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Abstract

The mechanical properties of steels are influenced by their plastic deformations.
In austenitic steels, plastic deformations may occur through different mechanisms in-
cluding dislocation gliding, twinning (twinning-induced plasticity, TWIP), and phase
transformation (transformation-induced plasticity, TRIP). The stacking-fault energy
(SFE) governs the activation of these mechanisms; therefore it is a crucial parameter
for understanding the plastic deformations. The aim of this thesis is to calculate the
SFE in austenitic steels.

In order to investigate the influence of interstitial carbon on the SFE in austenitic
carbon steels, we calculate the γ-curve which contains the SFE. Explicit faults are sim-
ulated in pure iron, Fe24C, and Fe3C, corresponding to 0, 0.89, and 6.67 wt.% of car-
bon, respectively. Our first-principles calculations are performed using the all-electron
full-potential linearized augmented planewave (FP-LAPW) method implemented in the
WIEN2k code. Our results demonstrate a strong dependence of the behavior of the
γ-curve on (i) the carbon content, and also on (ii) the position of the interstitial carbon
with respect to the fault plane. In agreement with the earlier experimental and theoret-
ical works, we find that the SFE increases with carbon content. Moreover, our results
show that the increase rate is not constant, but it is smaller at high concentrations.
Finally, we expand the γ-curve to evaluate the entire γ-surface.

In order to investigate the temperature dependence of the SFE in stainless steels,
we calculate it for the random alloy Fe0.716Cr0.200Ni0.084 over the temperature range of
298–1273K (25–1000℃). The SFE is calculated using the axial next-nearest-neighbor
Ising (ANNNI) model. The random alloy and the paramagnetic state are taken into
account, respectively, using the coherent-potential approximation (CPA) and the disor-
dered local moments (DLM) approach, as implemented in the exact muffin-tin orbitals
(EMTO) code. The lattice parameter at different temperatures is provided using the
thermal lattice expansion data measured by X-ray diffraction (XRD). The temperature
dependence of the local magnetic moments is evaluated by accounting for the fluctua-
tions in the size of magnetic moments. The influence of different approximations and
contributions, i.e., the electronic entropy, the thermal expansion, the frozen-core ap-
proximation, and the exchange–correlation functional, are intensively investigated. Our
results demonstrate that the SFE increases with temperature due to an increase in the
lattice volume and in the local magnetic moments. We find that the temperature depen-
dence of the SFE is mainly influenced by the lattice expansion. The thermal excitations
of magnetic moments exhibit a rather small influence on the temperature dependence
of the SFE. We also find that the choice of the exchange–correlation functional signif-
icantly influences the SFE. Good agreement with experimental data can be achieved
using the generalized-gradient approximation (GGA).



Zusammenfassung

Plastische Verformungen bestimmen die mechanischen Eigenschaften von Stählen. In
austenitischen Stählen können plastische Verformungen durch verschiedene Mechanis-
men erfolgen, wie etwa durch Versetzungsgleiten, Zwillingsbildung (twinning induced
plasticity, TWIP), und Phasenumwandlung (transformation induced plasticity, TRIP).
Die Stapelfehlerenergie (SFE) hat Einfluss auf die Aktivierung dieser Mechanismen;
deshalb ist sie ein Schlüsselparameter für das Verständnis plastischer Verformungen.
Das Ziel dieser Arbeit ist die Berechnung der SFE in austenitischen Stählen.

Um den Einfluss von interstitiellem Kohlenstoff auf die SFE in austenitischen koh-
lenstoffhaltigen Stählen zu untersuchen, berechnen wir die γ-Kurve, aus der wir die
Stapelfehlerenergie ableiten. Explizite Stapelfehler werden in reinem Eisen, Fe24C und
Fe3C berechnet, was Konzentrationen von 0, 0.89 und 6.67 Gew.% Kohlenstoff ent-
spricht. Unsere Ab-initio-Rechnungen werden mit der sogenannten Full-Potential All-
Electron Linearized Augmented Plane-Wave (FP-LAPW) Methode durchgeführt, wie
sie im Wien2k-Code implementiert ist. Unsere Ergebnisse zeigen ein starke Abhängig-
keit des Verhaltens der γ-Kurve (i) vom Kohlenstoffgehalt und auch (ii) von der Lage
des interstitiellen Kohlenstoffs in Bezug auf die Stapelfehlerebene. In Übereinstimmung
mit früheren experimentellen und theoretischen Arbeiten finden wir, dass die SFE mit
dem Kohlenstoffgehalt ansteigt. Darüber hinaus zeigen unsere Resultate, dass der An-
stieg nicht konstant erfolgt, sondern bei hohen Konzentrationen niedriger ist. Schließlich
erweitern wir die γ-Kurve, um die gesamte γ-Oberfläche auszuwerten.

Um die Temperaturabhängigkeit der SFE in Edelstählen zu untersuchen, berech-
nen wir den Mischkristall Fe0.716Cr0.200Ni0.084 im Temperaturbereich von 293–1273K
(25–1000℃). Die SFE wird unter Verwendung des Axial Next-Nearest Neighbor Ising
(ANNNI) Modells berechnet. Die zufällige Verteilung der Elemente auf dem Gitter und
der paramagnetische Zustand werden dabei durch Verwendung der Coherent Potential
Approximation (CPA) bzw. der Disordered Local Moments (DLM) Näherung berück-
sichtigt, wie sie im Exact Muffin-Tin Orbitals (EMTO) Code implementiert sind. Die
Gitterkonstanten bei verschiedenen Temperaturen werden dabei von Temperaturaus-
dehnungsdaten aus Röntgenbeugungsmessungen gewonnen. Die Temperaturabhängig-
keit der lokalen magnetischen Momente wird unter Berücksichtigung von Schwankungen
in der Größe des magnetischen Moments ausgewertet. Der Einfluss verschiedener Nä-
herungen und Beiträge, das heißt der elektronischen Entropie, der Wärmeausdehnung,
der sogenannten Frozen-Core-Näherung und des Austausch-Korrelations-Funktionales,
werden eingehend untersucht. Unsere Ergebnisse zeigen, dass die SFE deshalb mit der
Temperatur ansteigt, weil das Gittervolumen und die lokalen magnetischen Momente
größer werden. Wir finden, dass die Temperaturabhängigkeit der SFE hauptsächlich auf
die Gitterausdehnung zurückgeht. Die thermische Anregung der magnetischen Momente
zeigt einen eher kleinen Einfluss auf die Temperaturabhängigkeit der SFE. Wir finden
auch, dass die Wahl des Austausch-Korrelations-Potentials die SFE signifikant beein-
flusst. Gute Übereinstimmung mit experimentellen Daten erhält man durch Verwendung
der Generalized Gradient Approximation (GGA).
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1

Introduction

Iron is widely and abundantly available over the Earth’s surface. However, for a long
period, iron-nickel meteoroids were the only available resource of iron for mankind [1], as
in the terrestrial resources the element is found only in combination with other elements,
mainly in the form of oxides mixed with earthy materials [2]. As soon as human learned
how to process iron from its ore, the new material was spread everywhere and greatly
influenced tool-making technologies. About the importance of iron and its influence
on the mankind life style, it is just enough to mention that the third period of human
prehistory is called Iron Age, following the Stone Age and the Bronze Age as the first and
the second periods [3]. Although iron has always been used since the beginning of the
Iron Age (1200 BC in the Middle East and southeastern Europe [3]), its usage increased
drastically during the last two centuries, when significant advances in material science
and metallurgical technologies introduced many iron-based alloys, i.e, steels, with great
properties. The availability of these materials, together with considerable demands as
a consequence of rapid development, has made steels by far the most used metal at the
moment.

Properties of iron and steels have been subject of many studies in different fields
of science during the past decades [4]. Particularly, plastic deformations of steels are
interesting as they influence the mechanical properties of the material which, in turn,
are of great importance in both production and operation processes. It has been shown
that the mechanism of plastic deformation in high-manganese steels with face-centered
cubic (fcc) lattice is related to the value of the stacking-fault energy (SFE) [5–7]. The
SFE is the energy change upon a fault in the stacking of the close-packed atomic layers
of the bulk structure (see Chap. 2). In the fcc structure, the γ-curve and the γ-surface
present the energy changes as two crystal halves glide with respect to each other along
the close-packed layers (see Chap. 2). The γ-curve and the γ-surface include the SFE,
and also much more information about the behavior of the material under shear stress.

There has been many works around the measurement of the SFE or its estimation us-
ing semi-empirical methods [8–32]. However, the experimental results are questionable
because of the broad range of reported values, and also because of significant uncertain-
ties arising from the microstructure of samples (see Sec. 2.5). Therefore, a theoretical
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1. INTRODUCTION

approach which is not suffering from the mentioned complications is highly desirable for
the determination of the SFE. Moreover, to the best of our knowledge, there is currently
no experimental approach which is capable of measuring the γ-surface. Thus, the only
possible way to provide more information about it is to calculate it.

When studying the structure of materials on the atomic scale, density-functional the-
ory (DFT) [33–36] is the most successful and most widely used first-principles approach
in computational materials science. Thanks to the significant advances in computa-
tional power in the past two decades, nowadays DFT can be applied in order to provide
a detailed understanding of material properties. Also, in the case of SFE calculations
in steels, DFT results have already been proven to be in good agreement with available
experimental data [37, 38].

A few ab-initio studies on the evaluation of the SFE and the γ-surface in steels with
interstitial alloying elements have already been published. For instance, Kibey et al.
[39] have published the γ-surface calculated in Fe–N alloys, and Abbasi et al. [40] have
evaluated the SFE for Fe–C alloys. However, to the best of our knowledge, the γ-curve
and the γ-surface have never been calculated for Fe–C alloy. In this work, we calculate
both quantities for pristine iron, Fe3C, and Fe24C, and the γ-surface for Fe24C (see
Chap. 5) [41]. For these calculations, we use the LAPW+LO and the APW+lo basis
sets in the supercell approach (see Sec. 4.6) implemented in the WIEN2k code [42]. This
code allows us to account for local lattice displacements introduced by atomic forces
around the interstitial carbons.

The ab-initio evaluation of the SFE has also been the subject of few works on steels
with substitutional alloying elements. For instance, Vitos et al. [37] have calculated the
influence of temperature and the chemical composition on the SFE of Fe–Cr–Ni alloys,
and Reyes-Huamantinco et al. [38] have studied the temperature dependence of the
SFE in Fe–Mn alloys. However, the field is still open for further investigations, as the
temperature dependence of the SFE is influenced by many parameters. In this study,
we calculate the temperature dependence of the SFE in an Fe–Cr–Ni stainless steel,
with a especial focus on the influence of different approximations and simplifications on
the final results. Particularly, we take into account the thermal lattice expansion of the
alloy, a parameter which, to the best of our knowledge, has not been accounted for in Fe–
Cr–Ni alloys before. In these calculations, we use the coherent-potential approximation
(CPA) [43–45] and the disordered local moment (DLM) approach [46] implemented in
the exact muffin-tin orbitals (EMTO) code [47]. This code provides a relevant tool for
simulating the random alloy in the paramagnetic state.

This work is organized as follows. Chap. 2, Stacking-fault Energy, starts with a
general introduction to the close-packing of atomic spheres. As two highly symmetric
examples of close-packed structures, we discuss the arrangements of atoms in the face-
centered cubic (fcc) and the hexagonal close-packed (hcp) structures. Focusing on the
fcc lattice, we introduce the most common stacking faults in this structure. Particularly,
the geometry of the intrinsic stacking fault and the related displacements are discussed in
detail. In the next step, the energy associated to the stacking fault, i.e., the stacking-
fault energy (SFE) and its great influence on the partials dissociation are described

2



1. INTRODUCTION

briefly. Finally, the motivations for this study are presented in the last section of the
chapter.

Chap. 3, Metallurgical Background, covers some general knowledge in the metallurgy
of alloys which are subject of this study. We start with the properties of pristine iron,
as it is the main component of the alloys we study here. As one of the simplest iron-
based alloys, we present the carbon steels with the interstitial carbon as the only alloying
element. The discussion covers the introduction of the most important phases in carbon
steel, as well as the possible interstitial sites in the considered phase. The third topic
in this chapter is about ternary Fe–Cr–Ni stainless steels, their most important phases,
and the transformations between these phases.

In Chap. 4, Theoretical Background, we give a short summary of the required theo-
retical background, including density functional theory (DFT), Kohn–Sham equations,
and their implementations in two codes, i.e., WIEN2k and EMTO. The WIEN2k code
utilizes the linearized augmented plane wave basis set with local orbitals, abbreviated as
LAPW+LO. On the other hand, the EMTO code, which is based on the Green’s func-
tion formalism, utilizes the coherent potential approximation (CPA) and the disordered
local moments (DLM) approach in order to simulate random alloys in the paramagnetic
state. These approaches are briefly discussed in this chapter.

In Chap. 5, The Fe–C System, we present the SFE and the γ-curve calculated for
pristine iron, Fe24C, and Fe3C in the fcc phase. Moreover, the γ-surface is evaluated
for Fe24C. As carbon occupies interstitial sites, significant local lattice deformations are
introduced around it, resulting in a global increase in the lattice volume. This effect
is taken into account by calculating the equilibrium volume for every composition, and
also by relaxing atomic forces in the bulk unit cell. We use the WIEN2k code for our
calculations, as the code allows for the relaxation of atomic forces. In order to calculate
the entire γ-curve, two crystal halves are glided with respect to each other, and the
atomic positions around the displacement are relaxed normal to the slide plane. Carbon
can be located in different sites with respect to the fault plane, resulting in significantly
different influence on the γ-curve and on the SFE. We consider all possible positions
for carbon, and average over them. Finally, using a Fourier expansion which obeys
the symmetry properties of the {111} plane of the fcc structure, the entire γ-surface is
calculated for Fe24C.

In Chap. 6, The Fe–Cr–Ni System, we present the temperature dependence of the
SFE calculated for a random alloy Fe0.716Cr0.200Ni0.084 in the range of 298–1273K (25–
1000℃). The alloy is found in the paramagnetic state in the entire range. Unlike
the Fe–C system for which the SFE is calculated explicitly, we use the axial next-
nearest-neighbor Ising (ANNNI) model [48, 49], where the SFE is approximated by an
expansion whose terms are the Helmholtz free energies of the bulk phases fcc, hcp,
double-hcp (dhcp), etc. The random alloy and the paramagnetic state are simulated
using the EMTO code. Simulating the alloy at finite temperature requires relevant
knowledge about the temperature dependence of the lattice spacing and of the local
magnetic moments. The former is provided using the thermal lattice expansion data
measured by X-ray diffraction (XRD), while the latter is evaluated by accounting for

3



1. INTRODUCTION

the fluctuations in the size of magnetic moments. The electronic and the magnetic
entropies are calculated for evaluating the free energies of the three above-mentioned
phases. Using these free energies, the SFE is calculated as a function of temperature.
In order to investigate the influence of different approximations and approaches, i.e.,
the electronic entropy, the thermal expansion, the frozen-core approximation, and the
exchange-correlation functional, we have performed many test calculations and analyzed
their results.

There are also two appendices in the thesis. In App. 6.5, Conclusion, we present
a two-dimensional Fourier expansion which follows the symmetry properties of the
{111} plane of fcc structure. This expansion is useful when a two-variable function
f(x, y), e.g., the γ-surface, is fitted to a set of data points in the form of (xi, yi, fi). In
order to derive this expansion, we apply all symmetry properties of the {111} plane to
the general form of the Fourier expansion in two dimensions.

App. A, Experimental Data, presents a summary of available experimental data
which may be useful when investigating the Fe–Cr–Ni system. These data have been
collected from more than 20 references [8–32].
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2

Stacking-fault Energy

The aim of this chapter is to define the required terms and to introduce the topic of
this work, as well as its importance. We start by describing the geometry of close-
packed lattices and then introduce some possible faults and defects related to it. A
connection between these faults and the plasticity of materials is shown, which indicates
the importance of the topic.

2.1 Close-packed Stacking

In geometry, close-packing of spheres of equal size is a dense arrangement of congruent
spheres in an infinite and regular lattice. The term close-packing is used in crystallog-
raphy by considering atoms as hard spherical balls with identical radii. A close-packed
atomic layer, i.e., the densest arrangement of atoms in two dimensions, is formed when
atoms are packed in a hexagonal lattice (see Fig. 2.1(a)). A three-dimensional close-
packed structure is then constructed by stacking such layers on top of one another, so
that their atoms occupy one of the sites A, B, or C, whose projections onto a plane nor-
mal to the stacking direction are demonstrated in Fig. 2.1(a). Obviously, atomic sites
which lie within the same close-packed layer have the same label, and, as a result of
translational symmetry of the close-packed layers, feel the same environment. In short,
this means that they are equal. Note that such a condition is not necessarily established
for sites which are lying within different layers, since, depending on the stacking order,
they may feel different environments. However, we will notice two structures where all
atomic positions, disregarding their layers and labels, are exactly equal.

The close-packing criterion requires that no two layers of the same label, such as
AA, are stacked in juxtaposition to one another [50]. This restriction locates the atomic
spheres on the vertices of regular tetrahedra, whose sides equal the interatomic dis-
tance a (see Fig. 2.1(b)). The distance between two consecutive atomic layers, the
interlayer spacing, equals the height of the tetrahedron which is d = a

√
2/3. Since

every tetrahedron contains only 1/3 of an atom, the lattice volume per atom equals
Vp.atom = 3Vtetrahedron = a3

√
2/4. The packing fraction, i.e., the fraction of space oc-

cupied by atomic spheres, is calculated by dividing the actual volume of a sphere of
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A
B
C

AA

A AA

A AA

B

B B
C

C

C

(a) (b)

Figure 2.1: (a) Top view of a close-packed layer with the hexagonal cell and different stacking
cites highlighted. Considering the given layer as A, atoms in the second layer would occupy
either B or C positions. (b) Geometry of the stacking positions in a close-packed structure
presented as a regular tetrahedron of side length a.

(a) (b) (c)

Figure 2.2: (a) Top view of a two-layer close-packed structure, where the first and the second
layers occupy A and B positions, respectively; (b) Given two-layer stacking as AB, the third
layer can occupy the same stacking positions as the first layer, leading to an hcp structure with
ABABAB sequence. (c) Here, the third layer occupies C positions. If the fourth layer occupies
the same stacking positions as the first layer, the result is an fcc structure with · · ·ABCABC · · ·
sequence.

diameter a, i.e., V0 = 4π
3 (a/2)3, by the lattice volume per atom Vp.atom. It is quite

straightforward to show that any stacking sequence where consecutive layers are of dif-
ferent labels forms a close-packed structure with packing fraction of π/

√
18 ≈ 0.74048,

which is the maximum for a lattice of equal atoms [51].
Until now, we have discussed only the general properties of a close-packed structure

of atoms. However, in order to have a crystal with translational symmetry in three
dimensions, the stacking of the close-packed layers must follow a certain order. Given
a layer A, a hexagonal close-packed (hcp) structure is generated by stacking the atomic
layers as · · ·ABABAB · · · (or equally · · ·ACACAC · · · ), where every second layer has
the same label (see Figs. 2.2(a) and 2.2(b)). In such a structure, all atomic positions
are surrounded by the same environment; hence they are equal. The periodicity of this
structure along the stacking direction equals two atomic layers. The primitive cell is

6
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(a) (b) (c)

Figure 2.3: (a) Comparison of the conventional hexagonal cell (gray cage) and the primitive
cell (highlighted by green color) of the hcp structure. In order to make permutation symmetries
apparent, the Miller indices for this lattice are usually presented in the [hkil] scheme, where
i = −(h+ k) (blue color). (b) Atomic positions in the primitive cell colored regarding to their
stacking positions. (c) Atomic positions in the conventional cell.

found as a rhombus-based prism of base sides a and height c, where c = 2d = a
√

8/3,
α = β = 90◦, and γ = 120◦ (see Fig. 2.3). With volume of a3/

√
2, the cell contains two

atoms. The conventional unit cell, however, is a hexagonal-based prism which is simply
three times as big as the primitive cell. According to the primitive lattice vectors, the
close-packed layers lie within the {001} planes (or {0001}, using the four-index scheme).
In this lattice, both primitive and conventional cells have the same set of lattice vectors,
where the stacking direction is indicated by [001] ([0001]).

The face-centered cubic (fcc) structure is determined by the stacking sequence
· · ·ABCABC · · · , which may be equally represented by · · ·ACBACB · · · , where ev-
ery third layer has the same label (see Fig. 2.2(c)). Although the periodicity of this
structure along the stacking direction equals three atomic layers, by choosing a tilted
axis for the third lattice vector, c, it is possible to find a primitive cell so that its
height is equal to only one atomic layer (see Figs. 2.4(a) and 2.4(b)). This unit cell is
a rhombohedron of side length a, angles α = β = γ = 60◦, and volume a3/

√
8 which

contains only one atom. The symmetry of the structure allows us to build the same
unit cell using a different set of lattice vectors, where all three lattice vectors are equal
along the stacking direction (see Figs. 2.4(c)). The conventional unit cell is a cube of
side length ac = a

√
2, where a is the side length of the primitive cell and equals the

interatomic distance (see Figs. 2.4(d), 2.4(e), and 2.4(f)). It is four times as big as
the primitive cell and hence contains four atoms. Using the lattice vectors of the cubic
cell, the close-packed layers and the stacking direction are defined by {111} and [111]
indices, respectively.

When studying the {111} planes, the two mentioned cells for the fcc structure may
not be the best possible choices. In such a case, a cell whose vectors are either parallel
or normal to the plane is usually more favored. One possible cell with this property is a
prism, similar to the primitive cell of the hcp structure, whose base is a rhombus of side

7
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.4: (a) The primitive cell of the fcc structure. (b) Atomic positions in the primitive
cell. (c) The primitive cell is chosen so that all lattice vectors are equal along the stacking
direction. (d) The conventional cubic cell of the fcc structure (highlighted by green) compared
to the primitive cell (transparent rhombohedron). (e) Atomic positions in the cubic cell. The
cell contains four atoms. (f) For better imagination of atomic positions in the cubic cell, the
{001} plane of the cell has been highlighted. (g) Another unit cell for the fcc structure with
emphasis on the stacking in [111] direction. Note that the directions shown in this hexagonal
cell are based on the lattice vectors of the cubic cell. (h) Atomic positions in the hexagonal
cell.
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2. STACKING-FAULT ENERGY2.2 Geometry of the Stacking Faults in fcc Crystals

(a) (b) (c) (d)

Figure 2.5: (a) The stacking sequence in a perfect fcc structure when looking along the [01̄1]
direction. The structure with the perfect stacking sequence has been highlighted by yellow
color. (b) Twinning appears when the stacking order along the [111] direction is reversed. The
structure with the reversed stacking sequence is highlighted by turquoise color. (c) An intrinsic
SF is generated by removing one atomic layer from the perfect sequence. (d) An extrinsic SF
is generated by inserting one atomic layer into the perfect sequence.

length a. However, the hight of this unit cell is c = a
√

6 which differentiates it from
the primitive cell the hcp structure (see Figs. 2.4(g) and 2.4(h)). The cell is extended
along the [111] direction up to three atomic layers, and hence it contains three atoms.

2.2 Geometry of the Stacking Faults in fcc Crystals

A stacking fault (SF) is a planner defect in a crystal, representing an interruption in the
perfect stacking sequence of the atomic layers [52]. The SF in fcc structures is discussed
in the 10th chapter of the book Theory of Dislocations authored by Hirth and Lothe
[50]. We present only a short summary of the subject taken from this book. However,
it must be noted that our discussion here focuses only on the fcc lattice, because the
exact description of the SF depends on the crystal structure (for instance, see Hirth and
Lothe [50] for the SF in other structures like the hcp, the body-centered cubic (bcc),
and the diamond cubic lattices).

Using the lattice vectors of the cubic cell of the fcc structure, the stacking direction is
indicated by [111], and consequently, the close-packed layers lie within the {111} planes.
These planes are also the glide planes and the coherent twin planes. Twinning may be
considered as 180◦ rotation of one crystal half in the {111} plane, or equivalently, as a

9
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mirror plane reflection about the {111} plane (see Fig. 2.5(b)). Therefore, it changes
the stacking of the close-packed layers to

†
· · ·ABCABCACBACBA · · ·,† (2.1)

where the dagger denotes the twin plane and also the center of the fault.
In the fcc structure, stacking faults are classified as intrinsic or extrinsic. Geomet-

rically, an intrinsic stacking fault (ISF) simply corresponds to removing a layer from
the perfect sequence (see Fig. 2.5(c)). Thus, the normal sequence remains unchanged
on either sides of the faults right up to the fault plane. The corresponding stacking
sequence can be expressed as

· · ·ABCABC BCABC · · ·, (2.2)

where the vertical lines denote the center of the fault. On the other hand, the geometry
of the extrinsic stacking fault (ESF) corresponds to inserting one additional layer into
the perfect sequence (see Fig. 2.5(d)). It generates a stacking sequence in the form of

· · ·ABCABCBABCABC · · ·, (2.3)

where the vertical double-line shows the inserted layer.
One may consider other faults, containing two consecutive layers of the same label,

like
· · ·ABCABC CABCABC · · ·. (2.4)

Such a configuration can simply be generated by removing two consecutive layers from
the perfect sequence, i.e., AB here. However, the configuration breaks the close packing
at the place of the fault, so it is not energetically favored. To preserve the close packing,
the fault can always be converted to the ESF by deforming one of the layers in the
vicinity of the fault to another type, like

· · ·ABCABC CABCABC · · · =⇒ · · ·ABCABCBABCABC · · ·
↓
B

(2.5)

or
· · ·ABCABC CABCABC · · · =⇒ · · ·ABCABACABCABC · · ·

↓
A

(2.6)

A SF can also be generated by a shear operation on the {111} planes [50]. Focusing
on one of the {111} planes in an fcc structure, an ISF can be produced by displacing
all the layers above this plane by the vector 1

3u[2̄11]. Such a displacement causes the

10
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Figure 2.6: (a) Projection of the atomic layers of types A, B, and C, and the displacement
direction, [2̄11], for the transitions A → B, B → C, and C → A within the {111} plane. The
smaller rhombus depicts the base of the hexagonal unit cell of the fcc structure, while the larger
rhombus shows the base of a 2× 2 cell. (b) Definition of lattice and displacement vectors lying
in the {111} plane using the conventional unit cell.

transitions A → B, B → C and C → A for all layers above the mentioned plane (see
Fig. 2.6(a)). This process is expressed as

· · ·ABCABCABCABC· · · =⇒ · · ·ABCABC BCABCA · · ·.
↓ ↓ ↓ ↓ ↓ ↓
BCABCA

(2.7)

Once more applying the same shear operation on this structure would produce an ESF:

· · ·ABCABC BCABCAB· · · =⇒ · · ·ABCABCBABCABC · · ·.
↓ ↓ ↓ ↓ ↓ ↓
ABCABC

(2.8)

For further convenience, the parameter u is defined as the displacement along the
[2̄11] direction. The periodicity of the lattice along the [2̄11] direction is defined as
the shortest non-zero displacement which leaves the structure unchanged. The length
of this displacement is denoted by u[2̄11] = a

√
3, where a is the interatomic distance

(see Fig. 2.6). The required displacements corresponding to the transitions A→ B and
A→ C are u = 1

3u[2̄11] and u = 2
3u[2̄11], respectively (see Fig. 2.6).

2.3 Stacking-fault Energy

A SF rearranges the close-packed layers in a lattice and, thus, changes the total energy
of the crystal. This energy change is defined as the stacking-fault energy (SFE), which
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Figure 2.7: A typical γ-curve, corresponding to displacements along the [2̄11] direction in an
fcc structure. For every point on the curve, the corresponding displacements can be found in
the depicted unit cell at the bottom of the figure.

is a material property on a very small scale, in units of milli-Joules per square meter
(mJ/m2).

While the SFE corresponds to a displacement of u = 1
3u[2̄11], the generalized stacking-

fault energy (GSFE), often called the γ-curve, is defined as a function expressing the
dependence of the crystal energy on all possible displacements along the [2̄11] direc-
tion. A typical γ-curve is presented in Fig. 2.7. The SFE is the value of the γ-curve at
u = 1

3u[2̄11], and is a local minimum for materials with stable fcc phase. In the figure,
γu denotes the barrier which must be overcome to create the ISF. γmax corresponds to
a transition of A → C, where two consecutive layers of the same type stack on top of
each other. Thus, the curve shows a pronounced maximum here.

The γ-surface is even more general, and expresses the energy dependence of the crys-
tal on all possible displacements within the {111} plane, disregarding their directions.
It is a function of two variables, f(x, y), spanning the entire {111} plane.

The SFE is related to the preferred mechanism through which the plastic deforma-
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(a) (b)

Figure 2.8: (a) A perfect crystal lattice with a simple cubic unit cell. (b) Rearrangement of
atomic positions around an edge dislocation, where the inserted extra layer is highlighted by
the green color.

tion occurs in fcc metals [5–7]. In order to explain it, we first shortly discuss dislocations
in fcc crystals. In a crystal, dislocations are linear imperfections around which the reg-
ular arrangement of the atoms is locally disturbed [52]. The direction of a dislocation
is defined by the dislocation line, whose unit vector is usually denoted by t̂. There are
two primary (basic) types of dislocations: edge dislocations and screw dislocations. For
these primary dislocations, the dislocation line is a straight line resulting in a constant
dislocation vector t̂. However, in more general cases, i.e., common mixed disloca-
tions combining aspects of both types, the dislocation vector may vary with position:
t̂ = t̂(r). For an infinite lattice with a single dislocation of primary type, moving along
the dislocation line preserves the same surrounding environment. In the core of any
dislocation, atomic bonds are not in an equilibrium configuration, and thus the crystal
energy and entropy change by introducing such defects.

An edge dislocation can be created by terminating one atomic plane in the middle
of a crystal. Obviously, it can also be considered as insertion of an extra half-layer
between other atomic layers. A schematic edge dislocation is presented in Fig. 2.8(b),
where the inserted half-layer is highlighted by the green color. The surrounding planes
do not remain flat, but instead, bend around the edge in order to fill the newly created
vacancies, resulting in reordering the crystal structure on either side. Here, the dislo-
cation line passes through the atomic sites at the edge of the terminated layer (pink
line in the figure). Compared to a perfect crystal (Fig. 2.8(a)), the crystal lattice is dis-
torted around the dislocation line. The direction and the magnitude of this distortion
are denoted by the Burgers vector, b, which is necessarily a lattice vector for perfect
dislocations. The magnitude of the Burgers vector, b, is a measure for the strength of
the dislocation, or the amount of elastic deformation in the core of the dislocation. For
an edge dislocation, the Burgers vector is always perpendicular to the dislocation line
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(a) (b) (c) (d)

Figure 2.9: Slip movement of an edge dislocation in a simple cubic lattice. Black arrows
indicate the applied shear stress.

(see Fig. 2.8(b)).
Dislocations can slip in planes containing both the line and the Burgers vector [52].

Such a plane is called slip plane or glide plane, and a dislocation able to move in this
way is called glissile [52]. For an edge dislocation, the dislocation and the Burgers
vectors are perpendicular, so there is only one plane in which the dislocation can slip.
The required activation energy for dislocation slip may be provided by shear stress. In
every step of a dislocation slip, around the dislocation line, atomic bonds break on one
side of the defect, and new bonds form on the other side, resulting in the movement
of the extra layer for one Burgers vector (see Fig. 2.9). Thus a series of single slips
can move two crystal halves with respect to each other, pushing the dislocation. In
fcc structures, slip occurs within the close-packed (111) planes and along the <110>
directions [50], which include the the shortest lattice vectors, a = ac

√
2/2, and hence

the shortest Burgers vector.
As already mentioned, dislocations change the crystal energy, which is usually ex-

pressed as the energy change per length of dislocation, E = U/L. This energy change
is the sum of two parts, i.e., the elastic and the non-elastic contributions [52]. The
elastic energy contribution is due to the elastically strained bonds at farther distances
with respect to the dislocation line. The non-elastic energy contributions is the result
of distorted atomic bonds close to the dislocation line, where elasticity theory can not
be applied. The dependence of E on the magnitude of the Burgers vector may be
approximately expressed as

E = αb2, (2.9)

where α is almost constant with respect to b and is a property of the crystal [50, 52].
This equation shows that dislocations would energetically prefer to have the shortest
possible Burgers vectors. That is why there are no dislocations with Burgers vectors
larger than the smallest crystal translation vector; a dislocation with larger Burgers
vector simply splits into two or more dislocations with shorter Burgers vectors.

Suppose that the close-packed layers shown in Fig. 2.10(a) correspond to two adja-
cent layers in an fcc structure, where the atoms in blue and red are originally in sites C
and A, respectively. A perfect edge dislocation requires the translation of an atom in
site A to the nearest site of the same type. In the figure, this nearest site is chosen along
the [1̄01] direction whose corresponding Burgers vector is denoted by b = 1√

2
ac ê[1̄01],

14



2. STACKING-FAULT ENERGY 2.3 Stacking-fault Energy

C

A

A

B
C

A

(a)

A

B

A

(b)

Figure 2.10: (a) Top view of the {111} plane of an fcc structure, as a slip plane for an edge
dislocation along the [12̄1] direction. Note that a perfect edge dislocation in this lattice requires
insertion of two atomic layers, which are highlighted here. (b) The Burgers vector of the perfect
edge dislocation can be split into two shorter Burgers vectors, along [2̄11] and [1̄1̄2] directions.

where ac is the lattice parameter and ê[1̄01] stands for the unit vector along the [1̄01]
direction, both defined for the cubic unit cell. As it is shown in Fig. 2.10(b), the sym-
metry of the {111} plane provides an alternative path for the motion: from A at origin
to a site of type B along the [2̄11] direction with the Burgers vector b1 = 1√

6
ac ê[2̄11],

and then from B to A at destination with b2 = 1√
6
ac ê[1̄1̄2]. This results in a crystal

with two dislocations, separated by an area where atoms have been displaced from their
original stacking positions. Regarding our discussion in the previous section, an intrin-
sic stacking fault occurs in this area. The Burgers vectors associated with these two
dislocations, b1 and b2, are not translation vectors of the fcc lattice. Generally, such
dislocations are called partial dislocations, and necessarily border a two-dimensional de-
fect, usually a stacking fault [52]. Partial Burgers vectors and stacking faults thus may
exist if the packing of atoms defining the crystal has additional symmetries not found in
the lattice. These additional symmetries can appear where multiple atoms with proper
symmetrical arrangement are placed in a lattice point.

The dissociation of a perfect dislocation to partials, as was explained here, substi-
tutes the Burgers vector b with two shorter vectors b1 and b2. These two vectors are
inclined at 60◦ to one another, hence their corresponding partials repel each other. Al-
though the crystal restores its perfect lattice arrangement behind the partials, a ribbon
of the stacking fault is created as partials move apart. These partial dislocations with
Burgers vectors of length ac/

√
6 along the <112> directions and glissile on the {111}

planes are called Shockley partials [50, 52]. The procedure of dissociation of a perfect
edge dislocation to extended dislocation consisting of two Shockley partials and an en-

15



2. STACKING-FAULT ENERGY 2.3 Stacking-fault Energy

(a)

(b)

Figure 2.11: (a) Perfect edge dislocation in an fcc structure, viewed along the dislocation line.
(b) The same dislocation, viewed from top.

closed stacking fault is presented in Figs. 2.11 and 2.12. Fig. 2.11 depicts the perfect
edge dislocation with dislocation and Burgers vectors along [12̄1] and [1̄01] directions,
respectively. In the figure, all atomic sites are indicated as spheres colored according to
their stacking position along the [111] direction. For better visualization of the lattice
periodicity along the [1̄01] direction, only every second atomic plane is depicted. The
inserted extra atoms and their layers are highlighted. Fig. 2.12 depicts the Shockley
partials separated by distance d. Here, beside the inserted extra atoms, those atomic
sites which are displaced due to the SF are highlighted too. Close to the slip plane,
atomic bonds which are distorted due to the SF are highlighted by the turquoise color.
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(a)

(b)

Figure 2.12: (a) Dissociation of a perfect edge dislocation into two Shockley partials, viewed
along the dislocation line. (b) Top view of the Shockley partials.

The procedure of Shockley-partials separation influences the total energy of the
crystal by three terms. First of all, since in the fcc lattice b = ac/

√
2 and b1 = b2 =

ac/
√

6, and hence b2 > b21 + b22, the dissociation of the Shockley partials lowers the
dislocation energy (see Eq. 2.9). This energy change is not dependent on the distance
d between partials. The second term is based on the interaction between two partials.
Partials repel each other, and the interaction energy decreases by a factor of 1/d. Based
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on this term alone, the partial dislocations would maximize the distance d. The third
term altering the total energy is the energy cost upon creating the stacking fault which
is stretched out by the dissociation of partials. This term is proportional to the SFE as
the energy change per area, and the total area of the SF, which increases by d. Based
on this term alone, the partial dislocations would minimize the distance d. In total, the
crystal energy decreases by the partial dissociation, while the distance d is determined
by an equilibrium between other two terms. This equilibrium d is mainly dependent
on the SFE, so that for a lower value of the SFE a larger separation between Shockley
partials is expected [52].

2.4 Importance of the SFE

Plastic deformations in fcc metals may occur through different mechanisms including
partial and perfect dislocation gliding, twinning (resulting in twinning-induced plastic-
ity, TWIP), and phase transformation (resulting in transformation-induced plasticity,
TRIP). The SFE is a crucial parameter for understanding plastic deformation of fcc
metals, since it governs the activation of these mechanisms. Although dislocation glid-
ing is present everywhere, it is the dominant mechanism where the SFE is quite high.
The TWIP mechanism generally occurs in stable austenite where the Gibbs free energy
of the martensitic transformation, ∆Gfcc→hcp, is positive and the stacking fault energy
is in a moderate range. The TRIP mechanism, on the other hand, appears in metastable
austenite where ∆Gfcc→hcp is negative and the stacking fault energy is rather low, which
implies preferential formation of the hcp phase [5–7].

The role of the SFE in the behavior of fcc alloys under mechanical stresses has
quantitatively been studied for high-manganese steels. Frommeyer et al. [5] have re-
ported the dominance of the phase transformation for SFE ≤ 16mJ/m2, and twining for
SFE ≈ 25mJ/m2. Grässel et al. [6] reported the dominance of phase transformation for
SFE ≤ 20mJ/m2 and of twining for SFE > 20mJ/m2. Allain et al. [7] have reported
that the martensitic transformation is the dominant mechanism at low values of the SFE,
i.e., SFE ≤ 18mJ/m2, twining occurs for moderate values, 12 < SFE ≤ 18mJ/m2, and
for higher values dislocation gliding is favored.

2.5 Measurements of the SFE

Although there is no direct way of measuring the SFE, several indirect experimental
methods have been used to determine it [53]. The most direct methods involve observa-
tion of dislocation nodes, loops, and tetrahedra by electron microscopy. Less direct
methods include the measurement of x-ray texture, third-stage single-crystal work-
hardening rates, and combined x-ray measurements of stacking-fault probability and
dislocation density [53].

The experimental values for the SFE are highly questionable since the reported
ranges are too broad. Reed and Schramm [53] have summarized the reported SFE for
five fcc metals, Ag, Au, Cu, Al, and Ni. Considering only the most direct methods
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Table 2.1: Measured values for the SFE, summarized by Reed and Schramm [53].

Metal Average Range ∆
[mJ/m2] [mJ/m2] [%]

Silver (Ag) 22 16 – 31 −27 – +41
Gold (Au) 50 42 – 61 −16 – +22
Copper (Cu) 62 48 – 85 −23 – +37
Aluminum (Al) 183 110 – 210 −34 – +15
Nickel (Ni) 220 160 – 300 −27 – +36

and omitting others, they came up with average SFE for every element, as presented in
Tab. 2.1. As it is obvious from the table, even the most consistent measurements result
in a very broad range, sometimes more than 35% variance with respect to the average
value.

For plain carbon steels in the fcc phase at high temperature, Adeev and Petrov
[54] have measured the SFE to lie between 70mJ/m2 and 100mJ/m2 (almost 50%
deviation), based on the material grain size. Bampton et. al [19] have reported that
different heat treatments applied to samples highly scatter the SFE values measured by
observation of dislocation nodes. However, they show that the SFE values measured by
observation of isolated dislocations are not dependent on these heat treatments. These
reports emphasize the influence of both the sample preparation and the measurement
method on the experimental results.

Beside the accuracy of experimental values, the measurement itself is quite com-
plicated and difficult, since many parameters including sample quality (grain size, ho-
mogeneity, impurity, etc.) and picture quality must be well controlled in order to get
reliable results. Because of the controversies among published results and these difficul-
ties, a theoretical approach for evaluating the SFE is highly motivated. A systematic
study based on theoretical methods would lead to a fundamental understanding of the
topic, which is of great importance for designing new materials.
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3

Metallurgical Background

In this chapter, a short introduction to carbon steels and iron–chromium–nickel stainless
steels is presented. We shortly describe only the most prominent phases which are
discussed and referred to in this thesis. For more details on these topics one can refer
to books specialized in metallurgy.

3.1 Iron

Steels are alloys that mainly consist of iron, thus a good starting point for understanding
steels is to recall the properties of pristine iron. At room temperature, iron is found
in the body-centered cubic (bcc) lattice structure, an iron phase so-called ferrite, and
denoted as α-iron. The ground state electron configuration of an iron atom, [Ar] 3d6 4s2,
with its four unpaired 3d electrons is mainly responsible for the magnetic properties
of iron. At room temperature, the magnetic moments are aligned parallelly within
ferromagnetic domains, resulting in the well known ferromagnetic properties of iron.
As temperature increases, the thermal agitation of spins opposes their tendency to
align, decreasing the alignment within each domain [55].

In the iron-carbon phase diagram, the phase transitions of pristine iron is presented
on the vertical axis, where the carbon concentration is zero. This phase diagram is
presented at different scales in Figs. 3.1 and 3.2. It demonstrates that, at ambient
pressure, the ferromagnetic phase transforms to the paramagnetic phase at the Curie
temperature Tc = 1043K (770℃). In the paramagnetic phase magnetic moments are
randomly oriented. The lattice structure does not change due to this magnetic phase
transition. The new paramagnetic phase is historically known as β-iron. The bcc
structure remains stable until the temperature reaches T β↔γ = 1185K (912℃), at
which the structure transfers to fcc, the so-called austenite denoted by γ-iron. The fcc
lattice of austenite is denser than the bcc lattice of ferrite and results in a higher density
of austenite by 2%, indicating that the volume per atom is less in austenite [56]. At even
higher temperatures, i.e., T γ↔δ = 1667K (1394℃), the fcc structure transforms back
to the bcc structure, a high-temperature paramagnetic bcc phase denoted by δ-iron.
Finally, at T = 1811K (1538℃), δ-iron melts.
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Figure 3.1: (a) Equilibrium phase diagram for the binary iron-carbon system in a wide range
of concentration and temperature. The picture is a reproduction of the original diagram taken
from Binary Alloy Phase Diagrams [57]. (b) The same phase diagram with emphasis on a range
of lower carbon concentrations and lower temperatures. It was recreated using the original
version taken from Materials Science and Metallurgy [58].
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Figure 3.2: Equilibrium phase diagram for the binary iron-carbon system at low carbon
contents. The picture is a reproduction of the original diagram taken from Binary Alloy Phase
Diagrams [57].

3.2 Carbon Steels

Carbon steels are those steels in which the main interstitial alloying constituent is car-
bon. More precisely, the American Iron and Steel Institute (AISI) defines carbon steel
as the following [59]:

A steel may be classified as a carbon steel if (1) the maximum content
specified for alloying elements does not exceed the following: manganese
1.65%, silicon 0.60%, copper 0.60%; (2) the specified minimum for copper
does not exceed 0.40%; and (3) no minimum content is specified for other
elements added to obtain a desired alloying effect.

Due to their wide range of strength, hardness, and ductility as well as their low costs,
carbon steels are by far the most frequently used steels. Variations in carbon content
have large effects on their mechanical properties. The addition of interstitial carbon
up to 2 wt.% combined with an appropriate heat treatment increases the strength and
hardness of these steels and decreases their ductility. Higher carbon concentrations,
however, reduces their strength and hardness. Moreover, regardless of the heat treat-
ment, interstitial carbon lowers the melting point of steels [2].

Generally speaking, carbon steels contain up to 2 wt.% total alloying elements and
can be subdivided into low-carbon steels, medium-carbon steels, high-carbon steels,
and ultrahigh-carbon steels. Beyond this limit, an alloy of iron and carbon with carbon
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content within the range of 2–4 wt.% is called cast iron. The classification of carbon
steels based on their carbon content is as the followings [60]:

• Low-carbon steels contain up to 0.3 wt% C. While their low carbon content
disables hardening through heat treatment, it enables excellent formability in cold
working.

• Medium-carbon steels are similar to low-carbon steels except that the carbon
ranges from 0.3 to 0.6 wt%. This level of carbon content allows hardening through
heat treatment. They make a balance between ductility and strength and have
good wear resistance.

• High-carbon steels contain from 0.6 to 1 wt% C, which makes them very strong.

• Ultrahigh-carbon steels are experimental alloys containing 1 to 2 wt% C. They
can be tempered to great hardness.

The addition of carbon significantly alters the phase stability of iron (see Fig. 3.1).
In order to provide the basic knowledge which will be required in the next chapters, we
present the most important phases below [56, 61].

3.2.1 Ferrite (α)

In an iron-carbon alloy, the ferrite phase, also known as the α-phase or the α-ferrite, is
a solid solution of iron and carbon with iron atoms arranged in a bcc lattice and carbons
occupying interstitial sites. In the bcc structure, there are two types of interstitial sites,
octahedral sites and tetrahedral sites. An octahedral site is defined at the center of an
irregular octahedron whose faces are isosceles triangles of base length abcc and equal
sides of length

√
3

2 abcc (see Fig. 3.3(a)). The same triangles can compromise an irregular
tetrahedron including a so called tetrahedral site at its center (see Fig. 3.3(b)).

Using a hard ball representation for iron atoms, the radius of an interstitial site
is defined as the radius of the largest sphere which can be placed at the site without
overlapping with other atomic spheres. Taking into account that the radius of atomic
spheres in a bcc structure is

√
3

4 abcc, the ratio between the radius of the interstitial site
and the radius of iron atoms is found 2/

√
3 − 1 ≈ 0.1547 and

√
5/3 − 1 ≈ 0.2910 for

octahedral and tetrahedral sites, respectively. Although the radius of the tetrahedral
site is larger than that of the octahedral site, experimental [62] and ab-initio [63] studies
show that carbon prefers to accommodate in octahedral sites. The metallic radius of
iron and the covalent radius of carbon are 1.24Å and 0.77Å, respectively [64], thus the
radius of a carbon atom is estimated to be 0.62 of that of iron atoms. This simple con-
sideration demonstrates that both sites, in their initial configuration, are far too small
for accommodating carbon. However, it turns out that, after local lattice relaxations
which expands the bcc lattice around interstitial carbons, carbon atoms prefer to stay
in distorted octahedral sites where they have only two iron atoms close to them, rather
than four close iron atoms as realized in the tetrahedral sites [63].
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(a) (b) (c)

Figure 3.3: (a) An interstitial octahedral site in the bcc structure, defined at the center of
an irregular octahedron. (b) An interstitial tetrahedral site in the bcc structure, defined at
the center of an irregular tetrahedron. (c) In every cubic (conventional) unit cell of the bcc
structure, there are six octahedral sites (small green spheres), three with centers lying on cell
faces, and the other three with centers on the middle of the cell sides. There are also 12
tetrahedral sites (small blue spheres), all with centers on the cell faces.

(a) (b) (c)

Figure 3.4: (a) An interstitial octahedral site in the fcc structure, defined at the center of a
regular octahedron. (b) An interstitial tetrahedral site in the fcc structure, defined at the center
of a regular tetrahedron. (c) In every cubic (conventional) unit cell of the fcc structure, there
are four octahedral sites (small green spheres), one entirely confined at the center of cell, and
others with centers on the middle of cell sides. There are also eight tetrahedral sites (small blue
spheres), entirely confined in the cell.
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Speaking more precisely, the tetrahedral site is neither a stable nor a metastable
site, but only a transitional site on the minimum-energy path through which a carbon
diffuses between two neighboring octahedral sites. Ab-initio simulations demonstrate
that as carbon passes through this transitional site, the system’s total energy reaches
its maximum, resulting in a diffusion barrier of 0.86 eV [63], which is in good agreement
with the experimental value of 0.87 eV [65].

The small size of the octahedral sites makes it difficult to accommodate carbon
atoms, thus the solubility of carbon in α-iron is very low, with a maximum of 0.1013 at.%
(0.0218 wt.%) observed at 1000K (727℃). This limited solubility restricts the existence
of the pure α-phase of carbon steel in a very small area in the phase diagram (see
Fig. 3.2). The α-ferrite is relatively soft [66] and is ferromagnetic at temperatures
below 1043K (770℃) (see Fig. 3.2).

3.2.2 Austenite (γ)

In an iron-carbon alloy, the austenite phase, also known as the γ-phase or the γ-
austenite, is a solid solution of iron and carbon with iron atoms arranged in an fcc
lattice, and carbons occupying interstitial sites of the fcc lattice. The above-mentioned
octahedral and tetrahedral sites are also present in the fcc structure, however, here both
are regular bodies with sides of length

√
2

2 afcc (see Fig. 3.4). Although the packing of
atoms in the fcc lattice is denser compared to that in the bcc structure, the radius of
interstitial sites in the fcc lattice is larger. Taking into account that the radius of atomic
spheres in an fcc structure is

√
2

4 afcc, the ratio between the interstitial radius and the
radius of iron atoms is given by

√
2− 1 ≈ 0.4142 and

√
3/8− 1

2 ≈ 0.1124 for octahedral
and tetrahedral sites, respectively.

Unlike the bcc lattice, in the fcc structure, carbon is accommodated in the more
spacious interstitial sites. Experimental observations [67] as well as theoretical stud-
ies based on molecular dynamics [68] and ab-initio calculations [63] agree in the fact
that, in fcc iron, interstitial carbon prefers octahedral over tetrahedral coordination.
Unlike the case in ferrite, the tetrahedral site in austenite is a metastable site on the
minimum-energy path through which a carbon diffuses between two neighboring oc-
tahedral sites [63]. Here, ab-initio calculations find diffusion barriers of 0.99 eV and
2.70 eV, respectively for the ferromagnetic high-spin and for the nonmagnetic austenite
[63], which are quite different from the experimental value of ∼1.60 eV measured in the
high-temperature paramagnetic austenite phase [69].

Due to the larger voids between iron atoms in the fcc structure, austenite can ac-
commodate more carbon than ferrite. Nevertheless, the lattice has to expand around
interstitial carbons. According to the phase diagrams in Figs. 3.1 and 3.2, austenite
can accept a maximum of 9.11 at.% (2.11 wt.%) of carbon at 1421K (1148℃), which
is almost 100 times greater than the maximum carbon content in ferrite. As carbon
content increases further, a mixture of austenite, ledeburite, and cementite is formed.

The equilibrium phase diagram demonstrates that austenite is not stable at room
temperature. However, particularly in high carbon steels, it might be found at room
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(a) (b)

Figure 3.5: (a) Unit cell of cementite with 12 iron and 4 carbon atoms. (b) Repetition of the
unit cell along the x-axis shows prismatic sites occupied by carbon. Two prisms are highlighted
for clarity.

temperature as a metastable phase mixed with martensite (see 3.2.4). For instance, in
the Fe–1.86wt.%C steel, a significant fraction of the alloy is still in the austenite phase
at room temperature [61].

3.2.3 Cementite (Fe3C), Pearlite, and Ledeburite

As the concentration of carbon exceeds its solubility in ferrite, accumulation of the extra
carbon starts forming phases which can contain a higher amount of carbon. One of these
phases is cementite, also known as iron carbide, which is a chemical compound of iron
and carbon, with the formula Fe3C, containing 6.67 wt.% carbon. Since it is a chemical
compound, unlike in solid solutions, its carbon content is always fixed. It means that,
in the phase diagram, the pure cementite phase exists only in a very narrow region,
more accurately a vertical line, at the carbon concentration of 25.0 at.% (6.67 wt.%).
Cementite has an orthorhombic crystal structure with 12 iron and 4 carbon atoms in
the unit cell (see Fig. 3.5(a)), where experimental [70] and theoretical [71] studies show
that the interstitial carbons prefer to occupy prismatic sites rather than octahedral sites
(see Fig. 3.5(b)). Mechanically, cementite is a very hard and brittle material, whose
presence may greatly enhance the strength of some steels [66].

When the carbon content is lower than 3.48 at.% (0.77 wt.%), as indicated in
Fig. 3.1(b), the extra carbon, which cannot dissolve in ferrite, results in the forma-
tion of colonies with a structure composed of alternating layers of ferrite and cementite,
where the relative layer thickness is approximately 8 to 1, respectively. This layered
structure is called pearlite, also known as eutectoid steel, and contains approximately
3.48 at.% (0.77 wt.%) carbon [66]. During slow cooling pearlite forms by a eutectoid
reaction as austenite is below the eutectoid temperature, 1000K (727℃). At tempera-
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tures below this, an iron-carbon alloy forms a mixture of ferrite and pearlite in the left
side of the eutectoid point (xC < 3.48 at.% ≡ 0.77 wt.%) and a mixture of pearlite and
cementite in the right side of the point (xC > 3.48 at.%). Mechanically, pearlite has
properties intermediate between the soft, ductile ferrite and the hard, brittle cementite
[66].

Ledeburite is a mixture of about 52% austenite and 48% cementite, and forms at
temperatures below 1421K (1148℃) in iron-carbon alloys [72]. As temperature de-
creases, the austenite in the ledeburite converts into pearlite at temperatures below
1000K (727℃) (see Fig. 3.1(b)).

3.2.4 Martensite (α′)

In carbon steels, martensite, also known as the α′-phase or the α′-martensite, is formed
through a diffusionless transformation due to rapid cooling of austenite. The diffusion-
less transformation ensures that the martensite has exactly the same composition as
does its parent austenite.

The equilibrium phase diagrams presented in Figs. 3.1 and 3.2 predict that as tem-
perature decreases, depending on the carbon content, austenite may transform into a
mixture of ferrite, pearlite, and cementite. Such a transformation occurs only if the
cooling rate is slow enough to provide sufficient time for carbon diffusion. On the
other hand, when austenite transforms to martensite by rapid cooling, for instance by
quenching in water, carbon atoms do not have enough time to diffuse out of ferrite, and
hence are trapped in the octahedral sites of the bcc structure. The carbon content of
newly-formed ferrite is exactly the same as of the parent austenite, greatly exceeding
the limit of the carbon solubility in the bcc structure of ferrite. In order to provide more
space for interstitial carbons, the bcc structure is expanded along one of its sides, lets
say c, resulting into a body-centered tetragonal (bct) structure. With higher carbon
concentration of the martensite, more interstitial sites are filled, and the tetragonality
(the tetragonal distortion characterized by the c/a ratio) increases [61].

Martensite is not present in the equilibrium phase diagrams, as its is a metastable
phase. If it is heated to a temperature high enough at which carbons become movable,
they would diffuse from the octahedral sites in order to form carbides. As a consequence,
the martensite transforms to a mixture of ferrite and cementite, and the tetragonality
is relieved [61].

3.3 Stainless Steels

Stainless steels, also known as inox steels, are generally defined as corrosion-resistant
iron-based alloys with a minimum of about 10.5% (according to the European standard
EN10088) [73] or 11% [74] chromium content by mass . The chromium content in these
steels reacts with oxygen and forms a thin, invisible protective surface layer of chromium
oxide. Due to the ability of the chromium atoms and oxide molecules to pack together
tightly, such a layer with a thickness of only a few atoms protects the steel underneath
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Figure 3.6: The equilibrium pseudo-binary phase diagram evaluated by the Thermo-Calc
software [75, 76], where the concentration of iron has been selected according to the A607 alloy
(see Chap. 6).

from further oxidation. Although stainless steel does not corrode, rust or stain with
water as ordinary steel does, it is not fully stain-proof, most notably under low oxygen,
high salinity, or poor circulation environments, where the crevice corrosion becomes a
concern [74]. Stainless steels are usually used in applications where both the properties
of steel, i.e., strength and fabricability, and resistance to corrosion are required.

As a result of the large number of alloying elements with relatively high concentra-
tions, stainless steels can have many stable phases concurrently. Clearly, the phase with
the lowest free energy is most favored, but others may have low enough free energies
that permit them to exist as metastable phase. Transition from one metastable phase
to the equilibrium state, the one of the lowest energy, may require atomic rearrange-
ments to reach the equilibrium compositions on an atomic scale. If diffusion is too slow
for these rearrangements to take place, the structure may retain the prior metastable
configuration indefinitely. That is why most stainless steels are used in the metastable
condition [74].

The structure of the final product can be influenced by various parameters like heat
treatment and mechanical working. That is why samples of the same chemical composi-
tion may be found in different phases, or they may even have different lattice parameters
in the same phase. These conditions require different sets of phase diagrams accord-
ing to different production processes. However, here we present only the equilibrium
pseudo-binary phase digram for ternary Fe–Cr–Ni alloys, calculated by the Thermo-
Calc software [75, 76] which uses experimental data bases. When evaluating the phase
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Figure 3.7: Iron-chromium phase diagram taken from Binary Alloy Phase Diagrams [57].

digram, we have chosen a constant iron concentration according to the simulated A607
alloy in Chap. 6.

3.3.1 Ferrite (α)

Clearly, the crystallographic structure of a solid may vary with temperature. For exam-
ple, many metals, including iron, have a less-dense bcc structure at high temperature
and transform to a denser fcc structure at lower temperatures. However, iron has the
curious characteristic of transforming from fcc back to the low-density bcc structure
at still lower temperatures (see Fig. 3.7). This is a result of the unpaired 3d electrons
that give rise to ferromagnetism, causing repulsive forces between atoms and requiring
a more widely spaced structure [74]. This sequence of phase transitions shows that the
free energies of both structures are close to each other [74].

The base of stainless steel is iron, in which the above-mentioned sequence of phase
transitions shows that the free energies of fcc and bcc structures are close to each other.
Thus, alloying elements that prefer one structure over the other one can push the
phase stability toward the favored structure. Among those alloying elements which are
usually present in stainless steels, chromium, silicon, aluminum, molybdenum, tungsten,
niobium, and titanium favor the bcc structure, and hence expand the temperature range
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over which ferrite is stable. On the other hand, carbon, nitrogen, manganese, nickel, and
copper are austenite-promoting alloying elements and expand the temperature range
over which austenite exists. Elements which are insoluble in iron at austenite-forming
temperatures, such as the impurities phosphorus, sulfur, and oxygen, have no influence
on which phase is favored [57].

In order to maintain the corrosion resistance of stainless steels, a sufficient amount
(at least 11 wt.%) of chromium is required, making it the main alloying element in this
class of steels. Chromium has bcc structure and hence is a ferrite-stabilizing element
in the alloy. Fig. 3.7 presents the equilibrium phase diagram of the iron-chromium
binary alloy. The diagram shows that, as chromium is added to iron, the temperature
range over which austenite is stable shrinks, and finally at about 12 wt.% chromium,
ferrite becomes stable at all temperatures. By coincidence, this is the approximate level
of chromium required to maintain the rust resistance under ambient conditions [74].
Therefore, in absence of significant amount of austenite-stabilizing elements, ferrite is
the dominant phase of stainless steels.

Compared to austenite, ferrite has a greater thermal conductivity, lower thermal
expansion, and higher stacking-fault energy. Its strength decreases with temperature
more than that of austenite, but the good match in thermal expansion between the
ferrite and the protective chromium-oxide still makes it an excellent high-temperature
material. It has almost the same corrosion resistance as austenite [74].

3.3.2 Austenite (γ)

The second major constituent phase of stainless steels is austenite which exhibits fcc
structure. Austenitic stainless steels, also known as 300 series, make up the major
part of the stainless steel production. In these grades, carbon is usually kept to low
levels (C < 0.08 wt.%), while the chromium content ranges from 16 to 28 wt.% and the
nickel content ranges from 3.5 to 32 wt.%. Such a chemical composition allows them
to maintain an austenitic structure from cryogenic temperatures up to the melting
point of the alloy. These alloys cannot be hardened through heat treatment. The key
properties of these types of stainless steel are excellent corrosion resistance, ductility and
toughness [73]. The most widely used steel in this category, is the 304 grade, containing
18–20 wt.% chromium and 8–12 wt.% nickel, which possesses an excellent combination
of the above-mentioned properties.

The fcc structure is common in many transition metals to the right of iron in the
periodic table. This structure should be considered normal for metals well below their
melting temperature as it is a denser structure. In the case of iron, the presence of
the bcc structure relates to the unpaired 3d electrons, which provide ferromagnetism.
Adding elements to iron that cause pairing of the 3d electrons diminishes ferromag-
netism and promotes the fcc structure. Nickel and manganese are the most prominent
alloying elements that do this, but interstitial carbon and nitrogen are the most powerful
austenite stabilizers on a percentage basis. However, their use is limited by their solu-
bility and their tendency to form precipitating compounds with chromium. Manganese
acts largely through its ability to promote nitrogen solubility [74].
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Since all stainless steels contain principally iron and chromium, the addition of a
substantial amount of austenitizing elements is necessary to transform the structure
to austenite. For instance, an Fe–Cr–Ni alloy with about 17 wt.% chromium requires
about 11 wt.% nickel (or its equivalents) to remain austenitic at room temperature. One
weight percent nickel can be replaced by about 2 wt.% manganese as long as nitrogen
is present to maintain the same phase stability. The omnipresent carbon and nitrogen
have an effect 30 times that of nickel, so even in the small amounts in which they are
normally present, they have a significant effect [74].

Many types of stainless steels are in metastable austenitic phase at service tempera-
ture. For example, alloys in the common grade 304 (also called 18–8 due to 18 wt.% Cr
and 8 wt.% Ni) are normally used in the fully austenitic condition. Although, concern-
ing its equilibrium, it would rather be partly ferritic, but the substitutional diffusion
of chromium in austenite which is required to form a ferrite phase of a separate com-
position is so slow that it cannot occur in terrestrial time frames. However, if energy
is applied by mechanical shear, the austenite can transform to the lower free-energy
martensite phase without diffusion [74], as described in the next section.

Compared to ferrite, austenite has a lower thermal and electrical conductivity,
greater thermal expansion, smaller stacking-fault energy, better corrosion resistance,
and higher ductility. It is a paramagnetic alloy, suitable for application where a non-
magnetic metal is favored [74].

3.3.3 Martensite (α′ and ε)

We already described the formation of martensite in carbon steels. In a similar way,
martensite can also form in stainless steels as a consequence of the rapid cooling of
austenite which traps interstitial carbons in the octahedral sites of the final bct struc-
ture. When cooling austenite, the martensite formation starts at a certain tempera-
ture, the so-called martensite-start temperature, denoted by Ms. When temperature
decreases, more austenite transforms to martensite, until the martensitic transformation
completes as the temperature reaches the martensite-finish temperature, Mf . Both Ms

and Mf depend on the steel composition. In the absence of mechanical stresses, Ms is
estimated using the empirical equation1 introduced by Eichelman and Hull [61]

Ms [K] = 1578− 41.67xCr − 61.11xNi − 33.33xMn

−27.78xSi − 1667(xC + xN), (3.1)

where xi denotes the concentration of element i in the unit of weight percent.
In stainless steels, two types of martensite form spontaneously when austenite is

cooled enough: a hexagonal close-packed structure, so-called ε-martensite, and the
1As mentioned in the book STEELS: Processing, Structure, and Performance [61], the equation

has originally been published in 1953 by Eichelman and Hull [77]. Since we did not have access to the
original article, we took the equation from this book in the form of

Ms [◦F] = 75(14.6− xCr)− 110(8.9− xNi)− 60(1.33− xMn)− 50(0.47− xSi)− 3000[0.068− (xC + xN)]

and converted it from Fahrenheit unit (◦F) to Kelvin (K).
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above-mentioned α′-martensite with the bcc lattice. The ε-martensite forms on close-
packed (111) planes in the austenite and, except for size, is morphologically very similar
to deformation twins or stacking-fault clusters [78]. The nucleation of α′-martensite and
its relationship to ε-martensite has been difficult to resolve. Evidences have been re-
ported for two different phenomena during the formation of α′-martensite: (i) a direct
transformation of austenite to α′-martensite, and also, (ii) a two-step transformation
with ε-martensite as the intermediate phase [61]. While α′-martensite is ferromagnetic,
ε-martensite is paramagnetic in the temperature ranges over which it exists [74].

As a unique feature of austenitic stainless steels, when mechanical stresses are ap-
plied, a deformation-induced martensitic transformation can occur even at temperatures
higher than Ms. Deformation-induced martensite significantly enhances the strength of
the alloy, and thus is desired in some types of stainless steels [61].

The martensitic transformation in austenitic stainless steels will be discussed a little
further, when we will present our ab-initio results on the phase stability of the Fe–Cr–Ni
alloy in Sec. 6.4.1.

3.3.4 Sigma Phase (σ)

In stainless steels, the sigma phase, denoted by σ, can form as the chromium content
exceeds 18 wt.% [74]. Unlike alloys where different elements are randomly distributed
trough the lattice, the sigma phase is an intermetallic phase, where atoms of different
elements occupy certain sites in the structure. In other words, speaking about the iron–
chromium system, the sigma phase is a chemical compound of these two elements. It has
a complex crystal structure with a body-centered tetragonal (bct) unit cell containing
30 atoms [61]. Physically, it is very hard and brittle, and can adversely affect ductility,
toughness, and corrosion resistance of stainless steels, thus its formation is not favored.
The Curie temperature for the sigma phase has been reported to be below 40K [79].
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4

Theoretical Background

In condensed matter physics and chemistry, one is interested in finding the structure
of materials at a microscopic scale, in which the matter is considered as a system
of interacting nuclei and electrons. However, finding this structure is a difficult task
because of two reasons: first, the particles must be treated using the laws of quantum
mechanics, rather than classical physics, and second, the number of particles in a small
(but macroscopic) piece of material is so high making it impractical to study them
explicitly. Therefore, finding the microscopic structure of matter is a quantum many-
body problem. In this chapter, a very short review is presented on the theoretical
background of the computational methods that have been used in this thesis. For
compiling this chapter, except the references which are explicitly cited, lecture notes
presented by Roser Valentí [80] and some parts of the PhD theses written by Peter
Puschnig [81], Oleg Peil [82], Tetyana Khmelevska [83], and Philip Peter Rushton [84]
have been studied.

4.1 Introductory Remarks

For any non-relativistic time-independent system of nuclei and electrons, the above-
mentioned quantum many-body problem can be cast in the form of a stationary
Schrödinger equation [85, 86]

ĤΨ(R1,R2, . . . ,RM , r1, r2, . . . , rN ) = EΨ(R1,R2, . . . ,RM , r1, r2, . . . , rN ), (4.1)

where Ĥ, Ψ(R1,R2, . . . ,RM , r1, r2, . . . , rN ), and E are the Hamiltonian, the many-
body wavefunction, and the total energy of the system, respectively. Ri and rj denote,
respectively, the position of the ith nucleus (1 ≤ i ≤M) and the jth electron (1 ≤ j ≤
N), where M and N are the number of nuclei and electrons in the system, respectively.
Since the particles are interacting according to the Coulomb law, the exact Hamiltonian
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can be expressed as
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Here, me and e are the mass and the charge of an electron, ri represents the position
of the ith electron, and mZi , Zi, and Ri denote the mass, the charge, and the position
of the ith nucleus, respectively. The first two terms in Eq. 4.2 are the kinetic energy
contributions from the nuclei and the electrons, respectively. The remaining terms are
the Coulomb potential energy terms arising from the ion–ion repulsion, ion–electron
attraction and the electron–electron repulsion, respectively. Due to the large number of
electrons and nuclei, Eq. 4.1 is simply too difficult to solve directly with this Hamiltonian
in its exact form. The goal of this chapter is to introduce practical methods which allow
for the solution of the many-body problem by approximating the Hamiltonian 4.2.

4.2 The Born–Oppenheimer Approximation

The electrostatic forces on both electrons and nuclei are of the same order of magnitude,
thus their momentum changes are similar. Since the nuclei are of the order of ∼103 times
heavier than the electrons, their velocities must be much smaller than the velocities of
the electron. Due to these vastly different dynamics, in most cases, the electronic and
the nuclear degrees of freedom can be separated:

Ψtotal({R}, {r}) = Ψ
{R}
electronic({r})×Ψnuclear({R}). (4.3)

Here, {R} and {r} stand for the set of all nuclear and electronic positions, respectively.
The superscript {R} of the electronic wavefunction means that the positions of nuclei
enter the wavefunction as parameters rather than variables [87]. This approximation is
the first simplification to the mentioned many-body problem, and is known as the Born–
Oppenheimer approximation [88]. Based on this approximation, nuclei are considered
at fixed positions when calculating the electronic wavefunction. Therefore, their effect
on the total energy of the ion–electron system is taken into account by a constant term
related to the interactions among themselves, and a fixed external potential acting on
electrons. This simplifies the full many-body Hamiltonian 4.2 as

Ĥ = Enuc. −
N∑

i=1

~2

2me
∇2

ri −
1

4πε0

N∑

i=1

M∑

j=1

eZj
|ri −Rj |

+
1

4πε0

N∑

i=1

N∑

j>i

e2

|ri − rj |
, (4.4)

where Enuc. is the electrostatic potential energy stored in the fixed arrangement of
nuclei. It must be noted that the evaluation of Enuc. is not required when calculating
the electronic ground state. Although the Born–Oppenheimer approximation simplifies
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the Hamiltonian by reducing the many-body (electrons and nuclei) problem to the
many-electron problem, it is still impractical to solve the Schrödinger equation in a
solid containing N ∼ 1023 electrons and consequently 3N variables. For simplicity, in
the remaining part of this chapter we use atomic units, where ~ = e = me = 4πε0 = 1.

4.3 The Hohenberg–Kohn Theorems

Density-functional theory (DFT) is based on two simple, but extremely important, the-
orems known as Hohenberg–Kohn theorems [33]. Here we present these two theorems as
stated in the book Electronic Structure: Basic Theory and Practical Methods authored
by Martin [87].

• Theorem 1. For any system of interacting particles in an external potential
Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by the
ground-state particle density n0(r).

Since the potential and consequently the Hamiltonian are determined, the many-body
wavefunction can be determined for the ground state as well as all excited states. There-
fore, it is then concluded from this theorem that all properties of the system are com-
pletely determined given only the ground-state density n0(r) [87].

• Theorem 2. A universal functional for the energy E[n] in terms of the density
n(r) can be defined, valid for any external potential Vext(r). For any particular
Vext(r), the exact ground-state energy of the system is the global minimum value
of this functional, and the density n(r) that minimizes the functional is the exact
ground-state density n0(r).

From this theorem, it follows that the functional E[n] suffices to determine the ground-
state energy and density [87]. In fact, this functional can be considered as

E[n] = F [n] +

∫
Vext(r)n(r) d3r + EII, (4.5)

where EII is the interaction energy of nuclei, and F [n] is a universal functional of
the density including all internal energies (kinetic, T [n], and potential, Eint[n]) of the
interacting electron system [87]:

F [n] = T [n] + Eint[n]. (4.6)

While the Hohenberg–Kohn theorems proof the existence of an exact solution for
the ground state of the system, they do not offer a practical approach for its calculation.
However, in 1965, about one year after the work by Hohenberg and Kohn [33], Kohn
and Sham [34] proposed a practicable method for DFT calculations which is described
in the next section.
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4.4 The Kohn–Sham Formalism

In this section, we shortly discuss the method proposed by Kohn and Sham [34], in
order to find the ground state of the electronic system. The many-electron system is an
interacting system, where the interactions originate from the Coulomb law and from the
Pauli exclusion principle. However, in the Kohn–Sham formalism, this fully interacting
system containing the actual interactions is mapped onto a fictitious non-interacting
system, with the same ground-state density as the real system. In this non-interacting
system, the electrons move within an effective single-particle potential VKS(r), known
as Kohn–Sham potential . This simplification greatly facilitates the calculation.

Kohn and Sham [34] suggested to write the universal functional 4.6 in the form of

F [ñ(r)] = T [ñ(r)] +
1

2

∫
ñ(r) ñ(r′)

|r− r′| d3r d3r′ + EXC[ñ(r)] (4.7)

where ñ(r) indicates a trial electron density for the non-interacting system, T [ñ(r)] is
the kinetic energy functional for the non-interacting electrons, the second term at the
right side is the electrostatic Hartree energy, and EXC[ñ(r)] is the so-called exchange-
correlation energy functional. Note that, F [ñ(r)] is purely related to the system of
electrons, i.e., it is independent of the external potential. By applying the Hohenberg–
Kohn minimum principle [33], Kohn and Sham found the following system of equations,
known as Kohn–Sham equations:

VKS(r) = Vext(r) +

∫
n(r′)

|r− r′| d
3r′ + VXC(r), (4.8)

VXC(r) =
δ

δñ(r)
EXC[ñ(r)]

∣∣∣∣∣
ñ(r)=n(r)

, (4.9)

[
− 1

2
∇2 + VKS(r)− εi

]
ψi(r) = 0, (4.10)

n(r) =
N∑

i=1

|ψi(r)|2. (4.11)

The Kohn–Sham equations are non-linear equations and thus have to be solved self-
consistently, as presented in Fig. 4.1. Starting from an initial guess, which is usually
obtained by a summation over atomic densities, the Kohn–Sham potential VKS and
consequently the Hamiltonian are obtained using Eqs. 4.8 and 4.9. By the diagonaliza-
tion of this Hamiltonian, Kohn–Sham energies εi and Kohn–Sham states ψi are found
(Eq. 4.10), resulting in a new density as expressed in Eq. 4.11. This new density, in
turn, determines a new Kohn–Sham potential. This cycle is repeated until a converged
ground-state density is obtained.
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Vext(r)
HK⇐=== n0(r)

KS⇐====⇒ n0(r)
HK

===⇒ VKS

⇓ ⇑ ⇑ ⇓
Ψi({r}) =⇒ Ψ0({r}) ψi=0,...,N−1(r) ⇐= ψi(r)

Figure 4.1: A schematic representation of the Kohn–Sham ansatz, created after Martin [87].
The left cycle depicts the real interacting system, where the external potential Vext(r) de-
termines the Hamiltonian and consequently all states Ψi({r}), including the many-electron
ground state Ψ0({r}). The ground state then results in the ground-state density n0(r). The
Hohenberg–Kohn theorem, indicated by an arrow with label “HK”, completes the cycle by re-
lating the external potential to the ground-state density. The right cycle depicts the fictitious
non-interacting system, where, in a similar way, the Kohn–Sham potential determines all single-
electron states ψi({r}). Starting from the single-electron ground state ψ0({r}), N electrons are
arranged in N states with lowest energies ψi=0,...,N−1({r}), which in turn results in the ground-
state density n0(r). Here also the Hohenberg–Kohn theorem completes the cycle by relating the
Kohn–Sham potential to the ground-state density. The relation between the many-electron sys-
tem and the non-interacting single-electron system is provided by the Kohn–Sham formulation,
indicated by the arrow labeled with “KS”.

Once the ground-state density is obtained, the ground-state energy of the electronic
system is found in the form of [89]

E =

N∑

i=1

εi + EXC[n(r)]−
∫
VXC(r)n(r) d3r − 1

2

∫
n(r)n(r′)

|r− r′| d3r d3r′. (4.12)

All many-body effects can be taken into account in the calculation of the ground state if
the exact form of EXC[n(r)] is known. Thus, the usefulness of the Kohn–Sham formalism
is entirely dependent on whether good approximations of EXC[n(r)] are available. In
the next section, we will discuss the most common approximations for the EXC[n(r)].

As presented here, the Kohn–Sham formalism reduces the problem of minimizing
the energy functional to the problem of solving a set of single-electron Schrödinger
equations. Various approaches have been developed in order to solve these single-
electron equations, differing mainly in the choice of the basis set for the single-particle
orbitals. As a consequence of this choice, they differ in performance as well [87]. In solid
state calculations, two basic classes of methods are used: Hamiltonian methods, based
on the diagonalization of the Hamiltonian; and Green’s function techniques relying on
the multiple-scattering formalism. Two examples of such approaches, which have been
used in this thesis, will be shortly discussed in this chapter.

4.5 Exchange–Correlation Functionals

The universal exchange-correlation (XC) energy, EXC[n(r)], which appears in the uni-
versal Kohn–Sham functional for the energy (see Eqs. 4.6 and 4.7), contains (i) the
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difference between the exact and the non-interacting kinetic energies and also (ii) the
non-classical contribution to the electron-electron interactions

EXC[n(r)] =
(
T [n(r)]− TNI[n(r)]

)
+
(
Eee[n(r)]− EH

ee[n(r)]
)
. (4.13)

where T [n(r)] and Eee[n(r)] are, respectively, the exact kinetic and electrostatic ener-
gies of the real interacting system of electrons. Similarly, TNI[n(r)] and EH

ee[n(r)] are
the kinetic and electrostatic energies for the non-interacting system. In principle, if
the exact form of EXC[n(r)] were known, Kohn–Sham theory would be exact. How-
ever, finding an accurate enough EXC[n(r)] has shown to be extremely difficult and is
currently the greatest challenge in density-functional theory [89]. The approximation
to the XC energy is the main approximation entering the Kohn–Sham formalism and
specifies the general accuracy and success of DFT methods.

The XC energy EXC[n(r)] consists of two parts, i.e., the exchange energy, EX[n(r)],
and the correlation energy, EC[n(r)]:

EXC[n(r)] = EX[n(r)] + EC[n(r)]. (4.14)

In DFT, the exact exchange energy EX[n(r)] is in the form of the Hartree–Fock (HF)
exchange energy, EHF

X , except that the KS orbitals are used instead of the HF orbitals
[89]. However, no accurate universal expression is known for the correlation energy,
giving rise to many investigations in order to find relevant approximations for it. Among
many approximations proposed for the exchange-correlation functional, here we shortly
introduce two most common forms.

4.5.1 The Local-density Approximation

The local-density approximation (LDA) is an approximations to the XC energy func-
tional in DFT that depend solely upon the value of the electronic density at each point
in space. The most successful forms of the LDA are those derived from the homogeneous
electron gas (HEG), where, for a spin-unpolarized system, the XC energy is written as

ELDA
XC [n(r)] =

∫
εXC(n(r))n(r) d3r. (4.15)

Here, εXC(n(r)) is the XC energy per electron (XC-energy density) of a uniform electron
gas of density n(r) [34]. In order to use the HEG results for approximating the XC
energy in a system where the density in not homogeneous, an integration over space is
performed in which the inhomogeneous system is locally approximated with a HEG of
the same density.

The homogeneous electron gas is considered as a system of interacting electrons
placed in a volume with a relevant positive background charge so that keeps the system
neutral. In such a system without a net charge, the total energy consists of only two
contributions: the kinetic energy and the XC energy:

εHEG
tot (n) = τHEG(n) + εXC(n). (4.16)
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The kinetic energy per electron, τHEG, is obtained as [90]

τHEG(n) =
3

5
εF(n) =

3

10

(9π

4

) 2
3 1

r2
s

≈ 1.10

r2
s

Ha, (4.17)

where the energy unit, Ha, stands for Hartree: 1 Ha = 2 Ry ≈ 27.211 eV. Here, εF(n)
indicate the Fermi energy per electron, and rs is the radius of a sphere containing one
electron, given as [36, 87]

4π

3
r3
s =

1

n
=⇒ rs =

( 3

4π

1

n

) 1
3
. (4.18)

The XC-energy density εXC(n) is decomposed into two parts, i.e., the exchange- and
the correlation-energy densities:

εXC(n) = εX(n) + εC(n). (4.19)

For a spin-unpolarized HEG with constant density n, the exact exchange-energy density
is obtained as [36, 87, 90]

εX(n) ≡ ε↑X(n) = ε↓X(n) = − 3

4π

(9π

4

) 1
3 1

rs
Ha = −0.458

rs
Ha, (4.20)

As mentioned earlier, there is no general analytical expression for the correlation
energy. The nearly exact correlation-energy density for the HEG can be calculated only
for high- and low-density limits, corresponding to infinitely-weak and infinitely-strong
correlations. For a spin-unpolarized HEG with constant density n, the correlation-
energy density at these two limits is obtained as [89]

εC(n) ≡ ε↑C(n) = ε↓C(n) =





0.0311 ln rs − 0.048 + rs(A ln r + C) rs � 1

1

2

(g0

rs
+

g1

r
3/2
s

+
g2

r2
s

+ . . .
)

rs � 1
(4.21)

In general, using Eqs. 4.16 and 4.19, εC(n) can be defined as the remaining contribution
to the total energy:

εC(n) = εHEG
tot (n)− τHEG(n)− εX(n). (4.22)

This equation suggest a way for evaluating the correlation-energy density by calculat-
ing the total energy of the HEG [90]. Accurate total energies have been obtained for
intermediate values of density using quantum Monte-Carlo simulations [91, 92]. An in-
terpolation is performed over the results of these simulations in order to find a general
expression for εC(n) as a function of density. When both εX(n) and εC(n) are found,
the εXC(n) and consequently the ELDA

XC [n(r)] are obtained.
Based on its derivation, the LDA is obviously exact for the homogeneous electron

gas [36]. Moreover, it was initially expected to give reasonable results in solids close
to a homogeneous gas, where the density is slowly varying on the scale of the local
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Fermi wavelength λF = 2π/kF = h/
√

2mEF. However, it turned out that the LDA
gives reasonable results even for atoms and molecules where the condition of slowly
varying densities is not satisfied [36, 87]. A great number of calculations have shown
that the LDA gives ionization energies of atoms, dissociation energies of molecules and
cohesive energies with a fair accuracy of typically 10–20%. Structural properties such
as bond lengths and the geometries of molecules and solids are obtained typically with
an astonishing accuracy of ∼1% [36]. The LDA (and the LSDA, its extension to system
with unpaired spins) can fail in systems, like heavy fermion systems, so dominated by
electron–electron interaction effects that they lack any resemblance to noninteracting
electron gases [36].

4.5.2 The Generalized Gradient Approximation

The first step beyond the local approximation was a functional of the density n(r), as
well as the magnitude of its gradient, |∇n(r)|. Such a gradient-expansion approximation
(GEA) was first suggested in the original paper of Kohn and Sham [34]. However, the
GEA did not result in consistent improvement over the LSDA; indeed it often leads to
worse results. The basic problem is that the gradients in real materials are so large that
the expansion diverges [87].

In order to modify the behavior of functionals at large gradients and thus to pre-
serve the desired properties, a variety of solutions were suggested resulting in different
generalized-gradient approximations (GGA’s). The expression of the XC energy pre-
sented in Eq. 4.15 can be generalized in the form of

EGGA
XC [n(r)] =

∫
εXC

(
n(r), |∇n(r)|

)
n(r) d3r, (4.23)

where εXC

(
n(r), |∇n(r)|

)
is the XC-energy density as a function of two variables: (i) the

electron density n(r) and (ii) the magnitude of the electron-density gradient, |∇n(r)|.
Currently, the most widely used GGA is the one proposed by Perdew, Burke, and
Enzerhof, known as GGA-PBE [93].

The GGA’s improve the description of structural properties of systems which con-
siderably differ from the HEG. For instance, the use of the GGA’s reduces the errors
of atomization energies of standard sets of small molecules consist of light atoms by
factors of typically 3–5 [36].

4.6 The Hamiltonian Methods

In order to solve the Kohn–Sham equations for an electronic system, the wavefunction
is expanded using an appropriate basis set. Generally, a good basis set must be simul-
taneously unbiased, simple, and efficient. Unbiased means that the basis set must not
assume any preconceptions of the form of the problem. Simplicity means the ease of
implementation, which would require less technical efforts. And finally, the efficiency
is determined by the number of the basis functions which are required in order to get
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an accurate enough representation of the expanded wavefunction. This section aims to
give a short introduction to theoretical approaches which help to understand the mixed
LAPW+LO and APW+lo basis sets used in the thesis. We follow closely the review
published by Madsen et al. [94].

4.6.1 The Augmented Planewave (APW) Method

When studying periodic crystals, plane waves eı(k+G)·r are a natural choice of basis
functions, as they are compatible with the periodic boundary conditions. Here, k de-
notes a vector in the first Brillouin zone, and G is a reciprocal lattice vector. Moreover,
plane waves are unbiased and technically very simple to implement. Using a planewave
basis set, any eigenfunction of a periodic Hamiltonian can be expanded as

ψn,k(r) =
∑

G

cn,k,G eı(k+G)·r. (4.24)

Despite the above mentioned advantages of the plane waves, they are not efficient,
particularly when trying to reproduce the rapid oscillations of the wavefunction near
the nuclei. In order to describe the nodal structure of the wavefunction in these regions,
a large number of planewave basis functions is needed which increases the computational
burdens significantly.

One solution to this problem is using pseudopotentials. In pseudopotential ap-
proaches, in order to reduce the number of required basis functions, the steep real
Coulombic potential in a region close to a nucleus, the inner region, is approximated
with a smooth virtual potential which results in a nodeless pseudo-wavefunction [95–97].
As the distance from the nucleus increases, the pseudopotential continuously evolves into
the real potential in outer regions. In pseudopotential approaches, while the valance
states are explicitly calculated, the core states are considered rigid regardless the various
surrounding environments (molecules, solids, etc.). Therefore, despite their efficiency,
pseudopotential approaches are not a relevant choice for studying material properties
in systems where the core states can significantly change.

The augmented planewave (APW) [94, 98, 99] method is another solution to the
efficiency problems associated with the planewave basis set. In this approach, the
unit cell is partitioned into two regions: the muffin-tin (MT) region which consists of
non-overlapping spheres of radius RMT centered at the atomic nuclei, and the remaining
space which is called interstitial region (I) and is generally known as the spaces far from
the nuclei. In the interstitial region, the potential and consequently the wavefunction
vary smoothly. Therefore, plane waves are a good basis set in order to expand the
wavefunction in this part of the unit cell. On the other hand, in the regions near
the nuclei, the potential and consequently the wavefunction are similar to those of an
isolated atom. Thus, in the muffin-tin region, the wavefunction can be described well
using the atomic orbitals. The crystal wavefunction is expanded in terms of the APW
basis functions φAPW

k+G

ψn,k(r) =
∑

G

cn,k,G φAPW
k+G(r, E), (4.25)
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where [80, 87, 94]

φAPW
k+G(r, E) =





lmax∑

l=0

l∑

m=−l
Aαlm(k + G)uαl (r′, E)Ylm(r̂′) r′ < RαMT

1√
Ω
eı(k+G)·r r ∈ I

(4.26)

Here, Ω is the unit-cell volume, and r′ = r − Rα where Rα is the atomic position of
atom α within the unit cell. uαl (r′, E) is the numerical solution to the radial Schrödinger
equation at the energy E. The coefficients Aαlm(k + G) are chosen so that the atomic
orbitals match the plane waves over the complete surface of the muffin-tin sphere [80, 94].

Inside the muffin-tin sphere, an accurate description of the Kohn–Sham orbital ψi(r)
requires the coefficient E to be selected equal to the energy eigenvalue εi of ψi(r).
Therefore, for every energy eigenvalue εi a different energy-dependent set of APW basis
functions must be found. On the other hand, εi is not known; in fact, εi is exactly
the quantity which is desired to be determined. This leads to a nonlinear eigenvalue
problem, and must be solved using root determination algorithms. Such a solution is
computationally very demanding, and hence known as the main drawback of the APW
method [80, 94].

4.6.2 The Linearized Augmented Planewave (LAPW) Method

A successful attempt to improve the APW method is the linearization proposed by An-
dersen [100], leading to the first implementation of the linearized augmented planewave
(LAPW) method [101]. In the LAPW method, the energy dependence of the radial
functions inside each sphere is linearized by adding a second term to the radial part of
the basis functions [94]

φLAPW
k+G (r) =





lmax∑

l=0

l∑

m=−l

[
Aαlm(k + G)uαl (r′, El)

+Bα
lm(k + G) u̇αl (r′, El)

]
Ylm(r̂′) r′ < RαMT

1√
Ω
eı(k+G)·r r ∈ I

(4.27)

Here, ul is the solution to the radial Schrödinger equation at a fixed linearization energy
El, and u̇l is its derivative with respect to energy, calculated at El. The two groups
of coefficients Aαlm(k + G) and Bα

lm(k + G) are chosen so that the function inside
the muffin-tin sphere matches the plane waves both in value and slope at the sphere
boundary [80, 94]. The LAPW’s, as defined above, are a sufficiently flexible basis which
can describe eigenfunctions with energy eigenvalues around the linearization energy.
Therefore, the El values can be kept fixed and all energy eigenvalues can be obtained
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with a single diagonalization, resulting in a significant improvement in terms of efficiency
[94].

However, LAPW’s are not suited for treating states that lie far from the linearization
energy. Furthermore, the linearization is not sufficiently accurate for broad valence
bands, if the partial wave shows a large energy variation inside the muffin-tin sphere
[94]. For instance, bcc Fe has two valence states with the same value of l = 1: 4p and
3p states, respectively at 0.2Ry and 4.3Ry below the Fermi level EF. Both states are
valence states as they are not confined in the muffin-tin sphere. In such a situation, the
problem is how to choose the linearization energy El=1 [80]. A solution to this problem
is presented in the next subsection.

4.6.3 The LAPW+LO Method

As mentioned above, in some cases there might be more than one valence (or semicore)
state with the same value of l, making it difficult to choose a relevant linearization
energy El. In order to solve such a problem and improve the linearization, Singh [102]
introduced local orbitals (LO’s) which augment the LAPW basis set for certain l values.
This method is known as LAPW+LO, where the LO’s are defined as

φα
′,LO

lm (r) =





[
Aα
′,LO

lm uα
′
l (r′, Eα

′
1,l)

+Bα′,LO

lm u̇α
′
l (r′, Eα

′
1,l)

+Cα
′,LO

lm uα
′
l (r′, Eα

′
2,l)

]
Ylm(r̂′) r′ < Rα

′
MT

0 r ∈ I

. (4.28)

Here, Eα′1,l and Eα
′

2,l are linearization energies suitable for the highest and the lowest

states, respectively [80]. In other words, an LO, φα
′,LO

lm (r), is constructed from the
LAPW radial functions at the energy E1,l and a third radial function uα′l (r′, Eα

′
2,l) at a

second energy E2,l, chosen to most efficiently improve the linearization. Since LO’s are
not connected to plane waves in the interstitial region, they have no k or G dependence.
The three coefficients Aα

′,LO

lm , Bα′,LO

lm , and Cα
′,LO

lm are determined by the requirements
that the LO’s should be normalized and also should have zero value and slope at the
muffin-tin sphere boundary [80, 94]. Finally, it must be noted that the index α′ in the
above expression indicates that the LO’s are added for all (not only non-equivalent)
atoms in the unit cell. For instance, adding the LO’s for p and d states of all atoms in
a unit cell with Natom atoms increases the basis set by (3 + 5)×Natom = 8Natom, which
is not a big number compared to the size of a typical basis set [80]. LO’s were found to
be more efficient in improving the linearization than alternative methods with APW’s
having continuous second and third derivatives [102].
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4.6.4 The APW+lo Method

As mentioned earlier, the main drawback of the APW method is the energy dependence
of its basis set. In order to overcome this difficulty, the LAPW+LO method was devel-
oped, where the energy dependence is removed at the cost of enlarging the basis set size
(through linearization and introduction of local orbitals). Later, Sjöstedt et al. [103]
suggested a modification of the LAPW method, where they combine the advantages of
the APW and LAPW methods by finding an energy-independent basis set that does not
demand a noticeable higher planewave cutoff than the original APW basis functions.
In their approach, the original APW’s, Eq. 4.26, are evaluated at a fixed energy and
the variational freedom is improved by adding local orbitals for physically important
l-quantum numbers, i.e., for l ≤ 3. These local orbitals put no extra condition on the
APW basis set, and the number of plane waves in the interstitial region is therefore
unaffected. These local orbitals, which are completely different than those introduced
in the LAPW method (LO’s), are denoted by “lo”. Therefore, the approach is known as
APW+lo, where lo’s are defined as [80]

φα
′,lo
lm (r) =





[
Aα
′,lo
lm uα

′
l (r′, Eα

′
l ) +Bα′,lo

lm u̇α
′
l (r′, Eα

′
l )

]
Ylm(r̂) r′ < Rα

′
MT

0 r ∈ I
(4.29)

Here, also, index α′ indicates all atoms. The lo’s are evaluated at the same fixed energy
as the corresponding APW’s. The two coefficients Aα

′,lo
lm and Bα′,lo

lm are determined by
normalization and by the condition that φα

′,lo
lm has zero value at the muffin-tin sphere

boundary. Both the APW’s and lo’s are continuous at the sphere boundary, but their
first derivatives are discontinuous [80].

The full-potential LAPW+LO (FP-LAPW+LO) and the FP-APW+lo methods are
among the most accurate ab-initio methods [42]. These two methods have been imple-
mented in the WIEN2k code [42, 104]. We use the version 8.3 of this code in order to
investigate the iron–carbon system (see Chap. 5). In particular, the WIEN2k code is
capable of calculating the local lattice relaxations, which are crucial when interstitial
sites are occupied.

4.7 Green’s Function Methods

Beside the Hamiltonian approaches, methods based on Green’s function provide another
class of techniques for solving the Kohn–Sham equations. Green’s function methods are
much less efficient than the Hamiltonian methods in the total-energy calculations, as well
as in finding relaxed geometries of solids and molecules. However, the Green’s function
formalism is the basis of first-principles alloy theory, making it particularly useful when
studying properties of disordered alloys [105]. This section aims to shortly introduce
the Green’s function formalism, and also the exact muffin-tin orbital (EMTO) method
based on it. Here, we closely follow the review published by Ruban and Abrikosov
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[105]. Moreover, some parts of the PhD theses written by Oleg Peil [82] and Tetyana
Khmelevska [83] have been studied when compiling the text.

4.7.1 The Green’s Function or Multiple-scattering Formalism

Generally, the Green’s function method operates with the single-particle Green’s func-
tion G(r, r′, ε), which describes the propagation of an independent particle from point
r to point r′ at energy ε. When applied to a system of electrons, this single-particle
(single-electron) Green’s function is a solution of the Kohn–Sham equation 4.10 for
energy ε with a source at a point r′ [105]

[
− 1

2
∇2 + VKS(r)− ε

]
G(r, r′, ε) = −δ(r− r′), (4.30)

where VKS(r) is the Kohn–Sham single-electron effective potential, as presented in
Eq. 4.8. The Green’s function can be explicitly represented in terms of the corre-
sponding single-electron wavefunctions of the original Kohn–Sham equation as [105]

G(r, r′, ε+ ıξ) =
∑

i

ψi(r, ε)ψ
∗
i (r
′, ε)

ε+ ıξ − εi
, (4.31)

where the summation is performed over all occupied states. Once the Green’s function
is given, different quantities can be calculated. For instance, the electron density is
obtained as [105]

n(r) = − 2

π

∫ EF

Im
(
G(r, r, ε)

)
dε, (4.32)

where the upper limit of the integral is specified by the Fermi energy EF.
In principle, it is possible to obtain the Green’s function in the framework of any

Hamiltonian method which can calculate the single-electron wavefunctions ψj(r, ε) (see
Eq. 4.31). However, the next subsection introduces a method which naturally suits the
Green’s function formalism.

4.7.2 Korringa–Kohn–Rostocker (KKR) method

The Korringa–Kohn–Rostocker (KKR) method [106, 107] provides a very efficient way of
calculating the Green’s function using the multiple-scattering formalism [108]. The main
idea of the KKR method is to consider atoms as scattering centers, whose properties
are given by a scattering matrix t, and then to solve the electronic structure problem
by demanding that the incident wave at each center is equal to the sum of the outgoing
waves from all the other centers. In order to do so, the space is divided into non-
overlapping muffin-tin (MT) spheres (or cells), centered at the nuclei positions. The
solutions of the Schrödinger equation inside the cells are treated as outgoing waves.
Then, the self-consistent scattering implies that the outgoing wave for a given site
cancels all the waves incoming from other sites [82, 105].
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In the original and in many modern implementations of the KKR method, the
full potential is approximated by a so-called muffin-tin potential, representing a sum
of spherical potentials within spheres of radius RMT (muffin-tin radius) centered at
atomic sites, and a constant potential in the remaining space [107]. The cancellation of
scattering waves at the boundary of the muffin-tin spheres results in a smooth solution
of the Schrödinger equation in the entire space. The muffin-tin potential is very well
justified on physical grounds in homogeneous systems with close-packed structures, but
can give erroneous results in open structures with anisotropic distortions, where the
full potential must be considered. A general formulation of the KKR for the case of
potentials of arbitrary shape is possible within the full-potential (FP) KKR scheme
[108–112]. Calculations with FP-KKR are quite demanding, although affordable with
modern computers [82].

Here, we consider the basic notions of the KKR formalism within the muffin-tin
approximation. Scattering within the muffin-tin spheres is described by the scattering
matrix t(ε), whose angular components can be written as

tl(ε) = −1

κ
eıηl(ε) sin[ηl(ε)], (4.33)

where κ =
√
ε, and the phase shifts ηl(ε) are determined from the solution of the radial

Schrödinger equation for angular momentum l and energy ε inside the corresponding
muffin-tin sphere [82, 105].

The propagation of states between scattering centers in the free space is given by
the structure constant matrix,

Sijlm,l′m′(ε) = −4πκ
∑

l′′m′′

il
′′
C lml′m′,l′′m′′ hl′′(κ|Ri −Rj |)Yl′′m′′(R̂i −Rj), (4.34)

where l and m indicate the angular-momentum quantum numbers, Ylm denote the
spherical harmonics, hl stand for the Hankel functions, and C lml′m′,l′′m′′ are the Gaunt
coefficients [82, 105].

The core of the KKR method is the KKR equation, expressing the above-mentioned
cancellation of outgoing and incoming waves in terms of the on-site scattering matrices,
ti , and the structure constant matrix,

det |ti,l(ε)−1 − Sijlm,l′m′(ε)| = 0, (4.35)

which gives the eigenvalues ε of the original Schrödinger equation for the entire system.
The energies can be obtained as poles of the scattering path operator, gijlm,l′m′(ε), defined
in a periodic system as

gijlm,l′m′(ε) =
1

ΩBZ

∫

BZ
d3k

[
ti,l(ε)

−1 − Slm,l′m′(k, ε)
]−1

eık(Ri−Rj) (4.36)

where the integration is performed over the Brillouin zone (BZ), and Slm,l′m′(k, ε) is
the Fourier transform of the structure constant matrix Sijlm,l′m′(ε) [82, 105].
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The path operator provides all information about scattering at the lattice sites. For
instance, gijlm,l′m′(ε) describes the propagation of the states with energy ε between sites
i and j of the lattice. In order to get the full Green’s function defined in the entire
space, the path operator must be properly normalized. The Green’s function can be
represented in the form

G(r + Ri, r
′ + R′j , ε) =

∑

lm

∑

l′m′

Ril(r, ε) g
ij
lm,l′m′(ε)Rjl′(r

′, ε)

− δij
∑

lm

Ril(r, ε)Hjl(r
′, ε).

(4.37)

Here, r and r′ are defined within the muffin-tin spheres centered at Ri and R′j , respec-
tively. l and m are the angular-momentum quantum numbers, and ε is the energy with
respect to the constant potential in the interstitial region. Finally, Ril and Hil are the
regular and irregular solutions to the Schrödinger equation in the atomic sphere i for
orbital moment l and energy ε [82, 105].

Generally, the mathematical form of g, t and S, as well as relations between g
and G(r, r′, ε), depend on a particular space division and on the used basis functions.
However, the atomic part, given by the scattering matrix, t, and the structural part,
given by structure constants S, are independent of each other and separated in the
equation of the scattering path operator (see Eq. 4.36). This separation is a very
important feature of the method, making the multiple-scattering theory a very powerful
tool, which can be applied to systems with reduced or no symmetry that lie outside the
realm of applicability of conventional methods [105].

4.7.3 The Exact Muffin-tin Orbital (EMTO) Method

The exact muffin-tin orbital (EMTO) method [47] belongs to the family of KKR meth-
ods. The main idea of the EMTO approach is to use large overlapping muffin-tin spheres
instead of non-overlapping ones, which results in an accurate representation of the exact
single-electron potential [47].

The EMTO method allows one to calculate the Green’s function of a system with
a periodic potential. However, disordered alloys are not translationally invariant and
thus the method is not directly applicable. In order to represent a disordered alloy, a
very large supercell with randomly distributed atoms has to be considered [113, 114].
On the other hand, one can use the single-electron Green’s function, which is a self-
averaging quantity, and find an average Green’s function of an alloy considered as a
one-component effective medium having the translational symmetry of the underlying
lattice [105].

The simplest and the most accurate consistent method of performing configurational
averaging of the Green’s function is the coherent potential approximation (CPA) [43–45]
which reduces a multi-component disordered alloy to a translationally invariant system
with a single component representing an effective medium. Such an invariant system
will have the translational symmetry of the underlying lattice. The main idea of the
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CPA is to define an effective medium whose scattering properties are the same as those
of the original alloy components on average. Such an effective medium is defined by a
coherent potential function, P̃ , and the on-site coherent path operator, g̃, is determined
by an equation analogous to Eq. 4.36 [45],

g̃(ε) =
1

ΩBZ

∫

BZ
d3k

1

P̃ (ε)− S(k, ε)
. (4.38)

According to the CPA condition, this coherent on-site path operator should be equal
to the average on-site path operator of the alloy components embedded in the effective
medium, i.e.,

g̃(ε) =
∑

α

Cα gα(ε), (4.39)

where α indicates all components in the alloy, and the on-site path operators of the
alloy components, gα(ε), are obtained from a single-site Dyson equation,

g̃α(ε) =
1

1 + g̃(ε)[Pα(ε)− P̃ ]
g̃(ε). (4.40)

Here, Pα are the potential function matrices of alloy components.
The non-linear equations 4.38, 4.39, 4.40 must be solved self-consistently for every

energy. The electron density of each alloy component can then be determined from gα
using Eq. 4.32.

Since, in the single-site approximation, the electron density of each alloy component
is known only inside its atomic spheres, the lack of information about the true (non-
averaged) electron density around such an atomic sphere results in a net charge for the
whole system, which is incorrect [105]. The solution of the problem can be found only
beyond the single-site approximation [115, 116], where the contribution of the corre-
sponding screened Coulomb interaction to single-electron potential and total energy is
determined based on the screening parameters defined for every alloy component. We
will refer to these screening parameters in Section 6.3.3, where we will calculate the
total energy of an random Fe–Cr–Ni alloy in the paramagnetic state.

Studying the paramagnetic state of an alloy requires the simulation of a system of
local magnetic moments with random orientations. In order to calculate the effects of
magnetic disorder on the electronic structure, a mean-field like approximation called
disordered local moment (DLM) [46] approach can be applied. The idea of the DLM
formalism is to represent magnetic disorder within the CPA by treating magnetic metals
as a pseudo-binary alloy, M↑1−xM↓x, where 1− x is the concentration of atoms of sort M
with positive spin moment M↑ and x of those with negative moment M↓. The case of
x = 0 describes a ferromagnetic solution, while x = 0.5 represents a state with positive
and negative local moments equipartitionally distributed on all magnetic sites (DLM
state), thus modeling the paramagnetic state of a magnetic metal in an alloy analogy
[83].

The EMTO method, in combination with the CPA and the DLM approaches, pro-
vides an excellent tool to investigate random alloys with arbitrary compositions in the
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paramagnetic state. However, this approach does not allow to relax the atomic forces
which can be introduced to the system due to atomic size mismatch. Although such
forces are often not significant in the case of substitutional alloys composed of atoms of
similar sizes, they become extremely important in the case of interstitial atoms, where
the lattice around the interstitial atom is significantly distorted.
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The Fe–C System

As mentioned in Chap. 3, carbon steels have numerous applications in different fields
of industry, giving rise to a great interest to shed light on the mechanisms relevant
for their plastic deformation behavior. The plastic deformation of fcc materials, as
explained in Sec. 2.4, is strongly governed by the stacking-fault energy (SFE). The SFE
and its generalizations to the quantities known as the γ-curve and the γ-surface were
introduced in Sec. 2.3. The current chapter is dedicated to the evaluation of the SFE
and the γ-surface in austenitic carbon steels.

5.1 Introduction

The phase stability of carbon steels was discussed in Sec. 3.2. At temperatures higher
than 1000K (727℃), the paramagnetic austenite, γ-iron with fcc structure, becomes
stable and the dominant phase of pure iron and carbon steels. At room temperature,
austenite can be stabilized by alloying with a relevant amount of metals like Mn and
Ni (see Sec. 3.3). However, these substitutional elements hardly affect the SFE of iron.
For instance, measurements in a variety of Fe–Cr–Ni stainless steels have shown that
the addition of Ni increases the SFE by a rate of 1.4–2.4mJ/m2 per wt.%, while Cr
decreases it by of 0.2–1.2mJ/m2 per wt.% [117]. In the case of Fe–Mn alloys, although
measurements have reported a non-monotonic dependence of the SFE on the Mn content
[22, 118, 119], the changes of the SFE are found to be less than 3mJ/m2 per wt.% of
Mn. These small rates suggest that, the simple Fe–C system in its fcc phase can be a
good representative of the more complicated and disordered Fe–Cr–Ni–C and Fe–Mn–C
alloys.

Experimental observations [67] as well as theoretical studies based on molecular
dynamics [68] and ab-initio calculations [63] agree that, in fcc iron, carbon occupies
interstitial sites, preferring octahedral over tetrahedral coordination (see Sec. 3.2.2).
However, concerning the influence of carbon on the SFE in austenitic steels, experi-
mental studies give controversial answers. An early work by Schramm and Reed [117]
suggests a linear dependence of the SFE on the elemental compositions of Ni, Cr, and
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C in the form of

SFE [mJ/m2] = 4 + 1.8xNi − 0.2xCr + 410xC, (5.1)

where x denotes the concentration of the respective element in weight percent. This
result, exhibiting a strong dependence of the SFE on xC, was based on measurements
performed on samples with a maximum of 0.036% carbon concentration. Later, Brof-
man and Ansell [120] included newer experimental data related to samples with carbon
concentrations up to 0.29% and came up with the following modification,

SFE [mJ/m2] = 16.7 + 2.1xNi − 0.9xCr + 26xC, (5.2)

indicating a carbon dependence which is 15 times smaller. Considering that, in this
class of steels, we deal with carbon concentrations of the order of 0.1, and that the
typical magnitude of the SFE is 15–60mJ/m2, the influence of carbon on the SFE
lies within the typical experimental accuracy of ±15–20mJ/m2 [11]. In other words,
the latter measurements suggest that the SFE is very small and its dependence on
the carbon concentration is very weak. The diversity of experimental results does not
only exist for the magnitude of the SFE, but it is also found in the behavior of this
quantity when carbon is added. For instance, while above-mentioned works predict a
linear increase, Petrov [25] reported that the SFE decreases for small carbon content,
while it increases for higher concentrations. This controversy in the existing literature
suggests that presently the influence of carbon on the SFE is difficult to determine
experimentally, and insight from theory, in particular from first principles, is highly
desirable.

A strong influence on the SFE of fcc iron in the presence of interstitial atoms has
already been shown by earlier theoretical studies. For instance, Kibey and cowork-
ers [39] have found nitrogen to significantly alter the γ-surface. Moreover, for carbon
concentrations up to 1.33 wt.%, Abbasi et al. [40] have reported the SFE to linearly
increase with a slope of 340mJ/m2 per weight-percent carbon. However, the γ-surface
has not been computed for the iron–carbon system so far.

In this chapter, we present the generalized stacking-fault energy evaluated by means
of ab-initio calculations within the framework of density functional theory (DFT) [33,
34], applying the all-electron FP-LAPW+LO and FP-APW+lo methods (see Sec. 4.6)
as implemented in the WIEN2k package [121].

5.2 Methodology

In this work, all stacking faults are explicitly simulated by utilizing the supercell tech-
nique. Compared to the axial next-nearest-neighbor Ising (ANNNI) model [48, 49],
where the SFE is expanded in terms of the free energies of fcc, hcp, and double-hcp
(dhcp) phases, the supercell approach facilitates the calculation of the full γ-surface by
comparing the energy of structures with a fault to the energy of an undistorted refer-
ence structure (see Sec. 6.2 for an introduction to the ANNNI model). Moreover, the
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supercell approach allows for the relaxation of the atomic positions around the inter-
stitial atoms and the fault. Such relaxations are crucial in the Fe–C system, since the
interstitial atoms introduce significant local lattice deformations which must be taken
into account.

Despite the mentioned advantages, chemical and magnetic disorder can not easily be
accounted for in the supercell approach. The former restriction is not severe in this case
since experimental [122] and ab-initio [63] studies show that the carbon–carbon interac-
tion for interstitial carbons in fcc iron is repulsive, supporting the implicit assumption
of a homogeneous carbon distribution by the supercell approach. Concerning magnetic
effects, we note that a comparison between magnetic (ferromagnetic) and non-magnetic
calculations resulted in only small differences in terms of relative changes of the SFE as
a function of carbon concentration [40]. We therefore consider the Fe–C model system
in the non-magnetic state. Nevertheless, it must be noted that for the accurate com-
putation of the absolute values of the SFE, the paramagnetic state must be taken into
account [37, 38]. However, the treatment of magnetic disorder in combination with (i)
large supercells and (ii) the need for local lattice relaxations, is, unfortunately, out of
reach within present-day ab-initio methodologies.

As mentioned above, for each carbon concentration, our SF simulations require
finding the energy difference between structures with a relevant displacement and the
reference structure with undistorted bulk configuration. Every point on the γ-surface
corresponds to a specific displacement in the crystal lattice, thus this approach requires
many supercells in order to calculate the entire γ-surface. These supercells are con-
structed by gliding blocks of bulk with respect to each other (see Sec. 2.2). The bulk
itself requires finding the optimized lattice parameters and atomic positions. Once the
energy differences are calculated, an appropriate two-dimensional function is fitted to
them in order to evaluate the entire γ-surface. In this section, these steps are explained
in more detail.

5.2.1 Bulk Crystal Structures

Experimental data for the lattice parameter of austenite are available only for temper-
ature ranges in which the phase becomes stable, i.e., well above room temperature.
However, the DFT calculations are performed for 0K; thus we use the equilibrium lat-
tice parameters in our simulations. We calculate the equilibrium lattice parameters
and atomic positions for austenite with different carbon concentrations, i.e., pure iron,
Fe24C, and Fe3C, corresponding to 0.00, 0.89, and 6.67 weight percent of interstitial
carbon, respectively. The equilibrium volume for pure iron is calculated in the primi-
tive unit cell of the fcc structure where no force relaxation is required. For Fe3C and
Fe24C, however, hexagonal unit cells are utilized, where both parameters a and c are
optimized independently. Moreover, since there are variable internal positions in these
two cells, all atomic forces are relaxed in every step of the cell optimization. More
technical details are found in the following:

• Fe: The structure of this element is fcc with only one atom in the unit cell,
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Figure 5.1: Optimization of cell dimensions for Fe3C.

and hence no freedom for internal positions. The equilibrium lattice parameter is
found using the Murnaghan equation of state [123].

• Fe24C: This compound has a hexagonal unit cell containing six nonequivalent
iron atoms and one carbon atom (see Fig. 5.2(c)). There are eight degrees of free-
dom for the unit-cell shape and the internal positions: the lattice parameters a
and c, and the internal positions of the six nonequivalent iron atoms (carbons are
considered at the cell vertices). In order to find the equilibrium configuration, we
construct a number of unit cells, where the cell parameters a and c are changed
independently. The total energy is calculated for these structures after the relax-
ation of atomic forces. The equilibrium parameters a and c are then found by
fitting a two-dimensional polynomial, f(x, y), to the calculated points, (a, c, E).

• Fe3C: This compound has a hexagonal unit cell containing two nonequivalent iron
atoms (see Fig. 5.2(b)). It has three degrees of freedom: the unit-cell dimensions,
a and c, and the internal position of the iron atoms which are placed inside the
unit cell with equal distances from the carbon atom. The equilibrium parameters
a and c are found in the same way as explained for Fe24C. Fig. 5.1 presents the
total energy of the bulk of Fe3C as a function of a2 and c.

A summary of the results is presented in Tab. 5.1.

5.2.2 Supercells for the Stacking-fault Simulations

The principles of supercell construction for the γ-surface simulations was explained in
Chap. 2: In an fcc structure, an ISF can be created by fixing the atomic layers below the
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Table 5.1: Equilibrium bulk structures of different compounds investigated in this work.
Vcell denotes the unit-cell volume, Vatom stands for the volume per iron atom, and ∆V shows
the change in the volume by adding carbon, compared to the volume for pure iron; ∆V =
(Vatom)composite−(Vatom)Fe

(Vatom)Fe
× 100, in %.

Compound lattice type atoms a c Vcell Vatom ∆V
Fe C [a.u.] [a.u.] [a.u.3] [a.u.3] %

Fe fcc 1 0 6.524 — 69.42 69.42 0.00
Fe24C hexagonal 24 1 9.351 22.905 1734.40 72.27 4.10
Fe3C hexagonal 3 1 4.955 11.810 251.11 83.70 20.57

fault, and sliding all upper layers along the [2̄11] direction with the displacement vector
uISF = 1

3u[2̄11] (see Fig. 2.6(a)). However, in order to evaluate the entire γ-surface,
the displacement vector must span every point in the {111} plane. Among different
available approaches, we construct our supercells in a special way by considering two
facts: (i) For reducing the probability of occurring errors, it is highly recommended to
use the same basis set in all calculations. (ii) In the WIEN2k package, relaxing the
atomic forces in the direction of lattice vectors is more straightforward than in other
directions. In this subsection, we explain our method and compare it with other often
used approaches.

Fig. 5.2 shows the perfect bulk unit cells for different carbon concentrations. In
Fig. 5.3, we present three possible ways in which a supercell with the ISF can be
constructed out of the bulk unit cells. The smallest possible supercell, denoted by us
as tilted supercell, is presented in Fig. 5.3(a). This supercell contains only one bulk
slice. Since the cell vector c is tilted, a displacement appears between the bulk layers
of the cell and those of its periodic image. In Fig. 5.3(b), another possible supercell is
depicted containing two bulk slice which are slided with respect to each other. In order
to ensure periodic boundary conditions in z-direction, sufficient vacuum has to be added
to prevent any interaction between the slices and their periodic images. We call it here
single-shift supercell. Figs. 5.3(c) and 5.3(d) depict a third possibility for choosing a
supercell. It is a supercell with three bulk slices containing three SFs with displacement
vectors of identical magnitude but different directions, namely [2̄11], [12̄1], and [112̄],
respectively. Thus, the resulting displacement vector adds up to zero, ensuring periodic
boundary conditions. We call it here triple-shift supercell. Unlike the two former
supercells where only one SF is associated with every cell, the triple-shift supercell
contains three SFs per unit cell (see Fig. 5.3(c)).

Tab. 5.2 summarizes the main features of these supercells. The tilted supercell ex-
hibits the smallest cell, i.e., its volume is three times smaller than that of the other two
supercells, which clearly reduces the computational cost. However, when constructing
structures with different displacements along the fault plane, the cell shape and conse-
quently the basis set changes for the tilted supercell, while the other two supercells have
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(a) (b) (c)

Figure 5.2: Bulk unit cells which are used for constructing supercells with an ISF; (a) shows
the bulk unit cell for pure iron, and (b) for Fe3C. (c) depicts the unit cell for Fe24C with
highlighted octahedral sites for better imagination.

(a) (b) (c) (d)

Figure 5.3: Schematic representation of three possible supercells for the γ-surface calculations.
(a) depicts the tilted, (b) the single-shift supercell, and (c) and (d) show side and top views of
the triple-shift supercell, respectively. The gray cages show the supercells including one ((a)
and (b)) or three ((c)) SFs, while the boxes in different colors represent building blocks of the
bulk structure.

fixed shape and dimensions. Thus, the tilted supercell requires higher energy cutoffs
and denser k-meshes to ensure convergence of results. Moreover, since in the tilted su-
percell the cell vector c is not perpendicular to the fault plane, atomic-force relaxations
with the constraint that only the component perpendicular to the SF plane is relaxed,
is not straightforward. These two drawbacks led us to discard the tilted supercell for
our studies of the γ-surface. Concerning the single-shift supercell, it requires a vacuum
layer which introduces surface effects, and also decreases the symmetry. The triple-shift
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Table 5.2: Comparison of possible supercells

property tilted
supercell

single-shift
supercell

triple-shift
supercell

supercell height L 2L+ lvacuum 3L

symmetry very low low high

fixed
supercell shape × X X

straightforward
relaxation × X X

supercell does not suffer from any of these difficulties. In fact, for Fe24C, the single-shift
supercell has 50 non-equivalent atoms, while the triple-shift supercell has only 25. Thus,
we chose the triple-shift supercell for all our computations.

5.2.3 Interstitial Carbon

We use the scheme · · ·AcBaCbAcBaCb · · · for labeling the position of octahedral in-
terstitial sites with respect to the atomic layers. Here, capital letters denote atomic
positions and lowercase letters mark octahedral sites. The usage of the same letter in
upper and lower case (for instance A and a) indicates that their corresponding sites are
on top of each other when viewed along the <111> direction (see Fig. 5.4). While in
the perfect fcc structure all octahedral sites are naturally identical, in the presence of a
fault they must be differentiated according to their distance from the fault plane. We
indicate this distance by the parameter d (see Fig. 5.4). For instance, d = 0 represents
an octahedral site positioned within the fault plane. Similarly, d = 1 denotes such a
site separated from the fault plane by one atomic layer, and so on.

A carbon atom has different effects on the γ-curve, when positioned at octahedral
sites with different values of d, while all possible octahedral sites with the same d have
identical effect due to translational symmetry. Thus, the ideal supercell for computing
the γ-curve for a homogeneous distribution of interstitial carbons should simultaneously
include carbon atoms at all different octahedral sites. Such a supercell requires extend-
ing along the {111} plane, so that the single-layer concentration of carbon, θ, is fixed
for all layers. The supercell concentration of carbon, x, is then found equal to θ, since
x =

∑
d θd/

∑
d (see Fig. 5.5(a)). This ideal supercell would, however, be huge and

computationally impractical for low carbon concentrations. By assuming that carbon
atoms influence the γ-curves independently from each other, one can investigate their
impact within smaller cells, each of which including only one or a few carbon atoms
(see Fig. 5.5(b)). The γ-curve is then calculated for every such small cell, and finally
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Figure 5.4: Labeling the octahedral sites with respect to atomic layers and the fault plane
(gray plane). Large spheres and capital letters denote the stacking of the atomic layers in a
perfect fcc lattice, while small black spheres and lower-case letters indicate the interstitial sites
at the center of octahedra. For better imagination, every octahedron is highlighted such that
its color corresponds to the stacking position of its site. The distance between an interstitial
site and the fault plane is indicated by the parameter d.
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Figure 5.5: (a) A supercell, where carbon atoms are distributed as homogeneously as possible
among all layers. (b) The supercell is split into smaller cells, each containing only one carbon
atom.
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an average over all individual γ-curves is taken according to

γav =

dmax∑
d=0

γd

dmax + 1
, (5.3)

where γd denotes the γ-curve obtained for a cell with an octahedral carbon at a distance
d from the fault plane, and dmax is the maximum distance considered. In fact, dmax is
obtained based on the supercell dimensions. For instance, using a 2 × 2 supercell for
Fe24C, every layer contains 4 iron atoms, and thus the maximum height of the supercell
equals to 24/4 = 6 atomic layers, leading to dmax = 5.

When calculating γ-surfaces, iron atoms within two atomic layers next to the fault
plane are allowed to move perpendicular to the plane. Moreover, carbon atoms in this
region are fully relaxed in all directions.

5.2.4 Interpolation of the γ-surface

The complete γ-surface requires the evaluation of the energy differences for a two-
dimensional grid of points in the {111} plane. However, by considering the symmetry
of the surface, the problem can be reduced to the evaluation of the so-called γ-curve,
which depicts the energy changes versus displacements in [2̄11] direction. The energy
differences between the perfect structure and structures with faults are calculated for
displacement vectors of different sizes between 0 and u[2̄11], along the [2̄11] direction (see
Fig. 2.6(a)). The γ-curve and, consequently, the γ-surface are then interpolated using
a Fourier series taking into account the symmetry properties of the surface, thereby
recovering the full two-dimensional dependence of the γ-surface.

The general form of the two-dimensional Fourier expansion for a function f(x, y) is
given by

f(x, y) =
∑

m,n∈Z
Cmn e

ı 2πx
a
m eı

2πy
b
n, (5.4)

where m and n are integer numbers, Cmn denote expansion coefficients, and a and b
are the periodicities along the x- and y-axes, respectively. For expanding the γ-surface
in the {111} plane of an fcc structure, we select the x- and y-axes along [2̄11] and [01̄1],
respectively. This choice requires a = b

√
3. Since the γ-surface is a real function and

obeys the symmetry of the structure, the expansion should have the following features:

• a three-fold rotational symmetry of the {111} plane,

R̂[111](240◦)f(x, y) = R̂[111](120◦)f(x, y) = f(x, y),

where R̂[111](α) is the rotation operator with angle α around an axis normal to in
the {111} plane;

• reflection symmetry with respect to the x-axis,

f(x,−y) = f(x, y),
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• and real value,
f∗(x, y) = f(x, y).

By applying these criteria to Eq. 5.4, f(x, y) is obtained as

f(x, y) =
′∑

n∈Z
n≥0
n=2l

{
p0n

[
cos(

2πy

b
n) + 2 cos(

2πx

a
· 3n

2
) cos(

2πy

b
· n

2
)

]}

+

′∑

m,n∈Z
m>0
n≥0

m+n=2l

{
pmn

[
cos(

2πx

a
m) cos(

2πy

b
n)

+ cos(
2πx

a
· m+ 3n

2
) cos(

2πy

b
· m− n

2
)

+ cos(
2πx

a
· m− 3n

2
) cos(

2πy

b
· m+ n

2
)

]

+ qmn

[
sin(

2πx

a
m) cos(

2πy

b
n)

+ sin(
2πx

a
· m+ 3n

2
) cos(

2πy

b
· m− n

2
)

+ sin(
2πx

a
· m− 3n

2
) cos(

2πy

b
· m+ n

2
)

]}

(5.5)

where pmn and qmn are constant. The prime sign of
∑′ means that every pair of integer

numbers (m,n) can appear in the arguments of sin and cos only once. In other words,
oncem and n have valuesm0 and n0, they will not take any of the values m0+3n0

2 , m0−n0
2 ,

m0−3n0
2 , and m0+n0

2 . pmn and qmn are found by fitting the function f to a number of
total energies obtained by DFT calculations. For more details of the derivation of this
equation, see Appendix 6.5.

5.3 Computational Details

As it was already mentioned, our ab-initio calculations are performed using the WIEN2k
package [121] (see Sec. 4.6). The exchange-correlation effects are treated within the
generalized-gradient approximation according to Perdew, Burke and Ernzerhof (GGA-
PBA) [93] (see Sec. 4.5).

In ab-initio electronic-structure methods, there is a set of computational parameters
(usually referred as convergence parameters) which can affect the accuracy of the calcu-
lation on one hand, and of course, the computational costs on the other hand. Therefore
they should be selected carefully to assure accurate enough results, and also to minimize
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the computational effort as much as possible. To achieve these two purposes, conver-
gence tests are required before starting the actual simulations. The aim of this section
is to explain the optimizations which are applied in this part of the work. However, for
a quick reference, all computational parameters are summarized in Tab. 5.3.

Table 5.3: Cell dimensions together with convergence parameters as used in our calculations.
In all cases, muffin-tin radii RMT of 1.6 and 1.4 a.u. were chosen for Fe and C, respectively.

Lattice parameters

lattice a b c cell volume RKmax Rmin
MT matrix k-mesh

type [a.u.] [a.u.] [a.u.] [a.u.3] size kx× ky × kz

Bulk

Fe fcc 4.613 4.613 4.613 69.42 9.00 2.0 125 15× 15× 15
Fe3C hexag. 4.955 4.955 11.810 251.11 7.00 1.4 580 15× 15× 5
Fe4C cubic 6.520 6.520 6.520 277.11 7.00 1.4 811 15× 15× 15
Fe24C hexag. 9.351 9.351 22.905 1734.40 7.00 1.4 2604 8× 8× 2

γ-curve
Fe hexag. 4.613 4.613 67.799 1249.46 8.00 1.6 2921 11× 11× 1
Fe3C hexag. 4.955 4.955 70.860 1506.67 7.00 1.4 3377 10× 10× 1
Fe24C hexag. 9.351 9.351 68.714 5203.46 6.50 1.4 9596 4× 4× 1

5.3.1 Number of k-points

The Kohn–Sham equation (Eq. 4.10) must be independently solved for a set of k-points
in the Brillouin zone. Solving this equation is usually the most time-consuming part
of the DFT calculations, so the computational cost of the calculations scales linearly
with the total number of k-points. On the other hand, reducing the number of k-points
affects the accuracy of results. Therefore, a compromise between the accuracy and the
number of k-points becomes important. This is usually done by finding the least dense
mesh of k-points which can guarantee the required accuracy of results.

The required accuracy is usually defined corresponding to the goals of the calcula-
tions. Moreover, the system specifications (unit-cell shape and size, symmetry, atoms,
cte.) and calculation type (magnetic state, desired properties, cte.) can influence the
optimized k-mesh. We perform some tests for Fe4C in order to find an optimum k-mesh
for the bulk calculations. We evaluate the dependence of the total energy on the num-
ber of k-points as plotted in Fig. 5.6. For this cubic system, a k-mesh of 15 × 15 × 15
guaranties the required accuracy. For other concentrations, the commensurate k-mesh
is selected by comparing the unit-cell shape and size to those of Fe4C.

5.3.2 Number of Basis Functions

In the LAPW method, the unit cell is divided into non-overlapping atomic spheres cen-
tered at the atomic sites (muffin-tin spheres), and the interstitial region (see Sec. 4.6).
Technically, the expansion 4.25 must be truncated at a certain Gmax. A bigger basis
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Figure 5.6: Total energy versus the number of the k-points for Fe4C. A homogeneous k-mesh
in all directions has been used. The inset depicts a zoom into a larger scale.
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Figure 5.7: The dependence of the Lattice parameter, a, and bulk modulus, B, of Fe4C on
the values of RKmax. Here RKmax = 7.0 is enough for required accuracy.
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set (with higher number of terms) produces more accurate results at the cost of extra
computational resources. Therefore selecting a reasonable upper bound for the expan-
sion to keep a compromise between the accuracy and efficiency becomes important. In
the WIEN2k package, this upper bound is controlled by the cutoff parameter RKmax,
where R is the smallest atomic-sphere radius in the unit cell and Kmax is the magnitude
of the largest G vector in the expansion.

The applied optimization method is explained in the following:

• Bulk: The lattice parameter and the bulk modulus are calculated for Fe4C bulk
using different values of RKmax. The results are shown in Fig. 5.7. Any RKmax

larger than or equal to 7.00 gives required accuracy for both desired parameters
(see Table 5.3).

• Slice, Fe3C: For this structure, the k-mesh and RKmax are optimized simulta-
neously. Some points on the γ-curve are calculated using a k-mesh of 10× 10× 1
and RKmax = 7.0. The calculations are repeated using a 15× 15× 1 k-mesh and
RKmax = 8.0. Since no significant difference in the γ-curve is observed the smaller
values are selected (see Fig. 5.8 and also Table 5.3).

• Slice, Fe24C: For this concentration which has a larger unit cell, the effect of
RKmax on the atomic forces in the slab is investigated. The results are shown in
Fig. 5.9 (see also Table 5.3). Here RKmax = 6.5 leads to reasonable results.

5.3.3 Number of Layers in the Slice

A fault is created by displacing two slices of bulk with respect to each other (see
Sec. 5.2.2). While using slices with small number of atomic layers, L, is computa-
tionally favored, for keeping the accuracy of the results, L must be big enough so that
the layer in the center of slice would feel an environment quite similar to that of the
perfect bulk. A compromise between accuracy and performance can be found by in-
vestigating the influence of the number of layers on the γ-curve. Some points on the
γ-curve are calculated using slices with different number of layers, i.e., L = 3, 6, 9, 12,
as shown in Fig. 5.10. Since no significant change is found in the results going from
L = 6 to 9 or 12, we select L = 6.

5.4 Results

5.4.1 The γ-curve of Fe

For non-magnetic pure iron at 0K, DFT predicts the hcp phase to be energetically
more stable than fcc [124]. Therefore, an fcc structure exhibiting an ISF is energetically
more favorable than a perfect fcc structure since the · · ·ABCAB|ABC · · · stacking
sequence of the former resembles an hcp-like stacking (ABAB) which appears close
to the fault plane. This is reflected in our results which produce negative values of
the γ-curve around u = 6

18u[2̄11] (see Fig. 5.11(c)). Our SFE of −450mJ/m2 is in
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Figure 5.8: γ-curve in Fe3C for two different sets of k-mesh and RKmax.
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Figure 5.10: Dependence of the γ-curve on the number of atomic layers, L, between two
consecutive faults.

good agreement with the work of Abbasi and coworkers [40], who found values between
−452 and −464mJ/m2 for different unit-cell choices. The first peak in the curve,
i.e., at u ≈ 3

18u[2̄11], describes the energy barrier which must be overcome in order to
create an ISF. The second peak at u = 12

18u[2̄11] corresponds to a configuration with
an · · ·ABCAB|BCAB · · · stacking sequence, which strongly violates the close-packing
and, thus, is energetically very unfavorable. To preserve the close-packed stacking, the
displacement can transform to an extrinsic SF by shearing one layer with respect to the
entire crystal [50].

5.4.2 The γ-surface of Fe24C

The supercell of Fe24C along the [2̄11] direction is twice as long as that of Fe and Fe3C
(see Fig. 2.6(a)). Hence, differences in the γ-curve between the first and the second half
of this periodicity may arise due to the presence of carbon. However, when analyzing
the γ-curve along the full doubled unit cell, our calculations show that the second half
of the curve, i.e., u[2̄11] < u < 2u[2̄11], is only slightly different than its first half, i.e.,
0 < u < u[2̄11], particularly when carbon is not placed in the fault plane. For this
reason we present only the first half of the γ-curve here. This has the advantage that
the horizontal axes in all presented γ-curves are of the same length and scale.

In Fig. 5.11(a), we present the γ-curves for carbon atoms positioned at various
octahedral vacancies, corresponding to distances from the fault plane 0 ≤ d ≤ 3. The
results for d = 0 (dashed black curve) yield a very large energy for u = 6

18u[2̄11] since
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Figure 5.11: (a) The γ-curve for different
positions of carbon with respect to the fault
plane and their average, all calculated for
Fe24C. (b) The same for Fe3C. (c) Compari-
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Figure 5.12: Carbon diffusion in Fe24C
along the {111} plane. Spheres with pale
and deep colors denote atomic layers belong-
ing to fixed and shifted crystal halves, re-
spectively. When a carbon atom is located
in the fault plane, shifting the atomic layers
requires an iron atom to pass on top of the
carbon. The resulting configuration is highly
unstable, thus the carbon diffuses to a new
vacancy, which has just been created due to
the shift.
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Figure 5.13: The difference in the charge density due to doping a carbon atom in d = 2
positions.

−0.20

−0.16

−0.12

−0.08

−0.04

0.00

0.04

0.08

0.12

0.16

0.20

0.
00

1.
43

2.
86

4.
29

5.
71

7.
14

8.
57

x || [̄211] [
◦
A]

0.00

6.06

12.12

18.18

24.24

30.30

36.36

y
||

[1
11

]
[◦ A

]

1

2

3
4

5

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Radial distance from the center of carbon atom [
◦
A]

0.00

0.50

1.00

1.50
1

0.00

0.50

1.00

1.50
2

0.00

0.50

1.00

1.50
3

0.00

0.50

1.00

1.50
4

0.00

0.50

1.00

1.50
5

C
h
ar

ge
d
en

si
ty

[e
/
◦ A
3
]

Figure 5.14: The difference in the charge density due to doping a carbon atom in d = 3
positions.
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this point corresponds to an unfavorable configuration in which an iron atom sits on
top of the interstitial carbon. The creation of the SF, on the other hand, leads to
new octahedral sites, which can be occupied by small interstitial atoms like carbon (see
Fig. 5.12). Thus, the diffusion of carbon into such new interstitial sites at the fault
plane decreases the energy considerably, as indicated by the solid black curve. We
further observe that the second peak in the curve with d = 0, is somewhat lower than
the corresponding peak in the other curves. This can be explained by considering the
fact that this peak is due to repulsion between iron atoms in two consecutive atomic
layers, which is reduced when the distance between iron layers is increased through
the presence of carbon. Focusing on the d-dependence at u = 6

18u[2̄11], i.e., the ISF,
we observe a monotonic behavior when increasing the carbon distance from d = 0 to
d = 2, so that the curve corresponding to d = 2 is similar to the γ-curve for pure
iron. However, the curve for d = 3 breaks this monotonicity which was assigned to
Friedel-like oscillations [40]. Such oscillations appear in the charge density when an
impurity is doped in a cloud of electrical charges. Here, the cloud is the body of the
metal, and the impurity is the carbon atom. In order to visualize these oscillations,
we calculate the charge densities for three supercells, including iron, carbon, and iron–
carbon systems. The changes in the charge density is found by subtracting the charge
densities of iron and carbon systems from the charge density of the iron–carbon system.
These differences are presented in Figs. 5.13 and 5.14, for the two mentioned structures,
i.e., d = 2 and d = 3, respectively. The dependence of the SFE on the distance of the
carbon atom from the fault plane is summarized in Fig. 5.15. It demonstrates that, the
closer the carbon atom is positioned with respect to the fault plane, the higher is its
influence on the SFE.

As explained in Sec. 5.2.3, we are interested in the γ-curve for a homogeneous carbon
distribution. Therefore, we have to average over the results for various carbon positions
characterized by their distances d from the fault plane in an appropriate manner. The
Fe24C supercell, which has been utilized in this work, contains six types of interstitial
octahedral sites, i.e., 0 ≤ d ≤ 5, while the γ-curve is calculated explicitly only for four
sites with d up to 3. The effect of the other two layers, i.e., d = 4, 5, on the γ-curve
is taken into account by approximating their contribution by the mean value of the
curves for d = 2 and d = 3. Using this mean value, we simulate the environment far
from the fault plane, smearing out the above mentioned oscillations. In short, using
γ4 = γ5 = (γ2 + γ3)/2, the general behavior of the γ-curve for Fe24C is found from the
following expression

γFe24C1
av =

γ0 + γ1 + 2(γ2 + γ3)

6
. (5.6)

Using the approach described in Sec. 5.2.2, we can reconstruct the full two-dimensional
γ-surface by making use of the symmetry properties of the crystal. It is presented in
Fig. 5.16 for a rectangular area within the {111}-plane.
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Figure 5.15: Dependence of the SFE on the distance of carbon from the fault plane for Fe24C.
For definition of d, see Sec. 5.2.3.

Figure 5.16: The γ-surface for Fe24C.
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5.4.3 The γ-curve of Fe3C

Fe3C, or iron carbide, is a chemical compound of iron and 6.67 w% of carbon. At low
temperatures, it is found in an orthorhombic crystal structure, known as cementite.
It contains two kinds of vacancies, with octahedral and prismatic environment. A
prismatic vacancy is formed by six iron atoms which are located at the vertices of a
triangular prism. DFT calculations show that carbon prefers to occupy the prismatic
vacancy rather than the octahedral one [71].

As we are interested in the austenitic phase, our approach to calculate the γ-curve
for Fe3C is, like the case of Fe24C, based on an fcc structure where carbon occupies
octahedral sites. When introducing a staking fault, two possible interstitial carbon
sites must be distinguished which we characterize by the distance from the fault plane
as d = 0 and d = 1. For d = 0, we calculate a value of 3877 mJ/m2 at u = 6

18u[2̄11], as
shown in Fig. 5.11(b). Diffusion of interstitial carbon along the {111}-plane into another
possible interstitial site decreases this value to 1091 mJ/m2. In contrast to all other
curves, the case of d = 0 at u = 12

18u[2̄11] has a deep minimum instead of a high maximum.
The reason is that in the corresponding configuration, · · ·ABCAB|BCAB · · · , iron
atoms around the SF are all located at vertices of triangular prisms with bases parallel
to the fault plane. Every second prism contains a carbon atom in its center, providing
six Fe-C bonds. Thus, the observed deep minimum results from the fact that for Fe3C
the cementite structure, described above, is more stable than austenite.

The average SFE for Fe3C is presented by the red solid curve in Fig. 5.11(b). It
shows a positive SFE, indicating that for this concentration the fcc structure is more
stable than the hcp structure.

5.5 Discussion

In Fig. 5.17, our results about the influence of carbon on the SFE in fcc iron are
summarized and confronted with available experimental and other theoretical results.
As already mentioned in Sec. 5.1, experimental data are controversial: While a common
behavior is that the SFE increases with carbon concentration, there is a large spread
in the magnitude of the effect. Our calculations show that the SFE increases from
−450 mJ/m2 for pure iron to −116 mJ/m2 for Fe24C with 0.89 w% of carbon. Thus,
for carbon concentrations between 0 and 0.89 w%, the SFE dependence on the carbon
concentration can be approximated by 376 mJ/m2 per weight percent of carbon. This
value is in good agreement with recently published results by Abbasi et al. [40] and also
compares well with experiments by Schramm and Reed [117]. Our results for Fe3C, i.e.,
in the limit of very large carbon concentrations, show that the dependence of the SFE on
the carbon concentration levels off at large carbon content. Although our calculations
have been performed for zero Kelvin, we expect the fcc phase to become stable for
carbonic steels with about 2 w% of carbon.

The barrier height at u ≈ 3
18u[2̄11] increases with the carbon content. In contrast,

at u = 12
18u[2̄11] the curves for Fe24C and Fe3C show different behavior. There are two
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Figure 5.17: Carbon-induced change in the intrinsic SFE, ∆SFE, as a function of carbon
concentration. Note that the values are normalized to the value of the intrinsic SFE for pure
iron. Our calculations are compared to experimental data [25, 117, 120] and DFT [40] results.

competing phenomena affecting the total energy at this point: the distance between
iron layers and the presence of a carbon at a prismatic site. For all values of d, the
small inter-layer distance around the fault plane increases the total energy. Since the
increase in cell volume per iron atom upon adding carbon is 4.1 % and 20.6 % for Fe24C
and Fe3C, respectively (see Tab. 5.3), Fe24C is more affected than Fe3C. Occupation
of prismatic sites by carbon decreases the energy. The possibility of occupying such
site, which only occurs for d = 0, is 1

12 and 1
6 for Fe24C and Fe3C, respectively. This

confirms its more significant influence on the γ-curve of Fe3C. As a result of these
counteracting effects, we observe a high maximum for Fe24C and a local minimum for
Fe3C at u = 12

18u[2̄11].
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The Fe–Cr–Ni System

Stainless steels, their classifications, and their properties were introduced in Chap. 3.
The importance of this class of steels in many applications motivates investigations for
finding efficient production and shaping methods. Shaping steels under shear stresses
involves plastic deformation, a process where the stacking-fault energy (SFE) has a
well-known influence [5–7]. The SFE, in turn, depends on temperature and on the
composition of the alloy (see Appendix A for experimental reports, and [37, 125, 126] for
theoretical references), making it particularly important when considering the thermal
treatments and shaping of the metal at high temperatures. Therefore, this chapter
is dedicated to the evaluation of the SFE as a function of temperature in austenitic
Fe–Cr–Ni stainless steel.

6.1 Introduction

As discussed in Sec. 3.3, provided a sufficient amount of Ni and a relevant heat treat-
ment, an Fe–Cr–Ni alloy can be found in the austenite phase over a broad range of
temperature, including room temperature. In such an alloy with fcc structure, the SFE
becomes a crucial parameter when studying plastic deformations under shear stress (see
Secs. 2.3 and 2.4). Therefore, there have been many experimental investigations where
the SFE has been measured as a function of temperature and also chemical composition
(see Appendix A). Based on such studies, the main part of our present understanding
about the SFE and its empirical connection to the physical properties of materials has
been formed. On the other hand, the SFE is related to the material structure on the
atomic scale, and thus is relevant to be investigated using ab-initio techniques. Such
systematic investigations based on theories capable of describing materials on the atomic
scale provide an important tool for intelligent design of materials. However, in Fe–Cr–Ni
alloys, the SFE has not widely been studied using first-principles methods.

To the best of our knowledge, the SFE for a disordered Fe–Cr–Ni alloy in its para-
magnetic state has been calculated only by Vitos et al. [37, 125, 126]. They have
investigated the SFE as a function of temperature and chemical composition, empha-
sizing the role of thermal magnetic excitations in the SFE. However, the thermal lattice
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Table 6.1: The atomic and mass concentrations of the commercial alloy, Böhler A607, com-
pared to their simplified equivalents used in our simulations.

alloy unit Cr Ni Mn Mo C Fe

Böhler A607 wt. % 18.00 9.00 ≤2.00 — ≤0.03 70.17

at. % 19.97 8.47 ≤2.01 — ≤0.14 69.41

Simulated A607 wt. % 18.80 8.91 — — — 72.29

at. % 20.00 8.40 — — — 71.60

expansion has not fully been taken into account in their work, since they evaluate the
magnetic entropy for equilibrium volume calculated at 0K. As we will show in this chap-
ter, one must account for the thermal lattice expansion in order to obtain the accurate
behavior of the SFE versus temperature.

In this chapter, we study the influence of temperature on the SFE of a ternary al-
loy with Fe0.716Cr0.200Ni0.084 composition. Moreover, the effect of different parameters,
approximations, and computational techniques on the final results are intensively inves-
tigated. The EMTO method described in Sec. 4.7 is employed in order to calculate the
SFE in the temperature range of 298–1273K (25–1000℃). The chromium and nickel
contents in this alloy are similar to those in the commercial product known as Böhler1

A607. However, as shown in Tab. 6.1, this commercial alloy contains small amounts of
additional elements which are not taken into account in our calculations. For brevity,
in this document, A607 is used in order to point to the simulated composition, while
the corresponding alloy with real composition is referred by its full name, Böhler A607
(see Tab. 6.1). The fcc structure of Böhler A607 over the entire temperature range has
been proven through the X-ray diffraction (XRD) measurements.

Our simulations are performed for the random alloy in the paramagnetic austenitic
phase in the above-mentioned temperature range. Briefly speaking, we use the axial
next-nearest-neighbor Ising (ANNNI) model [48, 49] in order to expand the SFE in
terms of the free energies of bulk with fcc, hcp, and double-hcp (dhcp) crystal struc-
tures (see Fig. 6.1 and Sec. 6.2). These free energies depend on the lattice parameter
which is obtained from experimental thermal expansion data measured using the XRD
technique, and on the thermal excitation of the local magnetic moments which is evalu-
ated by running a Monte-Carlo simulation on the system energy maps calculated using
DFT techniques (see Sec. 6.4.2). The DFT calculations are performed using the ex-
act muffin-tin orbitals (EMTO) method [127] and the locally self-consistent Green’s
function (LSGF) method [128], where the random alloy and the paramagnetic state
are modeled using the coherent potential approximation (CPA) [45] and the disordered
local moment (DLM) [46], respectively.

1Böhler Special Steels, A-8605 Kapfenberg, Austria
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...ABC...
(a)

...AB...
(b)

...ABAC...
(c)

Figure 6.1: Primitive cells of three crystal structures used in the ANNNI model. Atoms are
colored according to their stacking position along the [111] direction. (a) depicts the primi-
tive cell of the fcc structure with only one atomic site. The cubic cell is shown for a better
imagination of the lattice. (b) shows the primitive cell of the hcp structure containing two
non-equivalent atoms (two atomic sites). (c) represents the primitive cell of the dhcp structure
with four non-equivalent atoms.

6.2 Methodology

This section aims to explain the relation between the SFE as a result of a fault, and
the free energies of a variety of undistorted phases. The free energies, in turn, depend
on different entropy contributions, which are discussed in more detail.

6.2.1 The ANNNI Model

An intrinsic stacking fault (ISF) changes the total energy of a crystal by introducing an
irregularity in the sequence of atomic layers. Since the close packing is preserved, these
changes are generally very small compared to the crystal total energy. While the SFE
can be accurately and explicitly calculated using the first-principles supercell techniques
[39–41], these methods are quite cumbersome, since they require large cells. A more
efficient solution, which is going to be explained here, is to expand the SFE in terms of
the free energies of bulk unit-cells with fcc, hcp, and double-hcp (dhcp) structures (see
Fig. 6.1).

In the fcc lattice, an ISF, which corresponds to the removing of one atomic layer
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from the perfect ABCABCABC · · · structure, may be represented as the arrangement
of atomic layers with the repeat unit of ABCBC(ABC)n (n = 0, 1, 2, · · · ), consisting
of N layers (N = 5, 8, 11, 14, · · · ) in the limit N → ∞. We can now apply the axial
next-nearest-neighbor Ising (ANNNI) model [48, 49] to this representation, where the
analogue of the Ising spin Si for layer i, has a value +1 (−1) if the next layer with index
i+ 1 does (not) conform the ideal stacking sequence. This idea results in the following
expression for the Helmholtz free energy of any arbitrary stacking sequence [49]:

F = F0 − J1

∑

i

SiSi+1 − J2

∑

i

SiSi+2 − J3

∑

i

SiSi+3 − · · · , (6.1)

where F0 is the energy contribution disregarding all interactions between layers, and
thus is the same for any arbitrary stacking sequence. The parameters Jn(n = 1, 2, 3, · · · )
may be interpreted as interaction energies between two layers that are nearest neighbors
(J1), next-nearest neighbors (J2), . . . . It is expected that the magnitude of Jn decreases
for increasing n. In the ANNNI model, by definition, all Jn with n ≥ 3 are neglected
[48].

In the limit of large N , the above equation suggests the following expressions for
the Helmholtz free energies of the stacking sequences with different repeat units [49]:

ABC Ffcc = J0 −J1 −J2 −J3 −J4 − · · · ,
AB Fhcp = J0 +J1 −J2 +J3 −J4 + · · · ,
ABAC Fdhcp = J0 +J2 −J4 + · · · ,
ABCBC(ABC)n FISF = J0 −N−4

N J1 −N−4
N J2 −N−4

N J3 −N−4
N J4 − · · · ,

(6.2)

where the energies are normalized to a unit cell in one layer, and J0 is the energy per
unit cell in one layer if the interactions between layers are disregarded. Using the first
three equations, J0 is found as

J0 =
Ffcc + Fhcp + 2Fdhcp

4
+O(J4). (6.3)

The energy difference between a structure with an ISF and the fcc bulk structure, both
of the same thickness equal to N layers, is defined as

lim
N→∞

N{FISF − Ffcc} = 4{J1 + J2 + J3 + J4 + · · · }
= −4{Ffcc − J0}
= Fhcp + 2Fdhcp − 3Ffcc +O(J4).

(6.4)

Since the number of atomic sites per volume is equal in ideal fcc, hcp, and dhcp struc-
tures (see Fig. 6.1), we can easily rewrite the above equation in terms of the Helmholtz
free energies per atomic site, F . Finally, by neglecting all Jn with n ≥ 4 according to
the definition of ANNNI model, and by considering the dependence of the Helmholtz
free energies on temperature, the SFE is expressed as

SFE(T ) ≈ F hcp(T ) + 2F dhcp(T )− 3F fcc(T )

A
, (6.5)

where A is the area in a close-packed layer occupied by a single atomic site, and its
value can simply be obtained in terms of the fcc lattice parameter: A =

√
3

4 a
2
fcc.
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6.2.2 Temperature Dependence of the Free Energy

When studying molecules and solids, the stable structure is the one with the lowest
Gibbs free energy. At temperature T and pressure p, the Gibbs free energy is defined
as

G(p, T ) = E(p, T ) + pV (p, T )− TS(p, T ), (6.6)

where E denotes the total energy (internal energy), and V and S are the volume and
the entropy, respectively.

In solids, volume changes are usually very small, and thus, at ambient conditions
with constant pressure, the contribution of the term p∆V to the Gibbs free-energy
differences, ∆G, becomes negligible. In such cases, the Helmholtz free energy can be
used instead of the Gibbs free energy. At temperature T , the Helmholtz free energy is
defined as

F (T ) = E(T )− TS(T ). (6.7)

It must be noted here that we calculate all quantities in the above equation, i.e., F , E,
and S, for a single site in the lattice.

The total energy E(T ) is calculated using DFT. Using the Mermin functional [129],
finite-temperature DFT calculations can account for the temperature dependence of the
distribution of electrons over states [87]. However, this is not enough for calculating
the total energy as a function of temperature, since a major part of the temperature
dependence of E(T ) comes through the lattice parameter, a(T ), and also through all
average local magnetic moments, {ms(T )} (here s ∈ {Fe, Cr, Ni}):

E(T ) = E
(
a(T ), {ms(T )}

)
. (6.8)

Since the first-principles calculation of the lattice parameter as a function of tem-
perature would require the calculation of vibrational excitations for the random alloy in
the paramagnetic state, we resort to measurements at different temperatures. There-
fore, we obtain the temperature dependence of the lattice parameter using the thermal
lattice expansion data measured through the XRD technique.

The temperature dependence of the local magnetic moments is difficult to be mea-
sured. However, considering the thermal excitation of the individual moments through
statistical methods, it is possible to calculate the average magnetic moments for every
element in the paramagnetic DLM state at different temperatures. This approach is
discussed in more detail in the next subsection.

6.2.3 Longitudinal Spin Fluctuations

In order to describe the thermal excitation of the local magnetic moments in the para-
magnetic DLM state, we use a simple model based on the unified itinerant magnetism
theory [130]. While the theory includes both transverse and longitudinal spin fluctu-
ations on equal footing, we assume in our simplified model that the transverse spin
fluctuations, i.e., the fluctuations in the orientations of the magnetic moments, always
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follow the completely disordered configuration, as described in the DLM state. For eval-
uating the longitudinal spin fluctuations (LSF), i.e., the fluctuations in the size of the
magnetic moments, a classical Monte-Carlo simulation is performed over a mapping of
the system energetics, calculated for relevant configurations using the EMTO method.

6.2.3.1 Magnetic Hamiltonian

Ruban et al. [131] have introduced a magnetic Hamiltonian which, taking into account
the LSF, can give a quite accurate representation of the energy of the classical magnetic
state, as well as the values of the magnetic moments in the state. For a system consist
of identical atoms, the Hamiltonian is defined as

Hmag. =
∑

i

J (0)(M̄) +
∑

i

J (1)(M̄,Mi) +
∑

ij

J
(2)
ij (M̄,Mi,Mj)Mi ·Mj , (6.9)

where the vector Mi is the local spin moment of an atom at site i, whose length Mi can
have any positive value. M̄ = 〈Mi〉 = 1

N

∑
iMi denotes the average value of the local

magnetic moments in the system. J (0)(M̄) is the zeroth-order term defined as the energy
of a homogeneous DLM state representing a system of randomly oriented spins with a
fixed value of the magnetic moments M̄ . J (1)(M̄,Mi) is the on-site term, the LSF energy,
which is the energy required to change the size of the magnetic moment of the atom in
position i, from the corresponding DLM value M̄ toMi. Finally, J

(2)
ij (M̄,Mi,Mj) is the

pair exchange interaction parameter, which describes the magnetic interaction between
atoms at sites i and j, with local magnetic moments Mi and Mj embedded in the DLM
effective medium.

Using a similar approach, Reyes-Huamantinco et al. have recently calculated the
single-site LSF for a paramagnetic iron-manganese binary alloy [38]. However, they
assume that the free energy is dominated by single-site magnetic fluctuations in the
paramagnetic DLM state, thus they define a Hamiltonian which includes only the first
term of Eq. 6.9. Following their approach, we can rewrite the Hamiltonian for an alloy
as

Hmag. =
∑

s

csJs(ms), (6.10)

where s stands for the species (elements) in the alloy (s = Fe, Cr, and Ni here), cs is
the concentration of element s, ms is the spatially-averaged local magnetic moments of
element s, and, finally, Js(ms) is the energy required to excite these averaged moments
from 0 to the value ms in the DLM paramagnetic state. In fact, Js(ms) in Eq. 6.10 cor-
responds to J (0)(M̄) in Eq. 6.9. Note that, while the Eq. 6.9 includes terms related to
all individual atoms in the system (expressed by the summation

∑
i), Eq. 6.10 contains

only single-site terms, which may be considered as an average over all atoms. That
is why the summation

∑
i has disappeared in the Eq. 6.10. We will present this ap-

proach in Sec. 6.4.2. In order to calculate Js(ms) for our ternary system, we extend the
methodology developed by Reyes-Huamantinco et al. [38] to include the thermal lattice
expansion of the alloy. Computational details and results are presented in Sec. 6.4.2.
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6.2.3.2 Monte-Carlo Technique

In order to obtain the temperature-dependence of the local magnetic moments, a Metropo-
lis Monte-Carlo technique is used. In this approach, a system of randomly oriented spins
is considered whose configuration is progressively altered by changing the size of its indi-
vidual spins in a random manner. After a change applied, the total energy is calculated
using the Hamiltonian 6.10, where the dependence of the total energy on the size of the
magnetic moments has been defined using the energetics of the paramagnetic random
alloy, Js(ms), calculated using the EMTO method. A change in the system configura-
tion is always permitted, if it lowers the system total energy, i.e., it results in a negative
∆E, defined as ∆E = Eafter − Ebefore < 0, where Eafter and Ebefore are the system
total energies after and before the change, respectively. Otherwise, when ∆E > 0, the
changed configuration is accepted depending on the excitation probability, which is de-
fined as e−∆E/kBT . As it is obvious from this definition, when ∆E > 0, a configuration
with larger ∆E/kBT has lower chance to be accepted. The process is repeated many
times, so that the changes in total energy, ∆E, become smaller than a given convergence
criteria, showing that the current configuration is already very close to the equilibrium
configuration with the lowest energy. Once these conditions are satisfied, the spatial
average of the magnetic moments is calculated.

The algorithm starts with the highest temperature in the desired range, and while
decreasing the temperature step by step, tries to find the equilibrium configuration of
the magnetic moments.

6.2.4 Entropy contributions

The entropy is calculated by accounting for all available excitations which may occur in
the microscopic configuration (microstate) of the system. The microstate might change
due to various excitations: configurational excitations, considered as the interchange
of positions between atoms of different types, vibrational excitations, defined as small
displacements of atoms around their lattice sites, magnetic excitations, which are fluc-
tuations in the size or the orientation of the atomic magnetic moments, and, finally,
electronic excitations, which are changes in the electronic structure of the metal as elec-
trons are excited to levels higher then the Fermi level. Depending on the diffusion rate,
for very fast diffusion in solids, configurational excitations occur at a time scale of 10−5

or 10−4 seconds, while the atomic vibrations are at time scale of 10−11 or 10−10 seconds.
The magnetic excitations are even faster than the vibrations, and the electronic exci-
tations are the fastest in the list. The large differences between these time scales allow
to apply a course-graining method in order to calculate the excitations independently,
which finally results in their separate contributions to the total entropy of the crystal
[105, 132]:

S = Svib. + Sconf. + Smag. + Sel., (6.11)

where all terms are related to a single site in the lattice. In the following, these four
terms are discussed in more detail.
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6.2.4.1 Vibrational Entropy

Currently, there are no available theoretical tools to accurately determine the vibrational
entropy in paramagnetic random alloys. However, Vitos et al. [37] have estimated the
error which might be introduced to the SFE as a result of excluding the vibrational
entropy. By assuming similar vibrational free energies for fcc and dhcp lattices, they
approximate the vibrational free energy as ∆Fvib. ≈ F hcp

vib. − F fcc
vib.. Using the high-

temperature expansion of the phonon entropy [133], for two solids with similar Debye
temperature (θ), they conclude ∆Fvib. ≈ 3kBT

∆θ
θ [134]. Finally, considering the Debye

temperature ratios between the bcc α-iron and the hcp ε-iron (θbcc/θhcp ≈ 0.96) [135]
and also between the bcc α-iron and the fcc γ-iron (θbcc/θfcc ≈ 0.97) [134, 136], at
T = 300K, they obtain ∆Fvib. ≈ 0.75meV/atom. This free energy corresponds to a
contribution of ∆SFE ≈ 2mJ/m2 to the SFE, which is rather small.

6.2.4.2 Configurational Entropy

Considering totally random alloys, the configurational entropy depends only on the
chemical composition [137]:

Sconf. = −kB

∑

s∈{species}

cs ln(cs), (6.12)

where cs denotes the atomic concentration of element s. In our calculations, we approx-
imate the alloy as a fully random configuration of atoms. Such an assumption results
in equal configurational entropies for all phases with the same chemical compositions,
canceling each other out in Eq. 6.5.

However, it must be noted here that the assumption of the random distribution of all
atoms on a sublattice is best in situations when (i) the temperature is very high, so the
atoms are indeed randomly distributed on the sublattice; (ii) the temperature is very
low, and only a few antisite atoms are present [137]. For other situations, particularly
when temperature is not very high or when chemical compositions of elements in an
alloy are not very small, this assumption is not entirely correct, since atoms show certain
preferences when interacting with their neighbors. In a solid solution, these atomic
interactions can express the local tendency for preferences of like or unlike neighbor
pairs, which is known as short-range order (SRO) [137]. The SRO might be better
understood compared to the long-range order (LRO), a crystal character which precisely
specifies the properties (the position and the type) of atoms in the entire lattice by
knowing them at a single lattice point. This term might also be pointed as the chemical
or the atomic SRO (LRO) for the sake of distinguishing from its analogue in magnetism,
i.e. the magnetic SRO (LRO).

In an ordered alloy, the SRO can change with some independence of the LRO,
resulting in changes in the configurational entropy. Particularly at high temperatures,
where the LRO vanishes, considerable SRO exists, increasing its importance in the
entropy calculations [137]. Additional to the entropy, the total energy E(T ) also changes
due to the SRO, resulting in further changes in the free energy. In order to take the
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SRO into account, some corrections to the CPA approximation and the configurational
entropy equation, Eq. 6.12, are required.

6.2.4.3 Magnetic Entropy

In a system of localized magnetic moments of the same size and completely disordered
orientations, i.e., the ideal paramagnetic state, the magnetic entropy is evaluated using
the mean-field expression [133]

Smag. = kB

∑

s∈{species}

cs ln
(
ms(T ) + 1

)
. (6.13)

Here, ms(T ) denotes the average (over time and space) local magnetic moment of el-
ement s, and is obtained using statistical approaches where the thermal excitations of
magnetic moments are taken into account (see Sec. 6.4.2). Similar to the existence of
the atomic SRO even at temperatures where the atomic LRO has already vanished,
magnetic SRO might exist in a paramagnetic state.

6.2.4.4 Electronic Entropy

The electronic entropy can be calculated as [47]

Sel.(T ) = −2kB

∫ {
f(ε) ln

(
f(ε)

)
+
(
1− f(ε)

)
ln
(
1− f(ε)

)}
D(ε) dε, (6.14)

where, D(ε) and f(ε) denote the density of states and the finite-temperature Fermi
function [138], respectively. The Fermi function is a consequence of the Fermi-Dirac
statistics [138, 139] and gives the probability of occupation of a state with energy ε at
temperature T . The Fermi function is defined as

f(ε) =
1

e(ε−µ)/kBT + 1
, (6.15)

where µ indicates the chemical potential. This approach is already available in the
EMTO code, and we use it in order to calculate the electronic entropy. However, as we
will present in Sec. 6.4.6.1, the influence of the electronic entropy on the final SFE in
Fe–Cr–Ni alloy is very small, and hence can be safely neglected.

6.2.5 The SFE Calculations

Once the temperature dependence of the lattice parameter (through the XRD measure-
ments) and of the local magnetic moments (through the Monte-Carlo step of the LSF
calculations) are known, we perform a set of constrained DFT calculations to find the
free energy of every phase as a function of temperature. These calculations are called
constrained because the magnetic moments of all atom types are fixed to their corre-
sponding values evaluated using the Monte-Carlo method. The SFE is then evaluated
using these free energies, as expressed in the Eq. 6.5.
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As a summary of our methodology, the necessary steps for evaluating the SFE are
as follows:

• Magnetic moments calculations: In this step, for every element in every
phase, we calculate the average magnetic moments as a function of temperature
(see Sec. 6.4.2 for details). The calculations are broken into two major parts:

1. DFT calculations with fixed spins for one element: In this part the
dependence of the total energy of the system on the local magnetic moments
of every element is obtained (see Sec. 6.4.2.1).

2. TheMonte-Carlo calculations: A set of simulations with magnetic Hamil-
tonians are performed on the system energy maps calculated in part 1, and
the temperature dependence of the average magnetic moments is found (see
Sec. 6.4.2.2).

• Constrained DFT calculations: In this step, according to Eq. 6.8, for different
temperatures, the experimental lattice parameter and the magnetic moments from
the previous step are used in DFT calculations in order to find the total energy
as a function of temperature. These calculations are called constrained, because
all magnetic moments are fixed (see Sec. 6.4.3 for details).

• Free energy evaluation: Using the results of the previous steps, according to
Eqs. 6.7 and 6.13, the Helmholtz free energy is evaluated for all phases at different
temperatures by subtracting the magnetic entropy from the total energy. Finally,
using these free energies in the ANNNI model gives the SFE as a function of
temperature (see Sec. 6.4.3 for details).

6.3 Computational Details

In a simulation, the accuracy of the final results is influenced by two major choices: the
physical model, and the computational method. The physical model, using available
theories, tries to approximate the real interactions between the individual parts of a sys-
tem. In order to get a correct physical description of the system, these approximations
must be as sophisticated as possible. In other words, the more detailed interactions are
considered in the model, the more accurate results can potentially be obtained. How-
ever, it is possible, especially when investigating the difference between properties of
two systems, that the shortcomings of the applied physical model remain hidden since
the errors in calculations cancel each other out. Very often in practice, when developing
a physical model, a compromise is necessary between the importance of the existing
interactions and the complexities of their accounting. In fact, by such a compromise,
the physical model defines the limit of accuracy and the reliability of the final results.
In previous section, we already introduced our physical model and discussed applied
approximations in detail.
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Assuming the chosen physical model to be sufficiently accurate, the computational
method calculates the system properties in the frame of this model. In the compu-
tational method, also, by setting proper computational parameters, a compromise is
achieved between the desired accuracy and the required numerical efforts. The subject
of this section is to discuss the most important computational parameters we have in
our simulations.

The SFE is usually expressed in the unit of mJ/m2, and its value has been reported
in the range of 10–50 for stainless steels with composition close to A607 (for a summary
of experimental values, see Appendix A and Fig. 6.19). Considering the geometry of
the {111} surface of an fcc structure, we find that

1 mJ/m2 = 1.98641346× 10−6a2
fcc Ry/site, (6.16)

where afcc stands for the fcc lattice parameter in the unit of Angstrom (Å). Considering
afcc ≈ 3.6Å (see Fig. 6.8), the equation results in

1 mJ/m2 ≈ 2.6× 10−5 Ry/site. (6.17)

The equation suggests that, in order to get the SFE with an accuracy of 1mJ/m2, the
differences between the free energies of the three phases must be calculated with an
accuracy higher than 10−5 Ry/site. Using the Eq. 6.13, the influence of an error in the
local magnetic moments on the final SFE can be estimated as

∆F (T ) = T∆Smag.(T ) = TkB

∑

s∈{species}

cs
1

ms(T ) + 1
∆ms(T ). (6.18)

Considering (cFe, cCr, cNi) = (0.716, 0.200, 0.084) and (mFe,mCr,mNi) ≈ (1.3, 0.6, 0.3)
at 300K and (mFe,mCr,mNi) ≈ (1.7, 1.2, 0.6) at 1300K (see Fig. 6.17), the equation
results in

∆F (300 K) ≈ 1× 10−3 ∆ms, (6.19)

∆F (1300 K) ≈ 3× 10−3 ∆ms. (6.20)

Here, this equation suggests that in order to preserve the accuracy of 10−5 Ry/site in
the SFE, the ms must be calculated with an accuracy higher than 10−2 µB. In our
simulations, we go one order of magnitude beyond these values, i.e., we calculate the
total energy and the local magnetic moments with the accuracy of 10−6 Ry/site and
10−3 µB, respectively.

6.3.1 k-point Convergence

The number of k-points is one of the parameters affecting the accuracy of results, and
hence must be selected carefully. We calculate the total energy and the local magnetic
moments for different k-meshes to obtain the least dense k-mesh which guaranties the
desired accuracy. As presented in Fig. 6.2, for the A607 alloy with the fcc structure,
a k-mesh of 31 × 31 × 31 results in converged values for both energy and magnetic
moments. Using these informations, the commensurate sets of k-meshes for hcp and
dhcp are found 30× 30× 16 and 30× 30× 8, respectively.
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Figure 6.2: k-mesh optimization for the fcc structure of A607 alloy

6.3.2 Treatment of Core-electrons

There are two possible treatments for core electrons, the soft-core approach versus
the simplified frozen-core approximation. In the frozen-core approximation, the wave
functions of the core electrons are assumed not to be affected by different surrounding
environments. Based on this assumption, the atomic orbitals with lower energies are
kept exactly as they are in isolated atoms, and are constrained to remain doubly-
occupied by the inner-shell electrons. Unlike this, in the soft-core approximation, all
electrons (including both core and valance electrons) are calculated through the self-
consistent approach. Tab. 6.2 presents the electronic configurations of iron, chromium,
and nickel atoms, where core states are indicated by gray background. Note that,
these are the default values defined in the EMTO code we use in this work, and might
be changed by user. In the table, electronic states are characterized according their
relativistic quantum number, κ, which is derived using the azimuthal and spin quantum
numbers, i.e. l and s respectively (see Tab. 6.3).

The frozen-core approach might speed up the calculation, but at the price of losing
accuracy, as it approximates the core orbitals with atomic orbitals. This simplification
affects the physical description of the system, as it neglects all changes which might
appear in the core states. Moreover, it has already been reported that when atoms
are brought together to form molecules or solids the change in the kinetic energy of
the core electrons can be an order of magnitude larger than the change in total energy
[141]. Generally, if no sufficient corrections are applied, it is recommended to avoid this
approximation where an accuracy higher than 0.1 eV is desired [141]. We apply the
soft-core approach in order to get a better description of interactions between atoms
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Table 6.2: The electronic configuration of elements iron, chromium, and nickel, according to
the default definitions in the EMTO code. n indicates the principle quantum number, and κ
denotes the relativistic quantum number (see Tab. 6.3). For better readability, core states have
been highlighted by the gray background.

26Fe: 1s2 2s2 2p6 3s2 3p6 4s2 3d6

n 1 2 2 2 3 3 3 3 3 4
κ −1 −1 1 −2 −1 1 −2 2 −3 −1

occupation 2 2 2 4 2 2 4 4 3 1

24Cr: 1s2 2s2 2p6 3s2 3p6 4s1 3d5

n 1 2 2 2 3 3 3 3 4
κ −1 −1 1 −2 −1 1 −2 2 −1

occupation 2 2 2 4 2 2 4 4 2

28Ni: 1s2 2s2 2p6 3s2 3p6 4s2 3d8

n 1 2 2 2 3 3 3 3 3 4
κ −1 −1 1 −2 −1 1 −2 2 −3 −1

occupation 2 2 2 4 2 2 4 4 4 2

Table 6.3: The derivation of the relativistic quantum number and the maximum occupations
of electronic states per spin. Indicating the principle, the azimuthal, and the spin quantum
numbers respectively by n, 0 ≤ l < n and s = ±1, the orbital and the relativistic quantum
numbers are defined as j = l + s/2 and κ = −s(j + 1/2), respectively [140].

orbital l
j = l + s/2 κ = −s(j + 1/2) max. occupation

s = −1 s = +1 s = −1 s = +1 s = −1 s = +1

s 0 1/2 −1 2
p 1 1/2 3/2 1 −2 2 4
d 2 3/2 5/2 2 −3 4 6
f 3 5/2 7/2 3 −4 6 8
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in the alloy. However, no efficiency improvement was observed in our test calculations
with the frozen-core approximation (see Sec. 6.4.6.3).

6.3.3 Screening Parameters
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Figure 6.3: For the fcc phase of A607 alloy, (a) and (b) show the effect of uniform scaling of
all screening parameters on the E-V curve, and on the local magnetic moments, respectively.

For every element in the system, a pair of screening parameters must be given:
ascr which is related to charge transfers in the system, and bscr which is related to the
electrostatic energy. The influence of bscr is small compared to that of ascr [citation],
thus we investigate the effect of ascr only. While in the new LSGF-EMTO method they
are calculated self consistently, in the version of the EMTO code we use in this work
they must be given as input parameters. Since it could be time-consuming to calculate
them, we used values suggested by Prof. Andrei Ruban, the developer of the code.

As a convergence test, we calculate the influence of the screening parameters on
the equilibrium volume and the magnetic moments of the A607 alloy in the fcc phase.
The results of these tests are presented in Fig. 6.3. Our calculations show that scaling
all screening parameters uniformly shifts the entire E-V curve along the energy axis,
where a set of larger screenings results in the lower total energy, and vise versa. The
equilibrium volume has reverse relation with the uniformly scaled screenings: it increases
0.06% for scaling factor of 0.7, and decreases 0.13% for scaling factor of 1.3. Such
small changes might be considered as negligible. Moreover, the local magnetic moments
presented in Fig. 6.3(b) show only small changes due to the uniform scaling of the
screening parameters. Further investigations by calculating the same quantities for the
hcp and dhcp phases, show that the total-energy shifts are equal for all three phases.
As presented in Fig. 6.4, when evaluating the SFE, these changes cancel each other out,
leaving the SFE unchanged.

The behavior of the E-V curve and the magnetic moments versus the non-uniform
scaling of the screening parameters is presented in Fig. 6.5, where these two quantities
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are plotted for scaling factors of 0.8, 1.0, and 1.2. Similar to the case of the uniform
scaling, the changes in the equilibrium volume are negligible. For the magnetic moments,
although our results show an increase of up to 0.2 µB in the local magnetic moments
of iron at smaller lattice volumes, changes at equilibrium volume are negligible. The
interesting result which is found by analyzing the equilibrium energy E0 is the fact
that, despite of their concentrations, the total energy is mainly affected by the screening
parameter of chromium, followed by nickel, and finally iron. This result is plotted in
Fig. 6.6, where scaling factor are distinguished by different colors. The curly brackets
and their labels in the figure indicate categories of calculations with the same screening
for the specified atom type.

We can finally conclude that, as long as the screening parameters are not selected too
far from their correct values, they are not affecting the accuracy of the SFE significantly.
A set of screenings with less than ±10% errors might be consider accurate enough for
the SFE calculations.

6.4 Results

6.4.1 Volume Effects

In order to investigate the properties of bulk materials, we evaluate the dependence of
the total energy and the local magnetic moments on the volume. By using the ideal c/a
ratio for the hcp and dhcp phases, and selecting a according to the lattice parameter
of the fcc phase, we ensure equal inter-atomic distances and also the same volume per
site for all of them.

6.4.1.1 Equilibrium Volume

The equilibrium lattice parameter is obtained by fitting the Murnaghan equation of
state [123] to a number of total energies calculated for different volumes, as presented
in Fig. 6.7(a). Our results show, for the A607 alloy in the paramagnetic state at 0K
equilibrium, that hcp is found as the most stable phase among the three studied phases,
followed by dhcp and finally fcc. It is also found that the equilibrium volume is smaller
for the more stable phases. As the volume increases from the equilibrium, the phase
stability in the paramagnetic state changes so that the fcc phase first overtakes the dhcp
phase, and later overtakes the hcp phase, resulting in an hcp→fcc phase transition.

6.4.1.2 Experimental Evidences

In metallurgy, the higher stability of the hcp phase at low temperatures, with respect to
the fcc phase, is a well-known fact which results in the cryogenic transition of γ-austenite
to the ε-martensite (a paramagnetic [17] hcp phase) on cooling [61]. The ε-martensite
is usually considered as an intermediate phase which transforms to the more stable
α′-martensite with ferromagnetic body-centered tetragonal (bct) structure [17, 32, 142–
145]. The overall γ → ε → α′ transition is called martensitic transformation. The
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Figure 6.5: For the fcc phase of A607 alloy,
(a) and (b) show the effect of non-uniform
scaling of all screening parameters on the E-
V curve, and on the local magnetic moments,
respectively.
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0.0

1.0

2.0

3.0

4.0

5.0

6.0
E

n
er

gy
[m

R
y/

si
te

]

3.522

3.488

3.501

fcc

hcp
dhcp

3
.5

9
2

@
2
9
8

K

A607

(a)

3.44 3.48 3.52 3.56 3.60 3.64 3.68

Lattice parameter [Å]
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Figure 6.7: (a) Total energy versus the lattice parameter, calculated for the A607 alloy using
the soft-core approach and the GGA-PBE functional. The green vertical line indicates the
measured fcc lattice parameter at room temperature, as presented in Fig. 6.8. (b) depicts the
behavior of the local magnetic moment of all elements.
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formation of α′-martensite is a consequence of the presence of interstitial carbon. In
fact, at very low temperatures, the most stable phase of the high-purity Fe–Cr–Ni alloys
is the α-ferrite with ferromagnetic bcc structure. Since the carbon solubility in the bcc
phase is very low, the unit cell is expanded along one of its sides, resulting in body-
centered tetragonal structure. With higher carbon concentrations, more interstitial sites
are filled, and the tetragonality increases [61].

When cooling austenite, the martensitic transformation starts as temperature reaches
the martensite start temperature, Ms. In the absence of these mechanical stresses, Ms

may be estimated using Eichelman and Hull empirical equation1 [61]

Ms [K] = 1578− 41.67xCr − 61.11xNi − 33.33xMn

−27.78xSi − 1667(xC + xN), (6.21)

where xi denotes the concentration of element i in the unit of weight percent. Substi-
tuting the chromium and nickel concentrations in the equation, Ms is estimated about
250K (−23 ℃) for the A607 alloy, explaining its fcc structure at room temperature and
its hcp structure at low temperatures. This agrees with the results of our ground-state
DFT calculations, where, at 0K, the paramagnetic hcp phase is found more stable than
the paramagnetic fcc phase.

Experimental data shows that stainless steels with composition close to A607 may
have a mixture of different phases, depending on their production conditions like cool-
ing rate. The equilibrium phase diagram predicts that this alloy may contain γ, α, and
σ phases at room temperature (see Fig. 3.6). However, because the alloy is found in
austenite phase at high temperatures, the full austenite phase can be maintained by
rapid cooling to room temperature (for instance, by quenching in water) [56]. These
statements emphasizes the importance of the production process. As a direct experi-
mental evidence, we can refer to our XRD measurements on samples of Böhler A607,
where only the presence of fcc phase was observed. We can compare our ab-initio lat-
tice parameter with its corresponding experimental value measured for the fcc lattice at
298K (25℃), presented in Fig. 6.8. Our theoretical value, afcc,DFT

A607 = 3.522 Å, agrees
with the measured value, afcc,EXP

A607 (T = 298 K) = 3.592 Å, within 2%.

6.4.1.3 Local Magnetic Moments

In Fig. 6.7(b), the magnetic moments in the DLM state are plotted versus the lattice
parameter for all elements in the three phases. The plot shows that, in all three phases,
chromium and nickel remain nonmagnetic in the entire range of the lattice parameter.
However, the magnetic moment of iron shows a direct dependence on the lattice spacing,

1As mentioned in the book STEELS: Processing, Structure, and Performance [61], the equation
has originally been published in 1953 by Eichelman and Hull [77]. Since we did not have access to the
original article, we took the equation from this book in the form of

Ms [◦F] = 75(14.6− xCr)− 110(8.9− xNi)− 60(1.33− xMn)− 50(0.47− xSi)− 3000[0.068− (xC + xN)]

and converted it from Fahrenheit unit (◦F) to Kelvin (K).
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T =573 K

a=3.602 Å
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calculations.
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so that while it remains negligible for smaller volumes, it increases significantly with the
lattice parameter, introducing a low-spin to high-spin magnetic transition. In different
phases, this transition occurs at different volumes, so that at a certain lattice parameter,
an iron atom has quite different magnetic moments in different phases. As a result of this
behavior, iron is already magnetic at the equilibrium volume of the fcc and dhcp phases,
while it is still nonmagnetic at the equilibrium volume of the hcp phase. In the limit of
large volumes, however, all three phases exhibit the same magnetic behavior. In all three
phases, unlike their equilibrium volumes, iron atoms have significant magnetic moments
between 1.55µB and 1.85µB at the lattice parameter measured at room temperature.
It shows that the usage of the theoretical lattice parameter can lead to an unrealistic
description of the magnetic configuration of the alloy, resulting in wrong values for the
SFE.

6.4.1.4 Frozen-core approximation

Delczeg et al. have recently calculated the equilibrium lattice parameters for the para-
magnetic state of Fe–Cr–Ni alloys using a method similar to what we use here, i.e.,
the EMTO approach [146]. For Fe74Cr18Ni8 alloy, they have reported 3.605 Å for the
fcc lattice parameter at 0K equilibrium, which, compared to our result, is closer to the
room-temperature experimental value.

The difference between this value and our result comes from the different treat-
ments applied for core electrons. While we use the soft-core approach, they have used
frozen-core approximation, a simplified description of core electrons that results in larger
equilibrium lattice parameters at 0K which are closer to experimental data [146–148],
but can not be justified theoretically. A comparison between the soft- and the frozen-
core approaches is presented in Fig. 6.9, where the equilibrium volume and the local
magnetic moments are plotted for the fcc phase of A607 alloy. More detailed informa-
tions, including the experimental values for the room-temperature lattice parameter and
the bulk modulus are given in Tab. 6.4. Our results show that the equilibrium volume
and the bulk modulus calculated using the soft-core approach are respectively smaller
and larger then those coming through the frozen-core approximation. This suggest that
the frozen-core approximation, compared to the soft-core approach, underestimate the
strength of atomic interactions in the metal.

Despite significant difference in the equilibrium volumes calculated using the two
core-electron treatments, Fig. 6.9(b) shows that both approaches result in very similar
values calculated for the magnetic moments. At first glance, it might point to the
dominance of the valence states in the magnetization of elements, as these states are
calculated in both approaches on equal footing. However, unless it is proven using other
methods, a question rises here: If the frozen-core approximation describes the magnetic
structure of the system in similar manner as the soft-core approach, why does it result in
different equilibrium volume. To answer this question, whether the magnetic behavior
is correctly and mainly characterized by valence states, or the mentioned match is just
an accident, or it is a bug in the implementation of the frozen-core approximation in
the code, further investigations are required.
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Figure 6.9: Comparison of the physical properties of the A607 alloy, calculated using the
soft-core and the frozen-core approaches. As the lattice parameter increases, (a) presents the
changes in the total energy, while (b) shows the behavior of the local magnetic moments.
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Figure 6.10: (a) Total energy versus the lattice parameter, calculated for the A607 alloy
using the frozen-core approximation and the GGA-PBE functional. The green vertical line
indicates the measured fcc lattice parameter at room temperature, as presented in Fig. 6.8.
(b) depicts the behavior of the local magnetic moment of all elements. Compared to Fig. 6.7,
this approximation results in a significant shift in the equilibrium lattice parameter, while the
behavior of the magnetic moments remain almost unchanged.
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Table 6.4: The calculated equilibrium lattice parameter and the bulk modulus of the fcc,
hcp, and dhcp structures, compared to available experimental data. Note that the fcc lattice
parameter afcc, is derived using the equilibrium volume of every phase.

phase
afcc [Å] B [GPa]

soft-core frozen-core experiment soft-core frozen-core experiment

fcc 3.522 3.598 3.592∗ 172.2 164.9 ∼160.0 [21]
hcp 3.488 3.558 — 271.5 152.2 —
dhcp 3.501 3.588 — 178.2 153.0 —
* Our XRD measurements

The E-V curves calculated for all three considered phases using the frozen-core
approximation are presented in 6.10. These results show that, in this approximation,
the most stable phase at 0K equilibrium is hcp, followed by fcc and dhcp. This is
different than the order we found using the soft-core approach: hcp, dhcp, and fcc (see
Fig. 6.7). Moreover, compared to Fig. 6.7, Fig. 6.10 shows that, at 0K equilibrium,
the energy differences between the three phases become smaller when the frozen-core
approximation is applied. These differences become of particular importance when
investigating the SFE which, in the absence of the entropy at 0K, is calculated as

SFE(T = 0 K) =
Ehcp + 2Edhcp − 3Efcc

A
, (6.22)

resulting in values of −126mJ/m2 and 6mJ/m2 for soft- and frozen core approaches,
respectively. Finally, in the hcp phase, Fig. 6.10 shows a kink in the E-V curve at
afcc ≈ 3.53Å, which can be related to a low-spin to high-spin magnetic transition of
iron atoms. Although the same transition is observed in all phases in Figs. 6.7(b) and
6.10(b), except the hcp phase with frozen-core approximation, it never results in a
visible change in the corresponding E-V curves.

6.4.2 Longitudinal Spin Fluctuations

Our methodology for calculating the longitudinal spin fluctuations (LSF) was explained
in Sec. 6.2.3. In this section, we present computational details and results.

6.4.2.1 Determination of Js(ms) from DFT

To this end, the cell volumes are adjusted based on the experimental lattice parameters
measured for Böhler A607 alloy. In order to do so, taking only the heating branch
of the lattice thermal expansion curve, the desired temperature range 273K–1273K
(0℃–1000℃) is divided into four intervals, whose middle values are selected for our
calculations (see Fig. 6.8). The total energy is evaluated via the self-consistent DFT
calculations, where one magnetic moment out of s ∈ {Fe,Cr,Ni} is fixed to the set
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Figure 6.11: The overall behavior of the Hamiltonian parameters Js(ms) versus the size of the
magnetic moments ms, as calculated using four experimental lattice parameters in the A607
alloy. For a closer view of the region around the horizontal axis, see Fig. 6.12.

of values ms ∈ {0.00, 0.25, 0.50, · · · , 4.00 µB}, while the other moments are allowed to
relax. In these calculations, the exchange–correlation (XC) effects are approximated
using the local spin density approximation (LSDA) [149], since it has been reported in
the cases of bcc iron [150] and bcc chromium [151] to result in more realistic magnetic
moments compared to the generalized gradient approximation (GGA) [93]. This ap-
proach gives the total energy of system Es(ms) as a function of the magnetic moments
of element s. The Hamiltonian parameters are obtained by normalizing these energies
to the energy of nonmagnetic state: Js(ms) = Es(ms)− Es(0).

For the A607 alloy, we present the overall behavior of Js(ms) in Fig. 6.11, while a
more detailed presentation with focus on an enlarged region around the horizontal axis is
available in Fig. 6.12. For each of chromium and nickel, the total energy monotonically
increases with the magnetic moments. This suggests that chromium and nickel are
nonmagnetic at the equilibrium DLM state, as it was also mentioned when discussing
the volume effects in Sec. 6.4.1. Moreover, it evidences the thermal excitations of their
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Table 6.5: Comparison of the magnetic moments of iron, calculated in the DLM paramagnetic
state of the A607 alloy using the LSDA and the GGA functionals. The LSF-LSDA and the
LSF-GGA magnetic moments have been obtained according to the minimum total energy of
the system, normalized to the total energy of the corresponding nonmagnetic state, ∆EFe =
EFe(mFe)− EFe(0)(see Fig. 6.12).

GGA LSF-LSDA LSF-GGA

TXRD aXRD
fcc phase mFe mFe ∆EFe mFe ∆EFe

[K] [Å] [µB] [µB] [mRy] [µB] [mRy]

fcc 1.805 1.339 −1.288 1.709 −3.671

298 3.592 hcp 1.512 0.379 −0.004 1.449 −1.223

dhcp 1.725 1.152 −0.616 1.617 −2.619

fcc 1.863 1.413 −1.597 — —
573 3.602 hcp 1.610 0.756 −0.066 — —

dhcp 1.792 1.251 −0.855 — —
fcc 1.951 1.523 −2.154 — —

873 3.619 hcp 1.748 1.081 −0.305 — —
dhcp 1.891 1.392 −1.316 — —
fcc 2.023 1.613 −2.724 — —

1173 3.634 hcp 1.854 1.279 −0.647 — —
dhcp 1.972 1.504 −1.809 — —

magnetic moments at higher temperatures. This behavior demonstrates the itinerant
nature of the electron magnetism in chromium and nickel. The steeper curve of nickel
results in the fact that there are less states available with a smaller variety of magnetic
moments for nickel than for chromium.

In the case of iron, unlike chromium and nickel, the energy curve always passes
through a shallow minimum as the magnetic moments increase from zero. These minima
and their corresponding magnetic moments are presented in Tab. 6.5, and are also
indicated on the horizontal axes in the figures. A minimum in the energy curve means
that iron exhibits a magnetic equilibrium DLM state, indicating the Heisenberg nature
of its electron magnetism. Moreover, the small depth of this minimum indicates that
spin fluctuations with a large variety of the magnetic moments are accessible because
of their low excitation energy. This reflects the itinerant nature of the magnetism in
this element. Although both Heisenberg and itinerant types of magnetism are present
in iron, later we will see that the Heisenberg type is dominant.

We can also compare these curves with E-V curves, presented in Fig. 6.7. For an
easier comparison, see the GGA and the LSF-LSDA magnetic moments in Tab. 6.5.
We find that the energy minima in JFe occur at magnetic moments which are smaller
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Fe

Cr

Ni

fcc
hcp

dhcp

(b)

0 1 2 3 4

Fixed magnetic moments, ms, [µB]

-3.0

-2.0

-1.0

0.0

1.0

2.0

J
s(
m
s)

[m
R

y/
si

te
]

FeFe Fe

A607:

TXRD =873 K

aXRD
fcc =3.619 Å
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Figure 6.12: Same as Fig. 6.11, but with a zoomed-in energy scale to unveil the minima of
JFe(mFe) curves.

then their corresponding values calculated in Sec. 6.4.1. These differences are mainly
due to the different exchange–correlation approximations applied in the two series of
calculations, i.e., the GGA-PBE functional used in the calculations of volume effects,
while the LSDA functional was selected for the LSF calculations. The results of an LSF
calculation with the GGA-PBE functional are presented under the title GGA-LSF in
Tab. 6.5. In every phase, the GGA-LSF magnetic moments are approximately 0.1µB

smaller than their corresponding values obtained from the E-V calculations. Further
investigations are required to unveil the source of these small differences.

With increasing volume (for instance, by moving from Figs. 6.12(a) to Figs. 6.12(d)),
we observe two trends. First, the position of the minima get more similar when com-
paring fcc, hcp, and dhcp. Second, the depths of the minima grow. Generally, a deeper
minimum means that the magnetic moments of the system are more localized, and
hence thermal excitation becomes more difficult, indicating the weak itinerant nature
of the system. Based on the same argument, in our Fe–Cr–Ni alloy, the fcc and the hcp
phases demonstrate the weakest and the strongest itinerant magnetism, respectively.
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Finally, the relatively small slope of all energy curves around their minima emphasizes
that the spin fluctuations are highly available in this alloy, which are necessary to be
taken into account in order to get an accurate physical description of the system.

Figs. 6.13 – 6.16 demonstrate the correlations between the magnetic moments of
different elements in the alloy. In all cases, the magnetic moments of chromium (red
curves) and nickel (blue curves) remain unchanged as the moments of any other element
increase. On the other hand, magnetic moments of iron (black curves) exhibit only a
week correlation with moments of other elements, where they increase with chromium
moments, but decrease as nickel moments increase. This indicates that the magnetic
interactions among different species are generally weak.

6.4.2.2 Monte Carlo Calculations

The outputs of Monte-Carlo calculations related to the four selected experimental lattice
parameters are presented in Fig. 6.17, where different phases are distinguished with
their corresponding colors. For the DLM paramagnetic state, our results predict that,
in all three phases, iron holds significant magnetic moments at 0K, evidencing the
contribution of localized d-electrons to its magnetism. This behavior is a characteristic
of systems which follow the Heisenberg model of magnetism. However, as temperature
rises, the magnetic moments of iron grow, which is a characteristic of the itinerant
magnetism [131]. So we can conclude that, the electron magnetism in iron can be
described as a mixture of both Heisenberg and itinerant types. The itinerant nature of
magnetism is stronger in the hcp phase, followed by dhcp and fcc, as determined by the
slope of their corresponding curves, particularly at lower temperatures. In the entire
temperature range, the fcc phase has the largest magnetic moments, followed by dhcp
and hcp. A similar finding has been reported for iron in Fe–Mn alloys [38]. Chromium
and nickel, on the other hand, obtain significant magnetic moments only due to the
thermal excitation of their spins, indicating the pure itinerant nature of their electron
magnetism.
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Figure 6.13: The correlation between mag-
netic moments in A607 alloy, using the lattice
parameter at 298K.
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Figure 6.14: The correlation between mag-
netic moments in A607 alloy, using the lattice
parameter at 573K.
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Figure 6.15: The correlation between mag-
netic moments in A607 alloy, using the lattice
parameter at 873K.
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Figure 6.16: The correlation between mag-
netic moments in A607 alloy, using the lattice
parameter at 1173K.

99



6. THE Fe–Cr–Ni SYSTEM 6.4 Results

A607: aXRD
fcc (T =298 K)= 3.592 Å
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Figure 6.17: The dependence of the magnetic moments on temperature, calculated for the
A607 alloy, at four different experimental lattice parameters.
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6.4.3 The SFE Calculations

In Fig. 6.18(a), the SFE results based on five different sets of the LSF calculations are
presented. The first set uses the theoretical equilibrium volume, while the other four sets
utilize the measured lattice parameters at 298, 573, 873, and 1173K (25, 300, 600, and
900℃, respectively). For every set, a third order polynomial is fitted to the calculated
points. All results exhibit an increase of the SFE with temperature. Moreover, it is
found that larger volumes result in larger SFE’s. The colored curves are more reliable in
a temperature range around the point at which their corresponding lattice parameters
have been measured. These ranges and their corresponding data points are highlighted
in Fig. 6.18(b). The overall temperature dependence of the SFE can be found by fitting
a third order polynomial to these highlighted points. We find that, for the A607 alloy,
the SFE almost linearly increases with the temperature:

SFEA607(T ) = −3.530×101 + 1.006×10−1 T − 3.924×10−5 T 2 + 1.296×10−8 T 3, (6.23)

where T and SFEA607 are in Kelvin and mJ/m2, respectively.

6.4.3.1 Comparison with Other Works

Among the most direct and also the most frequently used methods for measuring the
SFE is the observation of the extended dislocation nodes, loops, and tetrahedra by
transmission electron microscopy (TEM). Depending on the restrictions in the resolution
of TEM images, this method is usually considered accurate for cases where the SFE
is below 50mJ/m2. For materials with larger SFE, investigating the XRD profiles by
Fourier analysis can be applied [53, 117].

Generally, finding trusted experimental values for the stacking-fault energy is quite
challenging. As presented in Tab. 2.1, uncertainties up to 30% have been reported in
the case of pure metals, making it difficult to fully rely on an individual experimental
value. One must also take into account that, when measuring the SFE in alloys, the
problem becomes even more elaborate due to complexities which are a part of the nature
of the composition compared to a pure material. Particularly for steels, comparing the
calculated SFE’s with experimental values is not a straightforward task, since experi-
mental samples always contain small fractions of other elements, making them different
from the simulated systems. Moreover, the process of sample preparation alters its fi-
nal microstructure, a property which highly governs the SFE measurements, and hence
significantly changes the measured results, even for samples with equal chemical com-
positions. For instance, for plain carbon steels in the γ-phase at high temperature, the
SFE has been measured between 70mJ/m2 and 100mJ/m2 (almost 50% deviation),
depending on the material grain size [54]. Especially when the temperature dependence
of the SFE is of interest, some irreversible changes may be introduced in samples as they
are heated up and cooled down again (see the references of the reported experimental
results).

Experimental SFE values, which have been extracted from relevant publications, are
presented in Appendix A. In order to compare our results with available experimental

101



6. THE Fe–Cr–Ni SYSTEM 6.4 Results

273 473 673 873 1073 1273

Temperature [K]

-60

-40

-20

0

20

40

60

S
F

E
[m

J/
m

2 ]

LSF calculations using a at:

equilibrium
298 K
573 K
873 K

1173 K

A607: SFE

(a)

273 473 673 873 1073 1273

Temperature [K]

-60

-40

-20

0

20

40

60

S
F

E
[m

J/
m

2 ]

LSF calculations using a at:

equilibrium
298 K
573 K
873 K

1173 K

overall behaviour

A607: SFE

(b)

Figure 6.18: (a) The temperature dependence of the SFE, evaluated for the A607 alloy. Differ-
ent curves correspond to different volumes used in the LSF calculations. Using the experimental
lattice parameter (colored curves) instead of the equilibrium value (black curve) increases the
SFE significantly. (b) The temperature interval is divided into 4 regions (see Fig. 6.8), where
the most relevant points of every curve is selected. The overall behavior of the SFE is found
by fitting a third order polynomial to the selected points.
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Figure 6.19: Comparison between our results and available experimental and theoretical
SFE’s for the A607 alloy. Experimental data are presented for alloys where the deviation of
the chemical composition from our A607 is in the range of ±4 at.%, ±2 at.%, and ±2 at.%,
respectively for iron, chromium, and nickel. However, the accurate composition of these alloys
are presented in Appendix A. The black curve presents the temperature dependence of the
SFE, calculated for Fe74Cr18Ni8 [37]. Room temperature has been indicated by a vertical line
at 298K (25℃).

values, we select only those alloys for which the deviation of the chemical composition
from our A607 is in the range of ±4 at.% for iron and ±2 at.% for chromium and nickel.
Although we ignore the presence of any other elements, we omit alloys where the sum
of all additional elemental concentrations exceeds the limit of ±2 at.%. Our calculated
SFE and the measured values for these selected alloys are presented in Fig. 6.19. The
black curve in the figure is the theoretical result published by Vitos et al. [37]; they have
calculated the temperature and composition dependence of the SFE using an approach
similar to ours. However, their applied approximations and some computational details
are different than ours. For instance, they have not accounted for the thermal lattice
expansion. Moreover, they have applied the frozen-core approximation and the SC-
LSF scheme. These differences will later be discussed in this section. Our results
and Vitos’s results agree in the prediction of the direct temperature dependence of the
SFE, especially at higher temperatures where both curves increase with almost the
same slope. At lower temperatures, including room temperature, the curve calculated
by Vitos has larger slope. However, the main difference between these two theoretical
results comes from their different SFE-intercept, a constant which shifts the entire curve
along the vertical axis, i.e., SFE-axis. While Vitos et al. have found a positive SFE at
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room temperature which agrees with the experimental values, our calculations result in
a negative SFE at room temperature, which is approximately 15mJ/m2 lower than the
lowest measured value.
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Figure 6.20: Comparison between the SFE results, as the LSF calculations are performed
using the LSDA (dashed curves) or the GGA (solid curves) functional. Like in the Fig. 6.18(a),
red curves correspond to a set of calculations where the lattice parameter measured at 298K
(25℃) is utilized in the LSF evaluation.

Vitos et al. have applied the GGA functional in order to approximate the exchange–
correlation effects in the free energy calculations, as well as in the evaluation of the ther-
mal excitation of the magnetic moments. In fact, the applied self-consistent scheme of
the LSF calculations evaluates these thermal excitations and the free energy simultane-
ously, making it impossible to use different exchange–correlation terms in them. Unlike
their approach, we calculate the LSF prior to the free-energy calculations, which allows
us to chose different computational parameters for these separated tasks. As it was
already mentioned in Sec. 6.4.2.1, we use the LSDA functional in the LSF calculations,
while utilizing the GGA functional in the free-energy calculations.

In order to find the origin of the difference between our results and Vitos’s report, we
recalculate the thermal excitation of the magnetic moments using the GGA functional.
Our SFE results for both functionals are presented in Fig. 6.20, where the dashed
and solid curves indicate the usage of the LSDA and GGA functionals in the LSF
calculations, respectively. Compared to graphs if Fig. 6.18(a), we have recalculated the
LSF only for the lattice parameter measured at 298K (25℃). Using the GGA functional
in the LSF calculations introduces a significant shift of almost 20mJ/m2 toward higher
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Figure 6.21: The main components of the SFE, calculated for A607. The thermal excitation of
the magnetic moments are taken into account using the LSDA exchange–correlation functional
in the LSF calculations.

values to the entire curve. At room temperature, this results in very good agreement
with experimental data and Vitos’s report. For higher temperatures, as presented in
Fig. 6.18(b), further calculations using relevant lattice parameters in the LSF step are
required. However, comparing the enhanced slope of the overall curve to the slope of
the curve utilizing a@ 298K (green dashed curve compared to the red dashed curve in
Fig. 6.20), we expect that the same improvement will occur here.

6.4.4 Various Contributions to the SFE

As a result of the ANNNI model, the SFE is affected by various contributions to the
free energies, which are in turn derived by subtracting different entropy contributions
from the total energy (see Eqs. 6.7 and 6.11). In Fig. 6.21, we disentangle the three
main components of the SFE, i.e., the differences in the total energies

∆E = Ehcp + 2Edhcp − 3Efcc, (6.24)

the differences in the electronic free energies

∆Fel. = ∆E − T∆Sel. = ∆E − T (Shcp
el. + 2Sdhcp

el. − 3Sfcc
el. ), (6.25)

and the differences in the magnetic entropies

T∆Smag. = T (Shcp
mag. + 2Sdhcp

mag. − 3Sfcc
mag.). (6.26)
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By increasing from −18mJ/m2 at 298K (25℃) to 37mJ/m2 at 1273K (1000℃), the
total-energy contribution, ∆E plotted in green, governs both the value and the tem-
perature dependence of the SFE. The effect of the electronic-entropy contribution can
be analyzed by comparing the electronic-free energy, ∆Fel. plotted in red, to the to-
tal energy. The small difference between these two curves indicates the tiny effect of
the electronic-entropy contribution on the SFE, which might safely be ignored. The
magnetic-entropy contribution, T∆Smag. plotted in blue, changes from −9.6mJ/m2

at 298K (25℃) to −18.9mJ/m2 at 1273K (1000℃). By changing less than 3mJ/m2

within a range of 600K, it forms almost a plateau at the first half of the temperature
range. Including this term in our calculations, shifts the entire SFE curve toward higher
values. Although it slightly increases the slope of the SFE curve, the main influence of
the magnetic-entropy contribution must be considered as an improvement in the SFE
value rather than in the SFE temperature dependence.

However, the contribution of the magnetic entropy to the free energy is not the
only way through which the local magnetic moments influence the final results. Via
the thermal lattice expansion, the local magnetic moments are also altered, resulting in
further changes in the total energy. These effect even appears even when the electronic
structure is calculated for the ground state of the system according to 0K, at which no
thermal excitation exists.

In order to investigate this effect, we calculate ∆E for the A607 alloy in two different
conditions: (i) in the DLM state at 0K, where no thermal excitation of the magnetic
moments exists, and (ii) in the DLM state at finite temperatures, where the thermal
excitations of the magnetic moments are taken into account by calculating the fluctu-
ation of spins. The only difference between these two scenarios is the different size of
the local magnetic moments, coming from the itinerant nature of electronic magnetism
in the Fe–Cr–Ni alloy.

Fig. 6.8 demonstrates that in the temperature range of 298K to 1273K (25℃ to
1000℃), the fcc lattice parameter, afcc, falls between 3.5920Å and 3.6425Å. Our ground
state calculations for 0K shows that, in this range of the lattice parameter, chromium
and nickel preserve their nonmagnetic state, while the finite magnetic moments of iron
grow with volume (see Fig. 6.7(b)). The thermal excitations of the magnetic moments
in this temperature range have been presented in Fig. 6.17. The magnetic moments
of iron atoms in this figure are almost equal to their corresponding values calculated
at 0K (see Fig. 6.7(b)) which shows the dominance of the Heisenberg nature of its
electron magnetism. However, despite to their nonmagnetic state at 0K, chromium
and nickel exhibit significant spin polarization in this temperature range (mCr ∼ 0.6−
0.7µB and mNi ∼ 0.3µB), showing the dominance of the itinerant nature of their
electron magnetism. These excited magnetic moments are responsible for the difference
between two curves in Fig. 6.22. Despite this difference, both curves show quite similar
temperature dependence of ∆E, emphasizing the larger influence of the lattice expansion
compared to the thermal excitations of the magnetic moments.

A further analysis of the magnetic moments in Fig. 6.23 shows that the magnetic
moments of iron have larger influence compared to those of chromium and nickel. Com-

106



6. THE Fe–Cr–Ni SYSTEM 6.4 Results

3.590 3.601 3.612 3.623 3.634 3.645

Fcc lattice parameter [Å]
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Figure 6.22: The main contributions to the SFE, calculated for A607. The dashed curve
demonstrates our results where the thermal excitation of the magnetic moments are taken
into account using the LSDA exchange–correlation functional in the LSF calculations. Square
symbols represent the results of a similar approach, where the GGA functional is applied instead
of the LSDA in the LSF calculations. The solid curve corresponds to the 0K ground-state
calculation for different lattice parameters, using the GGA exchange–correlation functional.
Using the thermal lattice expansion date presented in Fig. 6.8, these lattice parameters are
mapped into temperature axis and indicated on the second horizontal axis.
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273 473 673 873 1073 1273

Temperature [K]

0.0

0.5

1.0

1.5

2.0

M
ag

n
et

ic
m

om
en

ts
[µ

B
]

Fe

Cr

Ni

Cr and Ni

fcc
hcp
dhcp

Figure 6.23: The temperature dependence of the magnetic moments, calculated for A607 using
different approaches. The dotted and the dashed curves demonstrate the thermal excitation of
the magnetic moments evaluated using the LSDA and GGA functional in the LSF calculations,
respectively. Both calculations are based on the lattice parameter afcc = 3.5920Å measured at
298K (25℃). The solid curves, presents the ground-state magnetic moments at 0K, calculated
using the GGA functional for different lattice parameters.
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paring the LSDA-LSF and GGA-LSF results it is found that nickel magnetic moments
are not affected by the exchange–correlation functional. However, iron and chromium
obtain larger moments when the GGA functional is used instead of the LSDA. This
increase is more pronounced at lower temperatures, resulting in a larger split between
the room-temperature results (see Fig. 6.22). At 0K, nickel and chromium remain
nonmagnetic regardless of the lattice parameter. However, the magnetic moments of
iron are found larger then their corresponding values using the GGA-LSF. As the vol-
ume increases, they grow faster than the GGA-LSF moments grow with temperature,
making the split between two class of results larger at higher temperature (volumes).
Despite the nonmagnetic state of chromium and nickel, the ∆E values obtained from
the ground-state calculations are in good agreement with the GGA-LSF results. This
suggests that the behavior of ∆E is mainly driven by the magnetic moments of iron.
On the other hand, we may conclude that, at least for Fe–Cr–Ni alloys, the evaluation
of the thermal excitation of the magnetic moments is not the crucial part of the SFE
calculation, since the temperature dependence of iron magnetic moments as the main
contributers can simply be accounted for by the lattice thermal expansion data. These
results can provide a solution for applications where a simplified treatment of the SFE
is sufficient.

As a summary of the above discussion, we present the two main contribution to
the SFE, i.e., ∆E, T∆Smag., in Fig. 6.24. Here, the dashed curves and square symbols
indicate the implementation of the LSDA and GGA in the LSF calculations, respectively,
and the solid curves correspond to the 0K ground state calculations. First of all,
comparing the SFE’s calculated using the LSDA-LSF and the GGA-LSF, we found
that the latter results in very good agreement with the experimental results, which
is due to the larger magnetic moments resulting from the GGA. All three levels of
approximations demonstrate that the SFE is dominantly governed by the total energy
difference, ∆E, which is in turn highly dependent on the lattice parameter. Moreover,
comparing the two magnetic phenomena, i.e., (i) the change in the magnetic moments
due to a pure lattice expansion, and (ii) the change in the magnetic moments due to
the thermal excitations (magnetic-entropy contribution), we found that they are almost
equally important in the SFE calculations. Considering the significant effort required
for evaluating these thermal excitations, it might be omitted when approximate values
of the SFE are sufficient.

These findings about the magnetic effects are clearly in contrast with earlier results
published by Vitos et al., where the temperature dependence of the SFE in Fe–Cr–
Ni alloys is solely determined by the magnetic-entropy contribution [37, 47, 125]. As
mentioned in their papers, they perform all calculations using 0K equilibrium volume.
Supported by a recent publication by Reyes-Huamantinco et al. who have recently
calculated the influence of different contributions on the temperature dependence of
the SFE for Fe–Mn alloys, we conclude that the thermal expansion must be taken into
account as the crucial effect. Of second order of importance, is the contribution of the
magnetic moments in the total energy and also the magnetic-entropy contribution to
the free energy. Finally, the electronic entropy may be safely omitted.
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Figure 6.24: The main contribution to the SFE, calculated for A607. In the dashed curves,
thermal excitations of the magnetic moments are taken into account using the LSDA exchange–
correlation functional in the LSF calculations. Square symbols represent the same approach,
except the implementation of the GGA functional instead of the LSDA in the LSF calcula-
tions. Solid curves correspond to the ground-state calculation at 0K, using the GGA exchange–
correlation functional.

6.4.5 The hcp→fcc Driving Force

Now that the free energies are available for both fcc and hcp phases, we can also evaluate
the driving force for the hcp→fcc transformations, which is a measure for the tendency
of the system to transform from one phase to the other. Generally, this parameter is
defined as the difference between the free energies of the two phases, thus

∆F hcp→fcc = F hcp − F fcc. (6.27)

In Fig. 6.25, we present these differences for both hcp and dhcp phases, i.e., ∆F hcp→fcc

(the red curve) and ∆F dhcp→fcc = F dhcp −F fcc (the blue curve). A positive ∆F hcp→fcc

indicates that the system would prefer the fcc phase over the hcp, and vice versa.
The thermodynamical equilibrium occurs at a temperature indicated by T fcc,hcp

0 ,
where the free energies of the two phases become equal, and consequently ∆F hcp→fcc =
∆F fcc→hcp = 0. However, in the real world, due to the existence of non-chemical energy
barriers such as interfacial and elastic energy, these transformations occur when their
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Figure 6.25: The differences between the free energies of the hcp and dhcp phases with respect
to the free energy of the fcc phase, calculated for A607 alloy.

corresponding driving forces find certain positive values [28]. That is why a signifi-
cant hysteresis is observed between the starting points of the austenite-to-martensite
transformation during cooling, and its reversed form, i.e., the martensite-to-austenite
transformation during heating.

The experimental measurements for the α′-martensite start temperature, Mγ→α′
s ,

and the austenite start temperature, Aα
′→γ
s , are presented in Tab. 6.6 for alloys with

chemical compositions close to that of A607. The averages values in the table are in good
agreement with the empirical formula presented in Eq. 3.1, which estimates the Mγ→α′

s

temperature about 250K (−23 ℃) for A607. For Fe–18.8wt.%Cr–11.5wt.%Ni, which
has a slightly higher amount of nickel, Singh has observed that the ε and α′-martensites
are stable up to 473K (200℃) and 673K (400℃), respectively [23]. Summarizing these
data, and keeping in mind that the hcp ε-phase is an intermediate phase in γ ↔ α′

transformations, one can conclude that the temperature at which the free energies of ε
and γ phases become equal, T γ,ε0 , is somewhere between Mγ→α′

s and Aα
′→γ
s . Using the

average values in Tab. 6.6, the middle point of the [Mγ→α′
s , Aα

′→γ
s ] temperature interval

is 487K (214℃). Based on our calculations, T fcc,hcp
0 = 563K (290℃) (see Fig. 6.25).

This value is in reasonable agreement with the discussed experimental values, and also
with the γ–ε equilibrium temperature of 521K (248℃), calculated using Thermo-Calc.
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Table 6.6: Experimental values of Mγ→α′

s and Aα
′→γ
s , measured for alloys with chemical

composition similar to A607. For accurate composition of other elements, see Appendix A.

Cr Ni Mγ→α′
s Aα

′→γ
s notes and reference

[wt%] [wt%] [K] [℃] [K] [℃]

18.00 7.00 193 −80 — — Abrassart1973 [17]

20.00 8.00 294 21 — — Behjati2011 [32]

18.00 10.00 264 −9 — — Behjati2011 [32]

20.00 10.00 261 −12 — — Behjati2011 [32]

17.30 11.00 223 −50 — — Breedis1964 [9]

18.03 7.94 — — 813 540 Guy1983 [20]

17.55 7.67 — — 723 450 Knutsson2008 [30]

18.34 8.53 — — 710 437 average over five measurements,
Tavares2000 [27]

Average: 247 −26 727 454
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6.4.6 Approximations and Approaches

Here we present a systematic study of the influence of various approximations and
physical effects on the SFE results. For brevity and clarity, first we explain all terms
appearing in plot labels and legends:

• Analytical LSF: The default approach for evaluating the magnetic free energy,
where the magnetic fluctuations are accounted for by using the Monte-Carlo re-
sults as described in Subsec. 6.4.2.2. This is our default approach of LSF calcula-
tions, if nothing else is mentioned explicitly.

• Self-consistent LSF (SC-LSF): The magnetic free energy is computed from
the self-consistent magnetic fluctuations.

• Constant a: Without the addition of SC-LSF, it means that the DFT calcu-
lations in the latest step have been performed with fixed lattice spacing for the
entire temperature range, omitting the thermal expansion. However, it must be
noted that the thermal expansion has been considered when evaluating the tem-
perature dependence of magnetic moments using the analytical LSF. When used
in combination with SC-LSF, is omitted completely, using the experimental fcc
lattice parameter measured at 298K.

• Variable a: The thermal expansion has been taken into account every where in
calculations. This is our default method, if nothing else is mentioned explicitly.

• Frozen core: The frozen-core approximation is applied only in the DFT calcu-
lations in the latest step. In this approximation, the core states in a crystal are
approximated with their atomic equivalents in an isolated atom, and remain un-
changed while valence states are calculated through the self-consistent approach.

• Soft core: All electronic states, including core and valence states, have been
calculated self-consistently. This is our default choice.

• Electronic entropy (Sel.): The contribution of the electronic entropy has been
accounted when calculating the free energy. By default, this contribution is not
taken into account, unless explicitly mentioned.

6.4.6.1 The Electronic Entropy

In Fig. 6.26 we present the contribution of the electronic entropy to the temperature
dependent SFE, where the dashed and solid lines, respectively, indicate our final results
without and with accounting for this effect. As shown in the figure, the electronic
entropy has a very small effect, ∼ 2mJ/m2, when the SFE is calculated using the
analytical approach for the LSF. More accurately speaking, including the electronic
entropy increases the SFE at the first half of the temperature range, while decreasing
it at the other half. Given the overall accuracy, the electronic entropy might be safely
omitted.
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Figure 6.26: Changes introduced in the SFE, as the electronic entropy is taken into account
in the free energy calculation. The dashed and the solid lines indicate the results without and
with accounting for the electronic entropy, respectively. The curves show that the electronic
entropy does not significantly affect the final results.

On the other hand, when the SC-LSF approach is applied for evaluating the magnetic
excitations, the electronic entropy has a more pronounced effect, ∼ 5mJ/m2 at its
maximum, on the final results.

In a similar way, the contribution of the electronic entropy to the temperature de-
pendent DF is presented for two cases: calculations with default settings (Fig. 6.27(a)),
and with SC-LSF (Fig. 6.27(b)). Our results show that T fcc,hcp

0 is shifted toward higher
temperatures, as the electronic entropy is included in the free-energy calculations. Like
the case of the SFE, the shift is larger when the SC-LSF approach is applied.

6.4.6.2 The Thermal Expansion

In Fig. 6.28, we present the influence of the thermal expansion on the temperature
dependence of the SFE in A607 alloy. The influence of the thermal expansion on
differences between the free energies of three phases is presented in Fig. 6.29. In the SC-
LSF approach, a single computation involves a given lattice parameter and temperature.
The local magnetic moments, and consequently, the magnetic entropy and the free
energy are calculated self-consistently. When lattice expansion is omitted, the only
difference between systems at two different temperatures is their magnetic state. Since
the effect of magnetic excitations on the temperature dependence of the SFE is relatively
small, it results in a very weak temperature dependence of the SFE, which is presented
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Figure 6.27: Changes introduced in the differences between free energies of hcp and dhcp
phases with respect to the free energy of the fcc phase, as the electronic entropy is taken into
account. In every plot, the dashed and the solid lines indicate the results without and with
accounting the electronic entropy, respectively. (a) Calculations with default settings. (b)
Calculations with SC-LSF approximation.

by the small slope of corresponding curves in Figs. 6.28 and 6.29(c).
When calculating using the analytical LSF approach (see Sec. 6.4.2), the thermal

expansion must be considered in two steps, first when calculating the LSF, and second
when calculating the total energy (see Sec.6.4.3). Here we present the influence of the
thermal expansion on the second step only, as it has already been taken into account
when evaluating the fluctuation of magnetic moments. We found that the thermal
expansion is equally important for both soft- and frozen-core treatments, as it leads to
significant increase in the slope of the SFE curve (see Fig. 6.28), or results in big shifts in
the fcc–hcp equilibrium temperature, T fcc,hcp

0 (see Figs. 6.29(a) and 6.29(b)). Thus we
conclude that the thermal expansion is a crucial effect which must be taken into account
in order to understand the correct electronic structure and physical properties of an alloy
at finite temperatures, particularly its phase stability, transformation temperatures, and
the temperature dependence of the SFE.
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Figure 6.28: Changes introduced in the SFE, as the thermal lattice expansion is taken into
account in the free energy calculation. The dashed and the solid lines indicate the results
without and with accounting for the thermal expansion, respectively. The curves show that the
thermal expansion is an essential effect which must be considered in order to find the correct
temperature dependence of the SFE.
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Figure 6.29: Changes introduced in the differences between free energies of hcp and dhcp
phases with respect to the free energy of the fcc phase, as the thermal expansion is taken into
account. In every plot, the dashed and the solid lines indicate the results without and with
accounting for the thermal expansion, respectively. (a) Calculations with default settings. (b)
Calculations with frozen-core approximation. (c) Calculations with frozen-core approximation
and SC-LSF.
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6.4.6.3 The Frozen-core Approximation

In order to investigate the influence of the frozen-core approximation, we recalculate our
results by applying this approximation. The SFE and the free energies are presented in
Figs. 6.30 and 6.31, respectively. In all figures, the dashed curves indicate the results of
calculation with default settings (soft core, here), while the solid curves show the outputs
of with the frozen-core approximation. We conclude that the frozen-core approximation
has only a small influence on the final results. On the other hand, we found that the
application of this approximation does not improve the performance. Thus, we did not
find any motivation for using this approximation.
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Figure 6.30: The influence of the frozen-core approximation on the SFE, calculated for two
systems, including and excluding the thermal expansion (green and red curves, respectively).
The dashed and the solid lines indicate the results with soft- and frozen-core approximations,
respectively. The curves show just a slight change in the SFE introduced by the approximation.
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Figure 6.31: Changes introduced in the differences between free energies of hcp and dhcp
phases with respect to the free energy of the fcc phase, as the frozen-core approximation is
applied. The dashed and the solid lines indicate the results with soft- and frozen-core approx-
imations, respectively. (a) Calculations with default settings. (b) Calculations with constant
spacing.
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Figure 6.32: The temperature dependence of the magnetic moments, calculated for A607
using different approaches. The dashed curves show the thermal excitation of the magnetic
moments evaluated using the analytical approach, where the solid curves present the results of
SC-LSF approach.

6.4.6.4 The Self-consistent LSF

In our default approach, analytical LSF, the itinerant nature of the chromium and nickel
electronic magnetism is accounted for, and hence a significant temperature-induced
increase in the local magnetic moments of these two elements is captured. In the
self-consistent LSF approach, the magnetic entropy is obtained using the magnetic
moments calculated through the ground-state DFT calculations. In Fig. 6.32, we present
a comparison between the temperature dependence of the magnetic moments, calculated
using the two mentioned methods.

Evidently, the SC-LSF approach does not correctly account for the thermal excita-
tion of the magnetic moments of chromium and nickel. Therefore, they maintain their
0K nonmagnetic state even at high temperatures, resulting to an underestimated mag-
netic entropy. This underestimation is reflected in a too weak temperature dependence
of the SFE presented in Fig. 6.33.
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Figure 6.33: Comparison of the SFE’s, as the LSF is considered using the analytical (dashed
lines) or self-consistent (solid lines) approaches.
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Figure 6.34: Changes introduced in the differences between free energies of hcp and dhcp
phases with respect to the free energy of the fcc phase, as the magnetic fluctuations are ac-
counted through the self-consistently. In every plot, the dashed lines indicate the results with
analytical LSF evaluation. (a) Calculations with default settings. (b) Calculations with frozen-
core approximation. (c) Calculations with frozen-core approximation and constant spacing.

121



6. THE Fe–Cr–Ni SYSTEM 6.4 Results

273 473 673 873 1073 1273

Temperature [K]

-90

-60

-30

0

30

60
S

F
E

[m
J/

m
2 ]

default

SC-LSF + Sel.

frozen core + SC-LSF

A607:
XC functional

Figure 6.35: The dependence of the SFE on the exchange–correlation functional applied in
the free energy calculations. The SFE’s evaluated using the LSDA-LSF+GGA-FE (dashed
curves) combination agree with experimental results better than those calculated using LSDA-
LSF+LSDA-FE (solid curves).

6.4.6.5 The Exchange–Correlation Functional

In our default approach, we use the LSDA exchange–correlation functional when cal-
culating the thermal excitation of magnetic moments (see 6.4.2.1), while we use the
GGA functional when evaluating the free energies through the constrained DFT calcu-
lations (see 6.4.3). Beside this LSDA-LSF+GGA-FE combination, we have performed
tests with other choices like LSDA-LSF+LSDA-FE and GGA-LSF+GGA-FE. The SFE
and the driving forces are respectively presented in Fig. 6.35, where dashed and solid
curves indicate the LSDA-LSF+GGA-FE and the LSDA-LSF+LSDA-FE combinations,
respectively. The SFE curves show that a better agreement with experimental results
is obtained when the GGA functional is used in the free energy calculations. This dif-
ference is also observed in the driving force curves, presented in Fig. 6.36, where using
the LSDA functional underestimates the free energies of the hcp and the dhcp phases
with respect to the fcc phase, resulting in wrong phase stabilities in a wide temperature
range.

A further investigation on the main contribution to the SFE, i.e. ∆E and T∆Smag.

can unveil the origin of the difference. As presented in Fig.6.37, the values of T∆Smag.

are found very similar when calculated using the both XC functionals (compare blue
curves with blue symbols in the figure). On the other hand, the differences between
total energies, ∆E, are strongly dependent of the XC functional applied in the final DFT
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calculations. In summary, we can say that the best agreement with experimental results
is obtained when the GGA functional is applied in both the LSF and the total-energy
calculations.

273 473 673 873 1073 1273

Temperature [K]

-60

-45

-30

-15

0

15

F
−
F

fc
c

[m
J/

m
2 ]

hcp

dhcp

56
3 A607: Default

XC functional

(a)

273 473 673 873 1073 1273

Temperature [K]

-60

-45

-30

-15

0

15

F
−
F

fc
c

[m
J/

m
2 ]

hcp

dhcp

49
9 A607: Soft core + Sel. + SC-LSF

XC functional

(b)

273 473 673 873 1073 1273

Temperature [K]

-60

-45

-30

-15

0

15

F
−
F

fc
c

[m
J/

m
2 ]

hcp

dhcp

53
0 A607: Frozen core + SC-LSF

XC functional

(c)

Figure 6.36: Changes introduced in the differences between free energies of hcp and dhcp
phases with respect to the free energy of the fcc phase, as the exchange–correlation effects in
the final DFT step are approximated using the LSDA functional, instead of the GGA. In every
plot, the dashed lines indicate the results with the LSDA-LSF+GGA-FE combination, while
the solid lines present the LSDA-LSF+LSDA-FE results. (a) Calculations with default settings.
(b) Calculations including the electronic entropy, using the SC-LSF approach. (c) Calculations
with frozen-core approximation and the SC-LSF approach.
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Figure 6.37: The dependence of the contribution to the SFE on the exchange–correlation
functional applied in the calculations. Here, dashed curves present the LSDA-LSF+GGA-FE
results, while solid curves have been calculated using the LSDA-LSF+LSDA-FE combinations.
Squared symbols indicate GGA-LSF+GGA-FE results.
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6. THE Fe–Cr–Ni SYSTEM 6.5 Conclusion

6.5 Conclusion

Here, we would like to draw conclusions from our results.

• When calculating the SFE using the ANNNI model, our results for the Fe–Cr–
Ni alloy show that a deviation of maximal ±10% in the value of the screening
parameters still result in reasonable results.

• The frozen-core approximation, compared to the soft-core approach, underesti-
mates the strength of the atomic interactions in the metal, resulting in larger
equilibrium volumes and smaller bulk moduli. However, the magnetic moments
are found very similar in both approaches.

• Thermal excitation of magnetic moments reveal that, at 0K, iron exhibits a mag-
netic moment, while chromium and nickel are nonmagnetic. As temperature rises,
all three elements increase their moments. It shows the dominance of the itinerant
nature of the electron magnetisms in chromium and nickel, and the dominance of
the Heisenberg nature of the electron magnetisms in iron.

• We found that, for the A607 alloy in the range of 298K–1273K (25℃–1000℃), the
SFE almost linearly increases with temperature with the slope of 0.1mJ/m2/K.

• The thermal lattice expansion is by far the main parameter influencing the tem-
perature dependence of the SFE. The electronic entropy is very small, and hence
can be neglected. The main contribution of the magnetic entropy to the SFE is
shifting the entire curve toward larger values.

• For the applications where approximate values of the SFE suffice, the thermal
excitation of the magnetic moments can be neglected, by taking the magnetic
moments calculated versus the volume.

• The SC-LSF approach might be used in order to include the thermal excitation of
the magnetic moments. While its results are similar to the analytical approach,
it requires less computational effort.

• The LSDA functional predicts the phase stability of the steel incorrectly, result-
ing in significantly underestimated SFE. It also underestimates the magnetic mo-
ments, resulting in too small magnetic entropy contribution. In order to find
better agreement with experimental results, the use of the GGA functional in the
entire calculations is recommended.
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6. THE Fe–Cr–Ni SYSTEM A Three-fold Rotational Symmetry

In this appendix, we derive a two-dimensional Fourier expansion which obeys the
symmetry properties of the {111} plane in the fcc structure. Such an expansion can be
fitted to a number of points calculated on the γ-curve in order to interpolate the entire
γ-surface.

A Three-fold Rotational Symmetry

Using the Cartesian coordinate system, the most general form of the Fourier expansion
in two dimensions is given by

f(x, y) =
∑

m,n∈Z
Cmn e

ı 2πx
a
m eı

2πy
b
n, (28)

where m and n are integer numbers, Cmn denote expansion coefficients, and a and b
are the periodicities along the x and y axes, respectively. When studying the {111}
plane of the fcc structure, we select the x and y axes lying in the plane, and thus the
z axis becomes normal to the plane along the [111] crystallographic direction. Here,
we call this z axis as the [111] axis. The {111} plane has a 3-fold rotational symmetry
around the [111] axis. Mathematically, it means that any function f(x, y) which obeys
the symmetries of such plane must remain unchanged under a rotation by any angle of
an integer factor of 2π

3 = 120◦ about the [111] axis. It requires that, for any arbitrary
point (x, y) in the {111} plane, f(x, y) must fulfill the condition

f(x′, y′) = f(x′′, y′′) = f(x, y), (29)

where (x′, y′) and (x′′, y′′) are the images of point (x, y) under rotations by angles 120◦

and −120◦, respectively.
A rotation by angle θ around the [111] axis is characterized by the operator R̂[111](θ)

as

R̂[111](θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (30)

Applying R̂[111](120◦) and R̂[111](−120◦) = R̂[111](240◦) to a point (x, y) results in

(
x′

y′

)
= R̂[111](120◦)

(
x

y

)
=


 −

1
2x−

√
3

2 y
√

3
2 x− 1

2y


 (31)

and (
x′′

y′′

)
= R̂[111](−120◦)

(
x

y

)
=


 −

1
2x+

√
3

2 y

−
√

3
2 x− 1

2y


 . (32)
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Substituting Eq. 31 into the Eq. 28 leads to

f(x′, y′) =
∑

m′,n′ ∈Z
Cm′n′ e

ı 2πx
′

a
m′ eı

2πy′
b
n′

=
∑

m′,n′ ∈Z
Cm′n′ e

ı 2π
a

(− 1
2
x−
√
3

2
y)m′ eı

2π
b

(
√
3

2
x− 1

2
y)n′

=
∑

m′,n′ ∈Z
Cm′n′ e

ı 2π
a

(−m
′

2
+a
√
3n′

2b
)x eı

2π
b

(− b
√
3m′
2a
−n
′
2

)y. (33)

The condition 29 necessitates that the expansions on the right side of Eqs. 28 and 33
must be equal for all points (x, y) in the {111} plane. Such a requirement is fulfilled
only when the coefficients of the plane waves with the same arguments are equal:

Cm′n′ = Cmn, if





m =
1

2
(−m′ + a

√
3

b
n′)

n =
1

2
(−b
√

3

a
m′ − n′)

⇔





m′ =
1

2
(−m− a

√
3

b
n)

n′ =
1

2
(
b
√

3

a
m− n)

. (34)

In a similar way, substituting Eq. 32 into the Eq. 28 leads to

Cm′′n′′ = Cmn, if





m =
1

2
(−m′′ − a

√
3

b
n′′)

n =
1

2
(
b
√

3

a
m′′ − n′′)

⇔





m′′ =
1

2
(−m+

a
√

3

b
n)

n′′ =
1

2
(−b
√

3

a
m− n)

. (35)

Since m′, n′, m′′, and n′′ are all integers, both m± a
√

3
b n and b

√
3
a m∓n have to be even

numbers. Satisfying this condition for any arbitrarym and n requires that a
√

3
b , b

√
3
a ∈ Z.

Assuming these two integer numbers to be equal to k and l leads to

a
√

3

b
= k, k ∈ Z ⇒ a =

k√
3
b

b
√

3

a
= l, l ∈ Z ⇒ a =

√
3

l
b




⇒ k√

3
b =

√
3

l
b ⇒ kl = 3. (36)

There is only one pair of integer numbers which satisfies the final equation: k = 3, l = 1,
or vise versa. The choice of k = 3, l = 1 results in

a =
√

3b, (37)

which gives exactly the dimensions of the smallest octahedral unit cell of the fcc struc-
ture, as presented in Fig. 38. In fact, we have proven here that all lattice points in the
close-packed {111} plane can be produced just by combining the translational and the
3-fold rotational symmetries.
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6. THE Fe–Cr–Ni SYSTEM B Reflection Symmetry

Substituting the Eq. 37 in Eqs. 34 and 35 leads to

Cm′n′ = Cmn, if





m′ =
−m− 3n

2

n′ =
m− n

2

, (38)

and

Cm′′n′′ = Cmn, if





m′′ =
−m+ 3n

2

n′′ =
−m− n

2

, (39)

with the restriction of
m+ n = 2l, l ∈ Z (40)

in order to assure integer values for m′, n′, m′′, and n′′.
At this point, the most general form of the 2-dimensional Fourier expansion with

3-fold rotational symmetry is obtained by applying the above results to the original
equation 28:

f(x, y) =
∑′

m,n∈Z
m+n=2l

Cmn

{
eı

2πx
a
m eı

2πy
b
n

+ eı
2πx
a

(−m−3n
2

) eı
2πy
b

(m−n
2

)

+ eı
2πx
a

(−m+3n
2

) eı
2πy
b

(−m−n
2

)
}
. (41)

The prime sign of
∑′ means that every pair of integer numbers (m,n) can appear in

the arguments of the exponential functions only once. In other words, once m and n
have values m0 and n0, they will not take any of the values m0+3n0

2 , m0−n0
2 , m0−3n0

2 ,
and m0+n0

2 .

B Reflection Symmetry

In the fcc structure, the {01̄1} plane is a mirror plane (see Fig. 38). The intersection
of this plane and the {111} plane is a line along the [2̄11] direction, here selected as x
axis. Therefore, the {111} plane has a reflection symmetry with respect to the x axis.
Such a symmetry must be present in any function obeying the symmetry properties of
the {111} plane.

Considering our choice for the x and y axes, the reflection symmetry requires the
function f(x, y) to have equal values at y and −y:

f(x,−y) = f(x, y). (42)

It is easy to show that such a condition necessitates

Cm,−n = Cm,n, (43)
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Figure 38: The top view of the {111} plane of the fcc structure, where the base of an or-
thorhombic unit cell is indicated by the gray rectangle. In such a unit cell, a =

√
3b.

leading to

f(x, y) =
∑′

m,n∈Z
m+n=2l

Cmn

{
eı

2πx
a
m eı

2πy
b
n

+ eı
2πx
a

(−m−3n
2

) eı
2πy
b

(m−n
2

)

+ eı
2πx
a

(−m+3n
2

) eı
2πy
b

(−m−n
2

)
}
. (44)

Using Euler’s formula eıx = cosx+ ı sinx, the equation is rewritten as

f(x, y) =
∑′

m,n∈Z
n≥0

m+n=2l

Cmn

{
eı

2πx
a
m cos(

2πy

b
n)

+ eı
2πx
a

(−m−3n
2

) cos(
2πy

b
· m− n

2
)

+ eı
2πx
a

(−m+3n
2

) cos(
2πy

b
· −m− n

2
)
}
. (45)

C Real Function f(x, y)

We are interested in functions with real values: f(x, y) ∈ R. In the most general case,
Cmn are complex numbers:

Cmn = pmn − ıqmn, pmn, qmn ∈ R. (46)

By substituting this equation into Eq. 45, and using Euler’s formula, we find

f(x, y) = f∗(x, y) ⇒ C−m,n = C∗m,n. (47)
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For m = 0, the above equation results in C0n = C∗0n, which means that C0n is real, thus
q0n = 0.

Finally, the desired Fourier expansion, which obeys the symmetry of the fcc {111}
plane and results in real values is obtained as

f(x, y) =
′∑

n∈Z
n≥0
n=2l

{
p0n

[
cos(

2πy

b
n) + 2 cos(

2πx

a
· 3n

2
) cos(

2πy

b
· n

2
)

]}

+
′∑

m,n∈Z
m>0
n≥0

m+n=2l

{
pmn

[
cos(

2πx

a
m) cos(

2πy

b
n)

+ cos(
2πx

a
· m+ 3n

2
) cos(

2πy

b
· m− n

2
)

+ cos(
2πx

a
· m− 3n

2
) cos(

2πy

b
· m+ n

2
)

]

+ qmn

[
sin(

2πx

a
m) cos(

2πy

b
n)

+ sin(
2πx

a
· m+ 3n

2
) cos(

2πy

b
· m− n

2
)

+ sin(
2πx

a
· m− 3n

2
) cos(

2πy

b
· m+ n

2
)

]}

(48)
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Table A.1: Abrassart1973 [17]: Fe-Cr-Ni

name method Fe Cr Ni C Al Si Mn Nb Mo Ms T SFE Md

Steel 1 exp 74.82 18 7 0.18 — — — — — 193.15 ± 5 287.55 17.7 353.15 < x < 363.15

Steel 1 exp 74.82 18 7 0.18 — — — — — — 288.85 16.5 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 288.85 19.8 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 289.55 22.8 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 291.75 18.3 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 292.65 12.5 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 292.95 21.3 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 293.15 24.4 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 293.45 17.3 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 293.65 22.6 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 296.75 23.5 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 297.45 19 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 383.55 31.9 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 385.95 33.4 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 386.35 30.4 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 387.15 32.1 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 389.65 27.4 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 393.95 19.8 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 393.95 20.7 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 396.35 29.6 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 398.75 26.3 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 398.85 31.8 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 399.05 32.9 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 400.35 28.9 —
Continued on next page
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Table A.1 – continued from previous page

name method Fe Cr Ni C Al Si Mn Nb Mo Ms T SFE Md

Steel 1 exp 74.82 18 7 0.18 — — — — — — 400.45 30.1 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 402.95 32.1 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 404.65 30.2 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 472.55 51.2 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 472.65 49.8 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 473.85 24.9 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 475.35 28.5 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 476.15 50.5 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 493.05 43.7 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 493.05 43.7 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 497.15 43.6 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 498.25 45.6 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 498.25 45.6 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 505.85 49.4 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 505.85 49.4 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 510.05 49.5 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 597.25 49.1 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 597.25 49.1 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 597.65 41.2 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 597.85 37.7 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 597.95 50.4 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 601.55 49.6 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 602.15 48.1 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 604.95 50.5 —
Continued on next page

133



Table A.1 – continued from previous page

name method Fe Cr Ni C Al Si Mn Nb Mo Ms T SFE Md

Steel 1 exp 74.82 18 7 0.18 — — — — — — 604.95 50.5 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 605.05 49.7 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 605.85 49 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 610.35 49.6 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 610.45 50.8 —

Steel 1 exp 74.82 18 7 0.18 — — — — — — 610.85 48.6 —

Steel 2 exp 75.84 15.5 4.2 0.13 0.17 0.16 1.2 0.1 2.7 273.15 < x < 283.15 ± 5 — — 393.15

Table A.2: Bampton1978 [19]: Fe-Cr-Ni

name method Fe Cr Ni C Si Mn Mo T SFE

16/14 exp 69.67 16.2 14 0.02 0.01 0.08 0.02 298.15 23 ± 5

16/22 exp 62.9 16.21 20.77 0.01 0.01 0.08 0.02 298.15 31 ± 5

21/14 exp 64.97 21.1 13.8 0.02 0.01 0.08 0.02 298.15 18 ± 4

21/22 exp 56.89 21 22 0.01 0.01 0.07 0.02 298.15 33 ± 5

26/22 exp 52.96 25.85 21.07 0.01 0.01 0.08 0.02 298.15 35 ± 5
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Table A.3: Behjati2011 [32]: Fe-Cr-Ni

name method Fe Cr Ni C N O Si P S Mn Mo Ms T DFε→γ T SFE T
γ,α′
0 T DFα

′→γ

16/12 exp 71.9942 16 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 77.1 891.6

16/12 exp 71.9942 16 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 123.3 947.9

16/12 exp 71.9942 16 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 203.1 1029.1

16/12 exp 71.9942 16 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 213.2 1110

16/12 exp 71.9942 16 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 223.2 1155.9

16/12 exp 71.9942 16 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 232.9 1172

20/10 exp 69.9942 20 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 4.1 645.8

20/10 exp 69.9942 20 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 77.2 689.6

20/10 exp 69.9942 20 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 203.1 778.1

20/10 exp 69.9942 20 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 233.2 857.4

20/10 exp 69.9942 20 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 253 903.8

20/10 exp 69.9942 20 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 293.2 921

20/12 exp 67.9942 20 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 4.1 532.5

20/12 exp 67.9942 20 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 133 576.8

20/12 exp 67.9942 20 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 203.1 692

20/12 exp 67.9942 20 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — — — — 223.2 720

20/08 exp 71.9942 20 8 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 294 294 2346 293 16 ± 1.9 634 294 1130

20/08 exp 71.9942 20 8 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — 294 16 — — —

18/10 exp 71.9942 18 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 264 294 2379 293 22 ± 2.3 587 294 1130

18/10 exp 71.9942 18 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — 264 20 — — —

20/10 exp 69.9942 20 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 261 294 2426 293 20 ± 2.1 550 294 921

20/10 exp 69.9942 20 10 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — 261 18 — — —

16/12 exp 71.9942 16 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 231 294 2432 293 28 ± 2.9 552 294 1172

16/12 exp 71.9942 16 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — 231 24 — — —

18/12 exp 69.9942 18 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 220 294 2479 293 26 ± 2.9 510 294 950

18/12 exp 69.9942 18 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — 220 21 — — —

20/12 exp 67.9942 20 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 216 294 2508 293 24 ± 2.7 464 294 720

20/12 exp 67.9942 20 12 0.0004 0.001 0.001 0.002 0.0001 0.0001 0.001 0.0002 — — — 216 19 — — —
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Table A.4: Breedis1964 [9]: Fe-Cr-Ni

name method Fe Cr Ni Ms T SFE

Fe-19Cr-11Ni exp 69.5 19.3 11.2 225.15 298.15 12.7

Fe-17Cr-11Ni exp 71.7 17.3 11 223.15 298.15 17.7

Fe-16Cr-12Ni exp 71.9 16 12.1 214.15 298.15 22.2

Fe-13Cr-14Ni exp 72.8 13 14.2 183.15 298.15 33.1

Fe-11.5Cr-15Ni exp 73.4 11.5 15.1 173.15 — —

Fe-11.5Cr-16Ni exp 72.4 11.5 16.1 77.15 < x < 143.15 — —

Fe-10Cr-16Ni exp 73.4 10.4 16.2 208.15 298.15 42.6

Fe-10Cr-16Ni exp 73.4 10.4 16.2 77.15 < x < 143.15 — —

Fe-7.5Cr-19Ni exp 73.2 7.5 19.3 238.15 — —

Fe-5Cr-23Ni exp 71.9 4.8 23.3 258.15 — —

Fe-3Cr-27Ni exp 70.2 2.8 27 77.15 < x < 143.15 — —

Fe-2Cr-30Ni exp 68 1.9 30.1 77.15 < x < 143.15 — —

Fe-33Ni exp 66.9 — 33.1 173.15 — —

Table A.5: Breedis1971 [14]: Fe-Cr-Ni

name method Fe Cr Ni T SFE

1 exp 69.5063 19.2551 11.2387 300 13

Continued on next page
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Table A.5 – continued from previous page

name method Fe Cr Ni T SFE

2 exp 71.7291 17.2592 11.0117 300 18

3 exp 71.9295 16.0171 12.0534 300 22

4 exp 72.5882 12.9756 14.4362 300 33

5 exp 73.39 10.4267 16.1833 300 43

Table A.6: Fawley1968 [11]: Fe-Cr-Ni

name method Fe Cr Ni C N T SFE

1 exp 69.989 20 10 0.006 0.005 298.15 23 ± 4.025

2 exp 64.979 20 15 0.018 0.003 298.15 32 ± 5.6

3 exp 59.979 20 20 0.015 0.006 298.15 40 ± 7

4 exp 54.985 20 25 0.009 0.006 298.15 38 ± 6.65

5 exp 49.983 20 30 0.011 0.006 298.15 34 ± 5.95

6 exp 69.984 10 20 0.012 0.004 298.15 53 ± 9.275

7 exp 64.976 15 20 0.019 0.005 298.15 40 ± 7

8 exp 54.973 25 20 0.022 0.005 298.15 45 ± 7.875

9 exp 49.959 30 20 0.036 0.005 298.15 57 ± 9.975

10 exp 69.944 20 10 0.012 0.044 298.15 23 ± 4.025

Continued on next page
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Table A.6 – continued from previous page

name method Fe Cr Ni C N T SFE

11 exp 64.955 20 15 0.01 0.035 298.15 34 ± 5.95

12 exp 59.931 20 20 0.018 0.051 298.15 38 ± 6.65

13 exp 54.958 20 25 0.009 0.033 298.15 38 ± 6.65

14 exp 49.961 20 30 0.01 0.029 298.15 34 ± 5.95

15 exp 69.975 10 20 0.012 0.013 298.15 48 ± 8.4

16 exp 64.977 15 20 0.012 0.011 298.15 44 ± 7.7

17 exp 54.936 25 20 0.017 0.047 298.15 47 ± 8.225

19 exp 59.97 20 20 0.027 0.003 298.15 43 ± 7.525

20 exp 49.94 20 30 0.05 0.01 298.15 47 ± 8.225

Table A.7: Gallagher1970 [12]: Fe-Cr-Ni

name method Fe Cr Ni T SFE

exp 72.4 18 9.6 298.15 40.7

exp 67.9 18 14.1 298.15 40.9

exp 62.8 18 19.2 298.15 48.8
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Table A.8: Guy1983 [20]: Fe-Cr-Ni

name method Fe Cr Ni C N Si P S Ti V Mn Co Mo Aα
′→γ
s Aα

′→γ
f

18/8 exp 72.524 18.03 7.94 0.039 0.011 0.2 0.01 0.006 0.1 0.04 1.08 0.01 0.01 813.15 ± 10 923.15 ± 10

18/12 exp 68.588 17.97 11.9 0.013 0.01 0.32 0.009 0.005 0.1 0.04 1.03 0.01 0.005 743.15 ± 10 883.15 ± 10

Table A.9: Knutsson2008 [30]: Fe-Cr-Ni

name method Fe Cr Ni C N Si Mn Co Cu Nb Mo Aα
′→γ
s Aα

′→γ
f

AISI 301 exp 72.215 17.55 7.67 0.095 0.022 0.55 1.23 0.1 0.25 0.008 0.31 723.15 873.15

Table A.10: Latanision1971 [15]: Fe-Cr-Ni

name method Fe Cr Ni C T SFE

18.3Cr-10.7Ni exp 70.995 18.3 10.7 0.005 298.15 18.2 ± 1

18.3Cr-10.7Ni exp 70.995 18.3 10.7 0.005 408.15 27.6 ± 1.2

18.3Cr-10.7Ni exp 70.995 18.3 10.7 0.005 598.15 30.4 ± 1.6

18.7Cr-15.9Ni exp 65.395 18.7 15.9 0.005 298.15 24.9 ± 1

18.7Cr-15.9Ni exp 65.395 18.7 15.9 0.005 408.15 28.8 ± 1.1

18.7Cr-15.9Ni exp 65.395 18.7 15.9 0.005 598.15 31.8 ± 1.4
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Table A.11: Lecroisey1970 [13]: Fe-Cr-Ni

name method Fe Cr Ni C Ms T SFE Md

1 exp 68.09 17.8 14.1 0.01 < 4.15 298.15 45 223.15

2 exp 71.59 15.9 12.5 0.01 < 178.15 298.15 24 273.15

Table A.12: Lecroisey1972 [16]: Fe-Cr-Ni

name method Fe Cr Ni C Ms T SFE Md

0-31 exp 69.18 — 30.8 0.02 248.15 — — 278.15

0-31C exp 69.06 — 30.8 0.14 228.15 — — 273.15

0-25 exp 75 — 25 — 383.15 — — —

7-20 exp 73.296 6.7 20 0.004 4.15 < x < 77.15 — — > 298.15

7-19 exp 73.494 6.9 19.6 0.006 248.15 — — > 333.15

7-18C exp 74.65 7.2 18 0.15 77.15 < x < 183.15 — — 268.15

5-17C exp 77.95 4.5 17.3 0.25 183.15 — — 323.15

16-13 exp 71.59 15.9 12.5 0.01 178.15 298.15 22 353.15

16-11 exp 73.296 15.5 11.2 0.004 253.15 — — 423.15

16-11B exp 73.397 15.6 11 0.003 263.15 — — 423.15

16-11C exp 73 15.7 11.2 0.1 4.15 — — 333.15

18-12 exp 70.192 17.8 12 0.008 208.15 298.15 30 323.15
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Table A.13: Ledbetter1984 [21]: Fe-Cr-Ni

name method Fe Cr Ni Mn Bfcc

monocrystal exp 71 19 10 — 160

polycrystal exp 70.8 18.6 9.3 1.3 158.2

Table A.14: Li2000 [26]: Fe-Cr-Ni

name method Fe Cr Ni C Ms Mγ→ε
d Mγ→α′

d

exp 74.82 18 7 0.18 356.15 420.15 360.15

Table A.15: Martinez1992 [24]: Fe-Cr-Ni

name method Fe Cr Ni C N Al Si P S Mn Cu As Nb Mo Sn T SFE

A exp 69.2916 14.4 15.1 0.02 0.0084 0.005 0.59 0.006 0.013 0.53 0.02 0.002 0.002 0.01 0.002 298.15 45.5 ± 7.5

B exp 68.7459 14.7 15.1 0.02 0.0081 0.005 0.48 0.006 0.012 0.43 0.04 0.001 0.44 0.01 0.002 298.15 27.5 ± 4.5

C exp 68.7869 15.1 14.1 0.02 0.0071 0.005 0.53 0.006 0.012 0.52 0.01 0.002 0.89 0.01 0.001 298.15 23 ± 4

D exp 67.7459 14.6 14.8 0.02 0.0081 0.005 0.57 0.006 0.012 0.47 0.01 0.002 1.74 0.01 0.001 298.15 21.5 ± 3.5
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Table A.16: Ojima2009 [31]: Fe-Cr-Ni

name method Fe Cr Ni C N Si Mn Mo T SFE

316L exp 65.6457 17.35 12.95 0.015 0.0193 0.43 1.3 2.29 298.15 14.2

SUS310S exp 53.899 25.1 19.8 0.048 0.023 0.33 0.8 — 298.15 30.9

SUS310S-N exp 52.377 25 21.1 0.048 0.325 0.31 0.84 — 298.15 42.9

HNS exp 69.731 23.09 4.16 0.019 1 — — 2 298.15 22.3

10Cr-20Ni exp 70.15 10 19.81 0.01 — 0.01 0.01 0.01 298.15 35.6

15Cr-10Ni exp 75 14.98 9.98 0.01 — 0.01 0.01 0.01 298.15 15.2

15Cr-15Ni exp 69.72 15.15 15.09 0.01 — 0.01 0.01 0.01 298.15 27.8

15Cr-20Ni exp 65.05 15.06 19.85 0.01 — 0.01 0.01 0.01 298.15 31.4

15Cr-25Ni exp 60.37 15.13 24.46 0.01 — 0.01 0.01 0.01 298.15 36.9

18Cr-12Ni exp 70.65 18.13 11.18 0.01 — 0.01 0.01 0.01 298.15 19.3

20Cr-10Ni exp 70.87 19.13 9.96 0.01 — 0.01 0.01 0.01 298.15 19.7

20Cr-15Ni exp 64.81 20.06 15.09 0.01 — 0.01 0.01 0.01 298.15 21.8

20Cr-20Ni exp 60.37 19.7 19.89 0.01 — 0.01 0.01 0.01 298.15 27.5

20Cr-25Ni exp 55.45 20.09 24.42 0.01 — 0.01 0.01 0.01 298.15 36

25Cr-15Ni exp 59.93 25.07 14.96 0.01 — 0.01 0.01 0.01 298.15 26

25Cr-19Ni exp 56.62 24.56 18.78 0.01 — 0.01 0.01 0.01 298.15 28

25Cr-25Ni exp 51.61 24.84 23.5 0.01 — 0.01 0.01 0.02 298.15 30.1
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Table A.17: Olson1976 [18]: Fe-Cr-Ni

name method Fe Cr Ni C T SFE

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 158.6 13.7

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 159.1 9.4

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 166.2 9.6

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 181.3 14.8

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 183.6 10.8

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 185.3 12.5

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 215.9 18.3

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 216.6 17.1

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 225 18.2

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 225.4 16.1

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 264.9 20.3

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 266 19.2

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 266.2 20.8

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 273.8 25.5

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 297 19.6

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 297.7 21.6

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 297.9 20.7

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 297.9 24.4

Continued on next page

143



Table A.17 – continued from previous page

name method Fe Cr Ni C T SFE

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 298 20.1

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 298 26.1

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 298.4 23.4

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 329 31.1

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 333.8 25

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 334 24

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 335.2 20.5

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 373 25.2

Fe16Cr13Ni exp 71.59 15.9 12.5 0.01 373.6 26.3

Fe18Cr12Ni exp 70.192 17.8 12 0.008 94.3 10.8

Fe18Cr12Ni exp 70.192 17.8 12 0.008 94.3 11.9

Fe18Cr12Ni exp 70.192 17.8 12 0.008 181.3 16.1

Fe18Cr12Ni exp 70.192 17.8 12 0.008 182.5 17.3

Fe18Cr12Ni exp 70.192 17.8 12 0.008 220.5 20.6

Fe18Cr12Ni exp 70.192 17.8 12 0.008 223.1 18.8

Fe18Cr12Ni exp 70.192 17.8 12 0.008 235.2 23.4

Fe18Cr12Ni exp 70.192 17.8 12 0.008 236.5 17.4

Fe18Cr12Ni exp 70.192 17.8 12 0.008 275.1 20.5

Continued on next page
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Table A.17 – continued from previous page

name method Fe Cr Ni C T SFE

Fe18Cr12Ni exp 70.192 17.8 12 0.008 275.3 25.3

Fe18Cr12Ni exp 70.192 17.8 12 0.008 291.1 28.9

Fe18Cr12Ni exp 70.192 17.8 12 0.008 291.1 30

Fe18Cr12Ni exp 70.192 17.8 12 0.008 291.2 28.2

Fe18Cr12Ni exp 70.192 17.8 12 0.008 292.4 19.5

Fe18Cr12Ni exp 70.192 17.8 12 0.008 292.9 22.8

Fe18Cr12Ni exp 70.192 17.8 12 0.008 293 24.5

Fe18Cr12Ni exp 70.192 17.8 12 0.008 333.6 28.1

Fe18Cr12Ni exp 70.192 17.8 12 0.008 334.2 33.2

Fe18Cr14Ni exp 68 18 14 — 107.9 23.3

Fe18Cr14Ni exp 68 18 14 — 118.6 23.3

Fe18Cr14Ni exp 68 18 14 — 152.9 25.7

Fe18Cr14Ni exp 68 18 14 — 157.7 27.8

Fe18Cr14Ni exp 68 18 14 — 157.7 28.8

Fe18Cr14Ni exp 68 18 14 — 184.2 26

Fe18Cr14Ni exp 68 18 14 — 184.2 26.8

Fe18Cr14Ni exp 68 18 14 — 216.1 29.7

Fe18Cr14Ni exp 68 18 14 — 216.8 28.5

Continued on next page
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Table A.17 – continued from previous page

name method Fe Cr Ni C T SFE

Fe18Cr14Ni exp 68 18 14 — 241.3 32.3

Fe18Cr14Ni exp 68 18 14 — 261.2 35

Fe18Cr14Ni exp 68 18 14 — 298.5 35.2

Fe18Cr14Ni exp 68 18 14 — 298.7 42.1

Fe18Cr14Ni exp 68 18 14 — 299.2 34

Table A.18: Petrov1985 [22]: Fe-Cr-Ni

name method Fe Cr Ni T SFE

exp 72.5298 16.8828 10.5874 298.15 16

exp 67.3201 16.8395 15.8404 298.15 28

exp 62.137 16.7965 21.0666 298.15 35

exp 75.3949 14.0397 10.5654 298.15 16

exp 70.6132 18.7847 10.6021 298.15 20

exp 65.7981 23.5628 10.6391 298.15 25

exp 69.7691 9.28008 20.9508 298.15 60

exp 65.0089 13.9681 21.023 298.15 40

exp 60.2158 18.6885 21.0957 298.15 35

exp 55.3893 23.4417 21.1689 298.15 45
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Table A.19: Petrov1985 [22]: Fe-Mn

name method Fe Mn T SFE

exp 85.2076 14.7924 298.15 25

exp 80.2607 19.7393 298.15 28

exp 75.3058 24.6942 298.15 27

exp 70.3427 29.6573 298.15 42

Table A.20: Petrov1993 [25]: Fe-Mn

name method Fe Mn C T SFE

exp 77.78 22 0.22 298.15 32.4

exp 77.17 22 0.83 298.15 22.6

exp 76.28 22 1.72 298.15 32.8

exp 74.79 22 3.21 298.15 33.6
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Table A.21: Petrov2003 [29]: Fe-Cr-Mn

name method Fe Cr Mn N T SFE

Fe-15Cr-17Mn exp 67.94 15 17 0.06 298.15 24 ± 1.2

Fe-15Cr-17Mn-0.2N exp 67.77 15 17 0.23 298.15 25.1 ± 1.2

Fe-15Cr-17Mn-0.5N exp 67.52 15 17 0.48 298.15 21.1 ± 1.1

Fe-15Cr-17Mn-0.9N exp 67.11 15 17 0.89 298.15 41.6 ± 2

Table A.22: Petrov2003 [29]: Fe-Cr-Ni

name method Fe Cr Ni C N Mn T SFE

Fe-18Cr-10Ni exp 70.4 17.8 10.6 — — 1.2 298.15 25 ± 1.2

Fe-18Cr-10Ni-0.05C exp 70.64 17.9 10.5 0.06 — 0.9 298.15 30 ± 1.4

Fe-18Cr-10Ni-0.1C exp 71.11 18.1 10.1 0.09 — 0.6 298.15 34 ± 1.5

Fe-18Cr-10Ni-0.15C exp 70.69 18.1 10.6 0.11 — 0.5 298.15 39 ± 1.8

Fe-18Cr-16Ni-10Mn exp 55.79 18.5 16.1 — 0.01 9.6 298.15 44 ± 2

Fe-18Cr-16Ni-10Mn-0.1N exp 55.73 18.5 16.1 — 0.07 9.6 298.15 47 ± 2.3

Fe-18Cr-16Ni-10Mn-0.2N exp 55.59 18.5 16.1 — 0.21 9.6 298.15 55 ± 2.7

Fe-18Cr-16Ni-10Mn-0.3N exp 55.49 18.5 16.1 — 0.31 9.6 298.15 62 ± 3

Fe-18Cr-16Ni-10Mn-0.4N exp 55.4 18.5 16.1 — 0.4 9.6 298.15 65 ± 3.2

Fe-18Cr-16Ni-10Mn-0.5N exp 55.26 18.5 16.1 — 0.54 9.6 298.15 53 ± 2.6
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Table A.23: Petrov2003 [29]: Fe-Mn

name method Fe Mn C T SFE

Fe-22Mn exp 77.97 22 0.03 298.15 29 ± 1.4

Fe-22Mn-0.1C exp 77.87 22 0.13 298.15 23 ± 1.2

Fe-22Mn-0.3C exp 77.67 22 0.33 298.15 26 ± 1.3

Fe-22Mn-0.7C exp 77.31 22 0.69 298.15 29 ± 1.5

Table A.24: Shin2001 [28]: Fe-Cr-Ni

name method Fe Cr Ni C N Si P S Mn Mo Md

304 exp 71.524 18.07 8.5 0.05 0.037 0.56 0.025 0.004 1.05 0.18 322

Table A.25: Silcock1966 [10]: Fe-Cr-Ni

name method Fe Cr Ni C N O Si P S Mn Co T SFE

A1 exp 68.674 15.3 15.9 0.02 — 0.03 — 0.004 0.012 0.06 — 298.15 23 ± 4.6

A2 exp 55.103 15.8 23 0.007 6 0.03 — 0.01 0.01 0.04 — 298.15 28 ± 5.6

Continued on next page
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Table A.25 – continued from previous page

name method Fe Cr Ni C N O Si P S Mn Co T SFE

A10 exp 42.39 15.3 15 0.006 7 0.04 — 0.01 0.014 0.04 20.2 298.15 12 ± 2.4

A55 exp 64.228 15.9 15.8 0.017 4 0.01 0.04 0.002 0.002 0.001 — 298.15 21 ± 4.2

A57 exp 52.857 15.4 24.7 0.011 7 0.01 0.015 0.002 0.002 0.003 — 298.15 30.5 ± 6.1

A71 exp 65.272 15.5 15.8 0.004 2 0.013 1.4 0.008 0.003 — — 298.15 11 ± 2.2

A203 exp 64.35 16 10.1 — — — — — — — 9.55 298.15 8 ± 1.6

Table A.26: Singh1985 [23]: Fe-Cr-Ni

name method Fe Cr Ni C Si Aα
′→γ
s Aε→γs

304 exp 68.63 18.8 11.5 0.07 1 673 473

Table A.27: Swann1963 [8]: Fe-Cr-Ni

name method Fe Cr Ni C N T SFE

Tab1:line1 exp 74.4 17.6 7.9 0.06 0.04 298.15 7 (+1.6/− 1.7)

Tab1:line2 exp 69.676 17.6 12.7 0.02 0.004 298.15 15.1 (+1.8/− 1.6)

Tab1:line3 exp 64.366 17.8 17.8 0.03 0.004 298.15 19.1 (+1.6/− 1.1)

Continued on next page
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Table A.27 – continued from previous page

name method Fe Cr Ni C N T SFE

Tab1:line9 exp 74.83 17.9 7.1 0.06 0.11 298.15 5.9 (+1.2/− 1.2)

Tab1:line10 exp 68.96 18.1 12.8 0.02 0.12 298.15 12.6 (+1.8/− 1.5)

Table A.28: Tavares2000 [27]: Fe-Cr-Ni

name method Fe Cr Ni C Si S Aα
′→γ
s A50α

′→γ Aα
′→γ
f

exp 72.946 18.34 8.53 0.066 0.1 0.018 718.15 ± 5 838.15 ± 5 997.15 ± 5

exp 72.946 18.34 8.53 0.066 0.1 0.018 713.15 ± 5 832.15 ± 5 978.15 ± 5

exp 72.946 18.34 8.53 0.066 0.1 0.018 706.15 ± 5 822.15 ± 5 967.15 ± 5

exp 72.946 18.34 8.53 0.066 0.1 0.018 708.15 ± 5 828.15 ± 5 969.15 ± 5

exp 72.946 18.34 8.53 0.066 0.1 0.018 706.15 ± 5 846.15 ± 5 983.15 ± 5
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