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ABSTRACT 
In today’s increasingly digitalized world, companies have to deal with ever enormous data 
floods, which eventually lead to a data overload undermining decision quality of their em-
ployees. The petroleum industry in particular faces the problem of an aging workforce with 
more experienced people retiring than fresh engineers stepping in. This means that within 
the next years fewer engineers have to cope with increasing volumes of data and infor-
mation in a more and more complex operational environment and the permanent loss of 
accumulated knowledge of the retiring experts.  

The work suggests that a solution lies in the focus of knowledge management’s efforts on 
the level of information technology (IT). Data, information and knowledge form a pyramid 
where the amount of data generally decreases towards the top, whereas the structure and 
logic increases. Today's IT systems are stuck at the information level of the pyramid. 
Knowledge can be automatically generated from data and information and universally re-
applied to new situations. Pushing information technology towards a knowledge technolo-
gy (KT) with highly adaptable and learning network structures could bring a long required 
software innovation to companies. The work emphasizes that with intelligent systems, 
companies learn how to learn faster, thus secure a sustainable competitive advantage.  

As a practical example of the implementation of KT, the Adaptive Advisory System is in-
troduced. It is a decision support system for oil and gas operations that makes use of artifi-
cial intelligence to infer knowledge from data and information, store and adapt to new chal-
lenges and therefore steadily increases the quality of results along with its usage. It is de-
signed to complement oil company’s assets teams for highly complex problems with lim-
ited expert availability, but with a great flexibility of application. In addition to user-system-
interfaces, it comprises from a Data, an Information and a Knowledge Layer, with the lat-
ter being the centerpiece of the Advisor.  

The Knowledge Layer consists of the three different sections: the Event Detector identifies 
real-time data deviations and alerts in case of emergencies. Combining these events, the 
Problem Classifier assesses the situation and infers the most likely problems. The Decision 
Supporter calculates the utilities of actions and recommends the best solutions to the user. 
In a final evaluation, the decision projection is compared to the actual results some time 
after the action to further improve the results.  

Event Detector, Problem Classifier and Decision Supporter are based on Bayesian net-
works, an instrument of artificial intelligence, that is widely and successfully used for 
knowledge representation and reasoning under uncertainty. Bayesian networks are defined 
as acyclic directed graphs with nodes (random variables) that are interconnected by edges 
(conditional probabilities).   

The work describes the principles, structures as well as the operating modes of the Adap-
tive Advisory System and illustrates these by examples from the area of well production 
monitoring. It proposes several ideas for a user interface in order to meet the requirements 
of a transparent and flexible Advisory System. Finally the focus is put on the human factor, 
since the best system is worthless without being accepted by the user.  
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KURZFASSUNG 
In einer zunehmend digitalisierten Welt stehen Firmen heute oftmals vor dem Problem 
von regelrechten Datenfluten, die ab einem gewissen Volumen negativ auf die Qualität von 
Entscheidungen auswirken. Die Erdölindustrie sieht sich zudem mit dem Problem einer 
kurz alternden Belegschaft konfrontiert, von der mehr Experten aus der Arbeitswelt aus-
scheiden als nachbesetzt werden können. Kurzum, in den nächsten Jahren müssen immer 
weniger erfahrene Ingenieure ein Mehr an Daten und Information bewältigen, und das bei 
zunehmend komplexeren Aufgabestellungen der Erdölgewinnung und einem dauerhaften 
Verlust von angesammelten Wissen zusammen mit den pensionierten Mitarbeitern.  

Diese Arbeit schlägt als Ausweg aus dieser Situation vor, die Bemühungen des Wissens-
managements auf der Ebene der Informationstechnologie zu forcieren. Daten, Information 
und Wissen bilden eine Hierarchie, bei der die Menge an Zeichen nach oben hin ab und die 
Strukturen zunehmen. Heutige IT Systeme bleiben auf der Informationsebene stehen. Eine 
Vielzahl an Daten und Informationen kann zu allgemein einsetzbarem Wissen sub-
summiert, als solches gespeichert und für neue Situationen angewendet werden. Der Schritt 
von IT hin zu einer Wissenstechnologie (Knowledge Technology – KT) mit anpassungs-
fähigen und selbstlernenden Netzwerkstrukturen würde eine lange ausständige Software  
Innovation mit sich bringen. Die Arbeit macht deutlich, wie Firmen durch intelligente   
Systeme schneller lernen können und sich damit einen nachhaltigen Wettbewerbsvorteil 
sichern können.   

Das Adaptive Advisory System, als praktische Umsetzung von KT, ist im weiteren Sinne 
ein System zur Entscheidungsunterstützung für Öl- und Gas Operationen, das mit Hilfe 
von künstlicher Intelligenz fähig ist, eigenständig zu lernen, sich stetig neuen Heraus-
forderungen anzupassen und damit mit zunehmendem Einsatz immer bessere Resultate 
liefert. Es ist für die primär für die Anwendung des Well-Production-Monitorings ausge-
legt, ist aber grundsätzlich sehr breit einsetzbar. Das System besteht aus neben einer Be-
nutzerschnittstelle aus einer Daten-, Informations- und Wissensebene, wobei die Wissens-
ebene (Knowledge Layer) die Herzstück des Advisors darstellt. Der Knowlede Layer ist 
wiederum in 3 Abschnitte unterteilt: der Event Detector stellt Abweichungen in den Echt-
zeit-Signal (Events) fest und alarmiert den Benutzer. Der Problem Classifier analysiert die 
Events und kann diese bestimmten Problemen zuordnen. Der Decision Supporter berech-
net den Nutzen für verschiedene Handlungen und schlägt die bestmögliche Problemlösung 
vor. Eine abschließende Evaluierung der Entscheidung als Vergleich mit realen Ergeb-
nissen sorgt für eine zusätzliche Verbesserung der Resultate.  

Event Detector, Problem Classifier und Decision Supporter basieren auf Bayes’schen Net-
zen (BN), einem Instrument der künstlichen Intelligenz, denen der Satz von Bayes zu-
grunde liegt. Ein Bayes'sches Netz ist ein Graph bestehend aus Knoten (Zufallsvariablen) 
und Kanten (bedingten Wahrscheinlichkeiten); es vermag Wissen aus Daten zu extrahieren, 
zu speichern und anzuwenden, Rückschlusse unter Unsicherheiten zu ziehen und zu ler-
nen.   

Die Arbeit beschreibt die sowohl Prinzipen, Strukturen und Operationsmodi des Adaptive 
Advisory Systems, demonstriert die Prinzipien anhand eines Beispiels aus dem Well-
Production-Monitoring und bringt Vorschläge für eine Benutzeroberfläche. Abschließend 
werden die Implikationen einer resultierenden erhöhten Transparenz auf eine Organisation 
diskutiert. 
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INTRODUCTION 
“We are drowning in information, but starving for knowledge.”1 

Many oil and gas asset teams nowadays face increasing challenges in daily operations. First 
of all, an increased digitalization of the fields has led to more and more field sensors that 
deliver huge amounts of high frequency data. Furthermore it requires highly skilled and 
experienced people on site as well as in the offices, who early enough detect performance 
problems in the field, analyse them and suggest remedial activities to correct them. These 
highly-experienced experts and together with them their highly valuable knowledge are not 
available at all times and for ever. Asset teams have to strive for lean technologies and effi-
cient processes to maintain production and at maximize profits in very competitive envi-
ronment. Maintaining a high level of production requires complete asset awareness and 
hence occupies a significant amount of the asset’s resources. Hite2 discussed how 91% of 
participants in a survey conducted by the SPE Real Time Optimization Technical Interest 
Group spend more than 50% of their time to look for, access and prepare data, which ul-
timately leaves less than 25% of their professional time for analysis, evaluation options and 
decisions. Based on that work, Brulé3 proclaim in his paper how “faster decisions with pre-
cision have tremendous value, and provide much leverage in any industry hindered by a 
shortage of qualified people”.  

In contrast to conventional batch processes (e.g. in a factory conveyor belt or in a racing 
car where processes are repeated in every loop) a reservoir cannot be seen as a repeatable 
process. Conditions in the reservoir continuously change as production is going on. Con-
straints may change or even disappear completely while new constraints may come up. 
Production from a greenfield for example is typically constrained by the number of wells, 
whereas common brownfields mostly are constrained by the deliverability of the reservoir 
or the capacities of the facilities.  

Under these conditions, asset teams are looking for the right technologies to capture, con-
tinuously update and apply knowledge of skilled personnel, in order to streamline not only 
production processes but also knowledge processes. Knowledge capturing technologies 
would enable asset teams to not only automate repetitive processes or model executions, 
but also to support or automate complex decision making processes that typically involves 
experts from various disciplines. The ever-changing environment in the oil and gas industry 
requires a system to be adaptive, thus the system is able to learn together with their daily 
tasks and knowledge gained in previous processes can be easily applied to other processes, 
which are not necessarily similar.  

An intelligent technology, or knowledge technology, would enable asset teams to make 
better and faster decisions in oil and gas operations, leading to more efficient, sustainable 
and transparent processes to increase production with minimizing the costs and better 
meeting the world’s energy demand in the future. Therefore an Adaptive Advisory System 
is proposed in this work, which employs methodologies of artificial intelligence to assess 
the complex conditions of oil and gas operations, continuously improving results and to 
learn and adapt to unstable conditions. 

                                                
1
 John Naisbitt, American businessman 

2
 Hite et al. (2007), p. 1 

3
 Brulé et al. (2008), p. 1 
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1 BACKGROUND & THEORY  

1.1 Knowledge Theory 

The Adaptive Advisor proposed in this work is a system that helps engineers to make deci-
sions. Its main characteristic and the innovation that its implementation brings along is the 
application of artificial intelligence to a general approach of well production management. 
The system the work proposes is capable of learning and capturing, sharing and reapplying 
knowledge utilizing methodologies of artificial intelligence. 

This chapter tries to explain what learning actually means, in mathematical sense as well as 
for humans and for organizations. We need to know what learning is to investigate the 
benefits it brings to companies by applied in the right way, giving them a sustainable com-
petitive advantage. Since there is one-above-all yardstick for intelligence - the human brain 
- its functional principles will be described and compared to the attempts to artificially 
model the brain and its learning capabilities.  

1.1.1 Learning  

According to the Oxford dictionary, learning in general is the acquisition of knowledge or 
skills through study, experience, or being taught. For optimal usage, next to the process of 
learning, the skills of remembrance (memory) and recalling (application of learned matter) 
are required. Learning is more than the simple storage of information; it includes the per-
ception and evaluation of the environment, connections with previous knowledge and ex-
periences and the recognition of structures or patterns.  

Human beings learn with everything they do. Learning can be done in a fully conscious and 
intentional way, but it also happens implicitly all the time. Our brain consists of a large 
network of interconnected neurons, which change its structure when we are learning. 
Learning has to be understood in a broader sense: not only humans and animals can learn, 
but machines, systems, and even organizations are capable of acquiring knowledge.  

Machine learning is the artificial generation of knowledge from experience. Computers can be 
more than tools that save data and information. With certain algorithms they are capable of 
extracting structures from data and recognize patterns from new inputs.  

A learning organization, according to David Garvin4, ‘is an organization skilled at creating, 
acquiring, interpreting, transferring and retaining knowledge, and at purposefully modifying 
its behaviour to reflect new knowledge and insights.’ This definition contains three ele-
ments: First the generation of new knowledge, second the knowledge transfer and retaining 
and thirdly the practical application of knowledge. Hence learning is a function of actions 
with regard to knowledge. 5 

Math of Learning 

Steven Flinn6 uses the terms of knowledge and learning in a very abstract way and visualizes 
them with mathematical expressions: From the definition of learning we can conclude that 
it leads to an increase in knowledge, or in business terms, increase in intellectual capital. 

                                                
4
 Garvin (2000), p.11 

5
 Flinn (2010) p. 17 

6
 Flinn (2010) p. 17 
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Knowledge can be measured in absolute terms at every point in time, therefore it is stock 
variable. Learning is the difference between the same stocks of knowledge at two different 
points in time and considered a flow variable that feeds the stock of knowledge with a cer-
tain rate.7 

Following this logic, learning is the derivative of the knowledge function with respect to 
time, or inversely, cumulating or integrating learning over a period of time yields 
knowledge.  

Competitive Advantage: Innovation 

Arie de Geus8 says, ‘Learning to learn faster is the only sustainable competitive advantage.’ 
Applying this principle to the mathematics of learning means that the rate of learning has 
to be increased, therefore competitive advantage is the acceleration of gain in knowledge: 

!"#$%&'&'(%!!"#!$%!&' !!
!!!"#$%&%'

!"
!!
!
!!"#$%&'(&

!"!
 

Equation 1: Competitive advantage
9
 

In Newtonian terms the knowledge would be the distance, learning the speed and the 
competitive advantage the acceleration.  

Knowledge in companies should grow exponentially, or even super-exponentially. The 
growth of world population, world economy, CO2 concentration in the atmosphere, living 
standards, prices etc. over the years are examples for such a super-exponential function. 
For knowledge, a super-exponential growth would imply going one step further and even 
accelerate learning.  

Geoffrey West draws a picture of us on a treadmill that goes faster and faster, but we have 
to exchange the treadmill by a better one faster and faster.10 He claims that the only way 
how economies and businesses could sustain an increased acceleration rate of growth is by 
innovation.  

In the last 50 years we already could experience some advances in information technology: 
Steven D. Flinn11 in his book “The Learning Layer” identified three major waves in IT de-
velopment since the beginning of the computer era: speed, connectivity and adaption. 
Speed was the primary limiting factor from the beginnings of IT in the 1960ies until the 
1990ies, but infrastructure changes and advances in hardware development allowed a faster 
processing of data. From the early 1990ies on, the Internet gained a public face and made it 
possible for everybody to reach any other person that is connected to the world wide web.  

According to Flinn, we are currently experiencing a third wave, adaptation, which is based 
on virtual connection. Adaptation constitutes an advancement of virtual connection, be-
cause it enables two things: Firstly it offers a much bigger pool and a broader range of ex-
periences to learn from to everybody. Secondly, the Internet has changed the way we struc-
ture things: we are turning our backs from the traditional hierarchy structure, towards a 

                                                
7 

A wrong conclusion would now be that the stock has a limited capacity and can be filled by learning, which is clearly 

not the case. Quite the contrary, the rate of learning is greatly increases with the “amount of knowledge” already 
available in the stock. Hence the relationship of learning and knowledge is a non-linear function. 

8
 Arie de Geus is former manager of Royal Dutch Shell, business strategist and author of books and articles on the 

‘Learning Organisation’ concept 
9
 Modiefied from Flinn (2010), p. 17 

10
 West (2011) 

11
 Flinn (2010) 
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network structure. A network stands for an interconnected adaptable way of processing 
data and information to extract knowledge and forms the basis of a new technology of 
knowledge.  

1.1.2 The Next Innovation: From IT to KT 

In the last 50 years, IT has undergone some changes in character, but the basic concept of 
IT has not substantially changed. Considering the incredible increase in digital data we are 
currently facing, innovation is absolutely necessary. Innovation means creating smarter 
systems for organizations, businesses and processes. In Chapter 1.1.4 it will be explained 
that data, information and knowledge form a hierarchy and it is time to make the step from 
information to knowledge.  

Data Floods 

Despite the immense increase in productivity and more efficient and effective decisions we 
could make with the help of smarter systems, the increased amount of data makes it neces-
sary to change the way we are dealing with it.  

The IDC, the international data corporation, estimates in its 2010 Digital Universe Study12 
that the amount of all digital data produced worldwide, or the ‘Digital Universe’, despite 
the global recession has grown by 62 % in 2009 to nearly 800,000 petabytes13. According to 
the IDC report, the ‘Digital Universe’ will grow by a factor of 44 until 2020. In contrary, 
the money spent on IT staff will only grow by a factor of 1.4. At the same time, the money 
invested in managing one byte will be dramatically decreased. So we can expect businesses 
being flooded with even more data in the future.  

Jay Bourland, group technology officer at Pitney Bowes says that CIOs consider making 
sense of all the data they are dealing with as their biggest challenge in the upcoming years:14 
‘It's a mass of structured, unstructured and real-time data, data in storage, operational data, 
marketing data, data from external sources, and model, predictive and past-result data. To 
deal with all of that, you need mechanisms in place to manage it and make sure it's fit for 
use and that it's being used appropriately. We've been calling that data quality and data in-
tegration.’  

The pyramid of data, information and knowledge, that will be described in Chapter 1.1.4 
The DIK(W) Model suggests that when going up in the hierarchy, the logic and structu-
ration of data increases, whereas the number of data points decreases. Therefore the next 
innovation in data handling will be the transition to KT - Knowledge Technology.  

Knowledge Technology or Making IT Systems Smart 

Information technology (IT) is the acquisition, processing, storage and dissemination of data 
and information in various forms by a combination of computing and telecommunications. 
The term in its modern sense first appeared in a 1958 article published in the Harvard 
Business Review15, in which authors Leavitt and Whisler commented: ‘The new technology 
does not yet have a single established name. We shall call it information technology.’ The au-
thors already proposed progressively that IT would process large amounts of data, apply 

                                                
12

 Digital Universe Study (2010), p. 1 
13

 1 petabyte = 1000 terabytes or 10
15 

bytes 
14

 Sperling (2009) 
15

 Leavitt, Whisler (1958) 



Background & Theory 

 

 
15 

statistical and mathematical methods and simulate higher-order thinking through computer 
programs.  

Imagine the following situation: On a dinner table, Mark tries to take part in a conversa-
tion. Whenever Mark hears a set of keywords he recognizes the topic the other guests talk 
about. He simply digs out previously collected information on the topic and drops it in 
form of sentences in the middle of the conversation. Mark’s comments may add to the 
debate if he is lucky, but they do not properly connect to what the others said. The other 
guests would immediately realize that Mark does not actually know what he is talking 
about.  

IT systems in companies today are just like Mark, they contain an enormous amount of 
data and information, we can look for it with powerful search tools, but the results have to 
be chosen, adapted and interpreted from intelligent human beings. The IT systems we are 
using today are capable of processing data and information, but cannot yet make the step 
to intelligent systems and hence building a stock of knowledge. I would prefer working 
with a computer that acts like a smart person, rather than Mark.  

The term Knowledge Technology (KT) stands for a long outstanding revolution of the IT sys-
tems that are in place for decades. KT systems are capable of delivering knowledge in form 
of recommendations and arguments for it. But not only can they offer results, they help the 
user by selecting the right information for display to the user from any source available. 
Actually, “source” is the wrong terms, since an important change that KT brings, is to vir-
tually interconnect all data, information and knowledge, such that we do not speak of single 
sources like isolated databases, other engineer’s desktops, books, etc. anymore, but com-
bining them all into one network. KT systems are adaptable to the requirements of the 
users as well as the data processed. They are evolving in time the faster the more often they 
interact with human users and learn from them. KT will change the way organizations 
work into much more transparent structures with lower hierarchies and less interdepend-
ence of people. Lowering the walls of power and competition, it will enable the knowledge 
sharing and the cooperation across various disciplines and locations.  

Knowledge Management 

Knowledge Management (KM) comprises a range of strategies and practices used in an organi-
zation to identify, create, represent, distribute, and enable adoption of insights and experi-
ences. Such insights and experiences comprise knowledge, either embodied in individuals 
or embedded in organizational processes or practices. It can be seen as a process that in-
cludes six core activities: formulation of knowledge goals and knowledge identification form the 
starting point and trigger an inner operational knowledge management process circle, 
which consists of the activities of knowledge development, storage, distribution and application.16 
Knowledge technology focuses on the can “hardware” aspects of knowledge management, 
with still having the same goals. But it is obvious that technology alone cannot obtain the 
best results, because the people can still chose whether to use it or not.    

Knowledge can be explicit or implicit. Michael Polanyi has defined explicit knowledge in 1966 
as knowledge that has been or can be articulated, codified and stored in certain media. It 
can be readily communicated to others for example via certain media like encyclopaedias, 
books, blogs, etc.; or in Polanyi’s words: ‘What is usually described as knowledge, as set out 
in written words or maps, or mathematical formulae, is only one kind of knowledge; while 
unformulated knowledge, such as we have of something we are in the act of doing, is an-
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other form of knowledge.’17 Bringing it down to “we know more than we can tell", Polanyi 
thinks that verbalizing, and therefore also formalizing of tacit knowledge is not possible 
due to its nature.18  

Implicit or tacit knowledge however is can be seen as experience that is hard to describe. We 
often call it “having a feeling for something”, just like a driller implicitly knows how much 
weight on bit is required for each situation, but he could not put it in words. Tacit 
knowledge can also be represented in machine learning: Neuronal networks do the right 
thing, but we have no insight in their “black box” of internal structures and cohesion of 
nodes.  

In practice, for example in large oil operator companies, knowledge management is per-
ceived by employees as a system of intranet platforms, reporting tools, lessons-learnt-
approaches or forums where other employees or experts answer posed questions. An im-
portant task of knowledge management is a change of paradigm of how mistakes are only 
negative if nobody else but the person who made it can learn from it. Up to now the value 
KM brings to an organization is very much dependent on the commitment of each and 
every single person voluntarily sharing his or her explicit knowledge and information.  

For the explicit parts of knowledge, the knowledge transfer can be realized relatively easily 
with tools of information technology. Whereas implicit knowledge is generally transferred 
by time-consuming and complicated ways, such as imitation, observations, analogies or 
learning-by-doing with quite limited technological support.19  

In chapter 1.1.1 “Math of Learning” however offers a clue to this problem: In order to 
transfer knowledge, people can look at the stock of knowledge itself or look at the flow of learn-
ing, hence how people did get to the knowledge and get an idea of what is in the stock as 
well. Also if the knowledge is not visible because it is tacit knowledge, we still can look at 
the flow and derive it by the integration of the learning function.  

KT however would provide the means of directly extracting knowledge at the source – at 
the moment it is created in our brains in the first place. The system ideally mirrors the flow 
of data and information that is perceived by employees and learns in the same way as a 
human being and by these means it is therefore capable of transforming some tacit 
knowledge to explicit knowledge.  

1.1.3 How Our Brain Works 

John Haugeland said in 1985 that AI was “the exciting new effort to make computers think 
… machines with minds, in the full and literal sense”. This approach of AI is called the 
cognitive modelling approach or simply mind design, which aims to model the brain.20 If we 
want to create machines that think like humans, we first need to understand how the hu-
man brain works in principle, although it must be mentioned that the exact process is not 
yet fully understood by scientists.  

The study of the nervous system is called neuroscience. Our brains are made out of many 
neurons, individual simple cells that manage to interact in a way that leads to thought, action 
and consciousness. Figure 1 shows the parts of these nerve cells or neurons. Each neuron 
consists of a cell body that contains a cell nucleus. Branching out from the cell body are a 
number of fibers called dendrites and a single long fiber called axon, which is typically 1 cm 
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long (approx. 100 times the diameter of the cell body) but can reach up to 1 meter.21 One 
neuron has connections with 10 to 100,000 other neurons at junctions known as synap-
ses.22 So about hundred billion (1011) neurons form about hundred trillion (1014) connec-
tions. Signals, i.e. neurotransmitters are released and propagate through the brain, from 
neuron to neuron. At a neuron, the cumulative effect of the incoming signals can change 
its electrical potential. When a certain threshold is reached, the neurons “fire”, they are 
setting off a pulse that can do the same in another neuron and so on. The connections are 
weighted, so the effect of signals on the electrical potential differ for different connection 
paths. The signals control brain activity in the short term and also enable long-term chang-
es in the connectivity of individual neurons.  

                   

Figure 1: Parts of a neuron
23

 

Recently, with the development of imaging techniques of the brain activity, such as func-
tional magnetic resonance imaging (fMRI), studies24 could prove that learning correlates 
with adding, deleting, strengthening and weakening the connections between the neurons 
in the brain. Experiences trigger a modification of the physical structures in the brain.  

By 2008 the Blue Gene by IBM was the world’s most powerful supercomputer. At that mo-
ment in time, it was able to process 1016 bits per second. This processing speed is approxi-
mately comparable to what a human brain can do. The main difference in power between 
computers and brains its energy consumption. Whereas the supercomputer needs 1.5 mega 
watts of energy, the brain takes 100,000 times less – approximately 10 watts.25 Talking 
about efficiency only, there is still a long way to go until computers come only close to our 
brains.  

1.1.4 Data, Information, Knowledge 

The terms data, information and knowledge are integral part our general linguistic usage. Their 
meanings are obvious to all of us, but when it comes to integrated adaptive systems a clear 
definition and proper distinction is necessary, since data, information and knowledge is 
processed in different ways.  
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The task of finding one valid definition for these concepts seems not quite promising. Phi-
losophers and scientist tried to solve questions like “What is Knowledge?” in a general 
sense since ancient times – without success. In a study by Chaim Zins, an Israeli infor-
mation researcher, 130 different definitions of the concepts of data, information and 
knowledge were collected.26 

The DIK(W) Model 

The DIK model or knowledge pyramid shows the hierarchy of data information and knowledge. 
Figure 2 shows the pyramid structure of data, information and knowledge. Whereas the 
amount of data generally decreases when going up in the pyramid, the structure and logic 
increases. Further definitions and interrelationships of the concepts will be explained in the 
next chapter.  

 

Figure 2: Knowledge pyramid
27

 

Some sources extend the model by wisdom, to the DIKW model.28 The model is used in 
knowledge or organization management model of decision-making. The introduction of 
the DIKW model is attributed to Dr. Russell Ackoff, pioneering the field of operations 
research, systems thinking, and management science.29 The concepts can also be seen as 
know-nothing, know-what and know-how.  

Wisdom comes from the repetition of the DIK cycle and according to Richard Gayle30 it 
represents the best and most appropriate action, and requires reflection of knowledge – the 
know-why. It is the key to making the most effective decisions and predicting the future by 
inference.  
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Computational Information Processing 

Did you know that it is not quite right to talk about “knowledge in a book, unless the book 
has reasoning capabilities? The following chapter should prevent the ambiguous use of the 
terms data, information and knowledge.  

Agnar Aamodt and Mads Nygård31 defined data, information and knowledge from the per-
spective of computational information processing, which is in line with conventional theo-
ries of knowledge, like the DIK or DIKW model.  

Finding fixed definitions for the three terms turns out to be not an easy task. There is no 
known way to distinguish data, information and knowledge on a representational basis, i.e. 
items or structures “look” the same on paper or in a machine.  

The authors created a definitional framework, discussing the concepts of data, information 
and knowledge in the simple context of single agent decision-making. The concepts by 
Aamondt and Nygård are summarized below and illustrated in Figure 3:32 

• Data are syntactic entities 
- Data are patterns with no meaning: they are input to an interpretation process, 

i.e. to the initial step of decision making  
• Information is interpreted data 

- Information is data with meaning; it is the output from data interpretation as 
well as the input to, and output form the knowledge – based process of deci-
sion making  

• Knowledge is learned information 
- Knowledge is information incorporated in an agent's reasoning resources, and 

made ready for active use within a decision process; it is the output of a learn-
ing process.
 

  

Figure 3: The data – information – knowledge model
33
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Data Interpretation 

Data are uninterpreted signals, characters, patters, codes, etc. that have no meaning for the 
agent, i.e. the human or the machine. The transition from data to information occurs when 
there is given meaning to the sequence of signs. To be able to do that, the agent or system 
has to have certain knowledge. The process of creating information out of input data using 
certain knowledge is also known as inference. 

“01123581321345589” is a simple sequence of numbers; data with no meaning to most of 
us. But this sequence actually represents the first 11 numbers of the famous Fibonacci se-
ries, that starts with 0 and 1 and always the last two numbers are added. We interpret “0, 1, 
1, 2, 3, 5, 8, 13, 21, … “ as Fibonacci sequence, which has a certain meaning to us, and 
therefore is information.   

Another example of this is inferred information on a gold ring using input data on temper-
ature and the condition of aggregation with the knowledge of the melting point of gold Tm 
= 1064.18°C.34 

 

Figure 4: Inferred information from input data
35

 

In other words, for data to become knowledge, an interpreter is required. A human inter-
preter may use his social and cultural background, unconscious associations, textbook 
knowledge, certain memories or previous experiences to determine the contextual meaning 
of data. Computer systems unfortunately can yet only draw on a limited and pre-defined 
pool of findings.  

Elaboration of Information 

The elaboration of information is represented by the arc in Figure 3. Once an initial set of 
information is gained from data, it is elaborated upon for a better understanding and new 
information is derived from it. This can be seen as a circle: the elaboration leads to a better 
understanding of data and therefore new data can be interpreted to extract information and 
so on.  

Both interpretation and elaboration process require knowledge. In the case of elaboration, 
knowledge serves a different role than information, which functions as an input whereas 
knowledge can be seen as a inherent resource of reasoning agent. For example: ‘If in an 
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production advisory system the information "flowline pressure has increased from 50 to 
100 bar during the last hour" is given, a system may use its knowledge to infer "strongly 
and rapidly increased pressure", from which "possible plugging of pipe" may be concluded, 
in turn leading to the action "shut down pump"’. 

Amodt and Nygard emphasise that computational methods for inference and elaboration 
should be non-deterministic processes, considering that strict algorithmic approaches lack 
degree of flexibility necessary. They argue that AI research had shown cognition-inspired 
language of knowledge structures and inference methods to be well suitable in this case.  

Learning of Knowledge  

Figure 3 shows two learning arrows, which represent two different types of gain in 
knowledge. In the context of a decision-making system we can say that learning is the inte-
gration of new information into an existing body of knowledge. But new knowledge also 
comes from inference processes within the body itself.  

One method to distinguish knowledge from data and information is by its flexibility. Once 
extracted from a specific context like “apples on a tree always fall down on the ground” we 
can infer the general principle of gravity.   

1.1.5 Artificial Intelligence  

Artificial Intelligence (AI) is one of the most exciting areas of research nowadays. Sebastian 
Thrun and Peter Norvig from the Stanford University in California have offered a free 
online course on Artificial Intelligence to everybody who is interested for Fall 2011 and 
135,000 people from all over the world had signed up by September. This interest origi-
nates first of all from fundamental reasons: How our brain works is still one of the un-
solved mysteries of science, by mirroring brain activities artificially we hope to get further 
insight into human mind. Secondly, the areas of application are widespread and fascinating: 
from driving cars automatically, understanding written text, search engines, medical and 
technical diagnosis and problem solving, modelling the financial world, etc. Peter Norvig36 
thinks that AI is a truly enabling technology and it will lead the way into the next century. 

AI is the science and engineering of making intelligent machines, especially intelligent 
computer programs. Since John McCarthy coined the term in 195437, artificial intelligence 
has had many ups and downs: It has been hyped and then, having failed to live up to the 
hype, been discredited until being revived again. Attempts to define AI are doomed to fail-
ure, since the definition of intelligence in the first place seems to be a never-ending story 
among scientists.  

AI is a truly universal field, its application range from deduction, reasoning and problem 
solving, knowledge representation, automated planning and scheduling to machine learning 
and classification, natural language processing, robotics, machine perception and speech 
recognition, etc. The tools are almost as numerous and diverse as the applications of AI, 
but what they have in common is that they are designed to work with large and complex 
data sets in dynamic environments. AI is seen as the key to managing the ever increasing 
amounts of data and information in businesses, and therefore also as the most promising 
“hard” approach to knowledge management in businesses. Artificial Intelligence incorpo-
rates the system described in this work on a small scale, intelligent methods, as well as on a 
big scale, how businesses can learn and make use of smart systems.  

                                                
36

 Norvig (2011) 
37

 Skillings (2006) 



Background & Theory 

 

 
22 

 

Soft Computing is a multidisciplinary field that was proposed 1981 by Dr. Lotfi Zadeh38, pro-
fessor of computer science at the University of California, Berkeley, who had the goal to 
construct new generation AI, known as Computational Intelligence.  

Soft Computing can be seen as the fusion of the fields of fuzzy logic, neuro-computing, 
evolutionary and genetic computing, and probabilistic computing into one multidisciplinary 
system in order to develop intelligent machines and to solve nonlinear and mathematically 
unmodelled system problems.39 Therefore, lately a lot of research on combinations of intel-
ligent methods, such as neuro-fuzzy systems, fuzzy Bayesian networks, fuzzy petri nets, is 
performed.   

1.2 Methods 

In the previous chapter we got an idea of how our brains achieves amazing skills although 
it consists of many very simple and stupid cells. Efforts to model the neurobiological struc-
tures of the brain are not the only approach of copying the human intelligence by artificial 
means. The next chapter describes some of the concepts and methods of artificial intelli-
gence as well as the framework they are integrated in to employ them to real problems. 

In this chapter intelligent methods that are frequently used for expert systems or decision 
support systems are described. Bayesian networks are considered to be the best main 
method for the Adaptive Advisory System and therefore described in further detail to pro-
vide a basic understanding for the application in chapter 3. The basics of some alternative 
methods like artificial neural nets, fuzzy systems and others are described and are com-
pared to Bayesian networks.  

1.2.1 Integration Framework 

Decision Support Systems 

Starting off with single, isolated data systems like an engineer’s personal excel sheet, there is 
a general trend to connect systems like databases, information systems and knowledge base 
systems to integrated systems. Examples for these integrated systems are among others deci-
sion support systems.  

Decision support systems (DDS) are interactive computer based systems that aid users in 
judgement and choice activities.40 DDS consist of a data component, a method and model 
component and a connection between them, i.e. a “dialog component”.41 The concept of 
decision support systems DSS is extremely broad, and it is used in a variety of disciplines 
such as statistics, economics, engineering and operations research development.   

Human judgement and decision making has been the subject of numerous studies.42 It has 
been shown that we judge situations and base decisions rather on intuitive strategies than 
on theoretically sound reasoning rules. These intuitive strategies, referred to as judgmental 
heuristics in the context of decision making, help us in reducing the cognitive load, but alas 
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at the expense of optimal decision making. Therefore, our unaided judgment and choice 
exhibit systematic violations of probability axioms; we are biased. 

The desire to improve human decision-making provided motivation for the development 
of a variety of modelling tools in disciplines of economics, operations research, decision 
theory, decision analysis, and statistics.  

The most obvious solution to the problem is to build a system that imitates human experts. 
But while human experts are excellent in structuring a problem, determining the compo-
nents that are relevant to it and providing local estimates of probabilities and preferences, 
they are not reliable in combining many simple factors into an optimal decision. The role 
of a decision support system, especially those that employ decision-analytics, is to support 
them in their weaknesses using the formal and theoretically sound principles of statistics. 

Decision support systems in general have three main components:43 

• The database management system (DBMS) stores large quantities of relevant data 
and the logical structures that are required for decision support.  

• The model-base management system (MBMS) has the role of data transformation 
of data into information useful for decision-making.  

• The dialog generation and management system (DGMS) is the interface of the sys-
tem and supports model building as well as the utilization of the software.  

 

 

Figure 5: The architecture of a DSS
44

 

The components are illustrated in Figure 5. Essentially, the user interacts with the DSS 
through the DGMS, which communicates over the MBMS with the model base and the 
DBMS with the database. 

The model component integrates various (mathematical) methods of three main categories: 
exact methods, heuristic methods and meta-heuristic methods. Methods that employ artifi-
cial intelligence (such as the later described Bayesian networks) fall into the later class of 
DDS, also known as decision-analytic DDSs, which employ the principles of decision theory, 
probability theory, and decision analysis to their decision models. 

Expert Systems 

Expert systems can be seen as a special type of DDS, which aim at building support proce-
dures or systems that imitate human experts. Expert systems use a knowledge base of hu-
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man expertise and inference procedures for solving complex problems. They are a tradi-
tional application of artificial intelligence and are most commonly used for specific isolated 
problem domains. Therefore, there exist a wide variety of different systems. The operating 
principles of expert systems is to a large part the recognition of certain conditions plus fol-
lowing actions combined with some analytic capabilities.45 Consequently, every expert sys-
tem consists of two principal parts: the knowledge base and the inference engine.  

Expert systems already separate the programming code from the expertise or data struc-
tures, such that a change of reasoning rules or knowledge does not require a change of the 
program code, as it is the case in traditional problem solving programs. Also, new rules can 
be added to the knowledge base rather easily.  

In comparison to decision support systems, expert systems go a step further, applying the 
knowledge that had been taught to them so that they can provide answers and suggestions 
for decisions. They are usually using a much wider set of information, equations, rules, etc. 
than decision support systems, which only support a human user in the process of finding 
a decision, not executing a solution independently.46  

An example for an expert system and a first step toward automation are rule-based systems 
with an IF-THEN-ELSE logic to extract knowledge from information. This system is 
comparable to a decision tree (e.g. if the well diameter is lower then 5” then take this action, 
else that one) and supports engineers to make fast decisions based on simple operational 
parameters under information overflow. These rule-based systems are easy to handle, but 
they face serious limitation when it comes to uncertainties, noisy or missing data and result 
ambiguities.47  

1.2.2 History of Bayesian Networks 

There exist two views on probability, the “frequentist” view and the “Bayesian” view. Alt-
hough the approach of Thomas Bayes to treat probability as a degree of plausibility is the 
original approach and has many advantages over the “more objective” approach of proba-
bility being a frequency of occurrence, it fell into oblivion around the turn of the last centu-
ry from which it still has not fully recovered yet. The number of Bayesian followers is 
steadily growing with showing many successes over the “orthodox” statistics. The history 
of Bayesian theory should show that it is by no means a fancy and isolated mathematical 
tool. It had the potential of becoming what we call statistics now and it might fully return 
from oblivion one day.   

Thomas Bayes 

Thomas Bayes, after whom the Bayes theorem was named, was born most probably born 
in 1701, as offspring of a prominent nonconformist family of Sheffield in the north of 
England. He studied logic and theology at the University of Edinburgh and became math-
ematician as well as a Presbyterian minister. In his lifetime he published only two books, 
one on mathematics and one on theology. In 1742, Thomas Bayes was elected to be a Fel-
low of the Royal Society.  

Bayes famous findings on the problem of inverse probability were published posthumously 
by a friend, Richard Price, who gave his paper ‘Essay Towards Solving a Problem in the 
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Doctrine of Chances’ to the Royal Society only two years after Bayes’ death in 176148. The 
essay did not contain the statement of Bayes’ Theorem that we think of today, which was 
introduced later by Laplace.  

Bayes Theorem 

Scientists today are not sure if Thomas Bayes actually discovered the theorem that carries 
his name, since he might had not fully understood the concept of what we call Bayesian 
probability today.49 Nevertheless, Bayes’ work pioneered the one of the French mathemati-
cian and astronomer Pierre-Simon Laplace (1749 – 1827), who is famous for the Laplace 
equation, Laplace transformation or the Laplacian differential operator. In an essay from 
1974 he pointed out more clearly than Bayes that the posterior distribution of the hypothe-
sis should be proportional to what we now understand as the likelihood of the data: 

! ! !! ! ! !! !  

Equation 2: Proportionality of posterior distribution of hypothesis and likelihood of data
50

 

The posterior probability is proportional to the likelihood of the observed data, multiplied 
by the prior probability. Thus the simplest full version of Bayes’ theorem is 

! ! ! !
! ! ! ! !

! !
 

Equation 3: Bayes’ theorem 

where  

• P(H) is the prior probability of the hypothesis H 
• P(D|H) is the conditional probability of seeing the data D given that hypothesis H 

is already true 
• P(D) is the marginal probability of data D 
• P(H|D) is the posterior probability, the plausible model of hypothesis H given that 

we have observed data D 

Two Views on Probability 

The definition of probability that is taught in nowadays is understood as the long-run relative 
frequency of occurrence of an event in a sequence of experiments that are repeated a num-
ber of times or in equally prepared systems, the “frequentist” view. 

The Bayesian probability theory (BPT) takes a much more general approach: In BPT, probabil-
ity is regarded as a real-number-valued measure of the plausibility of a proposition when 
incomplete knowledge does not allow us to establish its truth or falsehood with certainty. 
The measure is taken on a scale where 1 represents certainty of the truth of the proposition 
and 0 represents certain falsehood. Hence it can be seen as a kind of “quantitative episte-
mology”, a numerical encoding of one’s state of knowledge. Already Laplace in 1812 
viewed probability theory as “common sense reduced to calculation”.51  
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In the late 19th and early 20th century, the mathematicians of those days declined the Bayes-
ian view on probability, but created their own definition as a relative frequency of occur-
rence. Firstly, seeing probability as a degree of plausibility seemed to be a too vague con-
cept. Secondly, some problems were associated with finding the prior probabilities, which 
have to be mutually exclusive and selectively exhaustive for a discrete set of set of proposi-
tions.52 

The Bayesian way often seems to be the more “natural” approach to uncertainties: Typical 
example given by Loredo of plausible inference are the doctor, who diagnoses an illness by 
considering the plausibility of each of several diseases given the symptoms of the patient; 
or a judge in court deciding on the guilt or innocence of the defendant in the light of the 
evidence presented in the trial.  

In these examples under the presence of uncertainty, a variety of hypotheses 
(cold/flu/bronchitis or guilty/innocent) are assessed in the light of a single set of evidence 
presented and some prior knowledge creating a tendency towards one of the hypotheses. 
Or in Bayesian terms: Assessing a variety of hypotheses Hi by calculating the posterior 
probability of each Hi, which depends on both the prior probability of the hypothesis and 
on the probability of actually observing the specific set of data.  

In Bayesian theory, the set of data is fixed and we are looking for which of the many ran-
dom hypotheses has the highest probability. The frequentist theory, however, has to as-
sume that the data or the set of evidence are random variables, not the hypotheses; despite 
the fact that the data that we see is the only proven part of the equation. Also, frequentists 
ignore any prior knowledge that one might already have regarding the hypotheses.  

The Revival of Bayes 

One of the first in the 20th century to criticize the orthodox or frequentist statistics and to 
rediscover the ideas of Bayes, Price, Laplace, etc. was the Cambridge geophysicist Sir Har-
old Jeffreys. In his book ‘Theory of Probability’53 from 1939 he presented Bayesian solu-
tions to many statistical problems, some of them inaccessible to frequentists. In the 1940’s 
and 1950’s names like R.T. Cox or E.T. Jayens are connected with research of Bayesian 
theory.  

Since the 1960’s the Bayesian minority has been steadily growing especially in the fields of 
economics and pattern processing. In the 1990’s the problem of speech recognition was 
assessed using the Bayesian technique of Hidden Markov Models as well as the image re-
construction algorithms using the Maximum Entropy theory.54 Some say, Thomas Bayes 
ideas were useless without the processing power of modern computers. Therefore, with the 
success of IT infrastructure, the amount of data is growing exponentially and with it the 
success of Bayes theory applied in many different ways.   

The Beginnings of Bayesian Networks 

Judea Pearl, an Israeli American computer scientist and philosopher first developed Bayesi-
an Networks in 1985. In his paper “Bayesian Networks: A Model of Self-Activated 
Memory for Evidential Reasoning” he argues that the textbook definition of probabilities 
(frequentist view) delivers a rather distorted picture of the human way of reasoning.55 Also, 
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the computer powers required to using joint probability distributions P(x1,…., xn) is simply 
too high for simple calculations already.  

He observed that whereas a person may showed reluctance to giving a numerical estimate 
for the conditional probability P(xi|xj)

56, no hesitation would normally be encountered 
when that person was asked to state merely whether xi and xj were dependent or independ-
ent, i.e. whether knowing the truth of xj will or not will alter the belief in xi.  

Therefore, in order to represent causal knowledge by a computational architecture, Pearl 
prefers to approach this by the Bayesian view on probability. Moreover, he suggests that 
the fundamental structure of human judgmental knowledge could be represented by de-
pendency graphs and that mental tracing of links in these graphs were responsible for the 
basic steps of querying and updating that knowledge. 

Judea Pearl defined Bayesian networks as directed acyclic graphs in which the nodes repre-
sent propositions or variables, the arcs between the nodes signify the existence of direct 
causal dependencies between the linked propositions and the strengths of these dependen-
cies are quantified by conditional probabilities in the Bayesian sense.57  

1.2.3 Theory of Bayesian Networks 

Bayesian Networks (BNs) are widely used for knowledge representation and reasoning 
under uncertainty in intelligent systems. A BN consists of the following components:58  

• A set of variables or nodes (A) and a set of directed edges (E) between the varia-
bles.  

• Each variable either has a finite set of mutually exclusive and collectively exhaustive 
states, or it is a continuous Gaussian random variable. 

• The variables together with the directed edges form a directed acyclic graph (DAG 
or G), therefore G = (A, E).  

To each variable A with parents pa (A), there is a conditional probability table P(A|pa(A)) 
attached. If A has no parents, a table of absolute or prior probabilities is attached.  

Figure 6 shows a simple form of a BN, a cause-effect relationship that includes two nodes 
A and B and an arc pointing from node A to node B. A causal relationship means from A 
to B means that A, being in some state, influences the state of B. Node A has no parent 
node, i.e. no edge directing to it. In this case, a table of absolute probabilities, which are 
considered to be given, represents the variable. Node B is a child of A (i.e. one or more 
edges pointing at it), therefore it is characterized by conditional probabilities: for each state 
of A different states of B have to be defined.59  
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Figure 6: Trivial Bayesian Network
60

 

Pearls defined the ‘chain rule’ theorem in 1988, which represents the basis for the applica-
tion of BNs:

! ! ! !!!!!!" !! !

!

!!!

 

Equation 4: Chain rule theorem
61 

With U being a set of nodes U = {A1, A2, A3,…, An} and pa(Ai) being the parents of Ai. 
The BN specifies a unique joint probability distribution P(U) given by the product of all 
the conditional probability tables specified in the BN.  

A BN is a compact representation of a joint probability distribution of all variables, but it is 
also a graphical model representing cause-effect relations of a domain and reflecting the 
inherent uncertainty in a domain.  

Not all edges in a Bayesian network necessarily have to represent actual “real-world” cause 
– effect relations. According to Jensen, probability theorists may accept links not being 
strictly causal as long as the model represents the proper probability distribution. However, 
Jensen warns that if the model is used for decisions, it is absolutely critical that the model 
edges represent causal relationships only.  

Simple Example of BN – Wet Grass 

The principles of Bayesian Networks (BN) and its most widespread use, probabilistic infer-
ence, will be demonstrated in a very simplified way with an everyday example:  

                                                
60

Bidyuk, Terent’ev, Gasanov (2005), p. 588
61

 Pearl (1988), p. 114 

!"#$% &'"()(*+*,-%

.*/,'*(01"2%

3,),$% 4"2#*1"2)+%

&'"()(*+*,-%

5% &6)*7%
)8% 9:;%

)<% 9:;%

=%
&6(*>)87%?%

%&6(*>)<7%

(8% 8%?%9:@%

(<% 8%?%9:<%

(A% 8%?%9:<%

! ! " 



Background & Theory 

 

29 

 

Figure 7: Simple Bayesian network and conditional probability tables
62

 

Suppose the grass is wet. There are two possible explanations: The grass can be wet due to 
rain (R) or due to the sprinkler (S). We use a Bayesian network to find out which of these 
events has a higher probability. 

For simplification, the system is binary; hence all variables can either be true (+ or 1) or 
false (- or 0) with a certain probability. Both rain and whether the sprinkler is turned on or 
off is influenced by the clouds. The probability that it is cloudy is 50%. On a cloudy day it 
is more likely to rain. This is shown in the conditional probability table: if it’s cloudy there 
is an 80 % chance of rain. If there are clouds, I will not turn on the sprinkler in 90 % of the 
cases. The wet grass depends on two variables: if there is no rain and no sprinkler, the grass 
won’t be wet for sure, but if I have both, it will be wet a 100 %. 

Using Bayes rule we obtain:  

! ! ! ! ! ! ! !
!!! ! !!! ! !!

!!! ! !!
!

!!! ! !! ! ! !! ! ! !!! ! !!!!!

!!! ! !!
 

! ! ! ! ! ! ! !
!!! ! !!! ! !!

!!! ! !!
!

!!! ! !! ! ! !! ! ! !!! ! !!!!!

!!! ! !!
 

with ! ! ! ! ! ! ! ! !! ! ! !! ! ! !!! ! !!!!!! , 

Equation 5: Probabilities of sprinkler and rain obtained with Bayes’ rule.
63

 

where the small captions c, s, r represents the different states of cloudy, sprinkler and rain.  

Types of Bayesian Networks 

In discrete BNs (like in the example given above) the nodes represent events that are de-
scribed by discrete variables. This means that random variables can have a set of stages. 
Nodes with parents are defined by a table or a function of conditional probabilities; nodes 
without parents include unconditional (absolute) probabilities. In practice, the parameters 
are often binary (true / false) or have only a few states (e.g. low / moderate / high). Ar-
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ranging values in a limited number of states results in a loss of accuracy, but it may simpli-
fies the data input procedure.  

In continuous BNs, the nodes represent events that are described by continuous variables. 
Events can take any state from an infinite point set. Continuous random variables are de-
scribed by probability distribution functions or probability distribution densities.  

Hybrid BNs contain both nodes with discrete and nodes with continuous probability distri-
butions. In this case, restrictions apply for such a type of BN, since discrete nodes cannot 
have continuous parents. For large networks, this form of BN will be the most common 
one, since they will include a wide range of possible input parameters.  

Dynamic Bayesian networks (DBNs), in contrast to static BNs, are networks with time – var-
ying nodes. The structure of the model does not vary, but the nodes at time t can influence 
nodes at time t+n. Figure 8 shows a dynamic Bayesian network in its unrolled form. Varia-
bles at the same node may differ from time to time and influence different nodes (hence 
the blue arcs change), whereas the static network structure (nodes and grey arcs) remains 
the same. The network can be ‘unrolled’ further and further, for each time step time 0, time 
1, time 2,…, time n new variables can be defined.  

                           

Figure 8: Dynamic Bayesian network 

An example of a DBN is the Hidden Markov model, a tool for modelling time series data. 
Hidden Markov models are used in speech recognition systems and other areas of artificial 
intelligence and pattern recognition. The name descends from two parts. First, the basic 
assumption is that the observation at time t was caused by an event whose state was hidden 
from the observer. The second part of the name comes from the application of the Markov 
property that states that given value of a state at time t-1, the current state at time t is inde-
pendent from all states prior to time t-1. Therefore, all you need to know for the “history” 
of states is only the previous one.64   

Dynamic Bayesian networks allow a prediction of the future events and probability distri-
butions. Algorithms, such as Kalman filtering have been developed for that purpose. This 
can be a very helpful tool in operation systems, for instance to predict future failures of 
tools or materials and adapting a preventive action approach.  

In naïve BNs, all input parameters are parented by a single output parameter, called the tar-
get node. Therefore, given the parent node, all child nodes are independent from each oth-
er. In order to overcome the limitations in cohesion with the simple network structure, the 
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naïve BN can be extended to an augmented naïve BN, by creating dependencies between the 
child nodes. Figure 9 schematically shows a naïve and an augmented naïve BN.65  

 

                     

Figure 9: Examples for naïve and naïve augmented Bayesian networks.
66

 

BN Extended by Influence Diagrams 

Decision trees as a graphical representation of uncertainties (probabilities), decisions and 
payoffs (equivalent utilities) are used in a wide range of applications. On a small scale, deci-
sion trees are intuitive and easy to handle, but for larger, more complex systems, IDs can 
provide a better level of insight and transparency.67    

The framework for (multi-criteria) decision-making based on BN includes the extension of 
BNs by influence diagrams IDs. IDs extend BNs by adding utility nodes and decision 
nodes, which allows to deploy Bayesian networks in an even greater variety of tasks, includ-
ing the computation of the expected utility, given observations and decision choices, thus 
finding the optimal decision.  

In an ID, let A = {a1, a2,…, an} be a set of mutually excusive actions, and H the set of de-
termining variables. A utility table U(A, H) shows the effects on H for each of the actions 
A taken. The problem is solved by maximizing the expected utility for action a EU(a) by 
multiplying the utility of H for action a U(a, H) with the conditional probability of H in 
case action a is taken: 

!" ! ! ! !!! !!!!!!
!

 

Equation 6: Expected utility
68

 

1.2.4 Learning of a Bayesian Network 

Learning is seen as an increase of knowledge; knowledge in the context of Bayesian net-
works is the structure of the network, representing knowledge about the causal relation-
ships of variables as well as the conditional probabilities of each variable from data, expert 
knowledge or inference. In the context of Bayesian theory there are three types of learning: 
parameter learning, inferential sensing if parameters are unobservable and learning of struc-
ture.69 
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Parameter Learning 

The primary application of Bayesian Networks is parameter learning or belief updating.70 
Setting up a Bayesian, we start with some a priori knowledge about the model structure and 
the probability distributions of the nodes. From this first model that is then updated with 
data we get the posterior probability distribution of node variables. 

Equation 7 shows the Bayesian theorem augmented by adding background information I 
available that indicates how hypothesis H and data D are related.  

! ! !" !
! ! !" ! !!!

! !!!
 

Equation 7: Bayesian theorem augmented by background information
71

 

Again, the “after data” or posterior probability of H can be calculated by multiplying the 
data we already had or prior probability P(H|I) by the probability of the data assuming the 
hypothesis is true P(D|HI) and normalizing it by P(D|I), which is the probability that we 
get the data regardless of the hypothesis. Therefore belief updating means adding evidence 
to the actual BN model and calculating the posterior probability distribution for the new 
set of variables. This means that our state of knowledge changes through the acquisition of 
data; the model learns.  

Inferring Unobserved Variables 

Bayesian networks can be used to gain information on a subset of variables when other 
variables (the evidence variables) are observed. Probabilistic inference is the process of 
computing the posterior distribution of variables, given an evidence. 

Exact and approximate interference algorithms have been developed. Exact inference 
methods include the variable elimination, clique tree propagation or recursive conditioning. 
The complexity of all these methods is exponential to the width of the network tree. The 
most common approximate inference algorithms are stochastic MCMC (Markov Chain 
Monte Carlo) simulation or the mini - bucket elimination.72 

Structure Learning 

The task of updating the network structure or deriving a correct network structure from 
data is more complex than deriving node parameters only.73 But in special cases it might be 
beyond human capacity to define the network structure. In this case, algorithms like the 
structural maximization of the expectation (SME) or the bound and collapse algorithm are 
used. This approach is rather complicated in most cases, since the size of the learning da-
taset required is unrealistically large for most practical learning domains.74   
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1.2.5 Alternative Methods of AI 

Artificial Neural Networks  

(Artificial) neural networks (ANN) are information processing mathematical or computa-
tional models that are inspired by the structure and functional aspects of biological neural 
networks. They consist of numerous simple simultaneously working, interconnected 
groups called neurons.   

By basing neural networks on biological systems, engineers hope to make use of the fol-
lowing advantages:75 

• Biological information processing is robust and fault-tolerant; it includes a lot of 
redundancy that allows loosing some routes every day or signals to be wrong with-
out problems. 

• Biological information processors are flexible; learning helps the brain adapting to 
new environments without a total change of structure (i.e. reprogramming). 

• Brains can handle fuzzy, noisy and inconsistent data, which in conventional pro-
grams requires a lot of programming and complex algorithms. 

• Brains work in a highly parallel way; they are small and compact and need little 
power.  

ANNs typically include three different layers. The first layer consists of a set of input neu-
rons, were input data enters the network and propagates through the network across the 
weighted connection until the activation reaches the output layer. The middle layer is 
known as hidden layer as it is invisible from outside and we in most cases not affect its 
activation directly. The goal of an AAN is to discover some association between input and 
output patterns.  

In Figure 10 a typical ANN is shown, in this case it consists of 3 layers of neurons and 2 
connecting layers of weights. 

                        

Figure 10: A typical artificial neural network
76
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Each neuron in an ANN, just as real neurons, only fires (i.e. allows propagation of a signal) 
if a certain threshold value is reached. Firing (or activation) rules are programmed that de-
termine whether a neuron should fire for any input pattern. These firing rules are the key to 
the flexibility, since they are adjustable by the network itself.  

Also each connection between the neurons is weighted. This means that input values can 
have more or less influence on whether an output value is activated at a neuron or not. 

When an ANN is set up, it is in the learning mode, which can be supervised or unsuper-
vised. In the supervised learning mode, input and output data is provided and the network is 
corrected if the results differ from the required ones. In the unsupervised learning mode, only 
the input parameters are provided and the network has to be self-organized (i.e. to teach 
itself) depending on parameters from the input set only.  

Comparison ANN and BN 

Correa77 and his colleges compared the use of artificial neural networks with Bayesian net-
works for quality detection in a machining process and found several advantages in favor 
of the latter.   

First of all, BNs achieve the best results in terms of classifier goodness applied to the prob-
lem of quality prediction in high-speed milling processes. The results have been confirmed 
by several hypothesis tests. BNs were significantly faster than ANNs both in time it took to 
enter the data and construct the models and for the computers to calculate them. ANNs 
have the problem of non-convergence to a global minimum, when being trapped in a local 
minimum.  

There are no general construction principles for the network structure (e.g. number of 
nodes, hidden layers, activation functions), whereas a BN is based on actual causal relation-
ships, a feature that again makes it easier for the constructors and users to understand the 
Bayesian network. As a result the understanding of its working principles allows everybody 
to optimize its structure and increases the confidence in the correctness of the model. In 
contrary, ANNs work like a black box. They do not allow to perform inference, which can 
be helpful to determine the effect of different variables. As an advantage of ANNs over 
BNs it can be mentioned that ANNs take less memory space. 

Fuzzy Systems 

Fuzzy systems are suitable for uncertain or approximate reasoning, especially for a system 
with a mathematical model that is difficult to derive. This allows solutions despite estimat-
ed values under incomplete or uncertain information. 

In 1965 Lotfi A. Zadeh, who also created the term “soft computing”, developed fuzzy sets 
to be able to mathematically represent uncertainties and vagueness in data and information 
and for dealing with imprecision intrinsic to many problems. 78  

However, the story of fuzzy logic started much earlier: the Greek philosopher Aristotle al-
ready posited in one of his so called “Laws of Thought” the “Law of the Excluded Mid-
dle”, which states that every position must be either true or false. Around 1920, Lukasievicz 
proposed a systematic alternative to the bi-valued logic of Aristotle, a three-valued logic: 
The third value could be seen as “possible” and it had a numeric value between true and 
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false. The concept was further developed including more and more values, until Zadeh 
described the mathematics of his fuzzy set theory. This theory proposed that the values of 
true and false should operate over a full infinite range from 0 to 1. 79 

A fuzzy set therefore can be defined by its membership function:  

!!! ! ! !!!!! 

Equation 8: Fuzzy membership function
80

 

with X being a nonempty set, A a fuzzy set in X and µA the degree of membership of ele-
ment x in A for each x ∈ X.  

Some of the essential characteristics of fuzzy logic relate to the following: 81 

• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate reason-
ing. 

• In fuzzy logic, everything is a matter of degree. 
• In fuzzy logic, knowledge is interpreted a collection of elastic or, equivalently, fuzzy 

constraint on a collection of variables. 
• Inference is viewed as a process of propagation of elastic constraints. 
• Any logical system can be fuzzified. 

Frequentists have a bi-valued view on events, which are only either true or false. But fuzzy 
probability expresses a state of knowledge: under given evidence and current state of 
knowledge an event has a percentage of certainty of occurrence.  

In fuzzy logic, for example, “a person whose height is 2.5 meters is tall”, is a true state-
ment. Another statement. “A person whose height is only 2 meters is tall” is also a true 
statement, but it is not as true as the first one.82  

The typical process flow of a fuzzy system is shown in Figure 11.  

                   

Figure 11: Generic architecture of a fuzzy expert system
83
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Although fuzzy networks for certain applications show more accurate results than BBNs, 
they are comparatively easy to construct and can deal with even less accurate data, the big-
gest downturn of fuzzy networks is, despite its name, the lack of flexibility and adaptability 
when it comes to new data and results. Whereas BNs learn and update their structure au-
tomatically, the rules of fuzzy systems have to be redefined by the system expert.  

Other Intelligent Methods 

In a survey84 by the SPE Communities - Digital Energy Technical Section Artificial Intelli-
gence and Petroleum Analytics (AIPA), released in October 2011, several methods that are 
generally connected with AI in practical work, were listed by the SPE research group. Be-
sides the in detail described ANNs, fuzzy logic and expert systems they list: data mining, 
rule-based reasoning, genetic algorithms, machine learning, intelligent agents, automatic 
process control, proxy models, workflow automation and virtual environments. A more 
detailed description by the AIPA can be found in the Appendix.   

Workflow automation: is a set of methodologies and technologies which aims to integrate 
data and applications into automated workflows, which reflects the business processes de-
veloped in a company over a well structured information management platform. Workflow 
automation has been one of the main areas of interest of the Oil & Gas Industry in the last 
5 years, since is one of the key elements of the Digital Oil Field and Integrated Production 
Operations trends. 

Virtual environments: is the combination of simulation, computation and visualization 
technologies in order to reach partial or total immersive environments for the analysis of 
production and reservoir data. 

 

Some other methods that are in use in connection with decision support systems are de-
scribed below. 

Petri Nets (PN) are a graphical tool for the formal description of the flow of activities in 
complex systems. In particular, petri nets represent the logical interaction among parts and 
activities in a system. A PN is also called place/transition net and consists of place nodes 
transition nodes and directed arcs. A typical application example would be the modelling of 
a concurrent behaviour of a distributed system like the description of chemical processes, 
where molecules interact if they meet at the same place and at the same time.85 

Clustering or cluster analysis is the unsupervised classification of patterns (observations, data 
items, or feature vectors) into groups (clusters). Clustering or cluster analysis one of the 
most important unsupervised learning techniques. Clustering is useful in several explorato-
ry pattern-analysis, grouping, decision-making, and machine-learning situations, including 
data mining, document retrieval, image segmentation, and pattern classification.86  

Self-organizing maps (SOMs) are a type of artificial neural networks, capable of unsupervised 
learning, that display multidimensional datasets in a low dimensional (typical two-
dimensional) map. SOMs use the Euclidian distance between two points in the multi-
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dimensional space as measure of their similarity.87 This makes SOMs useful for visualizing 
low-dimensional views of high-dimensional data.  

Conclusion 

In the last chapter we looked at a selection of intelligent methods that are commonly in use 
for expert systems or decision support systems. Comparing these methods we can con-
clude that Bayesian networks are the best suitable methods for classifying problems and 
giving decision support in oil and gas operations.  

Petroleum engineering has always had to deal with great uncertainties. These uncertainties 
are eliminated by calculating the node state probabilities based on information about the 
values of the other nodes of the network. For the build-up, the combination of expert 
knowledge and automated structure and probability inference promises an optimal design. 
Their transparent structures allow inferring roots of problems and influences on utilities 
and they promise the biggest acceptance by the user. The results are relatively easy and fast 
to calculate and more importantly, they are better in terms of accuracy than for other 
methods. Also, Bayesian networks have the ability to learn in multiple ways, which is cru-
cial for a smart and adaptive system.  

1.2.6 Applications of Bayesian Networks 

Decision support and expert systems are used in various applications and industries. In 
particular, BNs and other forms of AI are used in systems, where modelling of knowledge 
under uncertainties is required, such as computational biology, bioinformatics (gene regula-
tory networks, protein structure), modelling of eco- or climate-systems, document classifi-
cation, information retrieval, image processing, data fusion, various decision support sys-
tems, engineering application, gambling or law.  

A very prominent example for one of the first applications for decision support is medical 
diagnoses. Other popular application examples are in engineering areas, in the financial 
sector including risk management and insurance, monitoring and alerting, sensor fusion, 
etc.  

Medical Diagnosis 

A recent development in medical diagnosis is evidence-based medicine (EBM). EBM requires 
the integration of individual clinical expertise, available external scientific evidence, where 
preferences, desires and expectation of the patient should be central to the decision making 
process. The hopes are put on medical informatics in general and artificial intelligence in 
particular to help improve the healthcare quality.  

Figure 12 shows an influence diagram for the treatment of patients. The disease is the hy-
pothesis variable, the shaded circles are evidence variable or measurable findings and the 
decision nodes are represented by rectangles. The final utility “U” may show the satisfac-
tion of the patient. Based on a symptom, the doctor may choose whether or not to make 
certain tests and finally decide on a treatment.  
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Figure 12: Influence diagram for medical treatment
88

 

Financial Applications 

Financial risk management, portfolio allocation, banking, insurance, etc. traditionally in-
clude a lot of uncertainties. Many causal relationships at capital markets are yet unknown, 
leading to unexpected developments and over-reactions at stock markets. Figure 13 shows 
a schematic BN for a stock market application, including conditional probability tables. A 
real life example would be much more complex.  

                           

Figure 13: Bayesian network for stock price with conditional probability tables
89

 

Sensor Fusion 

If various sources must be integrated to come to interpretation of a situation, this class of 
problem refers to sensor fusion. Examples for this are the integration of several cameras 
from different angles or resolutions into one picture; or in industrial applications, sensors 
often redundant and signals are noisy, thus an integration of all signals is required to re-
ceive the most exact reproduction of the situation. Whereas each sensor has only a limited 
chance of giving a correct interpretation, the combination of all the sensors' chances, typi-
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cally increases the likelihood of a valid interpretation. BNs are can very well deal with miss-
ing data and combine information accurately.90

   

Monitoring and Alerting 

Eric Horvitz developed the Vista system91, a computational technique that uses a Bayesian 
network to reduce the cognitive load of human operators responsible for complex moni-
toring systems in the NASA space shuttles. It has been successfully used by the NASA 
Mission Control center in Houston for several years.  

Figure 14 shows the key components of the Vista system. A belief network is used to con-
sider the diagnostic relevance of shuttle telemetry. A model of time-dependent utility is 
employed to prioritize alternative possible faults, given the likelihood of the faults, and to 
control the size and amount of detail dedicated to a panel describing the system in which 
the possible faults may be occurring.  

 

Figure 14: Vista system overview
92

 

The display includes a problem summery, and a list of possible disorders shown in a col-
umn listed by likelihood of the cause. In another column, the disorders are listed in terms 
of priority, which is the expected time-criticality of the problems. The expected time-
criticality is computed by weighting a relative cost of delay for each possible disorder, as-
sessed from the ground controller, by the likelihood computed for that disorder.93 

                                                
90

 Norsys (2011) 
91

 Horvitz (1992) 
92

 Horvitz (1992), p.10 
93

 Horvitz (1992), p. 8 



Background & Theory 

 

 
40 

1.3 Oil & Gas Operations 

The oil and gas industry in general and particularly the E&P business is traditionally charac-
terized by huge cost and revenue figures with high risks, and high margins. Provocatively 
speaking, one may find evidence that lean management, target costing, etc. are as unfamiliar 
in the oil industry as an attitude of watching every penny considering the millions and bil-
lions spent on drilling wells or building production plants. Time is money: Offshore plat-
forms can cost several hundred thousand dollars every single day. So decisions have to be 
made fast in the first place, irrespective of the cost of the outcome.  

Oil and gas operations are also characterized by their unrepeatability. No reservoir in the 
world shows the same properties, therefore, none of the numerous wells drilled so far was 
the same or no production history of a field is exactly comparable. In Formula 1, for ex-
ample, the car can around the racetrack as often as desired. This offers the possibility to 
test for every single variable, by changing it and keeping all others constant. Results are 
shown within minutes.  

These issues lead to difficulties for the application of decision support systems in oil and 
gas operations because data samples and testing data is not easily produced on demand. On 
the other hand, it is even more important, to intelligently capture processes, extract 
knowledge in form of causal relationships and probabilities and apply this knowledge to 
other assets where there is a lack of relevant data.  

Another consequence of the large uncertainties is that accuracy and amount of measure-
ments are naturally lower than in repetitive and exact industries like automotive or other 
consumer goods. With the drop in oil price in 2008 as a consequence of the global eco-
nomic financial crisis, oil companies suddenly faced troubles financing their operations. 
Exxon Mobil, a company that was described as very risk averse, cautious and with high 
time and budget discipline, was better off than its competitors with shares falling just by 15 
% and 22 % respectively.94 This could hint to a relation of accuracy or transparency and 
success.  

Catastrophes like the oil spill in the Golf of Mexico in 2010 cast a damp over the reputa-
tions of oil companies as well as their balance sheets. Although risks and uncertainties are 
omni-present in oil and gas operations, a smart handling of data, improvements in data 
quality, transparency, and hence better knowledge management could bring the right data, 
to the right people at the right time and help to prevent mistakes and make fast and right 
decisions. 

1.3.1 Well Performance Monitoring 

The primary design for the Adaptive Advisor described in the Chapter 3, is for well per-
formance monitoring, which generally includes well surveillance, troubleshooting and pro-
duction optimization. The following issues add to the complication of the task with regards 
to an improvement of the system and at the same time call upon the necessity of smarter 
systems: 

• Many different disparate well and process data sources exist within an asset. The 
various databases are operated with different software that is seldom compatible.  

- There are high frequency real – time data sources, gathered directly at the con-
trol system that operates the production facilities. Production volumes of 
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oil, gas or water, temperature or pressure data are examples for this. They 
consist of a data pair of measurement and its associated timestamp. 

- Historical or tactical data sources consist of a wide range of different data-
bases, they include manually entered laboratory measurements, time aggre-
gates like daily production, reports on maintenance, etc. Also this includes 
non-time based data such as well planning data (e.g. well trajectory), or res-
ervoir properties. The data exists in form tables, figures, documents, texts, 
orally communicated, etc.  

• In many companies, well monitoring activities are not centrally organized, but differ 
between assets, which reduces the comparability, makes central support and inter-
asset communication difficult and introduces a large learning curve when staff 
moves between assets.  

• Particularly real time data leads to data overload and data quality problems. Because 
many different sources of data exist, data overlap and data duplications between 
systems often occur, leading to confusions and maybe wrongly reported data as a 
result.  

• Well Performance Monitoring often is not a specific job position, but is carried out by 
personnel as one of many other tasks. Therefore not more time than necessary is 
spent on this task and the creation of a feeling of responsibility for a proactive im-
provement of the system is difficult.  

1.3.2 The Big Crew Change 

Another issue that particularly concerns the oil industry is its aging personnel: The late-
2000s, with an oil price as low as 12 $ per barrel, the IOCs had to decrease recruitment 
quite drastically and the oil industry was not quite an attractive field for students. Not 
enough fresh engineers could replace the retiring experts. As a result, the oil industry faces 
the challenge of a very old average workforce. Figure 15 shows the percentage of pe-
trotechnical professionals in a certain age group in 2009 and the prospection in 2015. Es-
pecially the age group of 50-54 will experience high retirement rates in the next years.  

Schlumberger Business Consulting95 investigated the role of petrotechnical professionals 
for success and growth in the oil business. A study displays that technical talent plays a 
strategically important role in the oil and gas business. Also it confirms the large demo-
graphical shift, which will materially reduce the number of petrotechnical professionals 
within the coming years. 
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Figure 15: The big crew change
96

 

What is the impact of “the big crew change”? Every day, experienced oil and gas profes-
sionals leave companies and irretrievably take with them their enormous knowledge and 
decades of experience, without leaving neither sufficiently trained replacements nor explicit 
records of what they know and used to do.   

Although the number of young engineers increased within the last years, the gap in the 
middle-aged workforce is challenging. Oil companies need to react fast, if they want to 
capture as much knowledge as possible. An Advisory System requires an expert to set it up, 
who has an in-depth understanding of causal relationships and a feeling for probabilities of 
occurrence.  

Once a system is in place and has been used successfully for a while, it can assist young 
engineers to fulfil tasks that would normally be beyond their capabilities. As the times of 
“cheap oil” are over, projects become less profitable but much more complex at the same 
time. The workload and responsibility of a single engineer therefore increases; a circum-
stance that calls for the help of intelligent KT systems.   

1.3.3 Digital Oilfield 

Efforts to employ smarter systems or knowledge technology are connected with the ex-
pression of digital oilfield. A digital oilfield (some may call it integrated operations (IO), 
smart field, i-field or intelligent energy (iE)) is about specially adapting and designing IT 
systems for the petroleum business to meet the objective of improved production and in-
crease efficiency of people, technology and knowledge in order to make better decisions 
faster. The Cambridge Energy Research Association (CERA) provides another commonly 
used definition: 

‘The vision for the Digital Oil Field is one where operators, partners, and service compa-
nies seek to take advantage of improved data and knowledge management, enhanced ana-
lytical tools, real-time systems, and more efficient business processes.’97 

Business Intelligence (BI) has found its way into the E&P industry. Digital oilfield can be seen 
as the application of business intelligence or operational business intelligence. The pioneers 
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of BI were data-intensive industries that digitalized tools and processes to analyze large 
amounts of transactional or financial information; digging into what customers are buying 
or analyzing spend in a particular business unit.98  

BI is the combination of practices, capabilities and technologies that companies use to 
gather and integrate data, apply business rules and deliver visibility to information in order 
to better understand the business and ultimately improve performance. 

Operational BI is the application of business intelligence capabilities within operational 
areas of the business that typically involve information and data that changes frequently 
during the business day.99   

Mike Brulé formulated 5 stages of a company’s Operational BI development:100 Stage 1 is 
the reporting what has happened – standard in the E&P industry. Stage 2 is analyzing why 
things happened, including ad hoc queries and KPI. In stage 3 companies are predicting 
what will happen in the future using analytical modeling, full – physics models or integrated 
asset modeling. Stage 4 involves the operationalization of the status quo: continuous up-
date, time sensitive queries and in-database analytics on huge amounts of multi-subject 
data. In stage 5, real-time decision-making is happening.  

According to Brulé, the E&P industry is somewhere between the first and the second 
stage, but manages to reach stage 5 for certain isolated production areas like gas – lift op-
timization.  

Too Much Data 

For oil and gas operations, the number of collected data points has vastly increased within 
the last years. In drilling, for instance, operators have increased the installation of downhole 
and surface sensors to collect data, included high-speed data links between downhole and 
surface instruments and increased telecommunication capabilities to share data at unprece-
dented speeds and quantities with service companies. 101 

Also, petrotechnical professionals often mistake a higher rate of data and information flow 
with automatically better decisions. Research across various disciplines has shown that 
more information only helps to the extent that it can be used intelligently.102  

Figure 16 displays the concept of information overload. There exists a positive correlation 
with the amount of information received on an issue prior to taking a decision and the 
quality of the final decision. When the amount of information provided reaches a certain 
point we speak of informational overload. Beyond this point, information undermines de-
cision quality.103 

                                                
98

 Kuzmich (2009) 
99

 Hatch (2009), p.5 
100

 Brulé (2009), p. 24 
101

 Rajaieyamchee (2010), SPE 135416, p. 1 
102

 Meyer (1997) 
103

 Rajaieyamchee (2010), SPE 135416, p. 2 



Background & Theory 

 

44 

                       

Figure 16: Data / information overload
104

 

Therefore it is important to emphasize that digital oilfield does not mean to primarily digi-
talize operations and measure what is going on. It is all about integrating operations such 
that collaboration across disciplines, companies & organizational and geographical bounda-
ries, made possible by real time data and new work processes in order to reach better deci-
sions - faster.105 

Benefits of KT in Oil and Gas Operations 

Operational business intelligence for oilfields seems inevitable. Loss of knowledge with 
more and more experts retiring and difficulties finding fresh engineers call for smarter sys-
tems that are capable of capturing the knowledge in a company. Some social psycholo-
gists106 regard intuition as a consequence of unconscious information processing. Methods 
employing artificial intelligence could to some extent imitate the “gut feeling” when experi-
enced engineers make decision under limited amount of time. The subconscious 
knowledge is also a result of previous experiences and extraction of information and data. 

The implementation of business intelligence in oil companies that are generally known for 
their antique, cowboy-style, change-resistive way of working would lead to better decisions 
in less amount of time – a tremendous competitive advantage. High profits in oil and gas 
operations can be accomplished by high revenues and low cost. Early identification of un-
der-performing wells or need for artificial lift or workover, spending less time for problem 
solving and fast actions and pro-action instead of re-action, help increasing the production 
at every point in time. Processes are recorded at every step of a project, which provides a 
basis for defining and calculating KPIs for strategic and operational goals.   

Avoiding wrong decisions and mitigating risks in the oil business that has a long history of 
major accidents with large international impact, offers a huge cost savings potential. Busi-
ness intelligence improves transparency and helps companies to understand what they are 
doing, but also provides more accurate information to auditors. Just like every alarm re-
quires an action, each business process that is not concluded with a decision is a waste of a 
business opportunity.  
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Figure 17: Benefits of an Advisory System in O&G operations 

1.3.4 Intelligent Methods in the Petroleum Industry 

There are a few examples of the usage of Bayesian networks in petroleum related applica-
tions. Lately an increase of the number of SPE paper publications can be noticed, which 
may indicate an increased effort of research on Bayesian networks for the petroleum indus-
try.107 The papers so far mostly deal with rather isolated specifically technical issues, no 
high level approach for multiple operational petroleum related problems (e.g. for field 
management) can be found in professional publications (SPE) yet. Below some examples 
are described more detailed.  

Predicting Performance of Gel Treated Wells  

Ghoraishy108 and his colleges from the University of Kansas used Bayesian networks to 
predict the performance of Gel-Treated Wells in the Arbuckle formation in 2008. They 
used a data set of pre- and post-treatment data of 45 wells to train both naïve and aug-
mented naïve BNs to predict the performance of 14 wells where pre-treatment data was 
available. Later the performance of the BNs was evaluated in terms of discounted cash 
flow and net present value (NPV).  

Attempts of predicting the performance of wells treated with polymer gels with multivari-
ate statistical analysis109 or identifying candidate wells with neural networks110 were unsuc-
cessful, due to the complexity of the gel-treatment process and its physical nature.  
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The training data set was used to train the supervised naïve as well as augmented naïve BN. 
The accuracy of prediction was measured by the error fraction, which is the absolute dif-
ference of the actual and the predicted output, divided by the actual output. The naïve and 
the augmented naïve BN reached an accuracy of 77% and 84 % respectively, showing the 
positive effects of an increase in complexity of the network structure.  

Expert System for Optimum Completion  

Al-Yami111 et al. were among the first to propose a software system that depends mainly on 
previous knowledge and experience, which is used as a guide for optimal completion de-
sign using Bayesian Artificial Intelligence. Being aware of a lack of knowledge, knowledge 
transfer, communication and coordination between the engineer, service companies and rig 
personnel, they collected best practices for well completions from data, models and ex-
pert’s knowledge to combine it with a Bayesian decision node (BDN) model with 18 uncer-
tainty nodes and 6 decision nodes using GeNIe (Graphical Network Interface). The varia-
bles include multilateral junctions, treatment fluids, lateral completion considerations, per-
forations, etc. Uncertainties include swelling probabilities with respect to fluid types, fluid 
properties, temperatures, costs, etc. In a case study the authors proved the feasibility of the 
system for completion decisions.  

Most of the probabilities are assigned by experts; many of them are either “recommended” 
or “not recommended”, therefore set to 0 or 1. They can be updated if more data or differ-
ent information is available. Although the system is limited to usage for completion opti-
mization only, it can serve as prove of concept for a small-scale application. In this case, 
the acceptance of the system by the engineers and the integration in their daily work will be 
of special interest.  

Bayes’ Model for Oil/Gas Processing Networks Failure 

Edeko and Mbamalua112 from the University of Benin developed a Bayesian Model for the 
diagnosis of six categories (or hypotheses) of pipeline failures: stress rupture, lack of quality 
control environment, sand erosion, corrosion and natural cause. 

The authors approached the problem of uncertainties by using the Bayesian inference theo-
ry that allows for the update of subjective probabilities if new objective data is found. The 
Bayesian inference requires the connection of observable evidence ei with the hypotheses 
Hi mentioned above by the Bayes theorem. The evidence ei can take on different values 0, 
1, 2,..., n depending on various parameters.113 Then these evidences were combined to evi-
dence vectors or patters114, which again were related to a set of hypotheses. If a certain pat-
tern can be found in the field application, there is a certain probability of the truth of a 
hypothesis.  

The patterns of evidence displace the Bayesian network structure in this case, with the sim-
plification that the evidences were assigned limited discrete values, whereas in a Bayesian 
network continuous probability values that better display uncertainties in most cases are 
assigned to nodes.  
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 For example: for pipeline corrosion, e1 can take the value 0 if the failed section is located in a straight run, or 1 if the 
failed section is located in a bend. 
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Optimal Placement of Horizontal Wells 

With drilling costs taking over a large part of the upfront expenditures in oil and gas opera-
tions, the placement of the well including real-time downhole monitoring is crucial for the 
success of the operations. Well placement decisions are made under uncertainties and have 
to meet multiple objectives, like costs, production rate and well design that are often con-
flicting and non-commensurate. These conflicting objectives cannot be resolved by purely 
physical models, which followed by a cost/benefit analysis. Rajaieyamchee115 and his col-
lege from the University of Stavanger present a multiple-objective decision making ap-
proach based an influence diagram framework with two different extensions, namely 
MAUID (multi-attribute utility influence diagram), which allows to calculate an overall utili-
ty value from diverse monetary or non-monetary utilities, and MOID (multiple objective 
influence diagram), where the inferior decision rules are eliminated in different steps, finally 
applying trade-off values for the non-inferior decisions. The authors found that the 
MOUID was a feasible and suitable decision-analysis tool for that purpose, whereas the 
MOID still required research in order to support large decisions.  

Fuzzy Reservoir Ranking 

Another method for dealing with high uncertainties and multiple objectives has been 
demonstrated by Agbon and his colleges.116 They used a fuzzy model to rank 45 reservoirs 
for gas opportunities. The model had 8 input variables, 20 fuzzy rules and an output varia-
ble, the gas opportunity index. The results were compared to those obtained by conven-
tional ranking methods, such as Net Present Value, Internal Rate of Return, etc. and Deci-
sion Tree - Monte Carlo method. The authors concluded that the Fuzzy Model Method 
could better deal with the vague, non-linear and complex relationships between the input 
variables than the Monte Carlo method.  

Conclusion Background & Theory 

The chapter has provided an overview over concepts the of data, information and 
knowledge from a perspective of computational information processing, which will be mir-
rored in the basic structure as well as in the purpose of the Adaptive Advisory System de-
scribed in the next chapter. Background information on the primary field of application, 
the production monitoring in the oil industry, has been given. The description of the petro-
leum industry shows the peculiarities that lead to difficulties in the application of an intelli-
gent system, but at the same time illustrates the necessity for new approaches to data floods 
and highly complex problems. Bayesian networks, which are described in detail here, seem 
to be the optimum methodology of AI to make the Advisory System learn and adapt to 
new problems and tasks.  
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2 APPLICATION 

2.1 System Overview 

The Adaptive Advisory System117 is a framework for an intelligent technology that captures 
knowledge from experts and experiences, and reapplies it when it processing real time field 
data to identify problems and to help engineers to take the best actions. The Advisor inte-
grates a whole operational process from data collection to an action into one system. The 
system uses methods of artificial intelligence (i.e. Bayesian networks) to constantly learn 
with new tasks adapt to ever changing environments.   

The system is displayed in Figure 18 and Figure 19 (simplified version); it includes three 
layers, the Data Layer, the Information Layer and the Knowledge Layer. The structure is 
based on the knowledge pyramid in described in the “knowledge theory” chapter. The sys-
tem is capable of adapting and leaning in two ways: It follows the general theory and logic 
of learning from extracting knowledge from data and information as well as the Bayesian 
network learning approach within the Knowledge Layer.  

The Knowledge Layer forms the heart of the Advisor and consists of three main elements, 
the Event Detector, the Problem Classifier and the Decision Supporter. The framework 
that embeds the Knowledge Layer includes a Data Layer and an Information Layer.  

In the Event Detector, unexpected signals are detected, such as values above or below 
threshold, missing signals, most likely values for noisy or redundant signals, deviations 
from trends, etc. Alarms can be triggered in serious cases.  

In the Problem Classifier, the identified events from the Event Detector are considered to be 
symptoms for problems. Bayesian networks provide a tool to calculate the most likely 
problems under the evidence of events. For each problem a traceable ticket is opened.  

In the Decision Supporter, a set of actions for each problem is evaluated by their utilities. The 
user can then execute the recommended action, what leads to a closing of the ticket.  

We differentiate three different phases:  

• The (initial) set up phase, where expertise on operations, causal structures, probabili-
ties, etc. together with set up and testing data is used to build the Data, Information 
and Knowledge Layers.  

• The online phase is the operating mode of the Advisor and includes four cases.   
• The adaption phase, where experts can update the Knowledge Layer after evaluation 

of results 

Next to the standard case, we differentiate three cases in the online mode:  

In the case of an immediate action the Event Detector identifies an event, which is classified 
either as alarm or as standard event. For an emergency (alarm), the user is alarmed and 
actions that influence the assets (e.g. shut down) might be triggered automatically. For a 
standard event the resulting problems and decisions are well known and approved, there-
fore actions can also be executed automatically.  
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A guided workflow is initiated either at any stage of the Knowledge Layer either by the user or 
by the system. In this case the user can investigate all steps that led to the symptoms, prob-
lems or actions and try to adjust, update or correct the system to find a suitable solution.  

If the results are ambiguous, i.e. the system does not identify a clear utility for an action, a de-
cision committee or and expert are required to evaluate the priorities and nonetheless find 
a good solution.  

Once a problem is identified, a ticket is opened for this specific problem and resulting pro-
cesses are subordinated. Each ticket requires an evaluation of predicted and actual results 
that help the system to improve its recommendations. 

 

 

Figure 18: System Overview 

 

 

                     

Figure 19: Simplified illustration of the Adaptive Advisory System. 
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The real time operations process, displayed in Figure 20, starts with the acquisition, prepa-
ration and storage of data. The engineers use newly acquired data as well as historical data, 
previous experience, guidelines, etc. to carry out a technical analysis, which already includes 
one or more concepts of actions. For the business analysis, costs of different options have 
to be estimated using cost databases, invoices, contracts, service and equipment bidding 
documents, etc. Based on the results of the business analysis (highest profits, lowest costs 
& risks), recommendations are given and a decision is made by the engineer or the man-
agement that leads to an action being taken. The Advisor is capable of integrating the com-
plete process described above into one single system. 

                    

Figure 20: Real time operations process
118

 

2.2 System Elements 

2.2.1 Data Layer 

The Data Layer is a database that integrates data from various sources, in various times se-
quences and in various formats. Next to historical data, newly generated real time data as 
well as activities in the Advisor, such as opened tickets, events, problems, recommenda-
tions and final actions are stored and accessible any time later.  

Garbage In Garbage Out 

A very crucial step in the whole system is to provide sufficient quantity and the quality of 
data. Any kind of expert, either human or artificial, can only deliver results in a quality that 
is in line with the quality the data it bases its decisions on. Or in other words, if we have a 
perfect decision support system, but do not feed the right data, then there is no way the 
decisions are right.  

As already mentioned, the data available for oil and gas operations diverse in time sequence 
and nature and type of measurement. Often, different software applications have different 
means of collecting and storing data. A very difficult but crucial task is to integrate all that 
data into one system in a way to reduce uncertainties rather than to increase them by diva-
gating evidences.  

Another benefit of using Bayesian networks is that it does not fully rely on data, as for in-
stance a neural network would do, since experts still set up the structures and probabilities 
and therefor can compensate for missing or not correct data.  
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2.2.2 Information Layer 

The Information Layer fulfills two purposes: Firstly generates information and secondly it 
provides a link to applications.  

The generation of information from data has been described in further detail in Chapter 1.1.4 
Data, Information and Knowledge; it includes the interpretation of data, hence inferring 
information from data with the prerequisite of certain knowledge as well as the elaboration 
of information. For example in the Information Layer, models are generated out of data 
points with the knowledge that workover times have a Rayleigh distribution. Static and 
dynamic thresholds or KPIs are defined and elaborated with new data.  

Information Layer provides an interface with the system to external applications or specific 
software and therefore is sometimes referred to as application layer. Examples for such 
applications are reservoir or production modeling software programs that deliver important 
data input as well as may profit from taking data output from the Advisor and complement 
areas of complex modeling that are beyond the Advisor’s capabilities. In this context the 
Adaptive Advisor can be seen as a very general data processor, enabling a linkage between 
people and technology across various disciplines.  

Value of Information 

If the Information Layer cannot provide enough input into the Knowledge Layer, the costs 
of determination of additional information can be calculated by the system. In some opera-
tions, it is possible to make additional measurements outside the normal range, like running 
wireline instruments in a well or analysing the chemical properties of reservoir fluids. What 
influence on calculated utilities does this new information have and how does it change our 
decisions? What is the value of the additional information?  

Bayesian networks in the Problem Classifier and the Decision Supporter include the basic 
function of recommending additional data, if the costs for this are lower than the expected 
value resulting from less uncertainty when making decisions. Rajaieyamchee119 included the 
option of taking an azimuthal test in his dynamic BN. The hexagon is a multi-utility node. 
The optimal decision “What to do?” with the highest utility results could be to conduct an 
azimuthal test. 
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Figure 21: DBN for calculating the value of azimuthal test information
120

 

 

2.2.3 Event Detector 

The first element of the Knowledge Layer is the Event Detector (ED). Events can be ex-
pected or unexpected conditions in the production system that signifies a change of the 
operating state of the system. The methodology for the Event Detector consists of a con-
ventional event and alarm management system, complimented by Bayesian event detection 
methods. The Event Detector is strongly linked to the next element, the Problem Classifier 
(PC), such that clear boundaries cannot easily be drawn. The opportunity arises to con-
struct one Bayesian network that includes both, ED and PC, or to merge two separate net-
works in an early stage of the system installation.  

Challenges in Event Detection121 

Situational dependence refers to the problem that no two alarms are exactly the same. Complex 
systems require similarly complex event detection mechanisms. Certain parameters and 
variables that show one problem in a specific domain are not necessarily applicable to other 
very similar problems. Addressing an event detection problem in one domain may require 
alternative or never-before-attempted methods within other domains. 

Criticality of application means that event detection often requires a high degree of precision, 
i.e. providing a high true positive (detecting an event if it occurs) rate and a low false posi-
tive (prevention of incorrect detection) rate. Also, a high degree of timeliness is required 
for many systems, e.g. a blow out in drilling operations. Therefore, especially for complex 
system event detection, the software processing time should be minimized.  

Large and diverse data sources: The bandwidth of communication, cheap storage and develop-
ments in sensor technologies lead to an explosion of the data sources and the amount of 
data readily available. Sources include unstructured data, text documents, images, audio, 
spatio-temporal, etc. Any single event detection problem may consider a variety of these 
diverse data sources consisting of different data types and formats. Large data volumes re-
quire immense digital storage space and either high computational power or high compu-
ting time. Too much data can lead to a “paralysis of analysis”, which means that an over-
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analysis with too many indifferent options might prevent an actual action being taken by 
the decision maker. Too little data, however, might lead to missed detections and high un-
certainties. Raw sensor data is often plagued by incompleteness and inaccuracies, they are 
noisy and redundant sensors deliver divagating results. 

Network topology refers to the pattern layout of interconnections of the various elements of 
the event detection network, including sensors, transmitting and receiving stations and 
nodes, connected through cables, wires or other wireless communication. Important fac-
tors for efficiently working event detection include care and maintenance of the network or 
the network throughput and capacity. Problems can occur at different stages, such as the 
measurement (sensor failure, wrong calibration, etc.), during signal transfer (fiber-optic 
cables, mud pulses while drilling, satellite, etc.) and at the receiving station.  

Bayesian Event Detection 

An event is an occurrence or activity that is unusual relative to normal patterns of behavior. 
Typical event detection may be classified in four rather broad categories: statistical, proba-
bilistic, artificial intelligence and composite methods.122 Statistical methods include static 
threshold methods, different types of regression (linear, polynomial, etc.), or a time series 
analysis, when successive data points occur after a uniform time interval. Probabilistic 
methods in contrast to deterministic methods with exact values allow accounting for uncer-
tainties. Various models, like the time-varying Poisson process model, the distributed 
Gaussian method are implemented for event detection.123 Methods employing artificial 
intelligence usually are both computationally and informationally intensive; stand-alone 
they require advanced fusion algorithms to integrate data from multiple sources.124 Fuzzy 
methods, neural networks, petri nets etc. can be used according to the requirements of the 
system.  

Integrating event detection in the Advisor has the advantage of using data that is already 
prepared as input for the Bayesian networks and therefore does not require much addition-
al data processing. Still, for some event signals, static thresholds, trend comparisons, etc. 
contribute to optimal event detection.    

A Bayesian network methodology for event detection can deal with uncertainties and noisy 
or redundant signals. Since the network models the physical reality, it is beneficial for 
closed systems containing many non-measurable variables like many reservoir parameters. 
Interferential sensing helps to investigate what is actually going on in the underlying sys-
tem. To setup the event detection system, the Bayesian network can either be trained using 
historical event data, or for the detection of rare events, where no sufficient historical data 
is available, the network and according probabilities can be determined by experts.  

Event Classification 

The Event Detector offers a list of events to the user that is updated in real time. The 
events can be classified by their impact (i.e. monetary value), urgency (i.e. change of impact 
with time) and frequency, as shown in Figure 22. The impact of the event is measured in 
terms of monetary or other value to the company, such as loss of production, costs of 
maintenance, etc. The calculation of the impact value will be an important input for the 
evaluation of utilities of recommended actions in the Decision Supporter. The urgency of an 
event is determined by the required response time. Urgency means that the costs or other 
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risks of an event strongly increase with the time it takes to react, or that another event can 
only be prevented when reacting within a certain timeframe. For example, a sudden in-
crease in sand production can erode the bearing of a compressor very quickly and immedi-
ate action is required. Frequency also is an important classification of events. Some events 
occur only once in a lifetime of a well, whereas other events, like pressure or volume fluc-
tuations, etc. occur hourly or daily.  

The users have the possibility to change the position of the dots on the interface, hence 
changing impact or urgency. The Bayesian network that created the classification is able to 
learn from these changes and better position similar events the next time they occur.  

 

 

Figure 22: Display of events categorized by impact, urgency and frequency. 

Alarm Management 

Some events may require immediate action. A threshold urgency can be set above which 
the events are classified as alarms (red area in Figure 22). In exceptional cases, a callout 
alarm is generated by the system. Predefined personnel are immediately informed via 
phone, smart phone application, pager, email, etc. according to the severity of the event. 
Meanwhile the Advisor identifies the problems that caused the alarming events in order for 
the engineers to optimally and timely deal with dangerous situations.  

Setting the thresholds for alarm generation is crucial for the success of the alarm manage-
ment system. Thresholds can be set for single signals or events, combinations of signals or 
events, and at problem analysis stage at the PC. On the one hand, unnecessary alarms 
floods greatly increase the costs of the system, since alarms require more attention than 
normal events; alarm floods may overcharge the capabilities of the personnel and critical 
situations may be missed. On the other hand, a system not reacting to critical situations is 
even more dangerous than not having an alarm system at all.  

2.2.4 Problem Classifier 

A problem is an occurrence that currently or in the future acts against the objectives of the 
company hence the elimination of the problem results in a business opportunity of the 
company. Problems in most cases are indicated by a combination of single point measure-
ment deviations and point out complex issues that cannot be measured directly. Therefore 
problems usually include a probability of occurrence. 
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The Bayesian network of the Problem Classifier includes nodes for symptoms and nodes 
for problems. Symptoms can either be data, information from the Information Layer or the 
Data Layer respectively, real time measurements from the field, or the events that have 
been identified by the Event Detector. 

Naïve Bayes and Logic Regression 

There exist two types of models, the generative and the discriminative model as shown in Fig-
ure 23. Dealing with the interactions of problems (Pr) and Symptoms (S), discriminative 
models directly estimate the parameters of P(Pr|S), whereas generative models directly 
estimate parameters for P(Pr) and P(S|Pr). The former is often referred to as logic regres-
sion, and the latter as naïve Bayes. 

With the generative model, we can use Bayes rule as the basis for designing learning algorithms 
in the following way: We wish to learn the probability of a certain problem given the symp-
toms, P(Pr|S), we use the training data set to learn estimates of P(S|Pr) and P(Pr). New 
symptom cases can then be classified using these estimated probability distributions, and 
the Bayes rule P(Pr|S) = P(S|Pr)!P(Pr)⁄P(S). Learning Bayes classifiers typically requires an 
unrealistic number of training examples some form of prior assumption is made about the 
form of P(S|Pr). The Naïve Bayes classifier (generative model) assumes all attributes de-
scribing symptoms are conditionally independent given a problem. This assumption dra-
matically reduces the number of parameters that must be estimated to learn the classifier. 
Naive Bayes is a widely used learning algorithm, for both discrete and continuous nodes.125

  

Logistic regression is a function approximation algorithm that uses training data to directly 
estimate P(Pr|S), in contrast to Naive Bayes. In this sense, Logistic Regression is often 
referred to as a discriminative classifier because we can view the distribution P(Pr|S) as 
directly discriminating the value of the problem (target value) for any given symptom.126 

It can be concluded that in most cases the constructor of a Bayesian network is advised to 
use the structure of the generative model rather than the discriminative model. In case of 
the discriminative model, a problem that can be detected by 5 symptoms with 3 states each, 
results in 53 or 125 different combinations. In order to solve this, either 125 different prob-
ability estimates or unrealistically large data sets are required. With the generative model it 
is easier to address complex problems and integrate separate expert knowledge domains 
into the network, since experts can be interviewed individually on their estimations of iso-
lated symptom problem interactions.  

            .  

 Figure 23: Generative model and discriminative model 
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Temporal Bayesian Problem Solving 

Whereas naïve Bayes and logic regression refer to non-temporal problem solving, dynamic 
Bayesian networks (DBN) offer the possibility to include time aspects, as already mentioned 
in the theory part. The temporal nature of causal relationships is often essential to problem 
solving and decision-making in oil and gas operations. DBNs allow predictions of future 
parameters like reservoir pressure or production rates and can to a certain extent integrate 
functionalities of external models into the Bayesian network.  

Many cause-effect-relations include a temporal aspect. For instance a down-hole pump 
failure at a time t=0 will lead to a reduced flow rate at surface at a time t>0. Surveillance of 
trends will offer important hints and insights. Generally, time plays an important role in the 
evaluation of probabilities of certain problems, i.e. older installations and facilities will usu-
ally require more frequent maintenance than new ones. 

Modelling The Physical Reality 

When constructing a Bayesian network, we have to differentiate between actually observa-
ble variables and the physical reality that is unknown. In order to better model the physical 
reality, non-observable or hidden variables are included in the network. An example by Giese 
and Bratvold127 is illustrated in Figure 24. Gas influx depends on the equivalent circulation 
density (ECD) and the pore pressure. Since it is not possible to measure the ECD, it can 
only be estimated from mud weight and flow rate. The pore pressure is a function of the 
depth and the geological properties around the wellbore. The wellbore is not perfectly ver-
tical, so the total vertical depth (TVD) has to be derived from the measured depth, i.e. the 
length of the wellbore. The more the hidden variables are considered in the model, the 
better the physical reality is mirrored by the BNs, which leads to more accurate results and 
a better understanding of cause-effect-relations of problems.  

 

Figure 24: A network for gas influx including observable and hidden variables.
128

 

2.2.5 Decision Supporter 

An important step in a real time operations process (see Figure 20) is the business analysis. 
The business analysis is usually conducted by the engineer, who designs the concepts, but is 
often regarded as an annoying task as being not within the core responsibilities of the engi-
neer. Accordingly, some engineers may pay not enough attention to this part of the analysis 
although it is decisive for the finally decision. The decision supporting part of the Advisor 
enables the evaluation of the utility of several different options with regards to the business 
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opportunity. This step is automatically performed for each option selected and includes an 
evaluation of the monetary value of an option, as well as risks and other factors like envi-
ronment, availability of equipment or the compliance with the company strategy.  

The Decision Supporter is a Bayesian network extended by influence diagrams with input in 
form of real time data, data and information from the Data Layer and the Information 
Layer, identified events and classified problems and an output in form of utilities for differ-
ent recommended actions. Just like for the Problem Classifier, hidden or intermediate 
nodes complement observable variables and the differentiation between discriminative and 
generative model is valid. 

Multiple Criteria Decision Making 

In most complex real world problems, decision criteria are conflicting in nature and their 
interrelations are often interdependent in complex and uncertain ways. Moreover, addition-
al external factors, like the oil price or costs of services, play an important role and have to 
be included.  

In practice, Bayesian networks for decision making in oil and gas operations will be dynam-
ic, include multiple criteria and are extended by influence diagrams (IDs). They include 
chance nodes, decision nodes and utility nodes. For each problem identified in the Problem 
Classifier, the best action over all available alternative actions has to be chosen. The best 
alternative is the one that meets the objective in the best possible way, hence maximizes the 
overall utility. Figure 25 shows a schematic Bayesian network including a set of possible 
actions (alternatives), a set of criteria and sub-criteria, factors influencing them and a set of 
objectives subsumed in one utility node.  

 

Figure 25: Multi criteria decision making
129

 

Objectives 

The objectives and the weighting of different criteria in oil and gas operations strongly vary 
with varying policies and goals in companies. The objectives for oil and gas operations can 
be summarized in four categories: economic, strategic, operational targets and HSEQ & 
Risk130.  
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The economic target can be assessed with the calculation of the net present value (NPV). 
This compares capital and operational expenditures with additional revenues generated (oil 
price, production rate) under temporal aspects (discount rate). The calculations may include 
simpler profit calculation, or use other criteria (e.g. internal rate of return) according to the 
company’s accounting policies.  

HSEQ & risk includes the probabilities of accidents like oil spills, blow outs, injuries, etc. 
For example, many injuries on an offshore rig occur while lifting operations, if a lifting 
operation is included in one of the options, its utility is decreased accordingly.   

Operational targets are short-term to medium-term targets and address efficiencies of pro-
cesses (e.g. reduction of non-productive time), logistics (e.g. high utilization of equipment), 
etc.  

Strategic targets address the company’s preferences and long-term targets. An example for a 
strategic target would be a companies plan to increase its overall barrels produced per day, 
then additional production would be weighted more than costs to reach this goal.  

The main utility value is a combination of various sub-utilities, therefore a unified evaluat-
ing system has to be established that allows to compare monetary and non-monetary tar-
gets. 

Dynamic Decision Making 

Like in problem classification, DBNs account for the temporal aspects of decision making. 
The history of an asset and right time for taking actions such as maintenance, work over 
operations, employments of artificial lift methods, etc. play an important role in maximiz-
ing the overall profit.  Figure 26 shows a BDN for decision making including a super-value 
utility node that subsumes sub-utilities at different points in time.  

The dynamic character of the network allows accounting for temporal interdependencies. An 
example for this can be found in the case study in the next chapter. There is one option to 
increase the initiation pressure of a gas lift valve. Assuming the Problem Classifier has de-
tected problems with the surface gas flowlines and the compressor, it is only recommenda-
ble to increase the pressure if the problems are solve in the first place, because otherwise 
the gas consumption and pressure losses are too high for the rather small resulting gain in 
oil production.  

         

 Figure 26: Dynamic influence diagram with local utility functions and a super-value node.
131
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2.2.6 Other Elements 

The Layers of the Advisor are just one part of the system. The structure shows a close link 
to the human actors, the users (engineers, expert or the management), to the element of an 
action, which has to be carried out to close a ticket and the asset that closes the loop.  

Users 

Users are an integral part of the Adaptive Advisory System. It should not be seen as an in-
telligent machine replacing engineers and experts, but as a knowledge sharing enabler: The 
system learns from its users and users learn from the system.  

The term “users” refers to all personnel interacting with the system. Users can be engi-
neers, experts or managers. The standard user could be a young engineer, who does not have 
a lot of practical experience but understands the nature of the operations the system deals 
with, hence he/she benefits optimally from the knowledge provided by the advisor. 

Experts are engineers or scientists with a more profound knowledge on either specific areas 
of oil and gas operations (geologists, drilling engineers, etc.) or generalists, who have aggre-
gated a lot of experience with an asset, including error-proneness of tools and other peculi-
arities. The person responsible for the initial design of the Advisory System will be called 
an expert as well. The in-depth knowledge of different experts is required to initially set up 
the system for the determination of causal relationships, for verifying the plausibility of 
probabilities learned from data and for estimating probability values and utilities.  

Managers interact with the system if it provides several alternatives with a similar utility val-
ue. The manager or any other decision committee takes over the responsibility if the results 
are ambiguous. Also, managers may use the system to retrieve higher level KPIs and other 
data they require for certain analyses.  

Action 

One of the most important principles in alarm and event management is that each event 
requires an action to be taken. The process of event detection, problem classification and 
decision support is only completed with an appropriate action that causes a change in the 
asset and yet in the signals reaching the Advisor.  

Assets 

The term asset is used in a broad sense and can refer from a single machine, a well, a group 
of wells, an offshore platform, a field, reservoir, an underground gas storage plant, a pro-
duction plant, etc. to the whole production system of a company. Signals are measured by 
instruments directly at the asset and whenever an action is performed, they influence the 
newly recorded signals and thus the Advisor. 

2.3 System Workflows 

2.3.1 Initial Setup 

The construction of the Bayesian network can be conducted in four steps: variable defini-
tion, structure specification, factor association and parameter estimation.132  
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Variables are the nodes of the network; they can either be chance, decision or utility varia-
bles. Along with the category, the type and state of the variable have to be defined. The 
type of a variable refers to its nature being either discrete with mutually exclusive states, or 
continuous. In practice it is easier to start with a simple initial model, carefully selecting 
variables according to its importance and then in a next step adding other variables, until 
the model is accurate enough.  

The structure of the model ideally mirrors the physical reality of problem causalities. Experts 
can use their own knowledge and previous experience, literature knowledge and in some 
cases even training data to set up the structure. Again, starting off with a simple model and 
gradually increasing the complexity and adding small domain fragments will ensure the 
functionality of the model. In case of the Advisor, the Event Detector, Problem Classifier 
and Decision Supporter should be set up as individual systems and then be integrated in a 
subsequent step.  

Factor association refers to the relationship parent variables and child variables. A factor de-
fines the functional form of how the outcome of the random variable of the child depends 
in the state of its parents.  

Parameter estimation can be carried out in three different ways. The easiest and most accurate 
way is to make the network learn the probabilities from sufficiently large and good quality 
training datasets. Datasets with these features are often not available. In this case experts 
can estimate the probabilities based on their previous experiences within a certain technical 
aspect of the Advisor. The third option is to derive probabilities from literature. The initial 
probabilities are adapted automatically in the online mode of the Advisor, when it deals 
with new data, problems and solutions.  

2.3.2 Online Mode 

The online mode is the normal operational mode of the Adaptive Advisor System. Signals 
are measured at assets in real time and complement already available data and information 
at every point in time. Users, experts and managers have access to the system and interact 
with it for their daily tasks. The system alarms, lists of events and problems and recom-
mends actions for the users. It captures all human interactions with the system, evaluates 
decisions and automatically adapts its calculations to changing environments and new da-
tasets.  

In the online mode besides the standard mode we differentiate three cases, the immediate 
action, the guided workflow and the ambiguity of results. The modes are displayed in form of se-
quence diagrams and can be found in the appendix. These three cases are described verbal-
ly and are displayed in form of sequence diagrams that can be found in the Appendix. The 
sequence diagrams shall support the software engineer when programming the Adaptive 
Advisory System.  

Sequence Diagrams 

Sequence diagrams are dynamic diagrams in UML (unified modelling language), which stand-
ardizes the visualization, specification, construction and documentation of a variety of ob-
ject-oriented systems. Sequence diagrams emphasize the temporal aspects of dynamic dia-
grams and show how processes operate with one another and in what order. The sequence 
diagram has two dimensions: On the horizontal line, objects are listed and the vertical line 
represents the time. Objects possess parallel dashed lines, so-called lifelines, showing the 
existence of the objects in a certain period of time.  
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Interactions between objects are represented by horizontal arrows with full heads, which 
point from the emitter to the recipient (activation of method) or stick heads (return mes-
sages); the name of the activation method is written on top of the arrow.   

Additionally, the activation boxes, or method-call boxes, are opaque rectangles drawn along 
a certain time sequence in the lifelines to represent that processes are being performed in 
response to a message. Sequence diagrams for immediate action, guided workflow and am-
biguity of results can be found in Appendix h, i, j.  

Standard Case 

In the normal operating mode, signals that are measured at the assets arrive at the Data 
Layer of the system, where they are stored. The Information Layer processes the newly 
included data and integrates it with already available information. In the Knowledge Layer, 
the Event Detector receives data and information to be able to identify events as unusual situ-
ations. The event detector calculates urgency and impact of events and displays them for 
the user.  

The events, together with other data and information, function as symptoms (input) for the 
Problem Classifier, which ranks different problems or sets of problems according to its prob-
abilities, given the symptoms. At this stage a ticket it opened for each most likely problem. 
A ticket stores all information available to a certain problem; it requests an action, since it is 
only closed after a decision has been made and an action has been taken. Problem tickets 
are the main classification system of problems; they establish interrelations with and refer-
rals to previous and similar problems. 

For each ticket (problem) the Decision Supporter lists recommended actions according to 
the calculated utility of an action and provides it to the user. Based on the recommenda-
tions of the systems the user can make a final decision and initiate actions. The user will be 
asked to adapt calculations if necessary and provide additional information on the action 
taken (e.g. time to evaluation of action, establish connections with other comparable ac-
tions, etc.). Once the action has been performed the ticket status is changed to “evaluation 
required”.  

Immediate Action 

There are two cases, where the Advisor takes immediate action, bypassing the decision 
process with users, experts or management: emergencies or standard situations. The Event 
Detector is designed to identify alarms, which are events with a high urgency requiring im-
mediate action (e.g. if certain predefined thresholds are exceeded). In this case, the user is 
alarmed and actions that influence the assets (e.g. shut down) are triggered automatically to 
keep the damage as low as possible. A standard situation is a category of problems or situa-
tions that have occurred frequently in the past. The resulting problems and decisions are 
well known and approved; to save time and reduce the workload of engineers, the actions 
can be executed automatically.  

Guided Workflow 

A guided workflow can be initiated at any stage of the Knowledge Layer. The initiator can 
either be the user, if the recommendations, utilities, problems etc. seem unrealistic, or by 
the system, if it encounters obstacles in its tasks, such as missing information, completely 
new situations, errors related to the networks algorithms, etc. In this case the user or expert 
can investigate all steps that led to the symptoms, problems or actions in detail and try to 
adjust, update or correct the system to find a suitable solution. Figure 19 shows an example 
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for the guided workflow investigation process: The system displays the obstacles and fur-
ther allows the user to click deeper into inputs, calculations and results.  

 

 

Figure 27: Guided workflow  

Ambiguous Results 

In case the Advisory System cannot offer a distinct satisfactory solution (e.g. several prob-
lems with the same likelihood or similar utilities for recommendations, human interaction 
is requested). Probabilities, priorities and weights of intermediate utilities can be adapted by 
the user or experts to identify clear recommendations. In case the results are still ambigu-
ous, the alternatives are handed over to the management or another decision committee 
that makes the final decision. Capturing the decision maker’s reasons for or against various 
alternatives is an important step for the further improvement of the Advisory System.  

2.3.3 Learning 

The Advisor captures all interactions of users, experts or the management and automatical-
ly adapts the structures of the Bayesian network(s) and the probabilities of the nodes. With 
each set of events or problems, the Advisor can increase its database and knowledge space; 
each data input, decision or action further increases the accuracy of recommendations, just 
like an engineer, it learns with every task. It is important for the engineers and other users 
to understand that each step they do not perform together with the system will result in a 
knowledge gap and thus lead to a lower performance.  

Routine Evaluation 

The evaluation is an important step to sustainably improve the system and learn from bad 
as well as good experiences. For each ticket (problem) an evaluation is requested by the 
system. Before the ticket status is changed from “active” to “evaluation required”, the user 
is asked to provide additional information necessary to optimally perform the evaluation, 
such as the time frame for an evaluation that changes according to the problem or action. 
For example, if the system recommends to install artificial lift system, it can take up to 
months to several years until the action has been performed and even longer until the ex-
pected profit can be realized. After some time, the system can suggest time frames auto-
matically. Also the KPIs that determine the success or failure of an action should be pro-
vided or reviewed by the user.   
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Adaptation 

Once the time limit for the evaluation is reached, the user is informed and provided with 
details on KPI’s, calculations, etc. He/she compares expected and actual outcome and in a 
semi-automated process determines the reasons for divagating values.  

In order to also take good performance into account, a weighting system can be imple-
mented: for satisfactory performance, the user can define a weighting factor for the whole 
set of data, so the relative influence of the specific set of data on the network is increased.  

For bad performances, further investigation similar to the guided workflow is required and 
the systems structures and probabilities are updated. It is essential to perform an evaluation 
of all steps and calculations, since correct final results are not a guarantee of correct inter-
mediate results.  

2.4 Case Study 

The following case study demonstrates the principles of using Bayesian networks for event 
detection and symptom and problem classification for a gas lift oil well. For the demonstra-
tion case the software ‘Netica’ by Norsys Software Corp. has been used. Although the ex-
ample presents a real problem set in petroleum production operations, the numbers are not 
based on actual data, evidences, symptoms and problems do not represent the full scale of 
possibilities. The examples are over-simplified and their purpose is pure demonstration of 
the principles of Bayesian networks.  

Overview 

The example deals with problems in an oil field with several wells that are produced with 
continuous gas lift. When the reservoir energy is too low for the well to flow, or the pro-
duction rate desired is greater than the reservoir energy can deliver, it becomes necessary to 
put the well on some form of artificial lift to provide the energy to bring the fluid to the 
surface. Gas lift is one of these artificial lift methods, whereby gas is injected in the produc-
tion tubing to reduce the hydrostatic column of the fluid column. The principles of gas lift 
method are shown in Figure 28. 
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Figure 28: Gas lift method
133

 

2.4.1 Event Detection 

Bayesian networks will only be one method amongst many for event detection in well 
problem analysis. Figure 29 shows a schematic Bayesian network that evaluates the actual 
production rate in relation to the projected forecast. The network includes several meas-
urement nodes, like various pressure measurements, fluid volumes, temperature, etc. The 
resulting real time production rate can be displayed as an absolute number (i.e. in bbl/day) 
or trigger an alarm if it is above or below a certain threshold. Classified as “high”, “normal” 
or “low” it functions as input for the problem classification or decision support examples 
in the next chapter.  

                                                
133

 Modified from Schlumberger (2000), p. 3 
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Figure 29: Bayesian network for production rate monitoring 

2.4.2 Problem Classification 

The well problem analysis example deals with an oil well being produced with the method 
of continuous gas lift. 5 Parameters were selected for provision of evidence for the classifi-
cation of problems:134 

• Well Flow 
- Flowing 
- Not flowing 

• Fluid Production 
- Above anticipated production rate 
- Equivalent to the anticipated production rate (normal)
- Below anticipated production rate  
- No production rate 

• Gas Injection 
- Gas intake 
- No gas intake 
- Irregular gas intake 

• Fluid Pressure: The actual pressure curve from the bottom of the well to surface 
shows a change in slope at a certain depth 

- Slope 1: One distinct slope change at depth of operating valve 
- Slope 2: One distinct slope change at depth different than operating valve 

depth 
- Slope 3: More than one slope change 

• Temperature:  
- One distinct temperature peak and small temperature difference at depth 

above operating GLV 

                                                
134

 The basics for the selection, a table on the assessment of well problem analysis, can be found in the Appendix.  
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- One distinct temperature peak at depth different than operating GLV depth 
- Multiple temperature peaks 
- No temperature peaks 

These 5 parameters function as evidence for the following problems:  

• Problem 1: Surface gas flow failure  
• Problem 2: Operational gas lift valve is plugged 
• Problem 3: Gas lift valve port size too small  
• Problem 4: Communication between casing and tubing  

The model in Figure 30 displays a Bayesian network with 6 chance nodes. The 5 grey nodes 
incorporate the evidences of the problem. The user can select a certain state of each pa-
rameter, e.g. the “well flow” to either yes or no by clicking on it. The selected state then 
has a probability of 100, which corresponds to a certain occurrence of that state. The yel-
low “Problem” node shows the probability of occurrence of problems 1, 2, 3, 4 or other 
problem according to the selected parameters.  

In the example, the most likely problem is problem 1, a surface gas flow failure. The Bayes-
ian network assigns a probability of 83%.  

The model has been trained with a set of historic parameters that are shown in Figure 31. 
The model could also be used the other way around: assigning a probability of 100% to a 
certain problem state, the probability of occurrence of the states of parameters is displayed 
in the corresponding nodes that can then be compared to actual findings.  

 

                   

Figure 30: Bayesian network for well problem analysis, modelled with Netica. 
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Figure 31: Part of training data table for the well problem analysis Bayesian network. 

2.4.3 Decision Support 

The Bayesian network for problem classification hinted to failures of the gas flow at the 
surface. This helps to further investigate different parameters, to come to the best recom-
mendation for this problem set.  

Technical Background135  

Continual gas lift method has been applied on oilfield "K" since 1988. In the early period 
of its operation, in conditions of constant injection pressure, low water content in produc-
tion (inactive water inflow), and relatively high value of reservoir pressure, an economical 
and stable performance has been achieved. 

The initial specific consumption of gas has ranged between 200-300 m3/m3, and has main-
tained in normal conditions. 

However, unforeseeable instability of injection pressure (often compressors' failures and 
lack of spare parts, as well as injection pressure’s dependence on main pipeline pressure), 
have caused the specific gas consumption volume increase up to 800-1200 m3/m3. 

Such conditions have led to an average production rate decrease in all the wells (8 in total), 
and to production fluctuations (1.5-12 m3/d). 

Figure 32 shows a two – pen charts for one of the wells in the K field. The erratic condi-
tion of flow is indicated by wide variations in the pressure on both the casing and the tub-
ing. The Event Detector would indicate such pressure variations and forward the infor-
mation to the Problem Classifier or Decision Supporter.  

 

                                                
135

 cf. Solesa, Case Study K Field (2004) 



Application 

 

 
68 

           

Figure 32: Two - pen chart for continuous gas lift
136

 

In Figure 33, the oil production rate is displayed as a function of the injection gas rate and 
the injection gas pressure. The graph is based on a simulation; hence there is a possibility to 
increase the gas pressure from currently 28 bar to 32 bar or 40 bar, which probably will 
result in an increase in oil production. The model is produced by an external application, 
but the initiation is derived from the Advisor, because it identified a positive “value of in-
formation”.  

 

                       

Figure 33: Oil Production as a function of injection gas rate and pressure
137

 

                                                
136

 Solesa, Case Study K Field (2004) 
137

 Solesa, Case Study K Field (2004) 
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The Bayesian Network 

The Bayesian Network for decision support suggests an optimal action facing a certain 
problem. It consists of 4 grey chance nodes, two blue decision nodes and two red utility 
nodes (hexagons).  

In summery, the parameters and selectable states are the following: 

• Conditions regarding the surface pipeline 
- OK 
- Pressure and rate fluctuations observable 
- Wrong diameter, which leads to high friction pressure losses (from previous 

analysis) 
• Gas consumption for the gas lift operations 

- Low 
- Medium 
- High 

• Initiation Pressure (Pini) 
- 28 bars 
- 32 bars 
- 40 bars 

• Production rate 
- Low 
- Medium  
- High  

With decision node “TestPini”, the user can decide if he/she wants to confirm the model 
in Figure 33 with an actual well test. The utility calculation for this node incorporates the 
initiation pressure and the production rate, with the utility of testing being higher if the 
production rate is low, since it involves more uncertainty. If the production rate is at its 
estimated limit already, testing does not add much more value for the decrease of uncer-
tainty.  

The test involves costs, but its “value of information” (see Chapter 2.2.2 Information Lay-
er) is a reduction in uncertainty of predicted production rate increase. Therefore it is capa-
ble of affecting the utilities of the recommended actions. Comparing Figure 34 and Figure 
35, the Decision Supporter network with selection of yes and no at the chance node “Test-
Pini”, the utilities of different actions are higher when certainty about increases in oil pro-
duction rate is increased. A workover operation is only justified (positive utility) if a test 
approves a resulting increased production rate. Just like in a decision tree, the expected 
monetary value depends on the probability of occurrence.  
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Figure 34: Bayesian network for decision support with decision for the production test 
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Figure 35: Bayesian network for decision support with decision against the production test 

In this example, the utility values are indexes that are manually entered in a table provided 
by Netica. Figure 36 shows the utility table for the node “recommendations”. It involves 
the type of recommendation, gas consumption, condition of the flowline and the produc-
tion rate. If the flowline is OK and the gas consumption low, changing the flowline in-
cludes higher costs then benefits (negative utility). Whereas if a high gas consumption with 
fluctuating pressures led to a low production rate, that can be increased by exchanging the 
equipment the gain may be large.    
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Figure 36: Utility table for the utility node Y. 

The Bayesian network calculates a rather high utility for the action “exchange of flowline” 
as well as for the “change of compressor”. Increasing the initiation pressure is also recom-
mended since its utility is greater than 0 in both cases. A work over operation is not rec-
ommended if the pressure test is not conducted, since the costs of such an operations 
would exceed the unlikely benefits of increased production.  

2.4.4 Advisor in Practice 

For the real engineering application, all three parts of the Knowledge Layer, the Event De-
tector, Problem Classifier and Decision Supporter will be interconnected systems that do not 
require separate approaches for state selection, etc. The nodes can also be continuous to 
incorporate the actual values of the parameter, e.g. gas consumption 300 m3/m3, instead of 
high – medium - low states. This reduces the engineer’s subjectivity when defining different 
states.   

The Event Detector enables an automatic recognition of different states, e.g. a slope change of 
the pressure curve in the height of the gas lift valve, such that the workload of the user can 
be reduced.  

Utilities can be calculated more accurately by using functions that include costs of opera-
tions, oil price, expected changes in production volumes, etc. The unit can either be a 
monetary value or another index that includes non-monetary values, like environmental 
issues, company strategy, etc.  

For an actual engineering application the Bayesian networks are much more complex than 
the shown examples. A dynamic component of the network allows a prediction of the fu-
ture, hence includes a timeline and an “urgency” component. The recommendation could 
then include conditions, like change initiation pressure only if flowline and compressor are 
exchanged before, to ensure that enough gas is available.  



Application 

 

 
73 

2.5 Implementation 

2.5.1 User Interface  

The Adaptive Advisory System must be designed so simply and intuitively that a person of every age and no 
computer skills can use it without difficulties or training. 

The nature of the user interface proposed here is based on the latest development of social 
media platform and is revolutionary in context of technical applications, since it represents 
a shift from rigid purely technical hierarchical structures to a network structure that en-
compasses not only all hardware of oil and gas operations but also closely links people and 
technology. It may seems unprofessional to include “playing around tools for the bored 
youth” into this work, but these tools have shown a very efficient way to manage the com-
plex world of social relationships and they will sustainably change the way we are using new 
web based developments in areas of our lives that we would have never connected with 
these technologies a view years ago. Slowly the web 2.0 generation will grow into the work-
ing age and revolutionize the way we are making use of computers and artificial social and 
technical networks within companies.  

The smartest new software developments and technological often fail when it comes to 
user acceptance. Often, the highly sophisticated software simply is too complicated for the 
user, hence the barrier of getting familiar with using the software and the working princi-
ples are too high, which leads to substantial investments being made in vain.  

Highly sophisticated software does not necessarily require highly sophisticated software 
users. Quite the opposite, software developers have to pay special attention to the user 
friendliness of the interface, which includes an intuitive understanding, clarity of the func-
tionality and customizability. 

The aging workforce of the petroleum industry has a special implication on the user inter-
faces, since employees in their 50ies have a different attitude to computers than fresh re-
cruits that grew up with new technologies. Software for technical applications mostly fo-
cuses on the correctness of results; the user perception is given a back seat. 

The Adaptive Advisory System learns from interactions with the user. Important here are 
the time of usage, the variety of problems it is used for and the interconnection with tasks 
next to the pure engineering, like accounting, budgeting or purchasing. The more often the 
Advisor is consulted for a wide variety of problems, the larger the data base and the more 
accurate recommended solutions and results get. Next to the engineers, managers or other 
personnel like accountants might use the Advisor for certain tasks like to access single data 
points or make an analysis on performance. The size of the network of people that use the 
system is crucial to its success. The user interface must be designed also in a way that these 
people do not require special training to use the Advisor, to ensure the biggest possible 
interaction between employees and between employees and the Advisor.  

2.5.2 Developments of Web 2.0 

Within a few years, the usage of the Internet has become an integral part of our daily lives. 
Some years ago, we have checked our mails every other day; now we are online 24 hours 
using our home computers, smart phones or tablet computers. The Internet coverage has 
reached 30% of the total population worldwide and almost 80 % in countries like the US, 
Germany or Austria.138 Not only the amount of people using the Internet has increased 

                                                
138

 The World Bank Group (2011) 
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tremendously over the last years, but also time we spent using it per day has gone up.139 
Web 2.0 or the ‘participative web’ including Facebook, MySpace, Twitter, LinkedIn and other 
so called social media platforms have strongly participated to as well as benefited from this 
development.  

Facebook, a social networking service, which has reached more than 750 million users from 
its launch in 2004 to July 2011 after showing exponential growth rates140, is a good example 
for the success factors of social media: The dynamics of the social network attract new 
people on with an even bigger rate, the bigger the network community has grown. Also the 
time that users spend on Facebook increases with their personal network. It allows the 
naturally curious users to retrieve information, or gossip, anonymously, which is a truly 
addictive feature.141  

Facebook has users among all age groups. Once entering the page it only takes a few clicks 
to feel familiar with the functionality. Hence another key factor of Facebook’s success is its 
intuitive and easy user interface. The structure of the website is less hierarchical but very 
interconnected. All names, pictures, photo albums, and external applications are highlight-
ed and include a link that automatically leads to the topic we’d like to investigate. The user 
can customize his / her personal news wall, by applying filters, following (like, add friend) 
friends, companies, news providers and other topics of interest.  

2.5.3 Instruments 

Looking at the overwhelming success of Facebook, Twitter and other social media, there 
are some lessons companies can learn from them when designing new tools for technical 
problem solving and knowledge management: 

Private Profiles and Participation  

If every user of the Adaptive Advisory System is given his/her personal profile the user 
acceptance, transparency and knowledge management in general will greatly benefit from it. 
Actions taken are connected to names and faces, hence others can identify experts in cer-
tain areas and immediately know whom to address for certain issues. Users can leave com-
ments or pose questions.  

There have been knowledge management efforts in creating tools for company wide por-
tals for lessons learned and knowledge sharing among knowledge groups in petroleum 
companies.142 Integrating these tools into a system that is in daily use of the engineers and 
experts would help to solve the problem of user acceptance and participation. The possibil-
ity to “comment” on literally everything in the Advisor’s interface allows to make individu-
al talks public and to record discussions and solution finding processes. 

A side effect of the personal profile can be obtained by the utilization of the addictive na-
ture of social media: The more “personal content” the users share with each other with this 
tool (e.g. pictures of rigs, family, status updates like “I am on holiday for the next two 
weeks”, and a company internal network of friendship), the more time they spend with the 
software. One might argue that they might spend more time with the personal data than 
with the technical data, but as long they are logged into the Advisor and receive alarms and 
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 Beifuss (2008) 
140

 Facebook (2011) 
141

 Cohen (2009) 
142

 For Example: Halliburton, Smith (2007) 
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follow activities in the assets, the overall benefits are largely increased under the aspects of 
knowledge management.  

Figure 37 shows schematically how the GUI of the Advisor could look like. In the “News” 
page it lists a selection of tags concerning assets within the engineer’s responsibilities and 
from a certain kind (here: Alarms). Several high level pages can be selected (News, Map, 
BN, Actions, Analysis, Users) and accordingly subsequent lower level pages (e.g. different 
stages of the Knowledge Layer BNs). The privacy setting and displayed information of the 
user are solely in his/her personal responsibility.  

 

 

Figure 37: Schematics of the GUI 

Hardware Profiles 

Just like every user has a profile with important information, the same is valid for assets, 
fields, wells, machines, etc. according to the level of detail of the operator. The individual 
profiles contain detailed technical information as well as links to events, problems or ac-
tions taken always connected to the person that has taken the action. This shows clearly 
and publicly related responsibilities and who to address for certain issues.  

For example the profile of Well B1 contains an information page with a summery and de-
tails on the drilling process and links to the drilling report, on the completion and all rele-
vant information to events and problems that have been identified in correlation with Well 
B1. The profile page of Well B1 contains actions taken for the lifetime of the well, such as 
shut-ins, work-overs, etc. in chronological order. Dynamic filters and the search function 
enable quicker and more precise results.  

A tag cloud is visual representation of text data, which shows the weighted connection of 
tags. Important (often used) connections are highlighted by colour or front size. In Figure 
38 a tag cloud on the profile shows the connections of the Well B1 within the network. 
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One glance allows the user to associate the well with a certain set of the most probable 
issues, responsible people and other similar wells.  

 

Figure 38: Exemplary tag cloud for well B1 

Personalization 

“Create your own Advisor” might be a motto for the graphical user interface of the Adaptive 
Advisory System. No single user would see the same things when logging into the system. 
The interface consists of different element that users display or hide ad libitum depending 
on their responsibilities and personal preferences.  

Personalization of the Advisor is one method to overcome the data flood. Users subscribe143 
to the single or groups of hardware profiles according to their personal responsibilities, i.e. 
countries, assets, wells, fields, problem areas, etc. and according to the level of detail they 
require information, i.e. country – wide for managers vs. specific tools for engineers. Once 
subscribed, the users get the latest information on their personal news wall and alarmed by 
phone, pager, etc. only in their personal area of responsibility.  

The Cloud 

Cloud computing leads the way towards a computing service rather than seeing computers 
and network connections as a product. It enables to share computational power, storage 
capacity, software applications, files and other data via the Internet or Intranet connection, 
enabling a real time access from any place in the world by any number of people. Cloud 
computing is currently facing a huge hype in the IT business. IDC estimates that by 2010, 
15 % of all digital information in the ‘Digital Universe’ will be part of a cloud service.144 

Computational power storage capacities of a whole company could be combined to deal 
with peak loads, hence cloud computing enables us to reduce the calculation times of com-
plex and huge networks. 

Ideally, the Adaptive Advisory System is a web application that allows access from all loca-
tions worldwide by computer, laptop, tablet computer or smart phone with only the pre-
requisite of an Internet connection. Employees can enter their profile and track the opera-

                                                
143

compare to “follow“ – Twitter or “like“ - Facebook
144

 Digital Universe Study (2010), p. 4 
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tions on business trips or comment in real time when visiting the rig site and they can use 
any device for their routine work without being dependent on a specific workstation.  

2.5.4 Transparency 

When it comes to the implementation of the software, one very important factor for the 
success of the Adaptive Advisor and a competitive advantage for the company is transpar-
ency of the operations. As shown in Figure 39 three main areas of transparency: software, 
models & calculations, actions & evaluation.  

 

Figure 39: Areas of transparency 

Transparency of Software 

Most software that is used today is protected and all rights are reserved; hence the code is 
hidden and can neither be understood nor adapted by IT proficient users. In contrast open 
source software allows its users to study, change and improve145 the software.  

The implementation of the Adaptive Advisory System in different companies sets the tasks 
of creating interfaces with any different applications and other company specific require-
ments that may change with time. Allowing the employees of a company to re-program 
parts of the software of the Advisory System is the optimum way to ensure the truly adap-
tive nature of the software. People that actually use the software on a daily basis have the 
best ideas for improvements and how to implement them. However, the changes a soft-
ware user makes can in turn also not be hidden from the original software developers, who 
then supervise and direct the evolution of the software. Hence the basics of the software 
can be improved in a much more innovative and faster pace since a lot of different experi-
ences and opinions can be included.  

Creating artificial walls by protecting a product with patents and other regulations creates a 
short time advantage, since there is a gap in knowledge between the developers and other 
companies. But this advantage is not sustainable, since it causes the developers to rest on 
their achievements. Opening up and facing competition creates a constant pressure to be at 
the cutting edge of technological development and to constantly improve and innovate. In 
Chapter 1.1.1 Learning, we heard that the only sustainable competitive advantage is to learn 
how to learn faster. Open source software ensures exactly this principle and hence is the 
optimum strategy for a truly Adaptive Advisory System in an ever-changing environment.  

                                                
145

 At times also the distribution of the software is allowed, which is considered an option here.  
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Transparency of Calculations & Models 

The Advisor can be classified as a decision support or expert system. The name expert system 
suggests that there is a computer that acts like a human expert with all the good and bad 
features connected with experts; we automatically assume that they are people with in-
depth knowledge on a particular subject and rarely are wrong with their analyses and rec-
ommendations. A recent neurobiological study even showed that brain activity was reduced 
for financial decision-making if people got advice by financial experts.146 

But seeing the Advisor like an expert is a wrong perception of the system. It is developed, 
programmed and used by humans; the data it bases its knowledge on was finally created by 
humans; and humans make mistakes. The system is designed to complement not to replace 
the human engineer and it lives from the collaboration of the people and technology. 
Hence we want the users of the system to keep thinking, understanding the processes on 
the field as well as within the Advisor to constantly update and improve the calculations.    

Hence, like described in the Guided Workflow, the users have easy access to all underlying 
calculations, models, the Bayesian network structures, data and probabilities used in the 
Adaptive Advisory System. Sharing experiences and knowledge among assets, companies 
or countries can be a solution where data is typically rare.  

Transparency of Actions & Evaluations 

The interface of the Advisor allows to directly connect actions, recommendations, calcula-
tion, comments, etc. with the user that was responsible for it. There may occur many prob-
lems related to aspects of a company’s culture. If all actions are public (displayed to other 
employees) than also mistakes are public and clearly assignable. Since all other employees 
have the right to comment on others actions, other employees will question expert’s ac-
tions and opinions much more. The gain in transparency helps the whole organization to 
learn, improve and increase the efficiency of their daily processes.  

To fully benefit from transparency it is crucial to change the organization’s attitude to mis-
takes. Using the Adaptive Advisory System, a decision can either be in line or not in line 
with the recommendations of the system. If the decision is wrong but it was in line, then it 
is the system and system supervisors that have to take the responsibility of the decision, not 
the engineer alone. If it was not in line with the system, there should be a policy to discuss 
actions with the management or other experts, obtain approval and adapt the system if 
necessary. 

The transparency of engineer’s actions greatly adds value to the company. In the short run, 
a mistake in most cases means lost money for the company. But in the long run, a mistake 
has a great savings potential, if and only if the company manages to learn from it and pre-
vent others to make the same mistake. Therefore, establishing a “no-blame” culture in an 
organization together with the implementation of transparent systems is absolutely essen-
tial.  

Transparency is also critical for the management. Bill Hostmann147, analyst at Gartner Inc., 
says that managers don’t want other people to look at their numbers. Transparency would 
mean that everybody else could generate the same KPIs or other sets of data and therefore 
reduce the management’s raison d’être. But Hostmann argues that transparency correlates 
with better business performance.  
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3 CONSTRAINTS & CONCLUSION 

3.1 Constraints 

This work shows how an automated expert system can be used to improve decision-
making and reduce the times for it in a petroleum asset team. The system is described and 
the technical outline for the system is given. Although the technology and tools for deci-
sion support systems are already in place since decades, they are not as widely implement-
ed, as one would expect. Considering this fact it becomes clear that the question of imple-
menting a decision support system is not just a technical one. The human factor turns out 
to be crucial when it comes to the implementation of a system like that. In general there are 
technical as well as human challenges in the implementation of automated Adaptive Advi-
sory Systems in oil and gas operations. 

3.1.1 Technology  

Methods of artificial intelligence have been around for decades. AI has made constant and 
amazing progress in certain areas, but AI in practise seems to fall short of its expectations. 
One reason for this might lie in the often too high aspirations. Hollywood subtly suggests 
that AI is capable of creating machines undistinguishable from human beings or we use the 
human intelligence as a yardstick for machine intelligence. But we still are far from even 
being close to these expectations, not even having solved all miracles of the human brain. 
Technologically it will never be possible to exactly reproduce what evolution has been cre-
ated in millions of years in all precision.  

A good example for the unexplainable and genius sensitivity of the brain is the story of the 
Getty kouros, a dolomitic marble statue bought by the J. Paul Getty Museum in California 
in 1985. Since then, the Getty kouros has caused scholars, dealers and scientists to choose 
sides in a heated public debate about whether the work was carved by a late sixth century 
B.C. Greek sculptor or by a modern forger.148 Experts claim that “there is something 
wrong with the statue” when having a glance at it, but they cannot tell what is wrong with it 
and why they think so.149 Even after many years technical analysis could prove or disprove 
the forgery theory. Its status remains undetermined: today the museum's label reads 
"Greek, about 530 B.C., or modern forgery”150  

All pieces needed for an Adaptive Advisory System such as the one described in this chap-
ter are already well published and available. Nevertheless there are challenges in the defini-
tion of a comprehensive and reliable ontology of challenges and problems in production 
operations and reservoir management. Besides, even if a perfect ontology was created, the 
system still relies on quality and availability of data inputs necessary for the reasoning pro-
cess. It therefore is recommended to start with a subset of challenges, starting with the 
most frequent ones and let the system evolve as new information comes in. 

Security aspects are of high importance, especially when using the benefits of the cloud ser-
vice. Data in connection with oil and gas operations is often sensitive in terms of secrecy. 
The more data is handled via a public system like the Internet, the bigger the possibilities 
for attacks are and therefor security efforts must be greatly increased. Nonetheless it would 
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be wrong to miss these wonderful opportunities of easy access and sharing knowledge all 
across the world because of security restraints.  

3.1.2 The Human Factor  

The technology and scope of research already existing on all forms of artificial intelligence, 
expert systems, decision support systems and other smart systems is of surprising volume. 
But in practice, there is little known about doctors using medical support tools with artifi-
cial intelligence or companies monitoring their production on a large scale with intelligent 
systems. Slowly, fuzzy systems are implemented in some web pages and other software, but 
the full range of its uses for business processes and whole organizations can rarely be seen. 
So why has no real breakthrough been reached yet? As always, the answer lies in the seem-
ingly most complicated systems of all: the human beings and their interactions with each 
other.  

The change management aspect needs to be considered properly in order for an Advisory sys-
tem implementation to be an organizational success. Workflows and processes need to be 
in place that support the use of an Advisory System. In contrast to conventional operations 
workflows are not isolated anymore and highly benefit from intense collaboration and net-
working among the different disciplines, assets and functions. 

The system is designed to complement and not to replace the daily work of petroleum ex-
perts. It learns from input received from various groups and experts and could neither exist 
nor evolve without human interaction. Another obstacle in the acceptance of such as sys-
tem is a possible reluctance to participate in a fully transparent system due to a fear of pub-
lication of personal failure. It is therefore extremely important to fully commit to a no 
blame culture and to establish an environment, where strong competition does not hinder 
exchange of lessons learned, knowledge and ideas. It will take a while until the system has 
been calibrated well enough to gain the trust of the experts in an asset team. However, in 
contrast to other systems, the here described Advisor operates fully transparently and all 
steps, results and recommendations are fully traceable, which together with the integration 
of the knowledge sharing tool in a daily used system, may reduce the time to acceptance 
within an organization. 

Another very important issue for the success or failure is the availability of enough good 
quality data. A system can be designed in a very smart way and promise good results in 
theory. But in practice the output is worth exactly the same as the input, or in other words: 
garbage in, garbage out. Although the Advisor is equipped for dealing with uncertainties, 
missing, noisy or redundant data, its intelligence cannot fully make up for wrong inputs. 
When it comes to data delivered by sensors, the technical issues can more easily be solved, 
than problems in areas where it is the employees’ responsibility to make the right state-
ments on their operations. On a rig site, for example, people don’t have the time, nor the 
understanding of the importance, to correctly record a huge amount of numbers each day, 
and not just copy it from previous days, to save a lot of time in an challenging and stressful 
environment. Easy to handle and supportive systems must be in place to assets and help 
the employees rather than to “steal their time”.  

3.1.3 Responsibility  

Technological developments always have been sensitive tools that have given its owners 
enormous power over others. History shows that this power often has been misused. The 
transparency that an Adaptive Advisor would create in an organisation involves some dan-
gers next to its opportunities; therefore developers, owners and users have to act with cau-
tion and responsibility to minimize the risks of abuse.  
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The system theoretically enables the recording of all steps, clicks, and other interaction of 
the user. This transparency may lead to a “Big Brother Effect”, which means that a few people 
supervise and analyse actions of the users and that these actions have an effect on the us-
er’s future situation in the organisation. One has to be to be adamantly opposed to the im-
plementation of features in the software that allow the tracking of users without them be-
ing aware of this. The developers of the software are especially addressed to show respon-
sibility in this case.  

Next to ethical reasons there are also economic reasons for companies to build on trust 
rather than on control of employees. Only an open, participative and trustful community 
can tap the full potential of an Advisory System and the resulting changes of business pro-
cesses. Of employees feel observed and think that mistakes will have large negative effects 
on their careers, they will always find means to work around a technical software, leading to 
a culture of secrecy. For mistakes rates we can differentiate a hidden mistake rate and an 
open mistake rate (for obvious and non-concealable mistakes); if a transparent system is 
implemented in an organisation with a secretive and blaming culture, the open mistake rate 
might go down, but the rate of hidden mistakes would strongly increase, which is much 
more harmful in the long run, since the management is not aware and cannot take actions 
against it.  

Also, there is a general risk in analysing people by the single point signs of an interaction 
with a system: human beings are much more complex than the algorithms designed to clas-
sify them could ever be. If such a system is applied to people (e.g. workforce on rigs, etc.) 
to predict their actions, it may works well for the bulk of people, but how about the hand 
full of people that buck the general trends? Often, people that are “out of the box” are 
then discriminated although their non-conformity would add a lot of value to companies. 

3.2 Conclusion 

There exist many successful examples of the implementation of artificial intelligence for 
decision support systems. In the oil industry, only isolated questions like infill-drilling well 
locations, optimum completion solutions, or corrosion analysis have been targeted with 
Bayesian networks or fuzzy logic so far. The Adaptive Advisor follows a higher-level ap-
proach: to integrate the whole real-time operations business process for oil and gas assets 
into one single system and therefore bring together various processes and disciplines. Start-
ing with well management on a general level, a company can in a next step further integrate 
more and more technical details such as well drilling problems or completion decisions.  

The basics of knowledge theory are described in the beginning of this work to see the im-
pact of the application of the principles of learning to a business process. It explains that 
learning is the accumulation of knowledge. Knowledge is a stock and the flow of learning 
lets it grow at a certain rate. This concept brings value to a company, because learning how 
to learn faster is the most sustainable competitive advantage that companies can create in 
the dynamic and quickly changing environment of today. Data, information and knowledge 
form a pyramid that can as well be found in the build up of the advisor. The work tries to 
define these terms for a computational use and to draw borders between them.   

After some ups and downs, artificial intelligence has gained a lot of attention within the last 
years. A breakthrough, and hence a more frequent implementation in software develop-
ments could lead to a revolution of information technology (IT), that has not substantially 
changed in the last decades. A shift towards knowledge technology (KT) means to imple-
ment smart software, network structures and collaborative and transparent systems that 
would help to solve problems of data floods, information overkill and loss of knowledge.  
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Not all the knowledge the world owns today has been captured in books; a large part of 
knowledge exists in form of tacit knowledge mainly in our heads. Due to its aging work-
force and resulting high fluctuation rates, in particular the oil industry faces difficulties 
nowadays to keep knowledge in companies. This work addressed how to transfer tacit 
knowledge into explicit knowledge that is easily accessible, sharable and re-applicable by 
people or machines.  

In order to find out how to do this, we looked at the best-designed and longest proven 
example of a learning system: the human brain. Our brains are a network of millions of 
little interconnected cells; one cell by itself cannot do anything, but the sum of all achieves 
amazing results. Artificial intelligence in general and artificial neural networks in particular 
aim at modelling the brain and reproducing neurobiological principles to create smart 
computer programs.  

It has been shown that one instrument of artificial intelligence, Bayesian networks, work 
specifically well for the requirements of the Adaptive Advisory System, because they can 
very well deal with uncertainties, are capable of inferring hidden influences, are flexible and 
adaptable and they can easily combine artificial learning from data and capturing the 
knowledge of human expert. For large and complex BNs it has shown to be easier to use 
the generative form of the Bayesian network than the discriminative form, since the nodes 
and probabilities can more easily be split up into different expertise groups.  

The Adaptive Advisory System has incorporated findings from knowledge theory, namely a 
hierarchy of data, information and knowledge and Bayesian network methodologies in its 
structures and operating modes. Examples demonstrate the application on isolated tasks in 
well management. The system continuously learns with every interaction between system 
and user, results will become more and more accurate with time; therefor it is designed to 
complement and assist humans, not to replace them. Crucial for a successful implementa-
tion of the system in an organisation are nonetheless “soft factors”: a no-blame culture and 
transparent and collaborating structures and processes.  

Artificial intelligence with the right computational power is capable of modelling and as-
sessing processes, which complexity is beyond what humans can understand and capture 
with our brains. There is a lot of room for research in this area but the results and the suc-
cessful demonstration will amaze us in the upcoming years. Nonetheless, there will be long 
way to go, if ever, until we can create something that comes even close to what evolution 
has been created with our brains. Humans have been successful problem solvers because 
we are capable more than knowledge: our creativity and imagination; or as one of the 
greatest scientists of all times, Albert Einstein, puts it: 

“I believe in intuitions and inspirations. I sometimes feel I am right, but do not know it. […] 
I'm enough of an artist to draw freely on my imagination, which I think is more important 
than knowledge. Knowledge is limited. Imagination encircles the world." 151 
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APPENDIX  
AIPA Overview Methods of Artificial Intelligence 

“Data mining: the process of discovering new patterns from large datasets involving meth-
ods from statistics and artificial intelligence but also database management.  

Ruled-based case reasoning: A particular type of reasoning, which uses "if-then-else" rule state-
ments. Rules are behavior patterns and an inference engine searches for patterns in the 
rules that match patterns in the data. The "if" means "when the condition is true," the 
"then" means "take action A" and the "else" means "when the condition is not true take 
action B."  

Expert Systems: are software solutions that use a knowledge base of human expertise for 
problem solving, or to clarify uncertainties where normally one or more human experts 
would need to be consulted. 

Artificial Neural Networks: is a mathematical model or computational model that is inspired 
by the structure and/or functional aspects of biological neural networks. A neural network 
consists of an interconnected group of artificial neurons, and it processes information us-
ing a connectionist approach to computation.  

Genetic Algorithms: is a search heuristic that mimics the process of natural evolution. This 
heuristic is routinely used to generate useful solutions to optimization and search problems. 
Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which gen-
erate solutions to optimization problems using techniques inspired by natural evolution, 
such as inheritance, mutation, selection, and crossover.  

Fuzzy Logic: is multi-valued logic; it deals with reasoning that is approximate rather than 
fixed and exact. In contrast with traditional logic theory, where binary sets have two-valued 
logic: true or false, fuzzy logic variables may have a truth-value that ranges in degree be-
tween 0 and 1.  

Machine learning: is a scientific discipline concerned with the design and development of 
algorithms that allow computers to evolve behaviors based on empirical data, such as from 
sensor data or databases.  

Intelligent Agents: an autonomous entity, which observes and acts upon an environment (i.e. 
it is an agent) and directs its activity towards achieving goals (i.e. it is rational). Intelligent 
agents may also learn or use knowledge to achieve their goals.  

Automatic process control: Engineering based discipline (architecture, mechanisms, algorithms) 
for maintaining the output of a specific process within a desired range, by moving field 
actuators following predetermined error correction algorithm. The objectives are to proac-
tively keep a process in statistical control, maintain certain operating point, keep process 
safety, or optimize asset performance. The control signal may be computed from field 
measurements and optimum expected performance target which are derived using physics-
based or data driven analytical methods or artificial intelligence techniques such as neural 
networks, fuzzy logic and others.  

Proxy Models: the proxy models are a simplified representation of the response surface of 
the numerical models, used commonly to make an approximate simulation model of a 
physical process (reservoir models, well models, surface models, advance process control) 
in a specific boundary of time and restrictions. Surrogate Reservoir Models, are proxy 
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models that are developed using Machine Learning technology. They are also classified as 
“Surrogate Models”. AI-Based reservoir models. 

Workflow automation: is a set of methodologies and technologies which aims to integrate data 
and applications into automated workflows, which reflects the business processes devel-
oped in a company over a well structured information management platform. Workflow 
automation has been one of the main areas of interest of the Oil & Gas Industry in the last 
5 years, since is one of the key elements of the Digital Oil Field and Integrated Production 
Operations trends. 

Virtual environments: is the combination of simulation, computation and visualization tech-
nologies in order to reach partial or total immersive environments for the analysis of pro-
duction and reservoir data.”152 

                                                
152

 quoted from AIPA (2011) 
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Figure 40: Data required for well problem diagnosis, stimulation and workover planning
153

 

 

                                                
153

 Solesa (2004) 
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Figure 41: Sequence diagram for an emergency or standard action 
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Figure 42: Sequence diagram for guided workflow 
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Figure 43: Sequence diagram for ambiguous recommendations 
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