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Abstract 

The aim of my thesis is to examine the variances in the flow properties of stochastic 

realisations of fracture patterns, also with regard to model size. The importance of 

studies on naturally fractured reservoirs has the background that a third of the 

worldwide oil and gas reserves are located in such reservoirs. The accurate 

assessment of NFR is the key to develop a reservoir model. One problem is that there 

is no REV in fractured media, which is the result of the high heterogeneity of NFRs. To 

get a lower uncertainty it is necessary to not just include the fractures in the flow 

modelling process but also the rock matrix, which examines the importance of DFM 

modelling. To compute the permeability tensor flow based up scaling was used. My 

thesis focuses on the determination of equivalent permeability and their anisotropy. To 

analyse the uncertainty, which is induced in the stochastic generation process of the 

models, I generated 50 equi-probable realisations of fracture sets, followed by an 

analysis of randomly chosen combinations of multiple fracture sets and a cluster 

analysis. The model size required depends on fracture length statistics, as the model 

has to be bigger than the mode of the fracture size to avoid a high uncertainty. To find 

the smallest permissible model size, to still have an acceptable computation time in 

the meshing and simulation process and also to have the lowest possible error, it is 

necessary to make a short statistical analysis such as in my provided workflow. I also 

compare the flow simulation results using the commercial software FracMan by Golder 

Associates with extended fracture generation algorithms, implemented in a Rhinoceros 

5.0 plug-in by L. Mosser (2013) called StatFrac, that honour the “forbidden-zones” 

around fractures. A check during the fracture set generation process is made, to assure 

that there are no other fractures generated in the zone of relieved stress of the fracture. 

Following my statistical analysis of the fracture sets and their combinations, I calculated 
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equivalent permeability using parallel-plate law. I used a constant matrix permeability 

for every model and a fracture permeability which is constant within each fracture but 

varies for every single fracture using a configuration file. The effects of the uncertainty, 

which appear while randomly generating the models using the different stochastic 

fracture generation algorithms, are also visible in the range of my simulation results. 

Furthermore the impact of the orientation of the fractures on the flow has been studied. 

Expectedly, fracture sets aligned with the far field fluid pressure gradient have a higher 

velocity than perpendicular ones. To investigate the influence of the matrix permeability 

on equivalent permeability and flow velocity, I carried out a sensitivity analysis. The 

outcome is, that the higher the matrix permeability is, the higher equivalent 

permeability gets. The flow velocity in the fractures increases, due to the interaction 

between matrix and fracture sets. The matrix contributes to the flow starting with the 

lowest permeability used (5 mD). Rock matrix would dominate the flow with a 

permeability higher than 500 mD. 
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Kurzfassung 

Ziel meiner Diplomarbeit ist es, die Variabilität der Fließeigenschaften von 

stochastischen Realisierungen der Riss-Muster zu untersuchen, auch im Hinblick auf 

die Modellgröße. Die Wichtigkeit der Studien über natürlich gerissene Lagerstätten hat 

den Hintergrund, dass ein Drittel der weltweiten Öl- und Gasreserven sich in solchen 

Lagerstätten befinden. Die genaue Beurteilung der NFR ist der Schlüssel zur 

erfolgreichen Entwicklung einer Riss-Lagerstätte. Um eine niedrigere Unsicherheit zu 

erhalten ist es erforderlich, nicht nur die Risse selbst in die Modellierung 

miteinzubeziehen, sondern auch die Gesteins-Matrix, was die Bedeutung der DFM 

Modellierung bekräftigt. Um den Permeabilitäts Tensor zu berechnen wurde „flow 

based up scaling“ verwendet. Ein Problem ist, dass kein REV in NFR existiert, was auf 

die hohe Heterogenität von Riss Lagerstätten zurückzuführen ist. Meine Arbeit 

konzentriert sich auf die Bestimmung der entsprechenden Permeabilität und ihre 

Anisotropie. Um die Unsicherheit zu analysieren, die im stochastischen 

Generierungsprozess der Modelle herbeigeführt wird,  wurden 50 

gleichwahrscheinliche Realisierungen der Riss-Sets erstellt, gefolgt von einer Analyse 

der zufällig gewählten Kombinationen aus mehreren Rissen und eine „Cluster“ -

Analyse. Die mindesterforderliche Modellgröße hängt von der Riss-Längen Statistik 

ab. Das Modell muss größer als der häufigste Wert des größten Risses sein um hohe 

Varianz der Flusseigenschaften zu vermeiden. Um die geringste zulässige 

Modellgröße zu finden, die eine akzeptable Rechenzeit beim „Meshen“ und während 

der Simulation mit sich bringt und die Varianz der Ergebnisse niedrig hält, ist es 

notwendig, eine kurze statistische Analyse wie in meinen bereitgestellten Workflow zu 

machen. Ein Riss-Generationsalgorithmus welcher die "verboten-Zonen" rund um 

Risse berücksichtigt wird ausserdem in meiner Arbeit benutzt. Eine Überprüfung 
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während des Riss-Generationsprozesses wird durchgeführt, um sicherzustellen, dass 

es keinen anderen Riss in der rundum liegenden Spannungszone Zone des bereits 

erstellten Risses gibt. Nach meiner statistischen Analyse der Riss Sets und deren 

Kombinationen kalkuliere ich die effektive Permeabilität mit dem „parallel-plate-law“. 

Eine konstante Matrix-Permeabilität wurde für jedes Modell festgelegt und jedem Riss 

einzeln eine Permeabilität mithilfe einer Konfigurationsdatei zugewiesen. Welche 

Auswirkungen die Varianz der Modelle, die bereits im stochastischen 

Generierungsprozess entsteht, auch auf das „flow-based upscaling“ hat wird bei der 

Auswertung der Ergebnisse sichtbar. In den Strömungs-

Geschwindigkeitshistogrammen zeichnet sich ab, welchen Effekt die Orientierungen 

der Riss haben. Erwartungsgemäß, haben Risse mit die zum „far-field fluid“ 

Druckgradient ausgerichtet sind eine höhere Geschwindigkeit als welche senkrecht 

dazu. Um den Einfluss der Matrix Permeabilität auf die effektive Permeabilität und 

Strömungsgeschwindigkeit zu untersuchen, führte ich eine Sensitivitätsanalyse durch. 

Das Ergebnis ist, dass je höher die Matrix-Permeabilität ist, desto höher ist die effektive 

Permeabilität. Die Strömungsgeschwindigkeit in den Rissen erhöht sich, aufgrund der 

Interaktion zwischen Matrix und Fraktur-Sets. Die Gesteinsmatrix trägt beginnend mit 

der am geringsten verwendeten Permeabilität von 5 mD schon zum Fluss bei. Mit einer 

Permeabilität höher als 500 mD würde die Matrix den Fluss dominieren. 
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1. Introduction 

The underlying reason for the considerable body of research on naturally fractured 

reservoirs (NFR) is probably found when considering that about a third of the worldwide 

oil and gas reserves are located in reservoirs of this nature. The flow properties in 

these reservoirs are affected by fractures in different ways. As fractured reservoirs are 

of highly heterogeneous and complex nature, their characterisation is more difficult and 

less well understood than for conventional reservoirs. Fractures can have a much 

higher ability to transport fluids than the rock matrix, so it is even more important to 

characterize them as accurate as possible. One way to study their flow properties 

subsequently is to stochastically generate fracture patterns from the collected 

geostatistical data and use these as proxy models for the NFR, whose actual geometry 

remains hidden in the subsurface. The key to generate stochastic fracture models is to 

have statistical data large enough to give a statistically acceptable representation of 

fracture properties (Bonnet, et al., 2001). This might be difficult as fracture geometries 

tend to have no homogenisation scale or REV. These models of NFRs result in 

different flow behaviour due to their stochastic generation (Min, et al., 2004). So, for 

the identic input fracture distributions, different results for e.g. equivalent permeability 

and qf/qm ratio can be expected.  

 

One way for stochastic fracture modelling of NFRs is to use the DFN (Discrete Fracture 

Network) modelling approach. The rock matrix in DFN models is assumed to be 

negligible. DFN modelling is useful for homogeneous statistical data. Fracture system 

geometry used in DFN modelling is based on stochastic generations of fracture sets 

(Min, et al., 2004), so as in DFM (discrete fracture matrix) modelling. In DFM modelling 
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not just the flow in fractures is modelled but also in rock matrix, which reduces 

uncertainty of the NFR model (Bogdanov, et al., 2007). For computation of the effective 

permeability tensors using DFN or DFM modelling flow based upscaling is an important 

topic, as the chosen upscaling method can lead to a variation of effective permeability 

up to three orders of magnitude (Ahmed Elfeel & Geiger, 2012). The beginnings of flow 

calculations have been made by Snow (1969). The analogy of the flow through a 

fracture to a conduit of parallel plates parted by a constant aperture has been 

presented in his work. His assumptions are laminar flow, smooth walls and a fracture 

length much larger than the distance between the walls. Snow (1969) stated the cubic 

law, using the Navier Stokes equation for laminar single phase flow of an 

incompressible fluid. Using the mathematical expressions of fracture geometry with 

tensors published by Snow (1969), Oda (1985) published a method to analytically 

calculate effective permeability tensors of interconnected fractures in a computationally 

efficient way. As Oda (1985) just used a weighting factor to account for fracture length 

and has no check for fracture network connectivity, his method is limited to connective 

fractures with a high intensity (Ahmed Elfeel & Geiger, 2012). To also account for 

fracture connectivity the flow based method is used to calculate effective permeability. 

The equation used in this numerical method, is derived from the laws of momentum 

and mass. The disadvantage is that the computational expenses are higher compared 

to Oda’s method and the results highly depend on boundary conditions (Ahmed Elfeel 

& Geiger, 2012). More actual research has been made by Bogdanov, et al. (2007), the 

work addresses the full complexity of flow in permeable fractured media, by accounting 

for the matrix flow and for the size polydispersivity of the fractures using a power law 

distribution. Two parameters have been introduced, which allow for a unified 

description over a wide range of fracture characteristics, including shape, fracture 
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density, fracture size and size dependent permeability. The first parameter is the 

dimensionless density which controls percolation and the second is a measure of the 

volumetric area of the fractures in the medium weighted by the individual permeability. 

Sangare, et al. (2010) determined macroscopic properties of fractured porous media 

governed locally by a Laplace equation. An approximation is suggested which is valid 

when the properties of the fluid and of the continous porous medium are not too 

different. 

 

My work has a focus on flow-based upscaling with aid of discrete fracture and matrix 

(DFM) models. The claim of my thesis is to study the differences in the flow properties 

of stochastic realisations of fracture patterns. The effect of fracture arrangement, which 

varies due to stochastically generation of the fracture geometry, on equivalent 

permeability, qf/qm, percolation and so on flow velocity spectra will be discussed. The 

origin of the statistical data used in the modelling stem from RMOTC, the U.S. 

department of energy, who gave me a dataset of Teapot Dome to work with. Teapot 

Dome is located in central Wyoming in the southwest edge of the Powder River Basin 

in Natrona County, it is an asymmetric doubly plunging anticline which is basement 

cored. (Cooper, 2000) 

 

In the first part of my thesis, the background of the work is introduced. I will explain the 

context of DFM modelling and present the origin of the geostatistical data used. Then 

the methodology of my work will be described. Here I start out with fracture statistics 

needed as input for the stochastic models. Following the stochastic fracture generation 

models are described. Then I come to flow based upscaling, were I present the general 

calculation process and the boundary conditions assumed. Before I come to the 
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application of my workflow the general setup and assumptions made are stated. The 

second part of my thesis deals with the results of my experiments on stochastically 

generated fracture set realizations. Results on geometrical and flow data analysis will 

be shown. More precisely, I studied the effect of different fracture generation 

algorithms used to stochastically generate fracture networks on the number of 

fractures, fracture intensity and fracture length distribution. The influence of the model 

size and the effect of the variation of matrix permeability have also been investigated. 

Statistical analysis methods like, probability distributions, frequency histograms, spider 

plots and tornado diagrams are used. To state the uncertainty the range of values are 

stated in giving the input value  uncertainty. A good estimate for errors symmetrical 

about a value is given by the standard deviation.The workflow used in this thesis starts 

with the characterisation of the NFR, followed by the generation of the stochastic 

models. The Enhanced Baecher model (FracMan), the poisson process (StatFrac) and 

the random walk (StatFrac) was used to generate the stochastic models. For every 

stochastic model generation method I created fifty equi-probable fracture geometries. 

To not just study the effect of stochastic generation on fracture geometry but also the 

effect of a varying model size, I used three different model sizes (25, 50 and 100 meter 

side length).  

 

The third part of the thesis consists of the discussion of the results, followed by the 

conclusion of my work, where recommendations will be presented how to deal with the 

uncertainty of randomly generated fracture sets. 
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2. Background 

As already mentioned, my thesis concentrates on flow-based upscaling with the aid of 

DFM models. Discrete fracture and matrix modelling allows the interaction between 

fractures and the matrix. The rock matrix can strongly contribute to the total flow. It 

either contributes or dominates the total flow, depending on its permeability (Matthäi & 

Belayneh, 2004). This contribution, or even domination, of rock matrix and following 

also the interaction of fractures and matrix cannot be neglected to get results closer to 

reality. The correct usage of geostatistical data necessary to generate the stochastic 

representations of NFRs used for modelling is another important point to assess 

accuracy. To accuracy and the sensibility of the models I come back later in this 

chapter. 

2.1 Origin of geostatistical data used in the modelling 

The fracture data studied in this thesis were provided by RMOTC, the U.S. department 

of energy. The geostatistical Teapot Dome dataset I worked with just included data 

from one well, namely well 48-x-28, a borehole in Sandstone B layer of the Tensleep 

formation. The dataset contained FMI, core, reservoir, seismic and well log data. 

Additional data to get a statistically acceptable representative was collected using 

literature (Cooper, 2000; Schwartz, 2006; Lorenz & Cooper, 2011). The simplified 

cross-section, where all oil bearing layers are shown, is presented in Figure 1. The 

Tensleep formation is the deepest out of nine productive horizons and also one of the 

most profitable. It consists of eolian quartz-sandstone interbedded with sabkha 

deposits and marine dolomites (Ouenes, et al., 2010) 



 

- 18 -

 

 
 

 
Figure 1. Teapot Dome Cross-Section 

a.) Location of Teapot Dome in the state of Wyoming. (Inc., 2012)  

b.) Overview of the anticline structure is shown. (Inc., 2012) 

c.) Cross- Section of all layers  

d.) Simplified Pennsylvanian Tensleep Formation (Cooper, 2000) Sandstone B on  

which this thesis focuses is found at a depth of 1645 meter for well 48-x-28 and has  

a bed thickness of 16.8 meters. 

a.) 

b.) 

c.) 
d.) 
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3. Methodology 

This section discusses the fracture characterisation using geostatistical data, 

algorithms used in stochastic fracture modelling, flow based upscaling and the 

experimental design. 

3.1 Fracture statistics 

Geostatistical data are necessary for fracture characterisation. Fractures form 

networks. A fracture network is defined as a set of individual fractures which may or 

may not intersect (Adler & Thovert, 1999). This network includes different fracture sets, 

which are defined as groups of fractures with similar orientation. In my thesis 

interconnected fractures are defined as a cluster. These clusters are very important as 

the size, geometry and spatial distribution in the model, determines if a fracture network 

percolates or not. A percolating fracture network has a spanning connected cluster 

over the length of the model. All the fractures are assumed to be open-mode fractures 

(Mode I), so these are no conjugate sets (Pollard & Aydin, 2007). Furthermore the 

fractures are presumed to be planar and circular. To define the geometry of a DFM 

model, the following key parameters need to be identified: 

a. fracture orientation 

b. fracture intensity 

c. fracture spacing 

d. fracture size 

e. fracture aperture  

 

a. Fracture orientation and fracture set characterization  

To obtain the fracture sets, orientation data from either borehole and/or outcrop data, 

can be used. A sampling bias may arise, due to the difficulty in determining the 
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orientations of fractures parallel to the sampling line or plane (Lato, et al., 2010). 

Terzaghi’s (1965) approach must be used to correct the orientation data. A weighting 

factor w is used (w=cos(x)-1), where x is the angle between the scanline and the normal 

to the fracture. The mean orientation of a fracture set is used to derive the weighting 

factor. To get the mean orientation of the different fracture sets rose diagrams which 

need the input of statistically representative orientation data can be used. 

b. Fracture intensity (P32) 

In three dimensions fracture intensity is defined as the area of fractures in a volume. 

As it can’t be measured directly, it is evaluated with help of P10, the fracture density. 

P10 is defined as the fracture frequency along a scanline of a borehole (Dershowitz, 

1992). P32 is then calculated in multiplying a constant of proportionality C10 with P10. 

C10 depends on the orientation and size distribution of the fractures and varies 

between 1 and 3.  

c. Fracture spacing 

Fracture spacing is defined as the mean distance, measured along a perpendicular 

line, between fractures within a fracture set (Dershowitz, 1992). Fracture spacing is 

calculated with the help of P10, as it is its reciprocal.  

d. Fracture size 

Fracture length estimation from borehole data is usually not possible, but some bonds 

can be found. Schwartz (2006) calculated a fracture length distribution with help of the 

trace length. Bonnet et al. (2001) stated that the power law distribution is used in recent 

years to describe the frequency distribution of fracture properties and geometry. A 

power law distribution can also be used for the fracture length. It contains no 

characteristic length scale but an upper and lower cut-off value (Bonnet, et al., 2001). 
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The lower cut-off value represents the minimum fracture length. A too low value might 

end in high computational expenses and gives potential for discussion in terms of 

resolution possible and accuracy. Censoring of long fractures might also influence the 

accurate assessment of fracture length distribution, as these fractures might not be 

completely observed (Bonnet, et al., 2001).  

 
The stochastic fracture generation algorithms in FracMan use the Pareto power-law 

(Equation 10) and in StatFrac a power function (Equation 11) is used to create a length 

distribution.  

 (10) 

xmin – minimum fracture length (m) 
b – coefficient (-) 
x – fracture length (m) 

 (11) 

α – Coefficient (m) 
a – Minimum fracture length (m) 
b – Maximum fracture length (m) 

 

a.  Fracture aperture 

Fracture aperture is defined as the distance between the two surfaces of a fracture 

(Wilson & Witherspoon, 1974). To describe fracture aperture and length relationship 

various models are described in the literature. One is the linear elastic fracture 

mechanics (LEFM) model by Olson (2003). In consequence to the linear relationship 

between fracture aperture and length, the aspect ratio (dmax/L) should be constant with 

respect to length as it only depends on driving stress. Olson (2003) suggests this linear 

relationship being limited to cases of fracture mineralization under relaxed conditions 

or during the early, unstable stages of displacement-driven propagation. An alternative 

relationship which is appropriate for fractures that become mineralized while 
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propagating was proposed by Olson (2003). The relationship is based on LEFM, where 

all fractures in a population have the same stress intensity factor. The result of his sub-

linear – square root – aperture to length relationship is that aspect ratio decreases with 

higher length of fractures as fracture aperture gets smaller with higher fracture length. 

Olson’s method is not appropriate for closed fractures (Matthäi, 2012). Another 

approach would be a Mode I aperture computation from far field stress, which is similar 

to Olson’s model and leaves the problem with closure fractures, as it might 

overestimates aperture due to fractures with mineral bridges (Matthäi, 2012). A method 

which deals correctly with closure aperture is a calculation of aperture from Joint 

Roughness Correlations (JRC) and empirical aperture strain curve. But this assumes 

having rock-type specific field data (Matthäi, 2012). 

 
Figure 2. Ideal fracture geometries 

A: Penny-shaped fracture, B: elliptical fracture, C: tunnel-fracture  

(Gudmundsson, 2011) 

Figure 2 shows ideal fracture geometries, A illustrates a penny-shaped interior fracture, 

B an elliptical interior fracture and C a tunnel shaped fracture. For elliptical fractures it 

is assumed that one dimension is commonly much larger than the other and the 

maximal displacement umax occurs in its centre (Gudmundsson, 2011). An elliptic crack 

model is then calculated with help of its geometry. It results that the aperture which 
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has its maximum in the centre of the fracture is the normal opening displacement (u) 

multiplied with two.  

As calculated fracture data also need to be compared with the measured one, FMI 

aperture data need to be considered. If no data are available to use the above 

described methods, Marret’s (1996) proposed power law relationship needs to be 

taken into account. Bonnet et al. (2001) summarized studies of aperture distribution 

and showed the proposed exponets for aperture length power law relationship from 

various researchers (e.g. Barton and Zoback (1992), Johnston and McCaffrey (1996) 

and Barton (1995b)).  

3.2 Stochastic fracture generation algorithms 

The discrete fracture network models are generated with help of fracture statistics 

using FracMan by Golder Associates Inc. (2013) and StatFrac, a Rhino 5.0 Beta Plug-

in, written by L. Mosser a student of University of Leoben, Austria. Object based 

stochastical modelling distributes points, here fracture centres according to a 

probability law, to this process random processes defining fracture size, fracture 

orientation, fracture spacing and P32 are attached. In Fracman truncation arises as an 

issue distorting the input fracture size distribution, because all parts of the fractures 

which are not within the model box are clipped without creating new fractures inside 

the box to reach the correct P32.  

 

The conceptual models available for fracture network generation are the Enhanced 

Baecher Model, the Levy Lee Model and the Nearest Neighbour model. The algorithms 

to spatially place the fractures in StatFrac, are a Poisson Process or a Random Walk, 

which uses the Levy Lee process.  
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a. Enhanced Baecher model (EBM) 

The Enhanced Baecher Model is an extension from the three dimensional Baecher 

Disk Model. The fundamental assumptions of Baecher Disk model (BDM) are that 

fractures are circular two-dimensional disks and the centre points of the fractures are 

randomly and independently spatially distributed forming a Poisson field. In general, 

the Poisson process comprised of the generation of random sets of discrete objects 

which may be point, lines or geometric figures such as polygons. Here this means that 

fractures are randomly spatially placed until a certain P32 is reached. The differences 

from BDM to EBM are, that the Enhanced Baecher Model allows fracture terminations 

at intersections with pre-existing fractures and that fractures are not true ellipses but 

polygonal approximations of ellipses. Fracture sets with relatively uniform distribution 

with minimal clustering are generated. The general input data needed are the fracture 

orientation (trend, plunge), a fracture size distribution and P32. Here additional data 

on fracture ellipticity/elongation and on termination probabilities for secondary fracture 

sets is required. The fracture spacing distribution is assumed to be normal distributed. 

b. Levy Lee fractal model (LLFM) 

A Levy Flight fractal process is used to produce smaller fractures around widely 

scattered larger fractures. This means a new center is created at a step from the 

previous one. A probability function is used to determine the length (L) of each step.  

P(L’>L)=L-D (1) 

Its direction is uniformly randomly distributed on the sphere. The size of the new 

fracture generated is proportional to the length of the step. The fractal dimension D 

used in the probability function for length determination dictates the geometry of the 

fracture system. Tighter clusters are produced with a high value of D and looser and 

more widely scattered clusters are generated with a lower value of D. Input data 
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required are fracture orientation (trend, plunge), a fracture size distribution, P32, 

fracture shape and the fractal dimension D. 

c. Poisson Process in StatFrac 

As already mentioned fractures are randomly spatially placed until a certain P32 is 

reached while using the Poisson Process. In comparison to the Enhanced Baecher 

algorithm StatFrac is able to account for the presence of a zone of relieved stress 

around fractures, the so-called "forbidden zone", where no other fracture of the same 

set could develop. According to Pollard (1990) there should be no other fracture of the 

same set inside this zone of relieved stress. Therefore if the "forbidden zone" of a 

bigger fracture intersects the zone of another smaller one, the fracture is removed. 

This process of checking for intersections and placing new fractures is continued until 

the desired P32 value is reached. The user input using the Poisson Process in StatFrac 

requires the fracture orientation (strike, dip), P32, fracture shape (elliptic, circular) and 

the forbidden zone geometry. Zones of relieved stress, forbidden zones, can be 

represented as spherical, cylindrical, or ellipsoidal volumes where the ellipsoid is the 

most realistic as this corresponds to the actual ellipsoid of stress around the fracture. 

The size of the zones scale with fracture half-length and multipliers are used to control 

the height and radius of the zones. The fracture spacing distribution is assumed to be 

normal distributed while using a poisson process. 

d. Random Walk in StatFrac 

The random walk based on the Levy Lee fractal process is used in StatFrac, with the 

difference that it is expanded with a check for “forbidden zones”. This means the 

centres generated with a certain step from the previous one are followed by a 

“forbidden zone” check. The same input as for the poisson process used in StatFrac is 

required, with the difference that the spacing distribution is predefined as a user input. 
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Table 1 summarizes the underlying assumptions made using the different stochastic 

fracture generation algorithms. The fracture orientation is set constant for every set to 

be able to analyse the impact of the different orientations on kequ. and qf/qm.  

Enhanced Baecher Model 
(FracMan) 

Poisson Process 
(StatFrac) 

Random Walk 
(StatFrac) 

 Fracture shape: circular 
 Fracture length distribution: power law 
 Fracture set orientation constant for every set 
 Fracture intensity constant (0.07 m²/m³) 

 Fracture shape: 
polygonal 
approximations of 
circles 

 

  Center points are set 
according to a 
probability function of 
the length from the 
previous to the next 
center point 

 Fracture Spacing: normal distribution 
 Center-points of fracs are randomly and independently 

distributed in space forming a poisson field 
 

 Fracture spacing: 
power law distribution 
(user input) 

  Account for forbidden zones: cylindrical shape of zone of 
relieved stress 

Table 1. Underlying assumptions for the stochastic fracture generation methods  

3.3 Meshing with ANSYS 

Discrete fracture geometries need to be subdivided into smaller and simpler elements 

as these geometries are a necessary input in the simulation process. In this study Finite 

Element method (FEM) is used to discretize the governing equations, there the 

generated mesh has a direct influence on the accuracy of the results. A too coarse 

mesh would not cover the full complexity of a NFR and a too fine would lead to high 

computational expenses. An unstructured grid is used as it captures the full complexity 

of the DFM model. To generate this volume mesh out of the DFM models, the ANSYS 

meshing tool is used. To get a more homogeneous result and to increase mesh quality, 

the mesh can be made very fine with the “smoothing” option and then coarsened again 

to reduce the amount of elements and nodes for the computation afterwards. Before 

the input files for the simulator can be exported it is necessary to check the mesh on 
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problems, like e.g. stand-alone surface mesh or non-manifold vertices, as poor quality 

elements influence the computational result in a bad way. In case of a not positive 

response of the mesh check, the mesh needs to be improved with the repair option on 

ANSYS to assess mesh quality. 

3.4 Flow based upscaling 

In this section the governing equations used are explained. Darcy’s law is inserted into 

conservation of volume equation to find pressure equation.  

 (2) 

 (3) 
u – Darcy velocity 
p – fluid pressure (Pa) 
μ - dynamic viscosity (Pa s) 

 

Figure 3. Definition and direction of governing equation 

Fractures and matrix are discretized using Finite Element Method (FEM) with 

piecewise constant properties. As boundary condition it is assumed to have a fixed p 

inlet and a fixed p outlet on two opposing sides, all other boundaries are assumed to 

be no flow boundaries. For matrix elements, permeability k is considered to be matrix 

permeability and for fractures, fracture permeability is calculated using the parallel 

plate law. The assumption using general parallel plate law is to have laminar flow and 

a fracture with a smooth, parallel surface and that the length of the plates is more than 
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three times than the distance between them (l>> b). Snow (1969) proposed the 

equation for a velocity profile between two plates as following: 

 

Figure 4. Laminar flow between two parallel plates 
 

Figure 4 shows the parabolic velocity profile as a result from laminar flow between two 

plates. (Dietrich, et al., 2005) Having this parabola-shaped profile, the integral results 

in: 

 (4) 

 (5) 

Comparing formula 5 to Darcy’s law shows that permeability derived from parallel plate 

law concept is proportional to the square of fracture aperture b: 

 (6) 

Generally, the fluid velocity follows the first term of the cubic law as it is proportional to 

the cube of aperture: 

 (7) 
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3.5 kequ. + qf/qm calculation for the field scale model 

Formula 8 introduces the general concept of equivalent permeability calculation 

(Matthäi & Nick, 2009).  

 (8) 

A - Area (m²) of model cross section perpendicular of the flow 
L – Length (m) of model in direction of flow 
Pinlet, poutlet – Inlet and outlet fluid pressure (Pa)  
q – Total flux through model 
 
 

Respective to equivalent permeability calculation the fracture/matrix flux ratio can be 

calculated. This ratio shows how much the flow of the rock matrix influences the total 

flow. So a small value would mean that the rock matrix dominates the flow. The higher 

the value gets the lower the contribution of the rock matrix. 

 (9) 

3.6 Sensitivities and experimental design of the models 

In general a model is an imperfect copy of reality and is exposed to some sensitivity. 

For the experimental design it is necessary to have a look on the sensitivities of the 

stochastic fracture models. The first sensitivity is the use of different stochastic fracture 

generation algorithms, as every algorithm has its own assumptions. This stochastic 

fracture generation leads me to an additional sensitivity, as for same input properties 

different fracture geometries were generated. The stochastic generation of the fracture 

networks influences the number of fractures, fracture intensity and the fracture length 

distribution in the model. Also the model size influences the accuracy of the results and 

therefore is a sensitivity parameter. The model must be bigger than the mode of the 

fracture size to get an acceptable uncertainty. The DFM model is also sensitive to a 

variation of rock matrix permeability. Also in flow based upscaling a sensitivity occurs 
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as it highly depends on boundary conditions and is influenced by them. The big 

question here is how to deal with these sensitivities and how many models are enough 

to cover the full range of possible results in the stochastic generation process. In Table 

2 the experimental design is presented. 

Characterisation of the NFR 

Build DFM model from fracture statistics obtained from borehole data  

Stochastic generation of equi-probable DFM realisations 

Stochastic fracture generation algorithms: 

 Enhanced Baecher Model (FracMan) 

 Poissson Process (StatFrac) 

 Random Walk (StatFrac) 

Variation of model size (side length): 25, 50, 100 meter 

50 equi-probable realisations per model size 

Analysis of geostatistical properties of DFM models 

Set by set confirmation  

Cluster analysis 

Meshing with ANSYS 

Flow based upscaling to obtain properties of fracture-matrix ensemble: 

Kequ. – qf/qm tool by CSMP++ 

Steady state single-phase fluid flow 

Variation of matrix permeability (5 mD, 5 mD, 50 mD) 

 

Using configuration file for fracture permeability (a²/12 for each fracture) 

BCs: fixed p inlet & outlet for two opposing boundaries, no flow for all others 

OUTPUT: kequ. and qf/qm 

Table 2. Overview: From NFR field data to kequ. and qf/qm  
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4. Application to Tensleep Formation (Sandstone B) 

In this part of my thesis I will analyse the statistical data from Teapot Dome dataset to 

get the input necessary for the stochastic model generation. Also the realisation of the 

models will be shown. 

4.1 Statistical analysis of Tensleep fracture data 

To generate a discrete fracture and matrix model, the matrix and especially the fracture 

sets need to be characterized as accurately as possible. NFRs are highly 

heterogeneous and complex, so the characterization is much more difficult and even 

more important to get precise results. I start with the fracture set characterisation, 

which is coupled with fracture orientation, as fractures with the same orientation form 

a fracture set. With help of FMI orientation data a rose diagram has been generated 

using the software TectonicsFP to identify the different fracture sets. As I just had the 

dataset of well 48-x-28, fracture strikes of this well are shown in Figure 5. Terzaghi 

approach was used to correct the fracture orientations. Four dominant fracture sets 

coexist in Tensleep formation. This fracture sets are interpreted to have formed 

through deformation associated with the Laramide (late Cretaceous to early Tertiary) 

(Cooper, 2000).  

 
Figure 5. Well 48-x-28 Rose diagram Sandstone B fracture strikes 
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Table 3 summarizes the fracture orientation data for the four existing fracture sets. 

 Fracture Set Mean Strike   Mean Dip  
B Sandstone 1 

2 

3 

4 

88 

110 

153 

130 

358 

20 

63 

40 
Table 3: Fracture orientation data 

 Fracture set orientation data generated with help of the rose diagrams was used. As 

data for well 48-x-28 have not been enough, data from Smith (2008) have been used 

to cross check the generated results and to complete them. 

 

At least 200 individual measurements would be necessary to fit a distribution curve to 

fracture spacing and length data (Priest & Hudson, 1976). As just data for one well (48-

x-28) have been available, literature data have been looked up, as many researches 

with an acceptable amount of data have already been made. Gilbertson (2002) 

observed a power law distribution for spacing in Tensleep formation. Wilson, et al. 

(2013) showed that the spacing distribution follows a power law over a limited scale of 

range. The power increases with an increase in spacing. The FMI data provided for 

well 48-x-28 showed a mean spacing of 5.5 meters for the spacing, so also the spacing 

distribution for this range of spacings was used, which leads to a power of -0.47. 

Calculating fracture density P10 and then fracture intesity P32 with this mean spacing 

would lead to an overestimation of P32 (0.18 m²/m³). Fracture intensity in previous 

works proposed a P32 between 0.02 and 0.075 m²/m³. In this thesis a P32 of 0.07 

m²/m³ was used. 

 

Many researchers (e.g.: (Cooper, 2000) (Cooper & Lorenz, 2001) (Schwartz, 2006) 

(Smith, 2012) (Wilson, et al., 2013)) proposed the fracture length to be power law 
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distributed. Fracture lengths in Tensleep formation range from 0.47 to 27.42 meters 

(Schwartz, 2006). The lower-off necessary for power law distribution is 0.5 meter and 

the upper is 27.4 meters, so the whole range of fracture length is used. 

 

A power law relationship between aperture and length was used to estimate fracture 

length in the Tensleep. As no of the exponents for power law aperture length 

relationship proposed is valid for fracture length between 0.5 and 27.4 meters and 

apertures between 1.73*10-4 and 2.28*10-6, a different way to get a relationship has to 

be found. It is not possible to simply change the constant and/or the exponent to fit a 

power law aperture length relationship. Schwartz (2006) proposed to use Oskaya’s 

(2003) minimum fracture length method. The minimum fracture length was 

approximated from average FMI aperture data. This method leaded to a constant of 

0.000041, for the exponent Perez (2002) value was used (0.884). Perez (2002) 

proposed relationship: aperture (mm) = 0.012*length (mm)0.884, which is valid for micro-

fractures 

 

In the flow upscaling process also the rock matrix properties of Tensleep formation are 

needed. Results of Core analysis of well 48-x-28 indicates the eolian sandstone to be 

fine to very fine grained, well sorted and quartz cemented. Figure 6 shows the porosity-

permeability plot for the Tensleep Formation (Sandstone B), a high variation is clearly 

visible. For the simulations different matrix permeability scenarios (5, 50, 500 mD) were 

calculated, matrix porosity is not required as an input for the kequ. calculator. 
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DUC- Dune Sandstone without anhydrite cement 

DC – Dune Sandstone with anhydrite cement 

DDC – Dune Sandstone with dolomite grains and anhydrite cement 

IDUC – Interdune Sandstone without anhydrite cement 

IDC – Interdune Sandstone with dolomite grains and anhydrite cement 
 

Figure 6. Poro-Perm Plot for Tensleep Formation (Yin, 2005) 

4.2 Model Setup 

The model consists of one simplified layer of Sandstone B. A model domain of 

25*25*25, 50*50*50 and 100*100*100 cubic meter was used and meshed with 

triangular elements (about 14,000,000 elements). A rock matrix permeability of 5 mD 

was used. To see the influence of rock matrix, the permeability was then increased to 

50 mD and 500 mD. Fracture permeability was calculated for every single fracture 

using parallel-plate law. In sum the fracture sets (all 4 sets) consist between 1100 and 

1700 fractures. The flow equations have been discretized using first order Finite 

Element formulation. Fixed inlet and outlet pressures are assumed as boundary 

conditions for two opposing boundaries. All the other sides are no flow boundaries. A 

horizontal directional stress was assumed. 
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4.3 Model Realisations 

The summary of the necessary input for the stochastic fracture set generation is shown 

in Table 4. Fracture orientation is held constant as I wanted to see the orientation effect 

of every single set. Model realisations for all used stochastic generation methods are 

shown in Figure 7. Each, the realisation with the lowest and the highest number of 

fractures is shown. 

 FracMan StatFracGUI StatFracGUI 

Generation model Enhanced Baecher Poisson Process Random Walk 
(Levy Process) 

P32 0.07 

Fracture orientation 
 constant trend/plunge strike/dip angle 

Fracture size distribution Pareto power Law power function 

Spacing distribution normal 
(predefined) 

normal  
(predefined) 

power-law 
(user input) 

Forbidden zone geometry  - cylinder 
(height & length multiplier) 

Table 4. Summary of fracture set generation input 
 
In Figure 7 each 2 examples of stochastically generated DFM models are shown. Using 

a Poisson process for stochastic fracture set generation, the spatial placement of the 

fractures looks homogeneous. This means the fractures are equally distributed over 

the whole volume of the model and no part of the volume is without fractures. Using 

Poisson process in FracMan the models are in 90 % of the combinations equally 

distributed so as in StatFrac. Still a quality check has to be made, as some model 

realisations especially using a Random Walk are very heterogeneous and in some 

parts of the model no fractures are placed, as the algorithm has reached P32 before 

fractures could have been placed in this region.  
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Figure 7. Examples of realisations for each stochastic fracture generation method 
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5. Results 

In this part of my thesis the results of the geometrical analysis of the fifty stochastically 

generated DFM realisations (Sandstone B – fracture set 1) for different fracture 

generation algorithms and model sizes are shown. Following the results of a cluster 

analysis are presented. For DFM representations in StatFrac a separate script to locate 

and count the fractures has been written (Appendix A). Finally, I show the results of 

the flow data analysis. 

5.1 Geometric analysis of the stochastic DFM realisations 

The stochastic generation of the fracture realisations has the effect that for the same 

input different fracture geometries arise. This has an effect on the number of fractures 

generated in the model, fracture intensity and the fracture length distribution. 

 Fracture intensity – P32 

First the input fracture intensity will be compared with the one achieved for the different 

fracture set realisations. The input value for P32 was 0.07 m²/m³. In Figure 8 a Pareto 

chart is shown to see the variation of the fracture intensity output of the fifty different 

realisations. Furthermore the minimum and maximum output values for P32 are 

summarized. Fracture intensity gets more accurate with increasing model size. In 

general more accurate results could be achieved using stochastic fracture generation 

algorithms of StatFrac. A bigger model size is needed while using fracture generation 

algorithms in FracMan to reach the wanted P32 with a low deviation from the input. For 

the biggest model size (model edge length of 100 [m]) the error is even lower than 1% 

for both stochastic fracture generation algorithms.  
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Model edge length 25 [m] 50 [m] 100 [m] 
MIN 

Enhanced Baecher / Fracman 0.0012 0.0094 0.07003 
Poisson / StatFrac 0.0703 0.0701 0.07001 
RandomWalk / StatFrac 0.0706 0.0703 0.070006 

MAX 
Enhanced Baecher / Fracman 0.0021 0.0105 0.0705 
Poisson / StatFrac 0.0875 0.0718 0.0705 
RandomWalk / StatFrac 0.0876 0.0720 0.0703 

Figure 8. Fracture intensity P32 as a function of box volume 

 

 Number of fractures 

The number of fractures grows with increasing model size and varies among the 

algorithms that place the fractures. The Enhanced Baecher model used in FracMan in 

general generates a higher number of fractures within a fracture set. Furthermore a 

higher variation of the number of fractures is achieved, compared to the Poisson 

process and the random walk in StatFrac. 
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Model edge length 25 [m] 50 [m] 100 [m] 
MIN 

Enhanced Baecher / Fracman 22 286 2751 
Poisson / StatFrac 32 263 2482 
RandomWalk / StatFrac 40 244 2797 

MAX 
Enhanced Baecher / Fracman 113 575 3409 
Poisson / StatFrac 80 432 2909 
RandomWalk / StatFrac 95 385 3067 

Figure 9. Number of fractures as a function of box volume 

 

With increasing model size also the array of number of fractures increases. While the 

difference between the minimum and maximum number of fractures using e.g. 

Enhanced Baecher model for the smallest model size is 91, it increases exponentially 

to 658 for the biggest model size. This increase of number of fractures per equi-

probable set also leads to a higher uncertainty in the different results, as the difference 

also influences the number of clusters and so, the flow through the fracture network. 

Figure 10 shows the number of fractures with an increasing model box side length in 

a log-plot. The number of fractures increases linearly. 

0 50
0

10
00

15
00

20
00

25
00

30
00

35
00

Enhanced Baecher/FracMan

Poisson Process/StatFrac

Random Walk/StatFrac

Enhanced Baecher/FracMan

Poisson Process/StatFrac

Random Walk/StatFrac

Enhanced Baecher/FracMan

Poisson Process/StatFrac

Random Walk/StatFrac

25
 [m

]
50

 [m
]

10
0 

[m
]

Number of fractures [-]



 

 - 40 - 

 
Figure 10. Number of fractures  

 

 
Figure 11. Frequency plot for number of fractures 

 

Figure 11 displays a frequency plot for the number of fractures generated. The number 

of fractures generated in StatFrac in a box with a size length of 50 m is normal 

distributed, while in FracMan no real trend can be obtained. It seems that, also if the 
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software uses the same stochastic fracture generation algorithm, here a poisson 

process, different results are achieved, which might be caused by the forbidden zones. 

 Max. fracture radius 

As big fractures have a high influence on fracture connectivity and are therefore key 

for fracture percolation, I looked for the maximum fracture size in every realisation. 

Since there is no REV, the maximum fracture radii increase with increasing model size. 

Before I go into detail with the maximum fracture radii, I will show the power law fracture 

size distribution for the realizations with the minimum and the maximum number of 

fractures.  

Figure 14, Figure 13 and Figure 14 show the frequency distribution for fracture radii. 

The blue line on the figures represents the associated cumulative distribution, which 

gives the probability of a fracture radius to have this size or larger for a certain fracture 

radii. The bigger the model gets, the higher the probability to get big fracture radii. In 

all models P90 is between 4.9 and 5.1 meters. So there is little variation of the 

probability for fractures with a radius this size or larger. 

 

I plotted the fracture set with the highest and the lowest number of fractures for every 

software tool, to see if also the number of fractures between 5 and 13.7 meters 

changes. For the Poisson process and the random walk used in StatFrac there are just 

small differences, but the Enhanced Baecher model used in FracMan shows higher 

differences, as there have been generated 10 fractures less in the set with the lowest 

number than in the one with the biggest number. This lack of “big” fractures in the 

model with the lowest number of fractures could have a not negligible effect on 

percolation. 
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a.) 

 
b.) 

 
 

 

Figure 12. Frequency distribution and CDF – 50³ [m³] – Poisson process/StatFrac 
a.) Fracture realisation with the lowest number of fractures generated 
b.) Fracture realisation with the highest number of fractures generated 
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a.) 

 
b.) 

 
Figure 13. Frequency distribution and CDF – 50³ [m³] – Random Walk/StatFrac 

a.) Fracture realisation with the lowest number of fractures generated 
b.) Fracture realisation with the highest number of fractures generated 

 
The Enhanced Baecher Model in FracMan generates between 6 and 8 times less 

fractures with a radius between 0.56 and 1 meter, compared to StatFrac fracture sets. 

Most fractures are in a range between 1 and 2 meters and then the frequency 

distribution shows the same decrease which reveals to power law like the ones 

generated in StatFrac. Using the Enhanced Baecher model in FracMan fracture sets 

were generated according to the data input, in a second step the created fractures 

need to be truncated / clipped that no part of a fracture is outside the model box. This 
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process of clipping may destroy the input statistics, as the fracture length distribution 

changes from power law to a lognormal distribution. Fracture length statistics varies as 

the centres of fractures are not all inside the box, so fracture radii might change to 

smaller ones during the clipping process, which leads to an increase in medium 

fracture radii. 

a.) 

 
b.) 

 
Figure 14. Frequency distribution and CDF – 50³ [m³] – Enhanced Baecher model 

a.) Fracture realisation with the lowest number of fractures generated 
b.) Fracture realisation with the highest number of fractures generated 

 
In Figure 15 the variation of the actual maximum fracture radius to the input (13.7 [m]) 

is shown. 
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Figure 15. Maximum fracture radius (Mean of 50 realisations) 

 
The range of maximum fracture radius, which represents the half-lengths of fractures, 

decreases with increasing model size. For the smallest model edge length (25 m) the 

maximum fracture radius is arranged between 12.7 and 13.6 meters, for the medium 

model edge length (50 m) the range decreases and lies between 13.67 and 13.699 

meters. For the biggest model edge length (100 m) the maximum error is 0.12 %. 

Concluding, an increase in model size leads to a result closer to the input maximum 

fracture radius (13.7 meter) and this has in turn a positive effect on flow. Results also 

show that the Random Walk used StatFrac and the Enhanced Baecher model used in 

FracMan lead to more accurate result than the Poisson algorithm. In most models 

about 5 fractures with a radius between 13 and 13.7 meters are found. 
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Figure 16. Frequency plot for maximum fracture radius 

 
Figure 16shows that in FracMan the maximum fracture radius fits to an exponential 

decay, which leads to a higher error in most of the equi-probable models as the 

maximum fracture radius is defined to be 13.7 meters. StatFrac – Poisson - delivers a 

quite similar frequency distribution as StatFrac – Random Walk - with a trend to have 

more equi probable models with values near the defined radius. 

 
Table 5 summarizes the uncertainty between input and output of P32 and maximum 

fracture radius, including the estimated uncertainty in percent. 

Model edge length [m] 25 50 100 

 Uncertainty  

Enhanced Baecher / FracMan 

P
32

 [m
²/m
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+ 0.000 
- 0.0679  

(97%) 

+ 0.0000 
- 0.0595 

(85%) 

+ 0.0005 
(0.7%) 

- 0.0000 

Poisson Process / StatFrac + 0.0175 
(25%) 

- 0.0000 

+ 0.0018 
(2.6%) 

- 0.0000 

+ 0.0005 
(0.7%) 

- 0.0000 

Random Walk / StatFrac + 0.0176 
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Model edge length [m] 25 50 100 

Enhanced Baecher / FracMan 

M
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 [m
] 
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t: 
13

.7
 

+ 0.00 
- 0.17      
(1.2%) 

+ 0.00 
- 0.03 
(0.2%) 

+ 0.00 
- 0.01 
(0.07%) 

Poisson Process / StatFrac + 0.00 
-0.96         
(7%) 

+ 0.00 
- 0.02 
(0.15%) 

+ 0.00 
- 0.001 
(0.01%) 

Random Walk / StatFrac + 0.00 
- 0.10      
(0.7%) 

+ 0.00 
- 0.001 
(0.01%) 

+ 0.00 
- 0.001 
(0.01%) 

Table 5. Results of uncertainty analysis  
 
The highest uncertainty for P32 occurs in FracMan. While the obtained uncertainty in 

percent is about 3% for StatFrac fracture generation algorithms, the Enhanced 

Baecher Model in Fracman still has an uncertainty of 85%.  Errors for the maximum 

fracture radius are negligible with a model edge length of 50 meter and 100 meter, as 

they are below 1%. 

 

Before creating equi-probable fracture set realizations for each set in Sandstone B to 

study different realization combinations of the sets, the appropriate model size has to 

be chosen. My aim while choosing the best model size was to have a low uncertainty 

for the different parameters e.g. P32, maximum fracture length and variation of number 

of fractures and still have an acceptable expenditure of time to generate the sets. I 

decided to create Sandstone B with its different equi-probable fracture sets with a 

model edge length of 50 m. Model edge length 50 m has been chosen because the 

uncertainty (below 5% for StatFrac fracture generation algorithms) with this model size 

is acceptable and a bigger model size leads to a longer computational time for 

generation of the sets and further also for the meshing and simulation process.  
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5.2 Cluster analysis  

The most important thing in this study of equi-probable fracture set combinations is to 

see the impact of fracture arrangement on equivalent permeability, fracture matrix flux 

ratio and percolation. To distinct percolating and non-percolating clusters is very 

important as fluid flows only in the percolating connected fractures, while it doesn’t flow 

in the non-percolating parts (Adler & Thovert, 1999). A system percolates if the flow is 

able to go through the whole model, e.g. from the left model boundary to the right 

model boundary. 

 

The more fractures are in the system, the higher the probability that they are connected 

to each other forming clusters. Reliant on fracture orientation of the different sets, size 

distribution, fracture density and spatial distribution more or less cluster form within a 

model (Odling, et al., 1999). In general it is more likely that long fractures intersect 

each other or connect with other smaller fractures (Odling, et al., 1999).  

 
For each fracture set 10 equi-probable realizations have been generated and then 

randomly combined in FracMan and in StatFrac, to see the variation of the different 

combinations concerning number of fractures in the model, clustering etc.. 

 
First I wanted to know how the total number of fractures is related to the ratio of clusters 

divided to the total number of fractures In Figure 17 it is visible that the ratio varies with 

the number of fractures in the combination. The highest variation is achieved using the 

Poisson process in StatFrac and the lowest using the Enhanced Baecher model in 

FracMan. 
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Figure 17. Ratio clusters/n-fractures related to the number of fractures  
 

Figure 18 shows the variation of the total number of fractures which are interconnected 

in different clusters of the 10 equi-probable combinations. Just a narrow range between 

the different combinations can be obtained. Using the Enhanced Baecher model in 

FracMan 32% (mean) of the fractures form a cluster. In StatFrac the Random Walk 

and also the Poisson process deliver quite similar results with 27% and 31%. The low 

percentage can be ascribed to the power law distribution of the fracture length, as a 

high percentage of small fractures are distributed in space. 

 

In general a big fracture has a higher possibility to have an intersection with other 

fractures. The more medium to big fractures are in the same region of the model, the 

higher is the chance that they intersect each other and also smaller fractures, which 

increases the number of fractures in a cluster.  
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Figure 18. Total number of interconnected fractures 
a.) Enhanced Baecher/FracMan; b.) Poisson Process/StatFrac; c.) Random Walk/StatFrac 
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Next I have a look on the variation of the size of the largest cluster in the different 

combinations. Figure 19 shows the average sizes of the largest cluster of the 10 

combinations. The standard deviation was used to create the error bars. 

 
Figure 19. Average size of the largest cluster  

 
 

Figure 20 shows the combined fracture area for the biggest cluster in each of the 

randomly chosen combinations.  

 

 
Figure 20. Max. fracture area vs. max. number of fractures in a cluster 

Also here the results in the different combinations aberrate, which have a huge effect 
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results will be obtained. The fracture area of the biggest percolating clusters comprises 

in between 11% to 32% of the total fracture area in FracMan, 9% to 21 % in StatFrac 

using the Poisson Process and 10% to 39% using the Random Walk. This again is a 

big range. 
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Mean 35236 42392 41212 
St.Dev. 77 521 1240 

 

 
Mean 5768 5975 6205 
St.Dev. 2063 1692 2556 

 

Figure 21. Cluster statistics including error bars 
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more small fractures than both algorithms in StatFrac and that there are a lot of tiny 
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The highest range of results was achieved with the maximum fracture area. The 

biggest cluster in FracMan models ranges between 3876 and 11102 m², StatFrac using 

the poisson process it ranges between 3522 and 8032 m² and using the random walk 

the range is between 3538 and 12979 m². 

5.3 Flow data analysis 

In this section the results from flow data analysis are shown. I start in showing the 

results from a single model and proceed in presenting results for 10 equi-probable 

DFM models while also varying the rock matrix permeability. All models have been 

generated using the Poisson process (StatFrac) as a stochastic generation algorithm. 

The model edge length is 50 meters and the combinations consist out of 4 fracture sets 

with an average of 1387 fractures with a standard deviation of 98. 

 

In Table 6 the results for kequ. and qf/qm for one DFM realisation are shown. The output 

from the kequ- qf/qm tool used in flow based upscaling not just gives the overall 

equivalent permeability and fracture matrix flow, it is possible divide the results for the 

different flow directions (x,y,z) to see the impact of fracture orientation of the different 

fracture sets. Fracture sets oriented in flow direction have a higher impact, than sets 

oriented more perpendicular. This effect is visible in the difference of the results for the 

different flow directions x,y and z.  

kequ. [mD] qf/qm [-] 

kx[mD] 57 qf/qm x[-] 112 

ky[mD] 761 qf/qm y [-] 1502 

kz [mD] 319 qf/qm z [-] 630 

Table 6. kequ. and qf/qm results for one DFM model 
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To see the effect of matrix permeability on equivalent permeability and fracture – matrix 

flow (qf/qm), I repeated the simulation for ten equi-probable models, while varying 

matrix permeability (km=5 mD; km=5 mD, km=50 mD). Another aspect was to get an 

idea of the uncertainty according to the influence of the equi- probable models. Figure 

22 shows the results for equivalent permeability using the average of the ten equi-

probable models. 

 
Figure 22. Matrix permeability variation – results for equivalent permeability 

 

The influence of matrix permeability is clearly visible due to the increase of kx, ky and 

kz with increasing matrix permeability. The uncertainty in percent is summarized in 

Table 7. Uncertainty decreases with increasing matrix permeability, except for z 

direction, here it increases. As fracture sets which are oriented in flow direction have a 

higher impact than the sets oriented more perpendicular, also a difference between 

bottom-top (ky), left-right (kx) and front – back (kz) was achieved. Due to orientation of 

the fracture sets, best results have been achieved with a flow from bottom to top (ky) 

of the box, followed by front to back (kz) of the model. This might mean that the better 

the fractures are oriented regarding to flow direction the lower the permeability 

difference between the different equi-probable models gets.  
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used km  uncertainty kx uncertainty ky uncertainty kz 

5 mD 69 % 10 % 1 % 

50 mD 31 % 8 % 3 % 

500 mD 8 % 3 % 4 % 

Table 7. Uncertainty of kx, ky and kz in % 
 

Figure 23 shows the results for fracture matrix flow. The lower km. the higher qf/qm. 

As kequ. rises with increasing rock matrix permeability, qf/qm decreases due to the 

high influence of matrix permeability. The uncertainty in percent (Table 7) is equal to 

the results for kx, ky and kz. 

 

 
Figure 23. Matrix permeability variation – Results for qf/qm 

 

Figure 24 shows an example for volume flux generated in StatFrac with the Poisson 

process using a rock matrix permeability of 5 mD. The two models with the highest 

differences in kx, ky and kz are shown. Best volume flux results are achieved in 

direction with the highest permeability, namely ky.  
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Figure 24 shows the flow velocity spectra for x, y and z direction separately for all four 

fracture sets and the flow velocity spectra for the combined fracture sets in the DFM 

model. The two models with the highest differences have been opposed in Figure 24. 
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z 

  
Figure 24. Flow velocity spectra 

 

Table 8 summarizes the mean and the standard deviation of the flow velocity spectra. 

 Fracture set 1 Fracture set 2 
 Model 1 Model 2 Model 1 Model 2 

x -5.15 (-5.10) -5.14 (-4.96) -5.28 (-5.15) -5.16 (-5.02) 

y -6.04 (-5.75) -5.59 (-5.33) -5.90 (-5.60) -5.62 (-5.35) 

z -5.39 (-5.20) -5.50 (-5.37) -5.73 (-5.45) -5.49 (-5.27) 

 Fracture set 4 Fracture set 3 
 Model 1 Model 2 Model 1 Model 2 

x -5.18 (-5.04) -5.09 (-4.98) -5.20 (-5.19) -5.29 (-5.05) 

y -6.27 (-5.89) -5.18 (-5.05) -5.96 (-5.75) -5.61 (-5.40) 

z -5.50 (-5.26) -5.49 (-5.29) -5.58 (-5.37) -5.71 (-5.32) 

  All fracture sets 
 Model 1 Model 2 

x -6.02 (-5.72) -5.46 (-5.21) 

y -6.27 (-5.89) -6.05 (-5.63) 

z -5.53 (-5.30) -5.17 (-5.00) 

Table 8.  Mean and standard deviation of the flow velocity spectra 
 

The results in Figure 25 show, that the lowest difference is achieved for z direction and 

the highest for y direction. This leads me to the assumption that the fractures which 

are oriented to flow direction have the highest impact on flow and in this direction the 

lowest difference between the models is achieved. 
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Figure 25. Probability distribution for kequ.  for 10 equi-probable models  
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6. Discussion 

This master thesis has investigated the importance of a statistical analysis of 

stochastically generated DFM models. The purpose of this thesis was to determine the 

uncertainty concerning fracture generation algorithms used, model size, stochastically 

generated fracture geometries, variation of the size of the clusters within stochastically 

generated DFM models and the effect on variability of the kequ. and the qf/qm ratio.  

 

One of the major findings concerning the generated fracture geometries using different 

fracture generation algorithms is that the accuracy of the input vs. the output value of 

P32 not just depends on model size but also on the fracture generation algorithm used. 

While the uncertainty of the Poisson process and the Random walk used in StatFrac 

was about 25% for the smallest model size, the Enhanced Baecher model had an 

uncertainty of 97%. This high uncertainty would have an immense effect on the 

reliability of the DFM model. I assume that the fracture generation algorithm has even 

a higher influence on the uncertainty than the used model size, even if P32 gets more 

accurate with an increase in model size. Results with an uncertainty below 5 % have 

been achieved with an increase in model size. 

 

Next, the used cut-off for the power law fracture length distribution need to be 

discussed. The minimum cut-off value defines the smallest fractures included in the 

model and determines how complex the model and so the mesh gets. Setting the 

minimum cut off value too high would lead to a truncation effect (Bonnet, et al., 2001). 

This influences the validity of the input statistics. Using a minimum cut off- value of 0.5 

meter for the fracture radii, fracture generation algorithms used in StatFrac produce a 

power law distribution. In FracMan the “clipping” process changes the input distribution 
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(PL) to a log-normal distribution. This occurs because fracture centres are not 

necessarily set in the model domain, this could destroy the input statistics. Another 

point is that FracMan produces a higher amount of small fractures to reach P32 and 

so less big fractures than fracture generation algorithms in StatFrac. I assume that 

StatFrac this higher amount of “big” fractures (10-27.4 meter) is an effect of the 

forbidden zones included, as the smaller fracture will be deleted if it would be set in the 

forbidden zone. An interesting finding is, that the maximum fracture radius had an 

uncertainty below 10% for all fracture generation models. For models with a model 

edge length higher than 25 meter it was even below 1%. 

 

But in fact, not just the size of the fractures has an impact on flow, but also the location 

within the box volume. The aim would be that the cluster spans the entire region to 

reach a percolation threshold. Odling et al. (1999) also described the relationship 

between fracture density and number of fractures within a cluster. So with a small 

fracture density also the clusters themselves are smaller, which leads to the result that 

no cluster spans the entire region. As I used a power law relationship more small 

fractures have been generated in the model than big ones. I assume that even with a 

high fracture density a high variation of results concerning percolation threshold will be 

achieved. Due to this I was interested in the biggest cluster of the equi-probable 

models. On the question of the variation of the biggest cluster, this study found that 

there is a high diversity of the results, e.g. the maximum cluster area generated with 

the Poisson process in StatFrac is 5975 (3384) m². Surprisingly about the same 

amount of fractures (~ 30%) are interconnected in every model and all three fracture 

generation algorithms produced about the same amount of the total number of 

fractures in the model (Enhanced Baecher:  1525 (190); Poisson Process  1387 
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(196); Random Walk  1287 (162)). So I assume the location in the box volume has 

the highest influence on the biggest cluster. But also here the fracture generation 

algorithm has an influence, as in models generated with the Enhanced Baecher 

algorithm a higher amount of clusters exist, but within these are lots of small clusters, 

which have little effect on percolation.  

 

Next, I want to discuss the uncertainty in flow data analysis. Ahmed Elfeel and Geiger 

(2012) listed the high dependency on boundary conditions as a negative aspect of flow 

based upscaling. I conclude that the results are sensitive to different boundary 

conditions and different uncertainties might occur than in my study.  

 

The uncertainty analysis for the equivalent permeability divided in x, y and z direction 

has shown that fractures which are oriented to flow direction have not just the highest 

impact on flow but also the lowest uncertainty between the models is achieved. The 

highest uncertainty was found in x direction, due to the orientation of the fractures. 

Another factor which influences uncertainty is the rock matrix permeability, as higher 

matrix permeability leads to a lower uncertainty. Also for fracture matrix flow similar 

results have been achieved. A higher influence of the rock matrix leaded to a lower 

uncertainty in the results (below 10% for km=500 mD). 

 

These findings are significant, as I’ve shown that the stochastically generation of DFM 

models can lead to a not neglible uncertainty with regard to kequ. and qf/qm. 
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7. Conclusions  

How much do multiple realisations differ from one another? How much does the 

variability among the stochastically generated DFMs affect kequ. qf/qm, the size of 

percolating clusters and the flow velocity spectra? The aim of my thesis was to answer 

these questions. The major findings of this study are listed below: 

 The accuracy of P32 not just depends on the model size, but even more on the 

fracture generation algorithm used. I conclude that fracture generation 

algorithms which consider forbidden zones lead to a lower uncertainty. 

 The clipping process used in FracMan might destroy fracture input statistics. In 

this study a fracture length power law distribution became log-normal. 

 More small fractures are generated with the Enhanced Baecher model in 

FracMan than with StatFrac generation algorithms. This again results from the 

included forbidden zones and might affect the percolation threshold. 

 The input vs output maximum fracture radius reveals to a low uncertainty for all 

fracture generation algorithms. But also here, a bigger model size leads to an 

increase in accuracy. 

 The location of the fractures in the box volume has a very high influence on the 

biggest cluster and its fracture area. Here the highest uncertainty occurs, with a 

high diversity in results, this has a high influence on percolation threshold. 

 The highest uncertainty for kequ. and qf/qm occurs in direction where most 

fractures are oriented perpendicular to flow direction. Another influence on 

equivalent permeability and fracture matrix flow has the rock matrix 

permeability. A higher rock matrix permeability leads to a lower uncertainty. 

Taken together, these findings show that uncertainty has to be considered in DFM 

model generation. 
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Appendix A.  
The phyton script for the cluster count is shown here. The coordinates, the radius and 

the orientation of the fractures are used to locate the fractures and to check if they are 

interconnected with other fractures. The script finishes with an output of the number of 

clusters in the model, the number of fractures in a cluster and the total fracture area of 

a cluster. 

 

import shlex 
import Utilities 
import Rhino.Geometry 
import itertools 
import math 
 
def readFromFiles(): 
    fraclist = [] 
    height = 0.0001 
    files = ["Fracture_Half_Lengths_set1_1","Fracture_Half_Lengths_set2_1", 
“Fracture_Half_Lengths_set3_1","Fracture_Half_Lengths_set4_1"] 
    for file in files: 
        print "open file", file 
        f = open(file, "r") 
        lines = f.readlines()           
        for l in lines: 
            [x, y, z, radius, dip, dipangle] = shlex.split(l) 
            flaw = Rhino.Geometry.Point3d(float(x), float(y), float(z)) 
            vec = Utilities.CreateOrientationVector(float(dip), float(dipangle)) 
            plane = Rhino.Geometry.Plane(flaw, vec) 
            circle = Rhino.Geometry.Circle(plane, float(radius)) 
            cylinder = Rhino.Geometry.Cylinder (circle, height).ToBrep(True, True) 
            fracture = [0, cylinder, radius] 
            fraclist.append(fracture) 
    return fraclist 
 
def countClusters(fraclist): 
    clusterCount = 1 
    checklist = list(itertools.combinations(fraclist, 2)) 
    for pair in checklist: 
        intersection = Rhino.Geometry.Intersect.Intersection.BrepBrep(pair[0][1], 
pair[1][1], Rhino.RhinoMath.SqrtEpsilon) 
        if len(intersection[1]) != 0:        
            if (not pair[0][0]) and (not pair[1][0]): 
                pair[0][0] = clusterCount 
                pair[1][0] = clusterCount 
                clusterCount = clusterCount + 1 
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            else: 
                if pair[0][0] > pair[1][0]: 
                    pair[1][0] = pair[0][0] 
                    if pair[1][0]: 
                        for frac in fraclist: 
                            if frac[0] == pair[1][0]: 
                                frac[0] = pair[0][0] 
                else: 
                    pair[0][0] = pair[1][0] 
                    if pair[0][0]: 
                        for frac in fraclist: 
                            if frac[0] == pair[0][0]: 
                                frac[0] = pair[1][0] 
    clusterCount = clusterCount - 1 
    for frac in fraclist: 
        print frac[0] 
    f = open("cluster_analysis.txt", "w") 
    f.write("Number of Clusters\t" + str(clusterCount) + "\n") 
    count = [] 
    area = [] 
    for i in xrange (clusterCount): 
        count.append(0) 
        area.append(0.) 
        for frac in fraclist: 
            if frac[0] == i+1: 
                count[i] = count[i] + 1 
                S = math.pi*float(frac[2])*float(frac[2]) 
                area[i] = float(area[i]) + float(S) 
        f.write(str(i+1) + "\t" + str(count[i]) + "\t" + str(area[i]) + "\n") 
    f.close()             
    print "Done" 
             
def main_function(): 
    fraclist = [] 
    fraclist = readFromFiles() 
    countClusters(fraclist) 
     
 
if( __name__ == "__main__" ): 
    main_function() 


