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II 

Abstract 

The size and shape of inorganic Nanocrystals (NCs) have a fundamental influence on 

their unique physical properties. Small angle x-ray scattering (SAXS) is an established 

technique to obtain not only the mean size but also the mean shape of various colloidal 

NC systems. The ab-initio program DAMMIN has previously been developed to retrieve a 

three dimensional shape that best fits an experimental SAXS curve of monodisperse 

particles such as proteins. The use of this technique for inorganic NCs yields great 

potential to obtain the real mean shape in sub-nanometer resolution. 

In order to obtain information on the sensitivity of this technique, numerous scattering 

curves of known theoretical models were computed and used as input for DAMMIN. To 

directly interpret the obtained three dimensional structures, several evaluation methods 

were developed and implemented. E.g., one of them reveals, that the averaging of 

multiple simulation leads to a three dimensional probability map which now can directly 

be correlated to the electron density in real space. 

These developed analysis methods allow to derive quantitative parameters from the 

retrieved shape. Multiple series of simulations could be performed to reveal the 

influence of the main fitting parameters. Furthermore the influence of the information 

content provided from the experimental scattering curve is studied.  

Additionally, the simulation was performed on systems with distinct size distributions. 

Finally an error of the values obtained by the developed methods is estimated that 

confirms DAMMIN as a powerful method for the shape retrieval of inorganic NCs with a 

polydispersity up to 10 %. 

  



 

III 

Kurzfassung 

Größe und Form von anorganischen Nanokristallen (NCs) beeinflussen deren einzigartige 

physikalische Eigenschaften. Zur qualitativen und quantitativen Bestimmung der 

mittleren NC-Gestalt hat sich Röntgen-Kleinwinkelstreuung (SAXS) als Messmethode 

etabliert. Eine Möglichkeit der Interpretation von SAXS-Streukurven bietet das 

Programm DAMMIN. Dieses Programm ermöglicht die Bestimmung der detaillierten 

Gestalt von monodispersen Systemen, wie z.B. Proteine in Lösung, ohne dabei von einer 

Grundform auszugehen. Dabei wird ein dreidimensionales Model aus Kugeln erstellt, in 

dem die Streukurve des Models durch rekursives Abändern der Kugelkonfiguration an 

die experimentell bestimmte Kurve angepasst wird. Die Anwendung von DAMMIN auf 

kolloidale anorganische NCs bietet daher neue Möglichkeiten die mittleren strukturellen 

Eigenschaften der NCs ohne Annahmen zu bestimmen. 

Um den Berechnungsprozess auf Sensibilität und Stabilität zu testen wurden theoretisch 

errechnete Streukurven von simplen Geometrien mit DAMMIN angeglichen. Um die 

resultierenden Modelle direkt interpretieren zu können wurden im Rahmen dieser 

Arbeit einige Evaluierungsmethoden entwickelt und implementiert. Dabei kann unter 

anderem die Besetzungswahrscheinlichkeit der Kugeln, welche durch die Mittelung 

mehrerer Modelle generiert werden kann, direkt mit der lokalen Elektronendichte der 

wahren Geometrie korreliert werden. Des Weiteren können mittels der entwickelten 

Methoden die erhaltenen Modelle quantitativ und qualitativ beschrieben werden, was 

den direkten Vergleich der Resultate verschiedener Simulationsreihen ermöglicht. 

Neben dem Einfluss der Hauptsimulationsparameter wurden außerdem die 

Auswirkungen der Verringerung des Messbereiches und damit des Informationsgehaltes 

der Streukurve untersucht. 

Zusätzlich wurden Systeme mit einer künstlichen Größenverteilung simuliert, um 

Verschmierungseffekte in die Betrachtung miteinzubeziehen. Schlussendlich wird auf 

mögliche Fehlinterpretationen eingegangen, sowie die Abweichung bzw. der Fehler der 

von den Evaluierungsmethoden erhaltenen Werte abgeschätzt. Dadurch wird bestätigt, 

dass DAMMIN ein wirkungsvolles Programm ist um die Gestalt und Größe von 

inorganischen NC mit einer Größenverteilung von bis zu 10 % zu bestimmen. 



 

IV 

Content 

Acknowledgement ....................................................................................................................... I 

Abstract ...................................................................................................................................... II 

Kurzfassung ................................................................................................................................ III 

Content ..................................................................................................................................... IV 

Abbreviations & Symbols .......................................................................................................... VI 

1 Introduction ............................................................................................................................. 1 

2 Theory ...................................................................................................................................... 4 

2.1 Scattering Theory .................................................................................................................... 4 

2.1.1 General Scattering Theorem ........................................................................................... 4 

2.1.2 The Debye-Formula ......................................................................................................... 7 

2.1.3 Small Angle Scattering ..................................................................................................... 8 

2.1.4 Modeling of SAXS-Data .................................................................................................. 11 

2.2 Computational Methods ....................................................................................................... 12 

2.2.1 Simulated Annealing ...................................................................................................... 12 

2.2.2 The Multipole Expansion ............................................................................................... 13 

2.2.3 Shape Retrieval Methods .............................................................................................. 15 

3 Experimental .......................................................................................................................... 17 

3.1 Creation of the Reference Formfactors ................................................................................. 17 

3.1.1 Monodisperse Systems .................................................................................................. 17 

3.1.2 Polydispersity ................................................................................................................ 19 

3.1.3 Smearing Effects ............................................................................................................ 21 

3.2 GNOM ................................................................................................................................... 23 

3.3 DAMMIN ............................................................................................................................... 24 

3.4 DAMAVER ............................................................................................................................. 26 

 



 

V 

4 Data Analysis .......................................................................................................................... 28 

4.1 Weighted Radius of Gyration ................................................................................................ 28 

4.2 Linear Evaluation .................................................................................................................. 30 

4.3 Averaged Dimension ............................................................................................................. 33 

4.3 Spherical Average ................................................................................................................. 35 

5 Results & Discussion ............................................................................................................... 37 

5.1 Stability of Results ................................................................................................................. 38 

5.1.1 Number of Dummy-Atoms ............................................................................................ 38 

5.1.2 Shannon Channels ......................................................................................................... 41 

5.1.3 Number of Harmonics ................................................................................................... 45 

5.2 Polydispersity ........................................................................................................................ 49 

5.2.1 Sphere ............................................................................................................................ 49 

5.2.1 Ellipsoid of Revolution ................................................................................................... 55 

5.3 Estimation of Error ................................................................................................................ 59 

5.3.1 Evaluation Methods....................................................................................................... 60 

5.3.2 Simulation parameters .................................................................................................. 61 

6 Conclusion and Outlook ......................................................................................................... 63 

References ................................................................................................................................ 66 

 

  



 

VI 

Abbreviations & Symbols 

BA …….…… Boltzmann annealing 

DA  …….…… dummy atom 

DAM …….…… dummy atom model 

GA  …….…… genetic algorithm 

GIFT  …….…… generalized indirect fourier transformation 

HCP …….…… hexagonal closest packing 

IFT  …….…… indirect fourier transformation 

MC  …….…… Monte Carlo 

NC …………. nanocrystal 

PDDF  …….…… pair distance distribution function 

�� …….…… radius of gyration 

SA  …….…… simulated annealing 

SA(X)S  …….…… small angle (X-ray) scattering 

SC …………. Shannon channel 

VDW …………. Van-der-Waals 

�� …….…… chi-square 

 



1 

1 Introduction 

One of the first definitions of the term colloid was stated by Graham in the 19th century 

which referred to the Greek meaning: “glue-like”. To him a colloid was unable to pass 

through a very fine membrane which introduces an important concept: the dimensions 

of the species are significant properties of the system. Even though definitions of 

colloids can be very refined, there is no strict distinction to other systems. A common 

denominator in various definitions is that colloidal materials consist of at least 2 phases 

where one is dispersed in the other. Therefore, one of the easiest ways to classify 

colloids is by the physical state of the phases [1]. But as stated, the size of the dispersed 

phase is a crucial phenomenon, where the colloidal size domain usually extends from a 

few nanometers to a few micrometers. Thus, colloids can be classified by their size 

distribution. If the particles of the dispersed phase are identical in size and shape the 

solution is considered to be perfectly monodisperse. If there is a certain size and shape 

distribution of the particles the solution is considered to be polydisperse. If moreover 

this distribution occurs around not only one but two mean values, the solution is 

considered bimodal or even multimodal [1]. 

Over the last quarter century, colloidal nanocrystals (NCs) have been in the spotlight of 

various scientific communities since they show great potential for electronic and 

biomedical applications [2-5]. The widely used term nanocrystal (NC) is rather self-

explanatory since it refers to a single- or polycrystalline body of some sort which shows 

its significant dimension in the nanometer scale [6]. Colloidal NCs are generally built out 

of an crystaline core that is covered by at least one layer of surfactants [7].  

Recent work has shown that the unique physical properties of NCs can be related and 

influenced by their size and shape [8-11]. This is not only crucial for the understanding of 

the underlying mechanisms but it offers useful design parameters for the development 

of new materials. Therefore a lot of attention has been directed towards tailoring the NC 

shape during the synthesis [12-14]. 

Generally speaking, the equilibrium shape of a free particle is the shape that minimizes 

the surface energy, which is defined as the excess free energy per unit area. If we look at 

a (for example amorphous) material with an isotropic surface energy the resulting shape 
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will be a perfectly symmetric sphere. Materials with a certain atomic long-range-ordered 

structure have different surface energies in different directions, due to the regular 

placement of atoms in the crystal lattice. In other words: different lattice planes have 

different surface energies [13].  

Compared to the isotropic case, the total free surface energy of an anisotropic particle 

can therefore be minimized by forming distinct planes, which are called facets. This 

principle was proven by Wulff in 1901 and this has established itself as the cornerstone 

of crystal shape analysis [15]. The essence of this theory is that by knowing the surface 

free energy of all possible facets of a particle one can predict its free equilibrium shape. 

Obviously, the number of possible facets of a crystal is infinite which makes it nearly 

impossible to predict the crystal shape of a given material ab initio. For most materials 

though the smallest free surface energy can be found for low-index crystal planes that 

show closest atomic packing [13].  

With the gaining controllability of the NC-synthesis procedures the level of structural 

detail is increased which implies that some attention has to be directed towards the 

resolution of the measurement techniques used to study these systems. The standard 

method to retrieve the structure of single NCs is transmission electron microscopy 

(TEM) which yields in high-resolution images with a resolution down to a single 

Ångstrom. However, using this technique, only two-dimensional images of the focus 

plane can be obtained. For aligned NCs it is therefore impossible to see structures 

perpendicular to this focus plane which can lead to the misinterpretation of the real NC 

shape. 

Using small angle x-ray scattering (SAXS) these draw-backs can be avoided. The main 

advantage of measuring colloidal NC systems using SAXS is the relatively speaking big 

volume of the sample which is irradiated (containing approx. 1010 NCs). This on one 

hand implies that the information obtained by this method is of high statistical value. 

E.g., compared to TEM not the shape of a single NC, but the mean shape of the entire 

system can be obtained. On the other hand due to this high number of randomly 

oriented particles the scattering occurs equally from all NC-directions. Therefore the 

three-dimensional mean structure of all NCs can be retrieved. 

In the field of protein crystallography, SAXS has been accepted as an established method 

for the detailed shape retrieval of molecular structures [16]. The program package best 

known for this application is ATSAS, which was developed by D. Svergun. [17] The 
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centerpiece of this method is the program called DAMMIN. [18] It creates a three-

dimensional probability map in real space that best fits a given SAXS-curve. For the use 

of the shape retrieval of proteins this map is only an intermediate step in which the 

known molecular structures are then fitted. [19] Up to this date, only very little effort 

has been made to directly interpret the probability map obtained from this ab-initio 

method. Furthermore, this method is rarely applied to different inorganic NC systems 

with narrow size distributions [20]. 

The objective of this work is the utilization of DAMMIN on theoretical models that are 

similar to inorganic NC-systems. For this purpose the scattering curves of idealized 

systems are calculated and used as input for the simulations. In a first step evaluation 

methods are developed and programmed to quantitatively describe the obtained 

models. Using the values obtained from these procedures, the stability and reliability of 

the retrieved model parameters for varying fitting parameters is to be determined. 

Furthermore the effects of smearing of the initial scattering curve, such as instrumental 

smearing or polydispersity, on the final models are studied. Finally an estimation of 

error of the obtained values is made. 

This work is divided into seven sections. After this brief introduction, the underlying 

principles of colloidal nanocrystals, general x-ray scattering and numerical mathematics 

will be explained. The experimental section will deal with the handling of the software 

as well as with the computation of the theoretical scattering curves. In the following 

chapter the developed evaluation methods and the values obtained by them will be 

presented. Subsequently the results of the various simulation series will be presented 

and discussed. In the last chapter a summary of this work as well as an outlook for 

possible further investigations can be found.  
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2 Theory 

2.1 Scattering Theory 

The following treatment will be concerned with the scattering of x-rays only. First off, x-

rays are photons, transverse electromagnetic waves, with a wavelength in the range of 

Ångström (10−10 m). Using Maxwell’s equations it can be shown that an accelerated 

charge emits electromagnetic waves. This is the working principle of synchrotron 

research facilities where electrons are circulating in a storage ring and are used as the 

source of radiation. Maxwells’ equations also imply that an electromagnetic wave exerts 

a force on an electric charge which as a result is accelerated and therefor radiates a new 

wave. In the classical description this phenomena is considered scattering [21]. 

2.1.1 General Scattering Theorem 

When an electromagnetic wave interacts with matter it can either be absorbed, 

scattered or reflected. When comparing the incident and the scattered wave, the 

scattering is considered to be elastic if the energy of both waves is equal to each other. 

From this point on the presumption is made, that the incident plane-wave is 

monochromatic, polarized and only elastic scattering will occur.  

 

Figure 1: Illustration of the general phenomena of radiation interacting with matter including elastic and 
inelastic scattering and absorption. Taken from Ref. [22] 
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The signal measured by the detector in such a scattering experiment is the differential 

scattering cross-section which is defined by  

����Ω	 = ����∆Ω ( 1 ) 

The number of scattered photons recorded per second by the detector is ��  where the 

detector subtends a solid angle ∆Ω. The intensity of the incident beam is described by 

the flux ��which is the number of photons passing through a given area per 

second [21]. 

Since the intensity of the beam is correlated to the square of the electric field, the 

differential scattering cross-section can also be described in terms of the electric field of 

the incident and scattered wave which results in 

����Ω	 = |����|���
|���|�  ( 2 ) 

where � is the sample-detector distance. The incident plane wave is defined as 

�����, �� ≡ � !"��#∙� " &'� ( 3 ) 

with the electric vector �  polarized perpendicular to the scattering plane, the 

propagation vector # and the angular frequency (. The magnitude of the propagation 

vector is k ≡  |#| = 2+ ,⁄  where λ is the wavelength of the wave in the medium [23]. If 

we evaluate Equation (2) for the case of scattering at a single electron in vacuum, it can 

be shown that [21] 

����Ω	 = .�� /01� 2 ( 4 ) 

where 2 is the angle between the propagation direction of the scattered wave and the 

observation point. The importance of this equation can be explained using the Thomson 

scattering length of an electron 

.� =  3 !�
4+5�6/�7 = 2.82 × 10"=Å ( 5 ) 

which is defined only using natural constants. It is evident that the scattering cross-

section of an electromagnetic wave by a free electron is independent of the energy of 

the incident wave [21].  
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Since in real experiments one is limited to finite resolution one will always generate a 

beam of incident waves that has a certain cross section. This means that scattering will 

occur at more than one charge. We define ?��� as a number density which describes 

the charge distribution where � is the position vector of a single charge. It is to be noted, 

that the charges within this distribution do not interact and can therefore be seen as 

free charges. Furthermore we need to adopt the so called Born approximation. This 

approximation assumes that all charges interact equally with the incident wave. We 

neglect that the scattered wave influences neighboring charges and might be scattered 

again. In short: no multiple scattering occurs. [21] 

 

Figure 2: (a) Determination of the phase difference between waves scattered at the origin @ and at A where #�  is the incident and #B scattered wave. (b) Definition of the scattering vector C. 

An example would be electrons in an electron-cloud. The entire scattered radiation can 

be described as the sum of superposition contributions from different volume elements 

of ?���. To evaluate the scattered signal we need to look at the phase difference 

between the wave scattered at the origin and the one scattered at the position �, as 

shown in Figure 2. The phase difference D��� is thus [21] 

D��� = �#� E #B� ∙ � 
 C ∙ � ( 6 ) 

C is called the scattering vector. For elastic scattering, where |#�| 
 |#B|, with the 

scattering angle 2F,  G is defined as [21] 

G 
 |C| 
 	
4+
,

	sin F ( 7 ) 

where , is the wavelength of the incident beam. 
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The elastic scattering amplitude of an assembly of K electrons can be written as [21] 

L�C� = .� M !"�C∙�N
O
P

 ( 8 ) 

If you look at the electron-cloud surrounding an atom the electrons can be seen as 

delocalized which results in a discrete density ?��� describing the spherical vicinity of 

the nucleus. The scattering amplitude is then described as [21] 

L�C� = Q ?���!"�C∙��� ( 9 ) 

It is to be noted that after all scattering occurs originates from changes in the electron 

density in a given sample. Therefore one needs to compare the electron density of the 

scatterer to the overall mean of the measured density. We will relate to this as ∆?��� . 
As mentioned above, the measured intensity is equal to the squared amplitude of the 

wave. For the approximation that the electron density surrounding an atomic nuclei is 

homogeneous the intensity can be calculated using the amplitude L�C� and its complex 

conjugate  L�C�∗ as [21] 

��C� = L�C� ∗  L�C�∗ = S∆? Q  !"�C∙���S�
 ( 10 ) 

2.1.2 The Debye-Formula  

In the case of two electrons the intensity as a function of C can be calculated using the 

following equation [21] 

��C� = 2.��1 +  cos�C ∙ ��� ( 11 ) 

From this equation it is obvious that in order to evaluate the scattering intensity of more 

than one charge an angle between C and � has to be defined. In real systems � is often 

randomly oriented with respect to C. To account for this, a spherical average over all 

angles has to be performed which was done by P.Debye [24]. In a first step we define W 

as the angle between C and � such that 

C ∙ � =  G . cos W ( 12 ) 
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If we look at a system of two particles, one at the origin and one at the position �, with 

the scattering amplitudes XY and X� the scattering amplitude can be written using 

Equation ( 8 ) as 

L�C� = XY +  X�!"�C∙� ( 13 ) 

If we now calculate the intensity using Equation ( 10 ) we get 

I�Q� = fY� +  f�� + fYf�e^_∙` + fYf�e"^_∙` ( 14 ) 

For a fixed length � but a randomly oriented direction, the last two terms can then be 

combined such that 

〈I�Q�〉 = fY� + f�� + 2fYf�〈e^_∙`〉 ( 15 ) 

Using Equation ( 12 ) above, the average of the phase factor can be written as 

〈!�C∙�〉 =  14+ c !�d � efg W sin W dW �φ =  sin j.j.  ( 16 ) 

If we generalize the so called Debye formalism above to a system built up of N charges 

with the distance between every possible pair of  .Pl =  m�l E �Pm and the scattering 

amplitude of each charge described by X�, one can calculate the scattering intensity of 

this system using 

〈��G�〉 = M M XPXl sin j.Plj.Pl
O

lnP
O

Po�
 ( 17 ) 

which is known as the Debye-Formula  [21, 24].  

2.1.3 Small Angle Scattering 

The importance of small angle scattering (SAS), or in this case small angle x-ray 

scattering (SAXS), becomes obvious when looking at the reciprocal law of scattering 

processes. The classical approach to describe this is done by the Bragg-equation, which 

states the relationship between a characteristic geometry described by p and the 

scattering angle F at a fixed wavelength as [21] 

q , = 2� sin F ( 18 ) 

or by using Equation (7)  
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2+� = G ( 19 ) 

As we want to look at dimensions that are bigger than 1 nm in size, the corresponding 

scattering angle, using a Cu-Kα source with λ = 0.1548 nm [21], decreases to values 

lower then ca. 4.5°. The information on e.g. the NC shape can therefore be accessed at 

the small angle-regime.  

For dilute systems with K particles, each identical in size and shape with the volume of rs, the scattering intensity can be written as [23] 

��G� = K ∗ rs� ∗  |t�C�|� ∗ u�G� ( 20 ) 

The term t�C� is called the formfactor of a single particle and is only depended on the 

mean shape of the particle. It is important to notice that as G → 0, |t�C�|� = 1. The 

term u�G� is referred to as the structure factor and it describes the interaction between 

particles. For a dilute system, where the particles are on average widely spread from 

each other, no interaction occurs and so u�G� = 1. The formfactor can then be 

calculated using the following equation1 [21] 

t�G� = 1rs Q ∆?��� !�C∙��rs ( 21 ) 

For a given particle shape, one can try to calculate the formfactor analytically. This can 

easily be done for simple geometries by solving Equation 21 and perform a spherical 

averaging. For example, the formfactor of a sphere can be calculated as 

t�swx�x�G, .� = 3 ∆?��� zsin�G.� E G�/01�G.��G.�{ | = 3}Y�G.�G. ∆?��� ( 22 ) 

where }Y�~� is the spherical Bessel function of first kind. 

A very powerful tool to gain information on the mean particle size is the Guinier-

analysis. It can be shown, that at long wavelengths (G. → ∞) the scattering intensity of 

an arbitrary particle can be written as [21, 25] 

������G� ≈ ∆?�r�!" d����{  ( 23 ) 

                                                           
1 In the small angle scattering literature the formfactor is often defined as ��G� = |t�G�|�. In other words 
it refers to the intensity and not the amplitude. 



2 Theory  

 

10 

When the intensity is plotted on a logarithmic scale versus G� in the regime of G. ≪ 1it 

will produce a line with the slope of ��
�/3, where �� is the radius of gyration (ROG) of 

the particle. This is a very fast and easy way to get a first estimate of the particle size 

and shape. For examples for spheres the radius can then be calculated by �B 


�5/3��. [21] 

 

Figure 3: Overview of the different regimes of a particle-form-factor measured by SAXS. Taken from 
Ref. [26] © Anton Paar GmbH 

Another very sensitive method to gain information on the particle shape is to look at the 

regime of G. ≫ 1 with the constraint that G is still smaller than the inner-atomic 

spacings. This so called Porod-analysis is very sensitive to the relation between particle 

volume and particle surface. For the example of spheres with a surface us the scattering 

Intensity can be written as [21] 

������G� 

2+∆?�

G� us ( 24 ) 

This is a commonly used criterion to ensure adequate background subtraction. In SAXS 

measurements of colloidal dispersion the sample (dispersed particles in a solvent) as 

well as the pure solvent have to be measured. Part of the data analysis is the correct 

subtraction of the background (scattering by the solvent) from the sample. To ensure 

that this is done properly, the slope of the corrected sample in the Porod-Regime Is 

compared to the ideal slope which is j"� for point- and j"{ for slit-collimated 

systems [21, 26]. 
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An overview on the methods mentioned above and which G. regime yields what 

information can be found in Figure 3. 

2.1.4 Modeling of SAXS-Data 

For more complex geometries either Equation (21) or the spherical averaging cannot be 

performed analytically. The determination of the formfactor is therefore limited to 

numerical methods. In this case, one can consider the particle being built up out of K 

scatteres at the positions �� and use a modification of the Debye-Formula. The intensity 

can then be calculated using the formfactor t��.� of each scatterer as [21] 

��G� = M M tPtl sin j.Plj.Pl
O

lnP
O

Po�
 ( 25 ) 

This is a very powerful method to compute the scattering from complex geometries 

since every structure can be reduced to an assembly of geometrically simpler ones. The 

difficulty with this approach is that it only works in one way: one can easily compute the 

scattering intensity in reciprocal space of a known geometry in real space but the 

calculation of the electron density from a known scattering intensity cannot be done. In 

the scattering-society this is related to as the phase problem [21]. 

Another approach to the problem of complex geometries was done by O.Glatter, who 

introduced the so called Pair-Distance-Distribution-Function (PDDF) ��.� such that [27] 

��G� = 4+ Q ��.� sin�G.�G.
�

� �. ( 26 ) 

with 

��.� = ∆?���.� ∙ .� = Q ∆?��Y�∆?��Y E ����Y ∙ .� ( 27 ) 

where � =  �Y E  �� is the vector describing the distance between two radial points. 

From Equation (26) it can be seen that the scattering intensity is the Fourier-transform 

of the PDDF. Since this transformation works both ways, we can now easily calculate the 

PDDF from a measured intensity using 

��.� = 12+� Q ��G� ∙ G. ∙ sin�G.� ∙ �G ( 28 ) 

This makes the PDDF a very powerful method to gain information on the particle size 

and shape. We can summarize the findings above: the scattering amplitude t�G�from a 



2 Theory  

 

12 

particle depends on the electron density difference ∆?��� and they are Fourier 

transformation pairs. The scattering intensity ��G� from a particle is the Fourier 

transform of the PDDF averaged over all directions in space [24]. 

2.2 Computational Methods 

Up to this point, the presumption was made, that the electron density of a given system 

is known from which one can calculate the theoretical intensity using the equations 

above. In reality though one measures the scattering intensity and has to calculate the 

electron density from this. To retrieve the shape of a particle ensemble dispersed in 

solution, the orientational averaged intensity of all particles is measured. Due to this a 

significant amount of information is lost. The restoration of the particle shape is 

therefore an iterative process where in a first step the model intensity ���� from a 

presumed initial model is calculated. In a second step the model intensity is compared 

to the measured intensity �x�s using the chi-squared functional [23] 

�� ≡ M 3�x�s�j�� E �����j���� 7O
�oY

�
 ( 29 ) 

with K as the number of measured data points and �� the uncertainty of the data-point j�. The objective is to minimize �� using numerical methods.  

2.2.1 Simulated Annealing 

The method of Simulated Annealing (SA) was introduced by S. Kirkpatrick and M. 

P.Vecchi in 1983. The idea behind SA can be compared to “[...] to the behavior of 

systems with many degrees of freedom in thermal equilibrium at a finite 

temperature.” [28]. As a supposition one has to be able to calculate the “energy” � of a 

system with a given configuration �. The objective of SA is to change the configuration 

such that the energy finds a global minimum [29]. This is done by introducing ���, ��, 

the probability for acceptance of a configuration, which depends not only on the energy 

of the configuration but also on the temperature � of the system. At this point it should 

be noted that the temperature of a system is only metaphor for a scalar which has to be 

adjusted to fit the energy range of given configurations as well as the unit of energy.  

There are several ways to calculate ���, ��. One of the most common methods is to use 

the Boltzmann-distribution such that 



2 Theory  

 

13 

� ~ !"�� ( 30 ) 

If Eq. 2.26 is used, the annealing process is called Boltzmann annealing. If one calculates � at very high temperatures, such that � ≪ �, the probability of acceptance is equal for 

all configurations. By slowly decreasing the temperature according to a temperature 

schedule the energy of a configuration gains more importance. The advantage of the 

cooling procedure is that the system can jump out of local energy minima to find a 

better global solution. It was mathematically proven that for an infinite time the global 

minima is always found [28].  

2.2.2 The Multipole Expansion 

Since the SAXS function of a dispersed particles doesn’t depend on the particle 

orientation, Stuhrmann used a mathematical representation of the scatterer ?��� with 

rotational properties, namely spherical harmonics � such that the scatterer in real space 

can be described as [30] 

?��� =  M M ?���.�����F, ���
�o"�

�
�o�

 ( 31 ) 

where the coefficients 

?���.� = Q ���∗ �(� ?����( . �( = 1�qF �F �� ( 32 ) 

are the multipole components. The spherical harmonic conjugate ���∗  is only dependent 

on the angle ( from a given direction and not on the distance from the center. With this 

knowledge it becomes clear from the equation above that a single multipole ?����� only 

describes the part of the scatterer for which the spherical harmonic is not zero. The 

scattering amplitude of a multipole can then be written as [30] 

L���.� = �2+ �� Q ?���.� ���G.�.� �. ( 33 ) 

with �� describing the Bessel function of l-th kind. The total scattering amplitude can then 

be calculated as 

��j� =  14+ M M L���.�L��∗�
�o"�

 
�o�

�.� ( 34 ) 
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Figure 4: Visualization of the first 20 symmetrical spherical harmonics. The different colors relate to the 
different angular regions or also to the different multipole components (see Equation (32)). The green 
regions are not accessible angular region. DAs within these regions therefore do not contribute to the 
scattering intensity. 

The first obvious improvement of Equation (34) compared to the Debye formula 

(Equation (25)) is that the two sums only have to be made over the number of spherical 

harmonics ¡	and not over all particles K in a theoretical model, which safes a significant 

amount of calculations. 

Furthermore, if one is in the iterative process of trying to fit a theoretical scattering to 

an experimentally measured intensity and therefore keeps changing the model, only the 

multipole of the altered section has to be recalculated. This speeds up the fitting process 

by orders of magnitude [31]. 
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Obviously the Stuhrmann approximation is only an approximation. As seen in 

Equation (31) the scatterer can only fully be described using multipole components 

when the sum is performed if ¢ → ∞. In reality this is not feasible. If we compare this 

fact to Equation (34) we notice, that our summation limit is defined by the number of 

spherical harmonics ¡. This implies that ¡ can be seen as a degree of convergence of the 

approximation. 

Even though the equations above seem very complex, the initial idea is simple: the 

entire shape can be seen as split up into angular regions. A visualization of these regions 

can be found in Figure 4. If now a change in one of these regions is made to the model, 

only the corresponding multipole (see Equation (32)) has to be recalculated. One can 

therefore directly see the influence of a certain angular region �( of the theoretical 

model on the calculated scattering curve. 

2.2.3 Shape Retrieval Methods 

In general the problem of shape retrieval can be solved using two different approaches. 

The one way is to retrieve data directly from the measured intensity. This idea was 

pursued by Glatter et al., who simply suggested a fourier-transformation as mentioned 

in Chapter 2.1.4 Modeling of SAXS-Data, which results in the PDDF. Since the 

information gained in real experiments is limited by the obtainable q-range and 

smearing effects, this has to be done numerically. This was done by. Glatter who 

introduced the indirect fourier transform (IFT). [32, 33] It is to be noted that the IFT is a 

model free approach to extract information from the measurement data. In the 

following years more refined methods for increasingly complex systems were published 

that allowed, e.g. the determination of radial electron density profiles for 

inhomogeneous particles [34, 35]. 

The other approach to deduct information from a general scattering experiment needs 

some kind of a theoretical particle-model in the background for which an ideal 

scattering curve can be computed. This can be done using geometries with a known 

formfactor (see chapter 2.1.4 Modeling of SAXS-Data). By optimizing the model 

parameters, �� is minimized (see Equation (29)) until a final fit is obtained. Compared to 

the IFT, this approach requires some kind of a priori knowledge of the system, which in 

most cases is the case. This allows solving much more complex models. For example a 

big step towards the characterization of concentrated systems was made using the 
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generalized indirect fourier transform (GIFT) which assumes a given particle shape and 

as a result allows to determine the structure factor of the system. [27, 36-38]  

From a computational point of view, these two methods are very distinct from their 

solving algorithms but are often used supplementary or even cross-linked. For this 

reason most software packages, such as SASfit [39], IRENA (IgorPro Plugin) [40] and 

GIFT [41], allow the computation of the PDDF as well as the fitting of geometrically 

simple models.  

As the particle shape and structure gets more complex the scattering intensity has to be 

computed using the Debye-Formula (Equation (25)) or one of its approximations (e.g. 

Stuhrmann). This has been utilized for models that are built out of small spheres in 

software-programs such as foXs [42] or CRYSOL. [43] Another tool, PCG Singlebody [44], 

generated random points in a geometrically confined space and then calculates the 

scattering intensity as well as the PDDF. These methods are computationally a lot more 

time consuming. The shape retrieval from SAXS data before the 1990s was limited to the 

use of analytically solvable form factors. The development of shape retrieval methods is 

therefore closely linked to advances in computing technology. 

During the 1980s the idea came up to use standard Monte Carlo (MC) methods to 

iteratively change the actual particle shape and minimize ��. These models are built up 

from K so called spherical dummy atoms (DA) of the same radius, described by a 

position vector, and are often referred to as dummy atom models (DAM). This idea was 

further developed by Chacón who used genetic algorithms (GA) to speed up the 

remodeling process [45]. Only one year later a similar software was published by 

Walther (Saxs3D) which was based on “Monte Carlo type reconstruction algorithm” [46]. 

The first successful implementation using the multipole expansion and simulated 

annealing mentioned above was done by Svergun in the same year with his software 

called DAMMIN [18]. In the following years a lot of similar programs have been released 

from Svergun’s group, mainly focusing on chainlike structures for biomolecular use such 

as MONSA [18] and GASBOR [47]. 

As this modeling software was, and still is, mainly used for the shape retrieval of organic 

structures, such as proteins, the theory behind this is based on the assumption that 

scattering occurs of particles that are all perfectly alike in shape and size.  
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3 Experimental 

3.1 Creation of the Reference Formfactors 

Since all available modeling software [45, 46, 48, 49] is based on numerical methods, at 

least some attention has to be directed towards the convergence of the results. In other 

words: a numerical solution will always to some degree deviate from the analytical 

result. In the case of ab initio shape determination this implies that the simulation 

results have to be compared to geometries for which the formfactor can be solved 

analytically. Even for monodisperse systems, this constraint significantly limits the 

choice of possible reference geometries.  

3.1.1 Monodisperse Systems 

An extensive overview of analytically solvable formfactors for systems of diluted 

particles is given by Pedersen [50]. At this point it should be noted, that the term 

“analytically solvable” has to be used with caution. Even though the formfactor 

amplitude itself is solvable for several geometries one still has to calculate the square of 

the formfactor to get the scattering intensity, according to Equation (20). This step can 

only be performed analytically for radial-symmetric shapes such as spheres, concentric 

shells, etc. For all other geometries that show some kind of shape or electron-density 

anisotropy the spherical average of the formfactor has to be made numerically. With 

todays’ computational resources this can be done with a very high degree of numerical 

convergence [51]. We will therefore neglect errors resulting from this step. 

For the systems used we assume that the particles are randomly oriented and strictly 

monodisperse [23]. For our purpose we focused on the geometries for which at least the 

formfactor-amplitude is analytically solvable: namely spheres, ellipsoids of revolution, 

cubes and core-shell spheres. The scattering curves were computed using the software 

GIFT [52], based on [36], which includes the numerical orientational average. The used 

formfactors can be found at [50]. The computed intensities using these form-factors as 

well as the three idealized dimensional models can be seen in Figure 5. 
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Figure 5: (a) Representations of the models used in the thesis. (b) Scattering intensities of the formfactors 
corresponding to the models shown above. The model dimensions were chosen, such that their radius of 
gyration is approx. 5nm, and can be found inTable 1. The visible q-range ensures at least 15 SCs. 

Table 1: Dimensions of the models used in this thesis. The corresponding three-dimensional representations 
can be found in Figure 5(a) 

model dimension 

sphere . = 7.5	q6 

core-shell sphere .¤��x 
 5	q6, �Bwx�� 
 2.5	q6 

ellipsoid of revolution ¥ 
 ¦ 
 8.5	q6, / 
 5.25	q6	 
cube ¥ 
 ¦ 
 / 
 16	q6 

 

The dimensions of the reference geometries were chosen such that a q-range of most 

laboratory sources is adequate for this method. This links to a relevant question 

regarding the information content in a scattering curve. A general approach that 

describes the information that is carried by an arbitrary wave was introduced by 
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Shannon [53]. This lead to the introduction of so called Shannon-channels (SC) as a 

quantitative measure of how much information in a scattering wave can be found when 

looking only at a section of its Fourier-analysis. For SAXS the width of such a SC is 

defined as [54] 

¨ = +©ª�� ( 32 ) 

where ©ª�� represents the maximum dimension of the particle (e.g. the diagonal of 

cube, diameter of a sphere, etc.).  

The difficulty of this topic becomes obvious, when paying attention to previous 

investigations. In his first studies on uniqueness of results [55] Svergun estimates that 

15-20 SCs are necessary to ensure adequate information content for shape retrieval. In 

the same year he also published that the amount of SCs does not limit the number of 

parameters that can be retrieved from a scattering curve. One also has to take a priori 

knowledge of the measured system into account [56]. Only in 2013 a “Task Force on 

Small Angle Scattering” of the biomolecular community agreed on the following 

minimum requirements for shape retrieval from SA-data: “The minimum j value must 

be smaller than the first Shannon channel […] and it is suggested that four to five 

Shannon channels are covered [..].”[57] 

To avoid misinterpretation all reference-data used in this thesis was computed using at 

least 15 SCs.  

3.1.2 Polydispersity 

First it is to be noted that in this case polydispersity only affects the size of given 

particles and not the shape.  

Already in the early days of SAS the theoretical proof was made that it is not possible to 

deduce a particle shape and simultaneously the size distribution of the system from SAS 

data. [58] For example, the scattering behavior of an ellipsoid can be described using 

spheres with a very specific size-distribution. However, this size distribution is unique 

and degraded to such an extent, that no real system of spheres will have such a 

distribution.  

This implies that shape retrieval of particles can only be done, if some kind of a priori 

knowledge on the size distribution is available. If, e.g., the assumption is made that the 
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distribution is monomodal, or in other words that it occurs around one maximum, both 

the shape and the polydispersity can now be retrieved. 

 

Figure 6: Gaussian volume-distribution of spheres (red) and its correlating number-distribution (black), 
normalized on the mean sphere radius. The particles of both curves occupy the same volume. A distortion of 
the number-distribution due to the volumetric effects can be seen. 

Due to the Born-approximation, only single scattering occurs, which allows the 

superposition of waves that are scattered from single electrons and therefore from 

single particles. If we now look at a system built of two particles of different size, we can 

simply calculate the total scattering intensity using Equation (20) for each particle and 

adding up the resulting intensities. From this equation it follows that the scattering 

intensity is dependent on the square of the volume, and in the case of spheres, is 

therefore dependent on the 6th power of the radius. As a result, a Gaussian number-

distribution, would lead to an asymmetric Gaussian volume-distribution (3rd power of 

the radius) and an even more asymmetric intensity-distribution. This effect can be 

observed in Figure 6, in which a Gaussian volume-distribution of spherical particles and 

its correlating number distribution are plotted.  

The total scattering intensities of polydisperse systems used in this thesis were 

calculated using a Gaussian volume distribution. The distribution is represented using at 

least 11 points. At each point the corresponding formfactor was multiplied by the 

squared particle-volume and the arbitrary number of particles with this size. The 

resulting effect of polydispersity on a system of spherical particles can be seen in 
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Figure 7. The most significant effect is the well-known smearing of the minima. Also 

note the shift to smaller q-values with increasing polydispersity, which correlates to the 

fact mentioned above that larger particles scatter more than smaller ones. 

 

Figure 7: The effect of polydispersity on the scattering-intensity. For this illustration spheres of radius 
7.5 nm were used. The sigma value corresponds to the standard deviation of the Gauss-distribution. 

3.1.3 Smearing Effects 

In every real scattering experiment the subject of smearing has to be addressed. In 

general, the resolution of measured data can be correlated to two factors. First, every 

detector has some kind of a sensor grid to measure the incoming flux at a certain 

position. This grid is divided into equally sized quadratic pixels where each has a certain 

size. Due to this finite pixel size one gets a different angular resolution for every sample 

to detector distance. Furthermore, the finite beam divergence can lead to a spread of 

the incident x-rays on the scanned physical pixels. The other factor is contributed to the 

fact that the beam focus is not perfectly spherical. Especially for asymmetrical 

beamshapes such as a e.g. rectangular slit profile strong smearing effects can occur [59, 

60]. Additionally, experimental smearing is measured as a two dimensional detector 

signal. The actual effect on the one dimensional scattering curve is therefore strongly 

dependent on the averaging process of the detector data.  

For these reasons, the actual smearing is usually measured for a given experimental 

setup. This can be done by measuring a periodic lattice with a lattice spacing that 
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produces sharp peaks in the SAS region. Such a system can be found in either turkey- or 

rattail-tendons [61, 62]. The resolution of our laboratory SAXS-setup is determined using 

rattail-tendons. The results obtained can be found in Table 2. 

Table 2: Resolution-functions measured at the in-house NanoStar System by Bruker. The system contains a 
point-collimated beam with a 600 µm aperture and Cu-Kα source with λ=1.5418 Å. The peak-width was 
obtained by a Gauss-fit using a linear background subtraction. 

sample-detector-distance « ≈ peak-width (FWHM): ∆¬ = 

261 mm 0.749 nm-1 

638 mm 0.075 nm-1 

1008 mm 0.050 nm-1 

 

 

Figure 8: Illustration of smearing effects for the theoretical case of a measurement performed at our in-
house NanoStar System at a sample-detector distance of 638 mm. The model-data was generated using 
GIFT [41]. The dimensions of the model were chosen to result in 10 SCs. 

Neglecting smearing effects can lead to introduction of systematic errors. To avoid this, 

Glatter showed that applying the IFT on smeared data according to a certain sequence 

will result in a desmeared scattering curve [23]. Nevertheless, the recovery of the real 

scattering curve from smeared data can still lead to misinterpretation. To illustrate this, 

the scattering intensity of spheres with 6 % polydispersity was desmeared using values 

close to the ones obtained from our measurements (see Table 2). As it can be seen in 

Figure 8 a polydispersity can be misinterpreted as smearing effects since both, 

poyldispersity and smearing effects, causes a broadening of the minima. Thus, for 
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correct data analysis of real SAXS experiments the instrumental resolution function has 

to be determined and has to be taken into account for the shape retrieval. 

3.2 GNOM 

 

Figure 9: Exemplary data-input of the GNOM program. Rmax defines the maximum particle dimension in 
the PDDF. By changing the values under Experimental setup smearing effects can be defined.  

GNOM is software written to compute the IFT of one-dimensional SAS curves. It is part 

of the ATSAS program-suite by Svergun, which is freely available for non-commercial 

use [17]. The actual fit is done the same way as proposed by Glatter [33] using the 

regularization method. [63] The significant novelty of this approach is the choice of the 

regularization parameter which in the case of GNOM is for the first time based on the 

quantitative description of perceptional criteria, such as oscillations of the PDDF 

etc. [64]. GNOM takes any background-corrected data file as input and computes either 

a PDDF for monodisperse systems or a size distribution for spherical polydisperse 
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systems. The output of this program is a single “*.out” file that includes the resulting 

PDDF, the initial scattering data, the desmeared scattering intensity of the 

corresponding PDDF and its deviation from the measured data.  

All other programs of the ATSAS-suite used in this thesis require the GNOM-output file 

as an input, because all other theoretical models are fitted against the desmeared data 

from the deconvolution of the PDDF. Since all scattering curves used in this thesis are 

computed analytically and are therefore without smearing, the resulting desmeared 

data from GNOM is essentially the same as the input data. GNOM still need to compute 

the PDDF to obtain a maximum dimension as well as a scattering intensity with 

equidistant points. The program is operated by an interactive line input as can be seen 

in Figure 9. 

3.3 DAMMIN 

As mentioned above, DAMMIN is a program developed by Svergun that uses a simulated 

annealing procedure to fit a theoretical particle model against the scattering curve from 

deconvoluted PDDF which is obtained by GNOM [18]. For further use, this will be 

referred to as the IFT-based scattering curve. The underlying principles have already 

been explained under Chapter 2.2.3 Shape Retrieval Methods.  

The exact algorithm of the optimization procedure functions as follows: The program 

starts by randomly filling an enclosed spherical or elliptical volume, which can be 

defined by the user, with so called dummy atoms (DAs). It uses a closed-packed lattice to 

equally position the DAs. Using the Stuhrmann-approximation (see Chapter 2.2.2 The 

Multipole Expansion), the scattering intensity of the randomized model is computed and 

compared with the desmeared curve according to the chi-squared functional (see 

Equation (29)). For now, we will refer to this as the mean deviation. In a next step, single 

DAs are either deleted or placed within the search volume. If the resulting mean 

deviation, including some kind of a thermal term (see Chapter 2.2.1 Simulated 

Annealing), has improved, the change to the DAM is kept. After a certain amount of 

repetitions (user-defined value), this thermal term is decreased to a lower temperature. 

This procedure continues until one of two cases occurs: either the thermal term has 

been decreased for a certain amount of times, or the mean deviation is lower than a 

certain threshold value. For more details on the fitting-procedure see the initial 
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publication. [18] The result obtained from DAMMIN is the final configuration of DAs, 

also called dummy atom model (DAM), which yields the lowest mean deviation from the 

IFT-based scattering curve. An example of the results using the formfactor of 

monodisperse cubes can be seen in Figure 10. 

 

Figure 10: DAMMIN simulation using the formfactor of monodisperse cubes with a side-length of 16 nm. 
The final DAM is shown in the inset from two perspectives.  

Additionally to the mean deviation, DAMMIN can also account for a so called looseness 

criterion. In any close-packed structure every DA has exactly twelve next-nearest-

neighbors. When looking at a final DAM the mean number of next-nearest-neighbors 

can be seen as degree of looseness. In the fitting procedure, this mean number is 

multiplied by the looseness penalty weight (user-defined-value) and added to the chi-

squared functional. Both of these terms together result in the function which has to be 

minimized. For all simulations in this thesis the looseness parameter was set zero, and 

was therefore neglected.  

All simulations were performed on the SMMPMECH cluster of the Institute of Mechanics 

at the University of Leoben. The results presented in this thesis were obtained by using 

the default simulation-paramters as specified in Table 3 if not stated differently. The 

visualization of the DAMs is done using the open-source software ParaView. [65] 
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Table 3: Default DAMMIN simulation-parameters used in this thesis. All parameters not listed are kept at 
their default-values as suggested by the program. 

parameter default reason 

Number of knots 

in the curve to fit 
124 

A high number of splining points is chosen, to ensure 

the entire initial data curve is fitted. 

Constant 

subtraction 
-1 

This procedure was skipped, since there is no 

background-scattering in idealized formfactors. 

Order of 

harmonics 
20 

Since the goal of this thesis is to retrieve as much 

information as possible, the highest degree of 

convergence possible is chosen. 

Initial DAM S 
A Spherical initial search volume is selected to 

neglect a biased initial shape. 

Symmetry P1 All symmetry effects are neglected. 

Sphere diameter Default Suggested Rmax from the corresponding PDDF. 

Packing radius of 

dummy atoms 
Variable 

This value is calculated from Rmax, such that approx. 

5500 DAs are used. 

Looseness penalty 

weight 
Default Default-value, suggested by the program. 

Disconnectivity 

penalty weight 
Default Default-value, suggested by the program. 

Peripheral penalty 

weight 
Default Default-value, suggested by the program. 

Weight 2 
Logarithmic curve weighting is chosen to ensure 

information in the entire q-range is treated equally. 

Max # of 

annealing steps 
250 

This number is increased to ensure, the simulation 

stops when a minimal mean-deviation is found. 

3.4 DAMAVER 

To further analyze the models obtained by DAMMIN, a set of programs was written 

which handles multiple simulations of the same data. The first step of DAMAVER is to 

compare all given simulations and find the most probable one (program: damsel – more 

detailed description follows below). All models are then compared to the selected mean 

model and deleted, if they deviate from it more than a certain threshold level. The next 

step is to align all left over models to best fit the mean model (program: damsup). Both 
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programs damsel and damsup are based on another program called supcomb which 

superimposes two randomly oriented 3D structures on top of each other [66]. This is 

done by calculating the so called normalized spatial discrepancy (NSD). Simplified, the 

NSD is a measure for shape consistency and is minimized as two equal bodies are 

oriented the same way. During damsel, the NSDs between all models are calculated and 

finally the one model is chosen, for which the sum of the NSDs between it and all other 

models is a minimum. If the NSD between the selected model and any other one is then 

above a certain threshold level, the model is neglected for further use. In the last step all 

the aligned models are averaged. This is done by superimposing a new three 

dimensional lattice on top of the models. At every point of this new lattice, all aligned 

models are checked, if a given point of the new lattice is within the volume of a DA. This 

results in a probability map of all simulations, which Svergun denotes to as occupancy. 

The occupancy of a point in the averaged model therefore represents the number of DA 

that can be found in all superimposed models at this position. If, e.g., ten simulations 

are superimposed and there is one point of the new lattice where a DA can be found in 

all simulations, the occupancy of this point will be 10. An overview of the entire 

averaging process can be seen in Figure 11. 

 

Figure 11: Overview of the averaging process of DAMAVER. After alignment of the models, they are 
superimposed on top of each other and a probability map is calculated. A high occupancy therefore means a 
high probability to find a DA in every model at the same position. 

All simulations in this thesis were performed 10 times and averaged using DAMAVER.

damsel & damsup DAMAVER 
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4 Data Analysis 

This chapter focuses on the numerical evaluation of the retrieved DAMAVER models. 

The resulting models are fully described by the position of the DAs using �  and their 

corresponding occupancy ®//�. Before any further data-treatment the models were 

repositioned such that the center of mass is in the origin of the Cartesian-system.  

4.1 Weighted Radius of Gyration 

As discussed in chapter 2.1.3 Small Angle Scattering the determination of the radius of 

gyration (��) via the Guinier-Analysis is a common and powerful method to get an 

estimate of the mean size of the measured particles. Since x-rays are scattered by 

electrons the �� determined from SAXS can be calculated for any particle volume as 

long as its spatial electron distribution can be described. The approach to do this comes 

from the field of classical mechanics such that the �� is calculated in the same way by 

��,����� ≙ ��,�x¤w� =  ° ?�.�.��r° ?�.� �r  ( 33 ) 

where ?�.� is either the mass density in mechanics or the electron density in condensed 

matter physics. The principle of this equation is that it directly correlates the electron 

density to a quantifiable number that can easily be measured and calculated. Using this 

equation the �� of simple homogenous and radial symmetric, stepwise inhomogeneous 

geometries can be calculated analytically. The relationship between structural 

dimension and radius of gyration for geometries used in this thesis can be found in 

Table 4. 

For a system built of point masses, the �� can also be calculated using the finite version 

of Equation (33), namely as 

��,����� ≙ ��,�x¤w� =  ∑ 6�.��
∑ 6�  ( 34 ) 
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In classical mechanics 6� is simply the mass which can be found at the distance .� from 

the center of mass. For electron densities, 6� has to be replaced by the number of 

charges that can be found at the corresponding position.  

Table 4: Formulas used for the calculation of the ROG for various geometries. 

geometry A² variables 

sphere ��� = 35 �� � … sphere radius 

cube ��� = ³�
4  ³ … side length 

ellipsoid ��� = L� + ´� + ��
5  L, ´, � … axis of revolution 

core-shell ��� = ρef`¶∗ 35 �� + ρg·¶¸¸∗ 35 �¹= E �=�¹{ E  �{ 

� , �¹ … core, outer radius 

ρef`¶∗ =  ?¤��x?¤��x + ?Bwx�� ρg·¶¸¸∗ = 1 E ρef`¶∗  

 

To ensure that during the entire scope of data evaluation, including fitting an IFT, 

performing a number of DAMMIN simulations and averaging all models via DAMAVER, 

no information was lost, the DAM was compared to the initial model by means of the ��. To compute the �� of the averaged model, the assumption is made that the 

occupancy is some kind of measure of a virtual electronic charge such that Equation (34) 

can be rewritten using ‖�‖� as the norm, or distance from the center, as 

��,»�ª� =  ∑ ®//�‖�‖�
∑ ®//�  ( 35 ) 

Before further investigations, the �� was computed for all DAMs used in this thesis and 

compared to the initial model, from which the scattering intensities were calculated. 

Astonishingly, the values were without exception almost identical. The �� of 15 different 

averaged models (cube, sphere, ellipsoid and core-shell-sphere) were calculated and can 

be found in Table 5. The mean deviation between ideal and obtained values is 

significantly less than 1 %. 

From this it follows that the �� of the DAM is equal to the �� determined from the 

scattering curve. This implies that Equation (33) is valid which directly correlates the 

electron density of the particle with occupancy of the DAM. This is a significant finding 
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because it allows measuring and retrieving a three dimensional electron density map by 

interpreting the occupancy values of investigated systems.  

Table 5: �� from various obtained DAMs with dimensions according to Table 1. The ideal ��s were 

calculated using the equations according to Table 4. Cube_1 was simulated using fewer harmonic. This will 
be discussed further in Chapter 5.1.3 Number of Harmonics. 

geometry ¼½from DAM [Å] ideal ¼½[Å] deviation [%] 

core-shell_1 57.697 57.239 0.80 

core-shell_2 57.589 57.239 0.61 

core-shell_3 57.589 57.239 0.61 

core-shell_4 57.559 57.239 0.56 

cube_1 78.893 80.000 1.38 

cube_2 79.443 80.000 0.70 

cube_3 79.419 80.000 0.73 

cube_4 79.435 80.000 0.71 

ellipsoid_1 58.059 58.031 0.05 

ellipsoid_2 58.026 58.188 0.28 

ellipsoid_3 58.581 58.662 0.14 

ellipsoid_4 58.323 58.287 0.06 

sphere_1 58.084 58.095 0.02 

sphere_2 58.152 58.095 0.10 

sphere_3 58.083 58.095 0.02 

4.2 Linear Evaluation 

When looking at characteristic lengths of the DAM (e.g. the radius of a sphere, length of 

a cube, etc.) several smearing effects occur. Since the DAM is built out of finite spheres 

with a radius .»� the resolution of the model itself is limited by the DA size. Furthermore 

recall, that the final averaged DAM is a result of several single simulations which are 

statistically merged. The probability that all simulated models which are averaged are 

perfectly alike is very small. This means, that additionally to the resolution smearing, a 

statistical smearing will occur.  
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Figure 12: (a): Linear occupancy cross-section (green line) along the cut-through-cylinder with the 
corresponding linear fits (red lines) to retrieve the half-height-dimension (black line). The direction was 
chosen to measure along the short axis of the simulated cube with side lengths 16 nm. (b): 3D-scatter plot 
of the used model (black). The DAs used for the evaluation are highlighted in red. 

The quantitative and exact determination of particle dimensions along specific 

directions is of great interest. To achieve this, a very long cylinder with a selectable 

radius is put through the center of the DAM. Afterwards, all DAs having a larger 

perpendicular distance from the cylinder axis than the cylinder radius are deleted. In the 

last step the cylinder is cut perpendicular to the axis into a number of equally sized 

slices. Now the mean occupancy of each slice is computed, by simply adding up the 

occupancies inside every slice. The result of this procedure is a linear cross section of the 

electron density along a certain direction. An example of this can be seen in Figure 12. 

For homogeneous particles, the electron density, and therefore the occupancy, is 

constant on the inside of the model and can therefore be approximated by a line with 

slope zero. This constant value is referred to as the mean occupancy. The interesting 

part for the determination of model dimensions is obviously the border-region. This 

transition can be approximated by a simple tangent line, where the fitting region is 

defined manually. If now the tangent lines are intersected at half-height of the mean 

occupancy, the half-height-dimension of the given direction can be retrieved. In the 

example of Figure 12(a) the result is a half-height-dimension of 16.1 nm. Compared to 

the size of the real model of 16 nm (see Table 1) from which the scattering curve was 

calculated, this yields a deviation of less than one percent.  

The linear evaluation becomes more difficult when the dimensions of rounded objects 

are to be retrieved. In the exemplary case above, the slices of the cut-through cylinder 

were always parallel to the facet of the cube. In the case of a sphere the transition-

region will be distorted due to geometric reasons (see Figure 13(b)). It is therefore 
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advantageous to use the smallest cylinder-radius possible. This on the other-hand 

causes a new problem. For small cylinder-radii the probability of finding a DA in every 

evaluation slice gets very low which causes statistical fluctuations. For cylinder radii 

smaller than two DA diameters it is almost impossible to evaluate a half-height-

dimension. This effect can be seen when comparing Figure 13(a) with Figure 12(a). 

 

Figure 13: (a): Half-height-evaluation with a cylinder-radius of twice the DA diameter. The evaluation was 
performed on the same model and along the same direction as in Figure 12. Even though, the evaluation 
can still be done, there are already very high statistical fluctuations visible. (b): Illustration of the influence 
of the cylinder radius on the measured dimension of spherical models. 

To avoid both of these problems, the direction of interest is measured multiple times 

with decreasing cut-through-cylinder-radii. If the obtained results are then plotted 

against the cylinder-radius, a linear relationship can be observed, which can be seen in 

Figure 14(a). As the real dimension can only be measured using an infinitely small 

cylinder, which for finite models is not possible, the linear relationship has to be 

extrapolated until it intersects the vertical axis. This is done by fitting a linear regression 

with the measured points and taking the offset of the line. 

To graphically show how this is done, the method was applied to an ellipsoid of 

evolution model. The scattering curve was calculated for a homogenous ellipsoid of 

revolution with two long axis of 8.5 nm and a long axis of 5.25 nm. The measurements 

were taken along the long and the short axis, which can be seen in Figure 14(b). The 

cylinder radii were chosen to be multiples of the DA-diameter. This resulted in a short-

axis radius of 5.3 nm and a long axis of 8.3 nm. Given that the DA-diameter is 0.4 nm, 

these measurements are within the spatial resolution of the DAM. 
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Figure 14: (a): Linear half-height-measurements taken along the same direction plotted against the cut-
through cylinder radius. The measurements clearly yield a linear relation with the cylinder radius. After a 
linear regression, the line can be extrapolated to an infinitely small dimension, where the real model 
dimension can then be obtained. (b): 3D-scatter plot of the used model (black). The DAs used (red) for the 
measurement along the short/long axis is shown in the top/bottom view.  

4.3 Averaged Dimension 

The linear evaluation described above obviously needs some kind of decision regarding 

the measurement direction, which implies a subjective judgment on the model shape. 

This on one hand provides a powerful tool, if one single dimension is to be measured. 

On the other hand this can lead to a misinterpretation of the overall shape. To avoid 

this, the linear evaluation was fully automated. In a first step, the occupancy density of 

the cross-section is normalized. This is done by determining the average value between E��/2 and +��/2 and dividing the data by this. To determine the half-height 

boundaries, a high initial distance from the center is chosen and decreased step by step. 

The first time the normalized occupancy density exceeds 0.5, the boundaries are found.  

As a result this method speeds up the evaluation process and makes it absolutely 

objective. It also allows choosing spherical random evaluation directions. If this is 

repeated for a very large number of random directions, a kid of radial distance 

distribution can be obtained. An example for the ellipsoid of revolution shown in 

Figure 14 can be seen in Figure 15. This histogram can simply be read as the number of 
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times a certain distance was measured. Since the direction of measurement is always 

centered in the origin, the values obtained are twice the center to surface distances. For 

simple geometries, an ideal distance-distribution can easily be derived. In the example 

of a monodisperse sphere, the distance distribution is represented by an infinitely sharp 

peak at the sphere-diameter. In the case of an ellipsoid of revolution the distribution is 

shown in the black curve of Figure 15(a).  

 

Figure 15: Various distance-distributions determined using spherically-random oriented linear evaluations. 
(a): The distance distribution of the DAM mentioned in the chapter above (red) is compared to the ideal 
solution which can be solved semi-analytical (black). The solution of the DAM was computed using a cut-
through-cylinder-radius of 2∗DA-diameter.The DAM qualitatively is in good agreement with the ideal 
solution. (b): The same DAM of the simulated ellipsoid of revolution is measured using a decreasing cut-
through-cylinder-radius. As expected, a shift of the measured dimension can be observed. 

As mentioned in the chapter above, the radius of the cut-through-cylinder has a 

significant effect on the determined dimension. This is also true for the case of multiple 

measurements, as can be seen in Figure 15(b). At this point it is not clear how exactly to 

interpret the results. E.g., if the highest significant peaks of the smallest cylinder radius 

are chosen, values of 10.9 nm and 16.7 nm are obtained. Compared to the initial model 

values of 10.5 nm for the short axis and 17 nm for the long axis (according to Table 1) 

and considering a DA size of 0.4 nm, these measurements are in very good agreement 

with the initial values. 
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4.3 Spherical Average 

As explained in chapter 2.1.2 The Debye-Formula, the computation of the scattering 

intensity is based on an orientational average of a given particle symmetry. This implies 

that only spherical averaged information in the real space can be retrieved. With this in 

mind, an evaluation algorithm was written to retrieve characteristic structural 

information, such as edges, and determine a spherical averaged dimension. This method 

works for averaged models (DAMAVER) with the origin at their weighted center of mass. 

 

Figure 16: Results of the spherical-average-evaluation of a (almost) monodisperse sphere with diameter 
15 nm. (a): The weighted sum of all DAs within a spherical search volume is ploted against the 
corresponding radius which also is the distance-from-center. Using the half-height of the intersection of 
both fits, an almost perfect measurement can be retrieved. (b): The density-difference of the DAM and ideal 
density is plotted over the distance-from-center. The density at the inside appears to be constant. As 
expected, a significant change can be seen at the outer DAM dimensio. By using a half-height fit a radial 
dimension can be obtained. 

The averaging process is based on the “onion-principle” and consists of two procedures. 

They are both illustrated for the exemplary case of a sphere with 1 % polydispersity 

(numerical smearing necessary) and a diameter of 15 nm.  

The first procedure simply sums up all DA that can be found in the volume of a sphere 

with an increasing radius and center at the origin. To account for occupancy-effects the 

summation is not performed of the DA themselves, but over their occupancy values. The 

result can be seen in Figure 16(a). The Distance from Center plotted on the horizontal 

axis corresponds to the radius of the evaluation sphere. As expected, starting from the 
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origin, the number of DA increases with a cuboid-power law. At one point (at approx. 

70 Å) a deviation from this correlation occurs and the weighted number of DAs 

decreases linearly. To quantitatively evaluate this curve, a 3rd-degree-polynom is fitted 

in inner region and a simple tangent fit is done for the linear decrease. If now the half-

height-value of the intersection of these two fits is taken, a distance to center of 75 Å is 

retrieved, which is in perfect agreement with the ideal model. 

The second procedure uses a familiar principle. In this case, only the DAs within a 

spherical shell with a thickness of 0.005 ∗ �ª�� are looked at. Since the packing-density 

of the DAM is known (74 % for FCC) the ideal number of DAs can be calculated. If now 

both of these numbers are normalized to the volume and subtracted, we obtain a 

density difference, which can be seen in Figure 16(b). At the center of the model, the 

density is at a minimum and seems to be constant. As the distance-to-center is 

increased, a sudden change in the density-difference can be seen. This can be 

interpreted as an increasing deviation of the DAM-density from the ideal one. If this 

effect is fitted using two horizontal lines to obtain constant in- and outside values, and a 

tangent-fit to describe the density-difference increase, a half-height dimension can be 

obtained. Compared to the first procedure and the initial dimensions, this value is in 

perfect agreement. 

This second method allows the interpretation of the spherical averaged occupancy of 

the entire model which, from a statistical point of view, is of high quality, since all DA of 

the model are being looked at. The disadvantage of this approach is that it needs a 

manual input of the fitting-regions. An automated method was tried, but failed, since for 

more complex structures, density fluctuations on the inside can occur. This will be 

investigated in the following chapter. 
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5 Results & Discussion 

As stated in the introduction, one of the main objectives of this work is to determine the 

influence of the simulation parameters on the final result, or in other words, how 

reproducible and reliable these results are. The other objective was to develop 

evaluation methods that allow the direct interpretation of the DAM. The methods have 

already been introduced in detail in Chapter 4 Data Analysis. A figurative overview of 

the evaluation methods and the obtained diagrams can be found in Figure 17. Part of 

the development of these evaluation techniques, and therefore also another objective 

of this work, is to investigate the stability and correctness of the obtained results. Both 

of these topics will be discussed in the following chapter.  

 

Figure 17: Overview of the used evaluation methods to directly interpret the retrieved DAM: (a) linear-
evaluation, (b) averaged dimension and (c) spherical average evaluation. The detailed diagrams can be 
found in Figure 13(a), Figure 15(a) and Figure 16(b) 
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5.1 Stability of Results 

From previous investigations it became obvious, that these parameters are the number 

of DA per model, the number of Harmonics and the number of Shannon channels 

provided from the scattering data. For every investigated parameter a series of ten 

equal simulations was performed and averaged. Unless described differently, the default 

parameters according to Table 3 were used.  

5.1.1 Number of Dummy-Atoms 

To investigate the resolution and stability of the results obtained the most obvious 

parameter to be changed is the number of DAs. For geometrical reasons, the resolution 

of the DAM is limited by the distance between two DAs. The first thought to increase the 

resolution is therefore to decrease the DA size. The number of DA correlates to the third 

power of the DA radius. Due to the computation of the double sum over all DAs to 

obtain the scattering intensity, the simulation time correlates to the square of the 

number of DAs. This is a significant drawback. In the example of a sphere with diameter 

of 15 nm a decrease of the DA diameter from 0.4 nm to 0.32 nm increases the number 

of DAs from approx. 6000 to 12000. The simulation time increased from approx. 16 h to 

52 h. It is therefore of great interest to find a compromise between simulation time and 

resolution. To investigate the real effect of the DA-size, a series of calculations of a 

sphere was obtained using the specifications according to Table 6.  

Table 6: Simulation parameters to investigate the influence of the number of DAs on the results. A sphere of 
diameter 15 nm and an artificial polydispersity of 1 % (the reason for this will be explained further below) 
were used to allow correct splining of GNOM. 

name radius of DA [Å] number of DAs 

sph_da_3 5 3043 

sph_da_6 4 5895 

sph_da_9 3.5 8781 

sph_da_12 3.2 11590 

 

As it can be seen in the results according to Figure 18(a-d) obtained from the spherical-

average-evaluation all half-height-results are within the initial values ± the DA-diameter. 

When looking at the result obtained using the averaged-dimension method, all 

simulations fluctuate between 14.5 - 14.6 nm. The size of the cut-through-cylinder was 

chosen to be 2.5 nm to obtain good statistics. The real dimension will therefore be 
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underestimated which is the case as demonstrated in Figure 15(e). The important fact is 

that there is no evidence for a correlation between the number of DAs and the 

estimated particle size. 

 

Figure 18: Spherical-average-evaluation of the simulations (a) sph_da_3, (b) sph_da_6, (c) sph_da_9 and 
(d) sph_da_12. (e) Averaged-dimension of the four sperical-DA-simulation-series using 1000 random 
directions and a cut-through diameter of 2.5 nm. Due to this rather large diameter, the obtained values will 
therefore underestimate the real dimension. 
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Figure 19: (a) DAMMIN results compared to the initially provided scattering curve of a cuboid with side 
length of 16 nm. The simulation with approx. 3000 DAs (cube_da_3) significantly deviates from the initial 
curve. (b) Averaged-dimension of the three cuboid-DA-simulation-series using 1000 random directions and a 
cut-through diameter of 3.87 nm. Also in this case, the simulation cube_da_3 clearly deviates from the 
other two as can be seen by a second maximum around 240 Å. 

To further prove this point, a similar series of simulations was performed using a cuboid 

with side length of 16 nm. Compared to a sphere, a cuboid presents significant surface 

structures such as edges and planes. The parameters used can be found in Table 7. The 

interesting phenomenon here is that DAMMIN was not able to fit a model against the 

initial scattering curve with only approx. 3000 DAs. This can be seen in Figure 19(a). 

Especially in the low q-regime, the simulated curve clearly deviates from the initial one. 
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This effect also becomes visible when looking at the averaged-dimension-evaluation in 

Figure 19(b), where cube_da_3 exhibits a bimodal distance center around 240 Å. This 

corresponds to the overestimation of the scattering intensity at ��0�. All three 

simulations show some kind of minimum dimension at approx. 16 nm. If simulation 

cube_da_3 is neglected due to the reasons mentioned above, this minimum dimension 

is between 15.75-16.25 nm which is in perfect agreement with the initial dimension. An 

interesting fact is that the diagonal of the initial model is 27.7 nm but there is no 

distance measured in the cube_da_6 and cube_da_9 models higher than 24 nm. This 

implies that the corners of the cube cannot be resolved. The high cut-off value of the 

averaged dimension is somewhere around 22-23 nm which corresponds to the in-plane 

diagonal of the cube which is 22.6 nm. 

Table 7: Simulation parameters to further investigate the influence of the number of DAs on the results. In 
this case, a cuboid with side-length of 16nm was used 

name radius of DA [Å] number of DAs 

cube_da_3 8.8 2988 

cube_da_6 7.7 5594 

cube_da_9 6.1 8853 

 

In summary, the number of DAs is to be chosen to ensure that DAMMIN can describe all 

structural details. In case of a sphere, which is a body with no significant structural 

characteristics, the number of DAs has no effect whatsoever on the result. With 

increasing structural detail of the model the size of the DAs is to be decreased to ensure 

proper description of the structural singularities. Simulations with approx. 6000 DAs 

seem to be a good compromise between acceptable simulation time and retrievable 

detail. As long as the shape can fully be described the size of the DAs yields no 

significant effect on the obtained measurements. 

5.1.2 Shannon Channels 

As already discussed in Chapter 3.1.1 Monodisperse Systems, the information content 

provided by the q-range of the scattering curve can be described using Shannon 

Channels (SCs). In real experiments the accessible q-range and therefore the amount of 

provided SCs is usually limited by the experimental setup. To see the effects of the 

amount of provided SCs on the final results a series of simulations with different 

geometries and density profiles was performed. To best illustrate these effects, a 

spherical core-shell model was chosen. The radius of the core is 5 nm with a 2.5 nm shell 
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(see Table 1). The electron density ratio of core to shell is 1:2. The resulting width of a 

Shannon channel is according to Equation (32) therefore 0.21 nm-1. The simulation-name 

with the corresponding Qmax can be found in Table 8. A decrease of the accessible q-

region means a decrease of the number of SCs. To illustrate this effect, the scattering 

curves as well as fits from the corresponding DAMMIN simulations are shown in Figure 

20. All simulations were successful. The DA-diameter was chosen to result in approx. 

6000 DA per model. 

 

Figure 20: DAMMIN results compared to the initially provided scattering curve of with the corresponding q-
ranges for the simulations listed in Table 8. 

Table 8: Simulation parameters to study the influence of decreasing number of Shannon Channels, or in 
other words, the influence of a decrease of the accessible q-range. 

name Shannon Channels qMax [nm-1] 

cs_sc_5 5 1.05 

cs_sc_10 10 2.10 

cs_sc_15 15 3.15 

cs_sc_20 20 4.20 
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Figure 21: Spherical-average-evaluation of the core-shell model with 5 nm core and 2.5 nm shell with an 
electron density-ratio of core:shell = 1:2. (a,c,e,g) Determination of the transition dimension of core to shell. 
(b,d,f,h) Determination of the outer dimension. Rows: Provided scattering q-range with (a,b) 20, (c,d) 15, 
(e,f) 10 and (g,h) 5 SCs.  
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The first effect that becomes visible when looking at the spherical-average-evaluation 

presented in Figure 21 is the obvious change in electron-density difference throughout 

the shape. If the ratio between the core and shell plateau is calculated for cs_sc_20 (see 

Figure 21(a)) a core/shell-density-ratio of approx. 0.48 is obtained which is in good 

agreement with the initial values of the model. The half-height-evaluation provides a 

transition-dimension of approx. 4.99 nm and an outer radius (see Figure 21(b)) of 

7.47 nm, which is also in good agreement with the initial values. A decrease of the SCs 

from 20 to 15 (see Figure 21(c,d)) shows no effect on the obtained values. Only after 

decreasing the SCs down to 10 the occupancy at the core is starting to fluctuate (see 

Figure 21(e,f)). This makes it harder to provide the boarders for the averaging of the 

core plateau and therefore influences the transition-dimension as well as the core/shell-

ratio. This effect becomes even worse when the number of SCs is decreased to 5 (see 

Figure 21(g,h)) which makes it almost impossible to provide boarders for the tangent fit 

and the averaging of the core plateau. Furthermore, at this point the deviation of the 

obtained outer radius (see Figure 21(h) from the initial values becomes significant (more 

than the DA-diameter). The same effect is visible when looking at the averaged 

dimension of the simulations shown in Figure 22. The values of the simulations with 20, 

15 and 10 SCs are in good agreement with the initial dimensions.  

 

Figure 22: Averaged-dimension of the SC-simulation-series using 1000 random directions and a cut-through 
diameter of 2.5 nm. For 20, 15 and 10 SCs the result appears very alike with a maximum between 15.1-
15.2 nm. There is a clear deviation in the case of 5 SCs. The parameters to the corresponding simulation can 
be found it Table 8. 
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When looking at Equation 20, it can be seen that QMax somehow correlates with the 

minimum dimension or resolution that can be retrieved from a given scattering curve. 

As it can be seen from this investigation a truncation of the measured q-range in a real 

experiment can lead to misinterpretation. Even if a priori knowledge is available (e.g. 

spherical symmetry of the shape and inner structure) the q-range should be at least 10 

SCs to avoid any misconstruction. If detailed information on the inner particle structure 

such as the electron density is to be obtained, the range of accessible SCs should be kept 

as high as possible.  

If this is the case, using the spherical-average-method the relative electron density can 

be obtained with an astonishing degree of detail. Besides this, the characteristic 

dimensions of the DAM can be determined, even for low numbers of SCs. 

5.1.3 Number of Harmonics 

As explained in Chapter 2.2.2 The Multipole Expansion the number (or order) of 

harmonics used is a degree of convergence of the computation of the scattering curve 

from a given DAM. Since the simulation time correlates to the square of the used 

number of harmonics, Svergun suggests the use of 10 orders as a middle ground 

between resolution and simulation time. [67] Also for the investigation of the decrease 

of the number of harmonics the initial model of a cube with 16 nm side length and a DA-

diameter of 7.2 nm was used (see Table 1). The simulation names with the effective 

duration of a single simulation can be found in Table 9. The calculations were performed 

on dedicated CPUs of the same model to ensure comparability of the time-results. All 

fits were successful as can be seen in Figure 23. 

Table 9: Simulation parameters to study the influence of decreasing number of harmonics. The reader can 
also find the effective duration of a single simulation. 

name harmonics simulation-time [h] 

cube_h_20 20 15 

cube_h_15 15 11.7 

cube_h_10 10 8.7 

cube_h_5 5 6.9 

 

When looking at the duration in dependence of the number of harmonics it is evident, 

that there is no square-correlation between them but rather an asymptotic relationship. 

It is to be noted, that the simulation break criterion was set so a minimal threshold 
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mean deviation is reached (see Chapter 3.3 DAMMIN) to ensure solutions of equal 

qualities are found.  

 

Figure 23: Analytical scattering curves of the cube used in the simulation series investigating the influence of 
the number of harmonics on the result compared to the fits of the DAMMIN simulation. All simulations 
resulted in a perfect fit. 

The results of the spherical-average-evaluation of this series can be found in 

Figure 24(a,c,e,g). First off, there is no qualitative impact visible when the order of 

harmonics is decreased. There is a slight but continuous drift in the half-height values 

from 9.9 to 9.7 nm. This might be due to the fact that with decreasing resolution the DAs 

are on average placed further towards the center since the facets and edges cannot be 

resolved. This could therefore indicate some kind of structural loss. If this is compared to 

the size of a single DA with 0.72 nm, this drift is negligible. When directing the attention 

to the actual DAMs (see Figure 24(b,d,f,h)) more information can be gained. The models 

resulting from cube_h_20 and cube_h_15 show no evidence of an impact resulting from 

the decrease in harmonics. When the number is further decreased to 10 harmonics, the 

corners of the DAM are beginning to be flattened. In other words, there is a loss of the 

degree of surface detail. Furthermore the model is starting to become asymmetrically 

strained. This effect is visible even better when looking at cube_h_5. Here even the 

cuboid-planes are starting to become instable and the overall shape is starting to look 

star-like. 
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Figure 24: Results of the simulation series investigating the influence of decreasing the number of 
harmonics. (a,c,e,g) The spherical-average-evaluation of the DAMs shows no significant impact on the inner 
structure and the half-height-dimension. (b,d,f,h): DAM shown from two perspectives. The color-gradient is 
a measure of the occupancy. (a,b) cube_h_20, (c,d) cube_h_15, (e,f) cube_h_10 and (g,h) cube_h_5. 
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Figure 25: Averaged-dimension of the harmonics-simulation-series using 1000 random directions and a cut-
through diameter of 3.875 nm. There is no strong evidence of an influence visible.  

To quantitatively describe the surfaces of the different models, the averaged-dimension-

evaluation was performed for which the results are visible in Figure 25. On the first look 

there is no strong evidence of a difference in the models. With a closer look towards the 

measured minimum and maximum dimension, a narrowing of the length-range can be 

noticed. For cube_h_5, the lower threshold value is increased from 15.7 to 16.3 nm 

whereas the upper threshold value is decreased from 22.8 to 21.8 nm. The overall 

narrowing is therefore 1.5 nm, which is approx. twice the DA-diameter. This corresponds 

to the drift of the half-height-values obtained from the spherical-average-evaluation. 

Both observable phenomena of the cube_h_5 simulation indicate a rounding of the 

overall shape with a decrease of the number of harmonics. Nevertheless, all models 

suggest an overall cuboid shape. If absolute measurements are to be obtained from the 

DAM, it is recommended to use the maximum number of harmonics possible. Further, 

the use of less than 10 harmonics can also lead to the qualitative misinterpretation of 

the DAM. Models that are still retrieved with a low number of harmonics have to be 

interpreted very carefully. Since the computation time is not very costly nowadays, it is 

highly recommended to always use 20 orders of harmonics. 
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5.2 Polydispersity 

The other main objective of this work is to investigate the influence of smearing effects 

on the simulation results. Real scattering experiments on inorganic NCs will always 

provide data, which are at least to some degree smeared by a finite instrumental 

resolution and some degree of polydispersity of the system. These two effects on the 

measured scattering intensity have to be distinguished from each other (see Chapter 

3.1.3 Smearing Effects for more details). Therefore in a first simulation series the effects 

of polydispersity on the DAM were studied for the simplest case possible, namely 

spheres. After this investigation, another series was conducted on ellipsoids of 

revolution. This chapter is therefore divided into two sections, each dealing with its 

dedicated geometry. 

5.2.1 Sphere 

Table 10: Names and corresponding polydispersity of the simulations used to investigate the influence of a 
finite size distribution on the results. The polydispersity is the standard deviation of the Gaussian-volume-
distribution.  

name polydispersity [%] name polydispersity [%] 

sphere_pd_1 1 sphere_pd_8 8 

sphere_pd_2 2 sphere_pd_10 10 

sphere_pd_4 4 sphere_pd_15 15 

sphere_pd_6 6 sphere_pd_20 20 

 

For this simulation series an initial model with diameter 15 nm was chosen. The 

simulation-names and the used polydispersity can be found in Table 10, whereat the 

polydispersity is the standard-deviation of the volume-distribution. It is not possible to 

use the formfactor of a perfectly monodisperse sphere since the minima are so distinct 

that DAMMIN cannot fit them. Therefore an artificial polydispersity of at least 1 % has to 

be used to successfully use DAMMIN for spheres. This is interesting, since a program 

that is based on the presumption of perfect monodispersity needs a threshold size 

deviation to actually work. The analytically computed scattering curves as well as the 

corresponding DAMMIN fits can be found in Figure 28. 
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Figure 26: Results of the simulation series investigating the influence of increasing the polydispersity of the 
idealized system. (a,c,e,g) The spherical-average-evaluation of the DAMs shows no significant impact on the 
inner structure and the half-height-dimension. (b,d,f,h): DAM shown from two perspectives. The color-
gradient is a measure of the occupancy. (a,b) sphere_pd_1,(c,d) sphere_pd_2, (e,f) sphere_pd_4 and 
(g,h) sphere_pd_6. 
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Figure 27: Continuation of Figure 26. (a,c,e,g) The spherical-average-evaluation of the DAMs a significant 
decrease of the slope of the half-height tangent. (b,d,f,h) DAM shown from two perspectives. Obviously at a 
certain threshold, the DAMs become unstable and start forming excrescence. (a,b) sphere_pd_8, 
(c,d) sphere_pd_10, (e,f) sphere_pd_15 and (g,h) sphere_pd_20.  
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Since throughout the simulation the initial search volume of DAMMIN had to be 

increased, the size of the DAs had to be adjusted to ensure that approx. the same 

number of DAs was used. 

 

Figure 28: Some of the analytically computed scattering curves of systems of polydisperse spheres, used in 
the simulation series investigating the influence of polydispersity on the result, compared to the fits of the 
DAMMIN simulation. All simulations resulted in a perfect fit. 

The results of the spherical-average-evaluation can be found in Figure 26(a,c,e,g) and 

Figure 27(a,c,e,g). As the polydispersity is increased there is no visible effect on the inner 

structure of the DAM. If however the obtained half-height-value is plotted against the 

polydispersity, a clear drift to higher dimensions is visible. This can be related to the fact, 

that the intensity correlates to the square of the particle volume (see the detailed 

explanation in Chapter 3.1.2 Polydispersity). The obtained values from the DAMs with a 

polydispersity below 8 % are almost identical. They deviate less than one percent from 

each other. A difference can only be seen when taking a closer look at the transition 

region between inner and outer particle occupancy where an increasing smearing occurs 

with increasing polydispersity (see Figure 26(a,c,e,g)). To visualize and quantitatively 

describe these two effects, the half-height-value and the half-height-tangent-slope are 

plotted against the polydispersity as shown in Figure 29. The behavior of the half-height-

value affirms the suggestion made above. There is no significant deviation up to 6 % 

polydispersity.  
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If, however, the slope of the tangent line is calculated an inevitable change in exactly 

this region can be seen. Recall, that a decrease of this slope indicates a less abrupt 

transition of the mean occupancy, and therefore electron density, from DAM core to the 

surrounding. This implies that with increasing polydispersity this transition region is on 

average increasingly smeared out. If the models for which the obtained half-height-

value was outside their error are neglected, a linear relationship between the slope and 

the polydispersity is suggested. Only at a polydispersity over 8 % a clear deviation from 

this assumption can be seen. Overall, the determination of this tangent slope might 

therefore yield a useful tool to estimate the polydispersity of a given system. 

 

Figure 29: Results from the spherical-average- evaluation of the simulations investigating polydisperse 
spheres. (a) Obtained half-height-value plotted against the polydispersity. The green line indicates the 
original dimension of the model with diameter of 15 nm. The total error indicated is chosen to be the DA-
diameter. (b) This shows the half-height-tangent-slope in dependence of the used polydispersity. The blue 
line indicates a linear correlation of the values up to a polydispersity of 8 %. 

The visualized DAMs of all simulations can be found Figure 26(b,d,f,h) and 

Figure 27(b,d,f,h). For the first three models up to a polydispersity of 4 % there is no 

evidence of a deviation from the reference shape with 1 %. If the polydispersity is 

increased to 6 % (see Figure 26(g,h)) a one directional distortion of the initial shape is 

visible. This effect becomes more apparent at even higher polydispersities up to 10 %. 

(see Figure 27(a-d)). At this point the shape of the DAMs seems more similar to oblate 

ellipsoid than to a sphere. If the polydispersity is further increased to 15 and 20 % (see 

Figure 27(e-h)) the DAM becomes unstable.  

In addition, all models were evaluated using the averaged-dimension method for which 

the results can be found in Figure 28. Especially for the simulations with a polydispersity 
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below 6 % a very distinct and clear peak is visible. The probability density of a perfect 

monodisperse sphere should look like an infinitely high streak with no width. Since 

DAMMIN is limited to finite dimensions, there will always be a peak broadening of some 

degree. When looking at sph_pd_1 in Figure 30 only 2 % of all measured dimensions are 

outside of 145±1 Å. Note that to gain good evaluation statistics, the size of the cut-

trhough cylinder was chosen to be large which will therefore underestimate the real 

dimension. To quantitatively describe this peak, the FWHM was measured and 

subsequently, using the multiplier 2√2 ln 2, a standard deviation of 1.2 % was 

calculated, which is very close to the initially used polydispersity of this system. This 

procedure was repeated for all simulations. The results can be found in Table 11. The 

standard deviation clearly corresponds to the polydispersity of the system and is up to 8 

% in good agreement with the initial values. 

 

Figure 30: Averaged-dimension of the polydispersity-simulation-series of spheres using 1000 random 
directions and a varying cut-through diameter of 5 times the DA-diameter. The peak values of sph_pd_1 and 
sph_pd_2 were cut off to ensure good resolution for the high dispersed models. 

From this investigation it can be seen that up to a polydispersity threshold level of 4 %, 

DAMMIN is able to fully retrieve the particle shape whereas there was no evidence of 

structural loss. Further, the methods presented in this thesis are very sensible to 

minimal deviations of the mean outer dimension. E.g. there is a strong correlation of the 

half-height-tangent-slope or the peak width of the averaged-dimension-evaluation and 

the size distribution of the system. For a polydispersity higher than 8 % the 

interpretation of the DAM is to be done with fortified skepticism to avoid 
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misinterpretation. In this case DAMMIN tends to form prolate and oblate ellipsoids of 

revolution to deal with the necessary distances to fit the scattering curve. This 

simulation series also shows that the presented evaluation methods, as well as the 3D-

visualization of the DAM, should always be seen as complementary methods of 

interpretation and not as an exclusive one. Nevertheless, even for a size distribution of 

10 % a sphere diameter of 15.4 nm is obtained which is a deviation of less than 3 % from 

the initial dimension of 3 %. If a priori knowledge of the particle system indicates a 

spherical shape, the spherical-average evaluation can therefore estimate particle 

dimension with a high degree of certainty, even for polydisperse systems. 

Table 11: Results from the averaged dimensions peaks shown in Figure 30. The standard deviation σ was 
calculated from the FWHM using the scaling factor 2.355. 

name center [Å] FWHM [Å] σ [%] 

sphere_pd_1 145 4 1.2 

sphere_pd_2 146 6 1.8 

sphere_pd_4 146 14 4.1 

sphere_pd_6 147 20 5.8 

sphere_pd_8 147 32 9.2 

sphere_pd_10 148 40 11.5 

sphere_pd_15 151 60 16.9 

sphere_pd_20 158 70 19.9 

 

5.2.1 Ellipsoid of Revolution 

As it can be seen from the simulations performed on the system of polydisperse 

spheres, DAMMIN deals with high size distributions above 8 % by forming an ellipsoid of 

revolution. The question that arises from this phenomenon is, if the distinction between 

polydisperse ellipsoids of revolutions and polydisperse spheres can be made by 

DAMMIN. Therefore the geometry of an ellipsoid of revolution with a double axis of 

8.5 nm and a single axis of 5.25 nm was chosen which corresponds to an aspect ratio of 

1:1.6. The dimensions correlate with a sphere of 15 nm since they both have the same 

radius of gyration. The scattering curves for polydisperse ellipsoids were computed 

using a Gauss-curve with 21 steps (For more details see chapter 3.1.2 Polydispersity). 

Since from the previous series on spheres no stable results were found above a 

polydispersity higher than 10 %, the attention was directed towards size distributions 

below this threshold. The simulation-names and the used polydispersity can be found in 
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Table 12. The analytically computed scattering curves as well as the corresponding 

DAMMIN fits can be found in Figure 31. 

Table 12: Names and corresponding polydispersity of the simulations used to investigate the influence of a 
size distribution on the final results in the case of ellipsoids of revolution. The polydispersity is the standard 
deviation of the Gaussian-volume-distribution. 

name polydispersity [%] name polydispersity [%] 

ell_pd_0 0 ell_pd_6 6 

ell_pd_2 2 ell_pd_10 10 

 

The results of the spherical-average-evaluation as well as the visualized DAMs of this 

series can be found in Figure 32(a,c,e.g) and Figure 32(b,d,f,h). In the result for ell_pd_0 

a step in the transition region from core to outer dimension can be seen. The first 

deviation from the core-level is approx. at 5 nm which corresponds to the initial single 

axis. At approx. the half-height distance, a change or kink in the transition shape can be 

noticed. Due to this, the obtained half-height value cannot be related to any structural 

meaning. The corresponding DAM clearly shows an elliptical slope with values obtained 

from the linear-evaluation of 10.6 and 16.5 nm as already presented in Figure 14. When 

looking at the next model with a polydispersity increased to 2 %, no significant change in 

the density profile and the obtained DAM can be witnessed. Only when the size 

distribution is further increased to 6 and 10 %, a significant change can be witnessed. 

First of all, the density profile can now entirely be fitted with a single tangent which 

implies that the kink in slope mentioned above has disappeared. Furthermore, the 

obtained DAM now clearly deviates from the initial shape. Nevertheless, it is astonishing 

when looking at ell_pd_10 in Figure 31 that DAMMIN can still retrieve a shape that is 

similar to the initial model from this curve. 
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Figure 31: The analytically computed scattering curves of systems of polydisperse ellipsoids of revolution 
with an aspect ratio of 1:1.6, used in the simulation series investigating the influence of polydispersity on 
the result, compared to the fits of the DAMMIN simulation. All simulations resulted in a perfect fit. 

Also for this series the DAM were analyzed using the averaged-dimension method 

where the results can be found in Figure 33. The minimum and maximum cut-off lengths 

of ell_pd_0 result in 10.4 and 16.2 nm which is in good with the initial values and the 

dimensions retrieved from the linear evaluation. An increase of the polydispersity to 

2 and 6 % clearly broadens the range of the measured dimensions. Interestingly, the 

minimum cut-off dimension is totally stable and stays constant. The maximum cut-off 

dimensions increase with the polydispersity up to 6 %. Up to this point also the 

qualitative shapes of the distance-distributions look alike. Only at size-distributions of 

10 % and more, the DAM becomes instable which is indicated by the fact, that no long 

dimensions of the DAM were measured.  

The misinterpretation of such a scattering curve might therefore result in an error of up 

to 10 %. For the case of ell_pd_10 no relation of the maximum dimension to the 

previous models is observed. Anyhow, the qualitative shape as well as the minimum 

dimension of the distance distribution is constant and very stable, even for the case of 

ell_pd_10. 
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Figure 32: Results of the simulation series investigating the influence of increasing the polydispersity of a 
ellipsoids of revolution. (a,c,e,g) The spherical-average-evaluation of the obtained models. (b,d,f,h) DAM 
shown from two perspectives. The color-gradient is a measure of the occupancy. (a,b) ell_pd_0, 
(c,d) ell_pd_2, (e,f) ell_pd_6 and (g,h) ell_pd_10. 
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Figure 33: Averaged-dimension of the polydispersity-simulation-series of spheres using 1000 random 
directions and a varying cut-through diameter of 5 times the DA-diameter.  

Overall, an increase of the size distribution to small values of 2 to 6 % still allows the 

qualitative interpretation of the obtained DAM. The values obtained by the mentioned 

methods should be treated careful. Even though the results of the perfectly 

monodisperse model are in very good agreement with the initial shape, the effects of 

size distribution produces a systematic error, that yields in the overestimation of the 

obtained dimensions. The same effect was witnessed with polydisperse spheres and can 

be contributed to the squared volume to intensity correlation. 

Furthermore, the comparison of polydisperse spheres and polydisperse ellipsoids of 

revolution is in all cases possible when focusing on the transition region of the density 

profile as well as the averaged-dimension evaluation. 

5.3 Estimation of Error 

The following discussion is based on the assumption that all simulations were successful, 

or in other words that the error between the scattering curve of the DAM and the initial 

curve is negligible. From what can be seen above two sources of error can occur and 

where each one has to be discussed separately. First, as already mentioned, the 

simulation parameters as well as smearing effects due to polydispersity can introduce a 
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systematic error. Second, the described evaluation methods are accompanied by a 

statistical deviation whereas also a systematic error can occur. These two sources have 

to be discussed separately. 

5.3.1 Evaluation Methods 

When looking at the developed evaluation methods each of them has to be investigated 

separately concerning the resulting errors, since they have different algorithms behind 

them. The following discussion is based on the assumption that no a priori knowledge of 

the system is available. 

First off, it is suggested to qualitatively interpret the obtained DAM and check it for 

success. This means that on one hand the initial scattering curve has to be compared 

with the fit resulting from the DAM. Further, the DAM should be visualized and checked 

for excrescent structures. If this is not the case the DAM can be described quantitatively 

according to the following steps. 

To obtain an objective and quantitative description of the DAM the average-dimension-

evaluation should be performed. This evaluation is based on the same principles than 

the singular dimension evaluation with the draw-back that the computation of a 

probability density in shape of a histogram limits the dimensional resolution: Since the 

obtained histogram simply states how often values in-between an upper and a lower 

boundary were measured (width of a histogram bar), the final result is degraded by 

these boundaries or in other words by the width of the histogram bars. Even though it is 

generally recommended to use at least 1000 random orientations, the use of more than 

50 steps in a histogram strongly distorts the result by an increasing noise to signal ratio 

Also with this method, it is highly recommended to use the tangent-extrapolation-

method even though, the determination of the dimension from the histogram may be 

accompanied by a higher error than by measuring along this direction using the linear-

evaluation-method. The final error is therefore mainly subject to the step width, and 

cannot be estimated for the general case. Nevertheless, it does not exceed the DA-

diameter.  

If the dimension-distribution obtained from the average-dimension-evaluation as well as 

the visualized DAM show some kind of characteristic dimensions (e.g. long and short axis 

of an ellipsoid, facet-to-facet distance, etc.) this dimension can be measured using the 

linear evaluation method. The computation of the linear-dimension-evaluation is the 

most sensitive method presented in this thesis. As already mentioned in Chapter 4.2 
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Linear Evaluation the choice of the cut-through-cylinder-radius has a strong effect on 

the obtained results. On one hand, too big radii lead to the introduction of size effects 

and therefore to the underestimation of the real dimension which is per definition a 

systematic error. But, due to the high amount of DAs that can be found in the evaluation 

volume the fits are very stable, which results in a low statistical error of less than 1 % for 

a radius of 5∗DA-diamter (standard deviation). On the other hand, a decrease of the cut-

through radius to 1∗DA-diamter can lead to a standard deviation of up to 5 % but also a 

decrease of the systematic error. It is therefore recommended to always use the linear 

extrapolation method presented in Figure 14. Using this method, the systematic error is 

compensated which leaves a statistical error that is now subject of the linear regression. 

In the case of e.g. Figure 14 the error of the intersection-value of tangent and vertical 

axis is 3.15 %, calculated using standard error propagation. 

If the previous evaluations, as well as a priori knowledge, suggest a spherical shape, the 

spherical average evaluation can be performed. For, all other geometries this technique 

should only be used to determine some kind of significant change in structure, such as 

the estimation of the smallest dimension.  

If the obtained model really is spherical, the results from the half-height-method are 

very stable. Since the fitting boundaries for the tangent are subject to manual input, the 

error depends mainly on the user. The coefficient of determination of the linear 

regression is in all cases above 99 % percent and therefore this error is negligible. The 

determination of the ratio of occupancy, or core-shell-electron-density-ratio, (see results 

from Chapter 5.1.2 Shannon Channels) the results are strongly subject to high 

fluctuations of the core density. This can easily be explained when recalling that the 

number of DAs in a sphere volume correlates to the third power of the volume. 

Therefore, for small search volumes at the core of the model the mean occupancy can 

only be calculated over a relatively small number of DAs which automatically results in 

bad statistics. The obtained density ratio should therefore always be expressed with a 

margin of approx. 10 %. 

5.3.2 Simulation parameters 

The investigations above point out that the choice of wrong simulation parameters can 

easily lead to the misinterpretation of the real shape. As already mentioned all of the 

evaluation methods used in this thesis should be used to qualitatively check if the 

obtained model is plausible by comparing it to a priori data.  
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A method to check if the obtained models are stable is the variation of the simulation 

parameters for single simulations and not the averaged model. If e.g. the number of DA 

is increased the shape of the DAM should not significantly differ from the previous 

model. If it does, a higher resolution might be needed since some structural detail 

cannot be retrieved. It is therefore recommended to at least run a single simulation with 

a high number of DAs to check for any effects. 

The series on polydisperse particles shows that smearing of data can lead to a distortion 

of the DAM. To be sure that all of the instrumental smearing effects are accounted for, 

the IFT has to be done using the experimental smearing data. To retrieve the actual 

instrumental resolution calibration measurements of the experimental setup have to be 

made. Still, especially with inorganic NCs, there will always be some kind of a finite size 

distribution which will also lead to biased model. The averaged-dimension-evaluation is 

an advised method to see if there are still characteristic dimensions observable or not. 

Another topic about the experimental setup has to be addressed: all of the 

investigations above were made using j��� = 0, which in real experiments cannot be 

achieved. On the other hand chapter 5.1.2 Shannon Channels shows that effects can 

occur when the information content in the scattering curve is decreased by 

lowering j���. This leads to a conflict of interest when it comes to the experimental 

setup where on one hand  j��� is to be minimized and on the other hand j��� is to be 

maximized. Anyhow, since the limits of the experimental setup can only in be changed in 

rare cases, the setup is to be chosen to keep  j��� within the first SC. If the accessible q-

range is now smaller than 10 SCs, the interpretation of inner structural details should be 

done very careful.  
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6 Conclusion and Outlook 

In the present work the ab initio shape retrieval method DAMMIN, which was originally 

developed for the determination of strictly monodisperse systems such as proteins, is 

used on theoretical models of inorganic nanocrystal systems. DAMMIN is based on the 

refinement of a three-dimensional bead-model from which a scattering curve is 

calculated and fit against an experimental curve using the multipole expansion. Since 

any arbitrary shape can be described by an assembly of spheres, the presented method 

needs no a priori knowledge of the shape of the measured system. 

To explicitly describe the obtained models several evaluation methods were developed 

and tested, at which all of them allow the interpretation of models from single 

simulations as well as from averaged simulations. Nevertheless, the main focus is set on 

the retrieval of structural details from the averaged results, since the averaging process 

introduces the so called bead occupancy. By comparing the radius of gyration of the 

obtained model with the initial input, this bead occupancy can be correlated to the 

electron density. The averaged results are therefore three-dimensional electron density 

maps in real space.  

The first objective of this work was to check the simulation process for the stability of 

the results. This could only be done by utilizing the presented evaluation techniques, 

which allowed to qualitatively and quantitatively describe the obtained models. As 

shown in the presented investigations, the simulation results are very stable. Even, if 

only the minimal recommended parameters are used, the particle shape can be 

retrieved qualitatively. If, however, the detailed dimensions are to be determined, the 

number of DAs as well as the number of used harmonics is to be kept as high as 

possible. When looking at inner details of the shape, such as variations of the electron 

density (e.g. core-shell-particles), the accessible q-range is to be maximized. However, a 

qualitative interpretation can still be made if only 2-4 minima in the scattering curve are 

visible. An overview of all models used in this work, their scattering curve-fits and the 

corresponding three-dimensional models from the DAMMIN simulations are shown in 

Figure 34. The obtained dimensions are in great agreement with the initial values. 
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Figure 34: Conclusive overview of the best results from the DAMMIN simulations of the models used in this 
thesis. In the first column the initial model with its dimensions is presented. In the second column the 
analytical scattering curve is compared to the DAMMIN simulation. The third column shows the 3D DAM as 
well as the retrieved dimensions. The results were taken from simulations (a) sp_pd_1, (b) cs_sc_20, (c) 
ell_pd_0 and (d) cube_h_20. 
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The second objective was to determine the influence of smearing effects such as 

instrumental smearing and polydispersity on the ability to retrieve the particle shape. 

Even though, DAMMIN was originally developed for strictly monodisperse systems, the 

size and shape of the obtained models did not change up to Gaussian size distributions 

of up to 4 %. Using the presented evaluation techniques, characteristic dimensions such 

as e.g. the-smallest-distance-measured or a deviation from the spherical shape can be 

retrieved from systems with size-distributions of 10 % and even higher. Interestingly, for 

the case of spheres, the initial scattering curve of perfectly monodisperse spheres had to 

be artificially smeared which was done using a size-distribution of 1 %. 

Last but not least, an estimation of the error was made. If the retrieved model is 

interpreted as suggested (see Chapter 5.3.1 Evaluation Methods) the obtained particle 

dimensions can be determined within the range of one dummy atom diameter. For most 

applications this results in an error of approx. 2 Å. By using DAMMIN together with the 

presented evaluation techniques, the detailed shape of nanocrystals can be obtained 

close to the atomic resolution. 

Future investigations will focus on the application of the presented methods on real NC-

systems.  

Another suggestion is to directly implement the atomic crystal lattice into the DAMMIN 

simulations. This would allow the construction of an idealized atomistic mean shape of 

the NCs. As a second possibility, the reconstruction of an atomistic model from from the 

obtained DAMs  
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