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ABSTRACT  i

ABSTRACT
This thesis presents ways to estimate the effective permeability of naturally

fractured reservoir under Discrete Fracture and Matrix Model (DFM). A Simple

homogenous, steady state model, that contains an injection well and a production

well at a certain distance, is firstly introduced. The pressure of the injection well can

be estimated by analytical solution or numerical solution. The analytical solution is

based on Darcy’s law combined with the principle of superposition and used to

interpret pressure and rate response by applying reservoir homogenization. The

numerical solution is based on the Finite Element Method (FEM), as implemented in

CSMP++. FEM model is used to get pressure and rate response in the case where

analytical model does not exist, but this response is interpreted in terms of analytical

models to estimate equivalent permeability. The pressure response estimated from

analytical solution and numerical solution is compared. After comparison, models

with varied fracture properties (geometry, intensity, size) are run with CSMP++. For

radial flow, spherical flow and linear flow, the effective permeability is estimated by

converted Darcy’s law equation, once the pressure of injection well solved by

CSMP++. But this can only be done for the homogeneous case, because the only

case for which an analytical solution has been found previously. The injector-

producer pair of wells in all models is with arbitrary completion length, because the

height of the formation is not known. This pairs of wells have been operated long

enough at a constant rate, so that a steady-state flow exists.

The tasks accomplished by this thesis are (a). Use of homogeneous model verifies

numerical method with analytical method. The difference between them is no more

than 5% for models without fractures. Only with the numerical method, we can solve

The permeability in complex DFM models, so that look for the equivalent k of DFM.

(b). Through FEM analysis, the influence of fracture properties on the effective

permeability is measured. Fracture size distribution and fracture orientation also play

an important role for effective permeability. (c). The effective permeability estimated

in linear flow is used as benchmark. Both radial and spherical flow interpretations

result in an overestimated effective permeability. (d). The appropriate value of

maximum element size is balancing simulation time and accuracy is analyzed as well.
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(e). Circumscribed triangle well in numerical models represents circular well in

analytical methods.

From the DFM simulations, it is found the parameters of power law distribution

contribute to mean fracture size distribution.
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ZUSAMMENFASSUNG
Diese Arbeit präsentiert Möglichkeiten, um die effektive Permeabilität von natürlich

gekluefteten Reservoir unter Discrete Fracture und Matrix Model (DFM) zu schätzen.

Ein einfaches homogenene, eingeschwungen Modell, das eine Injektionsbohrung

und eine Produktionsbohrung in einem bestimmten Abstand enthält, wird zunächst

intrroduced. Der Druck der Injektionsbohrung kann durch analytische Lösung oder

numerische Lösung abgeschätzt werden. Die analytische Lösung basiert auf Darcy’s

law mit dem Prinzip der Superposition kombiniert und verwendet werden, um Druck

und Fließrate durch Anlegen Reservoir Homogenisierung interpretieren basiert. Die

numerische Lösung basiert auf der Finite-Elemente-Methode (FEM), wie in CSMP++

implementiert. FEM-Modell wird verwendet, um Druck und Fließrate in dem Fall,

analytisches Modell nicht existiert bekommen, aber diese Respons ist in Bezug auf

analytische Modelle zu interpretieren, um äquivalente Permeabilität zu schätzen. Der

Druck Respons von analytischen Lösung und numercial Lösung geschätzt wird

verglichen. Nach Vergleich werden Modelle mit unterschiedlichen

Brucheigenschaften (Geometrie, Intensität, Größe) mit CSMP++ laufen. Für

strahlenförmig, sphärische und linearen Strömung, der äquivalente Permeabilität

durch umgewandelten Darcy’s law Gleichung geschätzt wird, sobald der Druck der

Einspritzung gut durch CSMP++ gelöst. Dies kann aber nur für die homogene Fall

durchgeführt werden, da der einzige Fall für die eine analytische Lösung wurde zuvor

festgestellt worden. Der Injektor-Produzent Paar von Vertiefungen in allen Modellen

mit beliebigen Fertigstellung Länge, da die Höhe der Formation nicht bekannt ist.

Diese Paare von Vertiefungen wurden lange genug mit einer konstanten

Geschwindigkeit betrieben, so dass eine eingeschwungen Strömung herrscht.

Die Aufgaben dieser Arbeit erreicht sind (a). Verwendung homogener Modell

numerische Verfahren mit analytischen Verfahren zu überprüfen. Der Unterschied

zwischen ihnen nicht mehr als 5% für Modelle ohne Frakturen. Nur mit der

numerischen Methode können wir die effektive Permeabilität in komplexen DFM

Modellen zu lösen, so dass den Gegenwert k im DFM Modellen is gesucht. (b).

Durch FEM-Analyse ist der Einfluß der Brucheigenschaften auf die effektive

Permeabilität gemessen. Fraktur Größenverteilung und Spaltenorientierung spielen

auch eine wichtige Rolle für die effektive Permeabilität. (c). Der effektive
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Permeabilität im linearen Fluss geschätzt wird als Referenzwert verwendet.

strahlenförmig als auch sphärische Strömung führen in einem überschätzt effektive

Permeabilität. (d). Der passenden Wert der maximalen Elementgröße balanciert

Simulationszeit und Genauigkeit sowie analysiert. (e). Umschriebene Dreieckig

Bohrloch in numerischen Modellen stellt kreisförmigen Bohrloch in der analytischen

Methoden dar.

Aus den DFM-Simulationen ist es die Parameter des Power-law Verteilung

verursachen durchschnittliche Bruchgrößenverteilung.
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1. Introduction
About a third of the worldwide oil and gas reserves occur in naturally fracture

reservoirs (Bourbiaux, 2010). These are predominantly in carbonate reservoirs in the

Middle East and northern Africa. A naturally fractured reservoir is defined as a

reservoir in which naturally occurring fractures either have or are predicted to have

an effect on fluid flow either in the form of increased reservoir permeability or

increased permeability anisotropy (Nelson, 2001). These fractures are discontinuities

in the rock that can be produced by deformation. They exist on various length scales

from microns to kilometers. They appear as tensile (e.g. joints) or shear (e.g. faults)

acting as hydraulic conductors or barriers to flow (Masihi and King, 2006)

In naturally fractured reservoirs, the equivalent permeability refers to a block

permeability that depends on block geometry and boundary conditions when

numerical methods are used to estimate it (Durlofsky, 1991). Effective permeability

refers the characterization of a physical property in heterogeneous porous media

(Nkashima and Sato, 2000). It will not be influenced by flow conditions, as opposed

to equivalent permeabilities. It is associated with the concept of the representative

elementary volume (REV) that applies to a stationary heterogonous property field.

In reservoir management, the knowledge of the reservoir permeability is essential

for oil and gas production and needed to optimize well completion and field

development. The permeability of a formation is vital to determine whether a well

should be developed. The permeability of reservoir rock may be measured through

laboratory testing of core sample (Mattews and Russel, 1967), well-logging of the

reservoir (Earlougher, 1977) or well testing (Ahmed, 1989).

The estimation of the equivalent permeability in naturally fractured reservoirs given

a specific production set-up can be achieved either by numerical methods based on

the Discrete Fracture Network Approach (Gilmour and Witherspoon, 1985) or

analytical solutions (Oda, 1985). Flow-based (homogenization) methods calculate

equivalent permeability tensors that depend on the geometry of blocks and on flow

boundary conditions applying to blocks on a DFM (Discrete Fracture-Matrix Model)

realization. Analytical methods are an efficient way to approximate effective

permeability tensors using only the geometry of the fractures. Thus Oda’s method is
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geometry based accounting for fracture densities and properties attached to grid

blocks for effective permeability upscaling.

1.1 Review
Warren and Root (1963) think that fractures and matrix could be treated as two

separate continuums in the domain, if the matrix is relatively permeable and the

fractures are well interconnected. Snow (1969) thinks if fractures are well

interconnected, they can be assumed to be infinite and dominate permeability, so

that the matrix can be ignored.

Oda (1985) presented the permeability tensor kij can be concisely expressed by a

symmetric, second-rank tensor Pij, which depends on the geometrical properties of

related fractures (size, orientation, shape, aperture). He also introduced the

Kronecker delta to normalize fracture orientation relative to grid block geometry.

Robinson (1985) presented that the fractures are represented on an unstructured

grid to preserve their original geometry and the flow rate is computed for specific

boundary conditions to obtain the total flow through the fractures, which is a flow

based method. This method, compared to Oda method, is of higher computational

expense (flow simulation essential) and the result depends on the type of boundary

conditions.

Durlofsky (1991) presented a numerical procedure for computing the effective

permeability of a region of periodically distributed heterogeneity. This method solves

pressure equation over the periodical unit subject to periodic boundary conditions

and then upscales the velocity field to yield effective permeability.

Lough (1996) et al. proposed a method to estimate the effective permeability of

grid blocks used in continuum simulation of naturally fractured reservoirs. The

boundary element method was employed to solve the boundary integral equations for

the pressure under periodic boundary conditions. They applied the method to a

fracture system generated using statistical data of fracture length, orientation and

intensity form an actual reservoir.
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Matthai et al. (2008) presented an approach to compute effective permeability of

fracture matrix system. The method is based on a finite element-based discretization

using DFM. Effective permeability is computed by the Complex Systems Modeling

Platform (CSMP++), which is an object-oriented finite-element based library for multi-

physics modeling developed at Imperial College and the ETH Zurich.

1.2 Claim
This MSc thesis continues to study of effective permeability of fractured rock

following approach of Matthai (2008). The tasks accomplished by this thesis are (a)

Using homogeneous model to verify numerical method with analytical method. The

difference between them is no more than 5% for models without fractures. Only with

the numerical method, we can solve the permeability in complex DFM models, so that

look for the equivalent k of DFM. (b) Through FEM analysis, the influence of fracture

properties on the effective permeability is measured. Fracture size distribution and

fracture orientation also play an important for effective permeability. (c) The effective

permeability estimated in linear flow is used as benchmark. Both radial and spherical

flow interpretations result in an overestimated effective permeability. (d) The

appropriate value of maximum element size is balancing simulation time and

accuracy is analyzed as well.

A box of known and invariable volume is assumed. This box consists of a matrix

with uniform permeability. For simulation, three cases are assumed: two full complete

wells (200 m length), two partial complete wells (5 m length) and no well. This pairs of

wells have been operated long enough at a constant rate, so that a steady-state flow

exists. I assume that flow rate of one well (injection well), pressure of one well

(production well) and permeability of matrix is known. Therefore, the bottom-hole

pressure of the injection well can be solved analytically and numerically. They are be

compared in varies case (full well, partial well and no wells). After verification of

numerical solution, 8 DFM models with variable fracture properties are run by

CSMP++. The pressure of injection well can be solved again with DFM models in

individual case. The effective permeability in the inter-well region can be estimated
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by converted Darcy’s law equation, when the pressure of injection well solved by

CSMP++.

1.3 Agenda
Chapter 2 describes the methods used in accomplishing estimation of the effective

permeability in single phase, stead state flow models. Chapter 3 presents the results

and comparison of the simulation results. Chapter 4 gives a conclusion and

discussion of finding from this thesis.



2. Methodology  5

2. Methodology

2.1 Permeability
The concept of permeability is important in determining the flow characteristics of

hydrocarbons in reservoir. The unit of permeability is “Darcy”. 1 Darcy describes the

capability of fluid with one cP viscosity flowing with rate of 1 cm3/s through sample, its

length of 1 cm and cross section area of 1 cm2, under 1 atm/cm pressure drop(see

Figure 1). The SI unit of permeability is m2. The unit of Darcy to m2 relates as follows:

m109.869233e
/11
1/11Darcy1 212-213-

2

3





 m

cmatmcm
cmscmcP

For most reservoirs, permeabilities are less than 1 Darcy, therefore “mD” is more

commonly used as the unit of permeability. A millidarcy (mD) is equal to 0.001 Darcy.

Figure 1: Linear, single phase, steady state flow through constant cross section box

Figure 1 illustrates Darcy’s law applying for single phase fluid flow linear in

homogenous region from left to right through a constant cross-sectional area, where

both ends are open to flow. Fluid with constant flow rate q flows through the porous

block with constant permeability k over a distance of L. The pressure at the ends of

porous block drops from p1 to p2.
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Darcy’s law can be applied to estimate the permeability of porous media for

laminar creeping, steady state, single phase flow (Tek, 1957). The differential form of

Darcy’s law is:

dL
dpAKq

μ
 ...................................................... 1

Where: q= flow rate under steady condition (m3/s);

A= cross section area for porous medium (m2);

μ= fluid viscosity (Pa.s);

k= permeability of medium (m2);

dp/dL= pressure gradient;

Equation 1 is a solution for linear flow. In linear flow, if the cross-section area is

constant, the pressure drop required to induce a given flow rate is also constant.

Equation 1 can be integrated using separation of variables to obtain the description

of permeability as follow:

pA
Lqk



μ ......................................................... 2

Where: p = pressure differential between both ends of rock sample

L = length of rock sample;

Following assumptions need be fulfilled for Darcy’s law to be applicable:

 Saturated conditions (single phase) of sample

 Inert properties

 Laminar flow

 No volume change of fluid due to temperature change

2.2 Effective Permeability of Fracture Reservoir
The effective permeability is defined as arithmetic permeability in fine scale

heterogeneities within the porous medium (Durlofsky, 1991). This is the basic
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definition of effective permeability, but in our case, the effective permeability is mainly

expressed as valid permeability in the model. Fracture and matrix permeability are

combined in our model. Therefore, we consider it to be the ensemble permeabilities

of matrix and fracture.

Figure 2: Single horizontal fracture (yellow area) in a box, fluid flow from bondary1 to boundary2

Figure 2 shows an illustrative model with a horizontal fracture and located in the

middle of box. The matrix permeability of the box is km, the permeability of the fracture

is kf. The height of box is 200m and the aperture of fracture is 0.001 m. Arithmetic

average method (Bear, 1972) can be utilized to calculate the effective permeability

for the model (fracture and matrix):




 n

i

n

ii

eff

h

hk
k

1

1 ..................................................... 3

200
)001.0200(001.0 12 kk

keff


 ..................................... 4

keff is the effective permeability for the model. k1 is permeability of matrix, k2 is

permeability of fracture. Because the fracture in the model is single and simple, it was
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estimated using arithmetic average, once the fluid flows from right to left. If fracture

distribution and orientation are more complex, an analytical solution can not be

avoided.

2.2.1 Calculation Methods
Two methods are commonly used to calculate effective permeability in the

continuum block. They are the geometry-based (Oda, 1985) and the flow-based

method (Robinson, 1984).

2.2.1.1 Geometry Based Method
Oda’s method utilizes a geometric description of three dimensional discrete

fracture networks in isotropic porous media. The orientation of fractures in each block

of interest is expressed through normal vectors. It is assumed, that fractured rock

masses behave similar to porous media and approximated by homogeneous and

anisotropic properties within each control volume. The permeability tensors is then

estimated and upscaled for each block of interest:

 ijijkkij FFk  δ
12
1 ................................................ 5

Where  kij = Permeability tensor

 Fij = Fracture tensor

ijδ = Kroenecker delta

Fkk= Total fractures

 



N

k
jkikkkij nnTA

V
F

1

1 ............................................... 6

Where          Fij= Fracture tensor

V = Grid cell volume

N = Total number of fractures in grid cell

  Ak= area of fracture k

  Tk= transmissivity of fracture k



2. Methodology  9

  nik njk = the components of a unit normal to the fracture k

The permeability tensor kij is calculated directly by a fracture tensor Fij, that

depends on the geometrical properties of connected fractures. The advantage of

Oda’s method is that flow simulation is not required. However, it accounts only for

well-connected fractures. Permeability tensor kij is sensitive to grid block sizes.

Applying very fine discretization (mm scale grid cells), the Oda approximation

produces the underlying discrete fracture hydro-structural model. But, At much

coarser discretization (tens or hundreds of m grid-cells), Oda's approximation leads

to less accurate results.

2.3.1.2 Flow Based Method
Compared to Oda’s method that only considers interconnected fractures, effective

permeability computed through flow based methods, can be of high accuracy even

for poorly connected fractures. Steady state flow of incompressible fluid through the

fracture is derived from law of mass conservation is given by:

0 u .......................................................... 7

where u is flow velocity. In a simple model for flow through a fracture of parallel

plate form, Darcy’s law preserving the momentum of flow is extended to the cubic law:

dx
dp

l
av
f μ12

2

 ...................................................... 8

Where a is fracture aperture, lf is the fracture length, dp/dx is the pressure

difference between the nodes. The fractures in flow based methods are represented

to use unstructured grids to preserve their original geometry. The effective

permeability from Darcy’s law can be computed with Equation 8 for specific boundary

conditions to obtain the total flow through the fractures. Flow based methods provide

considerably more accuracy, even if the fractures are not interconnected. Compared

to Oda method, flow simulation is required. Therefore the computational expenses

are higher. The result is also dependent on the type of boundary conditions.
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2.3.2 Representative Elementary Volume
The concept of the REV, which was introduced by Bear (1972), is essential to

understand and evaluate petrophysical characteristics (e.g. porosity and

permeability) of reservoir rocks. A fluid flow through a real porous medium is based

on the assumption of a perfect porous equivalent continuum block. In fact, it is not

feasible to measure petrophysical characteristics at any arbitrary point in the whole

continuum block. General, we measure the value of properties from a small volume of

samples to represent a large volume of samples. But if reservoir properties are

established based on small volume samples, it is possible to randomly select a too

low value. If the volume of the sample is not representative to the characterization of

the whole samples of porosity, a bigger sample is necessary.

Figure 3: Representative Elementary Volume for porosity (Bear, 1972).

For the porous medium represented in Figure 3, the curve line of sample for which

porosity does not characterize the entire volume of the rock masse, thus there are not

representative. After the vertical dash line, the porosity becomes relatively constant,

and can be considered representative. But for very large volumes, the representative

feature is lost because of the inherent heterogeneity of domain.

To determine the scale of a REV for effective permeability, a detailed study of

fracture network is necessary. REV is correlated with the fracture parameters such as

total length, mean length and the mean orientation angle (Nordahl, 2008). A

stochastic fracture distribution may be evaluated to assess the effective permeability
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change as the area of the region is changed. The critical area for a representative

value of effective permeability in REV increases in proportion to the mean fracture

length.

2.3 Steady State Flow
If the pressure at any point in the reservoir system is constant (independent of

time), this flow is considered steady state.

0









xt
p ........................................................ 9

Equation 9 indicates that the pressure change with respect to time at any location

x is zero (Bear, 1972). In real reservoir systems, steady state conditions occurs only if

production rate remains constant and fluid withdrawal is exactly balanced by fluid

entry across the open boundary (i.e. water/CO2 injection).

2.3.1 Differential Equation
In steady state flow, fluid mass entering the system is equal to the mass of fluid

leaving, i.e. the fluid content of porous medium will not changes with time:

Mass In – Mass Out = 0

This is expressed in mass conservation equation:

    0



mqu

t
ρρφ ........................................... 10

Equation 10 is a general form of mass conservation for any dimension. The

equation describe that the fluid with density ρ  flow through a medium with porosity φ

in the presence of mass sources or sink mq (Willhite, 1986). If following assumptions

are fulfilled:

 Steady state flow

 Single phase flow
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 Incompressible fluid

 Isothermal flow

 No mass accumulation

Equation 10 can be simplified to

0 u ........................................................ 11

Equation 11 is applied, if no sources/sinks, steady state flow, no density change. u

is the apparent fluid velocity, which obtained from Darcy’s Law for a porous medium:

 gpku ρ
μφ

 ............................................... 12

Substituting darcy velocity u (Equation 12) into mass conservation equation:

  0 gpk ρ
μ

............................................... 13

If the gravitational force is negligible, fluid flows in 2 dimensions (no z direction) as

well as the permeability and the fluid viscosity doesn’t change with the time. Equation

13 can be rewritten as:

  0 pk
μ

With constant permeability and viscosity:

  02  pk
μ

................................................... 14

Equation 14 is the 2-Dimensional differential equation for steady state flow in a

porous medium without source or sink. It is used for calculation of pressure

distribution in a porous media domain, which is affected by boundary condition, i.e.

linear flow, constant pressure for inlet or outlet boundary.
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2.3.2 Finite Element Analysis
The finite element method (FEM) has been long known and used in solving partial

differential equations in the fields of mechanical engineering. It is a powerful

technique applied to reservoir engineering and simulation of fluid within fractured and

unfractured porous media (Chen, 2007). To achieve this, the domain over which we

wish to compute a variable is being subdivided into so-called finite element.

To solve equation 14, the pressure variation in the domain of interest of the entire

element is related to the nodal property through a linear combination as (Peaceman,

1977)

  



n

i
ii xtptxp

1
)()(,ˆ ............................................. 15

Where p is the pressure at node and p̂ is the pressure of the entire element, and

 are the basis functions. The basis functions can be linear, quadratic, cubic or even

of higher complexity. The linear basis functions themselves can be evaluated through

an easy geometrical relationship, which reduces the complexity towards the equation

of a plane:

iiii cybxa  ................................................ 16

Where ai,bi,ci are constant values that are different of every node, but can be

calculated with above condition of linear variability. The x and y refer to the

coordinate position. If a special differential operator L of the following form assumed:

t
pcqpkpL t

V 



ˆˆˆ)ˆ( 2 φ

μ
....................................... 17

The FEM approximation to the solution of pressure is obtained through the

following expression

min)ˆ(  dVpL i
V

............................................... 18

which is a minimization problem. In the ideal case the above expression would equal

zero.
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2.4 Analytical Solution with Superposition Principle
Reservoirs exhibit various flow patterns, including linear, radial, spherical flow in

idealized form (Barker, 1988).

 Linear flow: Fluids flow occurs through a constant cross-sectional area.

(Figure 4a)

 Radial flow: Fluids move towards the cylinder well from all directions.(Figure

4b)

 Spherical flow: Fluid drawn to the partial well across the entire thickness of

permeable formation, the trace of flow is like a sphere. (Figure 4c)

Figure 4: Flow patterns in reservoir, (a) linear flow, (b) radial flow, (c) spherical flow

Multiple-rate, multiple-well problems can be only considered by applying the

principle of superposition. When spherical or radial flow is applied for two wells, the

principle of superposition must be considered. The mathematical basis for

superposition is explained by van Everdingen and Hurst and others (Everdingen,

1949; Shum, 1973)

The superposition principle states that adding solutions of linear differential

equation results in a new solution to that differential equation (Earlougher, 1977). In

practice, superposition can be applied to find a simplified solution to complex flow

problems without t solving the differential equation for different boundary conditions.

Superposition can be applied to include more than one well, to change rates, and to

impose physical boundaries (Schroeter, 2007).

To illustrate the principle of superposition in space, consider a two-well infinite

system in follow Figure 5. Well 1 is an injection well as well as well 2 is a producing
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well. Fluid flows from well 1 to well 2, following the pressure gradient. Point 3 is a

observation point, which is placed in the center of two wells.

Figure 5:  Fluids flow in two-well system from right to left with principle of superposition (P1>P3>P2)

If the pressure at point is only affected by well 1 and well 2, It is easy to obtain the

pressure at point using the superposition principle. Well 1 injects at rate q1 and well2

produces at rate q2, so that pressure at point is sum of pressure at point induced by

well1 and pressure at point induced by well 2 (Matthews and Russel, 1967):

pressure at point3= Δp at point3 caused by well1 + Δp at point3 caused by well2
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It can be written in simple form as:

ΔP3=ΔP3,1+ ΔP3,2

The principle of superposition is applicable for radial flow and spherical flow, when

the radius of outer sphere or cylinder is large and the pressure distribution will be

affected by long distance of two wells. The larger the radius, the more area fluid will

flow through.

2.4.1 Radial Flow Combined with Superposition Principle
For radial flow conditions, the area of cylinder (see Figure 4b) continuously

decreases, when the fluid move towards the wellbore. When the flowing fluid

approaches the wellbore, the decreasing area causes an increasing velocity of flow,

with a corresponding increase in pressure drop. Radial flow for a single well can be

derived from Darcy’s law equation (Ahmed, 2005):

)ln(
2 w

o

r
d

hk
q

p
π

μ
 ................................................. 19

Symbol Explanation Unit

Δp pressure difference between two wells Pa

q0 current fluid flow rate m3/sec

μ fluid viscosity Pa s

h reservoir thickness m

k permeability m2

rw well radius m

d distance between wells m

Equation 19 can be applied to calculate pressure changes surrounding single

flowing well. For a multi-well system, combine with superposition, it can be written in

following form:
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ΔP3=ΔP3,1+ ΔP3,2

According to Ahmed (2005), Darcy's law can be rewritten in the form below:
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If q1=q2=q, Equation 20 can be changed as follow form:





















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2
2

2 π
μ ............................................... 21

Solving for permeability, assuming that it is a scalar property:






















wr

d

ph
qk 2ln2

π
μ ................................................ 22

2.4.2 Spherical Flow Combined with Superposition
Principle

In spherical flow, fluids move towards the producing well from all directions (3D),

which is different from linear flow and radial flow. Spherical flow is the occurrence of

radial flow in both the horizontal and vertical directions (Culham, 1974). When fluid

flows spherically towards the well, the pressure is same at any point in dimension,

which has same distance to the center of well completion.

Spherical flow for single well can be derivated from Darcy law equation as follow

(Hawkins, 1991):
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dr
dpk

r
q

μπ
24

.................................................. 23

Equation 23 is integrated as:
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π ............................................... 24

Where,  re: radius of large sphere;

 rw: radius of small sphere;

 pe: pressure at large sphere;

 pw: pressure at small sphere;

q: fluid flow rate from large sphere to small sphere;

The integrated flow equation (Equation 24) can be applied for predicting steady-

state flow of incompressible fluids. Spherical flow may occur in wells that do not

penetrate the entire formation, when completion length is small compared to

formation height.

For two-well problems, spherical flow can be expressed using the principle of

superposition:

ΔP3=ΔP3,1+ ΔP3,2
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Where,  lw: partial completion well length, m;

d: distance between two wells, m;
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In this case, q1=q2, only the fluid flow direction is reversed. Equation 25 can be

rearranged to calculate permeability from ΔP:




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μ ............................................. 26

Figure 6: Pressure distribution of steady state between two wells in linear relationship

Because of location of point 3, 3P is half P (linear relationship, see Figure 6),

which between well 1 and well 2. P can be obtained from FEM simulation, so that

permeability is solved by:





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


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dlP
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w

112
π

μ ............................................................... 27

2.5 FEM Analysis of Permeability of DFM using
CSMP++

Effective permeability can be estimated by using finite element method. Fracture

permeability can be calculated, when the aperture is known:
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12

2bk f  ........................................................ 28

Where b is aperture size of fracture with the unit of m. Then, Darcy’s flux is

computed by solving for steady state fluid pressure with fracture and matrix. The fluid

volume source q can be solved by AMG solution based on FEM, when the pressure

difference is fixed. Boundary conditions during the flow simulation are imposed. The

flux-integrated permeability from the fracture-matrix system at a prescribed pressure

gradient can be estimated under the total fluid flow rate which is given by FEM (see

Figure 7). For single-phase flow, effective permeability can be written as below:

    dpupA
Lqk

ff
eff 


μ ............................................ 29

where    dpup ff  = fluid difference pressure applied to inlet and outlet

boundaries, Pa;

A = cross-sectional area of boundary perpendicular to flow, m2;

q = Fluid volume source through model, m/s;

L = Length of model in direction of flow, m;

The flux through the Dirichlet boundaries is integrated over the area A of these

surfaces. The result will be more accurate by utilization of complementary FE

discretization of the model.

Input Parameter Output Pramter
Matrix Permeability
Well Permeability

Fluid volume source
Fluid pressure of producing

well or outlet boundary
Fluid viscocity

Fluid pressure of
injection well or inlet

boundary

Figure 7: Illustration of the effective permeability computation approach (Matthai, 2008)

The matrix permeability, fluid volume source and fluid pressures are input

parameters for the CSMP++ Simulation. The boundary condition contains the
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pressure of outlet boundary and flow rate through the whole box. After simulation,

pressure difference between two wells or boundaries as a result returns from the

simulator (see Figure 7). Therefore, effective permeability in the steady state model

can be estimated under derivative equation of Darcy’s law. Comparing the effective

permeability from CSMP++ Simulator with the value in advance fixed, we can know,

whether the analytical solution is properly to corresponding steady-state model.

2.6 Discrete Fracture and Matrix Models
A Discrete Fracture and Matrix model (DFM), which is based on the concept of

discrete fracture network (DFN) is mainly used for heterogeneous and fractured rock

masses (Carlson, 1993). The DFM approach models geometry of the fracture

network explicitly. The approach consists of three general steps:

1. Analysis of fracture data, i.e. fracture size, fracture orientation;

2. Generation of discrete fracture networks, based on result of fracture data

analysis;

3. Analysis of discrete fracture network, i.e. complex multiple flow simulation;

Since the complex behavior of flow and transport in naturally fractured reservoir is

commonly not captured sufficiently by conventional simulation, discrete fracture and

matrix simulation techniques have been developed. DFM techniques reduce the

dimensionality of the fractures, representing them as lines in 2D or surfaces in 3D.



2. Methodology 22

Figure 8: A simple Discrete Fracture and Matrix model

Figure 8 illustrates a simple DFM model consisting of two sets of fractures (green

and purple) with different orientation. The model handles both 2D and 3D systems

and includes fracture-fracture, matrix-fracture and matrix-matrix connections. It offers

numerous advantages over conventional models, including:

 More realistic representation of fracture network geometry;

 Direct simulation of reservoir connectivity, relative efficient computation;

 no longer necessary to compute effective permeability for sub-grid scale

fractures;

A fracture is any local discontinuity plane in a geologic formation. Fractures can

provide permeability for fluid flow and transport. The fractures system in DFN

approach is mainly described by (Boris, 1986):

 Fracture intensity;

 Fracture size;

 Fracture orientation;

 Fracture shape;
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Fracture intensity:

Also called fracture density, is the amount of fractures per unit volume or per unit

area. Four measurements for fracture intensity exist (Dershowitz, 1992):

Total number of fractures;

P10: Number of fractures per unit well length;

P21: Total fracture length per unit area;

P32: Fracture area per unit volume of rock;

P33: Fracture volume per unit volume of rock;

Fracture size distribution:

Power law distribution is often used to describe the frequency distribution of

fracture size. Obeying a power law distribution, characteristic length scales are

absent in the fracture growth process (Mourzenko, 2001). The absence of other

characteristic length scales result to propose a simple formulation for the fracture

length:

al
dt
dl

 ......................................................... 30

When a population of nuclei of different length exists in a system, a power law

length distribution will be applied by simple generation model with an exponent –a.

Trento (1996) has shown that the length L and aperture b of fractures follow

power-law distribution over various length scales:

aLmN  ...................................................... 31

Where N is the cumulative number of Factures in a given sample with length equal

or greater than L. The exponent a and empirical factor m depend on the particular

formation. When the exponent a is smaller than 3, the fractures appear more

numerous and larger as the size of the region increases. Equation 31 contains no

characteristic length scale, so that the consequence of power law distributions is very

important. The power law distribution is a straight line on a log-log plot. Figure 9
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shows the power law distribution for the general length of microfracture (0.001mm-

0.1m) and macrofracture (>10 m) in log-log plot.

Figure 9: Power-law distribution for microfracture and macrofracture length (Trenton, 1996).

The frequent occurrence of power law distribution may arise because of the

intrinsic heterogeneity of Earth materials. Certainly, power law is not the only possible

distribution found in natural fracture system. Other distributions that have also been

used include log normal, gamma and exponential law. However, power law

distribution is dominated in heterogeneous system. The key argument, that power law

distributions are popular used for fracture size distribution, is the absence of a

characteristic length scale in the fracture growth process (Bonnet, 2001).

Fracture orientation:

Fracture orientation gives the direction and incline of fractures (Knott, 1976). Two

important parameters, trend and plunge (referring to linear features) determine the

fracture orientation. Trend refers to the positive angle from the North axis and plunge

is the positive angle measured downward from the horizontal. Fracture orientation

can be measured as either pole or dip vectors (refer to planar features). A pole vector
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is a vector normal to the mean fracture, whereas a dip vector is the longest vector

tangent to the fracture plane (see Figure 10).

Figure 10: Illustration of vector of fracture orientation, (a) linear feature, (b) planar feature

Fractures with similar orientation can be grouped to a fracture set. Such individual

fracture set is similar to fracture generating processes, due to identified states of

stress.

Fracture shape:

In reality, fractures are caused by varies strength of earth stress in different

directions, so that they exist as planer of varies form. However in DFM models,

generally a single fracture is a representative polygon, which may be disc-shaped for

higher edge counts.

2.7 Simulation Process
The analysis of the mathematical model of steady state is to solve a linear

equation, including internal and external flow equations and boundary conditions. For

a homogeneous well test model, the exact solution is obtained through the analytical

method. With the analytical method, we can accurately calculate pressure difference

any time and any place. Simple analytical solutions for well test models are easy to

use. To simulate fluids in naturally occurring reservoirs containing complex boundary

conditions, inhomogeneous layers or multiphase flows, numerical methods such as
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Finite Element Analysis can be applied. Users of numerical methods have to

consider that only approximate solutions are provided by the simulator.

This section will present the procedure of numerical method, which solves the

pressure problem compared to analytical methods.

Figure 11: Flow chart of numerical solution for steady state flow

Figure 11 shows the flow chart for numerical methods for steady state flow. The

first step is to create models by software. In matrix-only based models, the pressure

distribution of the reservoir can be simulated by numerical and analytical simulators.

Furthermore, numerical solution can solve the complex case, such as DFM models.

Models can be created in different form based on different fracture properties

(orientation, size, intensity). Prior using simulators such as CSMP++, the important

procedure is that models are meshed in fine elements by ICEM CFD. The accuracy

of results in CSMP++ mainly depends on the size of meshing element. After meshing,

some essential parameters of models are input to configuration file of CSMP++ and

then run the CSMP++ to get the solutions. The CSMP++ can output the results in

logs file. It’s not directly perceived through the senses. An application (ParaView) can

convert the logs date to directly visualization in 2D or 3D. It can analyze the data from

CSMP++ conveniently and directly.
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2.7.1 Models Setup
Two model groups are created and simulated in this part of thesis. The models

need be big enough, so that the pressure perturbation will not affect the result of

simulation. The first group is modeled without fractures (Matrix-only models) and

contains boundaries and wells. Both simulators (analytical and numerical) using this

model group will present pressure and permeability as a result. After the simulation

process, the results of both methods are be compared.

Wells are composed of one injection well and producing well, which has same flow

rate of injection well. Boundaries are composed of Inlet and Outlet boundary, that

fluids flow into inlet boundary and out of outlet boundary with same flow rate as wells.

However, because surface area of them is different, the fluid volume sources (fluid

velocity) are different, which is paid special attention to configuration file of CSMP++.

In this group model, equivalent permeability in this group model is considered as the

permeability of matrix.

The second group is models with fractures and boundaries/wells (DFM models).

The well or boundary condition is same as first group. Moreover, two fracture sets are

present in each of these models with diverse orientation, size and intensity. in this

group model, equivalent permeability is considered as both permeability of matrix and

permeability of fractures simultaneously.

For each model group, we have also conducted three simulations differing in their

setup:

1. Without wells. Fluid flows as linear flow through Inlet to Outlet boundary.

2. With fully penetration well completion. Flow trace is like radial flow from

injection well to producing well (matrix-only model).

3. With arbitrary completion length. Flow trace is like sphere flow from

injection well to producing well. (matrix-only model)

2.7.1.1 Model Discretization
An analytical solution for the pressure distribution in a complex structurally model

(e.g. contain fractures, matrix and wells) is difficult to achieve. This is the reason that

numerical methods and partial differential equations is essential to be applied. The
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numerical solution provides an approximated solution and it can simulate such

reservoirs with certain accuracy. Model discretization is the first step of numerical

methods. It divides a continuous domain into a finite number of discrete parts while

keeping a proper representation. we will not go into detail, how to mesh the models

with CFD software. However, the selection of mesh size in CFD software will affect

the result. This will be discussed in section 2.7.2.

Figure 12: Discretization of wells and matrix in space (left hand: continuous model and wells; right
hand: discretization of model and well)

Figure 12 shows the transformation from a continuous model with wells to

discretization. The right hand side shows “mesh”, which consists of a finite number of

cells. We can form our domain with an arrangement of grid blocks or a derangement

of grid blocks. However, the properties of each block grid are constant. Therefore, for

each cell, there’s only one fixed value for porosity, permeability, and others. So we

can break down a complex structure into amounts of individual cells and compute

their interaction numerically.

2.7.1.2 Matrix-Only Models
Matrix-only models are used to verify the numerical methods. Models are simply

and no fracture existence. Fluids are simulated from right well or boundary to left well

or boundary flow. For with well case, wells are placed in the region of model. One

well is injection well, the other is producing well. The radius of both wells are equal.



2. Methodology 29

The injection rate is equal to production rate with inverse direction. The other

parameter for model and simulation as follow:

Table 1: General parameters for matrix-only models

Size of region-box 600*400*200 m

Well shape Triangular

Side length 1 m

Well size 0.433 m2

Distance between two wells 300 m

Injection rate 100 m3/day

Producing rate -100 m3/day

Viscosity 10-3 Pa·s

Density 1000 kg/m3

Initial pressure for production 0 Pa

Permeability of matrix 1.0E-14 m2

Permeability of wells 1.0E-8 m2

In the establishment of the numerical model, the cross section of well is not

circular. It is described as a regular triangle in order to be easily meshed in ANSYS

CFD. The surface of both models, which the fluid flow through, is not the same as

analytical solution. Therefore, the precision of the model is discussed below.

For the well of the numerical model, each side length of triangle is set as 1 m. As a

result, the radius of internally tangent circle is equal to 0.289 m. The radius of

externally tangent circle is equal to 0.577 m. The radius of internally tangent circle is

taken as the radius of the well for analytical solution. The pressure difference can be

calculated by numerical methods firstly with 1 m side length of triangle well and then

analytical methods estimate the pressure difference with 0.289 m well radius. The

surface area of well and pressure differences are compared as below:
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Table 2: Comparison of pressure difference for both models, well radius=0.289 m for analytical
solution

Numerical model Analytical model Difference

Surface area of
well 600 m2 363 m2 39.5%

ΔP 129189 Pa 127950 Pa 0.96%

Table 2 states that there is a difference of 39.5% in well surface area. The

pressure difference in analytical model is 0.96% less than in numerical model. Now it

can be assumed, if the surface area of well in both models are equal. The well radius

can be set 0.477 m in analytical method for this assumption. Thus, the surface area s

of both wells are nearly equal. The comparison of pressure difference:

Table 3: Comparison of pressure difference for both models, well radius=0.477 m

Numerical model Analytical model Difference

Surface area of
well 600 m2 599.7 m2 0.05%

ΔP 129189 Pa 118703 Pa 8.12%

Table 3 states that there is a difference of 8.12% in pressure difference, although

the surface area of well are nearly equal. Therefore, the internally tangent circle of

triangle is selected as the well radius for analytical model. The detailed calculation

process and monitor-file for Table 2 and Table 3 are provided by Appendix A.

2.7.1.3 DFM Models
In real naturally fractured reservoir, fractures are existed in different orientation,

intensity and size. We need create geological models with various fracture properties,

which could better represent the actual geological system. 8 DFM models with

various fracture characteristics are created in a region-box of 600x400x200 m, which

is the same as Matrix-only models. Except for fractures related parameters, others

parameter for DFM models are also the same as matrix-only models (i.e. viscosity,

porosity, well size).
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Table 4: General properties for the fracture system in DFM models

Model Enhanced Baecher

Fracture Intensity P32 (fracture area/ region volume)

Fracture Orientation Constant, Pole

Fracture Size Power law distribution

Min. X value 26 (model1-4)

Exponent 2.85 (model 1-4)

Fracture Shape Disk

Fracture Aperture 0.001 m

Fracture Permeability 8.33e-11 m

Model 1-4 have variable fracture intensity, trend, plunge, and truncation. Model 5-

8 are similar to model 1-4 having same intensity. In Appendix B, the fracture

properties of model are shown in detail. Every model has two fracture sets and

because of different fracture intensity, the number of fracture in model is also different.

The fracture size distribution is following power laws for all models (see Table 4).

Model 5-8 with increasing Xmin and exponent, the fracture intensity keeps constant for

all. Trend and plunger are respectively corresponding to model 1-4. The truncate of

fracture size distribution is below 300 for all DFM models, that the maximum fracture

size will not above the distance between two wells (or two boundaries).

In all models, the fracture intensity is defined as P32 (fracture area per unit

volume), the interval is between 0.03 and 0.7, and thus the total fracture count is

between 300 and 600. The fracture size follows power law distribution, there’re two

important parameters, minimum x and exponent. The minimum x (minimum length of

fracture) will be set as 26 m for model 1-4, which dominate the distribution of fracture

size. The maximal fracture size is controlled by the maximal value of truncation,

which in model1&2 is 150m, in model3&4 is 300m and in model 5-8 is 200m. The

exponent is set as 2.85 in models 1-4. The value for exponent and minimum x will be

set progressively increasing in models 5-8. Different minimum x and exponent will

affect the fracture size distribution. Detailed Charts of Fracture size vs. frequency are

provided by Appendix C. An overview of all models in fracture modeling software is

provided by Appendix D.



2. Methodology 32

If all fractures extend across the region of interest, the single largest fracture

controls the permeability of the region, and effective permeability increases as the

size of the region increases (Rossen, 2000). The largest fracture size is control by

Max. Truncate from power law distribution. The length of largest fracture is assumed

below the distance of two wells or two boundaries in all models. Therefore, the

permeability will not affected by the largest fracture.

Above 8 DFM is with a certain condition that the wells always penetrate the

fractures (P10 >0). In reality, when the partial penetrating well is short, it is possible

that wells intersect no fracture (P10=0). We have to consider, whether it will affect

effective permeability, when P10=0. Based on original model 5-8, Model 5b-8b are

modified models for partial penetration well,that wells intersect no fracture in those

models.

2.7.2 Comparison of Matrix-only Models with Analytical
Solution

In this subsection, verification of numerical methods are discussed. Because It is

not the proper way to implement analytical solution for complex structural system (i.e.

include fractures, wells and matrix at same time). Matrix-only model are used as

numerical model, which also can be solved by analytical method. There’re two wells

or two boundaries in the model, which fluid will flow through them. The setup of this

verification case with a homogeneous, isotropic simulation model is as follow: The

first well is an injector with a constant flow rate; but the bottom-hole pressure is

unknown. The second well is a producer, whose bottom-hole pressure is assumed to

be zero. We input the flow rate of injection well and the Dirichlet pressure of

production well into the CSMP++ based FEM pressure diffusion model. The

simulation determines pressure of injection well is given by CSMP++. This pressure

is used into the corresponding Darcy’s law equation (radial flow, sphere flow, linear

flow) to calculate the effective permeability from the analytical equation. In the

simulation, the permeability is used as an input parameter. The value can be

compared with the effective permeability to assess the accuracy of the estimation

model. If the fractures exist, it is not the proper way to calculate the effective

permeability from an analytical solution. For this we will employ the verified FEM

pressure diffusion model.
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Figure 13: Visualization of pressure distribution and streamline tracing between two fully
penetrating wells (Model 1, radial flow)

Figure 14: Inter-well pressure profile (model 1)

The Streamline of fluids in Figure 13 is presented by visualization software

“ParaView”. The flow path between the two wells is exactly as predicted by the radial

flow in analytical solution (Figure 5). Figure 14 shows that pressure drops from the

injection well (highest) to producing well (lowest) are as a smooth curve.
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Figure 15: Visualization of streamline between two partial penetrating wells (Model 2, sphere flow)

Figure 16: Inter-well pressure profile (model 2)

Figure 15 shows streamline between two wells for spherical flow in numerical

solution. It is quite different from that for radial flow. Fluids flow from injection well to

producing well as sphere in dimensions. The pressure distribution in Figure 16 shows

that pressure increases or decreases rapidly near the wells.
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Figure 17: Visualization of pressure distribution and streamline between two boundaries (Model 3,
linear flow)

Figure 18:  Inter-boundary pressure profile (model 3)

Figure 17 shows the pressure distribution and streamline between two boundaries.

Fluids flow straightly from inlet boundary to outlet boundary. The pressure between

two boundaries drops progressively. Pressure distribution in Figure 18 exhibits a

straight line, which is corresponding to linear flow in steady state with analytical

solution.
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The wellbore pressure for injection well with a fixed flow rate can be solved by

using FEM analysis based on CSMP++. We replace this pressure solved by

numerical method (max. element size = 20m) into the pressure in converted Darcy’s

law equation (Equation 2, Equation 22, Equation 27) and use other parameter as

same as numerical method (i.e. flow rate, viscosity, penetration length). Accordingly,

we can solve the equivalent permeability from Analytical solution.

Table 5: Effective permeability calculated with analytical solution by using pressure solved in
FEM analysis

Well penetrating
length

ΔP from FEM analysis
(Pa) superposition keff (calculated from

analytical solution )

1 Fully penetration
(radial flow) 1.22E+06 x 1.04E-14

2 Partial penetration
(sphere flow) 1.38E+07 x 1.05E-14

3
Box-model

(linear flow)
8.68E+05 1.00E-14

The permeability of matrix as 1.0E-14 m2 and permeability of well is used as

1.0E-8 m2 in numerical models (matrix-only and DFM). Table 5 states that the

effective permeability calculated with analytical solution is about the same as the one

used in the numerical simulations. It is a little greater than the permeability of matrix

for fully and partial penetration well case, because the wells have a large

permeability. Analytical solution considers them as an equivalent permeability.

Table 6: Comparison of parameters in analytical solution and in numerical solution

Analytical solution Numerical solution

Method Darcy's law FEM analysis

well shape circle, rw=0.289 m triangular, side length=1 m

flow rate (q) 100 m3/d

viscosity (μ) 1000 Pa·s

matrix permeability (k) 1.0E-14 m2

full penetration length (l) 200 m

partial penetration length (lw) 5 m

well distance (d) 300 m



2. Methodology 37

We also can compare the pressure solved by analytical solution and numerical

solution directly: pressure calculated by Darcy’s law in analytical solution and

pressure estimated by FEM analysis in numerical solution. All the input parameter is

same, except for well shape (see Table 6). In analytical solution, the well is

considered as a circle. In numerical solution, the well is represented as a triangular

that is easy to mesh. In section 2.7.1.2 we have discussed the value of well radius

corresponding to a fixed side length of triangular. However, not only input parameters,

but also the degree of model precision will affect the result. The primary factor is

maximum element size for meshing process.

In previous sub-section, we discuss the model discretization briefly. During the

meshing process, I find that it’s quite important to select an appropriate value for

mesh size. It will directly affect the simulation result. We use 20 m as the maximum

element size (cell size) for model verification (permeability comparison). It obtains an

acceptable result. Next, we use 40 m as the maximum element size and check the

accuracy for simulation result.

Table 7: Comparison of max. element size with 20m and 40m to analytical model

Well penetration Fully Partial No well

Flow pattern Radial spherical linear

Δp analytical (Pa) 1.152E+06 1.449E+07 8.681E+05

Δp numerical (20m) 1.223E+06 1.376E+07 8.680E+05

Accuracy
(mesh=20m) 4.47% 5.0% 0.004%

Δp numerical (40m) 1.232E+06 1.284E+07 8.681E+05

Accuracy
(mesh=40m) 6.5% 12.86% 0.01%

Table 7 shows the resulting pressures estimated by the analytical solution and

matrix-only numerical simulations (20 m and 40 m). The accuracy of each matrix-only

model comparing to analytical methods are shown above (detailed calculation refer s

to Appendix E). We can find, that the model with smaller value of max. mesh element

size will obtain a more accurate result, compared to analytical method. But during the

meshing of models, it takes long time to mesh a fine model (with smaller max.

element size). Therefore it is important to choose the appropriate value of max.
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element size for meshing. Too large will cause coarse model, that affect the accuracy

of simulation. Too small will cost more time in simulation.
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3. Results

3.1 Permeability Estimation with Fractures
In this section, 8 fractured models in 2 groups will be simulated by CSMP++,

Model 1-4 have diverse fracture intensity, orientation, truncation. Model 5-8 are

corresponding to model 1-4 and have same intensity (=0.04).

Figure 19: Overview of fracture configuration for Group 1
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Figure 20: Overview of fracture configuration for Group 2

Figure 19 and Figure 20 show an overview of fracture setup for models of 2

groups. Following 3 sections will indicate these three cases respectively in ParaView

only for model 8. Other models are similar, so that they are ignored to show the

construction and behavior in ParaView.
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3.1.1 Radial Flow

Figure 21: Streamline between two wells (Model 1, full penetration wells)

Figure 22: Pressure profile (Model 1, full penetration wells)

Figure 21 shows the streamline for DFM model 1. Because fractures exist, the

streamline is irregular as that in only matrix model. Matrix-only model is homogenous,

fluids flow as radial flow. However, in DFM models, fluids follow the path of

connectivity. Figure 22 shows pressure distribution in DFM model for full well

completion. The pressure of producing well is set as 0 for initial condition. The

pressure of injection well is calculated by FEM analysis.
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3.1.2 Spherical Flow

Figure 23: Streamline between two wells (Model 1, partial penetration wells)

Figure 24: Pressure profile (Model 1, partial penetration wells)

Figure 23 shows that streamline in DFM model for spherical flow. Although the

initial condition is same for all models, the area of wells that fluids flow through is

different. With the same flow rate, the pressure difference in partial well completion is

higher than that in full well completion. Figure 24 shows the pressure drops relative

smooth, compared to that in the model only with matrix.
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3.1.3 Linear Flow

Figure 25: Streamline between two boundaries (Model 1, no wells)

Figure 26: Pressure profile (Model 1, no wells)

In Figure 25, the path of fluid flow is irregular like streamline in other DFM models.

Figure 26 shows that the pressure distribution in DFM model for linear flow is no

longer straight compared to that in matrix-only models, because the pressure is

influenced by fracture.
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3.2 Comparison of keff for All DFM Models
In the last part of chapter 2, the pressures are calculated by analytical solution

(Darcy’s law with principle of superposition) and estimated by numerical methods

(FEM analysis from CSMP++) with matrix-only model. During the comparison of

results of both methods, the error between them is small (<5%). After verification of

numerical methods, 8 DFM models, each is under three cases (radial flow, spherical

flow and linear flow) are simulated by CSMP++. Table 8 and Table 9 indicate the

result of effective permeability in each DFM models.

Table 8: The comparison of effective permeability for model 1-4

Name Well Completion Δp (Pa) P10 (m-1) keff (m2)
Model1 Box-model (linear) 35406.1 2.45E-13

Full (radial) 34327.6 0.11 6.71E-13
Partial (sphere) 53489.6 0.20 2.71E-12

Model2 Box-model (linear) 3235.4 2.68E-12
Full (radial) 3281.4 0.10 7.02E-12

Partial (sphere) 13149.3 0.30 1.10E-11
Model3 Box-model (linear) 3273.4 2.65E-12

Full (radial) 3023.7 0.11 7.62E-12
Partial (sphere) 10784.5 0.30 1.34E-11

Model4 Box-model (linear) 4875.0 1.78E-12
Full (radial) 8526.6 0.13 2.70E-12

Partial (sphere) 25831.2 0.20 5.61E-12

Table 9: The comparison of effective permeability for model 5-8

Name Well Completion Δp (Pa) P10 (m-1) keff (m2)
Model5 Box-model (linear) 5289.0 1.64E-12

Full (radial) 5018.6 0.11 4.59E-12
Partial (sphere) 15192.2 0.30 9.54E-12

Model6 Box-model (linear) 2481.2 3.50E-12
Full (radial) 2199.7 0.10 1.05E-11

Partial (sphere) 6812.3 0.20 2.13E-11
Model7 Box-model (linear) 2627.5 3.30E-12

Full (radial) 2589.9 0.12 8.89E-12
Partial (sphere) 11240.6 0.20 1.29E-11

Model8 Box-model (linear) 2527.0 3.44E-12
Full (radial) 2701.7 0.12 8.53E-12

Partial (sphere) 12863.0 0.20 1.13E-11

Although the fracture properties in each model are different, that result to diverse

keff in the end, it is easy to find the relationship between three cases in each model.
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The effective permeability has small value for linear flow (no wells), an intermediate

value for radial flow and a large value for spherical flow.

In group 1 (model1-4), model1 comparing to other model has low fracture intensity,

so that the effective permeability is lower than other model. Model 2-4 have same

fracture trend, plunge and intensity. But the range of truncation is different. We can

find that, with the large fracture size result a large effective permeability.

In group 2 (model5-8), all models have same fracture intensity, compared to group

1. The mean fracture size in each model mainly depends on value of Xmin (minimum

fracture size). With Xmin and exponent increasing, mean fracture size in model will

increase. However, the effective permeability in those models keeps almost constant.

Therefore, the mean fracture size is not mostly factor to influence the effective

permeability.

In part of DFM models setup, we discuss that in reality, it is possible that partial

completion wells intersect no fracture (P10=0). Therefore, a comparison of well

intersecting fractures and well intersecting no fractures is essential.

Table 10: Δp and Keff in modified model 5b-8b

P10 (m-1) Δp (Pa) Keff (m2)

Model5b 0 1.32E+07 1.10E-14

Model6b 0 4.71E+06 3.08E-14

Model7b 0 9.72E+06 1.49E-14

Model8b 0 1.09E+07 1.33E-14

Table 10 shows the pressure difference and effective permeability between two

partial penetrating wells for case that well intersect no fractures. Model 5b-8b is

based on the original model 5-8, but removing the fractures. Table 11 and Table 13

indicate a directly comparison of pressure difference and effective permeability in two

cases.
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Table 11: Comparison of Δp between original model5-8 and modified model 5b-8b

P10 (m-1) Δp (Pa) P10 (m-1) Δp (Pa)

Model5 0.3 15192.2 0 1.32E+07

Model6 0.2 6812.3 0 4.71E+06

Model7 0.2 11240.6 0 9.72E+06

Model8 0.2 12863.0 0 1.09E+07

Table 12: Comparison of keff between original model5-8 and modified model 5b-8b

P10 (m-1) keff (m2) P10 (m-1) keff (m2)

Model5 0.3 9.54E-12 0 1.10E-14

Model6 0.2 2.13E-11 0 3.08E-14

Model7 0.2 1.29E-11 0 1.49E-14

Model8 0.2 1.13E-11 0 1.33E-14

From above tables, we find that the pressure difference is extremely high for new

models. The matrix of permeability is set as 1.0E-14 for all modified models. Effective

permeability of all modified models are only a little large than the matrix of

permeability, which is far lower than the original model. We can conclude if the

fractures don’t touch the wells, the keff between wells will be very small. It is very

important for model design. If we create the models, that the wells penetrate no

fracture, the permeability is tiny influenced by fractures properties.

Figure 27: Comparison of pressure profile (left: modified model, right: original model)
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To confirm our comparison, we select one pressure profile from all modified

model and compare to original model (model 7). Pressure distribution of model 7b is

similar to the matrix-only model, as if there’s no fracture exists.
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4. Discussion
The main purpose of this thesis is verification of numerical solution for simple

steady-state, homogeneous models (Matrix-only), in order to apply the numerical

solution to solve the complex, heterogeneous models (DFM). In this thesis, during the

process of model establishment, the well will be designed as regular triangle instead

of traditional circle. Comparing different radius approaches, it is found that the

circumscribed triangle is quite corresponding to the circle. It obtains the smallest error

for pressure estimation, comparing the numerical solution to analytical solution. If a

regular triangle with same perimeter of circle well is used in numerical model, the

error will be large instead. This is very important for well setup during establishment

of model.

CSMP++ is based on FEM analysis. It is important to know that using smaller

mesh size can refine the models, and cause a higher accurate simulation.

It is important to limit the maximum fracture size in the DFM models. If the

maximum fracture size is above the distance between wells or boundaries, the single

largest fracture will control the permeability of the region. The estimation of effective

permeability in numerical solution will be with a low accuracy and purposeless.

Whether the wells intersect fractures will result an inverse result to effective

permeability. If well intersect no fracture, the effective permeability between two wells

is close to permeability of matrix, compared to the case that well penetrate fractures.

Therefore, the contribution of fractures to the connectivity of models is very small,

when wells intersect no fracture. It is significant for purpose of effective permeability

estimation.
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5. Conclusion
This thesis indicates the estimation of effective permeability by analytical solution

(Darcy’s law equation) and numerical solution (FEM analysis) for the homogeneous

case (matrix-only model). Numerical solution is verified to analytical solution. After

verification, effective permeability is estimated for complex DFM models through FEM

analysis. Results from this thesis lead to following conclusion:

1. The effective permeability is calculated by derivative equation of Darcy’s

law, when the pressure is known from the steady-state FEM solution of the

pressure equation as obtained with CSMP++. Results are analyzed

applying analytical solutions to linear, spherical and radial flow. Where

fractures are present so that no analytical solution can be obtained, a

numerical reference solution is found by application of constant boundary

pressure on opposite sides of the box-shaped model. The value of the

effective permeability calculated this way is smaller than for the two other

cases. The keff in spherical flow and radial flow therefore are overestimated.

2. The maximum element size of models in meshing software influences the

accuracy of the results. A coarser model creates larger errors in result.

Through comparison of mesh size 20m and 40m, a sensitivity analysis

shows that an adaptive refinement placing many elements in regions with

no-linear variations of pressure provides the best compromise between

solution accuracy and computational effort.

3. The value of effective permeability is mainly related to fracture orientation,

fracture size and fracture intensity. Through comparison of estimated keff for

all DFM models, It is found that the effective permeability is increased with

increasing fracture intensity (model1-2). Fracture orientation plays

important role in influence to effective permeability. If the fractures link the

wells directly, the effective permeability will be large (model 3-4). When the

fracture intensity is used as input parameter, with the increasing mean

fractures size, the keff is approximately constant (model 5-8). When wells

penetrate no fractures, the effective permeability is small influenced by

fractures properties.
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Nomenclature
q= flow rate under steady condition (m3/s)

A= cross section area for porous medium (m2)

L = length of rock sample (m)

lw: partial completion well length (m)

lf: fracture length (m)

μ= fluid viscosity (Pa.s)

k= permeability of medium (m2)

kf= Fracture permeability

b= aperture size of fracture (m)

u= flow velocity (m/s)

p = pressure differential between two wells or two boundaries

pi = initial pressure (psi)

pr = average reservoir pressure (psi)

q0 = current surface rate of flow (m3/s)

rw = radius of wellbore (m)

re = distance between wells and reservoir boundary (m)

h = reservoir thickness (m)

Φ = porosity, %

ρ = fluid density, kg/m3

dp/dL= pressure gradient

kij = Permeability tensor

Fij = Fracture tensor

Fkk = Total fractures



APPENDIX A 54

APPENDIX A
Monitor file for pressure estimation by CSMP++:

Groupname Volume (m3)
Surface area

(m2)

MATRIX 9.60E+06 880434

Model 9.60E+06 879246

WELL1 119.943 5.9999

WELL2 119.998 5.9999

Fluid pressure (Pa)

MATRIX Model WELL1 WELL2

Minimum 100000 100000 224193 100000

Maximum 229189 229189 229189 100000

Calculation pressure difference and error in Maple:

>

>

>
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>

>

>

>

>

>

>
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APPENDIX B

Table 13: Fracture parameters for Model 1 (Group 1)
Fracture set 1 2

Fracture Intensity (P32) 0.02 0.02
Trend (degree) 150 120
Plunge (degree) 75 15

Min. Size of Truncate (m) 2 2
Max. Size of Truncate (m) 150 150

Total Fracture number 298

Table 14: Fracture parameters for Model 2 (Group 1)
Fracture set 1 2

Fracture Intensity (P32) 0.04 0.035
Trend (degree) 30 160
Plunge (degree) 65 70

Min. Size of Truncate (m) 2 2
Max. Size of Truncate (m) 150 150

Total Fracture number 495

Table 15: Fracture parameters for Model 3 (Group 1)
Fracture set 1 2

Fracture Intensity (P32) 0.035 0.04
Trend (degree) 30 160
Plunge (degree) 65 70

Min. Size of Truncate (m) 20 20
Max. Size of Truncate (m) 300 300

Total Fracture number 482

Table 16: Fracture parameters for Model 4 (Group 1)
Fracture set 1 2

Fracture Intensity (P32) 0.035 0.04
Trend (degree) 30 160
Plunge (degree) 65 70

Min. Size of Truncate (m) 2 2
Max. Size of Truncate (m) 300 300

Total Fracture number 443

Table 17: Fracture parameters for Model 5 (Group 2)
Fracture set 1 2

Fracture Intensity (P32) 0.04 0.04
Trend (degree) 150 120
Plunge (degree) 75 15

Xmin 10 10
Exponent 1.5 1.5

Min. Size of Truncate (m) 2 2
Max. Size of Truncate (m) 200 200

Total Fracture number 500



APPENDIX B 58

Table 18: Fracture parameters for Model 6 (Group 2)
Fracture set 1 2

Fracture Intensity (P32) 0.04 0.04
Trend (degree) 30 160
Plunge (degree) 65 70

Xmin 20 20
Exponent 1.9 1.9

Min. Size of Truncate (m) 2 2
Max. Size of Truncate (m) 200 200

Total Fracture number 397

Table 19: Fracture parameters for Model 7 (Group 2)
Fracture set 1 2

Fracture Intensity (P32) 0.04 0.04
Trend (degree) 30 160
Plunge (degree) 65 70

Xmin 30 30
Exponent 2.8 2.8

Min. Size of Truncate (m) 2 2
Max. Size of Truncate (m) 200 200

Total Fracture number 446

Table 20: Fracture parameters for Model 8 (Group 2)
Fracture set 1 2

Fracture Intensity (P32) 0.04 0.04
Trend (degree) 30 160
Plunge (degree) 65 70

Xmin 40 40
Exponent 3.5 3.5

Min. Size of Truncate (m) 2 2
Max. Size of Truncate (m) 200 200

Total Fracture number 323
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APPENDIX C

Figure 28: Model 1, Power law distribution, Xmin= 26, Exponent= 2.85, Truncate= 2-150 m

Figure 29: Model 2, Power law distribution, Xmin= 26, Exponent= 2.85, Truncate= 2-150 m
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Figure 30: Model 3, Power law distribution, Xmin= 26, Exponent= 2.85, Truncate= 20-300 m

Figure 31: Model 4, Power law distribution, Xmin= 26, Exponent= 2.85, Truncate= 2-300 m
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Figure 32: Model 5, Power law distribution, Xmin= 10, Exponent= 1.6, Truncate: 2-200m

Figure 33: Model 6, Power law distribution, Xmin= 20, Exponent= 1.9, Truncate: 2-200m
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Figure 34: Model 7, Power law distribution, Xmin= 30, Exponent= 2.8, Truncate: 2-200m

Figure 35: Model 8, Power law distribution, Xmin= 40, exponent= 3.5, Truncate: 2-200m
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APPENDIX D
An overview of fractures in fracture modeling software:

Figure 36: Fracture sets in FracMan (Model 1)

Figure 37: Fracture sets in FracMan (Model 2)



APPENDIX D 64

Figure 38: Fracture sets in FracMan (Model 3)

Figure 39: Fracture sets in FracMan (Model 4)
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Figure 40: Fracture sets in FracMan (Model 5)

Figure 41: Fracture sets in FracMan (Model 6)
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Figure 42: Fracture sets in FracMan (Model 7)

Figure 43: Fracture sets in FracMan (Model 8)
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APPENDIX E
Mesh size=20 m
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