+
∂Sof
∂t

]

∇ (kφλg)f (∇pof − γg∇D +∇pcogf )− τg + q̂gf = (5.15)

φf

[
Sgf (cφ + cg)f

∂pgf
∂t

+
∂Sgf
∂t

]
The equations above are the continuity equations for the fracture continuum.

The transfer functions for the three phases are presented below

τw = σkmλwf/m (Φwf − Φwm) ≡ φm
[
Swm (cφ + cw)m

∂pwm
∂t

+
∂Swm
∂t

]
(5.16)

τo = σkmλof/m (Φof − Φom) ≡ φm
[
Som (cφ + co)m

∂pom
∂t

+
∂Som
∂t

]
(5.17)

τg = σkmλgf/m (Φgf − Φgm) ≡ φm
[
Sgm (cφ + cg)m

∂pgm
∂t

+
∂Sgm
∂t

]
(5.18)

where σ is the shape factor, τ is the transfer function, Φ is the potential, c is

the compressibility, γ is the speci�c gravity and λαf/m is the upstream-weighted

mobility of phase α (i.e. the upstream-weighting needs to be performed on the

matrix and fracture of the same node).

The dual-permeability formulation for multiphase �ow could not be found

in a satisfying and complete way in any research or publication. Therefore, I ex-

panded the single-phase dual-permeability formulation as presented in Gilman

[2003]43 with the help of above's formulation from Kazemi42 to obtain the fol-

lowing
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∇ (kφλα)f (∇Φα)f − τα + q̂αf = φf

[
Sαf (cφ + cα)f

∂pαf
∂t

+
∂Sαf
∂t

]
(5.19)

∇ (kφλα)m (∇Φα)m+ τα+ q̂αm = φm

[
Sαm (cφ + cα)m

∂pαm
∂t

+
∂Sαm
∂t

]
(5.20)

where all the occurring variables habe been explained above. The variable

α can be either denoting oil, gas or water phase. The two equations are the

continuity equations for the matrix and the fracture domains. Notice that both

equations are coupled with a transfer term τ , which has opposite signs in both

equations. This of course is important as to make sure that the formulation is

consistent. The transfer function's form is explained above.

Limitations of the Dual Continuum Model

As the dual continuum models aims at being a model simpli�cation of reality,

there are several unresolved questions and limitations, when dealing with it.

Can the fractures be treated as a continuum?

In its general development Barenblatt assumed that the fracture system is

su�ciently well developed. He also assumed that every �ow block has a large

number of fractures, which are all well inter-connected and therefore establishing

a high-capacity �ow conduit.

However, there are reservoirs where the fracture system is poorly inter-

connected and are not continuous through the reservoir. For example, Cooke et

al.[2006] have developed a sedimentary stratigraphy from core data and outcrop

studies of carbonates in Texas and Wisconsin. She has observed that very often

due to structural and mechanical reasons fractures tend to terminate at layer

boundaries. Studies of fracture growth processes over time have also indicated

that fractures not always form inter-connected continua.

Moreover, one also has to be critical of the assumption that the system

of fractures is su�ciently well developed. Numerical studies and �eld studies

indicate otherwise; fracture systems seldomly are well developed, many of them

are in fact underdeveloped.
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To sum up, users should be critical of treating the fractures as a continuum.

Decisions need to be made on a case-to-case basis.

Shape factor

The concept of the shape factor was also introduced by Barenblatt, but has

since experienced several changes or proposals for modi�ed forms. In its original

form it is a time-independent variable, that takes into account the geometry of

matrix blocks to model the �uid or heat transfer between the matrix and the

fracture blocks. The original formula for the shape factor is the ratio of a

constant C and fracture spacing L to the square.

σ =
C

L²

In research literature (e.g., Warren and Root [1963], Kazemi et. al [1976],

Coats [1989], Lim and Aziz [1995]) many di�erent shape factors have been pro-

posed and there is a lot of discussion about the physical meaning and the func-

tional form of the shape factor among scolars. Table 11 presents some of the

formulas proposed for the constant in the literature.

Set of fractures Warren and Root Kazemi and Gilman Coats Lim and Aziz

1 12 4 8 p²

2 32 8 16 2p²

3 60 12 24 3p²

Table 11: Di�erent shape factor constants in literature

In the above mentioned form the fracture spacing is constant. However, in

really the fracture spacing (i.e. or equivalently matrix block dimensions) may

well be di�erent in x-y-z directions. Therefore the above formula could also

have a more complicated shape. Also it must be kept in mind that the above

presented formula for the shape factor is valid just for a isotric permeability

case; otherwise the shape factor formula should also take into account the per-

meability in x-,y-, and z-directions.

Others (e.g., van Heel et al. [2008], Rangel-German and Kovscek [2005])

have tried to de�ne it as a function of time, because the shape factor works for

a steady-state condition and signi�cantly underpredicts early-time production

from matrix blocks. Some researchers have even proposed that the shape factor

should be a function of saturation, of mobility ratios and of the fracture-matrix

oil interface area. Nowadays it is generally agreed upon that the shape factor
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in its original form does not su�ciently take into account underlying recovery

physics.

A problem in the practical application is the estimation of the numerical

value of the shape factor. The question of how a discrete fractured model

can be �translated� into a dual continuum model also poses certain intricacies.

Although Warren and Root [1963] have derived a means of applying pressure

transient tests to fractured reservoirs, the practical execution is di�cult because

many naturally fractured reservoirs do not exhibit their idealized behaviour. Of-

ten the shape factor is considered a history matching parameter. This approach

is appropriate, however, users should be aware that the shape factor then just

degrades to a fudge factor and loses its physical signi�cance.

Characteristic lenghts in fractured media?

The dual continuum model by de�nition assumes that properties like per-

meabilities, porosities or apertures among others have a characteristic lenght

or representative elementary volume (REV). This means that those properties

should follow Gaussian or log-normal distributions, which both have clearly de-

�ned mode, mean and other statistical parameters. This assumption is necessary

to formulate the mathematical principles for the respective continua.

Unfortunately, recent studies (e.g., Bonnet et. al [2001], Gale [2002]) have

shown that fractured reservoirs are best described by power laws and fractal

geometries. Even though some fracture systems are best characterized by the

above mentioned Gaussian and log-normal distributions, it is recognized that

power law distributions are an excellent way for fracture system characteriza-

tion. Unfortunately, power law distributions are in direct opposition to the

continuum models, because they do not have a characteristic lenght scale (i.e.

no physically sound average parameters can be obtained). For example, fracture

permeability is related mathematically to the square of the fracture aperture;

unfortunately, if the aperture follows a power law distribution then no frac-

ture permeability can be calculated for the entire system. Geophysicists model

fracture growth processes with certain growth laws that give rise to power law

distributions in naturally fractured reservoirs. They believe that while homoge-

neous media have Gaussian and log-normal distribution of properties, the high

degree of heterogeneity in fractured systems highly favours power law distribu-

tions (e.g., Barton and Zoback [1995]).
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To sum up, the lack of a characteristic scale lenght means that a continuum

formulation cannot be applied because the involved parameters do not behave

that regular. Not being able to determine matrix block dimension or even

di�culties in de�ning a �matrix block� makes the determination of a shape

factor complicated. The major setback in dual continuum model simulations

usually is the di�culty in determining the involved parameters.
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