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Kurzfassung

Diese Masterarbeit befasst sich mit der optischen Vermessung und Klassifizierung
von Fischen, welche Voraussetzungen für eine automatisierte Sortierung darstellen.
Zwei Kernpunkte werden in dieser Arbeit untersucht: Der erste Teil beschäftigt
sich mit der geometrischen Vermessung mithilfe des Lichtschnittverfahrens. Mit
dieser Methode sollen Größe und Volumen des Fisches bestimmt werden, wobei
Annahmen bezüglich der Symmetrie des Fisches getroffen werden;

Der zweite Teil befasst sich mit den Charakteristiken von Umrissen zur Identi-
fizierung verschiedener Fischarten. Sowohl Elliptical Fourier Descriptors, Cyclic
Polynomial Descriptors, als auch die Krümmungsradien dieser Konturen werden
untersucht. Es wird gezeigt, dass eine Klassifizierung allein anhand dieser Daten
nicht möglich ist, da die Form und das Aussehen selbst innerhalb einer Fischart
stark variieren kann. Allerdings kann die Methode, die zum registrieren der Krüm-
mungen zweier Fische erstellt wurde, benutzt werden, z.B. um die Konturen von
Walzprofilen mit den dazugehörigen CAD-Daten zu vergleichen.

Alle vorgeschlagenen und untersuchten Methoden wurden in MATLAB � imple-
mentiert und mit an realen Fischen gemessenen Daten getestet.
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Abstract

This thesis deals with the optical measurement and classification of fish, which is
required as a prerequisite to enable automatic sorting. Two main issues are inves-
tigated in this thesis: Part I deals with the geometric measurement based on light
sectioning. With this method the size and volume of the fish should be determined,
whereby assumptions are made with respect to the symmetry of the fish;

Part II deals with profile description with the aim of identifying different species
of fish. Elliptical Fourier Descriptors, Cyclic Polynomial Descriptors as well as the
radius of curvature of this contours are analyzed. It is shown, that a classification
based solely on this data is not possible, since even forms and appearances of fish
within one species differ widely. However, the method applied to register two
curvatures can be used e.g. to compare the contours of a rolling profile with its
corresponding CAD-data.

All the proposed and investigated methods have been implemented in MATLAB �

and tested with data measured on real fish.
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Chapter 1

Introduction

Cycle time is a crucial factor in the processing of perishable goods such as fish.
However, a manual classification and measurement (e.g. for cannery processing)
of these products is a very laborious task, thus costly. In addition, perishable goods
are often sold at different prices depending on their size, weight or grade, making a
highly reliable quality-control important. Poor sorting quality can lead to reduced
earnings due to unfulfilled demands of the customer. Machines and also computer
vision are faster than people but can not keep up with the human judgment yet [15].
Nonetheless automatic optical inspection is emerging as a means of classifying fish
and other perishable goods due to the achieved reduction of processing time and
increased productivity.

The aim of this work is to investigate optical arrangements and mathematical meth-
ods for the inspection and classification of foodstuffs — in particular fish. To do so
several tasks were assigned beforehand:

1. Set up test measurement systems, including the optical arrangements;

2. Research possible evaluation strategies and/or algorithms and select plausi-
ble approaches;

3. Implement the selected algorithms in MATLAB � and compare the results;

4. Document the results in a scientific manner.
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Chapter 1 Introduction

The methods proposed in this thesis — although analysed off-line — represent ba-
sic investigations to a real-time image processing for perishable goods and can be
applied in future experimental setups.

First attempts to apply computer vision to the food industry have already been
researched in the 1990s [5]. Cadrin and Friedland [4] have shown the use of mor-
phometric analysis to identify different fish stock of the same species. There have
also been introduced methods to classify fish in situ (i.e. alive) [3, 11]. Strachan
[21] has proposed an algorithm for length measurement with an error of 1% for ori-
ented and an error of 3% for non oriented fish. Performing an analysis of a fish’s
contour in a still image based on moment invariants a succsessrate between 86%
and 100% was achieved for three fish species [24]. Omar and de Silva describe a
way for an automated portion control for canned fish [20, 9]. However, calculating
the weight distribution along the fish by using a water replacement method seems
to be very time-consuming. The use of Light Sectioning in order to classify fish was
introduced in 2001 [7], combined with a neuronal network, that did not process
the shape of the fish, but rather a pseudo image containing the width and maximal
distortion along the length of the fish. Out of 251 fishes from 6 species, 5 were clas-
sified incorrectly. Using canonical discriminant analysis, White et al. [1] achieved
a sorting reliability for seven species of fish up to 99.8%. They used 10 shape vari-
ables (equidistant width measurements) and 114 color variables, obtained from the
RGB mean values of 38 grid sections.

However, no literature was found, that tries to use the three-dimensional shape
of an object — which can be obtained via light sectioning — for classification or
dimension measurement. Likewise no one used the contour of the fish itself.

1.1 Content

This thesis is divided into two parts: The first section deals with the artificial vi-
sion based method of light sectioning for the dimension measurement of fish. The
method is described in detail as well as what is needed to get the corresponding
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Chapter 1 Introduction

real-world values. Also, the mathematical methods that found use in this part
are explained (e.g. Moments, Curvature) . After the analysis of the different ap-
proaches to complete the fish’s geometry — based on the three-dimensional surface
retrieved from the light sectioning — the final results are presented. Furthermore,
it is shown, where there is potential for further improvements;

The second part’s aim is to demonstrate an approach to identify fish using image
processing and local polynomial spectra. It is shown how to binarize a greyscale
image as well as how to use spectra for preprocessing data (e.g. smoothing) and
their mathematical background. After presenting the used approach, it is shown,
that using the contour exclusively to discriminate between fish species failed given
that the characteristics of attributes can vary even within a species. An alternative
field of application for the proposed method is given.

3



Part I

Measurement of Fish Dimensions

using the

Light Sectioning Method
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Chapter 2

Problem Statement

Three-dimensional data is of vital importance in order to gain information about the
surface and the volume of a fish. Light sectioning is a technique to obtain such data
via computer vision in an optical way. A digital camera records two dimensional
pictures of the object being measured. An image is a two-dimensional mapping of
three-dimensional objects. Hence, it is necessary to reconstruct the missing dimen-
sion. A laser plane, that “cuts” the object delivers a distorted height information. If
the position and the angle of the camera are known, this height information in the
distorted image can be mapped onto a fixed plane representing a slice of the object.
When moving the object or the laser, several images — thus several slices — add up
to a three-dimensional representation of the object again. Another problem arises
from the different units of the real world and image coordinates. In images, lengths
are defined in terms of pixel, whereas the real world dimensions use metric (m)
or imperial (inch) units. Hence a calibration target, whose dimensions are known
a-priori, as well as a procedure to calibrate the system are necessary.

2.1 Principle of the light sectioning method

The light sectioning method is a technique often used for optical measurement of
objects. A light plane, usually generated by a laser with a cylindrical lens, is pro-
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Chapter 2 Problem Statement

jected onto the object. A camera views the object and the laser light scattered from
the surface from a different direction. If the arrangement of the laser and the camera
is known, the position of every point of the intersection can be assigned explicitly
to a position in a real-world coordinate frame. A three-dimensional model of the
object can be created sequentially when the object is moved, e.g. in a straight line
crossing the light plane . As shown in Figure 2.1 only the top portion of the object
can be measured. If the object is symmetric, the whole profile can be calculated
using appropriate mathematical models. Otherwise additional lasers and cameras
have to be added to cover the whole cross-section. In order to eliminate the in-
fluence of the ambient light, an optical narrow-band interference filter, which lets
the wavelength emitted by the laser pass, is placed in front of the camera. In this
manner, the laser is the main light source which impinges upon the camera sensor.

Figure 2.1: Principle of light sectioning [13].

For each section, the profile has to be extracted from the image using a line detection
algorithm. Lining up the single two-dimensional profiles sequentially yields three-
dimensional data representing the whole object.

6



Chapter 2 Problem Statement

2.2 Calibration methods for light sectioning

To extract the height information of an object from an intensity image there are two
different methods: An algebraic approach uses the trigonometric relations between
the light source, the object and the camera; the geometry can be seen in Figure 2.2.
According to [10] the range r can be calculated as

r =
B ( f tan(α)− s) cos(α)

f
cos(α)

− ( f tan(α) − s) sin(α)
= B

f tan(α) − s
f + s tan(α)

, (2.1)

Figure 2.2: Geometric setup for light sectioning.

where f represents the focal length (i.e. normal distance between the optical center
and the sensor plane) of the camera, B gives the distance between laser and op-
tical center and s is the light impact’s position on the sensor. Further, the world
coordinate width x can be linked to the sensor coordinate t via the equation

x =
−t a

f
, (2.2)

7
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Figure 2.3: Geometry to calculate the width.

using the trigonometric relation shown in Figure 2.3, which can also be expressed
with the system’s setup paramaters as

x =
−t B

f cos(α) + s sin(α)
. (2.3)

Note, that the above equations are only valid when the optical axis of the camera is
normal to the the sensor plane.

However, in order to use this calibration method the exact setup parameters — es-
pecially the focal length of the camera — have to be known. Another approach,
described in [6], is based on projective geometry. One single camera image that
shows a simple calibration target with known geometry is needed as input, infor-
mation about the camera’s parameters (such as focal length or resolution) are not
necessary. The calibration object needs at least two different planes to obtain the
laser plane, as well as four or more calibration marks on each of them so they can
be identified (a feasible realization can be seen in Figure 2.4). The homogeneous
transformations of these planes are fully determined, if at least 4 corresponding
points of each plane are known in the real world and the camera image. The plane
of light can be determined, given an image with the intersection between the laser
and a calibration target with at least two known planes. Thus, the homogeneous
transformation relating the plane of the camera image and the real plane of light
can be defined explicitly.
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Chapter 2 Problem Statement

(a) Calibration target. (b) Image of the calibration process.

Figure 2.4: Calibration target for light sectioning. At least two planes with at least four
calibration points each suffice to determine the position of the plane of light.

A projection H of a homogeneous point p0 on a plane to a point pr on another plane
can be defined as,

pr = H p0 , (2.4)

where pr and p0 are in homogeneous coordinates,

pr =

⎡
⎢⎣

xr

yr

wr

⎤
⎥⎦ and p0 =

⎡
⎢⎣

x0

y0

1

⎤
⎥⎦ . (2.5)

The homogeneous transformation called the homography is defined as

H �

⎡
⎢⎣

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎥⎦ . (2.6)

The matrix H has nine degrees of freedom. However, given that ‖h‖2 = 1, one of
the nine parameters h11 to h33 can be calculated by the other parameters. Thus,
four corresponding points in both planes are sufficient to calculate the other eight

9



Chapter 2 Problem Statement

entries. Splitting these points into their affine x- and y-components xa
r and ya

r by
dividing the projected points pr by wr gives

xa
r = xr

wr
= h11 x0+h12 y0+h13

h31 x0+h32 y0+h33
,

ya
r = yr

wr
= h21 x0+h22 y0+h23

h31 x0+h32 y0+h33
.

(2.7)

This can be rewritten as,

−h11x0 − h12y0 − h13 + h210 + h220 + h230 + xa
r (h11x0 + h12y0 + h13) = 0,

h110 + h120 + h130 − h21x0 − h22y0 − h23 + xa
r (h11x0 + h12y0 + h13) = 0 .

(2.8)

Combining these equations for several points into a matrix we get

⎡
⎢⎢⎢⎣

−x0(1) −y0(1) −1 0 0 0 xa
r (1)x0(1) xa

r (1)y0(1) xa
r (1)

0 0 0 −x0(1) −y0(1) −1 ya
r (1)x0(1) ya

r (1)y0(1) ya
r (1)

...
...

...
...

...
...

...
...

...
−x0(n) −y0(n) −1 0 0 0 xa

r (n)x0(n) xa
r (n)y0(n) xa

r (n)

0 0 0 −x0(n) −y0(n) −1 ya
r (n)x0(n) ya

r (n)y0(n) ya
r (n)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11

h12

h13

h21

h22

h23

h31

h32

h33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 , (2.9)

or in short:
G h = 0 . (2.10)

If the number of points n is smaller than four the equation is under-determined and
has no unique solution. For n ≥ 4 the Equation 2.9 is an (over-)determined linear
equation system which can be solved with respect to h by applying singular value
decomposition (SVD). Recombining the single values of h gives the homography
matrix H. A faster algorithm than the appliance of SVD alone is presented in [8].

With this, the homogeneous transformation Hrw−l between the real world coordi-
nate frame and the laser coordinate frame and the homogeneous projection matrix
Hl−c between the laser plane and the image can be calculated. During measure-
ment the found image points can be mapped onto the laser plane using Hl−c and
then transformed into the real world coordinate frame via Hrw−l.

10



Chapter 2 Problem Statement

2.3 Limitations of the light sectioning method

A limiting factor when using light sectioning is the problem of occlusion. This
may happen for two reasons. Either the laser light does not create a contour in
an area that can be viewed by the camera. This so called laser occlusion occurs
due to the object’s structure blocking the laser plane from reaching other parts of
the object. Or the camera can not display the whole intersecting line because the
object is blocking the view onto parts of the line [10]. In order to circumvent these
occlusions multiple camera and/or laser systems are needed to cover the whole
object. However, more systems increase the complexity because of the need for
individual coordinate systems and their registration to one real world system.

Another restriction is the possible sample rate a system can achieve. Not only is it
necessary to discretize the continuous surface of the object, but also to buffer the
usually large amount of data acquired with every image. A possible technique to
increase the sampling rate is to reduce the sensor resolution, which leads to a loss
of information, though. Another way is to implement a field programmable gate
array (FPGA) inside the used camera, which transforms the image data into range
data that is transferred to a programmable logic controller (PLC). Sampling rates
up to 20000 frames per second are possible; however, this implementation is linked
to higher costs [13].

11



Chapter 3

Mathematical Methods

The mathematical principles described here are the foundation for all further ap-
proaches in the following chapters. If not stated differently, the citations hold en-
tirely for the individual subchapters.

3.1 Calculating moments

The nth moment about a point a is defined as [23],

μn(a) =
〈
(x − a)n〉

= ∑(x − a)n P(x) , (3.1)

of a known discrete distribution P(x). If the underlying distribution is not known,
the first order raw moment (i.e. n = 1 and a = 0) may be computed as the sample
mean:

x̄ =
n

∑
i=1

xi
1
n

=
1
n

n

∑
i=1

xi , (3.2)

for a set of {xi} of n values. This moment is also called the arithmetic mean, denoted
μ = x̄ = 〈x〉. Since the sum over a discrete distribution equals one, P(x) can be

12



Chapter 3 Mathematical Methods

replaced by a weighting factor if the equation is divided by the sum of all weights
in order to normalize the weight:

x̄ =

n
∑

i=1
xi wi

n
∑

i=1
wi

. (3.3)

Given a two dimensional set of samples {(xi, yi)} the weighted arithmetic means
in this two directions are described as:

x̄ =

m
∑

i=1

n
∑

j=1
xi,j wi,j

m
∑

i=1

n
∑

j=1
wi,j

and ȳ =

m
∑

i=1

n
∑

j=1
yi,j wi,j

m
∑

i=1

n
∑

j=1
wi,j

. (3.4)

The variance σ2 for a discrete distribution is the second order central moment (i.e.
moment about the mean) and is defined as,

σ2 =
n

∑
i=1

(xi − μ)n P(xi) . (3.5)

It is a measure of how far a set of {xi} diverges from their expectation value 〈x〉.
The positive square root of σ2 is called standard deviation. If the distribution is
unknown, a sample variance can be computed as,

s2 =
1
n

n

∑
i=1

(xi − x̄)2 . (3.6)

Similar to Equation 3.3, a weighted variance can be calculated:

s2 =

n
∑

i=1
wi (xi − x̄)2

n
∑

i=1
wi

. (3.7)
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Chapter 3 Mathematical Methods

3.2 Thresholding

The basic process to segment a given data set (e.g. an image) into two groups is
called binarization and can be described as,

Ibin(i, j) =

{
1 if I(i, j) > T

0 otherwise,
(3.8)

where a threshold T divides the data in two and assigns the values 0 and 1 respec-
tively. Dealing with a bimodal data-set (i.e. its histogram shows two clear and
distinct peaks) several methods to identify the threshold can be used.

One way to model a bimodal distribution is by representing it as the sum of two
Gaussian distributions [2],

y = Ipe−
(x−μ)2

2 σ2 , (3.9)

where Ip is the peak value, μ is the mean and σ is the standard deviation. The point
of intersection between these two functions can be found by solving

Ip1e
−

(x−μ1)2

2 σ2
1 = Ip2e

−
(x−μ2)2

2 σ2
2 , (3.10)

for x. Applying the natural logarithm, expanding and collecting for x yields,

(
1

2σ2
2
−

1
2σ2

1

)
x2 +

(
μ1

σ2
1
−

μ2

σ2
2

)
x +

μ2
2

2σ2
2
−

μ2
1

2σ2
1

+ ln
(

Ip1

Ip2

)
= 0 . (3.11)

Only one solution of this simple quadratic equation lies between the peaks of the
two Gaussian functions. The x-value of this solution is used as threshold.
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3.3 Spectral filtering with local polynomial moments

The spectrum s of the data y is determined by computing the discrete equivalent of
an integral transform [19]:

s = B
+
a y , (3.12)

where B+
a is the Moore-Penrose pseudo inverse,

B
+
a �

(
B

T
B

)−1
B

T . (3.13)

Discrete basis functions, which can be calculated as above are Fourier, cosine, Gábor
and Wavelets, as well as polynomial moments. A signal can be synthesised by the
synthesis function Bs as,

ŷ = Bs s . (3.14)

Generally Bs and Ba are fundamentally the same type of basis functions, evaluated
at different nodes or of different degrees. The reconstruction of a signal is computed
by combining Equation 3.12 and 3.14:

ŷ = Bs B
+
a y , (3.15)

where the reconstruction error r is defined as,

r = y − ŷ = y − Bs B
+
a y =

(
I + Bs B

+
a

)
y . (3.16)

Thus, perfect reconstruction only occurs if the projection onto the orthogonal com-
plement I + BsB

+
a = 0, which can be achieved by using a unitary and complete

basis (i.e. BTB = BBT = I) for analysis and reconstruction. This yields Ba = Bs = B.
The complex conjugate transpose of any complete unitary basis is its inverse, giv-
ing B+

a = BT. Methods to orthogonalize matrices as well as a synthesis algorithm
for a unitary discrete polynomial basis B are shown in [19].
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In order to model spectral filtering [17], a filter F is applied to the transform

sF = F B
T y , (3.17)

and the filtered signal yF is synthesised:

yF = B sF = B F B
T y . (3.18)

We can define F � G GT if the filter function is factorable. With D � B G we get:

yF = B G B
T

G
T y = D D

T y , (3.19)

where P = D DT has the dimension n × n for a set of n points and is an orthogonal
projection onto the filtering basis function. Thus, every filtered point yF is a linear
combination of all input values.

When computing polynomial Savitzky-Goolay smoothing on a set of n data points,
a support length ls (i.e. the number of data points being used to smooth one single
point) and a degree d is needed. In the case where ls = n global smoothing is
performed. To get the projection matrix PC for all points, a unitary basis B for ls
and d has to be computed, which gives the local projection matrix by P = B BT (this
is an ls × ls matrix). The center row of P represents the projection at the center of
the support px=0(i.e. there are more than (ls − 1) /2 data points left and right of the
evaluated point). The rows below and above px=0 represent the projection at the
end and start of the data respectively. Thus, the top and bottom of P are placed at
the start and end of PC to generate the complete projection matrix. The center part
of the matrix is filled diagonally with px=0.

To get an approximation for the local derivatives of discrete data a similar method
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to create a derivative matrix D is used. With the support length ls (i.e. the number
of data points being used to calculate the derivative) and the degree d a matrix N,

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−md −md−1 . . . −m1 1
−(m − 1)d −(m − 1)d−1 . . . −(m − 1)1 1

...
... . . . ...

0 0 0 0 1
...

... . . . ...
(m − 1)d (m − 1)d−1 . . . (m − 1)1 1

md md−1 . . . m1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.20)

is created, where m = (ls − 1)/2. The Moore-Penrose pseudo inverse M of N is
weighted according to the derivatives (i.e. md is multiplied by d and so on) and the
last row is eliminated. The derivative matrix D for n data points has the dimension
n × n and consist of three parts: the center part, which is filled diagonally with the
last row of M; the top part, where the approximation is asymmetric to the right; the
bottom part, where the approximation is asymmetric to the left. The bottom part
Db is computed by multiplying Db = X M, where

X =

⎡
⎢⎢⎣

1d 1d−1 . . . 12 1
...

... . . . ...
...

md md−1 . . . m1 1

⎤
⎥⎥⎦ . (3.21)

The top part Dt is the same as Db flipped horizontally and vertically.

3.4 Osculating circles

The osculating circle of a plane curve C(x, y) at a given point pi = [xi, yi] is the circle
passing through pi with the same tangent as well as the same curvature as C at the
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point pi [2]. Figure 3.1 illustrates an example. Given a plane curve in Cartesian
coordinates parametrically as C(t) = [(x(t), y(t)], the curvature κ is

κ =
x′ y′′ − y′ x′′

(x′2 + y′2)3/2 , (3.22)

where derivatives are taken with respect to t:

x′ =
dx
dt

, y′ =
dy
dt

, x′′ =
d2x
dt

and y′′ =
d2y
dt

. (3.23)

The radius r(t) of the osculating circle in p(t) = [(x(t), y(t)] — and thus the radius
of the curve — is simply the radius of curvature:

r(t) =
1

|κ(t)|
. (3.24)

The center (ξ, η) of the circle is given by,

ξ = x −
(x′2+y′2)y′

x′ y′′−y′ x′′ ,

η = y +
(x′2+y′2)x′

x′ y′′−y′ x′′ .

(3.25)
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Figure 3.1: Osculating circle: Curve and circle have the same tangent as well as curva-
ture in point P.
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Chapter 4

Tested Approaches

In order to implement and test different approaches, the task was split into smaller
parts. First, an algorithm to compute the fish’s upper surface was implemented. For
every frame of a video, showing a fish moving across a laser plane, the following
steps were performed:

1. Extract the laser line1 from the image;

2. Convert the laser line from the image coordinates to the real world coordi-
nates and save the x- and y-values as vectors, x and y;

3. Separate y into two parts: y f , where the laser is reflected by the fish, and yb,
where the laser is reflected by the background;

4. Patch holes in x and y f to create a continuous surface for the fish.

5. Create a matrix X and concatenate x, y f and yb of this frame with the ones
from the previous frames in separate matrices Y, Z f and Zb, respectively;

The four matrices X, Y, Z f and Zb are the data, that were used to develop and test
different approaches to complete the fish’s surfaces (i.e. calculate the bottom sur-
face, that can not be seen by the camera): simple mirroring of the upper surface;

1In this work, the term “laser line” always refers to the light reflected from an object, when it
crosses a laser plane. The appearance of this reflection is not necessarily linear nor continuous
but can be of any shape.
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approximation of the cross section via ellipses or egg curves; mirroring with an ad-
ditional extrapolation using the Taylor series; mirroring with an additional extrap-
olation using osculating circles. The different steps are described in the subsequent
sections. The four matrices and the matrix Z∗

f (i.e. the matrix describing the bottom
surface of the fish) were used to calculate the dimensions of the fish.

4.1 Extraction of the laser light

The input data is a video file that is separated in a set of single RGB-images (see
Figure 4.1 for a sample image). To extract the desired information (i.e. the reflected
laser light’s position in the image) the intensity values of the single pixels must be
evaluated, given that a pixel with an high value represents reflected laser light with
a high intensity. Since the laser emits only red light the red component of the image
was taken for further processing.

As a first test the pixel with the maximum intensity value of every column was
taken as part of the laser line. As shown in Figure 4.2(a) this produced a rather
scattered laser line due to the noise perturbed image. Thus, the image is smoothed
with an averaging kernel A with the dimensions m × n,

A =
1

m n

⎡
⎢⎢⎣

1 . . . 1
... . . . ...
1 . . . 1

⎤
⎥⎥⎦ , (4.1)

where the sum of the intensities of every pixel and its neighbours is divided by the
number of pixels used. The position of the laser line in the image is more stable
after convolution with the smoothing kernel. However, the accuracy is still bond to
a pixel-level (i.e. integer values), creating steps, when the highest intensity of one
column is located in a different row than the previous one. In addition, one single
value gives no information about the structure of the laser line: whether there are
more pixels with the found intensity value in each column; is the intensity location
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Figure 4.1: Image of a fish under a structured laser plane. The camera captures a high
intensity (i.e. white areas in the image) where the laser intersects with an object. Due
to the reflective character of the fishes surface, the laser light is scattered.

symmetrical or is there an edge; how far spreads the brighter area of the laser line
until the intensity drops to a background level (i.e. the breadth of the laser line).

In order to include these aspects into the calculation of the position of the center of
the line, the first intensity moment according to Equation 3.4 from Chapter 3.1 can
be calculated:

xi =

xmax+m
∑

x=xmax−m

ymax+n
∑

y=ymax−n
x Ip(x, y)

xmax+m
∑

x=xmax−m

ymax+n
∑

y=ymax−n
Ip(x, y)

and yi =

xmax+m
∑

x=xmax−m

m
∑

j=1
y Ip(x, y)

xmax+m
∑

x=xmax−m

ymax+n
∑

y=ymax−n
Ip(x, y)

. (4.2)

In this equation, xi and yi stand for the position of the point pi = [xi, yi] of the
new laser line of the ith column, and xmax and ymax stand for the position of the
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(a) Line detection in the original image.
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(b) Line detection in the smoothed image. A 3× 3
averaging kernel was used.

Figure 4.2: Line detection in a gray level image. The green circles represent a detection
using the intensity values of each column only. the red x’s represent a line detection
using a center of gravity calculation in both x- and y-direction.

maximum intensity of each column. Ip(x, y) represents the intensity at the position
(x, y) with a weighting factor p. The higher p, the stronger pixels with a higher
intensity value are weighted. m and n are the horizontal and vertical distances
in pixel, respectively, that are included in the calculation. That means, around the
position of the maximum intensity an area in x-direction ±m and in y-direction ± n

are used for the evaluation. For this work the values m = 3, n = 10 and p = 3 were
used. The laser line computed in this manner is shown in Figure 4.2(b). Note, that
a shift away from the maximum intensity is possible, if the intensity values around
the maximum are asymmetrical. This method enables non-integer values for the
points of the laser line, thus preventing steps due to the inaccuracy of the pixel-
level. There also exists the possibility of outliers (i.e. wrong reflections that are
not part of the actual laser line), which it is necessary to detect and remove. Only
long and continuous parts can be regarded as real parts of the laser line. Thus, a
segmentation of the laser line is performed: A new segment starts when the vertical
difference of two neighbouring laser points is higher than a value dv; the segment
is discarded if it is shorter than a value lmin (i.e. only segments longer than lmin are
processed as part of the actual laser line) and all its points x- and y-values are set
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to “NaN”2; Finally, all laser points, whose column’s maximum intensity value is
below a threshold τi, are discarded and set to “NaN” as well (this is done, because
there might exist columns that do not contain a part of the laser line e.g. due to
occlusion). The values used were: dv = 5 [pixel], lmin = 15 [pixel] and τi = 0.3
(where 1.0 represents white and 0.0 represents black). These values depend on the
problem that is dealt with.

The points of the laser line were transformed from the pixel coordinate frame to the
real-world coordinate frame according to the second method described in Chapter
2.2. The real-world x- and y-values of the points of the laser line were saved in two
vectors, x and y, with a length of the image width (i.e. one value for every column
of the image).

4.2 Separation of the laser light

Figure 4.1 shows, that the laser line consists of three segments: The left, as well as
the right segment are laser lines reflected from the background; the middle segment
is the reflection from the fish. The task now is to segment the data so that the
portions corresponding to the fish and the background are available separately.

A histogram of y (i.e. the vertical positions of the points of the laser line) is com-
puted. An example of such an histogram in Figure 4.3 shows: the laser line is clearly
bimodal with respect to the histogram of its y-values, y. The left part represents the
points reflected by the fish’s surface, while the peak on the right corresponds to
the line on the background. The method proposed in Chapter 3.2 could be used to
find a threshold to separate this two parts. However, this determination method
underlies the assumption, that the two parts can be modeled by Gaussian distri-
butions, which is not the case here. While this might work for histograms with a
large gap between the two parts (i.e. where the fish’s surface is far away from the

2The notation “NaN” is borrowed from MATLAB � and represents “not a number”. It stands for
missing points, whose values are undefined. In this thesis, this notation will be used to denote
missing points.
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Figure 4.3: Histogram of the values of y. In this highly asymmetric bimodal histogram,
the left part represents the laser line reflected from the fish and the right part repre-
sents the background.

background), there arise problems, when the gap closes. This can be seen in Fig-
ure 4.4. It is visible that the highly asymmetric histogram is poorly modeled with
Gaussian distributions. Thus, the determined threshold (represented by the dash-
dotted line in Figure 4.4(a)) identifies parts of the laser line on the fish as part of the
background. Hence another method to determine a threshold is needed, that takes
the asymmetry of the histogram into account.

An alternative algorithm which uses normal distances between a line and points
was used: Given the line l in homogeneous coordinates l = [l1, l2, l3], which con-
nects the two dominant peaks in the histogram, and the points h of the histogram,
where hi = [bi, ci, 1]T, the vector of normal distances n is computed as follows,

ni = l hi . (4.3)

bi corresponds to the bins of the histogram and ci is the count of the respective bin.
The central bin value bi for the count ci with the maximum normal distance to the
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(a) Thresholding using two Gaussian distribu-
tion.
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(b) Laser line and threshold.

Figure 4.4: Threshold identification using Gaussian distributions of Frame No. 168 of
N1.avi. (a): The asymmetric behaviour of the histogram causes an incorrect model-
ing through Gaussian distributions, thus the intersection of the two curves creates a
wrong threshold (dash-dotted line). (b): the wrongly determined threshold (green
horizontal line) identifies parts of the fish as background.

line l is used as the threshold value τs, that separates the fish from the background.
An example is shown in Figure 4.5. This method leads to a better threshold since it
lies closer to the laser line reflected by the background. Therefore, it distinguishes
better between background and fish even when the fish’s surface is close to the
background. This method has been adopted for use in this application.

The values y(i) of y are assigned to a vector yf (i.e. the fish) or to a vector yb (i.e. the
background) with the same length as y, depending on their value and the threshold
τs,

y(i) →

{
y f (i) if y(i) > τs

yb(i) if y(i) ≤ τs
. (4.4)
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(a) Thresholding using the maximum normal
distance.
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(b) Laser line and threshold.

Figure 4.5: Threshold identification using the maximum normal distance of Frame No.
168 of N1.avi. (a): The histogram’s point with the highest normal distance between
the line through the two peaks and the histogram’s counts is used as threshold (dash-
dotted line). Note: the two continuous lines do not appear to form a right angle, due
to an odd aspect ratio. This was done to improve the visibility of the histogram. (b):
The threshold (green horizontal line) splits the laser line into background and fish in
a better manner.

4.3 Patching holes and concatenating

For further processing, a continuous surface of the fish without missing data points
(i.e. “NaN”) between correct values was needed. Therefore, holes in x and y f

were patched. For y f that means, positions j were identified, where the values of
y f (j) are “NaN”. If there exist positions i and k with correct values y f (i) and y f (k),
such that i < j < k, linear interpolation between the values of y f (i) and y f (k) is
performed:

y f (j) = y f (i) + (j − i)
y f (k)− y f (i)

k − i
. (4.5)

Holes in x were patched analogically.

The vectors x, y f and yb are concatenated with the vectors from previous slices3,

3A slice represents the laser line found in a frame of the video, since the laser plane crossing the
objects can be seen as the surface of one slice of the object.
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thus forming the matrices Y, Z f and Zb with a size of i × s, where i is the width of
the images from the video and s is the number of slices (i.e. number of frames of
the video). The matrix X with the dimensions i × s is constructed as:

X =

⎡
⎢⎢⎣

1 w 2 w . . . (s − 1) w s w
...

... . . . ...
...

1 w 2 w . . . (s − 1) w s w

⎤
⎥⎥⎦ , (4.6)

where w converts the frames to millimeter by w = v/ f . f is the frames per seconds
of the video and v is the speed the fish moves across the laser plane in millimeter
per second.

The three matrices X, Y and Z f were used to generate the complete surface and to
calculate the dimensions of the fish and Zb was used as a reference to calculate the
complete surface.

4.4 Computation of the complete surface

The light sectioning method with one laser delivers the upper part of the surface
only. Even though this model enables a measurement of the fish’s length or height,
it does not deliver sufficient information to calculate its volume. Since the bottom
part of the fish is not touching the background at every point, computing the dif-
ference between Z f and the plane described by the points in Zb gives an incorrect
volume. Thus, a method to reconstruct the missing surface is needed.

However, the appearance of the fish’s rear side is unknown. Generally, the as-
sumption can be made, that a fish lying on a flat surface is nearly symmetrical with
respect to the horizontal axis. This can be used to approximate the bottom surface:
Let zb,i = Zb(:, i)4 be the ith column of Zb and z f ,i = Z f (:, i) be the ith column of Z f ,

4The MATLAB � notation M(:,i) represents a vector consisting of the ith column of the matrix M.
For clarity, this notation is used throughout this thesis.
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the axis of symmetry, ai, for every column i of Z f (i.e. a slice of the fish’s surface) is
calculated by

ai =
max (z f ,i) − z̄b,i

2
+ z̄b,i , (4.7)

where max (z f ,i) is the highest point of the fish’s surface in column i, and z̄b,i is the
mean of the background in column i (it can be assumed, that all values in zb,i are
the same; however, there might be irregularities, thus the mean over all values of a
column is used). Be Z∗

f the matrix containing the values for the bottom surface, the
bottom surface of the fish in column i, z∗f ,i, is created by mirroring z f ,i around the
axis of symmetry of the corresponding column i:

z∗f ,i = −(z f ,i − ai) + ai = −z f ,i + 2 ai . (4.8)

If there exist values in z f ,i located below the corresponding ai, this values would be
mirrored to the wrong direction (i.e. above ai). In this case ai was replaced by the
minimum value of z f ,i. Mirroring around this new axis would lead to points below
the background, thus all points in z∗f ,i where compressed to the range of [ai, z̄b(i)].

When a fish lies on a flat surface, gravity deforms the symmetric shape towards the
surface, consequently the fish’s upper side has a stronger curvature than the lower
one. Thus, if the fish touches the background, the lowest point of the fish’s surface
should be lower than or equal to the axis calculated in Equation 4.7. If, and only
if, the fish does not touch the background (i.e. this slice of the fish is in the air),
the lowest point should be above this axis. Practically, there can be missing points
due to occlusion or the objects form, especially at the bounds of the fish’s laser line
missing points were observed. This happens due to the characteristics of the fish’s
surface: at the edges the facing is nearly vertical. This leads either to the laser light
not reaching the object or to the camera not receiving enough reflected light. A gap
between the laser line on the fish and the line on the background is the effect. Thus,
this algorithm can not discriminate between slices, that really are in the air and the
ones with missing points. However, an algorithm that enables this distinction is
necessary.

First ideas were the use of an ellipse or an egg curve (e.g. Granville’s egg) as ap-
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proximations of the fish’s cross section. However, ellipse-fitting with a horizontal
major axis performed poorly and an additional constraint, that the ellipse for every
slice i is not allowed to cross z̄b,i, would have led to computationally too expensive
algorithms. The same held for egg curves, which are octic in nature.

Another approach was to fill the aforementioned gap between the background’s
and the fish’s laser line using the informations of the data in Y and Z f . Two methods
were tested: extrapolate the points in Z f for every column using the Taylor series;
extrapolate the points in Z f by calculating the osculating circles of the first and last
correct (i.e. not “NaN”) value of every column.

The first three terms of the Taylor series [23],

f (x) = f (a) + f ′(a) (x − a) +
f ′′(a)

2!
(x − a)2 , (4.9)

were used to expand each column z f ,i = Z f (:, i) at both ends of the correct values.
The first and the last correct values of z f ,i were used as f (a), respectively. Follow-
ing Chapter 3.3, the derivatives of the values z of z f ,i were computed as z′ = D z

and z′′ = D z′ with a support length of 31 and a degree of 2 for D. Sometimes the
approximation led to an extrapolation, that veered away from the background (see
Figure 4.6 for an example). Since the fish’s surface at the borders should be mono-
tonically decreasing to form a closed shape, this would be an incorrect representa-
tion of the fish. Furthermore, closer examination of the Taylor series showed, that
it is an inappropriate method to support additional information whether the fish’s
cross-section touches the background or not. It can be assumed, that the surface of
a fish reaches a point of symmetry, when its tangent is vertical (i.e. the tangent has
an infinite slope). If this point lies above the axis of symmetry calculated following
Equation 4.7, the cross-section does not touch the ground. The Taylor series can
only expand a given function, using a polynomial approximation, calculated from
the derivatives at a single point. A function with a vertical tangent in a point p is
not differentiable in p though and thus can not be calculated using the Taylor series.

The radius of curvature of every point of the laser line on the fish’s surface can be
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Figure 4.6: Extrapolation using the Taylor series. The new data points (green) on the left
side, extrapolated from the fish data points (blue), veer away from the background
(black), which should not happen.

calculated using Equations 3.22 and 3.24 from Chapter 3.4. The derivatives of the
correct values of every column of Z f and Y were calculated as y′ = D y, y′′ = D y′,
z′ = D z and z′′ = D z′ with a support length of 31 and a degree of 2 for D. With the
radius and the center point from Equation 3.25, the osculating circles for the first
and the last correct value, respectively, of z f ,i for all columns i can be calculated.
Since a circle has two tangents with infinite slope, using it as an expansion of the
laser line adds additional information, whether the fish touches the background or
not. The procedure to complete the fish’s surface of every column i (i.e. slice of the
fish) was performed as follows:

1. Do not use the osculating circle, if it has a positive curvature (i.e. the circle’s
center lies above the fish’s surface).

2. The initial horizontal axis ai is calculated as described in Equation 4.7;

3. If the minimum value of z f ,i is below ai, then this value is assigned as the new
ai. Only those points of the osculating circles are used, that are either above
this point ai or above the point where the circle’s tangent is vertical;

4. If all points are above ai, the laser points are expanded using the osculating
circles until either one of them reaches the point, where the circles tangent is
horizontal, or both reach the horizontal axis ai. In the first case, this position is
assigned as the new axis ai and the fish is in the air at this slice. In the second
case, the fish touches the background;
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5. The values of the bottom half of the fish’s surface, z∗f (j, i), are generated fol-
lowing Equation 4.8, using ai calculated as described in the previous steps.

6. If the final value of the horizontal axis ai lies below the initial one (i.e. the
fish touches the background), all values of z f ,i are compressed to the range of
[ai, z̄b,i].

Figure 4.7(a) shows an example of a slice, where points of the fish (blue) lie below
the initial mirror axis (red) and only one osculating circle (green) can be used.
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(a) Fish’s surface (blue) with one osculating circle (green) and the initial mirror line (red).
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(b) Completed fish’s surface (blue) with a compressed bottom half and the final mirror line (red).

Figure 4.7: Completing the fish’s surface with osculating circles. (a): There are points
of the fish’s surface (blue), that lie below the initial mirror line (red). Only one os-
culating circle is used, since the other one would have been above the fish’s surface.
(b): The final cross-section of the fish (blue) with the used mirror line in red.
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Results

The data used to test the approach were video files in avi-format for 13 different
fish together with their corresponding homographies. The data was provided by
Taweepol Suesut5. The equipment he used was: a laser diode module RLLH650-
16-3 with a wavelength of 650nm and a cylindrical glass lens; a Logitech Webcam
Pro 9000 with a resolution of 640 × 480 and an optical interference filter matched
to the wavelength of the laser; a conveyor with a 24VDC motor and a 16-bit micro
controller by DS-PIC. The reference values for width, height and length of the fish
were measured with a vernier, the weight was measured by a water replacement
method.

The approaches described in Chapter 4 were tested on all 13 videos. An example
of a final surface reconstruction based on this method can be seen in figure 5.1. In
the middle and in the front section of this fish parts are visible, where the algorithm
discarded the extrapolating osculating circle due to the restrains described in the
previous chapter. Table 5.2 shows the results of the fish’s height of the proposed
method compared to the results of a manual measurement with a vernier. The
maximal measured error was 3.69mm, whereas the minimal error was 0.16mm.
The mean error was 1.55mm (or 5.44%) with a standard deviation of 1.28mm (or

5Department of Instrumentation Engineering, Faculty of Engineering, King Mongkut’s Institute of
Technology, Ladkrabang, Bangkok, 10520 Thailand
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Fish No. Height (Vernier) Height (Measured) Error [mm] Error [%]
[mm] [mm]

N1 41.72 40.99 0.73 1.75
N2 44.58 44.20 0.38 0.85
N3 40.88 40.72 0.16 0.38
N5 45.98 44.71 1.27 2.76
N6 50.89 51.10 0.21 0.40
N6T 28.94 27.31 1.63 5.63
N7 26.93 27.11 0.18 0.67
N8 32.72 29.49 3.23 9.86
N9 22.39 19.02 3.37 15.04
N10 32.69 31.57 1.12 3.41
N11 28.17 26.58 1.59 5.65
N12 27.61 23.92 3.69 13.38
N13 23.67 21.09 2.58 10.90

Table 5.1: Measurement and error of height.

5.20%). It can be seen, that the measurement for larger fish (i.e. N1-N6) is more
accurate than for the smaller specimen (e.g. N12).

The difference between the conventionally measured width and the width calcu-
lated from the described method can be seen in Table 5.2. The maximal measured
error was 31.20mm, the minimal error 0.08mm. The mean error was 6.31mm (or
10.88%) with a standard deviation of 8.19mm (or 16.60%). The extreme error of
N11 originated from an osculating circle that spreads away from the original sur-
face (see Figure 5.2). Without this misscalculation, the mean error would improve
to 4.34mm (6.37%) and the standard deviaton to 3.50mm (3.49%). In the videos of
N6 and N10 the laser light was reflected poorly in some border areas, which led
to missing data points. As a result, the algorithm could not reconstruct the surface
entirely and thus created the error.

The results for the length and volume measurement could not be compared, be-
cause the speed of the conveyor could not be determined. No correlation between
the measured data and the results could be found, since the examination of the final
surfaces suggested, that different speeds were used for different fish. Additionally,
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Figure 5.1: Reconstructed surface of N5. Several details are still visible (e.g. the eye).
The missing parts in the front and middle section are due to the algorithm discarding
the osculating circles. At the tail it is clearly visible, that the line separation algorithm
has difficulties discriminating between underground and fish, when both are close
together.

the algorithm sometimes has problems with the detection of the tail fin. If the fish’s
fin is close to the underground (i.e. laying directly on it) the thresholding algorithm
can not discriminate between fish and underground any more. Thus, the tail fin
is detected as part of the underground. This happened specially with the smaller
fish (N6T - N13), the tails of the larger ones mostly did not touch the underground.
This makes the measurement of the fish’s length highly complicated even when the
speed of the conveyor is known. The measurement of the volume would only be
influenced marginally, though, since the volume of the tail fin is insignificant.
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Fish No. Width (Vernier) Width (Measured) Error [mm] Error [%]
[mm] [mm]

N1 94.17 86.87 7.30 7.75
N2 95.05 92.99 2.06 2.17
N3 95.22 92.43 2.79 2.93
N5 105.50 105.58 0.08 0.07
N6 131.84 118.38 13.46 10.21
N6T 47.81 43.44 4.37 9.15
N7 45.65 47.66 2.01 4.40
N8 51.44 47.53 3.91 7.59
N9 39.56 37.34 2.22 5.62
N10 54.76 48.64 6.12 11.18
N11 48.01 79.21 31.20 64.98
N12 42.82 38.66 4.16 9.72
N13 42.85 40.45 2.40 5.61

Table 5.2: Measurement and error of width.
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Figure 5.2: Reconstructed surface of N11. At the beginning of the last third incorrectly
calculated osculating circles can be seen. This happens, when the surface represen-
tation of the fish at the border is too flat, thus creating a large radius of curvature.
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Chapter 6

Discussion and Conclusion

An approach for the measurement of different dimensions of fish was presented in
this part of the thesis. The proposed methods are based on the principle of light
sectioning and all approaches — laser light extraction, laser line separation, com-
pletion of the surface and dimension calculation — were tested on real fish. The
advantages of this method are:

1. The method can be implemented in-line. No manual work is involved which
increases the possible throughput rate enormously;

2. The measurement is realized without contacting the fish, thus the good can
not be damaged;

3. There is no wear on the measurement setup due to the lack of moving parts;

4. Depending on the hardware, the measurement can be performed within sec-
onds.

However, during the development and after the result comparison there also emerged
drawbacks:

1. A complicated three-dimensional calibration of the system is necessary be-
forehand. Errors, that occur during this calibration process are not repairable
during measurement. An incorrect calibration leads to incorrect data;
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Chapter 6 Discussion and Conclusion

2. Ambient light may influence the results of the laser light detection;

3. The bottom part of the fish still remains a factor of uncertainty;

4. the calculation of the osculating circles might lead to incorrect measurements.
This can happen, if there are data points missing at the borders of the fish,
thus leaving a flat surface at the borders;

5. the speed of the conveyor holding the fish as well as the frame rate of the
camera have to be known and steady in order to enable a correct measurement
of the length and volume;

In addition, it was noticed, that the laser light is not reflected evenly by the fish’s
surface.

6.1 Proposed improvements and future work

Some improvements can be made in order to reduce the previously mentioned dis-
advantages. To minimize the influence of ambient light, a housing over the mea-
surement setup can be installed. The image quality and resolution of 640 × 480 of
the Logitech Webcam Pro 9000 is not adequate for an application in the industrial
field. Figure 4.1 shows noisy distortion and compression artifacts. A better cam-
era may also improve the identification of the laser line at the border of the fish,
where the majority of the missing data points occur, thus reducing the possibility
of incorrect osculating circles.

Future investigations should include, why the fish reflects the laser light unevenly
and whether there is a means to reduce this effect. Also a testing of the proposed
methods in a real processing line should deliver answers to the question at which
speed the measurement can be performed. A final idea to improve this approach is,
the use of multiple lasers and cameras. Two of the camera-laser systems shown in
Figure 2.1 are placed at an angle left and right of the object, respectively. Surfaces
that are nearly vertical to the laser reflect the light worse than horizontal surfaces.
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Chapter 6 Discussion and Conclusion

With this new setup it can be enabled, that even the edge regions of the fish reflect
the laser light properly. Hence, missing data points would be reduced and the
performance of the calculation of the osculating circles improved. Additionally,
this can suppress the effect of occlusion.
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Chapter 7

Problem Statement

Describing and classifying objects is one of the main problems in computer vision
[16]. In order to classify objects four main activities are required: Image acquisition,
preprocessing of the images, feature extraction, and classification . The method of
image acquisition is highly dependent on the purpose of the classification. For the
classification of two-dimensional shapes, an image taken with a camera orthogonal
to the object is sufficient. A single-coloured background with a high contrast to the
object’s colour highly improves further computation for this kind of setup. In the
preprocessing of the images for shape or contour description usually binary images
are created. From the binary images, features can be extracted. The description of
the contour can be seen as the description of the shape of the object itself, since the
contour is an essential property of an object. Thus, an effective contour descriptor
is a key component of object description. However, objects have to be compared
regardless of their position, size or orientation (i.e. the computation needs to be
independent of similarity transformation). Hence, representations of the objects
have to be shift, scale and rotation invariant.
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Chapter 8

Mathematical Methods

The mathematical principles described here are the foundation for all further ap-
proaches in the following chapters. If not stated differently, the citations hold en-
tirely for the individual subchapters.

8.1 Fourier series and transform

The Fourier series of a periodic function f (x) is a composition of an infinite sum
of sines and cosines [23]. It uses the fact, that the sine and cosine functions are
orthogonal. The Fourier series of a function f (x) in the interval [−π, π] is given by

f (x) =
1
2

a0 +
∞

∑
n=1

an cos n x +
∞

∑
n=1

bn sin n x , (8.1)

where,

a0 =
1
π

∫ π

−π
f (x) dx , (8.2)

an =
1
π

∫ π

−π
f (x) cos(n x) dx , (8.3)

bn =
1
π

∫ π

−π
f (x) sin(n x) dx , (8.4)
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are called the Fourier coefficients of f for n = 1, 2, ... . Extending the Fourier series
to complex coefficients for a function f (x) periodic in [−L/2, L/2] yields:

f (x) =
∞

∑
n=−∞

An e2 j π n x/L , (8.5)

with

An =
1

2 π

∫ L/2

−L/2
f (x) e2 j π n x/L dx . (8.6)

This is the basis for the generalized Fourier transform as the length L → ∞. The
discrete An is replaced with the continuous F(k) dk, while letting n/L → k, and the
sum is changed to an integral. The forward Fourier transform is

F(k) = Fx[ f (x)](k) =
∫ ∞

−∞
f (x) e−2 π j k x dx , (8.7)

the inverse Fourier transform is

f (x) = F−1
k [F(k)](x) =

∫ ∞

−∞
F(k) e2 π j k x dk . (8.8)

The Fourier transform relates a function f (t) (also called signal) with another func-
tion F(k). While the original signal is time dependent, it is also called the time
domain representation of the signal. Whereas F(k) is called the frequency domain
of the signal, since it shows the frequency spectrum of the signal.

Writing this for a discrete function fk, with k = 0, ..., N − 1, gives the discrete Fourier
transform,

Fn = Fk[{ fk}
N−1
k=0 ](n) =

N−1

∑
k=0

fk e−2 π j n k/N , (8.9)

and its inverse transform,

fk = F−1
n [{Fn}

N−1
n=0 ](k) =

1
N

N−1

∑
n=0

Fn e2 π j k n/N . (8.10)

Discrete Fourier transforms reveal periodicities in input data as well as the relative
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strength of the different periodic components, thus being extremely useful for the
analysis of the input data.

8.2 Elliptic Fourier descriptors and shape signatures

The coefficients of the Fourier transform form the Fourier descriptors of the shape
of a function in the frequency domain. The basic idea behind elliptic Fourier de-
scriptors is, that a closed curve (e.g. the contour of an object) can be seen as a peri-
odic function with the values [x(t), y(t)] with a continuous parameter t = 0, ..., N −

1. To apply the Fourier transform to a closed curve as a function of two variables,
it has to be transformed into a one-dimensional function. This representation is
called shape signature. There are two main shape signatures [22]: complex coordi-
nates and centroid distance.

The complex coordinates function z(t) is the complex number generated from the
curves points as

z(t) = [x(t)− x̄] + j [y(t)− ȳ] , (8.11)

where [x̄,ȳ] is the centroid of the curve, calculated by the coordinates mean. Due to
the shift to the centroid, z(t) is translation invariant. A rotation of the object would
cause circular shift and scaling only changes z(t) linearly.

The centroid distance function r(t) is expressed by the distance of the curves point
from the curve’s centroid:

r(t) =

√
[x(t)− x̄]2 + j [y(t)− ȳ]2 . (8.12)

Again, r(t) is translation invariant due to the relation to the centroid. Rotation also
causes circular shift and scaling introduces only linear change in r(t).
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8.3 Vector norm and Euclidean metric

For a vector, x = (x1 x2 · · · xn)T, the p-norm is defined as

‖x‖p �

(
∑

i
|xi|

p

)1/p

, (8.13)

where |xi| is the absolute value of xi, if xi is a real number, or the complex modulus,

|z|,

|z| = |x + j y| �
√

x2 + y2 , (8.14)

if xi is a complex number [23].

The Euclidean metric, or Euclidean distance, of two vectors, x = (x1 x2 · · · xn)T

and y = (y1 y2 · · · yn)T, in Euclidean n-space is given by

d(x, y) = ‖x − y‖2 =
√

(x1 − y1)2 + ... + (x1 − y1)n , (8.15)

and gives the distance between these two vectors.

8.4 Convolution

A convolution is the integral of the product of one function g shifted over another
function f and is written as f ∗ g [23]. It is defined as:

[ f ∗ g] (t) �
∫ ∞

−∞
f (τ) g(t − τ) dτ =

∫ ∞

−∞
g(τ) f (t − τ) dτ . (8.16)

Before shifting and integrating one of the two functions has to be mirrored (e.g.
g(τ) → g(−τ)). A Convolution expresses the amount of overlap of the two func-
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tions. If one function gT is periodic with the period T, the convolution with another
function f is also periodic and can be defined as an integral over a finite interval

[ f ∗ gT] (t) �
∫ t0+T

t0

fT(τ) gT(t − τ) dτ , (8.17)

where t0 is an arbitrary start point and fT is a periodic summation of f . In the case
when gT is a periodic summation of a function g as well, f ∗ gT is called a circular
or cyclic convolution of f and g.

A convolution of two discrete sequences f (n) and g(n) for nonnegative integer n is
called the Cauchy Product [23] and is defined by:

( f ◦ g)(n) �
n

∑
k=0

f (k) g(n − k) =
n

∑
k=0

g(k) f (n − k) . (8.18)

The circular discrete convolution for a period N is build corresponding to Equation
8.17.

The convolution theorem states, that a convolution can be calculated by multiply-
ing the Fourier spectra of the two functions and taking its inverse Fourier trans-
form:

f ∗ g = F−1(F [ f ] F [g]) . (8.19)

8.5 Spectral filtering with local cyclic polynomial

moments

Processing spectral data with cyclic polynomial moments can be done similar to
normal local polynomial filtering as described in Chapter 3.3. But here P = D DT

from Equation 3.19 forms a circulant matrix, since the start and end point are ad-
jacent for cyclic data (e.g. a contour). In circulant matrices the vector p in every
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row is a phase shifted copy of the previous row. Hence, yF = P y can be computed
using the Fast Fourier Transform (FFT)

yF = FFT−1 {FFT {p} FFT {y}} , (8.20)

although the bases are polynomial [18]. One advantage of the local polynomials
over elliptical Fourier descriptors is, that filtering can be performed even for par-
tially occluded contours, whilst elliptical Fourier descriptors need a closed contour.

When computing local cyclic polynomial Savitzky-Goolay smoothing on a set of
n data points, a support length ls (i.e. the number of data points being used to
smooth one single point) and a degree d is needed. To get the projection matrix
PC for all points, a unitary basis B for ls and d has to be computed, which gives
the local projection matrix by P = B BT (this is an ls × ls matrix). The center row
of P represents the projection at the center of the support px=0. The core region
of PC (i.e. all rows further than (ls − 1) /2 from the start or end of the matrix) is
filled diagonally with px=0. For the top and bottom of PC, px=0 is wrapped around
to use the needed data points from the end and start, respectively, thus creating a
circulant matrix.

To compute cyclic spectra for polynomials of degree d, a polynomial basis S for n

points can be generated as follows: Generate a unitary basis B with degree d and a
support length of ls. take the last column of B as px=0 and create a circulant matrix
S with the size n × n as described in the previous paragraph.
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Chapter 9

Fish classification

In this chapter, the methods used to identify and differentiate different species of
fish are described. Image acquisition and processing of the images as the prereq-
uisites for a classification are presented in the first part. Elliptic Fourier and cyclic
polynomial descriptors as the examined contour-based identification methods are
described in the second part.

9.1 Image acquisition and preprocessing

Mounting the camera perpendicular to the inspection table ensures that the images
are subject only to a similarity transformation, i.e. rotation, translation and scaling.
There is no perspective distortion. Radial distortion, associated with the optics of
the camera, can be neglected when the objects to be measured are located at or near
the center of the image. A white background was chosen to improve the contrast to
the fish. Figure 9.1 shows an example of an image taken in this manner.

The bimodal behaviour of the grayscale intensity value histogram of the image (for
an example, see Figure 9.2(a) ) can be used to identify a threshold via Gaussian
distributions6. Some pixels may be incorrectly binarized, as can be seen in Figure

6See Chapter 3.2, Thresholding, for the mathematical background.
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Figure 9.1: Image of a char (Salvelinus) taken from a perpendicular mounted camera.
The radial distortion barely effects the fish in the center.

9.2(b). To eliminate this disturbance, morphological operations were applied to the
binary image: The holes within the segments7 in the binary image were filled (i.e.
black pixels, completely surrounded by white pixels, are set to white); the segments
were labeled, the largest segment was assumed to be the fish and all other segments
were eliminated (i.e. set to black).

The contour of the largest segment was determined. In order to make different
contours comparable, all contours were resampled to 1000 points.

9.2 Feature extraction and classification

Elliptical Fourier - and cyclic polynomial descriptors were implemented and tested
as a means of extracting features from the contours.

7in the context of binary morphology, the term “segment” refers to linked white areas within the
binary image.
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(a) Histogram of the grayscale intensity val-
ues of Figure 9.1.
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(b) Binary image after thresholding and in-
verting.
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(c) Binary image after morphological process-
ing.
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(d) Contour of the fish.

Figure 9.2: Identifying the fish’s contour: (a): A threshold (red dash-dotted line) is iden-
tified through the intersection point of two Gaussian distributions (green) modeling
the histogram. (b): Binary image generated using the found threshold. Incorrect
pixels inside the fish and at the bottom left corner are still visible. (c): The morpho-
logically processed binary image only consists of one object without holes, which
represents the shape of the fish. (d): The initial image with the final fish’s contour
(green).

Elliptic Fourier descriptor

The Fourier spectral coefficients, i.e. the Fourier descriptors, a, are computed via an
FFT. The x and y coordinates of the points on the contour are regarded as complex,
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i.e. pi = xi + j yi, for the Fourier transform. Shift invariance is achieved by elimi-
nating a0, the first Fourier coefficient. Rotational invariance is achieved by utilizing
the shift invariant property of the magnitude of a Fourier spectrum. Consequently,
the magnitude of the Fourier coefficients are used as the descriptors. Furthermore,
scale invariance is obtained by scaling the coefficients, such that ‖x‖2 = 1, where
x = (a1, an). Thus, the Fourier descriptors are rescaled by

b =
a√

a2
1 + a2

n

. (9.1)

The lower frequency descriptors describe the general features of the shape, while
higher frequency descriptors describe small details. A subset of b consisting of the
most significant descriptors is sufficient to compare different Fourier spectra. Fig-
ure 9.3 illustrates the first 30 significant descriptors of the contour in Figure 9.3(a)
after the descriptors were made shift, scale and rotation invariant.
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(a) Contour of a fish.
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(b) Detail of the corresponding Fourier spectrum.

Figure 9.3: Contour and its corresponding Fourier spectrum. (a): The contour of a fish
generated as described in Chapter 9.1. (b): The first 30 significant descriptors of the
Fourier spectrum after it was made shift, scale and rotation invariant.

The Euclidean distance between the first 500 descriptors of the magnitudes, b1 and
b2, of two shapes is used to calculate a similarity factor. The smaller this factor, the
higher the similarity.
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Cyclic polynomial descriptor

The spectra for polynomials of degree 2 and 3 are shift invariant, but not rotation
invariant. However, the radius of curvature8 is both shift and rotation invariant
and can be computed via local polynomial approximations.

It is a prerequisite that two curvature descriptors have the same starting point, if
their similarity is to be evaluated. Since this can not be guaranteed, when creat-
ing an object’s contour, the two curvature descriptors have to be registered to each
other. This can be done by computing the circular discrete convolution of the two
curvature descriptors, c1 and c2 of length N,

[c1 ◦ c2] (n) �
N

∑
k=0

c1(k) c2(N − k) , (9.2)

identifying the shift m, where [c1 ◦ c2] (n) has its maximum and performing a rota-
tional shift by m samples on c2:

c2 = [c2(N − m + 1) , ..., c2(N), c2(1) , ..., c2(N − m)] . (9.3)

An example, where the curvature descriptor of a fish’s contour is registered to a
shifted and rotated version with a different starting point, can be seen in Figure 9.4.

The Euclidean distance between the contour descriptors, c1 and c2, of two shapes is
used to calculate a similarity factor. The smaller this factor, the higher the similarity.

8For the method of calculation, see Chapter 3.4.
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(a) Two shifted and rotated contours of the
same fish.
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(b) Curvature descriptors of the two contours.
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(c) Convolution of the two curvature descrip-
tors.
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(d) Registered curvature descriptors.

Figure 9.4: Registration of two curvature descriptors: (a): The contour of a fish (red) and
a shifted and rotated version with a different starting point (black). The respective
starting points are marked as circles. (b): The curvature descriptors of the contour
(top) and the transformed version (bottom). It is clearly visible, that the descriptors
are shift, and rotation invariant. (c): The convolution of the two curvature descrip-
tors. The peak at t=200 represents the shift of the starting point. (d): The curvature
descriptors after the registration.
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Results

The fish used to test the two methods were a carp (Cyprinus carpio), a tench (Tinca
tinca) and two chars (Salvelinus). Two images of each fish — one where the fish is
facing left and one where it is facing right — were taken with a Canon PowerShot
SX110 IS with a resolution of 9 Megapixels. The images can be seen in Appendix A.
The contours of the four fish facing left can be seen in Figure 10.1.

Both methods — elliptic Fourier descriptors (EFD) and cyclic polynomial descrip-
tors (CPD) — were applied to the overall eight images. The Euclidean distances
between the descriptors of the individual fish contours were calculated, the results
for the first 500 Fourier descriptors can be seen in Tables 10.1 and 10.2. It is evident,
that “Char 1” has a smaller Euclidean distance to the other char, than to the carp and
the trench. However, the Euclidean distance between “Char 2” and “Char 1” is not
(or only marginal) better than the Euclidean distance of “Char 2” to the other two
fish. This can be explained when considering the contours in Figure 10.1: “Char 1”
has a very distinct contour, whereas the contour of “Char 2” is quite similar to the
contours of the carp and also the tench.

The results for the CPD can be seen in Tables 10.3 and 10.4. The curvature is very
prone to noise that may influence the contours shape. Since some curvatures were
not registered correctly when a small support length was used to generate B1 and
B2, a support length of 101 was chosen. However, this leads to heavily smoothed
contours and curvatures, which lack even basic details such as dorsal fins. This, and
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Figure 10.1: Contours of the four fish.

Fish facing left Carp Char 1 Char 2 Tench
Carp 0 0.0793 0.0644 0.0625
Char 1 0.0793 0 0.0611 0.0833
Char 2 0.0644 0.0611 0 0.0484
Tench 0.0625 0.0833 0.0484 0

Table 10.1: Euclidean distances between the first 500 Fourier descriptors of fish facing
left.

the fact, that the two chars have very distinct contours, led to a poor performance
of the CPD.

CPD are not suitable for the classification of different sort of fish, because even the
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Fish facing right Carp Char 1 Char 2 Tench
Carp 0 0.1152 0.0834 0.104
Char 1 0.1152 0 0.0685 0.0793
Char 2 0.0834 0.0685 0 0.0553
Tench 0.104 0.0793 0.0553 0

Table 10.2: Euclidean distances between the first 500 Fourier descriptors of fish facing
right.

Fish facing left Carp Char 1 Char 2 Tench
Carp 0 0.1033 0.0573 0.0253
Char 1 0.1033 0 0.1 0.1152
Char2 0.0573 0.1 0 0.0605
Tench 0.0253 0.1152 0.0605 0

Table 10.3: Euclidean distances between CPD of fish facing left.

Fish facing right Carp Char 1 Char 2 Tench
Carp 0 0.1116 0.0806 0.0688
Char 1 0.1116 0 0.0952 0.0913
Char 2 0.0806 0.0952 0 0.0483
Tench 0.0688 0.0913 0.0483 0

Table 10.4: Euclidean distances between CPD of fish facing right.

contours of fish from the same species can vary to a point, where a differentiation
is not possible. However, the method used to register two contours to a common
starting point can be used for other applications, e.g. registering the measured
contour of a profile to the corresponding CAD-data. A test on a rolled profile is
shown in Figure 10.2. The gaps between the peaks at t = 400 and t = 100 in Figure
10.2(b) occur due to rolling errors.
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Figure 10.2: Contours and curvatures of a rolled profile and the corresponding CAD-
data. (a): The CAD-data (black) and its starting point (circle) compared to the data
of the rolled profile (red) with its original (cross) and registered starting point (cir-
cle). (b) The registered curvatures of the CAD-data (black) and the data of the rolled
profile (red). Note the gaps between the peaks at t=400 and t=1000, which occur due
to errors during the rolling process.
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Discussion and Conclusion

A method to extract a fish’s contour from an image and two methods to discrimi-
nate between different species of fish were presented in this part of the thesis, and
tested on real fish. It was shown, that the method to extract the contour from an
image works, even when small parts of the background or the fish are identified
incorrectly.

The advantage of the elliptic Fourier descriptors (EFD) is, that they are very robust
with respect to noisy data, since small irregularities only affect higher frequen-
cies. However, they can only be applied to complete contours without missing
points. On the other side, curvature based cyclic polynomial descriptors (CPD) are
highly prone to noisy data due to the calculation of the curvature, thus smooth-
ing is needed which influences the results. The fact, that they can be applied to
incomplete (i.e. occluded) contours, can be an advantage for different applications.

On this set of contours the EFD performed better than the CPD. The example of the
two chars showed that even the shape and appearance of fish from the same species
can vary widely, even though only a small amount of specimen was available. Thus,
the Euclidean distance between the contour descriptors of two fish is not sufficient
for a correct discrimination.

A benefit of this thesis is the fact, that the method used to register two curvatures

59



Chapter 11 Discussion and Conclusion

to a common start point can be used e.g. to compare the measured data of a rolled
profile to the corresponding CAD-data.

11.1 Improvements and alternatives

Another approach to discriminate fish species would be the use of a neural net-
work or machine learning instead of the Euclidean distance. However, that would
require a much bigger amount of specimen. Also, the use of other elliptic Fourier
descriptors, as described by Zhang and Lu [22], may deliver better results. A way
to avoid calculations with the noise-prone curvature could be the utilization of in-
tegral invariants [12, 14], which are way more robust with respect to noise.
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Appendix A

Fish images

(a) Carp (b) Tench

(c) Char 1 (d) Char 2

Figure A.1: Images of fish facing right.
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(a) Carp (b) Tench

(c) Char 1 (d) Char 2

Figure A.2: Images of fish facing right.
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Appendix B

Matlab Source Codes

B.1 Part I

Listing B.1: Fish3dGUI.m
1 clear all;

2 close all;

3

4 quit =0;

5 X =[];

6

7 while(¬quit)

8

9 choice =menu(’’,’Detect Line from AVI’,’Load Line’,’Plot Lines’,’Complete Fish’,’Plot Fish’,’Get Measurements’,’

Quit’);

10 switch choice

11 case 1

12 clear all;

13 % Homography.mat with correct homography h needed in saveLine

14 saveLine;

15 quit =0;

16 case 2

17 clear all;

18 quit =0;

19 pathName=’C:\Dokumente und Einstellungen\iii\Desktop\Uni\Diplomarbeit\Code\101111\MetricVisionFish\’;

20 [fileName,pathName] =uigetfile(strcat(pathName,’*.mat’),’Load ’);

21 if fileName =0

22 fig1 =figure(’Position’,[600,600,170,80],’Toolbar’,’none’,...

23 ’NumberTitle’,’off’,’Name’,’No file selcted!’,’MenuBar’,’none’);

24 h =uicontrol(’Parent’,fig1,’Style’, ’pushbutton’, ’String’, ’Ok’,...

25 ’Position’, [30 20 110 40], ’Callback’, ’close’);

26 else

27 load([pathName,fileName]);

28 end

29 case 3

30 if isempty(X);

31 fig1 =figure(’Position’,[600,600,170,80],’Toolbar’,’none’,...

32 ’NumberTitle’,’off’,’Name’,’Load a Line first!’,’MenuBar’,’none’);

33 h =uicontrol(’Parent’,fig1,’Style’, ’pushbutton’, ’String’, ’Ok’,...

34 ’Position’, [30 20 110 40], ’Callback’, ’close’);
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35 else

36 fig1=figure;

37 surf(X,Y,Zfish,’EdgeColor’, ’none’, ’FaceColor’, ’interp’, ’Facelighting’, ’phong’);

38 hold on;

39 surf(X,Y,Zline,’EdgeColor’, ’none’, ’FaceColor’, ’interp’, ’Facelighting’, ’phong’);

40 axis equal; axis ij;

41 xlabel(’[Frames]’);

42 ylabel(’[mm]’);

43 zlabel(’[mm]’);

44 material metal;

45 light;

46 camlight headlight;

47 view(-30,60);

48 end

49 case 4

50 [width, noFrames] =size(Y);

51 Yfish(1:width,1:noFrames) =NaN;

52 ZfishNew(1:width,1:noFrames) =NaN;

53 ZfishStar(1:width,1:noFrames) =NaN;

54

55 degree =2;

56 sl =31;

57

58 for i=1:noFrames

59 [Yfish(:,i), ZfishNew(:,i), ZfishStar(:,i)] =completeFish(Y(:,i),Zfish(:,i),Zline(:,i),degree,sl);

60 end

61 case 5

62 if isempty(ZfishNew) ∨isempty(ZfishStar);

63 fig1 =figure(’Position’,[600,600,170,80],’Toolbar’,’none’,...

64 ’NumberTitle’,’off’,’Name’,’No surface!’,’MenuBar’,’none’);

65 h =uicontrol(’Parent’,fig1,’Style’, ’pushbutton’, ’String’, ’Ok’,...

66 ’Position’, [30 20 110 40], ’Callback’, ’close’);

67 else

68 fig1=figure;

69 surf(X,Yfish,ZfishNew,’EdgeColor’, ’none’, ’FaceColor’, ’interp’, ’Facelighting’, ’phong’);

70 hold on;

71 surf(X,Yfish,ZfishStar,’EdgeColor’, ’none’, ’FaceColor’, ’interp’, ’Facelighting’, ’phong’);

72 axis equal; axis ij;

73 xlabel(’[Frames]’);

74 ylabel(’[mm]’);

75 zlabel(’[mm]’);

76 material metal;

77 light;

78 camlight headlight;

79 view(-30,60);

80 end

81 case 6

82 [w l] =size(X);

83 width =0;

84

85 noNan =find(¬isnan(ZfishNew));

86 length =max(X(noNan))-min(X(noNan))

87 for i=1:l

88 if width < max(Yfish(:,i))-min(Yfish(:,i))

89 width =max(Yfish(:,i))-min(Yfish(:,i));

90 end

91 end

92 width

93 height =max(ZfishNew(noNan))-min(ZfishStar(noNan))

94 volume =sum(sum(ZfishNew(noNan)-ZfishStar(noNan)));

95 num2str(volume)

96 case 7

97 quit =1;

98 otherwise

99 disp(’Click a button!’);

100 end
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101 end

Listing B.2: saveLine.m
1 % To Save the detected lines in corresponding .mat-files

2

3 load Homography;

4

5 pathName=’C:\Dokumente und Einstellungen\iii\Desktop\Uni\Diplomarbeit\3D Measurement\Test\’;

6 [fileName,pathName] =uigetfile(strcat(pathName,’*.avi’),’Load image data’);

7

8 if(fileName �=0)

9 % create blurring filter to smooth the

10 % image before finding the laser line

11 h =fspecial(’average’, 3);

12

13 % iterate through frames, find laser line

14 nfo =aviinfo(strcat(pathName, fileName));

15

16 noFrames =nfo.NumFrames;

17

18 m =aviread(strcat(pathName, fileName),1);

19 % filter out everything but laser color

20 Img =m.cdata(:,:,1);

21 [height width] =size(Img);

22

23 % filter (i.e. blur) image, and convert from uint8 to double

24 ImgFilt =imfilter(im2double(Img),h);

25

26 LaserPoints =findLine2D(ImgFilt);

27 [noX noY] =size(LaserPoints);

28

29 X(1:noY,1:noFrames-1) =NaN;

30 Y(1:noY,1:noFrames-1) =NaN;

31 Z(1:noY,1:noFrames-1) =NaN;

32 Zfish(1:noY,1:noFrames-1) =NaN;

33 Zline(1:noY,1:noFrames-1) =NaN;

34

35 % progress bar

36 h_wait =waitbar(0,’Please wait...’,...

37 ’Position’,[250,320,270,50]);

38

39 for i=1:(noFrames-1)

40

41 m =aviread(strcat(pathName, fileName),i);

42

43 % filter out everything but laser color

44 Img =m.cdata(:,:,1);

45

46 % filter (i.e. blur) image, and convert from uint8 to double

47 ImgFilt =imfilter(im2double(Img),h);

48

49 X(:,i) =ones( noY, 1 ) * i;

50

51 % find the line in each frame

52 if i=1

53 [Y(:,i), Z(:,i), Zfish(:,i), Zline(:,i), refY, refZ] =getLine(ImgFilt, H);

54 else

55 [Y(:,i), Z(:,i), Zfish(:,i), Zline(:,i)] =getLine(ImgFilt, H, refY, refZ);

56 end

57

58 % patch holes in the line of the fish

59 Zfish =patchHoles(Zfish);

60 Y =patchHoles(Y);

61
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62 waitbar(i/(noFrames-1),h_wait);

63

64 end

65

66 close(h_wait)

67

68 uisave({’X’,’Y’,’Z’,’Zfish’,’Zline’},strcat(fileName,’.mat’));

69

70 else

71 fig1 =figure(’Position’,[600,600,170,80],’Toolbar’,’none’,...

72 ’NumberTitle’,’off’,’Name’,’No file selected’,’MenuBar’,’none’);

73 h =uicontrol(’Parent’,fig1,’Style’, ’pushbutton’, ’String’, ’OK’,...

74 ’Position’, [30 20 110 40], ’Callback’, ’close’);

75 end

Listing B.3: findLine2D.m
1 function Laser =findLine2D(Img)

2 %

3 % Purpose : Detects the position of a projected light-line in a greyscale

4 % image

5 %

6 % Use (syntax):

7 % Laser = findLine2D(Img)

8 %

9 % Input Parameters :

10 % Img: a greyscale image (mxn matrix)

11 %

12 % Return Parameters :

13 % Laser: position of the light-line (2xn matrix)

14 %

15 % Description and algorithms:

16 % Calculates the moment in two dimensions of the intensity values

17 % within a certain range around the maximum intensity for each column

18 % and deletes outliers

19 %

20 % References :

21 %

22 % Author : Uwe Meier

23 % Date : 22. April 2010

24 % Version : 1.0

25 %

26 % (c) 2010 Uwe Meier, uwemei@gmail.com

27 %--------------------------------------------------------

28 %

29 % Init

30 %

31

32 % define the range in which the moments should be calculated

33 udOffset =10;

34 lrOffset =3;

35 % weighting factor for the single intensity-values

36 weight =3;

37

38 imgLength =size(Img,2);

39 imgDepth =size(Img,1);

40

41 % initialize matrices

42 Laser(1:2,1:imgLength) =NaN;

43 LaserPoints(1:2,1:imgLength) =NaN;

44 int(1:imgLength) =NaN;

45

46 % factors to determine and delete outliers

47 maxDeviation =5;

48 minSegmentlength =15;
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49 length =1;

50 startSegment =1;

51

52 Img1 =Img;

53 %

54 % Loop - Determine single laserpoints columnwise

55 %

56 for i =1:imgLength

57

58 % only use red-values of image to detect the maximum intensity

59 [int(i),pointer] =max(Img1(:,i));

60

61 % calculate vertical boundaries

62 up =pointer - udOffset;

63 if up < 1

64 up =1;

65 end

66 down =pointer + udOffset;

67 if down > imgDepth

68 down =imgDepth;

69 end

70

71 % calculate horizontal boundaries

72 left =i - lrOffset;

73 if left < 1

74 left =1;

75 end

76 right =i + lrOffset;

77 if right > imgLength

78 right =imgLength;

79 end

80

81 %

82 % Calculate moments start

83 %

84 Cut =Img1(up:down,left:right).^weight;

85

86 % calculate the sum of the x*I^weight

87 p =(left:right);

88 P =diag(p);

89 EnumeratorX =sum(sum(P*Cut’));

90

91 % calculate the sum of the y*I^weight

92 q =(up:down);

93 Q =diag(q);

94 EnumeratorY =sum(sum(Q*Cut));

95

96 % calculate the sum of I^weight

97 Denominator =sum(Cut(:));

98

99 MomentX =EnumeratorX / Denominator;

100 MomentY =EnumeratorY / Denominator;

101 %

102 % calculate moments end

103 %

104

105 LaserPoints(1,i) =MomentX;

106 LaserPoints(2,i) =MomentY;

107

108 % delete outliers

109 if i>1

110 % if the distance between two values is to large or the end of the

111 % image is reached, and the segment is long enough, then save all

112 % values of this segment

113 if (abs(LaserPoints(2,i)-LaserPoints(2,i-1)) > maxDeviation ∨i =imgLength) ∧(length > minSegmentlength)

114 Laser(1:2,startSegment:i-1) =LaserPoints(1:2,startSegment:i-1);
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115 length =1;

116 startSegment =i;

117 % if the distance between two values is below a thresh, then

118 % increment counter for the segment-length

119 elseif abs(LaserPoints(2,i)-LaserPoints(2,i-1)) ≤maxDeviation

120 length =length + 1;

121 % if the distance between two values is to large and the segment is

122 % not long enough, reset values (i.e. dont save the values of this

123 % segment)

124 else

125 length =1;

126 startSegment =i;

127 end

128 end

129

130 end

131

132 % Delete al values that are below a certain intensity-value

133 Laser(1,int<0.35) =NaN;

134 Laser(2,int<0.35) =NaN;

Listing B.4: getLine.m
1 function [X, Y, Yfish, Yline, refX, refY] =getLine(ImgFilt, H, refX, refY)

2 %

3 % Purpose : Identifies a line in a greyscale image, converts the points to

4 % another coordinate system using a given homographymatrix,

5 % seperates the line into two parts and align the points to

6 % referencepoints

7 %

8 % Use (syntax):

9 % [X, Y, Yfish, Yline, refX, refY] = getLine(ImgFilt, H)

10 % [X, Y, Yfish, Yline] = getLine(ImgFilt, H, refX, refY)

11 %

12 % Input Parameters :

13 % ImgFilt: a mxn greyscale image

14 % H: 3x3 homography matrix

15 % refX: Referencepoint in x direction

16 % refY: Referencepoint in y direction

17 %

18 % Return Parameters :

19 % X: x coordinates of line

20 % Y: all y coordinates of line

21 % Yfish: y coordinates of line representing the line on fish

22 % Yline: y coordinates of line representing the line on ground

23 % refX: Referencepoint in x direction

24 % refY: Referencepoint in y direction

25 %

26 % Description and algorithms:

27 %

28 % References :

29 % findLine2D.m

30 % findThresh.m

31 % separateLine.m needed

32 %

33 % Author : Uwe Meier

34 % Date : 27. April 2010

35 % Version : 1.0

36 %

37 % (c) 2010 Uwe Meier, uwemei@gmail.com

38 %--------------------------------------------------------

39

40 [height width] =size(ImgFilt);

41

42 % find points along the laserline
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43 LaserPoints =findLine2D(ImgFilt);

44

45 % convert image-laserline to rw-laserline

46 LaserPointsH =[ LaserPoints(2,:); LaserPoints(1,:); ones(size(LaserPoints(2,:))) ];

47 LaserPointsHR =H*LaserPointsH;

48

49 X =LaserPointsHR(1,:)./LaserPointsHR(3,:);

50 Y =LaserPointsHR(2,:)./LaserPointsHR(3,:);

51

52 % get reference point to subtract offset so that first found laserpoint

53 % is at X=0 Y=0

54 if nargin < 3

55 refX =X(1);

56 refY =Y(1);

57 end

58

59 [counts,bins] =hist(Y,(1:1:height));

60

61 % get thresh to separate fish from line only if it is possible to

62 % distinguish between them

63 if ( range(Y) < 4 )

64 thresh =0;

65 else

66 [thresh] =findThresh(bins,counts);

67 end

68

69 % separate laser into fish and line

70 [Yfish, Yline] =separateLine(Y, thresh);

71

72 % relate all X and Y points to reference point

73 X =X - refX;

74 Y =-Y + refY;

75 Yfish =-Yfish + refY;

76 Yline =-Yline + refY;

Listing B.5: findThresh.m
1 function [thresh, peak1At, peak1Val, peak2At, peak2Val] =findThresh(bins,counts)

2 %

3 % Purpose : The purpose of this function is to find a threshold of a

4 % bi-modal histogram that has two distinctive peaks

5 %

6 % Use (syntax):

7 % [thresh, peak1At, peak1Val, peak2At, peak2Val] =

8 % findThresh(bins,counts)

9 %

10 % thresh = findThresh(bins,counts)

11

12 % Input Parameters :

13 % bins: locations of the bins (1xn vector)

14 % counts: count of the bins (1xn vector)

15 %

16 % Return Parameters :

17 % thresh: the threshhold that seperates the histogram

18 % peak1At: position of first peak

19 % peak1Val: value o first peak

20 % peak2At: position of second peak

21 % peak2Val: value o Second peak

22 %

23 % Description and algorithms:

24 % This function first identifies the two peaks of a bi-modal

25 % histogram using find2Peaks, then determines the line connecting

26 % those points. The normal distance of the histogram points to this

27 % line are determined and the value of the bin with the maximum

28 % normal distance is used as threshold.
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29 %

30 % References :

31 % Needs function find2Peaks

32 %

33 % Author : Uwe Meier

34 % Date : 22. April 2010

35 % Version : 1.0

36 %

37 % (c) 2010 Uwe Meier, uwemei@gmail.com

38 %--------------------------------------------------------

39

40 %

41 % Determine the 2 Peaks

42 %

43 rangeBins =find(counts>0);

44 first =rangeBins(1);

45 last =rangeBins(end);

46 [peak1At, peak1Val, peak2At, peak2Val] =find2Peaks( bins(first:last), counts(first:last) );

47 peak1At =peak1At + first - 1;

48 peak2At =peak2At + first - 1;

49 %

50 % Determine the line connecting the peaks

51 %

52 lineP =[ peak1Val - peak2Val, ...

53 bins(peak2At) - bins(peak1At), ...

54 (peak2Val*bins(peak1At)) - (peak1Val * bins(peak2At)) ];

55 scale =sqrt( lineP(1)^2 + lineP(2)^2);

56 lineP =lineP / scale; % ensure a Euclidean metric

57 %

58 % Set up the points as a set of column vectors (note only the points

59 % between then two peaks are used.

60 %

61 points =[ bins(peak1At:peak2At); counts(peak1At:peak2At); ones(size((peak1At:peak2At)))];

62 %

63 % Determine the normal distances and find the maximum

64 %

65 ds =lineP * points;

66 [maxD, maxDAt] =max( abs(ds) );

67 maxDAt =maxDAt + peak1At - 1;

68

69 thresh =bins( maxDAt );

70

71 % %

72 % % Plot results (for tests only)

73 % %

74 % % LineT doesn’t seem normal to lineP because axis are not equal

75 %

76 % SetUpGraphics(15);

77 %

78 % lineT = [ -lineP(2), lineP(1), 0];

79 % lineT(3) = - lineT * [bins( maxDAt ); counts( maxDAt );1];

80 %

81 % fig1 = figure(1); clf(fig1);

82 % bar(bins(first:last),counts(first:last));

83 % hold on;

84 % axis tight;

85 % title(’Frame No. 90 of N5.avi’);

86 % xlabel(’[mm]’);

87 % ylabel(’#’);

88 % plot( bins(peak1At), peak1Val, ’ro’, ’MarkerFaceColor’, ’r’);

89 % plot( bins(peak2At), peak2Val, ’ro’, ’MarkerFaceColor’, ’r’);

90 % plot( bins( maxDAt ), counts( maxDAt ), ’rx’,’MarkerSize’,12);

91 % plotLine( lineP, ’r’);

92 % plotLine( lineT, ’r’);

93 % plot( [thresh, thresh], [0, max([peak1Val, peak2Val])], ’r-.’);
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Listing B.6: find2Peaks.m
1 function [peak1At, peak1Val, peak2At, peak2Val] =find2Peaks( bins, counts )

2 %

3 % Purpose : The purpose of this function is to find the two peaks of a

4 % bi-modal hostigram

5 %

6 % Use (syntax):

7 % [peak1At, peak1Val, peak2At, peak2Val] = find2Peaks( bins, counts )

8 %

9 % Input Parameters :

10 % bins: locations of the bins (1xn vector)

11 % counts: count of the bins (1xn vector)

12 %

13 % Return Parameters :

14 % peak1At: position of first peak

15 % peak1Val: value o first peak

16 % peak2At: position of second peak

17 % peak2Val: value o Second peak

18 %

19 % Description and algorithms:

20 % simply devides bins and counts in two and determines the maximum

21 % for each part

22 %

23 % References :

24 %

25 % Author : Uwe Meier

26 % Date : 22. April 2010

27 % Version : 1.0

28 %

29 % (c) 2010 Uwe Meier, uwemei@gmail.com

30 %--------------------------------------------------------

31

32 n =length( bins );

33 n2 =round( n/2);

34 %

35 bins1 =bins(1:n2-1);

36 counts1 =counts(1:n2-1);

37 %

38 bins2 =bins(n2:end);

39 counts2 =counts(n2:end);

40 %

41 [peak1Val peak1At] =max( counts1 );

42 %

43 [peak2Val peak2At] =max( counts2 );

44 peak2At =peak2At + n2 - 1;

Listing B.7: separateLine.m
1 function [yfish, yline] =separateLine(y, thresh)

2 %

3 % Purpose : seperates a line (represented by values of a vector) acording

4 % to a thresh into a groundline and an objectline

5 %

6 % Use (syntax):

7 % [yfish, yline] = seperateLine(y, thresh,nbins)

8 %

9 % Input Parameters :

10 % y: the whole line (nx1 vector)

11 %

12 % Return Parameters :

13 % yfish: line on object (mx1 vector)

14 % yline: line on ground (lx1 vector)

15 %

16 % Description and algorithms:
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17 % Seperates line using a thresh and deletes groundlinepoints that are

18 % outside the double standard deviation of the mean line as well as

19 % objectpoints that are closer to the mean of the groundline than the

20 % mean of the objectline

21 %

22 % References :

23 %

24 % Author : Uwe Meier

25 % Date : 23. April 2010

26 % Version : 1.0

27 %

28 % (c) 2010 Uwe Meier, uwemei@gmail.com

29 %--------------------------------------------------------

30

31 % initialize vectors with NaNs

32 yfish(1:length(y),1) =NaN;

33 yline(1:length(y),1) =NaN;

34

35 % seperate line

36 yfish( round(y) < thresh) =y( round(y) < thresh);

37 yline( round(y) ≥thresh) =y( round(y) ≥thresh);

38

39 % Delete points, that are too much below/above the line

40 mnL =sum(yline(¬isnan(yline)))/length(yline(¬isnan(yline)));

41 sigma =std(yline(¬isnan(yline)));

42 yline( (yline > (mnL+2*sigma)) ∨(yline < (mnL-2*sigma)) ) =NaN;

43

44 % Delete points of object, that are closer to the mean of the line than

45 % to the mean of the object-points

46 mnF =sum(yfish(¬isnan(yfish)))/length(yfish(¬isnan(yfish)));

47 yfish( abs(yfish-mnF) > abs(yfish-mnL) ) =NaN;

Listing B.8: patchHoles.m
1 function result =patchHoles( data );

2 %

3 % Purpose :

4 % Measurement data acquired with a plane of ligh sensor may commonly have

5 % holes generated by occlusion. The aim of this routine is to patch up

6 % these holes so as to ensure that the data grid is complete, regular and

7 % consistent.

8 %

9 % Use (syntax): result = patchHoles( data );

10 %

11 % Input Parameters : the data field, it is assumed that the colums are to

12 % be patched.

13 %

14 % Return Parameters : result, the patched data

15 %

16 % Description and algorithms: Linear interpolation is used to patch the

17 % data.

18 %

19 % References : none

20 %

21 % Author : Uwe Meier

22 % Date : 9 November 2010

23 % Version : 1.0

24 %

25 % (c) 2010, Uwe Meier, uwemei@gmail.com

26 %---------------------------------------------------------------------------

27

28 result =zeros( size( data ) );

29 %

30 % patching is done in each column

31 %
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32 [noRows, noCols] =size( data );

33 %

34 for k =1:noCols

35 %

36 col =data(:,k);

37 %

38 if ( sum(isnan(col)) < length(col) )

39

40 at =1;

41 while at ≤(noRows - 2)

42 at =at + 1;

43 if isnan( col(at) ) ∧¬isnan( col(at-1) )

44 % start of a hole has been found

45 start =at;

46 % find the end of the hole

47 while isnan(col(at))

48 if at =length(col)

49 break;

50 end

51 at =at + 1;

52 end;

53 stop =at;

54 %

55 % generate the linear interpolation

56 %

57 vals =linspace( col(start-1), col(stop), stop - start + 1);

58 %

59 % fill the hole

60 %

61 col(start:stop) =vals’;

62 end;

63 end;

64 end

65 %

66 result(:,k) =col;

67 %

68 end;

Listing B.9: completeFish.m
1 function [Xfish, YfishNew, YfishStar] =completeFish(X,Yfish,Yline,degree,sl)

2 %

3 % Purpose : completes the fish, calculates the reverse side of it and returns

4 % the new X and Y values of the fish as well as the Y values of the

5 % reverse side

6 %

7 % Use (syntax):

8 % [Xfish, YfishNew, YfishStar] =

9 % completeFish(X,Yfish,Yline,degree,sl)

10 %

11 % Input Parameters :

12 % X: x-values of a laserline (nx1 vector)

13 % Yfish: y-values of a laserline on object (nx1 vector)

14 % Yline: y-values of a laserline on ground (nx1 vector)

15 % degree: degree used to calculate derivative of laserline (scalar)

16 % sl: supportlengt used to calculate derivative of laserline (scalar)

17 %

18 % Return Parameters :

19 % Xfish: new x-values of a laserline on object (nx1 vector)

20 % YfishNew: new y-values of a laserline on object (nx1 vector)

21 % YfishStar: mirrored y-values of the laserline on object (nx1 vector)

22 %

23 % Description and algorithms:

24 %

25 % References :
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26 % needs getOsculatingCircle.m

27 %

28 % Author : Uwe Meier

29 % Date : 23. April 2010

30 % Version : 1.0

31 %

32 % (c) 2010 Uwe Meier, uwemei@gmail.com

33 %--------------------------------------------------------

34

35 [width, height] =size(X);

36

37 % initialize return values

38 Xfish(1:width,1) =NaN;

39 YfishNew(1:width,1) =NaN;

40 YfishStar(1:width,1) =NaN;

41

42 % flag, if fish touches the ground or not

43 touchesLine =1;

44

45 % only use values that are not NaN

46 noNaNYfish =find(¬isnan(Yfish));

47 y =Yfish(noNaNYfish);

48 x =X(noNaNYfish);

49

50 % only do, if there is a fishline

51 if length(y) > degree

52

53 noPoints =length(x);

54

55 % create supportlength for derivative basis depending on the

56 % number of values

57 slD =round(sl/2);

58 if mod(slD,2) =0

59 slD =slD+1;

60 end

61 if slD ≥noPoints

62 slD =round(noPoints/4);

63 if mod(sl,2) =0

64 slD =slD+1;

65 end

66 end

67

68 % create supportlength for Savitzky-Golay basis depending on the

69 % number of values

70 if sl ≥noPoints

71 sl =round(noPoints/4);

72 if mod(sl,2) =0

73 sl =sl+1;

74 end

75 end

76

77 if sl < degree

78 sl =degree + 1;

79 end

80

81 % create Basis for Savitzky-Golay smoothing matrix that aproximates a

82 % derivative operator for the generation of the osculating circles

83 S =generateS( noPoints, sl, degree );

84 xc =linspace(-1,1,noPoints )’;

85 D =generateD( xc, sl, 2 );

86

87 % smooth values using S-G

88 ys =S * y;

89

90 % calculate derivatives

91 yd =D * ys;
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92 ydd =D * yd;

93 xd =D * x;

94 xdd =D * xd;

95

96 % Curvature C and Osculating Circle Radius R

97 C =(xd .* ydd - yd .*xdd)./((xd.^2 + yd.^2).^(3/2));

98 R =1./C;

99

100 % scale derivative from xc (linspace) to x (original points)

101 deltaX1 =x(2)-x(1);

102 deltaXc1 =xc(2)-xc(1);

103 k1 =yd(1)*deltaXc1/deltaX1;

104 deltaXend =x(end-1)-x(end);

105 deltaXcend =xc(end-1)-xc(end);

106 kend =yd(end)*deltaXcend/deltaXend;

107

108 % get points for osculating circles at start and end of fish

109 if R(1) ≤0

110 [ xCircle1, yCircle1, center1 ] =getOsculatingCircle( [x(1) ; y(1)], k1, R(1) );

111 else

112 xCircle1 =[];

113 yCircle1 =[];

114 center1 =[];

115 end

116 if R(end) ≤0

117 [ xCircle2, yCircle2, center2 ] =getOsculatingCircle( [x(end) ; y(end)], kend, R(end) );

118 else

119 xCircle2 =[];

120 yCircle2 =[];

121 center2 =[];

122 end

123

124 % find middleline between max of fishline and groundline -> mirrorLine

125 maxX= max(y);

126 noNaNYline =find(¬isnan(Yline));

127 groundLine =mean(Yline(noNaNYline));

128 mirrorLine =(maxX-groundLine)/2 + groundLine;

129 mLold =mirrorLine;

130

131 % if the center of one osculating circle lies above mirrorLine, then

132 % set a flag that the fish doesn’t touch the ground and reset

133 % mirrorLine

134 if ¬isempty(center1) ∧center1(2) > mirrorLine

135 touchesLine =0;

136 mirrorLine =center1(2);

137 end

138 if ¬isempty(center2) ∧center2(2) > mirrorLine

139 touchesLine =0;

140 mirrorLine =center2(2);

141 end

142

143 % if there are points below the morrorLine, reset it

144 if min(y) < mirrorLine

145 mirrorLine =min(y);

146 if min(y) < mLold

147 touchesLine =1;

148 end

149 end

150

151 % only use these parts of circles, that are outside the fish and

152 % above mirror line

153 xCircle1Cut =[];

154 yCircle1Cut =[];

155 xCircle2Cut =[];

156 yCircle2Cut =[];

157
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158 if ¬isempty(center1) ∧center1(1) > x(1)

159 xCircle1Cut =xCircle1( ((xCircle1 < x(1)) ∧(yCircle1 ≥mirrorLine) ∧(yCircle1 ≥center1(2))) );

160 yCircle1Cut =yCircle1( ((xCircle1 < x(1)) ∧(yCircle1 ≥mirrorLine) ∧(yCircle1 ≥center1(2))) );

161 end

162 if ¬isempty(center2) ∧center2(1) < x(end)

163 xCircle2Cut =xCircle2( ((xCircle2 > x(end)) ∧(yCircle2 ≥mirrorLine) ∧(yCircle2 ≥center2(2))) );

164 yCircle2Cut =yCircle2( ((xCircle2 > x(end)) ∧(yCircle2 ≥mirrorLine) ∧(yCircle2 ≥center2(2))) );

165 end

166

167 if (¬isempty(xCircle1Cut) ∧xCircle1Cut(1) < min(X))

168 xCircle1Cut =[];

169 yCircle1Cut =[];

170 end

171

172 if (¬isempty(xCircle2Cut) ∧xCircle2Cut(end) > max(X))

173 xCircle2Cut =[];

174 yCircle2Cut =[];

175 end

176

177 % add found Points to the fish and save

178 first =(noNaNYfish(1) - length(yCircle1Cut));

179 last =(noNaNYfish(end) + length(yCircle2Cut));

180 YfishNew(noNaNYfish) =y;

181 YfishNew(first:(noNaNYfish-1)) =yCircle1Cut;

182 YfishNew((noNaNYfish(end)+1:last)) =yCircle2Cut;

183 Xfish(noNaNYfish) =x;

184 Xfish(first:(noNaNYfish-1)) =xCircle1Cut;

185 Xfish((noNaNYfish(end)+1:last)) =xCircle2Cut;

186

187 y =[ yCircle1Cut’; y; yCircle2Cut’ ];

188

189 % Mirror the fishline to the bottom

190 yStar =-y +2*mirrorLine;

191

192 % if fish touches line then rescale points of mirrored fish

193 if touchesLine

194 scalingfactor =(mirrorLine-groundLine)/(maxX-mirrorLine);

195 yStar =(yStar-mirrorLine)*scalingfactor + mirrorLine;

196 end

197

198 YfishStar(noNaNYfish) =yStar( (length(yCircle1Cut)+1):(length(yStar)-length(yCircle2Cut)) );

199 YfishStar(first:(noNaNYfish-1)) =yStar(1:length(yCircle1Cut));

200 YfishStar((noNaNYfish(end)+1:last)) =yStar((length(yStar)-length(yCircle2Cut)+1):length(yStar));

201

202 end

Listing B.10: getOsculatingCircle.m
1 function [ X, Y, center ] =getOsculatingCircle(point,slope,radius,noPoints)

2 %

3 % Purpose : Calculates the center of the osculating circle in a given point

4 % with given slope and returns values for the circumference

5 %

6 % Use (syntax):

7 % [ X, Y, center ] = getOsculatingCircle(point,slope,radius,noPoints)

8 % [ X, Y, center ] = getOsculatingCircle(point,slope,radius)

9 %

10 % Input Parameters :

11 % point: point in which the osculating circle should be calculated

12 % slope: i.e. derivative in point

13 % radius: radius of the osculating cicle

14 % noPoints: number of points the circle should consist of

15 %

16 % Return Parameters :

17 % X: x-values of circle
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18 % Y: y-values of circle

19 % center: center of circle

20 %

21 % Description and algorithms:

22 % Creates the tangent in the given point, calculates the orthogonal

23 % line and determines the center of the circle by using the radius

24 %

25 % References :

26 % needs getCircle

27 %

28 % Author : Uwe Meier

29 % Date : 22. April 2010

30 % Version : 1.0

31 %

32 % (c) 2010 Uwe Meier, uwemei@gmail.com

33 %--------------------------------------------------------

34

35

36 % calculate tangent with slope in point

37 p1=[ point(1); point(2); 1 ];

38 d =point(2) - point(1)*slope;

39 xp =point(1) + 1;

40 yp =slope*xp + d;

41 % 2. point to create line

42 p2 =[ xp ; yp ; 1 ];

43

44 % create parameters for line orthogonal to tangent (i.e. line between point

45 % and center of osculating circle)

46 dx =p2(1) - p1(1);

47 dy =p2(2) - p1(2);

48 dist =sqrt( dx^2 + dy^2 );

49 ux =- dy/dist;

50 uy =dx/dist;

51

52 % calculate center of osculating circle

53 xp3 =p1(1) + radius*ux;

54 yp3 =p1(2) + radius*uy;

55

56 % center of circle

57 center =[ xp3 yp3 1];

58

59 % get points for osculating circle in point of fish either with or without

60 % given noPoints

61 if nargin =4

62 [ X Y ] =getCircle(center,radius,noPoints);

63 else

64 [ X Y ] =getCircle(center,radius);

65 end

Listing B.11: getCircle.m
1 function [ X , Y ] =getCircle(center,radius,noPoints)

2 %

3 % Purpose : Returns values for the circumference of a circle with given

4 % center and radius

5 %

6 % Use (syntax):

7 % [ X , Y ] = getCircle(center,radius,noPoints)

8 % [ X , Y ] = getCircle(center,radius)

9 %

10 % Input Parameters :

11 % center: center of the circle (2x1, 3x1, 1x2, 1x3)

12 % radius: radius of the circle

13 % noPoints: number of points the circle should consist of

14 %
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15 % Return Parameters :

16 % X: x-values of circle

17 % Y: y-values of circle

18 %

19 % Description and algorithms:

20 %

21 % References :

22 %

23 % Author : Uwe Meier

24 % Date : 22. April 2010

25 % Version : 1.0

26 %

27 % (c) 2010 Uwe Meier, uwemei@gmail.com

28 %--------------------------------------------------------

29

30 % If no noPoints given, chose a noPoints depending on the radius

31 if nargin =2

32 noPoints =round(2*abs(radius)*pi*5);

33 if(noPoints > 10000)

34 noPoints =10000;

35 end

36 end

37

38 rho =radius*ones(1,noPoints);

39 theta =linspace(0,2*pi,noPoints);

40

41 [X,Y] =pol2cart(-theta, rho);

42

43 X =X + center(1);

44 Y =Y + center(2);

B.2 Part II

Listing B.12: saveContour.m
1 clear all;

2 close all;

3

4 pathName=’’;

5 [fileName,pathName] =uigetfile(strcat(pathName,’*.jpg’),’Load image data’);

6

7 name =[pathName fileName];

8 Img =imread(name);

9

10 % resize Image to 1/4 of original size (for faster computation during test

11 % phase)

12 Img =imresize(Img, 0.25);

13

14 % convert to Grayscale

15 ImgG =rgb2gray(Img);

16

17 % convert to double and scale from 0-1

18 ImgG =double(ImgG)/255;

19

20 % create Histogramm

21 [counts bins] =hist(ImgG(:),0:(1/255):1);

22

23 % Calculate threshold to seperate fish from background

24 thresh =findThreshGauss(bins,counts);

81



Appendix B Matlab Source Codes

25

26 % Seperate Fish from background and fill holes

27 ImgBW =¬im2bw(ImgG,thresh);

28

29 ImgBW =imfill(ImgBW,’holes’);

30 % delete parts of the background that got through the treshold - start

31 % get all found objects

32 [labels, noLs] =bwlabel( ImgBW, 4 );

33 % get size of the objects

34 for k=1:noLs

35 pos =find( labels =k );

36 area(k) =length(pos);

37 end;

38 % sort areas by size (largest is last)

39 [list, indices] =sort( area );

40 % get label of largest area

41 labelBiggest =indices(end);

42 % get positions of pixels with this label

43 inds =find( labels =labelBiggest );

44 % create new bw-Image that includes only the largest object

45 ImgBW =zeros( size( ImgBW ));

46 ImgBW(inds) =1;

47 % delete parts of the background that got through the treshold - end

48

49 % get the contour and its x- and y-values

50 % Contour also contains some wrong values (don’t know why), thus you have

51 % to use the Handle, and get its childrens X- and YData. Since there exists

52 % only one contour, you don’t have to deal with different children

53 figure;

54 [Contour,H] =contour(ImgBW,1);

55 T =get(H);

56 Child =get(T.Children);

57 xData =Child.XData;

58 yData =Child.YData;

59

60

61 % ------------------------------------------------------------------------

62 %

63 % plot results

64 %

65

66 % figure;

67 % colormap gray;

68 % imagesc(ImgBW);

69 % axis equal tight;

70 % xlabel(’[pixel]’);

71 % ylabel(’[pixel]’);

72 % figure;

73 % colormap gray;

74 % imagesc(ImgG);

75 % axis equal tight;

76 % hold on;

77 % plot(xData,yData,’g’,’LineWidth’,2);

78 % xlabel(’[pixel]’);

79 % ylabel(’[pixel]’);

80

81 % ------------------------------------------------------------------------

82 %

83 % save results

84 %

85 save(strcat(fileName,’.mat’),’Img’,’ImgG’,’ImgBW’,’xData’,’yData’);

Listing B.13: saveSpectrum.m
1 clear all;
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2 close all;

3

4 name =’Schraubenzieher2.JPG’;

5 mat =’.mat’;

6 load(strcat(name,mat));

7

8 % more general way to delete NaNs:

9 noNaNx =find(¬isnan(xData));

10 noNaNy =find(¬isnan(yData));

11 xData =xData(noNaNx);

12 yData =yData(noNaNy);

13

14 % resample to 1000 points

15 lngth =length(xData);

16 noPoints =1:lngth/1000:lngth;

17 xData =interp1(1:lngth,xData,noPoints,’spline’)’;

18 yData =interp1(1:lngth,yData,noPoints,’spline’)’;

19

20 % create Fourier spectrum of Contour

21 spectrum =fft( xData + 1i*yData );

22 magnitude =fftshift( abs( spectrum ));

23

24 save(strcat(name,’-S’,mat),’Img’,’ImgG’,’ImgBW’,’xData’,’yData’,’spectrum’,’magnitude’);

Listing B.14: testCurvature.m
1 clear all;

2 close all;

3

4 % generateCyclicB creates a length(data) x length(Data) x degree - matrix.

5 % Using the single layers, you create a spectrum with the dimensions

6 % degree x length(Data).

7 % The first row represents the original x- and y-values with an aplied

8 % low-pass-filter with a cut given by the SupportLength (sl). These datas

9 % are NOT shift invariant (xOrig = xS/sqrt(sl)) but can be made shift

10 % invariant by subtracting their mean.

11 % The second and third row are shift, but not rotational invariant. Only

12 % the curvature is shift als well as rotational invariant.

13

14 %

15 % first object

16 %

17

18 sl =101;

19 degree =2;

20

21 load Saibling2-2.JPG-S.mat;

22

23 xData1 =xData - mean(xData);

24 yData1 =yData - mean(yData);

25 noPoints1 =length(xData1);

26

27 % generates a noPoints-by-noPoints-by-degree+1 circulant matrix with

28 % supportlength sl

29 B1 =generateCyclicB( noPoints1, sl, degree);

30

31 % initialize spectrum

32 sX1 =zeros( degree + 1, noPoints1 );

33 sY1 =zeros( degree + 1, noPoints1 );

34 % create spectrum by multiplying every single layer of B with the x- and

35 % y-Data

36 for i=1:degree + 1

37 b1(:,:) =B1(:,:,i);

38 sX1(i,:) =b1 * xData1;

39 sY1(i,:) =b1 * yData1;
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40 end;

41

42 % get derivatives of x and y

43 xd1 =sX1(2,:);

44 xdd1 =sX1(3,:);

45 yd1 =sY1(2,:);

46 ydd1 =sY1(3,:);

47 % calculate Curvature

48 k1 =(xd1.*ydd1 - yd1.*xdd1)./ (xd1.^2 + yd1.^2).^(3/2);

49

50 %

51 % second object

52 %

53 load Saibling1-2.JPG-S.mat;

54

55 xData2 =(xData - mean(xData));

56 yData2 =(yData - mean(yData));

57 noPoints2 =length(xData2);

58

59 % generates a noPoints-by-noPoints-by-degree+1 circulant matrix with

60 % supportlength sl

61 B2 =generateCyclicB( noPoints2, sl, degree);

62

63 % initialize spectrum

64 sX2 =zeros( degree + 1, noPoints2 );

65 sY2 =zeros( degree + 1, noPoints2 );

66 % create spectrum by multiplying every single layer of B with the x- and

67 % y-Data

68 for i=1:degree + 1

69 b2(:,:) =B2(:,:,i);

70 sX2(i,:) =b2 * xData2;

71 sY2(i,:) =b2 * yData2;

72 end;

73

74 % get derivatives of x and y

75 xd2 =sX2(2,:);

76 xdd2 =sX2(3,:);

77 yd2 =sY2(2,:);

78 ydd2 =sY2(3,:);

79 % calculate Curvature

80 k2 =(xd2.*ydd2 - yd2.*xdd2)./ (xd2.^2 + yd2.^2).^(3/2);

81

82 % convolute the two curvatures and relocate the start of the Datasets to be

83 % the same (if the objects are identical) or as close as possible (if

84 % different)

85

86 c =cconv(k1,fliplr(k2),length(k1));

87 [ val, pos ] =max(c);

88 k2g =[ k2(end-pos+1:end) , k2(1:end-pos) ];

89 sX2g =[ sX2(:,end-pos+1:end) , sX2(:,1:end-pos) ];

90 sY2g =[ sY2(:,end-pos+1:end) , sY2(:,1:end-pos) ];

91 xData2g =[ xData2(end-pos+1:end) ; xData2(1:end-pos) ];

92 yData2g =[ yData2(end-pos+1:end) ; yData2(1:end-pos) ];

93

94 err =sqrt((sum((k1 - k2g).^2)))

Listing B.15: testSpectra.m
1 clear all;

2 close all;

3

4 % Img, ImgBG, ImgG, xData, yData, spectrum, magnitude

5 load Saibling2-4.JPG-S.mat;

6

7 xData1 =xData;
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8 yData1 =yData;

9

10 spectrum1 =spectrum;

11

12 %shift invariance

13 spectrum1(1) =0;

14

15 % scale according to spectrum1(2)^2 + spectrum1(end)^2 = 1 to get scale

16 % invariance

17 r1 =abs(spectrum1(2))^2 + abs(spectrum1(end))^2;

18 spectrum1 =spectrum1/sqrt(r1);

19

20 % low-pass-filter

21 cut =250;

22 spectrum1( cut+1:end-cut) =0;

23

24 gen1 =ifft( spectrum1 );

25 gx1 =real( gen1 );

26 gy1 =imag( gen1 );

27

28 load Saibling1-5.JPG-S.mat

29

30 spectrum2 =spectrum;

31

32 %shift invariance

33 spectrum2(1) =0;

34

35 % scale according to spectrum2(2)^2 + spectrum2(end)^2 = 1 to get scale

36 % invariance

37 r2 =abs(spectrum2(2))^2 + abs(spectrum2(end))^2;

38 spectrum2 =spectrum2/sqrt(r2);

39

40 % low-pass-filter

41 spectrum2( cut+1:end-cut) =0;

42

43 gen2 =ifft( spectrum2 );

44 gx2 =real( gen2 );

45 gy2 =imag( gen2 );

46

47 % magnitudes for rotation invariance

48 magnitude1 =fftshift(abs(spectrum1));

49 magnitude2 =fftshift(abs(spectrum2));

50

51 % calculate euclidean distance between the two magnitudes

52 delta =magnitude2 - magnitude1;

53 d12 =sqrt( sum( delta.^2 ) )
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