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Zusammenfassung

Die elastischen Eigenschaften eines Materials spielen eine Schliisselrolle in
Forschung und Technologie, da sind grundlegend fiir das mechanische und ther-
modynamische Verhalten sind. Obwohl die mechanischen Eigenschaften stark
von der Mikrostruktur abhangen, werden sie von Wechselwirkungen auf atomarer
Ebene bestimmt. Aus diesem Grund bietet die computerunterstiitzte Festkorper-
theorie auf Basis der Quantenmechanik einen Einblick, der wesentlich fiir das
Verstandnis des makroskopischen Materialverhaltens ist. Das Hauptziel dieser
Arbeit ist die Entwicklung und Implementierung eines Schemas fiir die zuverlassige
Ab-initio-Berechnung der elastischen Eigenschaften kristalliner Materialien.

Elastische Eigenschaften werden entweder durch die elastischen Konstan-
ten, das heifit, durch die Komponenten des elastischen Tensors, charakterisiert,
oder durch elastische Moduln, welche die entsprechenden gemittelten Grofien
darstellen. Die elastischen Konstanten konnen durch eine Taylor-Entwicklung der
freien Energie oder der Spannung als Funktion der Kristallverformung (Verzer-
rung) definiert werden. Die Koeffizienten der Taylorreihe stellen dabei die elastis-
chen Kostanten verschiedener Ordnung dar.

Um die elastischen Konstanten zu berechnen, benotigt man die Gesamten-
ergie oder die Spannung eines verformten Kristalls als Funktion der Verzer-
rung. FKEinen geeigneten quantenmechanischen Rahmen zur Bestimmung dieser
GroBen stellt die Dichtefunktionaltheorie (DFT) dar, die auch in der vorliegen-
den Arbeit eingesetzt wurde. Wir verwenden state-of-the-art DFT-Programme
fir die Berechnung der Energien und/oder der Spannung. Wir untersuchen
elastische Konstanten zweiter Ordnung fiir ausgewahlte, typische Materialien
aller Gitterarten und elastische Konstanten dritter Ordnung jeweils fiir einen
Prototypen eines kubischen, hexagonalen, und rhomboedrischen Systems. Die
Implemetierung ist also allgemein in dem Sinne, dass fiir die elastischen Kon-
stanten zweiter Ordnung alle Symmetrien beriicksichtigt werden. Daneben legen
wir besonderes Augenmerk auf die Auswertung der numerischen Daten zu Energie
und Spannung. Wir schlagen eine neue Vorgangsweise vor, die die Bestimmung
elastischer Konstanten auf der Basis von Ab-initio-Rechnungen so zuverlassig wie
moglich macht.

Eine konkrete Anwendung von ElaStic im Rahmen dieser Disertation stellen
Nickel-Titan-Legierungen dar, die zu einer Materialklasse zahlen, welche bekannt
fiir ihre Form-Gedéachtnis-Eigenschaften ist. Da die entsprechenden Phasenumwand-
lungen zwischen den beteiligten kristallographischen Phasen durch Gitterverzer-
rungen vor sich gehen, spielen die elastischen Eigenschaften natiirlicherweise eine
zentrale Rolle. Wir haben die elastischen Konstanten und makroskopischen Mod-
uln fiir die Kristallstrukturen B2, B19, B19'and B33 berechnet. Wir zeigen, dass
die B19 Struktur im Gegensatz zur B2-Struktur instabil ist und deshalb keine
Zwischenphase fiir die Form-Gedéchtnis-Legierung NiTi sein kann.



Summary

Elastic properties play a key role in science and technology as they char-
acterize the mechanical and thermodynamical behavior of a material. Although
mechanical properties may even strongly depend on the material’s microstructure,
they are determined by interactions happening on the atomistic scale. Thus, com-
putational solid-state theory based on quantum-mechanics can provide insight
which is crucial for the understanding of the materials’s macroscopic behavior.
The main goal of this thesis was the development and implementation of a scheme
to reliably compute elastic properties of crystalline materials from first principles.

Elastic properties are either characterized by elastic constants, which are the
components of the elastic tensor, or by elastic moduli, which are the correspond-
ing averaged quantities. Elastic constants can be defined by a Taylor expansion of
the free energy or stress in terms of the crystal deformation, i.e., the strain. The
coefficients of the Taylor series provide the elastic constants of different order.

To calculate elastic constants, one has to compute the total energy or stress
of the deformed crystal. A well suited quantum-mechanical framework for doing
so is density-functional theory (DFT) which was employed in the present work.
We use state-of-the-art DFT codes for energy and stress calculations. We present
second-order elastic constants choosing prototype materials for all crystal lattice
types, and third-order elastic-constants for prototypes of cubic, hexagonal, and
rhombohedral crystals, respectively.

Besides this general implementation in terms of symmetry, we place emphasis
on the evaluation of numerical energy and stress data. We propose a new recipe to
obtain elastic constants out of ab initio calculations in the most reliable manner.
All the work has been collected in the software package called ElaStic. ElaStic
is utilizing either the full-potential all-electron codes exciting and WIEN2k or
the pseudo-potential plane-wave code Quantum ESPRESSO. It provides the elastic
compliances tensor and applies the Voigt and Reuss averaging procedure in order
to obtain bulk, shear, and Young moduli as well as the Poisson ratio for poly-
crystalline samples.

A specific application of ElaStic within this thesis, is given by nickel-
titanium compounds, a material class which is well-known for shape-memory
behavior. As the corresponding phase transformations between the involved
crystallographic phases occur through lattice distortion, it is natural that elastic
properties thereby play a central role. We have calculated the elastic constants
and macroscopic elastic moduli for the B2, B19, B19, and B33 crystal structure.
We show that, in contrast to the B2 structure, the B19 phase is instable and,
thus, can not be an intermediate phase for the NiTi shape-memory alloy. Ana-
lyzing our results, we argue that a direct transformation from the B2 to the B19
phase is more probable than going through the B19 phase.
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1  Introduction

Elastic properties play an important role in science and technology as they char-
acterize the mechanical and thermodynamical behavior of materials. They are
described by elastic constants of different order and elastic moduli. Elastic con-
stants determine the response of a material to external stresses while elastic mod-
uli, e.g. bulk modulus and shear modulus, determine the strength of materials
to specific deformation.

Mathematically, elastic properties of condensed matter are described within
elasticity theory which is a major area of continuum mechanics. It describes
materials that return to their rest shape when applied stresses are removed. In
this theory, second-order elastic constants are defined by Hooke’s law which is
valid upon linear-elastic deformation of materials. Higher-order elastic constants
can be obtained by generalizing Hooke’s law to cover the nonlinear-elastic defor-
mation range of materials. Elastic moduli are expressed by averaging over the
second-order elastic constants.

Experimentally, there are several methods to measure elastic properties, like
ultrasonic wave transmission, Brillouin scattering, neutron scattering, and X-ray
thermal diffuse scattering methods. Ultrasonic wave transmission and Brillouin
scattering are the most widely used methods and the most complete sets of elastic
constants are measured by ultrasonic wave transmission. However, for many
materials, experimental values of elastic constants are not yet available.

Computational physics, which is a relatively new field, opened a new per-
spective for the investigation of the elastic properties. Mechanical properties are
strongly dependent on the materials microstructure. In perfect crystals, they
can be studied by interactions happening on the atomistic scale. Computational
solid-state theory based on quantum-mechanics can provide insight which is cru-
cial for the understanding of the material’s macroscopic behavior.

In this thesis, we combine quantum mechanics with computational techniques
to investigate elastic constants of crystalline solids. We introduce ElaStic as a
tool for the ab initio calculation of SOECs and TOECs using two approaches
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based on the numerical differentiation of (i) the total energy and (ii) the physical
stress of a crystal as a function of the imposed strain. The current implemen-
tation of ElaStic is interfaced with the computer packages exciting, WIEN2k,
and Quantum ESPRESSO, all of them based on density-functional theory [1, 2].
Furthermore, we introduce a fitting procedure to reduce the numerical errors ap-
pearing in the calculation of derivatives of the energy (or stress) with respect to
the imposed strain of a crystal. In order to show the potential and accuracy of
ElaStic, we have applied this tool to a set of prototype materials covering all
crystal families and different types of atomic bonds.

In addition, we show an application of our work on NiTi as an example
of shape-memory materials. Shape-memory alloys are a class of materials with
the ability to recover their shape when the temperature is changed. In spite of
their various applications from airplanes to small coffee-maker machines in our
kitchens, these materials are not fully understood on the microscopic level. The
shape recovery in shape-memory alloys happens by going through a martensitic
transformation. This transformation takes place without long-range atomic dif-
fusion but rather by some form of cooperative, homogeneous movement of many
atoms resulting in a change in crystal structure. Since the martensitic transfor-
mation occurs upon crystal distortion, it is natural that elastic properties play
a central role during the transformation. Therefore, in order to understand the
behavior of shape-memory materials, it is important to obtain their elastic prop-
erties. In this thesis, we examine the elastic properties of different NiTi ordered
crystal phases by investigations their elastic constants and bulk moduli.

A large amount of effort in the computational investigation of elastic proper-
ties is focused on the calculation of second-order elastic constants (SOECs) and
third-order elastic constants (TOECs), because many physical properties like the
mechanical and thermodynamical properties are related to them. The knowl-
edge of these elastic constants is a cornerstone to determine characteristic phys-
ical properties of materials, such as inter-atomic potentials, equations of state,
phonon spectra, mechanical stability, and phase transitions. Thermodynamically,
they are related to specific heat, thermal expansion, Debye temperature, melting
point, and Griineisen parameters.

SOECs obey certain relations in a stable or metastable phase. It has been
shown computationally that fcc MoN [3], bee Al [4] and bee Ir [4, 5], do not
exist in nature because they are elastically unstable. Knowledge of SOECs may
be implied to predict the existence and properties of new materials and phases.
For instance, a new metastable phase of Si with five-fold coordination has been
predicted [6].

TOECs and higher-order elastic constants play an important role in ex-
plaining anharmonic properties of solids. In the following, some examples are
mentioned. The thermal expansion of a solid occurs due to the anharmonicity
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of interatomic forces, therefore, the investigation of thermal expansion coeffi-
cients requires TOECs [7, 8, 9, 10]. They are useful for studying the generalized
Griineisen parameters [11] which describe the strain dependence of vibrational
frequencies. In order to investigate materials under high stress, e.g., solid dislo-
cation which usually happens in the non-elastic deformation regime, a non-linear
description of elastic properties and TOECs is important. To study changes
in lattice parameter and bulk modulus at high-pressure situations, TOECs are
needed [12]. In order to investigate the effect of temperature [13, 14, 15, 16] and
pressure [17] on the SOECs, higher-order elastic constants must be taken into
account. Third- and higher-order elastic constants are required also in Landau’s
elastic-phase transition theory [18] which explains first-order phase transitions of
strained materials. There is a correlation between higher-order elastic constants
and the melting temperature of a solid [19, 20].

Ab initio investigations of elastic constants is an established method to un-
derstand the mechanical properties of many materials. This is evidenced by the
presence of a large number of papers on the ab initio calculation of SOECs and
TOECs, e.g., [21, 22, 23, 24, 25, 26, 27], in the literature. In these papers, elas-
tic properties are usually investigated only for selected materials with a given
crystal structure. A systematic analysis of SOECs for different lattice types has
been presented in Refs. [28, 29] but the authors focused on ceramic materials
only. Recently, general methodological approaches for calculating SOECs have
been implemented in Refs. [30, 31] as tools using the computer packages CRYSTAL
and VASP, respectively. These codes are utilized for the calculation of energy and
stresses of distorted crystal lattices, respectively. To the best of our knowledge,
there is no comprehensive computational study for TOECs which cover different
crystal lattice types. In this work, we aim at covering these issues investigating
the elastic constants in different orders, crystal symmetries, and type of materials
by means of density-functional calculations.

The chapters and sections of this thesis are organized as follows: In Chap-
ter 2, we introduce elasticity theory and elastic constants in general. We define
stress and strain tensors in Sections 2.1 and 2.2, respectively. Then, in Section 2.3,
we introduce Hooke’s law as a classical stress-strain relation in the linearity limit
and then, consequently, the compliance and stiffness SOECs are defined. In Sec-
tion 2.4, we generalize Hooke’s law in order to cover the non-linearity behavior of
the stress-strain curve, by introducing higher-order elastic constants. In the same
section, we see the influence of crystal symmetry on the SOEC matrix taking the
tetragonal crystal as an example. In Section A.1, we show the SOEC and TOEC
matrices/tensors for different types of crystals. At the end, in Section 2.5, we
discuss how polycrystalline elastic constants are calculated out of single-crystal
elastic constants.

For the elastic-constant calculations, energies or the stress tensors of dis-
torted structures are required. We utilize ab initio codes for their calculation.
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Thus, we dedicate Chapter 3 to the ab initio methodology. We start with the
many-body crystal Hamiltonian in Section3.1. Density-functional theory is in-
troduced in Section 3.2. In Section 3.3, we review different methods for solving
the Kohn-Sham equations of density-functional theory.

Chapter 4 is assigned to our implementation of elastic-constant calculations
in the ElaStic code. In Section 4.1, we explain the flowchart of the ELaStic code,
step by step. Then, in Section 4.2, we examine the accuracy of elastic-constants
calculations. We focus on the numerical accuracy of derivatives, discussing a
simple model as well as the DFT results. Moreover, we establish a computational
method for the calculation of second- and third-order derivatives which ensure
reliable results. In Sections4.3 and 4.4, deformations for different crystals and
computational details are introduced. At the end of this chapter, in Section4.5,
we present the elastic constants of representative materials for different classes of
crystals.

In Chapter 5, we show an application of ElaStic for specific materials, which
are different ordered structures of the shape-memory materials NiTi. In Sec-
tion 5.1, we briefly describe phase transitions in shape-memory materials, and
introduce different crystal phases in Section5.2. At the end, in Section 5.3, we
present results for elastic constants.



2 Elasticity

This chapter is dedicated to elasticity theory, as it is implemented in the ElaStic
code for elastic-constant calculations. We describe how stress and strain can be
specified in a solid, define the second-order elastic constants (SOECs) by in-
troducing Hooke’s law, deal with third- and higher-order elastic constants by
generalizing Hooke’s law, and at the end, we analyze the influence of crystal
symmetry on the elastic properties. We introduce these topics by following the
books “Physical Properties of Crystals” by J.F. Nye [32], “Thermodynamics of
Crystals” by D.C. Wallace [33], “Computational Quantum Mechanics for Mate-
rials Engineers” by L. Vitos [34], and “Plasticity Theory” by J. Lubliner [35] and
apply their notation.

2.1 Stress

Consider a body which is acted on by ezternal forces. These external forces gener-
ate internal forces inside the body, such that each part of the body exerts a force
on neighboring parts. In this situation, the body is in a state of stress. Stress is a
physical quantity related to the internal forces acting between neighboring body
particles. A stress is homogeneous if the forces acting on the surface, together
with their orientations, are independent of the position of the particles in the
body. In the following discussion, only homogeneous stresses will be considered.

Consider a unit cube, as shown in Figure2.1, whose edges are parallel to
the axes Oxq, Oxy, and Ox3. The different force components, that in this case
correspond to stress components too, are shown in Figure2.1. Here, o0;; is the
force component in direction +x; which is transmitted from the face that is per-
pendicular to +z;. The diagonal components o;; are called normal components
of stress, and off-diagonal ones, o;; with ¢ # j, are the shear components. o;;
are the components of a second-rank tensor which can be presented by a 3 x 3



CHAPTER 2. ELASTICITY 6

—> 07,

X1

Figure 2.1: The different force contributions which act on the faces of a unit cube in
a homogeneously stressed body.

matrix, !
011 012 013
g = (021 022 023 - (2-1)
031 032 033
A positive g;; component corresponds to tensile stress whereas a negative value
expresses a compressive stress. This is the standard definition in modern text-
books on elasticity. However, the opposite sign convention is sometimes used.

In the equilibrium state, each infinitesimal volume element of a solid body
must be in mechanical equilibrium. This means that no net force can act on the
element, i.e.,

3
ZJU + fl = 0, (22)
j=1

where f; is the ith component of the external force per unit area. Also, no net
torque can act on the element, then

Oij = Uji . (23)

'Tn this thesis, bold letters are reserved for vector objects and single and double underlined
bold letters indicate second- and higher-rank tensor objects, respectively.
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Figure 2.2: A mathematical model for deformation: A point initially located at
position r is displaced by u(r) to the final position R.

Thus, homogeneous stress can be represented by a symmetric matrix in the ab-
sence of body torques.

It should be noticed that stress has a matrix presentation like the dielectric
or magnetic susceptibility, but it is not a crystal property. It simply indicates
the force impressed on a crystal.

2.2 Strain

In order to understand the response of a solid body to external stresses, first of
all we need to give a mathematical description of the solid’s deformation.

Consider a solid body in an arbitrary starting configuration, which is taken
as a reference. Assume a particle occupies in the reference configuration the
point defined by the vector r = 2?21 x; n;. x; coordinates are called Lagrangian
coordinates. When the body is under stress, it is displaced such that a particle
at point r moves to a new position R = Zf’zl X;n;, as shown in Figure 2.2. The
difference, u(r) = R — r, is the displacement of the particle and is expressed as
a function of r. This defines a vector field in the region occupied by the body
in the reference configuration. Consider now a neighboring particle located at
r + Ar. In the displaced configuration, the position of this point is

R+ AR =r+ Ar +u(r + Ar), (2.4)
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therefore one can write
AR = Ar + u(r + Ar) — u(r), (2.5)
and, for each component:
AX; = Az; + ui(r + Ar) — u;(r). (2.6)

If Ar is small enough, the second term in the right-hand side of the previous
equation can be written as

3
Ou;(r)
u;(r + Ar) — u,;(r) ~ Az;. 2.7
o+ ) =) = 3 S 27)
For small displacements, it is convenient to replace Ar by the infinitesimal dr, and
to write the approximation as an equality. By defining the displacement-gradient

matrix o as

Ou;(r)
ij = ; 2.8
o J a$j ( )

each component in the new configuration, Eq. (2.6), becomes
3
AXZ = AZ‘Z + Z Qjj AIJ', (29)
j=1

and we may write Eq. (2.9) in matrix notation

dX =1+ a)dx. (2.10)

In this situation, the new deformed configuration X, can be described by
knowing the old reference configuration x and the matrix a.

Now consider an infinitesimal neighborhood of the particle in the new con-
figuration, labeled by the vector R. The deformation of the neighborhood in a
new configuration can be expressed in terms of the old configuration; therefore,
the square of the length of dR can be written as:

|dR|*> = dR-dR = dX"dX
= dx"(I+a")(I+ a)dx =dx"(I1+2n)dx
= dx'dx + dXTQQ dx = dr - dr + dXTQQ dx

= |dr|* + dx"2n dx, (2.11)
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(a+ a’ + a’a), or in index notation,

DO | —

where n=

3
1
mi = 3 <a,~j o+ Y akj> . (2.12)

k=1

This defines the symmetric matrix 7, known as the Lagrangian strain matrix. In
general, strain is a description of deformation in terms of relative displacements
of particles in the body. In particular, the Lagrangian strain allows to evaluate
how much the new configuration differs from the reference one, Eq. (2.11). The
Lagrangian strain, n(r), describes the deformation of the infinitesimal neighbor-
hood of r. The deformation of a solid is called homogeneous if 1 is constant.
Obviously, a necessary and sufficient condition for the deformation to be homo-
geneous is that the a;; are constant, or equivalently, that u varies linearly with
r.

We further define the symmetric and antisymmetric matrix € and w, respec-
tively, by

€ = 5lau+ay)
1
wij = é(aij - Oéji) . (213)

Therefore ;; = €;; + w;;, and

]

1
Nij = €5 + 3 (€ik €xj + €k Whj — Wik €kj — Wik Whj)- (2.14)

k=1

If || < 1 and |wy| < 1 for all 4, j, then € is an approximation to n. If € = 0,
then a = w, and therefore dX = (I+w) dx. In this situation, the squared length
of the dR vector can be calculated as

dR> = dX"dX = dx"(I+w)"(I+ w)dx
= dx'(I4+w+w’ +ww)dx

= dxTdx = |dr|*. (2.15)

Here, we have used w + w? = 0 by definition, and we have neglected the second
order term in w. From Eq. (2.15), w is identified as the part of the deformation
that does not change the distance between the elements of a solid body. This is
exactly what one would expect from a rotation. Thus, w is defined as the rotation
strain matrix, while € is known as the physical strain. If we are interested to
know how much a given displacement changes upon deformation, it is enough to
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take into account the physical strain tensor only. In this case, we can write the

Lagrangian strain is
L,
ﬂ:§—|—§§ : (2.16)
This expression for n describes a solid body that is free of rotations, however this
physical freedom has no effect on the calculation of elastic constants.

As the counterpart of the Lagrangian strain, the Lagrangian stress [36] T is
defined as
T=det(I+e)(I+e) " -a-I+e) ", (2.17)

where o is the physical stress, as discussed in Section 2.1, and the dot (-) indicates
a matrix product.

2.3 Hooke's Law

Hooke’s law states that strain and stress in a solid body are linearly dependent.
This law is valid only for a small amount of stress which is called linear-elastic
regime. This relationship can be written in terms of Lagrangian strain and La-
grangian stress, as

n=s-T, (2.18)

where s is a forth-rank tensor constant, called elastic-compliance constant, or
shortly compliance constant. As an alternative, Hooke’s law can be written as

T = 'ﬂ? :§_17 (219)

e
e

where c is the elastic-stiffness constant or, in short, the stiffness. The explicit
form of Hooke’s law for different components is

3
Nij = Z Sijhl Th - (2.20)

k=1
Stress components can also be expressed in terms of the strain by

3

Tij = Z Cijkl Mkl - (2'21)

k=1

Sijki, OT Cijki, are in total 81 independent elastic constants.

As already discussed in Sections 2.1 and 2.2, n and 7 are symmetric matrices.
Therefore, in order to have symmetric matrices on both sides of Egs. (2.20) and
(2.21), the tensors s and ¢ must fulfill the following symmetry conditions:

Sijkl = Sijlk,  Sijkl = Sjikl, (2-22)
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and

Cijkl = Cijlk s  Cijkl = Cjikl - (2-23)
Equations (2.22) and (2.23) reduce the number of independent elastic constants
from 81 to 36.

The symmetry of s and ¢, in 4 and kI makes it possible to represent
them in a matrix notation instead of a forth-rank tensor. In this notation, which is
known as Voigt notation, both Lagrangian stress and Lagrangian strain matrices
are represented in form of a vector instead of a matrix and their components are
written with a single index running from 1 to 6,

_7_1_
T2
T11 T2 T13 T Te Ts -
Ti2 Tog To3| = |Te To T4| — o (2.24)
T13 T23 733 T5 T4 T3
T5
_7—6_
and o
T
1 1 2
i1 Tz "3 M 3N 375 s
1 1
M Tz | = gl e gl = | (2.25)
1 1
s 123 133 9fs 374 N3 15
K

The following relations hold between Voigt and Cartesian indices:

3] 11 22 33 23 13 12
o) 1 2 3 4 ) 6

Using Voigt notation, Egs. (2.20) and (2.21) can be simplified as

6
Na = Z SaB T8 (2.26)
5=1

and
6

Ta =Y Cags, (2.27)

B=1

respectively.
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In the new representation, the compliance tensor (g) can be expressed by
the compliance matrix

S11 S12 S13 S14 S15 S16
S12 S22 S23 S24  S25  S26
$13 S23 533 S34 S35 S36 (2.28)
S14 S24 S34 S44 S45 S46

[V
I

S15 S25 S35 S45 S5 S56
S16  S26 S36  S46  S56 566 ]

and the stiffness tensor ¢ by the stiffness matrix

Ci1 Ci2 Ci3 Cia C15 Cis
Ci2 Co2 C23 Coq C25 Co6
C13 C23 C33 C34 C35 Csp . (2.29>
Ci4 Co4 C34 C44 C45 Cyp
Ci5 Co25 C35 C45 Cs55 Csp
Ci6 C26 C36 Ca6 Cs6 Co6 |

o)
I

In the reminder of this thesis, the Voigt notation will be assumed, unless
explicitly stated otherwise. Note that s, and c,p are not the components of a
physical second-rank tensor, and so do not transform as such. For this reason,
in order to transform them into another coordinate system, it is necessary to go
back to the fourth-rank notation.

2.4 Linear and Non-Linear Elastic Constants

As mentioned in Section 2.3, Hooke’s law is valid only in the linear-elastic limit.
When a stress applied to a solid body is large enough, the body will pass the
threshold of the linear-elastic limit. Therefore, Hooke’s law must be generalized
mathematically in order to cover both the linear and non-linear elastic regimes.
For any type of deformation, the Lagrangian stress of the deformed crystal can
be expressed as a power series of the Lagrangian strain, as

where T is the Lagrangian stress of the reference configuration. If the reference
crystal structure is chosen to be the equilibrium one, all 79 components vanish,
because at equilibrium the crystal is stress free. 2(2) introduced in Eq. (2.30)
coincides with ¢ used in Section 2.3, while ¢® is a three dimensional matrix
in Voigt notation (corresponding to a sixth-rank symmetric tensor in Cartesian
notation). By this definition, the third term of Eq. (2.30) is of order O(n?) and,
therefore, negligible for small deformations.
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For every 7;; component of the Lagrangian stress (returning to the Cartesian
notation for a moment), we generalize Eq. (2.30) as

3

3
Tij = Z Cijkl Mkl + Z Cijkimn Ml Thmn + =+ (2.31)
k=1 k,lmmn=1

In Voigt notation, this equation can be rewritten as

3 3
Ta =Y CasTs+ Y CapyMgThy+ - - (2.32)
=1 Ba=1

Here, the coefficients c,g and c,p, represent the second-order elastic constants
(SOECs) and third-order elastic constants (TOECs), respectively. Therefore,
according to Eq. (2.32), the elastic constants c,p and c¢,, can be derived using

0T,
CoB = —— 2.33
5= s | (2.33)
and
0%,
Cafy = 7= — ) 2.34
By anﬁan’y 0 ( )

respectively, and the derivatives are calculated at the reference configuration
where n = 0.

The Lagrangian stress of a deformed crystal, 7, is defined as the first deriva-
tive of the internal energy with respect to the n,, i.e.,

1 OF
Ta = Voa_”r]a (235)

where 1} is the volume of the reference equilibrium structure.

Thus, Egs. (2.33) and (2.34) can be expressed in terms of derivatives of the
internal energy as

1 0%E ‘
S Vo Onaoms |, (2:36)
and
1 3E
P Vo Onadnson, |, (2:37)

In this thesis, we denominate the procedure based on stress calculations
(Egs. (2.33) and (2.34)) as “stress approach”. Correspondingly, the calculation
of the elastic constants using Egs. (2.36) and (2.37) will be referred to as “energy
approach’.
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2.5 Polycrystalline Elastic Constants

A polycrystalline material consists of many single crystal grains which are ori-
ented randomly. An isotropic system can be described completely by the bulk
modulus B and the shear modulus G [34]. Both of these moduli can be calculated
by averaging over SOECs. The Young modulus £ and Poisson ratio are related
to B and G by the following equations

9Bd¢

=" 2.
3B+ G’ (2.38)
and,
3B —2G
e 2.
Y= 3BB+ Q) (2:39)

The most appropriate way to determine the ab initio polycrystalline elastic mod-
uli is to first calculate the single crystal elastic constants c,g and/or s,z, and then
to transform these data to macroscopic quantities by suitable averaging meth-
ods. Different methods have been proposed for averaging c, to obtain isotropic
elastic constants. In the following, we will describe the three most widely used
averaging methods for the bulk and shear moduli.

2.5.1 Voigt and Reuss Averaging Methods

In the Voigt averaging method [37] a uniform strain, while in the Reuss method
[38] a uniform stress is assumed. The former is calculated using the elastic con-
stants c,s and the latter applying the elastic compliance s,g. In the Voigt ap-
proach, the general expressions for the bulk and shear moduli are

By = —[(c11 + 22 + ¢33) + 2(c12 + c13 + c23)] (2.40)

Nel i

and

1
Gy = 15 [(c11 + 22 + c33) — (c12 + 13 + c23) + 3(caa + c55 + Co6)] - (2.41)

The corresponding expressions for the Reuss approach are
Br = [(s11 + S22 + s33) + 2(s12 + S13 + 823)]_1 ; (2.42)

Gr = 15[4(s11 + S22 + s33) — (S12 + S13 + S23) + 3(S44 + S55 + 366)}_1 . (2.43)
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2.5.2 Hill’s Averaging Method

Hill [39, 40] has shown that the Voigt and Reuss elastic moduli are the strict
upper and lower bound, respectively. Thus, the Hill-averaged bulk and shear
moduli can be determined from these upper and lower limits as

1

G = 5(Gy + Gr), (2.44)
1

By = 5(By + Br). (2.45)

Alternatively, one may prefer to use geometric or harmonic means instead of the
arithmetic average. In weakly anisotropic materials, all these average methods
lead to similar mean values of B and G [34].



3 Ab Initio Methodology

In Chapter 2, we have seen that internal energy and stress are required for elastic-
constant calculations. They are provided by ab initio codes which are inter-
faced with ElaStic. In order to obtain precise results, accurate total energies
and /or stress tensors of deformed crystals are required. Therefore, this chapter
is dedicated to the ab initio methodology, and it is organized as follows: The
Hamiltonian of the many-body crystal system will be introduced; then, basics of
density-functional theory and the solution of the Kohn-Sham equations will be
presented.

3.1 Many-Body Crystal Hamiltonian

The non-relativistic many-body Hamiltonian H, for a system containing N, elec-
trons and N; nuclei, is given by

Ne

h2
—V
2m, "

=1

ZIZJG 762
3.1
Z|RI—RJ1 erz—m s TR

I£J

Here, coordinates of nuclei and electrons are indicated by R and r, respectively.
Capital letters are used to label nuclei, while lower-case indices refer to electrons.
Mass and charge of the /-th nucleus are M; and Z;e, while the electronic mass and
charge are m, and —e, respectively. The first and second term of Eq. (3.1) are the
kinetic energy of nuclei and electrons. The third and fourth terms are the pairwise
electrostatic nucleus-nucleus and electron-electron interactions, respectively. The
last term corresponds to the electron-nuclei attraction.

In principle, all properties of a quantum mechanical system can be derived
by solving the many-body Schrodinger equation,

HY(r,R) = E¥(r,R) , (3.2)

16
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where (= {r;}) and R(= {R;}) represent all electrons and nuclei coordinates,
respectively. Using the standard adiabatic approximation proposed by Born and
Oppenheimer [41], the nuclear and electronic degrees of freedom are separated. As
a consequence, an electronic wave-function, ¢ (r; R), is introduced, which satisfies
the equation

N,
e h2
- Z %Vi + ‘/ee + ‘/el + ‘/II 1?(”3 R) = Epes(R> w(ra R) ) (33)
i=1 ¢

where, V.., V.;, and V;; are the electron-electron, electron-ion, and ion-ion in-
teraction potentials, respectively. Epes(R) is the so-called Born-Oppenheimer
potential-energy surface and corresponds to the ground-state energy of the elec-
tronic system in a fixed nuclei configuration R. The adiabatic approximation
allows to reduce the complexity of the many-body problem. However, the re-
sulting Eq. (3.3) can not be exactly solved in practical cases, i.e., for systems
consisting of more than a few electrons. Density-functional theory (DFT), which
will be discussed in the next section, provides a useful framework which allows
for practical calculations.

3.2 Density-Functional Theory

Density-functional theory is based on the Hohenberg-Kohn (HK) theorem [1],
which states that there is a unique correspondence (apart from a trivial addi-
tive constant) between the external potential, ve(r), acting on an interacting
electronic system and the ground-state electron density of the system, ngs(r).
Therefore, all properties of this systems can be written, in principle, as function-
als of ngg(r). In particular, this is true for the ground-state energy

Egs = Egslnes] -

Furthermore, the HK theorem states that the ground-state energy functional
Egs[n] is minimum for n(r) = ngg(r). The previous statement allows for calcu-
lating ngg(r) by direct minimization of the functional Egg[n] with the condition
that the total number of electrons, N,, is preserved, i.e.,

/ n(r)dr = N, . (3.4)

The minimization can be performed using the Euler-Lagrange multipliers formal-
ism and leads to

5{Egs[n]—ﬂ(/n(r)dr—1veﬂ :/6n(r){6E§—2[n]—u}dr:0, (3.5)
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where the Lagrange multiplier u has also the meaning of chemical potential.

The ground-state energy functional can be written as
Egsn] = En] = Tn| 4+ Eee[n] + Eex(n] ,

where T'[n] and E..[n] are the kinetic-energy and electron-electron interaction
energy functionals, respectively, and

B[] = /vext<r> n(r)dr .

The exact expression of E[n| is not known, because T'[n] and FE..[n] are not
known. However, E[n| can be written in terms of known quantities as

Eln] = Tin]+ Euln] + Eex|n]
+T'[n] — Ts[n] _'_VEee [n] — Enln], (3.6)
E.[n]

where

e Ti[n] is the kinetic-energy functional for a non-interacting electron system
with density n(r);!

e FEyn] is the Hartree energy

Euln] = g//%drdr’ _ %/UH(r)n(r) dr (3.7)

where vy (r) is the Hartree potential;

e all the unknown many-body contributions of T'[n] and E..[n] are incorpo-
rated into E,.[n], the so-called exzchange-correlation energy functional.

3.2.1 Kohn-Sham Equations

Following the idea of Kohn and Sham [2], the explicit minimization of the ground-
state energy functional in Eq. (3.6) leads to the expression

0T
/5n(r) {# +Uext+UH+ch—M} dr =10, (3.8)
n
where v,.(r) is the exchange-correlation potential, which is defined as
dE,[n]
= . 3.9
UJCC(r) 571(1‘) ( )

Here, we are following the notation which can be found in standard DFT textbooks [42, 43].
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One can notice that Eq. (3.8) is mathematically equivalent to the equation which
is obtained for a non-interacting electron system in the external (effective) po-
tential

Vi(r) = Vext () + vp (1) + Vge(T). (3.10)

The solution for the non-interacting system is known, and the electron density
which minimizes the ground-state energy functional can be exactly expressed in
terms of a set of single-particle wave-functions, ¢;(r), which are the solutions of
the Kohn-Sham (KS) equations

b)) = | =507 4 V)] i) = e ). (3.11)

where ¢; are the single-particle KS energies. However, the effective potential V(r)
is itself a functional of the electron density. This means that the one-particle
Schrodinger equations in Eq. (3.11) must be solved self-consistently, according to
the following steps:

a) The KS equations for the non-interacting electrons in the potential Vi(r)
obtained from a previous iteration step are solved.

b) The electron density of the system is calculated from the KS one-electron
wave-functions obtained in (a) as

Ne
n(r) = lpi(r). (3.12)
i=1
c¢) The effective potential V;(r) is updated using the new electron density given
by Eq. (3.12).

The iteration procedure (a)-(c) is repeated until the desired convergence is achieved.

3.2.2 Exchange-Correlation Functionals

An approximation for the exchange-correlation (XC) energy functional defined in
Eq. (3.6) must be chosen for any practical calculation of the ground-state energy
of an electronic system. In this thesis, we use XC functionals obtained in the
local-density and generalized-gradient approximations.

Within the local-density approximation (LDA) [44, 45, 46], the XC energy
functional is

EXPA[n] = /exc(n(r)) n(r)dr , (3.13)
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where €,.(y) is the exchange-correlation energy density of homogeneous electron
system with (constant) electron density y. Applications of LDA functionals are
successful for systems at the limit of high density and for slowly varying electron
density. However, LDA typically overestimates crystal cohesive and molecular
binding energies and it is not well suited for strongly correlated systems.

Beyond LDA, we used the generalized-gradient approximation (GGA) pro-
posed by Perdew, Burke and Enzerhof (PBE) [47]. In this case, the exchange-
correlation functional depends not only on the electron density n(r), but also on
its gradients, Vn(r). The general expression for the XC energy within this GGA
is

ESGAn] = /ex(n(r)) F,c(n,Vn)n(r)dr, (3.14)

where, €,(y) is the exchange-energy density of the uniform electron gas with
density y, and F. is a dimensionless factor explicitly dependent on the density
gradient. In this thesis, we also use the implementation of the PBE energy
functional in the slightly revised form PBEsol [48]. The latter functional improves
the equilibrium properties of densely-packed solids and their surfaces, while it is
typically worse than PBE for dissociation or cohesive energies.

3.3 Solving the KS Equations for a Crystal

In order to solve the KS equations, a convenient wave-function representation
should be introduced to reduce the KS equations to standard linear algebra. In
a crystal, due to the periodicity of the effective potential, the single-particle KS
wave-functions can be labeled by the wave-vector k. Therefore, if a set of basis
functions {qb;‘(r)} is chosen, a KS wave-function can be written as

pu(r) = Z CF ¢X(x), (3.15)

where the Cjk are the expansion coefficients. Thus, the KS equations, Eq. (3.11),
are transformed into a secular equation, i.e., a generalized matrix eigenvalue
problem of the form

> (HE —ask) Ck=0, (3.16)
J

where H}; are the matrix elements of the single-particle KS Hamiltonian h(r),

HY = / [6(r)]" h(r) $(r) dr (3.17)
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and Slkj denote the overlap matrix elements, which are defined as
st = [ [okw)] ok v 5.19

The KS wave-functions are rapidly varying in the region close to the nuclei.
This fact must be taken into account for the choice of both the basis functions
and the method of solution of the secular equation. The sets of basis functions
which are used in this thesis are presented in the next sections.

3.3.1 Plane-Wave Basis Set and Pseudo-Potential Method

The periodicity of the KS wave-functions, ¢k(r), in a crystal, suggests to use
a basis function consisting of plane waves (PWs). In this representation, the
functions ¢y (r) are given as

k K+ ik , .
ZC ) brral(r Z@ +G)r (3.19)

where G is a reciprocal-lattice vector, V' is the unit-cell volume, and

1
Vv
In principle, the number of reciprocal-lattice vectors in the expansion in Eq. (3.19)
is infinite. This leads to an infinite number of matrix elements in the secular equa-
tion which would make numerical solution impossible. The infinite-dimensional

problem can be reduced to a finite one by introducing a kinetic-energy cut-off,

E¥fe and restricting the basis set such that

Prra(r) = —= DT (3.20)

h2
2m

cut

< EYie (3.21)

Plane-wave basis sets are mostly used in connection with DFT implemen-
tations that rely on the pseudo-potential method. The main idea behind this
method is that some properties, such as chemical reactivity or bond formations,
mostly depend on the behavior of the valence electrons. This allows to con-
sider core electrons and nucleus as a rigid core unit. In this way, the strong
Coulomb potential of the nucleus, responsible for the large oscillations of the
wave-functions, can be replaced by the weaker “pseudo” potential generated by
the core unit. Within this approximation, the use of a PW basis set of reasonable
size becomes feasible.
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E

/fV

QN
A\ 4

Unit cell Spheres Interstitial

Figure 3.1: Splitting of the unit-cell volume into the interstitial region and non-
overlapping spheres in the APW methods.

3.3.2 Augmented Plane-Wave Basis Sets

An efficient way to deal with the strong oscillations of the wave-functions around
the nuclei is the choice of a basis set made of augmented plane waves (APWs) [49].
The straightforward idea, illustrated in Figure 3.1, is to partition the unit cell of
the crystal in two parts, namely i) a region consisting of non-overlapping atomic
spheres (S =) S.) centered at nuclear positions, and i) an interstitial region
(I). Inside the spheres, the basis set is built with atomic-like functions, while, in
the interstitial region, plane waves are utilized. Thus, the APW basis set is

1 )
6z(k—i—G)-r

VvV

Z Z AY (K + G)wy(ra, E) Yim(fa)  ifreS,. (3.22)

=0 m=-—1

ifrel

Pere(r) =

Here, u(r,, E) is a radial wave-function, Yy, (7,) are spherical harmonics, and the
coefficients A, (k + G) are determined by imposing the continuity of the basis
functions at the sphere boundary. The vector r, is defined in Figure3.1. Notice
that the radial wave-function u;(r,, F) is energy dependent. This means that the
solution of the secular equation leads to a non-linear eigenvalue problem which is

computationally very demanding. For more details about the APW method see
Ref. [50].

Contrary to the pseudo-potential method, the use of APW-like basis sets
allows the modern DFT implementations to deal with the full electron-nucleus
potential without any restrictions. At the same time, APW based methods permit
to treat explicitly all (i.e., both valence and core) electrons.

In the following, other APW-based basis sets are briefly summarized.
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Linearized Augmented Plane-Wave Method

In order to overcome the computational complexity of the APW method related
to the explicit energy dependence of the basis functions, the linearized-augmented
plane-wave (LAPW) method [51] was introduced. Here, the basis functions inside
the atomic spheres in LAPW are

lmax

dita () = Z m(K+ G)w(re, By) + By, (k + G) tu(ra, Er)] Yim(7a).
=0 m=—I

(3.23)
The main difference between the above equation and Eq. (3.22) is the presence
of the energy derivative of the radial function in the solution inside the atomic
spheres. This allows, the LAPW basis functions to be evaluated at a fixed trial
energy, which depends only on the angular quantum number [. Thus, the solution
of a non-linear eigenvalue problem is avoided [51].

Local Orbitals

Local orbitals (lo) have been introduced to the LAPW method to treat semi-core
states [52]. These orbitals are completely confined within the muffin-tin spheres.
For given quantum numbers [m, they are defined as

0 ifrel
i (r) =
[Alm Ul(ra, El) + Blm ul(raa El) + Clm ul(rom Elo)] Yim(rAa) ifr S Sa .

In the above equation, the radial function with the coefficient Cj,, is evaluated at
the linearization energy FEj, which corresponds to the semi-core state, while Ej is
the trial energy of the corresponding LAPW function (Eq. (3.23)). The coefficient
Ci is chosen in such a way that the local-orbitals basis function vanishes at the
muffin-tin sphere boundary. Further details about this topic can be found in
Refs. [52, 50].

APW+lo Basis

The APW and LAPW-+lo methods can be combined [53] by removing the energy
derivative in the LAPW function, Eq. (3.23), and by adding local orbitals at the
same energy. The variational freedom of the basis is improved in this way. There-
fore, the so-called APW+lo consists of APW functions with fixed linearization
energies plus local orbitals.



4 Implementation

In Chapter 2, we have discussed theoretically how second- and third-order elas-
tic constants can be derived from energy and stress as a function of strain for
a crystal structure. In the current chapter, we focus on this problem from the
computationally point of view and present the ElaStic code, which is a code
for elastic constant calculations for any crystal symmetry. This code is written
in Python uses the program SGROUP as a symmetry and space-group calcula-
tor and utilizes the density functional codes exciting, WIEN2k, and Quantum
ESPRESSO for energy and stress calculations.

This chapter is organized as follows. We present the algorithm of the ElaStic
code, first. Then, we examine the accuracy of elastic-constant calculations and
we show how their errors can be minimized. At the end, we show our calculated
elastic constants for different crystal classes.

4.1 Algorithm

In this section, we describe the fully-automated procedure for the calculation of
SOECs and TOECs used in ElaStic for any arbitrary crystal. As a starting
point, we assume that the geometry of the crystal has been optimized with re-
spect to both cell parameters and atomic positions, such that the equilibrium
configuration is used as reference system. In this case, all the curves representing
the energy as a function of strain have a minimum at zero strain. Correspond-
ingly, the stress-strain curves pass through the origin. The flowchart of ElaStic
shown in Figure4.1, displays the single steps of the procedure:

i) Specify the DFT code, method, and order of elastic constant

One of the available computer packages exciting, WIEN2k, and Quantum
ESPRESSO is chosen to perform the DFT calculations. Note that the ad-
dition of interfaces with other ab initio DFT codes to ElaStic is straight-
forward. ElaStic asks interactively about the method of calculation, i.e.,

24
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( ")
Calculate energy or
stress derivatives

Read structural data Compute SOECs

. v DFT \ J
| p——

Determine SGN Det_ermlne .
elastic moduli

f Apply deformations - G \

& prepare input files Transform
- ol elastic constants

Specify DFT code

Figure 4.1: Flowchart of the procedure of the ElaStic code. The left side dependence
on the used DFT code, while the right side in independent of it.

i)

iii)

iv)

energy or stress, and order of elastic constant, i.e., second or third order. A
snapshot of the execution of ElaStic is shown in Figure4.2.

Read the structure file

An input file containing information about the structure (e.g., crystal lattice,
atomic positions) should be provided. For this purpose, ElaStic requires
the input file which is used by the selected DFT code for a calculation at
the equilibrium structure with relaxed atomic positions. The structural data
contained in the input file are read by ElaStic.

Determine the space-group number

In order to fully characterize the system crystallographically, the space-group
number (SGN) must be determined. This is performed by the code SGROUP
[54]. A classification of the different crystal structures including the corre-
sponding number of independent SOECs/TOECsS is given in Table A.1.

Deform the crystal and prepare input files

Using this SGN information, a set of deformation types is specified. All
deformation types utilized in ElaStic are shown in Tables4.1 and 4.2 for
the energy and stress approach, respectively.

For a given deformation type 1y in Voigt notation, the deformation matrix
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[ A1203 : python v %
$ ElaStic_Setup

R T
* |
WELCOME TO THE ElaStic CODE |
ElaStic Version 1.0.0, Release Date: 2012-01-01 *|
* |
o ok o e ook ok o ok o o

Which DFT code would you like to apply for the calculations?

exciting > 1

WIEN2k

Quantum ESPRESSO --= ;
- Please choose (1, 2, or 3): 1

2
3

Energy ---=>
Sti 5 - --=>
= Please choose the method of the calculation (choose 1 or 2): 1

2nd  ---=>
3rd ---=>
>>>> Please choose the order of the elastic constant (choose 2 or 3): 2

Figure 4.2: First snapshot of the ElaStic execution. ElaStic asks interactively
about the DFT code, method, and order of elastic-constant calculations.

D is constructed as follows:

o
Zi m %776 %775

= == %776 L siu| =D=I+n (4.1)
s 575 374 T3
776 ]

where 1 is the identity matrix. Then, the primitive lattice vectors a, b, and
c are transformed to the new vectors a’, b, and ¢, respectively, as

a a L+m  ing 75 a,:
b| D= |b|-| 2ns 1+m In | =10 (4.2)
c c 575 e 1+ c
Two input values, the maximum absolute value for the Lagrangian strain,
Nmax, and the number of distorted structures with strain values between
—Nmax and Nmax, should be provided by the user at this stage, see Figure4.3.

Then, input files for the chosen DFT code are created for each deformed
structure.
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Al203 : bash

2nd  ---=>
3rd ---=>
> Please choose the order of the elastic constant (choose 2 or 3):

- Please enter the exciting input file name: A1203.xml

Number and name of space group: 167 (R -3 c) [h axes]
Rhombohedral I structure in the Laue classification.
This structure has 6 independent second-order elastic constants.

> Please enter the maximum Lagrangian strain

The suggested value is between 0.030 and 0.150: 0.050
The maximum Lagrangian strain is 0.05

> Please enter the number of the distorted structures [odd number > ¢

The number of the distorted structures is 41

A1203.xml Dstel Dst83 Dste5 INFO _ElaStic VoL
Distorted Parameters Dst82 Dst84 Dst86 Structures_exciting sgroup.out

an) (o) (26

Figure 4.3: Second snapshot of the ElaStic execution. Using the SGN information,
which is obtained by SGROUP, the crystal symmetry is specified. Then, the maximum
absolute value of the Lagrangian strain, nmax, and the number of distorted structures
between —nax and Npax are asked for. At the end, the input files for the chosen DFT
code are created for each deformation type and different strain steps.

Table 4.1: Deformation types, expressed in the Voigt notation, that are used
by ElaStic in the energy approach. Here, the generic (i-th) strain tensor is
represented as a vector ) = (11,72, 93, N4, 5, 76)-

n" moom ms ma N5 g
n® n n n 0 0 0
n® n 0 0 0 0 0
n® 0 n 0 0 0
n® 0 0 n 0 0
n® 0 0 0 2 0 0
n© 0 0 0 2n 0
n 0 0 0 0 2n
n® n n 0 0 0 0
n® n 0 n 0 0 0
n1o n 0 0 2 0 0

Continued on next page |
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Table 4.1 — continued from previous page
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v)

vi)

vii)

viii)

ix)

Table 4.2: Same as Table 4.1 for the stress approach. The
choice of deformation types is made according to Ref. [31].

n; Mmoo M M M M5 e
i no2 3n  4n Spo 6p
A% | =2p  n 4n =3n  6n by
7® 3 —5np  —-n 6y 2 —dp
a9 | —4n —6n Bp m =3n 2y
7 bn  4n 6p —2n  —n —3n
A% | —6n 3n -2y Bp —4np g

Perform ab initio calculations

The energy or stress for the set of distorted structures created at the previous
step is calculated by the selected DFT code. For each deformed structure,
the internal degrees of freedom are optimized.

Calculate derivatives: Best polynomaial fit

A polynomial fitting procedure is applied to calculate the appropriate deriva-
tive of the energy or stress with respect to the Lagrangian strain at the equi-
librium point. We discuss in Section4.2, the polynomial-fit order and the
range of distortion influence on the accuracy of the elastic constants.

Calculate elastic constants: Least-squares fit

The coefficients of the best fitting polynomial achieved at the previous step
can be expressed as a linear combination of the elastic constants. This proce-
dure is repeated for a number of different deformation types, thus obtaining
a set of linear equations which is (possibly) redundant in terms of the vari-
ables, i.e., of the elastic constants. This set of linear equations is solved
using the least-square fit method.

Calculate elastic moduli

Appropriate averaging procedures can determine isotropic elastic constants
such as the bulk, shear, and Young modulus as well as the Poisson ratio.
This method of calculation is explained in Section 2.5.

Post processing: Transform elastic tensors

In addition to the main code, ElaStic can be used to perform some post-
processing of the obtained results. For further explanation readers are re-
ferred to Appendix B.
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In order to have precise elastic constants one has to utilize a proper polyno-
mial fit. Therefore, the next section is dedicated to the accuracy of the numerical
differentiation.

4.2 Accuracy and Numerical Differentiation

The numerical accuracy of the elastic-constant calculations is strongly correlated
with the numerical differentiation needed for the evaluation of Egs. (2.33), (2.34),
(2.36), and (2.37). In fact, we deal with a function (energy or stress) which is
calculated only for a finite set of strain values. The evaluation of the numerical
derivative of such a function is a non trivial issue. Several parameters play an
important role, like the number and range of data points included in the fit and
the kind of procedure used for the differentiation. In addition, the calculated data
points suffer from intrinsic numerical uncertainties, as in the case of the numerical
determination of energies and stresses in numerical ab initio DFT codes. In order
to keep all these parameters under control and to estimate the numerical error
of the ab initio calculation of energies and stresses, we have developed a special
fitting procedure, which will be illustrated in the next section for a simple model.
Then, the application of this procedure will be shown for some prototypical real
materials. Here, only results for the energy approach are shown. However, the
extension to the stress approach is straightforward.

4.2.1 Analytical Examples

In the following, we demonstrate the reliability of numerical second- and third-
energy derivatives by two simple mathematical test cases. We assume that the
energy vs. strain relationships are known and are exactly given as polynomial
functions E® =Y. A%pi and E® = 2. A%y with known A® and A coeffi-
cients. The E® and E® functions are used for the second- and third-derivative
calculations. In these examples, without loss of generality, we consider the high-
est degree of the polynomial’s terms to be 6 and 8 for £ and E®), respectively.
The energy functions are

E®(n) = 10°9* +10*n* +10°9°, (4.3)
and
E® ) = 1029 —10°® +10*n* +10°n® — 5 x 10* " + 107 %%, (4.4)

All coefficients AZ(-Q) and Al(-g) are considered to be known. The coefficients Af)
and Aés), which are needed for the calculation of the second- and third-derivative
at zero strain of the £ and E®) energy-strain curves, are set as to Agz) =100
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and A§3) = —1000 (in arbitrary units), respectively. Obviously, in these special
cases, the differentiation can be performed analytically; nevertheless, we calcu-
late the second- and third-order derivatives with standard numerical techniques.
Therefore, we generate a set of 51 equally-spaced strain points with symmetric
distribution around the origin in the range n € [—0.1,0.1] and n € [—0.15,0.15]
where the energy values are obtained using Egs. (4.3) and (4.4), respectively. A
polynomial fit yields the exact value of AéQ) and Agf’), if the order of the poly-
nomial is equal to or larger than 6 and 8, respectively. The procedure can be
repeated by taking into account only strain points in the range 7 € [—7max, Pmax)
for different values of nyax (keeping the strain-point density fixed). The energy
as a function of n calculated from Egs. (4.3) and (4.4) and the values of AP and
Agg) as a function of 7y.y are shown together in Figure4.4.

Due to the choice of a symmetric distribution of strain points around the
origin, the ﬁttin%; polynomials of order n and n + 1 with even n provide the
same value of A22) and A§3) , as can be seen in the right panels of Figure4.4.
The calculated A§2) and A:(f) using the quadratic and third-order polynomial fit
are close to the correct value if only the 7., is less than 0.01 and 0.02 values,
respectively. Similarly, the polynomial fit order n = 4 and n = 5 provides the
correct result for M.y are less than 0.35 and 0.65, respectively, while the order
n =6 and n = 7 can be used for any value of 7.x.

The example considered up to here is very simple and somehow trivial. How-
ever, the situation is different considering that the values of the function E(n)
are not known exactly, but include some intrinsic numerical error introduced by
calculating DFT total energies. We simulate the effect of such errors by adding
a random noise of given amplitude to the polynomial function in Egs. (4.3) and
(4.4), as given by

EQ () = B () + €A (BQ, - ER,) . (45)
and

(3 3

EQ () = B9 (n) + €A (BG, - ED)) . (4.6)

respectively, where . and Ey,;, are the maximum and minimum of the energy
function in range of functions and £ is a randomly generated number in range

¢el-1,1].

The calculated values of A§2) and Aé?’) for A =0, 0.001, 0.005, 0.02 and
A =0, 0.0001, 0.0005, 0.0015, respectively, are shown in Figure4.4. The main
effect of the noise is to generate deviations from the unperturbed curves, strongly
depending on the order of the polynomial fit, 7,.,, and the noise amplitude.
Analysis of the plots with different amount of noise reveals two different trends
in dependence of the fitting order:
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i) For small deformations, the best results for the derivative, i.e., the closest
ones to the imposed value, are obtained by using a low-order polynomial fit.
The same result holds also if only a few data points are taken into account
for the fit. The better values for the derivative arise in this case from the fact
that the noise is partially averaged out using low-order polynomials, while
high-order ones follow the noise much more, developing unphysical wiggles
and, thus, yielding completely wrong coefficients.

ii) The results obtained for large deformations are very close to the correct value
for high-order polynomial fits, in particular, in the strain regions where the
curves in the right panel of Figure 4.4 are flat.

From this, we conclude that for a fixed order of the polynomial fit, the exact
values of A;Q) and Agg) are best reproduced in the region of 7., which are
characterized by a plateau of the displayed curves. For instance, for the largest
noise amplitude, for the range Nymax > 0.08 (Nmax > 0.1225) only the sixth-order
(eight-order) polynomial fit gives reasonable results for the coefficient AL (AY).
Therefore, considering the fact that a low-order polynomial fit gives good results
only for small values of 7., the application of a high-order polynomial fit is
preferable. This means, in turn, that large values of n,., and a considerable
number of strain points should be used in order to identify the plateaus.

These results allow one to establish a general criterion for finding the best
numerical derivative of a function. In practice, one needs to the identify the flat
regions (plateaus), which typically move to higher values of 7,.x when applying
a higher-order polynomial fit.

In addition to this analysis, the simple model introduced above can be used
to investigate the intrinsic accuracy of the energy values. This can be done with
the help of a cross-validation (CV) method [55, 56, 57]. In general, the CV
technique allows for optimization of the fitting procedure performed on a sample
of statistical data. In practice, we apply the leave-one-out cross-validation score.
In our context, it is used as follows.

In our simple examples, the statistical sample consists of NV pairs of the type
(mi, ;). The CV error of a polynomial fit of order n can be calculated as

cv = %Z [E; — p™ ()], (4.7)

i=1

where p(™ (1;) is the value at 7; of the polynomial function of order n which has
been obtained by applying the polynomial fit of order n to N — 1 points of the
sample, i.e., excluding the pair (1;, E;).

The CV error defined in Eq. (4.7) as a function of ny,.y for different orders
of the polynomial fit is shown in Figure4.5. The behavior of the different curves
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and sc CsCl (lower panel). The calculations have been performed using the WIEN2k
code.

is similar to the corresponding ones in Figure4.4. However, in this case, each
plateau value gives an estimation of the maximum noise amplitude. Therefore,
for real materials, this result can be used to check the numerical accuracy of the
energy obtained by the ab initio calculation. In fact, if a too large plateau value
is found in this case, the accuracy of the DFT computations should probably be
increased.

4.2.2 Test Examples for Real Materials

The method illustrated in the previous section can also be applied to real sys-
tems, under the assumption that the errors in the calculated DFT energies are
statistically independent. In this section, we consider as test cases three materi-
als with cubic structure. These materials are diamond, Al, and CsCl. They are
representative systems which can be classified from the elastic point of view as
hard, medium, and soft materials, respectively.
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The elastic property that we investigate in this test is the bulk modulus.
(For cubic systems the different definitions for the bulk modulus give the same
value.) In Figure4.6, we show the result of WIEN2k calculations of the bulk
modulus for the test materials as a function of 7., and for different orders of the
polynomial used in the fitting procedure. As explained in the previous section,
only even values of the polynomial order are significant. The deformation type
which is used here is a uniform volume change. In addition to the results of the
polynomial fit, Figure 4.6 also displays the value of the bulk modulus as obtained
using the equation-of-state fitting procedure proposed by Birch and Murnaghan
(BM) [58]. The trends observed for the polynomial fits in Figure4.6 are the
same as for the noisy curves of the simple model (right panel of Figure4.4). The
converged values of the bulk modulus for the polynomial and the equation-of-
state fit, as denoted by the flat part of curves in Figure4.6, are comparable.
Note that the application of the equation-of-state fit is possible for deformations
which change only the volume of a system. Therefore, this kind of fit can only be
used to obtain a restricted number of elastic properties, 7.e., the bulk modulus
or its pressure derivative. We have, therefore, implemented the more general
approach, i.e., the polynomial-fit procedure in the ElaStic code. The choice
of the optimal fitting parameters depends on both the material and the applied
deformation type. In most cases, for the elastic-constant calculations of the
prototype materials reported in Section 4.5, results have been obtained using a
sixth-order and seventh-order polynomial fit with values of 7., in the range
Nmax € [0.05,0.08] and 7.y € [0.05,0.10] for SOECs and TOECs, respectively.

4.3 Choice of Deformation

The type of deformation plays an important role for the accuracy of elastic-
constant calculations. The deformation types being used in the ElaStic code are
presented in Tables 4.3, 4.4 and Table 4.5. Different criteria are applied depending
on the used approach.

In the stress approach, the deformation types are defined according to Ref. [31].
These deformations correspond to the so-called universal linear-independent cou-
pling strains [31]. The corresponding deformed structures exhibit very low sym-
metry, consequently, in a small number of deformation types is required.

A different criterion is followed in the case of the energy approach. We have
chosen the set of deformation types where the symmetry of the unperturbed
system is least reduced by applying strain. This is done for two reasons: The
first is to minimize the computational effort as DFT codes can make use of
symmetry. Second, low symmetry may also lead to very slow convergence with
respect to computational parameters as has been reported in the literature [59].

The choice of too large values for 7., should be avoided due to the possible
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onset of a phase transition. For instance, this happens in the calculation of cyy
for cubic diamond when applying the n(* deformation type. The total energy
as a function of the strain for this case is shown in Figure4.7. The curve exhibits
a kink at 7 = 0.08 related to the onset of a phase transition from the (deformed)
diamond structure to a lamellar rhombohedral system where the carbon sheets
are oriented orthogonally to the (1,1,1) direction of the cubic diamond structure.

4.4 Computational Details

The energies and stresses of the distorted structures are calculated using the DFT
codes exciting, WIEN2k, and Quantum ESPRESSO. In all these codes, the elec-
tronic states and density are obtained by solving the self-consistent Kohn-Sham
equations of DFT [2]. However, they differ in the choice of the basis set which
is used to represent electronic states. While exciting and WIEN2k are based
on the full-potential (linearized) augmented plane-wave and local-orbitals (FP-
(L)APW+lo) method, the Quantum ESPRESSO software package uses a plane-
wave basis set and pseudo-potential approximation. In the most recent imple-
mentations, the direct calculation of the stress tensor is available only for the
Quantum ESPRESSO package; therefore our results for the stress approach have
been obtained by using this code.

First-principles calculations have been performed for a set of materials. At
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least one representative crystal for each crystal system has been chosen. Fx-
tensive tests for each considered crystal have been carried out to ensure that
the calculated properties are converged within a certain accuracy, with respect
to all computational parameters, e.g., the k-point mesh, the basis set size, and
the expansion of the charge density. The main computational parameters which
have been used to perform the calculations presented in this work are shown in
Tables 4.6 (for exciting and WIEN2k) and 4.7 (for Quantum ESPRESSO).

In all calculations, exchange-correlation effects have been treated within the
generalized-gradient approximation (GGA) with the PBE [47] functional. The
accuracy of the PBE functional in providing results for the elastic constants has
been already shown in the literature [21, 22, 23, 24, 25, 26, 27]. Exceptionally,
for the calculation of CsCl we have used the PBEsol [48] exchange-correlation
functional which allows for a better description of the interatomic bonding, in
particular for systems which are characterized by small SOECs value, such as
CsCl. In fact, the agreement with experimental data for the elastic constants is
improved from about 21% deviation to less than 2% using the PBEsol instead of
the PBE functional.

For the integration over the Brillouin zone, we have employed the improved
tetrahedron method [60] as well as summations over special points within the
Monkhorst-Pack scheme [61]. For metallic systems, the Gaussian-smearing tech-
nique [62] has been used. For lattice relaxations, residual forces and stresses have
been converged to yield an accuracy better than 0.1 mRy/bohr and 50 MPa,
respectively.

4.5 Results

In this section, we present the results for the SOECs and TOECs obtained by
the ElaStic code. Our main goal is to show the reliability of results and used
procedures. We do not particularly aim at matching experimental values, which
could be obtained under conditions which are different from the ones considered
for the calculations. For instance, theoretical data obtained using DFT should
be interpreted only as T" = 0 K values, while most experiments are performed at
room temperature.
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Table 4.8: Optimized lattice parameters (a, b, and ¢, in atomic units) and angles (a,
B, and v, in degrees) for representative materials. X', W, and Q denote calculations per-
formed with the codes exciting, WIEN2k, and Quantum ESPRESSO, respectively. For
elemental Ti, the labels (us) and (paw) indicate the use of ultra-soft pseudo-potentials
and the Projector-Augmented-Wave method, respectively. The quoted references refer

to experimental values.

Laue Material Code a c «Q
Group
X 6.747
o 4% 6.749
o) 6.741
63] 6.741
C W 7.636
Al 0 7.669
[64] 7.653
% 7.702
Cscl [65] 7.797
8) 6.055 9.824
Mg
[66] 6.053 9.825
W 5.552 8.803
, Qpaw) | 5 555 8.791
Ti
H Q (us) 5.412 8.554
! [67) 5.575 8.844
W 5.729 6.107
TiB, 0 5.727 6.079
68] 5.726 6.108
w 9.800 55.28
R Al O 0 9.741 55.29
69] 9.691 55.28
8) 11.439 47.24
Bu | CaMe(COs)2 | 70 |41 563 47.12
% 8.898 5.857
T MgF, o) 8.873 5.855
71] 8.721 5.750
W 10.003 21.931
T CaMoO, 0 10.061 21.881
[72] 9.868 21.590

Continued on next page
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Table 4.8 — continued from previous page

Laue Material Code a b c Q I} y
Group

w 9.072 15.654 16.200
O TiSi, Q 9.048 15.624 16.204

[73] 9.071 15.628 16.157

w 10.128  9.812  9.931 99.63
M ZrOs Q 10.138  9.786  9.897 99.62

[74] 10.048  9.733  9.849 99.23
N TiSi, w 9.284  9.047 11.264 53.04 51.14 75.82

For the ab initio calculation of the elastic constants, first one has to optimize
lattice parameters and ionic positions. This optimization has been performed for
all the crystal systems we have studied. The results for the equilibrium lattice
parameters of the different materials are shown in Table 5.1 for all the used codes.
The errors concerning the numerical differentiation have been minimized by using
the procedure shown in Section4.2. Obviously, the different codes (exciting,
WIEN2k, and Quantum ESPRESSO) and different approaches (energy and stress)
should achieve very similar results. If this is not the case, the failure should
be attributed to the one or the other approximation which is implicit in the
theoretical methods or in their implementation.

Below, results for the different structure families are discussed separately.

4.5.1 Cubic Family
SOECs

For cubic crystals structures, the second-order elastic tensor is fully determined by
three independent elastic constants. We have chosen three examples representing
different ranges of elastic moduli: diamond, Al, and CsCl, which are known as
hard, medium, and soft material, respectively. Hard materials, like diamond, are
characterized by very deep energy-strain and very steep stress-strain curves. This
situation corresponds to relatively large SOEC values. On the other hand, in soft
materials like CsCl, the curves representing the energy/stress as a function of
the strain are much flatter, which can cause larger errors in the resulting elastic
properties. In fact, while a given accuracy in the evaluation of the total energy
may lead to small errors for hard materials, the same accuracy may yield large
errors for a soft material.

In Tables4.9 and 4.10, the SOECs obtained with different approaches and
codes are shown. As can be seen in Table4.9, all the theoretical results for di-
amond are very similar and very close to the experimental values. The largest
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deviation is found for the values of ¢1; and ¢4y which appear smaller than experi-
mental data. The tendency of GGA to slightly overestimate the bonding strength
corresponds to an underestimation of the crystal’s stiffness. For Al and CsCl, the
agreement of all the values with their experimental counterparts (see Table4.10)
is also very good.

TOECs

There are two different classes C; and Cy; for cubic crystals, those with point
groups 432, 43m and %3% are labeled Cy and the cubic crystals with point groups
23 and %3 are specified as Cy;. The third-order elastic tensor is fully determined
by six and eight independent elastic constants for C; and Cyy, respectively.

The space group of diamond structure is Fd3m. It belongs to point group
%3% and C; Laue class. We have calculated the TOECs of C using different
codes. Six third-order independent elastic constants are listed in Table (4.11).
The results obtained with different codes are in good agreement with each other.

4.5.2 Hexagonal Family

Two different crystal systems belong to the hexagonal family: the primitive
hexagonal and the trigonal systems (see Table A.1). In the following, the two
systems will be discussed in separate sections.

SOECs

For primitive hexagonal structures, there are five independent second-order elastic
constants. As representative for this crystal system, the elemental metal Ti and
the metal-like ceramic TiBsy have been chosen. According to the results presented
in Tables 4.12 and 4.13, elastic constants for TiBy obtained with different methods
and codes are very similar, while for Ti, large deviations are observed among
theoretical results obtained with different pseudo-potentials. SOECs calculated
using the PAW method [77], are very close to the ones obtained by the WIEN2k
code. In both methods, e.i., PAW and all-electron, electrons have been treated
in the same way. We have considered the first and second shells, e.i., 1s? 2s?
2p® and the third and fourth shells, e.i., 3s 3p% 4s? 3d? in the Ti atoms as
core and valance electrons, respectively. In contrast, the results based on ultra-
soft (us) potentials [78] are significantly different. These deviations indicate a
failure of this kind of pseudo-potential approximation for describing the metallic
interaction in hexagonal titanium.
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In Tables4.14 and 4.15, we list the calculated SOECs for materials belonging
to the trigonal family. In trigonal lattices, there are either six or seven indepen-
dent elastic constants, and the two cases are distinguishable on the basis of the
SGN. We have chosen Al,O3 and CaMg(CO3), as examples for the Laue groups
R; and Ry, respectively. The calculation of the SOECs for trigonal crystals de-
serves special attention. First, there is an intrinsic difference between trigonal
crystal structures of type P and R (see Table A.1). In contrast to the trigonal
R structures, the trigonal P structures are treated on the same footing as the
primitive hexagonal ones. Second, the default choice of the reference Cartesian
coordinate frame used for these crystals is not the same for all DFT codes. As
a consequence, for the trigonal family, the calculated second-order elastic matrix
can be different as well, as demonstrated below. The different choices of the
default Cartesian reference frame used in ElaStic for the DFT codes considered
in this thesis are presented in the Table A.2.

According to the literature concerning the SOECs in trigonal R materials,
the sign of ¢14 and ¢35 is an open issue. Different signs of ¢4 of Al,O3 are found
in experimental [81, 82, 83, 84| as well as theoretical work [85, 86, 87, 88]. These
discrepancies may be related to the ambiguity in the choice of the Cartesian co-
ordinate frame for the trigonal R structure. In the literature, this structure is
referred to as rhombohedral, and this denomination will be adopted in the follow-
ing. Systems with rhombohedral symmetry can be described using a supercell
with hexagonal symmetry. The setting of the hexagonal primitive cell with re-
spect to the rhombohedral unit cell is not unique, allowing for different choices
of the Cartesian reference frame. An additional complication appears, as in dif-
ferent DFT codes the Cartesian frames are defined differently (see Table A.2).
In order to sketch the situation, we show in Figure4.8 two different choices for
the hexagonal and rhombohedral cells of Al;O3 together with the rhombohedral
primitive vectors projected onto the zy plane. As shown in Figure 4.8, there are
two different Cartesian coordinate frames which the elastic constants of rhombo-
hedral structures can be referred to. The two frames are labeled by “+” and “—7,
which correspond to the sign of ¢y4 in our calculated examples. As can be seen
in Tables4.14 and 4.15, our calculated values of ¢14 for Al;O3 and CaMg(CO3)
are negative, which is due to the choice of the “—” Cartesian coordinate system
in the ElaStic code.

TOECs

The primitive hexagonal crystals are divided into two classes in Laue classifica-
tion, Hy and Hy;. The full third-order elastic tensors of Hy and Hy are described
by ten and twelve elastic constants, respectively. We have calculated the TOECs
of single crystal Mg using the Quantum ESPRESSO code. They are presented in
Table 4.16.
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yd x

Figure 4.8: Two possible choices for Cartesian coordinates in the trigonal R (rhombo-
hedral) structure. For the coordinate system in the right (left) panel, negative (positive)
values are obtained for cy4 for AlsOs. Black bold lines indicate the projection of the
primitive rhombohedral lattice vectors onto the xy plane. The shaded (green) areas
correspond to the hexagonal primitive cells.

There are 14 and 20 independent third-order elastic constants for the Laue
groups Ry and Ryp, respectively. In Table4.17, we have presented the TOECs for
Al,O3 with trigonal structure.

4.5.3 Tetragonal and Orthorhombic Families

Our results for crystals with tetragonal (T and Typ) as well as orthorhombic
symmetry are summarized in Tables4.18, 4.19, and 4.20, respectively. In the
tetragonal systems, there are either six (Ty) or seven (Ty;) independent elastic
constants. We have studied MgFy and CaMoQO, as examples for the Ty and Ty
lattice types, respectively. All calculated results are in reasonable agreement
with experimental data. The stress and energy approach, as well as the use of
WIEN2k and Quantum ESPRESSO, lead to similar elastic constants, except for
c19 for CaMoQ, obtained with the WIEN2k code.

The SOECs for the orthorhombic system TiSiy are listed in Table4.20. In
this case, there are nine independent elastic constants. The comparison between
the values obtained by pseudo-potential calculations with the full-potential and
experimental results shows large deviations for some elastic constants, e.g, ci3,
Co9, C33, and cgg. Like before, we assign these discrepancies to the pseudo-potential
approximation.

4.5.4 Monoclinic and Triclinic Families

The monoclinic structure is characterized by thirteen independent elastic con-
stants. Due to the large number of SOECs and the low symmetry, calculations
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for this structure family are computationally more demanding. We have chosen
ZrQ,, zirconia, as representative material.

Theoretical data for monoclinic zirconia are listed in Table4.21. The choice
of Cartesian reference frame for monoclinic structures in the Quantum ESPRESSO
and WIEN2k codes is different, as explained in Section A.1. Therefore, in order to
compare results of different codes, we have transformed all the elastic constants
to the Cartesian coordinate system used in experiment [95] by applying Eq. (B.2).
Deviation between theory and experiment may be related to temperature effects.

Triclinic structures exhibit the lowest symmetry, where all the 21 Voigt com-
ponents of the elastic tensor are independent. Moreover, triclinic materials typ-
ically, have more than ten atoms in the unit cell. Hence, in this case the calcu-
lations are very demanding. In order to make calculations feasible at reasonable
computational cost, we have chosen the primitive orthorhombic cell of TiSiy as
an example, but treated it without considering symmetry. Instead of comparing
with the experimental results, we have made a comparison between the elastic
constants calculated directly for the triclinic primitive unit cell and those ob-
tained from the transformation of the previous results for the orthorhombic unit
cell. The comparison is shown in Table 4.22.

4.6 Summary and Discussion

In this chapter, we have introduced ElaStic, a tool for calculating SOECs and
TOECs using two alternative approaches that are based on the calculation of
the total energy and stress, respectively. The two approaches provide equivalent
results, but have some intrinsic differences.

The stress approach allows for relying on a much smaller set of deformations,
thus reducing the computational effort. Furthermore, only first and second-order
derivatives have to be calculated for SOECs and TOECs, respectively, which
improve the accuracy of numerical differentiation. However, the symmetry of
the distorted structures in this case is lowered to monoclinic or triclinic, thereby
increasing CPU time and memory consumption. In order to achieve the same
accuracy by directly computing the stress tensor rather than through total-energy
calculations, often computational parameters (e.g., kinetic-energy cutoff, k-point
sampling, etc.) have to be readjusted, which increases the computational costs.
In addition, this direct calculation of the stress tensor is not available in every
considered code.

On the other hand, a larger number of distortion types must be considered for
the energy approach, which also requires the numerical calculation of second-order
derivatives for SOEC and third-order derivatives for TOECs. Deformation types,
however, can be selected such to preserve the symmetry of the reference system as
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much as possible. For more symmetric crystal structures, e.g., cubic or hexagonal,
both approaches are equally suitable, but for less symmetric crystal structures
like monoclinic or triclinic systems, the stress approach is more efficient.

In order to demonstrate the ability and reliability of ElaStic, we have
presented SOECs for prototypical example materials of all crystal families and
TOECs for some crystal lattices. The results produced with different codes based
on total-energy calculations, are in good agreement with each other. Results from
the total-energy and the stress approach calculated with Quantum ESPRESSO are
also consistent, emphasizing that both procedures are suitable and comparable
for the calculations of elastic constants.

At the end of this chapter, we want to emphasize that it is crucial to precisely
determine numerical derivatives of the energy (or stress) of a crystal with respect
to the Lagrangian strain in order to obtain reliable results for elastic constants.
To this extent, we have developed a numerical method which allows the users to
do so in an automatized manner.

ElaStic is freely available and can be downloaded from http://exciting-
code.org/.
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Table 4.3: List of deformation types for different Laue
groups which are used in ElaStic for the SOEC calcula-
tions in the energy approach. The number of deformation
types, equal to the number of independent SOECs, is de-
noted by Npr. Deformation types are labeled according
to Table4.1.

Laue

group Npr Deformation types

Cri 3 77(1)7"7(8)777(23)

)

Hy 5 77(1)7"7(3) 777(4) 7"7(17)7"7(26)

Rt 6 nWn®n"nt e nto

Ru 7 nWn® W ne n® no 5y

T 6 nWnWn®n0nEntn

Ty 7 pWnWn® n0ntontnns

4)

(1) nB) ) G) 6) (7) (25
0 g LML TN NN

12 7(27)

4) n©)

(1) B gl () n©) (M) (12
M 13 noesn NN N n
77(20)777(24)777(25)7 77(27)7 7’(28)’ n(29)

3) 5)

n® 1@ @0 n0 a0 o
N 21 7’](9),7](10),7’(11),77(12),77(13),77(14),77(15)
(18 (11 (18) p(19) p(20) P (21) o (22)
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Table 4.4: List of deformation types for different Laue
groups which are used in ElaStic for TOEC calculations
in the energy approach. The number of deformation types,
equal to the number of independent TOECs, is denoted by
Npr. Deformation types are labeled according to Table4.1.

Laue

group Npt Deformation types

Gt 6 nWn®ntontln) nt2

CII 8 "7(1)777(8)7"7(9)777(10)777(11)777(12)7"7(23)7"7(32)

14) . (17)

N 0@ n® nlo nl
30)

(1) n
H, 10 nn i

77(26),77(

H, 19 n(l),77(2)’77(3),n(4)777(8)77’(10)777(12)777(14)
n(17) »77(26) ﬂ7(30) m(31)

0 n® 0 n® 0o
35)

(
Ry, 14 "
Y 7 ) nlE) pY pl

Table 4.5: List of deformation types for differ-
ent Laue groups which are used in ElaStic for the
SOEC calculations in the stress approach. The
number of deformation types is denoted by Npr.
Deformation types are labeled according to Ta-

ble4.2.
Laue :
eToup Nprt Deformation types
Cri 1 "7(1)
Huo 2 79,4
Rig 2 7% 4%
Tin 2 3% q%
0 3 ﬁ(l), ﬁ(3), ﬁ(5)
M 5 ﬁ(l), ,,~7(2)7 7:,(3)7 ﬁ(4), ﬁ(5)
N 6 7Y, q% 5% 54 505 76

47
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Table 4.6: Computational parameters used for lattice opti-
mization and elastic-constant calculations with exciting and
WIEN2k. Smearing values (0gmear) are given in Ry, muffin-tin
radii (RyT) are in atomic units.

Material Atom Ryt RvtKmax k-mesh O smear

C C 1.15 8.0 15x15x%x15 -

Al Al 2.00 9.0 36x36x36 0.025

CsCl Cs 2.00 9.0 15x15x15 -
Cl 2.00

Ti Ti 2.00 8.0 16x16x9 0.010

TiB, Ti 2.23 9.0 15x15x%x12 -
B 1.54

Al,O5 Al 1.64 8.0 8x8x8 -
O 1.64

MegF, Mg  1.80 8.0 10x10x16 -
F 1.40

CaMoO, Ca 1.60 8.0 8x8x8 0.010
Mo 1.60
O 1.50

TiSis Ti 2.10 8.5 X 8X8 -
Si 1.50

A0 Zr 1.75 8.0 TX8XT —
O 1.55

TiSi, Ti 2.00 8.5 14x12x14 -
Si 2.00
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Table 4.7: Computational parameters used for lattice opti-
mization and elastic-constant calculations with the Quantum
ESPRESSO code. Kinetic-energy cutoffs (Eeyt) and smearing
values (Ogmear) are given in Ry.

Material Eémfc) Ec(ﬁtlo) k-mesh Csmonr
C 80 480 15x15%x15 -
Al 80 800 36x36x36 0.025
Mg 80 800 26x26x16 0.060
Ti 80 800 16x16x 9 0.010
TiBs 100 1000 15x15%x12 -
Al;O4 80 800 8x 8x 8 -
MgF'y 80 800 10x10x16 -
CaMoOQOy 80 800 8x 8x 8 0.010
TiSi, 80 800 8&x 8x & 0.010
710,y 80 800 Tx 8x 7 -

Table 4.9: Elastic constants (c,g) for single-crystal C with the cubic diamond struc-
ture. We also show results for the isotropic bulk (B) and shear (G) modulus for
polycrystalline samples obtained using both the Voigt and Reuss averaging procedure.
(Note that for cubic structures By = Br = B.) The Young’s modulus (E) and Pois-
son’s ratio (v) are estimated from Hill’s approximation. All data except v, which is
dimensionless, are given in GPa. The symbols W, X, and Q denote calculations per-
formed with the codes WIEN2k, exciting, and Quantum ESPRESSO, respectively. The
subscripts £ and 7 indicate the use of the energy and stress approach, respectively. Ex-
perimental values for the elastic constants are taken from Ref. [75], the experimental
elastic moduli are obtained from these values using Egs. (2.38), (2.39), (2.40), (2.41),

(2.42), and (2.43).

C W Xe Q¢ Q. [75]
e 10523 10559 1052.7 1053.0 1077.0
C1o 125.0 125.1 1215 121.3  124.6
cu  559.3  560.6  560.3  560.6 577.0
B 434.1 4354 4319 4318 4421
Gy 521.0 5225 5224 5227 536.7
Gr  516.7 5182 5182 5184  532.0
By 11131 1116.3 1113.7 1114.0 1142.6
- 0.07 007 007 007  0.07
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Table 4.10: Same as Table4.9 for Al (left) and CsCl
(right) in the cubic structure. Data from Refs. [75]
and [76] are experimental values.

Al CsCl

We Qe Q- [75] | W= [76]
cip | 1121 109.3 109.0 108.0 | 36.9 36.4
ci2 | 60.3 575 577 620| 84 88
cyy | 328 301 346 283 | 84 8.0
B 7.6 748 748 773|179 18.0
Gy | 30.1 284 31.0 262|108 10.3
Gr | 297 283 304 259108 96
Ey | 794 755 81.1 70.2 262 252
vg | 033 033 032 035|026 0.27

Table 4.11: TOECs (in GPa) for single crystal C in the first class
of cubic structures in the Laue classification, calculated using the
exciting, WIEN2k, and Quantum ESPRESSO codes.

C111 C112 C123 C144 C155 C456
Xe -5790.1 -1664.3 592.5 -207.2 -2778.7 -1150.5
We -5851.6 -1641.7 601.5 -2079 -2779.3 11474
Q¢ -5925.1 -1602.5 626.3 -196.6 27722 -1154.5

50
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Table 4.12: Same as Table4.9 for
TiBs in the primitive hexagonal struc-
ture. Data from Ref.[79] are the ex-
perimental values.

TiB, W Q¢ Q. [19]

c11 652 654 652 660
C12 69 71 69 48
C13 103 100 98 93
C33 448 459 463 432
C4 258 260 259 260
By 256 256 256 247
Br 250 251 251 240

Gvy 260 262 262 266
Gr 254 257 257 258
Ey 276 581 581 579
vy 0.12 0.12 0.12 0.10

Table 4.13: Same as Table 4.9 for Ti in
the primitive hexagonal structure. The
labels (us) and (paw) indicate the use
of ultra-soft pseudo-potentials and the
PAW method, respectively. Data from
Ref. [80] are experimental values.

Ti We QP™ Q™ [g0]
ey 179 174 190 160

C1o 85 85 99 90
Ci3 7477 91 66
Ca3 187 181 213 181
Cas 44 44 39 46

By 112 112 128 105
Br 112 112 128 105
Gy 48 46 45 44
Gr 48 46 44 42
Ey 125 120 120 114
vy 0.31  0.32 0.34 0.32

ol
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Table 4.14: Same as Table4.9 for AlyO3
in the trigonal Rp structure. Data from
Ref. [80] are the experimental values.

ALO; W Qe Q. [80]
i 453.4 463.8 460.9 497.4
Cro 151.2 1485 148.7 164.0
C13 108.0 107.9 107.8 112.2
C14 205 -20.3 204 -23.6
Ca3 452.0 469.9 466.4 499.1
Cis 132.2 139.0 137.6 147.4

By 232.6 236.2 235.2 252.3
Br 2322 236.0 2349 2518

Gy 149.2 156.0 154.5 166.0
Gr 1447 151.7 150.2 160.6
En 364.1 379.3 375.8 403.0
vy 024 023 023 0.23

Table 4.15: Same as Table4.9 for
CaMg(COs3)2 (dolomite) in the trigonal Ry
structure. Data from Ref. [89] are the ex-
perimental values.

CaMg(CO3), Qs Q- [89
c11 194.3 194.5 205.0
C12 66.5 66.7 71.0
C13 56.8 56.4 574
C14 -17.5 -17.7 -19.5
C15 11.5 11.1 13.7
s 1085 1074 113.0
Caa 388 38.6 39.8
By 95.3 95.0 994
Br 87.2 86.6 90.3
Gv 49.4 494 51.8
Gr 394 393 39.7
Ey 114.7 1144 118.2

Vi 0.29 029 0.29
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Table 4.16: TOECs, given in GPa, for sin-
gle crystal Mg in the first class of the hexag-
onal structures in Laue classification, calcu-
lated using the Quantum ESPRESSO code.
Data from Ref. [90] are the experimental val-
ues. They are measured at 300 K.

€111 G2 €113 €123 C133
-641 184 18 -80 113
[90] —663 -178 30 ~76 86
Ci44  C155  C222 (333  C344
47 75 780 696 —170
[90] -30 58 864 -T726 193

Table 4.17: TOECs (in GPa) for single crystal AloOg in the first
class of rhombohedral structure in Laue classification calculated
using the Quantum ESPRESSO code. Data from Ref. [91] are ex-
perimental values.

C111 C112 €113 C114 C123 C124 C133

-3601 986 764 283 146 57 910

[91] -3932 -1120 -922 98 -215 53 970

C134 C144 C155 C222 €333 C344 Cq44

-133 441 1162 4204 -2913 1054 34

91] -104 382 -1076 -4515 -3100 -1137 23
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Table 4.18: Same as Table4.9 for MgFs
in the tetragonal Ty structure. Data from
Ref. [92] are experimental values.

MgF, We Qe Q- [92]
C11 130.0 127.0 126.5 123.7
C12 782 80.1 79.8 73.2
C13 54.7  57.3 5H7.6  53.6
C33 185.0 187.7 187.3 177.0
Cy4 50.5 50.8 50.7 55.2
Ce6 83.0 872 872 978
By 91.1 923 922 87.2
Br 90.5 914 91.3 864
Gy 54.0 54.2 54.0 579
Gr 46.7 452 450 48.1
Ey 1274 126.3 126.0 132.1
vy 027 027 027 0.25

Table 4.19: Same as Table4.9 for CaMoOy
in the tetragonal Ty structure. Data from
Ref. [93] are experimental values.

CaMoO4 Wg Qg Q-,- [93]
C11 123.4  126.9 125.9 144.7
C12 439 5H8.0 575 66.4
C13 48.7  46.6 46.0 46.6
Ci6 81 102 10.1 134
C33 109.3 110.0 109.3 126.5
Ca4q 3.5 29.0 287 36.9
Cos 374 342 342 451
By 71.0 740 734 817
Bgr 709 732 726 80.5
Gy 344 326 324 409
Gr 335 31.1 309 387
Fy 87.8 835 83.0 102.6

Vi 029 031 031 0.29
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Table 4.20: Same as Table4.9 for TiSiy
in the orthorhombic structure. Data from
Ref. [94] are experimental values. For ti-
tanium, an ultra-soft pseudo-potential has

been used for calculations performed with
Quantum ESPRESSO.

TiSi, We Qe O, [94]
i 312.5 297.9 306.4 320.4
Cro 27.9 185 248 29.3
o 83.8 123.3 1123  86.0
Cao 306.3 2122 204.6 317.5
Co3 21.1 312 315 384
Ca3 406.4 481.9 495.8 413.2
Cas 731 736 732 758

Cs5 106.4 108.7 100.0 112.5
C66 117.3 975 106.0 117.5
By 143.4 148.7 1494 1509
Br 139.4 124.0 1241 146.8
Gy 118.8 110.5 111.7 120.9
Gr 110.0 101.2 101.6 112.9
Ey 270.3 2523 2539 278.1
vy 0.180 0.190 0.190 0.188
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Table 4.21: Same as Table 4.9 for ZrOs (zir-
conia) in the monoclinic structure. Data from
Ref. [29] are obtained using the CASTEP code
and the stress approach whereas data from

Ref. [95] are experimental values.

ZrO, We Qe Qr [29] [95]
C11 356 334 333 341 361
C12 161 151 157 158 142
C13 76 82 85 88 25
15 32 32 28 29 21
C92 361 356 363 349 408
Co3 120 142 154 156 196
Caos -3 -2 —6 -4 31
C33 217 251 238 274 258
C3s 2 7 3 2 -18
Cy4 80 81 80 80 100
Ca6 16 15 15 14 23
Cs5 69 71 71 73 81
Co6 113 115 115 116 126
By 183 188 194 196 201
Br 163 174 181 187 175
Gy 91 91 90 91 91
Gr 83 84 83 84 84
Ey 223 226 225 229 226
vy 028 0.29 0.30 0.30 0.29

o6
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Table 4.22: Elastic constants (in GPa) for single crystal TiSig, treated in the primitive
unit cell as triclinic structure and calculated using the WIEN2k code. First row values
are the results obtained by direct calculations in the triclinic unit cell, second row values
are obtained by transforming the results from the centrosymmetric orthorhombic unit
cell (lattice class O) to the triclinic structure (N) using Eq. (B.2).

C11 C12 C13 C14 C15 C16 C22 C23 C24
Direct 354.5 422 88.6 314 274 144 92841 489 17.2
calculations
Transform g0 1 390 996 338 304 153 2850 488 15.4
from O to N
C25 C26 C33 C34 C35 C36 Cq4 Cy45 C46
Direct
. 7.5 148 2873 -17.0 46 -14.0 1289 4.0 -8.8
calculations
Transform 59 140 2884 177 31 154 1293 82 8.3
from O to N
Cs5 Cs6 C66 By Br Gv Gr Ey %51
Direct - 1193 175 926 142.8 139.3 117.9 109.6 269.0 0.18
calculations
Transform

120.0 184 929 1434 1394 118.8 110.0 2794 0.18
from O to N




5 NiTi- A Shape-Memory Material

In 1890s, Adolf Martens discovered by rapidly cooling down (quenching) car-
bon steel in the austenite phase, it turned into a new phase that was named
the Martensite phase after him. After its discovery, many efforts were made in
order to understand the dynamics of this transformation until 1949, when the
irreversible martensite transformation was eventually explained thanks to exper-
iments made on CuZn and CuAl martensitic alloys [96]. In 1950s, the thermoelas-
tic martensitic transformation and shape-recovery behavior were demonstrated
for alloys such as InTl and CuZn [97, 98]. The discovery of NiTiNOL! materi-
als, in 1963, attracted research interest because of the new properties in shape-
memory alloys (SMAs). These researches led to more profound understanding of
the impacts of composition, microstructure, and heat treatment of SMAs on their
properties. Later, it was found that adding a third alloying element such as Co
or Fe to the existing NiTi system causes a dramatic decrease in the SMA trans-
formation temperature, thus opening new opportunities for their applications in
industries, such as aerospace, automotive, biomedical, and medical.

SMAs are divided into three subgroups: Cu-Zn-Al-Ni, Cu-Al-Ni, and NiTi
alloys [99], they exhibit the general practical properties such as shape-memory
effect and superelasticity. NiTi alloys have many unique characteristics, such as
high ductility and low elastic anisotropy which make them very interesting. In
particular, the elastic anisotropy, which is defined as A = 2¢44/(c11 — ¢12), is ~
2 whereas in most other SMAs the value of this quantity is >10. c44 decreases
when temperature decreases, which is just the opposite behavior of most other
shape-memory and normal alloys. Moreover, the reversible martensitic trans-
formation of NiTi takes place near room temperature, while it usually happens
at high temperature for other SMAs. Besides, the monoclinic structure appears
only in the NiTi alloys, and rhombohedral structure has similarity only with the
martensite phase in the AuCd alloys.

'The term “NiTiNOL”was created for the NiTi materials in honor of its discovery at the
Naval Ordnance Laboratory (NOL).

o8
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Due to the complexity of the transformation and sensitivity of some fac-
tors like alloying with different elements and thermomechanical treatment, NiTi
system is less understood than other alloys.

One way to get a clearer picture of the transition at the atomic level and
to understand structural features, phase stability, and possible transition paths
is the ab initio investigation of these systems. Traditionally, in computational
physics, the description of a phase transition is feasible with thermodynamic ap-
proaches such as calculating the free-energies of different phases [100, 101, 102].
Unfortunately, these approaches were not able to explain the whole transfor-
mation picture. The important examples are the effect of composition, alloy-
ing and point defects, which can modify strongly both transformation temper-
ature and transformation path. Moreover, these approaches cannot treat high-
temperature effects on every crystal system. Recently, it has been shown that the
high-temperature phase of NiTi alloy is stable due to anharmonic effects [103].
Souvatzis et al. [103] have taken anharmonicity into account by a self- consistent
ab initio lattice dynamical method. Unfortunately, this approach is computa-
tionally very expensive for alloys with low impurity concentrations. On the other
hand, it is known that the martensitic transformation occurs by lattice distortion,
so it is important to obtain lattice dynamic properties rather than thermodynam-
ical properties. The investigation of elastic-constants is a tractable way to obtain
some insight into lattice-dynamical properties. Due to the difficulty of growing
NiTi single crystals in different phases, there have been only a few experimen-
tal data for NiTi phases in the past decades. This makes the investigation of
the elastic constants of ordered crystals of NiTi with ab initio methods highly
desirable. Two studies of the elastic properties of NiTi were recently published
by Wagner and Windl [104] and Hatcher [105] in which the elastic constants of
different phases using the pseudo-potential and FLAPW methods were calcu-
lated, respectively. Possible shortcomings of these works are the lack of lattice
relaxation in Ref.[105] and the usage of the pseudo-potential approximation in
Ref. [104], as been seen in Section4.5 is problematic for Ti compounds. Then,
further investigation and more precise calculations are required.

In this chapter, we aim at investigating the martensitic transformation in
the NiTi system by means of the DF'T calculations. We point out again that we
compute ordered NiTi phases. Nevertheless, at the atomic as discussed in Sec-
tion 2.5, averaging methods are applied to our results to approach polycrystalline
and alloy materials.

The outline of the chapter is as follows: In the Section 5.1, we give a general
description of the phase transitions in SMAs. Section 5.2 is dedicated to the NiTi
crystal structures. At the end, in the Section 5.3, we present and discuss the ab
initio results.
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Figure 5.1: Schematic representation of the shape deformations in SMAs in absence
of stress, from austenite to twinned martensite and vice versa. The temperatures
Mgy, My, Ag, and Ay temperatures are explained in the text. The illustration is based
on Ref. [106].

5.1 Phase Transitions in SMAs

In SMASs, there are usually two phases, with different crystal structures and dif-
ferent properties. One is the high-temperature phase (or parent phase), austenite
(A), and the other is the low-temperature phase, martensite (M ). The austenite
crystal structure is cubic, while martensite can be tetragonal, orthorhombic or
monoclinic. The transformation from one structure to the other does not oc-
cur by diffusion of atoms, but rather by shear lattice deformation. This type
of transformation is known as martensitic transformation. Martensitic phase is
formed by different orientated crystal grains, called variant. There are two forms
of martensitic phases: twinned martensite, which is formed by a combination of
different martensitic variants, and detwinned or reoriented martensite, which is
deformed by a specific dominant variant.

The reversible phase transformation from austenite to martensite is a unique
feature of SMAs. When temperature is decreased in absence stress, the crystal
structure changes from austenite to martensite. This fact is shown schematically
in Figure5.1. The phase transition from austenite to martensite is called the
forward transformation. The transformation yields several martensitic variants
which are randomly oriented. For example, there are 24 different orientations for
NiTi alloys. Their orientations are such that the average macroscopic shape does
not change. As can be seen in Figure5.1, when the material in the martensitic
phase is heated, the crystal structure transforms back to austenite: this trans-
formation is called reverse transformation, which is not associated to any shape
changes.

There are four characteristic temperatures associated with the martensitic
phase transformation. In case of zero stress, during the forward transformation,
austenite begins to transform to martensite at the martensitic start temperature
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Figure 5.2: Schematic picture of the shape-memory and pseudo-elastic effects of a
SMAs. Showing the detwinning of SMA under an applied stress and the release of the
stress and subsequent heating to austenite under no stress condition. The illustration
is based on Ref. [106].

(M). The transformation to martensite will be completed at the martensitic
finish temperature (M) when the material has fully turned into the twinned
martensitic phase. In a similar way, when the material is heated the reverse
transformation initiates at the austenitic start temperature (Ag) and the trans-
formation will be completed at the austenitic finish temperature (Ay).

Suppose an external stress is applied to the martensitic phase. In this situ-
ation, it is possible to transform the martensite crystals to the austenite phase
within two steps. As a first step, a certain number of crystal grains is reoriented,
as schematically shown in Figure5.2. Then, when the stress is released, the de-
formed configuration will turn back into its original shape and this process results
in a change of the macroscopic shape of material. This process is referred to as
the shape-memory effect (SME). The complete procedure is shown schematically
in Figure 5.2. The applied stress must be large enough to start the SME process.
The minimum amount of stress which is required for the detwinning procedure to
start is called the detwinning start stress (o), and the maximum level of stress
that results in a complete detwinning of the materials is called the detwinning
finish stress (o).

The transformation is also possible by applying a very high mechanical stress
to the austenite phase. As schematically shown in Figure 5.2, when the temper-
ature is above Ay, a complete shape recovery is observed and the whole material
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Figure 5.3: Three transformation paths for NiTi alloys from the B2 parent phase
to the B19’ martensitic phase. The crystal symmetry of R phase is discussed in Sec-
tion 5.3.2. The illustration is based on Ref. [107]

transforms to the austenite phase. This behavior of SMA materials is called the
pseudo-elastic effect. If the material in the austenitic phase is tested at a tem-
perature between M, and Ay, only partial shape recovery will have happened.

Readers may refer to Refs.[99, 106] for a more detailed description of the
phase transitions in SMAs.

The phase transitions in NiTi alloys can be classified by three types of trans-
formations, as shown schematically in Figure5.3. All transformation paths have
a tendency to transform from the B2 parent phase to the B19" martensitic phase.
The next section is dedicated to different ordered crystals of NiTi phases.

5.2 Ordered Crystal Phases of NiTi

In order to understand the martensitic transformation in the NiTi alloy system,
it is essential to know first the crystal structure of the different phases. In total,
there are three different phases that are observed throughout the martensitic
transformation of NiTi:

i) High-temperature phase
The parent austenitic phase of NiTi is the B2 2 structure, which is the CsCl-
type structure with space group Pm3m. This phase was identified early

2Here, we use Strukturbericht classification which is an usual representation for alloys. It
shows the ordered polyatomic crystal structures. For instance, B stands for a compounds with
two different types of atom in a crystal. B2, B19’, and B19 symbols represent the cubic,
monoclinic, and orthorhombic crystal structures, respectively.
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a

Figure 5.4: Crystal structures relevant for the martensitic transformation in NiTi:
B2, B19, B19’, and B33. The relation between the B2 structure, shadowed box, and the
B2 structure is shown in the upper-left picture. The lower-right picture presents the
body-centered orthorhombic B33 structure, shadowed box, with space group Cmem. Ti
and Ni atoms are indicated by blue and red spheres, respectively. In order to facilitate
the comparison between the structures, for all case, the origin has been shifted to a Ti
atom. The pictures are based on Ref. [108].

ii)

[109, 110] and is now well established as the high-temperature austenite
structure [111]. This structure can also be represented by a larger tetragonal
four-atom unit cell, as can be seen in Figure 5.4. We use the symbol B2 for
this structure.

Intermediate phase

The “R phase” is one of the intermediate phases which can be observed
experimentally [112] during the martensitic transformation. The term “R
phase”arises from rhombohedral distortion, because it has been assumed that
the B2 structure propagates to the B19 structure by rhombohedral distor-
tion [99]. However, later it was established that the structure has trigonal
symmetry rather than a rhombohedral one. In general, there are three cases
where the transformation goes through R phase: First, a small percentage
of Ni is substituted by Fe or Al; Second, for the Ni-rich NiTi alloys such as
the TisNiy phase; Third, upon heat-treatment of the NiTi alloys after cold-
working to create rearranged dislocation structures. The space group of this
structure remains ambiguous despite different measurements and calcula-
tions. It has been initially determined as P31m (No. 164) using convergent-
beam electron diffraction and transmission electron microscopy with iron
alloyed (TisoNisrFes) samples [113]. Hara’s [114] refinement by electron and
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powder X-ray diffraction measurements indicated that the Ti and Ni atoms
are located in much less symmetric positions rather than atomic positions of
the space group P31m. This resulted in the suggestion of a different space
group with a lower symmetry, namely P3 (No. 143). Schryverset al. [115] fol-
lowed these measurements using high-precision dynamic electron diffraction
and least-square minimization analysis with the same samples. They found a
more symmetric structure with space group P3 (No. 147). Gonget al. [116]
investigated several different initial configurations taken from experiment
to calculate optimized lattice constants and atomic positions for equiatomic
NiTi. They suggested that the P31m (No. 157) structure is the correct crys-
talline ground state of the R phase. Nevertheless, the exact space group and
the atomic positions of Ni and Ti are not still completely clear. Therefore,
in total, there are four suggested space groups for this structure, namely P3,
P3, P31m, and P31m. This point will be discussed in Section 5.3.2.

The second intermediate phase is B19 which has an orthorhombic crystal
structure with space group Pmma. It is shown in the upper-right panel of
Figure5.4. This phase is observed when NiTi is alloyed with at least 7.5%
of Cu or when certain percentages of other elements, such as Pd and Pt,
substitute Ni atoms. The B19 phase becomes the martensitic phase also
when NiTi is alloyed with at least 20% copper.

iii) Low-temperature phase
The crystal structure of the low-temperature phase of NiTi has been an
unsolved problem for many years. It took a while to make clear that the space
group of this structure is P2;/m which is called B19’, shown in the lower-
left picture of Figure 5.4. The monoclinic structure B19’ 3 has been generally
confirmed by experimentalists and theoreticians [109, 110, 117, 118, 119] as
the low-temperature phase of NiTi.

Furthermore, Huang [108] showed with first-principles calculations that a
base-centered orthorhombic (BCO) structure of space group C'mem can be a
martensitic phase of NiTi and claimed that the experimentally reported B19’
structure is stabilized by internal stresses. This structure can be regarded
as a special case of the B19" structure with the atomic positions obeying
certain relations. This crystal structure is best known as B33. In Figure 5.4,
the relation between the BCO and the B33 structure is shown.

3There are two different choices of axes in a monoclinic crystal system. In the first setting,
the unique axis is parallel to ¢ and the monoclinic angle is . In the second one, the unique
axis is parallel to b and 8 is the monoclinic angle. In this thesis, we use the first setting to
represent the B19’ structure.
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5.3 Results

In this section, we investigate elastic constants of different ordered crystal phases
of NiTi. All the elastic-constant calculations were performed with the ElaStic
tool and the WIEN2k code. As discussed in Chapter 4, elastic-constant calcula-
tions require the structure to be optimized with respect to the unit cell and all
internal degrees of freedom. Thus, first, we present computational details and re-
sults of structural optimization. Then, the results which were used for the elastic
constants will be given.

5.3.1 Calculated Structural Parameters of NiTi Phases

Equilibrium configurations of B2, B19, B19’, and B33 structures of NiTi were
obtained with WIEN2k by minimizing the energy with respect to atomic positions
and unit-cell parameters. The convergence of the atomic positions was considered
to be achieved when a difference of the atomic force acting on each atom was lower
than 0.1 mRy/a.u. In order to calculate the cell parameters, an optimization
was performed consisting in minimizing the energy with respect to each degree
of freedom in a sequential manner. These sequential optimization steps were
repeated cyclically until an energy difference less than 0.01 mRy was achieved.
Details about this procedure are explained in Appendix A.

Ground-state calculations were performed using a 2.0 a.u. muffin-tin radius
for both Ni and Ti in the B2 structure and a 2.2 a.u. radius for the other struc-
tures. Convergence test of the bulk modulus as a function of R, K . were done,
where K. is the magnitude of the largest k vector in the basis set. The re-
sults showed that a value of R, K.x = 8 was large enough to have an accurate
calculation without being computationally time consuming.

For the k-space integration, 5000 k-points for B2 structure and 2500 for the
other structures in the first Brillouin zone were used. Self-consistent calculations
were considered to be converged when the total energy variations were lower than
0.001 mRy. The Fermi energy was calculated using a Gaussian-smearing method,
with a width of 0.01 Ry. In all calculations, the 3s% 3p5 4s% 3d® states of Ni and
352 3p% 4s? 3d? states of the Ti atoms were treated as valence electrons. The
exchange-correlation contribution to the potential was treated by PBE functional

[47].

Table 5.1 summarizes the calculated and measured lattices parameters, vol-
ume, and energy differences with respect to the energy of the B2 structure for
the four NiTi phases considered. As can be seen, all the results are in good
agreement with available experimental data as well as theoretical [105, 104] re-
sults. No experimental data for the B33 structure are available in literature.
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Table 5.1: Calculated and measured lattice parameters a, b, and ¢ (in atomic units,
a.u.), angle 7 (in degrees), volume (in a.u.?/atom), and total energies relative to the
B2 structure (in mRy/atom). B2 lattice parameters are presented for the tetragonal
cell (B21), which contains two Ni and two Ti atoms, in order to allow an easier
comparison with the other four-atom structures.

a b c v volume FE — Epy
B2p  Present 8.040 5.685 8.040 183.782  0.000
Theory [105] 8.068 5.705 8.068 185.689
Theory [104] 8.039 5.684 8.039 183.666
Experiment [111] 8.052 5.694 8.052 184.584
B19  Present 7.883 5.371 8.696 184.079  -6.980
Theory [105] 7.899 5410 8.755 187.080
Theory [104] 7.782 5471 8.664 184.434
Experiment [120] 7.982 5.478 8.527 186.344
B19" Present 9.040 5.561 7.611 102.76 186.579  -9.328
Theory [105] 8.838 5.512 7.704 98.00 185.850
Theory [104] 8.853 5.558 7.625 97.78 185.865
Experiment [118] 8.780 5.476 7.763  97.78 184.909
B33 Present 9.320 5.537 7.592 107.27 187.054  -9.456
Theory [105] 9.313 5.543 7.606 107.00 187.720
Theory [104] 9.356 5.580 7.544 108.52 186.732

However, values calculated in the present work are in good agreement with cal-
culations made by Huangetal.[108]. ~ was calculated for B19" and B33 only.
In the former case, there are some differences, around 5%, with respect to both
experimental and theoretical results. The reason is that in Refs. [105, 104]. The
authors used experimental values of v, with the aim of keeping the calculation as
close as possible to the experiments. However, our calculations show that some
elastic constant, e.g. cs5, are very sensitive to this angle, and it cannot be fixed
to a given value, but rather it must be optimized in order to be in the minimum
of the energy-strain curve. This point will be addressed in Section 5.3.3.

In Table 5.2, the atomic positions of the structures B2, B19, B19’, and B33
are shown. Again, results of the present work are in good agreement with both
experimental as well as previous theoretical results.

Formation energies for every phase were calculated as the difference between
the total energy of the corresponding phase, En;ri, and the average of the lowest
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Table 5.2: Space group (No.) and relaxed atomic positions for the structures B2,
B19, B19’, and B33. The atomic positions are given in fractional atomic coordinates.
Multiplicity and Wyckoff positions are shown in the column labeled “site”.

space group atom site T Y z
B2  Pm3m (221) Present Ni 1la 0 0 0
T 12 12 1)2
B19 Pmma (51)  Present Ni  2e 1/4 0 0.6838
Ti 2f  1/4 1/2 0.2230
Theory [121] Ni  2e 1/4 0 0.6830
Ti 2f 1/4 /2 0.2240
B19" P2;/m (11)  Present Ni 2 0.6708 0.0655 1/4

Ti 2¢ 02150 0.3842 1/4

Experiment [118]  Ni ~ 2e 0.6752 0.0372 1/4
Ti 2¢ 0.2164 0.4176 1/4

B33 P2;/m (11)  Present Ni  2e 0.6699 0.0849 1/4
Ti 2¢  0.2137 0.3569 1/4
Theory [108] Ni 2¢  0.6730 0.0860 1/4

Ti 2¢  0.2140 0.3580 1/4

energy phases of spin-polarized elemental Ni (fcc) and Ti (hep) as

1 1
Eformation - ENiTi - <§Efchi + §EhcpTi) . (51)

Optimized lattice parameters and total energy for fcec Ni and hep Ti were calcu-
lated with the same computational parameters. A spin-polarized calculation was
performed for fcc Ni and the resulting magnetic moment was 0.63 3.

In Table5.3, experimental and theoretical formation energies for different
NiTi phases are listed. As can be seen, the results obtained in this work are in
good agreement both with experimental measurements and previous calculations.
For the B2 structure, the calculated formation energy is —34.1 kJ /(mol.atom) and
this value is very close to the experimental ones of —33.9 kJ/(mol.atom) and —
34.0 kJ/(mol.atom) obtained by Gachon et al. [122] and Kubaschewski et al. [123],
respectively. It is also in accordance with the value calculated by Hatcher et al.
[105]. Unfortunately, no experimental formation energies for B19, B19’, and B33
are available in literature. Nonetheless, results of the present work were compared
with the ones by Hatcher et al. [105], and the agreement is again satisfactory.

The crystal structure of the R phase is still controversial in spite of the many
experimental and theoretical studies. We will discuss the R phase and present
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Table 5.3: Formation energies of the NiT1i structures,
calculated according Eq. (5.1).

Formation energy
Structure | References (kJ /mol.atom)
B2 Present -34.1
Experiment [122] -33.9
Experiment [123] -34.0
Theory [105] -34.1
Theory [119] -38.0
Theory [124] -36.0
B19 Present —38.7
Theory [105] -38.0
B1Y Present -40.3
Theory [105] -39.5
B33 Present —40.4
Theory [105] -39.9

our computational results in the following section.

5.3.2 Structural Parameters of the R Phase

The goal of the this section is to refine more accurately the atomic positions in
the R phase and clarify computationally the controversy in the determination of
its space group.

In Figure5.5, we show schematic illustrations of the crystal structures for
different space groups. Left and right sides, respectively, correspond to the space
groups P3 (No. 143) and P3 (No. 147). P31m (No. 157) can be constructed
from the left structure of Figure5.5 in such a way that the two atoms at the
Z1 and Z, planes are constrained to be in the same level, i.e., Ay = Ay and
Az = Ay4. Also in the right side of Figure5.5, if A; = Ay = 0 the structure will
obtain P31m symmetry (No. 164).

Our ab initio calculations were carried out using the Quantum ESPRESSO
code. PBE for the exchange-correction energy and ultrasoft pseudo-potentials
were employed. A kinetic-energy cut-off of 80 and 800 Ry was used for the
plane-wave expansion of wave-function and electron densities, respectively. The
Brillouin zone integration was calculated by 7 x 7 x 9 Monkhorst-pack meshes for
all the crystal structures. Geometry optimization was considered to be converged
when the difference of the total energies between the last iterations did not exceed
1078 Ry. The convergence criterion is satisfied when the force components were
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Figure 5.5: Illustration of space group P3 (left) and space group P3 (right), repre-
senting possible structures of the R phase. z; indicate planes of atoms with different z
coordinates, and A; refer to shifts out of these planes. If, in the left side, A; = Ag and
As = Ay the structure turns into space group P31m (No. 157). If, on the right side,
A1 = Ay = 0 the structure changes to space group P31m (No. 164). The illustration
is based on Ref. [114]

smaller than 107® Ry/a.u.. The geometry optimizations included not only the
atomic positions, but also the lattice parameters.

Table 5.4 shows the atomic positions of the R phase for the space groups
P3, P3, P31m, and P31m before and after geometry optimization. The initial
positions are taken from [114, 115]. We find the space groups unchanged after
geometry optimization. The total-energy investigation shows that the difference
in the energies of P3 and P31m is negligible (107® mRy/atom). Therefore, their
energy can be considered as the minimum energy. The energy difference between
P3 and the minimum energy and the difference between the energy of P31m and
the minimum energy, are 0.192 mRy/atom and 1.227 mRy/atom, respectively.
We conclude that P3 and P31m are possible crystal structures for the R phase
of NiTi. However, as alloying can change the structure of a material, these
results do not necessarily contradict experiments. The small amounts of Fe or
Al substituting Ni atoms may change the symmetry of the R phase from P3 or
P31m to other symmetries.
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5.3.3 Elastic Constants

In this section, we show the elastic constants for different phases of NiTi and
from this we will draw some conclusions which help us to better understand the
martensitic transformation.

In Tableb5.5, we list the calculated and experimental elastic constants for
the B2 structure. The experimental elastic constants were performed by Mercier
[126] at 298 K which is the lowest temperature of B2 to be stable. Brill [125]
measured the elastic constants at 400 K. The comparison between these two
measurements shows that the values of ¢i1, ¢1o, ¢, and B decrease by increasing
temperature. This fact proves the consequence of the Landau-Devonshire theory
that increasing the temperature softens the elastic constants. Comparing our
result with Mercier’s measurements [126], we observe that our calculated val-
ues overestimate c¢;q, c19, and ¢y by 7%, 22%, and 57%, respectively. The DFT
calculations yield ground-state properties of materials at zero K, such that tem-
perature effects are not taken into account. Therefore, the elastic constants are
usually overestimated. Our results show that ¢y is smaller than ¢y, yielding a
positive value for ¢/, while Wagner and Windl [104] reported ¢’= -16 GPa.

A crystal is stable against a homogeneous deformation if the elastic constant
matrix c,3 has positive eigenvalues. If one or more of the eigenvalues becomes
negative, the crystal may distort continuously to a new structure with a symmetry
determined by the eigenvector of that eigenvalue[127]. The values of ¢1; — ¢19
(=2¢) and (n,—n,0,0,0,0) are the eigenvalue and the corresponding eigenvector
of the cubic elastic-constant matrix, respectively. Therefore, a negative value of
¢ would meant that the B2 structure is unstable, and under stress this structure
has a tendency to change the lattice shape by a tetragonal distortion. This is a
contradiction to measurements and calculations.

In Table5.6, we show the calculated independent elastic constants of the
structures B19, B19’, and B33. We also present the elastic constants of B2
transformed to the reference frame of the tetragonal supercell labeled as B2r.
Moreover, in order to have a direct comparison, we have transformed the elas-
tic constants calculated by Hatcher [105] and Wangner and Windl[104] to the
Cartesian coordinate system used by us. The calculated bulk moduli for B2 and
B19" (and B33) are almost equal. Also, the unit-cell volume of these structures
are equal, which indicates that during the martensitic transformation the volume
does not change drastically. This has also been reported in experiment [107]. An-
other noticeable result is that the values of ¢4y and cs5 of the B2t phase are less
than those values in the B19" and B33 phases. This point confirms the softening
of the elastic constants during the forward martensitic transformation.

The values of cgg for B21, B19', and B33 are almost equal, and relatively
small compared to other elastic constants. cgg corresponds to the deformation of
~v and clarifies two important points: First, the B2 structure is very unstable
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under shear deformation. Second, due to the small cg¢ of B19' and B33, the
calculation of those elastic constants which are calculated by v angle distortion,
i.€., C16, C2g, and czg are numerically problematic. In these cases, as discussed in
Section 4.5.1, the corresponding energy-strain curves of these elastic constants are
not relatively deep and the noise effect on such curves are high. As can be seen
in Table 5.6, large discrepancies occur in these elastic constants. For instance,
we have calculated a positive (negative) c¢i6 (c36) for B19" but Refs. [105, 104]
obtained negative (positive) values. The energy wvs. strain curve of the small
elastic constant is relatively flat and it is strongly affected by noise. Therefore,
such an elastic constant requires precise calculation. As shown in Section 4.2,
ElaStic has the proper features for precise elastic-constant calculations.

Our result for ¢y of the B19 structure, in contrast to Ref. [105], is negative.
cy44 1s an eigenvalue of the orthorhombic elastic constant matrix. As we discussed
above, this means that the B19 structure of NiTi is an unstable structure. It
might, however, become stable if alloyed with Cu.

In Table 5.7, we show the polycrystalline elastic moduli, i.e., the bulk, shear,
and Young’s moduli as well as Poisson’s ratio as obtained from the Voigt and
Reuss definitions, denoted with subscripts V and R, respectively, and the Hill
averaged modulus, subscripted with H, along with experimental and theoretical
comparisons. Our calculations and the previous experimental results for the
elastic constants of the B2 phase are in good agreement, and our results compare
favorably with previously reported theoretical results [105]. As discussed above,
Wagner and Windl [104] obtained ¢12 > ¢p1, which yielded a fully unstable B2
phase. For this reason, the macroscopic elastic parameters calculated from their
elastic constants are not comparable to the experimental values. Moreover, we
list the Zener anisotropy ratio, A, and the Gy /By ratio in Table5.7. The Zener
anisotropy ratio for cubic materials is defined as

A= 2o (5.2)
C C11 — C12
In isotropic cubic materials, cyy is equal to ¢ and A is equal to one. The exper-
imental values of A for SMA materials are around 10 or more but as shown in
Table 5.7, the experimental value for NiTi is around 2. Our calculations show
that the A ratio of the B2 structure is less than ten which is a typical value for
other types of SMAs.

According to Pugh’s empirical rule [128] the ductile/brittle behavior of a
material is closely related to the ratio of G/B or the Poisson ratio, v. Materials
exhibiting a G/ B ratio less than 0.57 are more likely to be ductile. A high value
of G/B and low value of v is associated with brittleness, so an increase in G/B or
decrease in v indicates a decrease in ductility. We have obtained a G /By ratio
of 0.15, in a good agreement with experimental data; indicating the B2 structure
is ductile.



CHAPTER 5. NITI- A SHAPE-MEMORY MATERIAL 72

Table 5.8, like Table 5.7, lists the polycrystalline moduli for the phases B19,
B19’, and B33 along with the results for the B2 structure. We do not present
the Zener anisotropy ratio, because its generalization to non-cubic materials is
not straightforward. By comparing the elastic properties of these phases, several
trends appear. First, the Voigt bulk modulus is very similar among the phases.
Second, the shear modulus increases when going from B2 to other phases. Third,
the Young’s modulus increases from the B2 to the B19' phase. This fact is consis-
tent with the Muller-Achenbach-Seelecke model [129], which requires the Young’s
modulus of the austenite to be smaller than that of the martensite phase. Fi-
nally, according to Pugh’s empirical rule, during the martensitic transformation,
ductility decreases because the Gy /By ratio increases, and vy decreases from the
B2 phase to the B19" phase.

To conclude, we have accurately calculated elastic properties and obtained
both single crystal elastic constants and macroscopic elastic parameters. We have
found, in contrast to previous calculations, the B2 phase to be a stable phase, and
in the same way we have shown that the B19 structure is an unstable phase and
cannot be an intermediate phase for the NiTi shape-memory alloy. We expect that
the B2t structure has a tendency to deform the angle v because of the small cg4
value. For these reasons, we believe that the martensitic transformation is more
likely to be a direct transformation from the B2 phase to the B19’ phase. Also,
during this transformation the volume does not change and ductility decreases.
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Table 5.4: Internal coordinates before and after the structural optimization
for different space groups of the R phase. Multiplicity and Wyckoff positions
are labeled as “site”.

before relaxation after relaxation
atom site T Y z site x Y z
P3 [114] P3
Ti la 0 0 0 la 0 0 0

Ti 1 1/3  2/3 00833 16 1/3  2/3  0.0764
Ti le  2/3  1/3 00092 1lc 2/3  1/3  0.9999
Ti  3d 03351 09953 0.3612 3d 0.3333 0.9867 0.3796
Ti  3d 0.6779 0.0106 0.6842 3d 0.6752 0.0085 0.6862
Ni la 0 0 04572 la 0 0 04621
Ni b 1/3  2/3 05411 1b  1/3  2/3  0.6221
Ni e 2/3  1/3 03962 1c 2/3  1/3 04621
Ni  3d 03188 09774 0.8542 3d 0.3333 0.9799 0.8991
Ni  3d 00688 0.0215 0.1602 3d 0.6911 0.0245 0.1792

P31m [115] P31m

Ti la 0 0 0 la 0 0 0

Ti 20 1/3  2/3 09100 2 1/3  2/3  0.9236
Ti  3d 03220 0 0290 3d 03201 0  0.3032
Ti  3d 06580 0 06030 3d 06582 0  0.6098
Ni la 0 0 05360 la 0 0  0.5457
Ni 2 1/3  2/3 03770 2 1/3  2/3  0.3857
Ni  3d 03160 0 08180 3d 03132 0  0.8227
Ni  3d 06380 0 00950 3d 06422 0  0.1028

P3 [114] P3

Ti  la 0 0 0 la 0 0 0
Ti 2d 1/3  2/3 00450 2d 1/3  2/3  0.0399
Ti 69 03460 0.9980 0.3460 6g 0.3308 0.9871 0.3449
Ni 1 0 0 /2 1 0 0 1/2
Ni 24 1/3 2/3 05470 2d 1/3  2/3  0.5834
Ni 69 03320 0.9920 08150 6g 0.3138 0.9741 0.8581

P31m [114] P31lm
Ti la 0 0 0 la 0 0 0
Ti 2 1/3  2/3 0 2 1/3 2/3 0
Ti 6k 0.3047 0 0.3594 6k 0.3333 0 0.3369
Ni 1b 0 0 1/2 1b 0 0 1/2

Ni 24 1/3  2/3  1/2 24 1/3  2/3  1/2
Ni 6k 03038 0 08453 6k 03333 0  0.8458
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Table 5.5: Calculated and experimental independent

elastic constants, given in GPa, for the B2 structure of

NiTi. B is calculated by applying the Birch-Murnaghan

fit, Eq. (C.2).
| B2 B2* B2" B2[105] B2[104]
cii | 173 137 162 183 138
cip | 157 120 129 146 169
Cas 50 34 34 46 40
c’ 8 8 16 19 -16
B | 161 126 142 159 159

@ Experiment [125] at 400 K
b Experiment [126] at 298 K

Table 5.6: Calculated independent elastic constants, given in GPa, for NiTi struc-
tures. The elastic constants in the first column, B2, are obtained by transforming
the B2 elastic constants to the tetragonal supercell structure to provide compar-
ison to other structures. The bulk modulus B is calculated applying the Birch-
Murnaghan equation of state, Eq. (C.2). In order to facilitate comparison between
our elastic constants and the results by Hatcher [105] and Wagner and Windl [104],
we have transformed their results into the Cartesian coordinate system which has
been used as reference in our calculations.

B2 B19 B1Y B33

[105]  [104] | [105]  [104] | [105]  [104]
e | 215] 256 254 238 | 254 249 223 | 261 249 226
cp | 115 | 158 118 127 | 104 107 99| 93 99 113
ci3 | 157 | 110 105 129 | 136 129 129 | 139 133 137
C16 21 15 27| -2 271 -33
Co 143 240 203 | 180 212 200 | 191 189 179
Ca3 105 150 92| 151 125 125| 154 131 134
Co6 0 1 4 111 18
csg | 173 ] 238 192 212 | 248 245 214 | 249 232 231
C36 —6 3 9 2 15 -1
cu | B0 -28 73 32| 91 8 76| 94 99 84
Cy45 -3 4 4 0 —4 -2
Cs5 56 53 49| 93 8 77| 98 96 90
Ce6 8| 72 66 65 5 66 21 7 44 23
B | 161 | 153 156 150 | 158 159 152 | 159 156 156
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Table 5.7: Calculated macroscopic elastic properties for
NiTi in the B2 structure. We report the Hill bulk modulus
By, only, because for cubic structures By = Br = By.
All results are given in GPa, except for A, G/ By, and vy
which are dimensionless.

| B2 B2°  B2" B2[105] B2[104]
A 6.32  4.00 2.06 249 258
By 162 126 140 158 159
Gy 33 24 27 35 18
Gr 16 15 24 29 93
e 25 20 25 32 37
Gu/Bu| 015 016 0.18 020  —0.23
Vi 043 043  0.41 0.41 0.63
By 94 67 76 98 51
o A7 45 68 82 345
Ey 71 56 T2 90 123

® Experiment [125] at 400 K
b Experiment [126] at 298 K
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Table 5.8: Calculated macroscopic elastic properties for different NiTi structures.

Results are given in GPa, except for Gy/By and vy which are dimensionless.

B2 B19 B1Y B33

[105]  [104] | [105]  [104] | [105]  [104]
By 162 | 154 159 150 | 163 159 152 | 163 155 156
Br 162 | 134 156 146 | 127 157 143 | 154 151 151
By 162 | 143 158 148 | 145 158 148 | 159 153 154
Gv 33| 3 59 37| 57 71 56| 61 68 56
Gr 16| 63 54 111 5 67 34| 24 53 23
Gy 25| 51 57 74| 31 69 45| 42 60 39
Gu/Bu | 0.15 (036 036 050 [ 0.21 044 0.37]0.26 039 0.25
Vn 0.43]0.34 034 029040 031 0.36]0.38 0.33 0.38
Ey 94 | 104 158 102 | 153 185 149 | 162 179 151
Ex AT| 164 145 265| 15 176 95| 68 141 63
By 71| 136 152 189 | 87 181 122 | 116 160 108




A Elastic Constants and Crystal
Symmetry

In the most general case, the number of independent SOECs and TOECs are
21 and 56, respectively. However, the crystal symmetry can further reduce the
number of independent elastic constants. The elastic matrices are invariant under
inversion, which means that if the reference axes are inverted, Ox; =— —Oux;, the
components cag (Sag) and capy (Sapy) do not change. In addition, for a specific
crystal, utilizing all symmetries and analyzing their effect on the elastic-constant
matrices, allows the determination of the corresponding number of independent
elastic constants. In what follows, we discuss how the independent ¢,z can be
found by using the symmetry of the crystal.

Consider, for instance, a cubic crystal, with the a,b, and ¢ lattice vectors
along the Oz, Ox9, and Oxg directions, respectively. In cubic crystals, there is
a single four-fold (90°) rotation axis parallel to every directions. In the following,
we investigate how c,p would change, if the ;25 plane is rotated by 90° in
counter-clockwise direction. Under this transformation elastic constants for the
cubic structure must not change. According to this, the rotation axes transform
as follows

O£C1 - O.TQ, O.CCQ - —Ol'l, OSCg —— 01'3

Hence, in the Cartesian notation, the index pairs transform as follows

11 =22, 12 = —12, 13 = 23, (A.1)
22 = 11, 23 = —13, 33 = 33.

In the two-subscript notation, these transformations are:

1l=2 2=1 3=3, 4= -5, Hb=—=4, 6— —6.
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7

The transformed c,g can be written by replacing the new indexes, as

C22

C23
C13
(33

—C25
—C15
—C35

Cs5

Co4
C14
C34
—C45
Caq

—C26
—C16
—C36

Cs6
—C46

C66

We have not repeated the lower left-hand half of the matrix, since the matrix
is symmetric. Also, if we rotate the zyxs plane by 270° in counter-clockwise
direction, the c,g matrix should not change. If we do so with the same procedure
which is explained above, following matrix would be the transformed matrix:

C22

C23
C13
C33

Ca5
C15
C35
Cs5

—C24
—C14
—C34
—C45

Caq

—C2
—C16
—C36
—Cs6
C46
Ce6 |

If we repeat whole procedure for the xox3 and x3x; planes, we get four more
transformed matrices which in principle must be equal to general elastic-constants
matrix. After equating these matrices, component by component, with the gen-
eral c,p matrix, the relation between matrix components indices is displayed by

.l .

the following scheme,

In this kind of presentation, we introduce a special notation for denoting
non-zero components of the ¢, (or s,z) matrix as well as their relations. The

keys of notation are:

. denotes a component which is zero.

® denotes a non-zero component. A line joining two heavy dots means that the
two components are numerically equal.
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O linked by a line denotes components whose absolute values are equal, but
opposite in sign; black and white circles indicate positive and negative sign,
respectively.

% is equal to %(011 —c12) and 2(s1; — S12) for ¢,5 and s,z matrices, respectively.

According to this notation, the number of independent elastic constants of a cubic
crystal, is reduced from 21 to 3.

A classification of the different crystal structures including the corresponding
number of independent SOECs and TOECs is given in Table A.1.
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A.1 Single-Crystal Elastic Constants

In general, crystal properties which are expressed by a tensor or a matrix, like
elastic properties, depend on the choice of both the crystal axes and the Carte-
sian reference frame. This means the value of the elastic constants may change
from one choice to another. Therefore, comparison of calculated elastic constants
with results of other calculations or experimental data is only possible provided
the chosen crystal axes and reference frame are identical. For the sake of clarity,
we present the definition of the standard reference (STD) for the crystal axes
and the Cartesian reference frame which are used by ElaStic when dealing with
different density-functional theory computer packages. In addition, we show the
independent components of the second- and third-order elastic matrices, with
Voigt notation, for all the crystal types following from the STD. In the deter-
mination of the STD, ElaStic follows the Standards on piezoelectric crystals
(1949), as recommended in Ref. [32].

The term crystal is usually applied to solids that have structural symmetry.
Depending on their degree of symmetry, crystals are commonly classified in six
systems: triclinic (the least symmetrical), monoclinic, orthorhombic, tetragonal,
hexagonal (we treat trigonal crystals as a division of the hexagonal system), and
cubic. The six systems in turn are divided into point-classes (class) according to
their symmetry with respect to a point. There are thirty-two such classes. We
have listed these classes in the fifth column of Table A.1.

Before we go on, it should be mentioned that in the next section a, b, and ¢
are indicating three vectors which describe the crystal lattice and «, 3,y are the
angles between b and ¢, a and ¢, and a and b, respectively.

A.1.1 Triclinic Lattice

In triclinic systems, the lengths of the three lattice vectors, a, b, and ¢ are unequal
and the angles «, 5, and v are unequal too. There are six equally simple ways to
define Cartesian coordinates with the axes Oz, Oxs, and Ox3. The most logical
relation is the one which associates the axes Ox1, Oxy, and Ox3 most closely with
a,b, and c, respectively. The Ox, axis is put along a, Oxy in the ab plane and
Oz is perpendicular to the x;xo plane. ElaStic takes these axes as Cartesian
coordinates for the triclinic system. Triclinic structures have 21 independent
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SOECs, and the full elastic constants matrix appears as follows:

‘e 00000
oo o

¢ o (A.2)
®

A.1.2 Monoclinic Lattice

If a crystal has a single axis of two-fold symmetry, or a single plane of reflection
symmetry, or both, it belongs to the monoclinic system. The two-fold axis or
the normal to the plane of symmetry, which are the same if both exist, is called
the unique axis. The unique axis is usually assigned to b and put along the Ox,
axis, and [ is the angle between +a and +c and always obtuse. Then, there are
two choices for the Ox; and Ox3 axes, since either the Ox, axis is along the a
vector, or, the Ox3 axis is parallel to ¢. According to the STD, both of these
choices are acceptable. We use M(®) in this thesis, for this type of monoclinic
system. In general, the monoclinic system has 13 independent elastic constants.
The corresponding elastic constants for M(®) have the following form:

o060 - @0 -]

oo - o -
¢ -0 (A.3)

o - o

o -

! ®

For monoclinic systems with m point-group, there is an alternative choice for
the axes Oxq,Oxy, and Ox3. The unique axis is assigned to ¢ which is aligned
along Ox3, and v is associated with the angle between +a and +b. We use the
abbreviation M(® for this type of monoclinic systems. In this case, there are also
two choices for the Cartesian coordinates, namely either Ox; axis along the a
vector or Oz, axis parallel to b . The elastic constant matrix for M(®) has the
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form: ) )
e & 6 - - O
e &6 - - O
¢ - (A4)
® 0 -
. [ ]
L @ |

A.1.3 Orthorhombic Lattice

Crystals having three mutually perpendicular two-fold axes, or two mutually
perpendicular planes of reflection symmetry, or both, belong to the orthorhombic
system. The most logical way to define Cartesian coordinates is Ox; along a,
Oz, along b, and Ox3 along ¢. Orthorhombic crystals have 9 independent elastic
constants, with the elastic constant matrix having the following form:

® © ®@ - - -

e ® - - -
® - - - (A.5)

® - -

o -

A.1.4 Tetragonal Lattice

Crystals having a single four-fold rotation axis or a four-fold rotoinversion axis
belong to the tetragonal system. The ¢ axis is always taken along this four-fold
axis, and the Ox3 axis lies along c¢. The lattice vectors a and b are equivalent in
tetragonal systems. The Ox; axis may be parallel to either a or b; there are thus
two possible sets of Oz and Oz, axes. In the tetragonal crystal family there are
the classes 4, 4, %, 422, 4mm, 42m, %%% Three of these classes, i.e. 4, 4, %,

have no two-fold symmetry axis. They form the Laue class Ty, and have seven
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independent elastic constants with the following matrix form:

N

(A.6)
L o |
The other four point-group classes, i.e., 422, 4mm, 42m, %%% have a two-fold

symmetry axis and constitute the Laue class T1. As a consequence of the higher
symmetry, there are less independent elastic constants. The six independent
elastic constants have the following matrix form:

"\:I;;:
~ .

A.1.5 Hexagonal Lattice Family

The hexagonal family consists of the trigonal and primitive hexagonal crystal
structures. The trigonal and hexagonal crystals are distinguished by an axis of
three-fold and six-fold symmetry, respectively. This axis is always chosen as the ¢
axis. There are three equivalent choices for the secondary lattice vectors, aq, as,
and ag, lying 120° apart in a plane normal to e¢. According to the STD coordinate
system, the Ox3 axis is parallel to ¢. The Ox; axis coincides in direction with any
one of the a vectors. The Ox4 axis is perpendicular to Ox; and Ox3. There are
five point-group classes for trigonal crystals. As you can see in Table A.1, trigonal
crystals are classified into the subclasses Ry and Ry, in Laue group notation. The
matrices,

N
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and

Nl

represent the elastic-constants matrix for R;, for six, and R;;, with seven in-
dependent elastic constants, respectively. The meaning of the notation, in the
matrix above, has been explained on page 77. Here, we give explicitly some of the
relations between elastic constant components in these systems. For R; crystals,

the relations are

For R;; crystals, the extra relations are

—C14,

—S14,

—C14,

—C15,

—S14,

—S15,

C56 = —Co4,

S56 = —2594,

C56 = —Co4,
C46 = +Co5,

S56 = —2524,

S46 = +2595,

1

Co6 = 5(611 — Co); (A.10)

Se6 = 2(s11 — S22).

(A.11)

1
Ce6 = 5(011 - 022),

S66 — 2(511 - 522)-

The following matrix shows the five non-zero components of hexagonal crystals
and the relations between them:

_ .\: I -
[
(A.12)
A.1.6 Cubic Lattice
In the cubic family, the three equivalent lattice vectors are a, b (|b| = |a|), and

c(|c| = |al), often called a1, as, and as. They are chosen parallel to the axes
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of four-fold symmetry, or, if there is no true four-fold symmetry, then parallel
to the two-fold axes. The Oz, Oxs, and Oxs axes form a right-handed system
parallel to the a,b, and ¢, respectively. The following matrix represents the
elastic constant matrix for cubic crystals:

(A.13)

In order to prevent any confusion in applying the ElaStic tool, we show in
Table A.2 the different choices of the default Cartesian reference frame for the
codes considered in this thesis.

A.1.7 Symmetry of Non-Linear Elastic Constant

Similarly to the procedure used above for SOECs, the independent TOECs can
be found by applying the crystal symmetries. In the subsequent Table A.3, we
display the independent TOECs corresponding to some crystal type for the STD
Cartesian coordinates.



APPENDIX A. ELASTIC CONSTANTS AND CRYSTAL SYMMETRY

Table A.3: Symmetry properties of the three dimensional matrix of TOECs for each
Laue group. The three-digit numbers a3~ stand for c,g,. They are defined according
to Brugger elastic constants. Elastic constants are referred to Cartesian axes according

to Table A.2.
N M® | M@ | O | Ty | Tt | Ru | Re | Hy | Hy | Cn | G
111 | 111 | 111 {111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111
112 | 112 | 112 [ 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112
113 | 113 | 113 [ 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 112
114 | 0 0 0 0 0 114 | 114 0 0 0 0
115 | 115 0 0 0 0 115 0 0 0 0 0
116 | 0 116 | 0O 116 | 0 116 0 116 0 0 0
122 | 122 | 122 | 122| 112 | 112 | A A A A [ 113 | 112
123 | 123 | 123 | 123 | 123 | 123 | 123 | 123 | 123 | 123 | 123 | 123
124 | 0 0 0 0 0 124 | 124 0 0 0 0
125 | 125 0 0 0 0 125 0 0 0 0 0
126 | 0 126 | O 0O |-116| 0 |-116| O 0 0
133 | 133 | 133 | 133 | 133 | 133 | 133 | 133 | 133 | 133 | 112 | 112
134 | 0 0 0 0 0 134 | 134 0 0 0 0
135 | 135 0 0 0 0 135 0 0 0 0 0
136 | 0 136 | O 136 | O 0 0 0 0 0 0
144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144
145 | 0 145 | 0 145 0 145 0 145 0 0 0
146 | 146 0 0 0 0 1 0 0 0 0 0
155 | 155 | 155 | 155 | 155 | 155 | 155 | 155 | 155 | 155 | 155 | 155
156 | 0 0 0 0 0 F F 0 0 0 0
166 | 166 | 166 | 166 | 166 | 166 | B B B B | 166 | 155
222 | 222 | 222 | 222 | 111 | 111 | 222 | 222 | 222 | 222 | 111 | 111
223 | 223 | 223 | 223 | 113 | 113 | 113 | 113 | 113 | 113 | 112 | 112
224 | 0 0 0 0 0 G G 0 0 0 0
225 | 225 0 0 0 0 J 0 0 0 0 0
226 | 0 226 | 0 | -116 | O 116 0 116 0 0 0
233 | 233 | 233 | 233 | 133 | 133 | 133 | 133 | 133 | 133 | 113 | 112
234 | 0 0 0 0 0 | -134|-134| O 0 0 0
235 | 235 0 0 0 0 | -135 0 0 0 0 0
Continued on the next page
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Table A.3 — continued from the previous page
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N [ M® | MO | O | Ty | Tty | Ru | Rt | Hy | Hy | Cu | G
236 | 0 |23 | 0 |-136| 0 0 0 0 00 1] 0
244 | 244 | 244 | 244 | 155 | 155 | 155 | 155 | 155 | 155 | 166 | 155
245 | 0 | 245 | 0 |-145| 0 |-145| O |-145| 0 | 0 | ©
246 | 246 | 0 0 0 0 | K 0 0 001 0
255 | 255 | 255 | 255 | 144 | 144 | 144 | 144 | 144 | 144 | 144 | 144
256 | 0 0 0 0 0 | H H 0 0| 0] 0
266 | 266 | 266 | 266 | 166 | 166 | C C C | C |155] 155
333 | 333 | 333 (333 | 333 | 333 | 333 | 333 | 333 | 333 | 111 | 111
334 | 0 0 0 0 0 0 0 0 00 ] 0
335|335 | 0 0 0 0 0 0 0 0| 0] 0
336 | 0 [ 336 | 0 0 0 0 0 0 0| 0] 0
344 | 344 | 344 | 344 | 344 | 344 | 344 | 344 | 344 | 344 | 155 | 155
345 | 0 | 345 | 0 0 0 0 0 0 00 1] 0
346 | 346 | 0 0 0 0 | -135] 0 0 00 ] 0
355 | 355 | 355 | 355 | 344 | 344 | 344 | 344 | 344 | 344 | 166 | 155
356 | 0 0 0 0 0 | 134 | 134 | 0 0| 0] 0
366 | 366 | 366 | 366 | 366 | 366 | D D D | D | 144 | 144
444 | 0 0 0 0 0 | 444 | 444 | 0 0| 0] 0
445 | 445 | 0 0 0 0 | 445 | 0 0 00 ] 0
446 | O | 446 | 0 | 446 | 0 | 145 | O | 145 | 0 | 0 | ©
455 | 0 0 0 0 0 | 444 | 444 | 0 0o

456 | 456 | 456 | 456 | 456 | 456 | E E E | E | 456 | 456
466 | 0 0 0 0 0 | 124 | 124 | 0 0] 0] 0
555 | 555 | 0 0 0 0 | 445| 0 0 0| 0] 0
556 | 0 | 556 | 0 | -446| 0 |-145| 0 |-145| 0 | 0 | ©
556 | 566 | 0 0 0 0 | 125 | 0 0 0] 0] 0
666 | 0 | 666 | 0 0 0 |-116| 0 |-116| 0 | 0 | O

=111+ 112 — 222

A

B =l
¢ =4l
D = 5

2111 — 112 + 3 - 222)

2111 — 112 + 222)

113 — 123)

[ =4(—115—3-125)
J=-114—2-125
K = 1(—115+ 125)
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B Elastic-Constant Transformations

Due to the fact that the definition of elastic constants depends on the choice
of the reference Cartesian coordinate system, ElaStic includes a tool which
converts the elastic-constants tensor referred to an as “old” reference system
(with Cartesian coordinates {z;}) to a “new” one (with transformed coordinates
{X;}). The transformation between the two coordinate systems is defined by

3
Xl' = Z Qi Ty, (Bl)
j=1

where a;; is the cosine of the angle between the directions of OX; and Ouz;.
Finally, the transformation for the components of the elastic-constant tensor are

given by
3

Oijk:l - § Qjo Qjp kg Alr Copgr » (BQ)
o,p,q,r=1
and
3
Cijklmn - E Qo Ajp kg Alr Ams Ant Copgrst » (B?’)
0,p,q,7,8,t=1

where Copgr (Cijir) and Copgrst (Cijrimn) are the SOECs and TOECs in the old
(new) Cartesian coordinates, respectively.

As we mentioned in Section A.1, for some crystals (e.g., for monoclinic struc-
tures) there is more than one choice for Cartesian coordinate frames. Sometimes
it is useful to transform the elastic tensor from one Cartesian frame to another.
This can be accomplished with the help of Egs. (B.2) and (B.3), which gives the
components of the transformed tensor of the SOEC and TOEC from the initial
reference axes to the final coordinate system by applying the proper transforma-
tion. In the following, we present some of the matrix transformations that may
be needed to transform elastic constants.

39
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e To transform elastic constants for the hexagonal crystal family (hexagonal
and trigonal crystal systems) from the STD which is used by ElaStic, to
the coordinate system applied by the code WIEN2k, one has to use the
following transformation matrix:

V3 1
2 2
TETD—WV _ _% \/73 0 (B.4)
0 0 1

e As can be seen in Table A.2, there are two types of settings for monoclinic
crystals in the code Quantum ESPRESSO. The elastic constants can be
transformed from the M® to the M(® representation by using the trans-
formation matrix

0
1] . (B.5)
0

Tl\%b‘)Qc —

OO =
— O O

e The monoclinic settings of M(® in Quantum ESPRESSO and WIEN2k are
different. The SOECs are comparable if the following matrix is applied to
transform the calculated result of Quantum ESPRESSO to WIEN2k,

sin(y) cos(y) 0
T "e = [ —cos(y) sin(y) 0] . (B.6)
0 0 1



C

Lattice Optimization

The lattice of a crystal is specified by the lattice parameters, a, b, ¢, o, 3, and 7.
The three former parameters are connected to the length of the primitive vectors
of the crystal and the three latter are the angles between the primitive vectors.
In order to relax the lattice parameters, we performed optimization cycles where
the energy was minimized with respect to each degree of freedom in a sequential
manner. Each cycle involved minimizing the energy with respect to volume, b/a
ratio, ¢/a ratio, and non-right angle, as follows:

i)

if)

Volume

All the lattice parameters are changed by the same amount of distortion.
The following deformation matrix is applied for volume optimization,

1+4+¢€ 0 0
0 1+4+¢ 0 , (C.1)
0 0 1+¢

where € is the physical strain. The equilibrium volume and bulk modulus
are obtained from least-square fits to the Birch-Murnaghan equation of state

[58]
vy ] vy ] Vo) ?
0 0 0
— ] -1 — | =1 6—4|—
() () ] o (¥)
(C.2)
where Ey, Vg, By, and B('J are the minimum energy, equilibrium volume, bulk

modulus, and first derivative of bulk modulus with respect to the pressure,
respectively.

9V, B ,
E(V) = Ey+ 106 0 By +

b/a ratio
The b/a ratio was optimized such that the volume of the crystal and the ¢/a
ratio were conserved. The following deformation matrix was applied in order

91
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iii)

iv)

to get the deformed structures:

1
0 0
1+e
0 1+¢ 0 . (C.3)
1
0

vV1+e

The equilibrium physical strain is obtained from the fit of a fourth-order
polynomial function to the energy points of the distorted structures.

¢/a ratio

The ¢/a ratio was optimized in the same way as the ¢/a ratio, but at this stage
the b/a ratio and volume are maintained constant. The following matrix is
the deformation matrix;

0 0
1+e€
0 1 0 (C.4)
1+e€
0 0 1+e€
Angle o

« is the angle between the primitive vectors b and ¢. The following defor-
mation matrix changes a conserving the volume of the structure:

0
1— 2
A (C.5)
0 € 1

In order to determine the equilibrium angle, the same fitting procedure as
for the previous two steps.

Angle B
B is the angle between primitive vectors @ and ¢. The following deformation
matrix changes § without changing the volume of the structure:

1 0 €

1
0 01 . C.6
€ 0 1

The equilibrium angle 3 is calculated by the same fitting procedure as ex-
plained for the b/a and ¢/a optimization steps.
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vi) Angle ~
v is an angle between primitive vectors a and b. The following deformation
matrix, which does not change the volume of the structure, is applied for
this optimization step:

1 € 0
¢ 1 . (C.7)
0

1—¢?
In order to determine the equilibrium angle, the same fitting procedure, as

outlined in (ii) and (iii), is applied.

The whole cycle was repeated until the obtained equilibrium parameters were
within the desired accuracy.
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