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Kurzfassung 

Durch die immer weiter steigende Nachfrage nach Stahlerzeugnissen und dem Ziel einer 
kostensparenden und umweltfreundlichen Prozessführung ist der effiziente Einsatz von  
Rohmaterialien ein Schlüsselfaktor der Eisen- und Stahlherstellung. Vor allem die verschiedenen 
Direktreduktionsverfahren  als  Alternative  zum  Hochofenprozess  wurden  ständig 
vorangetrieben. Für diese Arbeit wurden verschiedenartige eisenhaltige Einsatzmaterialien in 
stückiger Form untersucht mit dem Ziel einer Charakterisierung der Rohmaterialeigenschaften 
und weiterführend der Beschreibung des Verhaltens während der Umwandlung zu metallischem 
Eisen. Es wurde eine Versuchsmethodik entwickelt, um verschiede Stückerze, Pellet-Sorten und 
Sinter-Proben anhand von Laborversuchen zu untersuchen.  

Dabei konnten Aussagen über die Fähigkeit eines Materials Sauerstoff abzubauen sowie der 
mechanischen Eigenschaften während des Reduktionsvorgangs unter verschiedenen 
industrienahen Bedingungen erfolgen. Die Ergebnisse wurden in einer ersten Versuchsserie 
mittels eines standardisierten Tests dargestellt und weiterführend wurden die 
Versuchsbedingungen bezüglich Gaszusammensetzung und Temperatur industrienahen 
Bedingungen angepasst. Die Ergebnisse konnten ein Bild bezüglich der Eignung der der 
verschiedenen Materialien für unterschiedliche Prozessführungen geben. Es zeigte sich, dass 
unter veränderten Versuchsbedingungen sich die Einsatzstoffe unterschiedlich Verhalten. 
Weiters konnte, unter Abwandlung einzelner Versuchsparameter, der Einfluss des 
Gasreduktionspotentials und des Wasserstoffgehalts der Gasmischung gezeigt werden.  

Kombiniert mit der morphologischen Charakterisierung und einer Beschreibung der 
Gefügeentwicklung während des Reduktionsvorgangs konnten dazu beitragen einen 
Zusammenhang zwischen Rohmaterialeigenschaften und dem Verhalten während der Reduktion 
zu finden. Es zeigte sich, dass obwohl das Schema des Reduktionsfortschritts – die schrittweise 
Reduktion der verschiedenen Oxidationsstufen erfolgt in schalenartiger Form von außen nach 
innen – gleich bleibt, die Anwesenheit von Wasserstoff jedoch die Ausbildungsform des 
metallischen Eisens ändert. Ferner verändert die Ausgangsstruktur des Rohmaterials sowie die 
Schlackenmenge und –zusammensetzung das Reduktionsergebnis. Schließlich ist anzunehmen, 
dass Parameter wie Porosität und Schlackenverteilung die Reduktionskinetik stark beeinflussen.  
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1 Introduction 

Due to the rising importance of the economic and environmental aspects of ironmaking, one 
major focus in research activities is the continuous improvement and optimization of prevailing 
and approved processes including blast furnace, direct and smelting reduction processes, 
respectively. Whereas the production of hot metal in the blast furnace, as the predominant 
process, is significantly dependent on metallurgical coke as a source of heat and as a reducing 
agent, there are increasing attempts to partly bypass this excessively costly and therefore 
negative circumstance through the usage of coal in the case of smelting reduction technologies 
and natural gas in the production of direct reduced iron (DRI) in direct reduction processes. In 
addition, the increasing use of by-products and the interconnected demands to decrease CO2-
emmisions further enhance the requirements on all input materials towards an outstanding 
spectrum of quality regarding chemical, physical and mechanical properties. Since all iron 
making routes (with the exception of melting scrap in electric arc furnaces) are based on the 
reduction of oxidic raw materials, a better understanding of the reaction as it happens inside the 
furnace or further inside the material, could lead to a variety of benefits. A more specific 
application of burden material would result in either enhancement of productivity, a more cost 
saving operation mode, fewer waste products, lower CO2-emission or, in the best case, a 
combination of all of these together.  

One significant part of this research work deals with the depiction of the behaviour regarding 
reducibility performance and the mechanical stability of lump iron oxide containing burden 
material either naturally occurring or artificially agglomerated by pelletizing and sintering. The 
ability to describe, depict or even predict a material’s behaviour during the reducing procedure 
within an ironmaking process could make the decision regarding the use of a distinct sort of iron 
carrier easier and more precise and could further contribute to a more efficient, cost saving or 
environmentally friendly iron making operation.   

1.1 Objective and Investigations of this Work 

Within this research work raw materials of different origins and mineralogical and structural 
types were chosen for their best possible applicability in the diverse reduction aggregates of 
various ironmaking routes. The aim is to describe the materials behaviour during the reduction 
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process and combine those results with the raw materiaĺs properties in order to find a 
correlation between the raw material structure and the reduction performance.  

A literature review concerning the influencing parameters on the reducibility and mechanical 
stability of a ferrous burden material has been performed, aimed at revealing the complex 
relationship between process conditions and raw material properties on reducibility and 
stability. In addition, the determination of appropriate testing conditions led to the use of testing 
conditions which are comparable both to industrial scale process conditions as well as to 
standardized testing conditions. In a first approach of characterization all available raw 
materials, namely different lump ores, pellet brands and sinter samples; were investigated 
regarding their morphological and structural phenotypes. Whereas ores consist of more or less 
simple morphology, the complexity increases when investigating pellets. Based on the fact that 
sinter samples contain up to 25 % additional slag forming phases the variety of different 
prevailing phases and the inhomogeneity of samples is even higher. Combining this with the fact 
that any industrial scale process has different conditions and parameters, means combining raw 
material characteristics and the performance of the material during reduction is a complex issue.  

Nevertheless the test results gained are intended to reveal a generally valid correlation 
between the raw material structure, the standardized testing results and the industrial scale 
testing procedures. A possibility of predicting the materials behaviour without costly and time 
consuming testing methods could contribute to an optimized use of the ferrous burden material 
and enhance productivity. Furthermore, with a better understanding of what actually happens 
inside the material the pre-step, the preparation and fabrication of the ferrous burden, can be 
influenced in a way supporting the reduction facility.  

1.2 Facts and Figures about Iron and Steel Production Routes 

Though iron is the fourth most abundant element in the earth́s crust, metallic or native iron is 
hardly to be found due to its chemically unstable phenotype and tendency to oxidize at 
atmospheric conditions. Beginning in ancient times, mankind wanted to make use of the 
outstanding properties of processed iron and further steel; the hardness and strength, the 
ductility and finally the optical appearance. After the usage of meteoric iron as jewellery and 
religious items from 4000 B.C on, the first extraction of iron from oxidic ores is evidenced 
around 1200 B.C. From the Mediterranean Sea iron production started its triumphal procession, 
from simplest bloomery furnaces to today’s multitudinous highly developed and sophisticated 
iron and steel making routes.  

In 2012, 1.9 billion tons of iron ore were mined and further processed to 1.1 billion tons of pig 
iron, 71.1 million tons of direct reduced iron and finally to 1.5 billion tons of crude steel [1,3,4]. 
Because of the continuous increase in world population and the rising demands brought about 
by modern standards of living, the need for iron and steel products continues to increase. Within 
the last 40 years the world crude steel production has almost tripled, from 595 million tons in 
1970 up to 1547 million in 2012; in accordance, the average annual growth rate of crude steel 
production increased from 1.6 to 4.5 %/year when considering the 5-year periods 1970-75 and 
2005-10, respectively [1,2]. The constant decrease of that ratio recorded during the first 4 years of 
the 20th century was caused by the increased recycling rate of steel scrap. A remarkable 
observation, however, is that since 1940 the hot metal to steel ratio has remained at an almost 
constant level at around 0.7 (c.f. Figure 1-1) [4]. 

Figure 1-1 depicts the development in production of crude steel, hot metal and DRI/HBI over the 
last 35 years. The steady increase of the world’s demand for steel can be seen in the increasing 
amounts of crude steel, hot metal or DRI/HBI. Still the DRI/HBI production is only a small part, 

http://en.wikipedia.org/wiki/Abundance_of_the_chemical_elements
http://en.wikipedia.org/wiki/Universe
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with a portion of up to 70 % of the crude steel production by using the conventional blast 
furnace process route.  

The need for metallurgical coal as a raw 
material for the subsequent coke making,  
coupled with the need for lumpy iron bearing 
burden material combined with decreasing 
availability of metallurgical coal and lump ores 
make the blast furnace an increasingly costly 
process. Those negative aspects can be 
juxtaposed,  however,  with  simultaneous 
consideration of the local availability of 
different raw materials; several attempts have 
been made in the recent decades to produce of 
hot metal with at least the same quality as from 
the blast furnace. Depending on the appearance 
of the iron carrying material used, the type of 
the reducing agent and the type of furnace the 
different aggregates can be distinguished.  

Generally speaking the production of crude steel as a product from the different raw materials, 
collectively denominated as “Primary Metallurgy”, can be classified into four major process 
routes [3–12]: 

 The blast furnace route uses lump iron ore or ore agglomerates combined with coke as the 
reducing agent and fossil energy source for the production of the liquid hot metal from iron 
oxides. This is then further processed to liquid steel in a basic oxygen converter combined 
with the melting of scrap. 

 From of the direct reduction (DR) process route direct reduced iron (DRI) or hot briquetted 
iron (HBI) is produced, mainly as an intermediate product for further processing in either 
electric furnaces for the production of crude steel or as scrap substitutes within the electric 
arc furnace. The term direct reduction refers to any process that reduces solid iron oxides to 
solid metallic iron avoiding the liquid phase; the produced iron sponge can then further be 
compacted.  

 Similar to the blast furnace route, the smelting reduction (SR) processes produces liquid hot 
metal but without the usage of coke. In contrary to the blast furnace, where iron oxides are 
fully reduced and melted and then further converted to steel in the blast oxygen converter, a 
smelting reduction facility partly splits up the process of ore reduction and smelting into a 
two-stage operation mode whereas the subsequent steelmaking process remains the same.  

 The method of steelmaking via electric arc furnaces is the only route that is not based on the 
reduction of iron oxides as iron carrier. The main raw material is scrap which is melted, 
potentially by adding some amounts of DRI or liquid iron, with electrical energy in electric 
arc furnaces.  

Due to the fact that the electric arc furnace route uses few if any iron oxides as a raw material, 
this process will not be discussed in any further detail in the course this work. In Figure 1-2 a 
simplified summary of the blast furnace route as well as the alternative steelmaking routes is 
given by depicting the different (intermediate) products based on their oxygen and carbon 
contents. Starting from the basis of iron ore with an oxygen content of 30 (high grade ore) to 
70 % (low grade ore) the oxygen decreases in each process stage. Due to the reducing conditions 
in the blast furnace the oxygen is totally removed and furthermore the liquid hot metal is 
significantly carburized. At the converter process the carbon content is decreases once again by 
means of oxygen blowing in order to obtain crude steel. The last small portions of oxygen (some 

Figure 1-1: Worldwide production of crude steel, 
hot metal and DRI/HBI [1,2] 
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ppm) are removed in the aggregates within the steel 
plant (secondary metallurgy) before casting the steel to 
the final product. In contrary to the BF and also the 
smelting reduction route, within direct reduction 
aggregates some oxygen remains in the intermediate 
product to an extent of about 1 % during the reduction 
to sponge iron. At the downstream process stage, the 
melting in electric furnaces, the sponge iron is converted 
to a liquid product. By means of both, the DR and SR 
route, the final raw steel analysis is in good 
comparability to the blast furnace product and can 
subsequently be treated in the steel plant.  

The process routes listed can further be sub-classified 
by different criterions. One significant distinguishing 
feature is the nature and form, particularly the grain size 
distribution, of the raw materials. On the one hand the 
iron carriers can be introduced to the process as fine 
ores, like in the FINEX® and FINMET®-process for 
example, or as lump burden material as for a majority of 
the processes. The reducing agent, as another 
characteristic parameter, can consist of solid carbon 
carriers, like coke or coal, or can be brought in the 

process as a gaseous reductant. Furthermore, the production pathway of the gaseous reducing 
agent can occur via different procedures, based either on coal (by coal gasification) or based on 
natural gas (via different ways of gas reforming). Depending on the raw materials, the principle 
and the design of the facilities can be different for direct reduction as well as smelting reduction 
production aggregates, comprising fluidized bed facilities, shaft furnaces, rotary kilns and hearth 
furnaces. The final step of the different smelting reduction processes, the smelting reduction 
part, can also be distinguished between ‘In-bed’ and ‘In-bath’ reactors. Since there are different 
methods for the preparation and production of the reducing gas, either coal gasification or gas 
reforming, the gas composition can differ in a wide range of the components CO, CO2, H2, H2O, 
CH4 and N2.  

In both cases, ore and reducing agent, the most carefully considered economic aspect is avoiding 
costly and complex agglomeration steps. By bringing fine iron ore into the process, a 
pelletization or sintering step can be circumvented. With the use of coal or even gaseous 
reductants the need of metallurgical coal for coking is diminishing and the coking process can be 
fully eliminated.  

Table 1-I gives a short overview of the most used and important aggregates for the production of 
direct reduced iron and hot metal. For a more detailed description of these processes as well as 
other, unlisted, processes, numerous references are given.  

 

Figure 1-2: Iron making routes [3] 
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Table 1-I: Classification of the most common iron making process routes:  

 

 
Iron 
carrier 

Reducing agent Furnace type Short process description Category References 

Blast Furnace  
Lump ore, 
pellets, 
sinter 

Lump coke 
(partly substituted 
by PCI, heavy oil, 
natural gas or waste 

plastics) 

Shaft furnace 
Counter current flow of gas and burden material, iron carriers and coke are 
alternately charged at the upper part of the furnace, hot air is introduced at the 
tuyere level, periodically tapping of hot metal and slag  

 [7,8,10, 13–17] 

MIDREX®  
Lump ore, 
pellets 

Gas                             
(gas reforming of 
natural gas)  

Shaft furnace 
Reduction in a shaft furnace, external production of the reduction gas via 
catalytic gas reforming of methane, DRI has high MD of > 90 %, operating 
pressure 1.8 bar, temperature maximum 800-900 °C 

Direct     
reduction 

 

[2,7,9,13,14,18–20] 

HYL Process 
Lump ore, 
pellets 

Gas                             
(gas reforming of 
natural gas) 

Shaft furnace 
Similar to MIDREX®, Reduction in a shaft furnace, external production of the 

reduction gas via water gas reforming of methane, MD of > 94 %,  operating 
pressure 5-8 bar, maximum temperature 900 °C  

[9,10,13,15,21–24] 

FIOR/FINMET® 

CICORED® 
Fine ore 

Gas                             
(gas reforming of 
natural gas) 

Fluidized bed  
cascades 

3-stages reduction in fluidized bed cascades, one fluidized bed for preheating, 
Operating temperatures 760-790 °C  

[9,10,13,15,19,23–25] 

SL/RN DRC 
Lump ore, 
pellets, 
sinter 

Lump coal Rotary kiln 
Reduction in rotary kiln furnaces, first part ‘preheating zone’  for heating up to 
900-1100 °C, further ‘metallization zone’ for reduction and metallization to MD 
= 90 % at 1050-1100 °C   

[4,5,9,10,13,15] 

FASTMET 
Fine 

ore/pellets 
Pulverized coal 

Rotary hearth 
furnace 

Fine ore and pulverized coal are mixed, consolidated to pellets and fed to the 
rotary hearth furnace (one or two layers), heating rapidly to 1350 °C reduced 
via gas produced inside the pellets, MD > 90 % 

[5,13,15,26–28] 

COREX® 

Lump ore, 
pellets, 
(sinter) 

Gas (reduction shaft) 
Coal (melter gasifier) 

Shaft furnace 
‘In Bed’ smelting  

2-stage process, at first pre-reduction of the burden material in a shaft furnace 
to DRI with gas from the melter gasifier (coal gasification) to a RD of 80 %, 
further reduction and melting of the DRI in the melter gasifier by coal  

Smelting 
reduction 

[7,10,23–25,29,30] 

FINEX®   Fine ore 
Gas (fluidized bed) 
Coal (melter gasifier) 

Fluidized bed  
‘In Bed’ smelting 

2-stage process, at first pre-reduction of the fine burden material ina  fluidized 
bed cascade to DRI with gas from the melter gasifier, further reduction and 

melting of the DRI in the melter gasifier by coal (similar to COREX®-process)  

[4,5,10,11,30–32] 

Hismelt® Fine ore 
Gas (fluidized bed) 
Coal (melter gasifier) 

Fluidized bed  
‘In Bath’ smelting  

Fine ore is injected to the reaction vessel as well as coal and fluxes. Initially 
designed as horizontal unit, In-Bath process for carbon oxidation and post 
combustion with oxygen lance 

[5,7,15,10,33,34] 

DIOS Fine ore 
Gas (fluidized bed) 
Coal (melter gasifier) 

Fluidized bed  
‘In Bath’ smelting  

Direct Iron Ore Smelting (DIOS) process, further development of Hismelt®, 

2 fluidized bed reactors for preheating and pre-reduction with offgas from 
melter gasifier 

[5,7,10,15,17,25] 
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2 Processing of Lump Ferrous Materials 

Within this research work, the investigation is focused on the examination of lump burden 
material during reduction at conditions of various ironmaking processes at temperatures up to 
1000 °C. To achieve this, ways and means of investigation methods and testing parameters had 
to be found that cover all the different process routes. The following section gives an overall 
insight into the three different process routes and furthermore the most prevailing and 
representative process of each route is described more in detail.  

However, all efforts towards a cost and resource saving operation mode are based on an efficient 
use of raw materials. Since the process conditions for each process route and reduction facility 
are different, the requirements for lumpy ferrous materials differ. Therefore a summary of 
general aspects regarding material demands subsequently will be presented, and some special 
requirements for single processes considered.  

2.1 Usage of Lump Burden Material – Process Routes   

All processes described use the same kind of raw material, lump iron carriers, that in the end 
leads to either liquid hot metal or solid sponge iron, both as raw material for further processing. 
Even though the reduction of iron ore, hence the removal of oxygen, is fundamentally always the 
same, the path of reduction might differ widely. During the entire reduction process the raw 
material is confronted with different conditions in terms of gas composition, temperature range 
and a plurality of mechanical stresses and strains. As a consequence, the requirements on the 
material for an optimum operation process will differ for each process route. With a better 
understanding of the operation mode of these processes, their individual assets and drawbacks 
can be pointed out and as a result the special and unique demands on the raw materials will be 
highlighted.  

2.1.1 The Blast Furnace Process 

As the predominant reduction aggregate [3,6–8,14,17], the materials behaviour during the burdeńs 
descent of the shaft (upper) part of the blast furnace is one key element of this research work, a 
schematic picture of a blast furnace is given in Figure 2-1.  
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Since the blast furnace is a shaft furnace working in counter current operation, the lump burden 
material is charged at the upper part of the furnace (blast furnace top) and moves downwards 

whereas the reducing gas, which is generated by the 
injection of hot blast through the tuyeres, flows 
upwards.  
The main reactions are the step by step transformation 
of the solid iron oxide into liquid hot metal by gaseous 
carbon monoxide (indirect reduction) at the upper part 
of the furnace as well as by solid carbon (direct 
reduction) at the lower parts. The simultaneously 
formed liquid slag at the lower part acts as a collector 
for most other accompanying elements. During the 
descent of the charged burden (a mixture of lump iron 
carriers, fluxes and lump coke) a multitude of processes 
and reactions take place before the final tapping of the 
liquid hot metal and slag.  
For the sake of simplicity the BF is divided from the top 
down into different reaction and temperature zones. 
Right after the charging the material is warmed up to 
600 °C at the preheating zone and the mainly hematitic 
burden is first reduced to magnetite. During the further 
descent, the ferrous burden is reduced by gaseous CO 
during the indirect reduction zone and heated up to 
1200 °C. From now on the material starts to liquefy, 
slag is formed and the oxidic burden is finally reduced 

to metallic iron and subsequently melts. As a result the burden is compressed by the weight of 
the upper burden material and without the intermediate coke layers the gas flow would no 
longer be ensured. At the final stages the molten iron droplets pass the liquid slag and are 
refined in terms of desulphurization before finally being collected in the hearth where the 
molten iron is periodically tapped.  

Since coke is a costly fuel for the blast furnace operation, a lot of measures have been 
implemented in recent decades [35–38] aimed at decreasing the coke rate by adding alternative 
fuels. In particular the injection of (hydro-) carbon carriers such as pulverized coal (PCI), heavy 
oil, natural gas and waste plastics through the tuyeres has been proofed as a suitable method for 
decreasing the need for coke. The injection of waste plastics has the added benefit of resulting in 
an increased H2-content of the reducing gas which is assumed to enhance the reduction      
rate [39–43]. Consequently, with the reduction of coke as a part of the burden material, the 
requirements for the ferrous charged material increase. Particularly the mechanical stability is 
in demand because of the lack of coke as a support column but also the reducibility and 
softening/dripping and melting properties have to be adapted to these new challenges.  

2.1.2 Direct Reduction – The MIDREX®-Process 

The term direct reduction refers to the reduction of iron ores to metallic iron, bypassing the 
molten phase [3,9–13]. The ore is reduced in its solid state by means of various gaseous reducing 
agents. The iron ore carriers used as a raw material can be either lump or fine and the variety of 
different processes that made it to industrial scale installation is remarkable (c.f. Figure 2-2). 
Nevertheless, the product of all those processes is direct reduced iron (DRI) with as high a 
metallization degree as possible, of usually between 85 to 97 %. The DRI can then further be 
processed to hot briquetted iron (HBI) by briquetting the sponge iron in its hot condition. The 
main application for both products, DRI and HBI, is the use as scrap substitution within electric 

Figure 2-1: Schematic picture of a 
blast furnace [16] 
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arc furnaces. DRI can also be charged directly from the reduction aggregate into the subsequent 
steelmaking facility in the hot condition, though this implicates proximity of both plants. The 
reduction generally takes place at temperatures significantly lower than within the blast 
furnace, usually at a maximum temperature of about 1000 °C, to ensure that no softening, 
dipping or melting of the burden material occurs.  

 

 

Figure 2-2: Classification of direct reduction processes [11]  

The main driving force of the development of direct reduction processes is to avoid complex 
burden material preparation steps as are necessary for the blast furnace, particularly in terms of 
the carbon carrier. In addition, it is intended to have smaller and more flexible production units 
and to use regionally available raw materials by simultaneously producing a product of 
premium quality and decreasing environmental pollution and CO2-emissions. Figure 2-2 gives a 
general overview of the prevailing direct reduction technologies; it illustrates the variety of 
different applied raw materials, reduction furnace geometries, energy sources and the 
possibilities of combining them, which are illustrated.  

Since the MIDREX®-process is the most applied direct reduction process with a production 
capacity of 60.4 % of the worldwide produced 74.0 million tons of DRI [1,2], the production 
procedure and the three different operation units are outlined in Figure 2-3.  
The MIDREX®-process is inherently simple, involving three major operation units: gas 
preheating, natural gas reforming, and iron ore reduction. Over the years, many other direct 
reduction process concepts have been devised with theoretically lower energy or iron ore 
consumptions and reduced operating and capital costs, but they proved too complex or 
expensive in practice, or just did not work. The simplicity of the MIDREX®-process is possible 
because it uses natural gas as a very clean fuel and agglomerated iron ore, which makes the 
processing relatively easy if the raw materials requirements are fulfilled.  

The operation mode can be summarized as follows. The reduction shaft is charged at the 
upper part with the raw materials from the bunker system. During its descent through the shaft, 
the material is reduced in counter current flow with a reducing gas that is produced via catalytic 
natural gas reforming. After the reforming process the gas consists of 95 % H2 + CO with a H2/CO 
ratio of 1.5-1.6 and is introduced to the shaft at a temperature of 800 to 900 °C. The operational 
pressure of the shaft furnace is about 1.5 barabs. A part of the reducing gas leaving the top of the 
shaft furnace is mixed with natural gas and this gas mixture is fed via the heat recovery system 
to the catalytic gas reformer [10,31]. 

Generally speaking, a packed bed reactor with counter-current reactant flows is one of the 
most efficient means of processing materials. There are two primary reasons: since the reactor 
(shaft furnace) is filled completely with iron oxide, the volumetric productivity is very high. 
Additionally, a moving packed bed ensures that each particle of iron oxide experiences the same 
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temperature profile, gas composition and residence time. But it is the same reason - the filling of 
the shaft furnace without any lump coal as a support column - which requires a very high 
mechanical stability and a narrow sized grain size distribution in order to guarantee a proper 
gas flow through the burden.  

However, there is also a great deal of flexibility in sources of reductant and MIDREX®-plants can 
be designed to operate with hydrogen/carbon monoxide ratios of 0.5/1 up to 3.5/1 whereas 
most MIDREX®-plants use standard natural gas processed in the reformer to create a syngas 
with a ratio of 1.5/1.  

 

 

 

 

 

 

 

 

 

 
 

For the sake of completeness, it is necessary to mention the second most common process, the 
HYL/Energion process. The HYL/Energion process is to some extent similar to the MIDREX®-
process with the main differences of a higher operational pressure (5-8 bar) and an even higher 
hydrogen content of the reducing gas (typically 72 %). In 2012 about 16 % of the worldwide DRI 
production is produced with this process [2].  

2.1.3 Smelting Reduction – The COREX®-Process  

An characteristic all smelting reduction processes have in common is that they produce hot 
metal by gasification of coal as an energy source and reducing agent with the superordinate aim 
of “coke-free” hot metal production [3,5,7,9–12]. Smelting reduction can use coal directly and 
operate at high temperatures with liquid phase reactions. Though smelting reduction aggregates 
usually consist of two stages, a reduction and a smelting part, to some extent smelting reduction 
aggregates can be compared to a blast furnace process, primarily due to a comparability of the 
hot metal produced. However, the pre-reduction stage of a smelting reduction process can be 
seen as an integrated direct reduction process and therefore resembles other direct reduction 
processes. As shown in Figure 2-4, the diversity of different process routes almost as great as for 
direct reduction plants, a wide range of different combinations of (pre-) reduction stages and 
smelting stages is possible.  

Another demand, besides creating a coke-free process, is to produce hot metal in smaller scale 
capacities and aggregates and hence to be more flexible. But at the same time there are attempts 
towards up-scaling facilities for lower investment costs by increasing their capacity.  

 

 

Figure 2-3: Flow sheet of the MIDREX®-process [31] 



PROCESSING OF LUMP FERROUS MATERIALS 

10 

 

Figure 2-4: Classification of smelting reduction process routes [11] 

Besides the FINEX®-process with currently two operating plants, the COREX®-process is the 
predominant industrial scale applied smelting reduction facility, since there are seven operating 
plants worldwide. In contrary to most smelting reduction operation units, COREX®-plants are 
operated with lump charge; reducing gas is generated by gasifying lump coal and some coke 

(which may be of a quality of inferior to coking coal 
grade) with oxygen in the melter gasifier. The CO-
rich gas generated in the melter gasifier is used for 
producing DRI from the ferrous burden in the shaft 
furnace arranged above, comparable to a MIDREX® 
or HYL/Energion process. After the pre-reduction in 
the shaft part, the generated direct reduced iron 
moves downwards to the melter gasifier. There the 
energy needed to complete the reduction of the DRI 
and to produce hot metal and slag is provided by 
partial combustion of the coal. The liquid products 
are tapped periodically.  

In Figure 2-5 the schematic flow sheet of a COREX®-
plant is given. In contrary to the MIDREX® shaft 
furnace, the reducing gas from the melter gasifier 
has smaller amounts of hydrogen (around 20 %), the 
temperature is lower at 800-850 °C and the 
operation pressure is atmospheric. Also the 
metallization degree of the DRI is distinctly lower at 
about 75 % (= reduction degree of 80 %) due to the 
subsequent melting within the same process.  

Notwithstanding all the advantageous aspects of 
alternative routes of ironmaking investigators 
reached the conclusion that neither one-stage nor 
two-stage processes can compete with the blast 

furnace on the amount of carbon consumption per ton of iron produced. Even under ideal 
conditions, carbon consumption in the two-stage process cannot be any lower that 650 kg/ton 
hot metal (operation data 900-1000 kg/ton) [10]. That value is still significantly higher than for 
blast-furnace with 550 kg/ton [44]. However, this statement has to be considered cautiously 
because on additional consideration of alternative carbon carriers the difference in carbon 
consumption is comparable between BF smelting reduction.   

On comparing the total operating costs for BF and COREX® according to [10] it is given that 
$ 132.6 per ton of hot metal for BF and $ 128.04 for a COREX® plant (numbers date from 1995). 

Figure 2-5: Schematic picture of the 
COREX®-process [9] 
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Once again, this statement has to be looked at critically since the majority of the costs strongly 
depend on the raw material costs. To this end, lower operational costs always have to be 
considered in combination with raw material costs.  

All these facts; the energy consumption and the significantly higher demands on burden 
material concerning chemical, mechanical and metallurgical properties indicate that still all the 
alternative process routes remain an alternative choice for special local applications but cannot 
fully replace the blast furnace at this moment or in the near future. Investigations need to be 
continued with respect to all the possible process routes for further enhancing the DRI as well as 
hot metal production towards a more cost and energy saving operation.   

2.2 General Material Requirements for Lumpy Ferrous Burden  

All continuous or semi-continuous running processes rely on the availability of a raw material 
with uniform and homogeneous characteristics. Whatever parameter is considered; mechanical 
stability, grain size distribution, chemical composition or reducibility properties, the specified 
values have to be met within some range for guaranteeing a constant product quality. This 
circumstance can be solved starting with the ore deposit and the subsequent beneficiation and 
agglomeration process by appropriately mixing and blending the different components.  
In Figure 2-6 different aspects of burden material distribution are given. In figure (a) the 

development of the burden distribution of blast furnace operation over the last 45 years is given, 
as an average value for Germany. It can be seen that the usage of pellets as a blast furnace feed 
material started between 1965 and 1975 and further increased until 1995, whereas sinter 
production stayed almost constant at 60 % over the whole decade.  
 

 

Figure 2-6: Different aspects of ferrous burden distribution [1,2,44,46]  

This indicates that due to the lack of availability of appropriate lump iron ores, especially for 
Germany as a representative example for the rest of Europe, agglomeration processes are of 
significant importance. On the other hand, the extraordinary regional difference in the use of 
burden material can be seen in figure (b). The Austrian burden material distribution is in good 
accordance to the European average; the use of pellets makes up about 20 %. Due to the special 
situation of the Austrian steel producers regarding the Erzberg ore deposit as a main source of 
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ferrous burden material, in particular the usage of sinter made from the domestic sideritic ore is 
up to 60 % at some blast furnaces. Otherwise the average of sinter is about 40 % [45]. 

For direct reduction facilities the burden material consists only of pellets and lump ore (c), for 
a MIDREX®-facility the portion of lump ore is about 30 % whereas for COREX®-facilities the 
portion depends on the capacity, from 60 % ore for 1 million tons per year capacity facility 
decreasing to 40 % ore for a facility with a capacity bigger than 1.5 million tons per year [45]. 

The three examples given for the production period of 2006 in Figure 2-6 (b) indicate that in 
contrast to the use of 60 % of sinter in Europe, USA /Canadás portion is only 10 %. There 
pellets are the predominant burden material due to their large scale and accordingly modern 
pellet plants [47]. The Brazilian, Korean and Japanese statistical average in turn shows a usage of 
sinter by a three quarter majority and only 10 % pellets were used in 2006.  

However, there are certain demands and criteria that have to be fulfilled for any burden 
material, independently of the process. Especially in terms of an economical and cost reducing 
operation, the total iron content can never be high enough whereas the amount of accompanying 
elements and gangue material can never be too low. But by considering the different operation 
routes and reduction facility designs, there are differences concerning the optimal raw material. 
Particularly between the blast furnace and direct reduction aggregates, due to the great 
differences in operation mode, there are differences in raw material demands. 

Since the blast furnace is a counter current gas-solid reactor in which the solid charge 
material moves downwards while the hot reducing gas flows upwards, the best possible contact 
between the solids and the reducing gas is obtained with a most permeable burden, due to 
kinetic reasons [48,49]. This means not only a high rate of gas flow but also a uniform gas flow 
distribution without any channelling of the gas. Thereby the blast furnace coke rate can be 
decreased by increasing reduction rate. In order to prevent channelling effects and guarantee a 
uniform gas flow, the materiaĺs size and the ability to retain this size despite the mechanical 
stresses and strains of both, hot and cold conditions, are of outstanding significance. 
Furthermore the ability to release the chemically bound oxygen quite easily, hence a good 
reducibility, is required for a cost optimized operation.  

The leading direct and smelting reduction processes MIDREX® and COREX® also consist of 
shaft furnaces which rely on the counter current gas-solid contact, so the principles of restricted 
burden sizing are similar to that of the blast furnace. However, the fact that the ferrous burden 
material is the only solid material in these shaft furnaces gives even more weight to the 
mechanical materials characteristics. Furthermore, the subsequent melting within the electric 
furnace of the produced DRI and the use as a scrap substituent without any refining by slag, the 
requirements concerning the portion of gangue material is very restricted. Due to the reduction 
in the solid phase, and hence the absence of slag as a collector of the gangue and accompanying 
elements as in the blast furnace process, all the elements and oxides remain within the sponge 
iron and are further transported to the next processing stages.  

From this description, the three major property categories can be derived for a proper 
characterization of ferrous burden material. First, the material has to meet chemical 
requirements concerning iron content, gangue amount and concomitant elements. If the ore’s 
natural state does not meet those requirements for acceptable chemistry, it has to be upgraded 
by concentration processes. The mechanical properties comprise not only the material’s grain 
size distribution but also the ability to maintain a given grain size during the transport and 
charging processes. At this point, the mechanical and physical properties refer to room 
temperature conditions. Last but not least the metallurgical properties have to be considered. As 
a consequence of the desirably low energy consumption that is needed to release the oxygen, the 
reducibility properties are of specific interest. Also some negative aspects that occur during the 
heating and reducing processes, namely degradation, swelling and sticking, are defined as part 
of the metallurgical properties.   
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The individual description of these three aspects will give an idea about the fact that there will 
never be any burden material that can fulfil all the requirements to a perfect extent. There is 
only the possibility of being within a certain range and finding a compromise solution for the 
overall term quality. 

It has been noted, that all these requirements are generally valid for selling those burden 
materials on the world market. In special cases, for example when an ore deposit is located in 
close proximity to the steel plant, special and reasonable solutions can and will be found. As an 
example, the sideritic iron ore from the Erzberg deposit in Austria can never fulfil all (in fact 
hardly any) of the subsequent enumerated properties and can never keep up with globally 
traded products. Nevertheless the short and therefore cheap delivery distances and the special 
way of operating the blast furnace process at the nearby blast furnace redress those negative 
aspects and even constitute a selective advantage. 

2.2.1 Chemical Properties 

The first and most important requirement concerning the chemical properties is the iron 
content of the burden material. In order to ensure a most economical and cost efficient 
operation mode, the iron content is required to be high. In the case of ores and pellets: at least 
60 % of total iron (Fetot) for blast furnace use, at a maximum possible iron content of 72 % for 
pure hematite. However, some literatures or specification sheets [50], stipulate 62 % or even 
64 % as a minimum value. For the use in direct reduction facilities the iron content has to be 
even higher (65 % [59] or 67 % [10]). If lump iron ore has a lower iron concentration it cannot be 
used directly and has to be beneficiated and pre-treated to enrich the iron content. Concerning 
iron content the demands of the different (direct reduction) process routes are not much 
different; the more iron inside the material, the less energy is needed for melting, treating 
and/or separating the non-iron portions.  

As a consequence of lower iron content, the amount of accompanying material increases, 
hence more and more slag is formed and gangue material is within the iron carrier. It is 
generally intended to keep this amount as low as possible, however for the blast furnace and 
smelting reduction processes slag and gangue contents are not as restricted as for direct 
reduction facilities. It can even be said that for direct reduction in a number of ways the 
chemistry is the key consideration [47].  

Generally speaking, for all materials as well as processes, the free moisture content and the 
loss on ignition (LOI) as CO2 and H2O (bonded to the oxide of certain ore types) are undesirable 
in the feed material because of the extra heat load and increased volume of gas to be handled.  

Within the direct reduction facility the primary process is the removal of oxygen without the 
presence of any molten or liquid phase. By comparison, whenever there is molten slag, the slag 
formed functions as a collector for a wide range of accompanying elements, oxides and minerals. 
With the absence of slag all the remaining constitutes stay with the direct reduced iron product 
but are even increased in concentration due to the removal of oxygen. The nature and level 
directly affects the process performance and economics of the subsequent electric furnace 
process or any other process in which the DRI is used.  

Two broadly used parameters that reflect the characteristics of the burden material are the 
total gangue amount and the basicity value for (oxidic) slag components (B4) and can be 
understood as the sum of the oxidic parts and the ratio of basic oxides to acidic oxides 
respectively.  

                                  

and 
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whereby all minerals are understood as wt.-% known from the chemical analysis. As the 
chemical requirements for the BF and SR processes are more relaxed, the gangue content is 
restricted to a maximum content of 4 to max. 6 % for lump ores [13,47]. Further contents of up to 
7 % are deemed to be acceptable [10]. The plurality of ores has acidic gangue (high SiO2 contents) 
and needs to be fluxed during the different processes to attain the desired basicity of the slag. 
This, as the more acidic gangue material requires more basic flux material, is another reason for 
desirable low gangue contents.  

Regarding pellets there is a distinction between acidic and basic pellets. For acidic pellets 
(basicity value of 0.1-0.4) the silica content is typically between 4-6 %, basic pellets (basicity 
around 0.9) have lower SiO2 contents as this is beneficial in minimizing the total flux. For direct 
reduction the acid gangue, namely SiO2 and Al2O3, should be as low as possible, preferably below 
2 %, acceptable up to 3 %. The basic oxide (namely CaO and MgO) limit is below 3 %. In some 
cases it can partly displace the purchased flux in steelmaking.  

Another criterion is the content of phosphorus and sulphur. As well as phosphorus, sulphur is 
generally known as a steel parasite and therefore, the contents of both should be as low as 
possible. Besides other drawbacks, sulphur can lead to red shortness during hot rolling or 
decreases the weldability of the steel product. In contrast to that, phosphorus increases the 
tendency of hot tearing and decreases the cold ductility. To avoid the very costly intensive step 
of desulphurization and dephosphorization by adding lime, care must be taken regarding the 
raw materials. In case of process routes using natural gas like MIDREX®, attention has to be 
given to the natural gas. In cases of higher sulphur amounts it has to be desulfurized. For direct 
reduction the limits are set preferably below 0.030 % for phosphorus and lower than 0.008 % 
for sulphur [10]. Further the alkali contents have to be considered as they cause swelling and 
degradation during the reduction process, so their content has to be as low as possible.  

As one speciality of the COREX®-process it can be noted that it has a bleed of alkalis in the 
smelting off gas. This features the COREX®-process over the BF for consumption of high-alkali 
iron ores [10]. 

The chemistry for sinters as an artificially created agglomerate/product distinctly differs from 
the pellet and ore composition. Sinter is not a product that is sold on the world’s market and 
those steel works using sinter for their blast furnace almost always have their own sinter plant 
onsite. In principle this enables the production of the optimum sinter that is required for each 
blast furnace, which, depending on a variety of parameters, can differ in a wide range. 
Concerning basicity, fuel reactant and the amount and composition of flux or slag formers the 
sintering plants operational parameters can be adapted regarding the furnace operation mode 
as well as the raw material availability. This makes a general description of sinter chemistry 
very difficult. Additionally there is the fact that at the sinter plant there is the possibility of using 
waste material and different portions of sieved fines as returned material; the sinter quality is 
not constant, and the predominant means of chemically characterizing sinter is to characterize 
the used raw materials. Since the main raw material of a sinter plant are iron ore fines with a 
size range of 0-10 mm (whereby 70 % > 0.2 mm) the requirements for these iron ore fines can 
be compared to the requirements of coarse iron ores regarding the Fe-content, LOI, sulphur, 
phosphorous and alkali contents. The final sinter as a burden material for the blast furnace 
typically has up to 25 % of gangue and slag formers, a basicity range between 0.5-3.5 and a FeO 
content of 5- 15 %. Other literature restricts FeO at a maximum of 6 % [47]. 
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2.2.2 Physical and Mechanical Properties  

The physical properties of iron ore feed material include size, size distribution, mechanical 
strength and degradation. The disintegration tendency, hence the tendency towards 
disintegration during the early stages of reduction, can either be seen as a physical property or 
as a metallurgical one, but in the majority of cases it is defined as a metallurgical property and 
therefore will be described later on. Physical property requirements differ depending on the 
reactor type, which can be shaft-like furnaces, rotary kilns or rotary hearths. All these (c.f. Table 
1-I) use lump burden material. Nevertheless the description of the material demands within this 
work is considered to refer to the predominant facilities as BF, MIDREX® and COREX®.  

It is of extraordinary interest that the burden material can provide adequate bed permeability 
for the reducing gases to flow upwards. Strength is required to support the weight of the bed 
and since the ferrous burden is the only solid material present within the direct or smelting 
reduction shaft furnace, the physical properties are economically important.  

The performance of the shaft furnace, as well as the shaft part of the blast furnace, is adversely 
affected by increased amount of fines in two important ways: increased pressure resistance and 
impaired contact of the gaseous reductant and the solid burden. The latter will decrease the 
effective utilization of the reducing agent and the increased pressure will limit the maximum 
flow of the gas. The combined effect of these two will limit productivity and increase the 
reducing agent amount. In order to prevent those effects the grain size distribution has to be 
within a narrow range and very uniformly distributed. For the blast furnace process for lump 
ores, a minimum of size of 6 mm and a maximum of 10 % of material > 25 (or 30)  mm is 
assumed to be the optimum for good burden permeability [10,47]. For the direct reduction in shaft 
furnaces the optimum grain size distribution is similar, within a range of a minimum of 90 % of 
material between > 6.3 and < 40 mm. Pellet size is even more important as excessively large 
pellets are more difficult to heat and reduce than lump ore [47]. Therefore the size range is 
distinctly smaller, from a minimum 85% (preferably 95 %) of 9 – 16 mm for MIDREX®-facilities 
and minimum 85 % of 10-16 mm for others. Also the fines amount is very restricted to a 
maximum 5 % of fines < 5 mm.  

The term physical strength can be assumed as it determines its size and shape as it collides 
and abrades against other solids prior to the reduction process, hence the ability of keeping to 
the initial and required grain size. Starting from the ore deposit, the material has to withstand 
numerous dropping and falling processes. As a measure value for the materiaĺs cold strength 
and therefore the ability to withstand all those mechanical stresses and strains, the tumbler 
strength and the compression strength are the values predominantly considered. The tumble 
index gives the portion of mass of material > 6.3 mm after the tumbling procedure as well as the 
portion of mass that is < 0.5 mm. For the generated fines, hence the portion -0.5 mm, a minimum 
requirement for direct reduction shaft furnace is given for pellets of 6 % [10] or 5 % [47] 
respectively. For lump ore 9 % of fines are named as sufficient and for sinter samples 70-80 % of 
material +6.3 mm after tumbling [10].  

The cold compression strength, valid only for pellets, refers to a test where one single pellet is 
compressed between two even plates and the weight or force that is needed to crack the pellet is 
called cold compression strength and is given in either in N or kg. For direct reduction facilities 
the minimum value is 150 kg for MIDREX® but preferably above 250 kg. For BF pellets the 
average pellet should sustain 2500 N (= 256 kg) [10,47] whereas other literature deems 1780 N to 
be sufficient [51]. 
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2.2.3 Metallurgical Properties 

In order to improve plant operation results in terms of productivity and efficiency and, 
especially for direct reduction facilities, the ability to gain a sufficient metallization degree, the 
reducibility properties are one key factor for material characterization. The term metallurgical 
properties not only describes the material’s ability to release oxygen, hence the reducibility 
index, but further includes other effects that occur during the reduction process. The tendency of 
degradation during the first stages of reduction in particular, the swelling behaviour of pellets or 
the sticking tendency belong to the category of metallurgical properties.  

The lab scale tests for the reducibility index (RI) [52] as well as the reduction disintegration 
index (RDI) [53,54] are two broadly used tests when considering requirements for shaft furnaces. 
In order to do so, the tests are of static nature and are performed in a vertical reduction facility. 
Therefore a sample portion is heated up to a certain temperature (varies depending on the test) 
and at that point a reducing gas is purged through the sample for a certain time. During the 
testing procedure the weight loss is measured continuously and the value for RI can be 
calculated. Additionally, after a tumbling procedure, the RDI can be determined. It must be noted 
that these specially marked values are only one of several possible ways to describe the 
reducibility properties. Another common approach to describe the behaviour especially 
concerning the requirements of rotary kilns, is the so called “Linder-Test”. In this case the 
reduction vessel comprises of a rotating horizontal tube and hence the test is a dynamic 
one [55,56].   

Generally, the reducibility (R) is described by the ratio of the mass of the initial oxygen within 
the sample potion (mO,org) to the mass of the removed oxygen (mO,rem) and is given in % 
according to  

 [ ] 
       [ ]

       [ ]
          

 The reducibility (R80 according to ISO 4695) itself is expressed by the time that is needed for 
the material to gain a reduction degree of 80 %. Another, even more common value for 
describing the reducibility properties is the reduction rate or reducibility index, (dR/dt)40 given 
in [%/min] and calculated with 

    (
  

  
)
  
 
    

       
 

whereby the t60 and t30 describe the time that is needed to gain a reduction degree of 60 % 
and 30 % respectively. What all reducibility indices have in common is the aim of reaching some 
distinct reduction degree (or metallization degree) within the shortest possible period of time. 
So, if there is any time value specified (e.g. R80 given in minutes), the best reducible material has 
the lowest value. For any given reduction rate (RI given in %/min) the value is preferably high, 
so a maximum change in reduction degree within a short period of time. For blast furnace 
burden, the reduction rate is to be within 1.4-1.6 %/min for sinter and at a minimum of 0.8 for 
pellets [57,47]. For DR processes these values are higher meaning that the material requirements 
for DR are distinctly higher. Another important parameter, in particular for direct reduction 
processes, is the metallization degree, which refers to the ratio of metallic iron to total iron after 
reduction for a certain time. This metallization degree is preferably at least 90 %, whereby 
depending on the test, the testing parameters vary.  

The low temperature disintegration tendency (RDI) is a phenomenon occurring at the earlier 
stages of reduction due to the volumetric increase of the material during the transformation 
from hematite to magnetite. Therefore the test takes place at 500 and 550 °C respectively and 
after the tumbling procedures the material is sieved and the different values can be calculated. 
With the given equations, the disintegration tendency (RDI+6.3) and the abrasion tendency     
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(RDI-0.5) can be calculated, whereby m0 is the initial mass prior to tumbling; m1, m2, m3 are the 
mass portions of the +6.3, +3.15 and +0.5 mm fractions, respectively. Hence, RDI+6.3 refers to the 
percentage of mass, that remains larger than 6.3 mm and RDI-0.5 refers to the percentage of mass 
of the sample portion that is smaller than 0.5 mm after tumbling.  

        
  
  
     [ ]                                      

             

  
 

The low temperature disintegration phenomenon is associated with sinter in particular but 
some pellet brands also tend to disintegrate. For direct reduction plants a disintegration 
tendency of > 88 % and an abrasion index of < 10 % are required. Although the range of 
different (standardized) testing procedures is broad, for the interpretation of most mechanical 
testing results and parameters the following guideline is valid. Whenever there is “+” in front of 
the numerical value (e.g. RDI+6.3), it can be understood as the mass of the sample portion 
retained on the (in this case 6.3 mm) sieve in proportion to the initial sample mass. This value is 
preferably high, in contrast to a minus “-“. This indicates that the higher the value, the more 
mass portion has disintegrated to the smaller grain size (and therefore more fines are created) 
and this value should be as low as possible. For testing under dynamic conditions (Linder-Test) 
the values are named LTD instead of RDI.  

For the sake of completeness, it should be mentioned two more phenomena that possibly 
occur during reduction: swelling and sticking. Swelling is especially associated with pellets 
(although all other materials do swell to some extent) and describes a volumetric expansion 
upon heating. An increase in volume of < 10 % is favourable; values of > 20 % should be 
avoided [57,47]. This phenomenon is known to be promoted by alkalis [10]. Some pellets tend 
towards “catastrophic swelling” which is generally assumed from a volume increase of < 25 %, 
but can gain up to 732 % (especially associated with high sulphur contents) [58]. Sticking, in 
contrast to swelling, mainly occurs during the reduction of fine ores. Sticking describes the 
agglutination, or also agglomeration of reduced iron ore particles above 610 °C [13]. Within 
fluidized beds this can be harmful because of channelling effects or even the breakdown of the 
fluidized bed.  

In Table 2-I the requirements for chemical, physical and metallurgical properties are 
summarized subdivided into the three different process routes. 
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Table 2-I: Guidelines for the requirements of different burden material for different process routes 

 

Poveromo has noted that “a good agglomerate for the blast furnace should have an iron content 
of 60 % or more, a minimum of undesirable constituents, a minimum of material less than 6 mm in 
size, and a minimum of material larger than 25 mm. The agglomerate should be strong enough to 
withstand degradation during stockpiling, handling and transportation to the furnace so as to 
arrive at the furnace skip containing a minimum 85-95 % of material with a size greater than 
6 mm. In addition the agglomerate must be able to withstand high temperature and the 
degradation forces within the furnace without slumping or decrepitating. The agglomerate should 
be reasonably reducible so it can reduce at a satisfactory high rate in the blast furnace” [47]. 

  

  

 Blast 
Furnace 

DR-Grade  
(MIXDREX®- 
specification) 

SR-Grade 
(COREX®-  
specification) 

Parameter Unit Chemical Properties 

Iron content [%]  
Ore > 60 [59], > 64 [50] 
Pellets > 60 [59], > 62 [50] 

Ore/Pellets > 65 [59], 67 [10] 
 Ore/Pellets > 60 (min. 55), > 64 [60] 

Sinter > 50  (min. 45) [59] 

Gangue/slag 
content 

[%] 
 Ore and pellets 4 – 7  

Sinter (FeO) < 6 
Ore and Pellets < 5 [10] Ore and Pellets 4 – 7, <5  [60]  

S and P content [%] 
 P < 0.030 and S < 0.008; S < 0.01 [10] P < 0.05, S < 0.01 [59]  

 
Pellets < 0.026 (SO4), Ore < 0.04 (SO4) [50] 
Pellets < 0.06 (P2O5), Ore < 0.04 (P2O5) [50] 

  

Alkalis [%]  as low as possible; < 0.2 Na2O+K2O [59] < 0.25 [50] 

Moisture/LOI [%]  as low as possible  

 
Physical Properties 

Grain size 
distribution 

[mm] 
Ore        
Pellets   
Sinter     

  6-30[47], 6.3-31.5 (85%)[50]  
  6.3-30[47]; 8-12.5 (80%)[57]; 8-15 (85%) [50] 
  20-30[47]; 10-50 (80%) [57]; Fines < 2 %[61] 

10 – 30 (70%)[47]  
9 – 16 (85%) Fines < 5% < 5   

----- 

6 – 30 (70%) [47]; 10-25 [59]  

6 – 30 (85%)[47]; 8-16 [59] 

6 – 45 [47]; 10-32 (< 50%) [59] 

Tumbling Index 
(ISO 3271) 

[%] 
Ore 
Pellets 
Sinter 

+ 6.3 mm 
 > 80 [57] 
  > 95  [57,61] 
 70-80 [57,61] 

 85 [10] 
 92 [10] 
---- 

85 – 95 [47]  
92 – 98 [47]; > 95 [60] 

---- 

[%] 
Ore 
Pellets 
Sinter 

- 0.5 mm [57] 
 < 10 

 < 5, < 5 [61]  
--- 

 < 10        
< 6 
--- 

 5 – 10         
1 – 5    
--- 

Cold 
compression 
strength 

[kg] 

 
Only  
 Pellets  

> 256 [10,57]; > 200 [50] > 150 [10,57] > 250 [10,57]; >225 [60] 

 
Metallurgical Properties 

Reducibility 
Index (RI)  

[%/
min] 

 
Ore 
Pellets 
Sinter:  

  ISO               > 1.0 [10,57] 
4695  > 0.8 – 1.2 [10,57], > 0.5 [61] 
            > 1.4 – 1.6 [10,57], > 0.7 [61] 

   
  ISO              Ore: > 0.40 [59] 
12258       Pellets > 0.42 [59,60] 

--- 

RDI+6.3 
(ISO 4696-2) 

[%] 
Ore 
Pellets 
Sinter 

+6.3  
mm 

 
>70 [10]  

LDT+6.3 > 60 [57], > 80 [61] 
--- 

 

> 70  [10] 
> 88  [10] 
--- 

> 80  
> 90  [59,60] 
> 85  

RDI-0.5/LDT-0.5 
(ISO 4696-2 
/LinderTest) 

[%] 
Ore 
Pellets 
Sinter 

-0.5 
mm 

LDT-0.5 < 15 [57] 
< 10 [61] 
--- 

  < 10       
 < 10     
--- 

--- 
< 4  [60]  
--- 

RDI-3.15 
(ISO 4696-1) 

[%]  
-3.5 
mm 

Sinter < 33  [47], < 20 [61]   



 



FUNDAMENTALS	OF	IRON	OXIDES	AND	AGGLOMERATION	PROCESSES	

	 	19	 	

	

	

3 Fundamentals	 of	 Iron	 Oxides	 and	
Agglomeration	Processes		

Iron	 ore	 is	 the	 most	 important	 raw	 material	 required	 for	 iron	 and	steel	making	in	terms	of	
tonnage	 and	 economical	 value.	 Due	 to	 the	 increasing	 demand	 worldwide	 for	 iron	 and	 steel	
products	 and	 therefore	 the	 rising	 demand	 on	 iron	 carrying	 raw	 materials,	 the	 depletion	 of	
natural	raw	materials	and	fuel	is	becoming	an	increasingly	important	concern	that	is	even	partly	
impeding	the	growth	of	metallurgy.	The	availability	of	lump	iron	 carrying	 raw	 materials,	
whether	 of	 natural	 origin	 or	 artificially	 agglomerated,	 of	 sufficient	quality	is	becoming	an	
increasingly	important	aspect	of	ironmaking.	Moreover,	the	fact	that	the	process	throughput	is	
continuously	increasing	by	means	of	constant	improvement	of	the	processes	operation,	further	
challenges	a	raw	material’s	performance	in	every	possible	way.		

Generally	speaking,	the	term	iron	ore	refers	to	that	part	of	the	total	iron	in	the	earth́s	crust	
that	is	available	to	industry,	both	economically	and	spatially.	Every	iron	ore	deposit	consists	of	a	
variety	 of	 different	 iron	 carrying	 materials	 as	 well	 as	 other	 oxidic,	 sulphidic	 or	 carbonatic	
compounds.	In	addition,	the	mineralogical	and	petrographic	structure	of	the	minerals	can	differ	
considerably.		

Due	 in	 particular	 to	 the	 specific	 demands	 on	 the	 raw	 materials	for	 the	 production	 of	 direct	
reduced	iron,	and	also	to	the	limited	availability	of	naturally	occurring	high	grade	ores	that	can	
directly	be	used	in	a	reduction	facility,	diverse	beneficiation	and	pre‐treatment	steps	have	to	be	
undertaken.		

Nevertheless,	 all	 iron	 carriers	 used	 are	 comprised	 of	 the	 same	few	 iron	 bearing	 minerals.	
Every	 natural	 ore	 is	 a	 compound	 of	 these	 iron	 minerals,	 but	 of	different	 grain	 sizes,	
morphological	 appearance	 and	 portion,	 and	 of	 a	 variety	 of	 other	 gangue	 minerals.	 In	 order	 to	
characterize	the	different	lump	burden	 materials	regarding	a	correlation	 between	
microstructure	 and	 reducibility	 behaviour,	 the	 different	 potentially	 appearing	 phases	 are	
summarized	 as	 well	 as	 the	 agglomeration	 step	 as	 a	 pre‐treatment	 and	 origin	 of	 artificially	
generated	slag	phases.		
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3.1 Mining	and	Beneficiation	of	Iron	Minerals	

After	the	discovery	of	an	iron	ore	deposit,	the	first	step	on	a	very	long	road	towards	the	final	
product	hot	metal	is	the	mining	of	the	ore.	The	two	possible	methods	of	mining,	open	pit	mining	
(which	 is	 distinctly	 lower	 in	 mining	 costs	 usually)	 and	 underground	 mining	 are	 described	
elsewhere	[62,63].	 Prior	 to	 the	 beneficiation	 process	 the	 natural	 ore	 can	 be	 graded	 by	 the	
producers	to	meet	furnace	demands	for	particular	uniform	chemical	composition	and	structure.	
Recognition	 of	 the	 importance	 of	 uniformity	 has	 led	 to	 the	 use	of	 elaborate	 ore	 blending	
facilities.		

In	the	next	step	the	iron	containing	ore	is	beneficiated,	mainly	at	 the	 iron	 ore	 deposit.	 “The	
term	beneficiation	in	regard	to	iron	ores	encompasses	all	of	the	methods	used	to	process	ore	to	
improve	its	chemical,	physical	or	metallurgical	characteristics	in	ways	that	will	make	it	more	
desirable	feed	for	ironmaking	furnaces”	[47].		

Thereby	 the	 separation	 of	 the	 iron	 ore	 from	 the	 worthless	 gangue	 material	 or	 possibly	
detrimental	elements	or	minerals	(sulphurous	for	example)	takes	place	by	means	of	numerous	
mechanical	 methods	 including	 crushing,	 screening	 or	 jigging.	 Further	 methods	 using	 different	
physical	 properties	 of	 ore	 and	 gangue	 materials	 like	 magnetic	 separation,	 heavy	 media	
separation	or	spiral	concentration	may	be	used.	The	methods	actually	 applied	 depend	 on	 the	
classification	of	the	iron	ore;	altogether	three	different	categories	are	compatible	for	most	iron	
ores	[47,62–64].		

 High	grade	or	merchant	ores,	for	direct	shipping.	The	iron	content	is	high	enough	(>	60	%	or	
67	%	respectively)	to	be	charged	directly	to	a	blast	furnace	or	another	reduction	facility	and	
require	 only	 crushing	 screening	 and	 blending	 because	 of	 the	 required	size	range	of	6‐
30	mm	and	a	highly	uniform	product.		

 Associated	low	grade	merchant	ores	which	appear	mainly	around	the	high	grade	ores	and	
can	 be	 mined	 concurrently.	 Only	 minor	 upgrading	 by	 washing	 or	 gravity	 separation	
technique	 is	 necessary	 to	 increase	 the	 iron	 content.	 The	 natural	 ore	 forming	 process	
produces	layers	of	relatively	pure	iron	oxides	interbedded	with	partially	decomposed	silica	
rich	layers,	also	called	banded	iron	formation	(BIF).	If	the	silica	layers	have	been	completely	
decomposed,	 the	 ore	 can	 easily	 be	 upgraded	 by	 processing	 techniques	whereas	ores	in	
which	 the	 silica‐rich	 layers	 have	 not	 been	 weathered	 as	 intensively,	 have	 to	 be	 broken	 by	
crushing	and	further	upgraded	by	e.g.	spiral	concentrators.		

 The	under‐laying	iron	formations,	 from	 which	 most	 of	 the	 deposits	 have	 been	 derived;	 a	
hard,	dense,	low	grade	 material	that	 requires	 extensive	 crushing,	 grinding	 and	
concentration	 to	 produce	 an	 acceptable	 concentrate.	 Those	 primary	 ores	 contain	 only	 25‐
35	%	 recoverable	 iron,	 but	 nevertheless	 they	 provide	 almost	 unlimited	 iron	 unit	 reserves.	
To	produce	a	final	product	that	is	uniform	in	chemical	and	physical	properties	blending	of	
the	crude	ore	is	indispensable	in	producing	an	acceptable	concentrate.		

Depending	on	the	actual	situation	of	the	deposit	every	ore	has	quite	 different	 processing	
requirements	and	the	appropriate	beneficiation	steps	have	been	considered	with	care.		

3.2 Characterization	of	Naturally	Occurring	Iron	Bearing	Minerals	

A	 large	 number	 of	 minerals	 contain	 iron;	 however	 only	 a	 few	 are	 used	 commercially	 as	
sources	for	ironmaking.		All	globally	traded	iron	ore	consists	of	various	different	petrographical	
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structures.	 Depending	 on	 the	 geological	 and	 reduction	 history,	every	 ore	 shows	 different	
structural	characteristics	(i.e.	shape	and	size	of	crystals,	specific	surface,	petrographic	structures	
etc,).	The	mineralogy	of	most	commonly	traded	and	used	iron	ores	is	rather	simple	and	can	be	
divided	 into	 hematitic,	 magnetitic,	 limonitic	 or	 sideritic	 ores.	 Nevertheless,	 there	 is	 never	 only	
one	single	phase	present,	usually	there	is	a	mixture	of	the	minerals	 named	 with	 possible	
accompaniments	 of	 i.e.	 kenomagnetite,	 maghemite,	 pyrite,	 ilmenite	 and	 gangue	 minerals	
intergrown	with	the	iron	mineral	[63–65].	

Table	 3‐I	 gives	 an	 overview	 of	 the	 most	 important	 and	 commercially	 used	 iron	 minerals	
including	the	countries	with	the	largest	deposits.				

Table	3‐I:	Excerpt	of	the	various	occurring	iron	minerals	[10,47,64–67]	

Ore	
mineral	

Chemistry	 Acronym	 Type	
Max.	Fe‐
content	

Properties	
Main	
deposits	

Hematite	 Fe2O3	 h	 Oxide	 70	%	
Low	content	of	(acidic)	gangue,	
low	S	and	P	

South	Africa,	
Brazil,	USA,	

Canada,	Australia,	
Ukraine	

Martite	 Fe2O3		 mr	 Oxide	 	
Pseudomorph	of	hematite	after	
magnetite	due	to	oxidation	

as	above	

Magnetite	 Fe3O4	 m	 Oxide	 72.4	%	
Often	associated	with	other	metals,	
lower	reducibility		

Sweden,	Iran,	
China,		

Chile,	Russia	

Limonite	 Fe2O3·3H2O	 l	 Hydroxide	 62.6	%	
Representative	name	for	different	
minerals,	containing	crystal	water	

Australia	

Siderite	 FeCO3	 	 Carbonate	 48.2	%	
Often	accompanied	by	Mn	and	Mg,	
low	iron	content	

Russia,	Austria	

	

Hematite	(h)	has	a	chemical	composition	of	Fe2O3,	corresponding	to	69.94	%	iron	and	30.06	%	
oxygen	(in	its	pure	form).	It	has	a	reddish	appearance	and	is	the	most	important	iron	mineral.	It	
occurs	associated	with	vein	deposits	in	igneous,	metamorphic,	and	sedimentary	rocks	and	as	an	
alteration	product	of	magnetite.		

The	 majority	 of	 hematite	 originated	 through	 recrystallization	 of	 a	 finely	 crystalline	 iron	 oxide	
and/or	hydroxide	mud,	which	was	generated	by	chemical	precipitation	in	the	pre‐cambrian	sea.	
Depending	 on	 the	 overprinting	 conditions	 like	 temperature,	 pressure,	 fluids	 etc.,	 smaller	 or	
larger	crystals	have	been	formed	throughout	the	geological	ages.		

From	 a	 morphological	 point	 of	 view,	 three	 different	 forms	 of	 hematite	 crystals	 can	 be	
distinguished	[62,63,67]:		

 Idiomorphic	crystals	have	defined	crystal	faces	 with	an	angular	shape	are	dense	and	have	
hardly	any	pores	

 Hypidiomorphic	show	crystal	faces	in	some	parts	whereas	
 Xenomorphic	 crystals	 have	 irregular	 surfaces	 only.	 The	 hematite	 is	 intergrown	 with	
neighbouring	crystals	and	usually	includes	more	pores,	resulting	in	a	higher	specific	surface	
area	of	the	ore.		

In	 Figure	 3‐1	 microscopic	 pictures	 of	 typical	 hematitic	 structure	is	given;	it	can	be	seen	that	
hematite	crystals	generally	appear	light	grey.	The	left	picture	shows	a	hematite	particle	with	an	
overall	size	of	10	mm,	part	of	which	is	magnified	in	the	picture	on	the	right.	The	different	crystal	
forms	 can	 be	 clearly	 differentiated,	the	idiomorphic	crystals	in	 the	 middle	 region	 (h2	in	
picture	b)	surrounded	by	xenomorphic	regions	that	make	up	the	prevalent	 part	 of	 the	
grain	(h1).	
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As	the	maximum	content	of	slag	and	binding	phases	is	very	restricted	due	to	the	requirements	
of	the	subsequent	reduction	process	(c.f.	previous	chapter)	the	microstructure	of	pellets	can	be	
compared	to	those	of	natural	ores.	Generally	speaking	the	structure	of	a	pellet	consists	of	fine,	
mostly	hematite	grains	and	is	quite	porous.		

3.4 The	Sintering	Process	and	different	Sinter	Phases	

“Sintering	has	been	referred	to	as	the	art	of	burning	a	fuel	mixed	with	ore	under	controlled	
conditions”	[47].	In	contrast	to	pelletizing,	where	a	green	unbaked	pellet	or	ball	is	formed	and	then	
hardened	by	heating,	during	the	sintering	process	a	porous	clinker	is	formed	and	then	crushed	
and	sieved	to	the	right	size	fraction	needed	for	the	blast	furnace.	

Sintering	is	a	continuous	process,	carried	out	on	a	travelling	grate	that	conveys	a	bed	of	ore	
fines	or	other	finely	divided	iron	bearing	material,	intimately	mixed	with	approximately	5	%	of	a	
finely	divided	fuel	such	as	coke	breeze	or	anthracite.	Due	to	the	ignition	at	the	first	stages	of	the	
sintering	 process	 and	 the	 further	 combustion	 of	 the	 fuel,	 the	 materials	 temperature	
intermittently	rises	up	to	1300‐1480	°C.	This	heat	is	sufficient	to	cause	a	melting	of	the	surface	
of	the	particles	but	no	melting	of	the	whole	particle.	The	fine	ore	particles	are	sintered	together	
into	porous	clinker.	In	contrast	to	that	theoretical	point	of	view,	with	regards	to	sinter	produced	
on	an	industrial	scale,	observations	of	the	microstructure	show	that	distinctly	more	material	is	
melted	during	the	sintering	process.	Often	up	to	80	%	of	the	material	 is	 melted	 and	 the	
formation	of	the	mineral	phases	is	happening	via	crystallization	[7,47,73–75].		

Before	the	sinter	blend	is	fed	to	the	sintering	grate,	the	input	 materials	 have	 to	 be	 properly	
mixed	to	provide	a	uniform,	homogeneous	 bed	 and	 prevent	 compacting	of	the	bed.	Therefore	
bedding	and	blending	operations	are	used	to	premix	different	raw	materials:		

 The	greater	part	of	the	sinter	blend	consists	of	fine	iron	ore	with	a	grain	size	between	of	0‐
10	mm	Whereby	the	aim	is	to	have	80	%	bigger	than	100	µm	and	with	a	mean	diameter	d50	
of	0.7‐0.8	mm.	Too	high	a	portion	of	fines	would	decrease	the	permeability	of	the	bed	
whereas	 too	 coarse	 grains	 decrease	 the	 thermal	 transfer	 between	 solids	 and	 gas.	 Mostly	
hematitic	and	magnetitic	ores	are	used.	When	magnetitic	ores	are	used,	due	to	oxidation	the	
released	heat	can	cause	a	decreased	fuel	rate	[47].		

 About	5	%	recycling	material	(blast	furnace	dusts,	steel	plant	dusts,	mill	scale,…)	is	used	as	
an	iron	carrier.	But	its	usage	is	restricted	due	to	the	high	amount	of	Zn	and	Pb,	and	
additionally	the	oily	and	fatty	scale	causes	damage	to	the	filtering	devices.		

 Depending	 on	 the	 desired	 basicity	 and	 the	 composition	 of	 the	 iron	ore	and	the	gangue	
material	respectively,	the	portion	of	fluxes	and	additives	ranges	between	10‐15	%.	In	most	
cases	 the	 gangue	 material	 is	 of	an	 acidic	 nature	 and	 therefore	dolomite,	 burnt	 lime	 or	
limestone	or	olivine	are	added	as	a	basic	flux	with	a	grain	size	of	<	3	mm.	These	fluxes	cause	
an	increase	in	sintering	performance,	better	reducibility	of	the	sinter,	decrease	in	sintering	
temperature	due	to	a	decrease	in	the	melting	point	and	finally	the	 configuration	 of	 the	
desired	slag	(in	amount	and	basicity)	for	the	blast	furnace.		

 Already	sintered	material	with	a	size	of	<	6.3	mm,	which	is	not	sufficient	for	the	use	in	the	
blast	furnace,	is	mixed	to	the	sinter	blend	as	returned	material	with	a	portion	of	25‐30	%.	
The	 effects	 of	 adding	 sintered	 returned	 material	 can	 be	 enhanced	 nucleation	 for	
crystallization,	 decreasing	 melting	 point,	 enhanced	 reducibility,	and	increase	of	
permeability	and	decreased	fuel	rate.		

 As	fuel	 providing	 the	 energy	 for	 the	 sintering	 processes,	 coke	 breeze	or	 anthracite	 with	 a	
grain	size	of	0‐3	mm	are	added	to	the	blend.	The	content	is	desirably	low	at	about	2‐4	%	and	
the	content	of	volatile	matter	as	well	as	sulphur	and	ash	contents	are	also	restricted.		
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4 Fundamentals	of	Reduction	and	Metallic	Iron	
Formation		

Although	the	variety	of	industrial	scale	processes	with	the	aim	 of	 producing	 either	 direct	
reduced	 iron	 or	 liquid	 hot	 metal	 is	 considerable,	 the	 fundamental	 mechanisms	 of	 reduction	
remain	the	same.	All	the	different	conceivable	processes	regarding	different	reduction	facilities,	
different	composition	of	burden	material	or	different	reducing	agents	have	to	comply	with	the	
same	rules	‐	the	laws	of	nature	‐	in	order	to	make	any	oxygen	release	 from	 the	 oxidic	 ferrous	
burden	material	possible.		

First	of	all	the	thermodynamics	of	the	reduction	reaction	have	to	be	considered.	By	means	of	
thermodynamic	calculations,	any	changes	of	states	can	be	described	quantitively	and	equilibria	
of	chemical	 reactions	can	be	 given.	The	thermodynamic	calculations	define	the	conditions	that	
are	 inevitably	 needed	 for	 any	 reaction	 to	 occur	 regarding	 temperature,	 pressure	 and	
concentration;	hence	these	give	an	idea	whether	or	not	the	reduction	reaction	is	at	all	possible	at	
certain	conditions.		

Nevertheless,	a	thermodynamic	point	of	view	does	not	consider	parameters	like	time,	physical	
properties	or	contact	of	the	reaction	partners	in	any	way.	But	for	a	description	of	the	reaction	as	
it	 happens	 beyond	 any	 equilibrium	 conditions,	 all	 the	 transportation	 mechanisms	 are	 of	
extraordinary	importance	and	have	to	be	taken	into	account.	The	 kinetics	 can	 describe	 the	
reaction	rate	and	hence	the	time	that	is	needed	to	reach	the	desired	 conversion.	 An	 efficient	
production	 of	 metallic	 iron	 from	 iron	 ores	 by	 the	 step‐by‐step	reduction	 of	 the	 bound	 oxygen	
with	 CO	 and	 H2	 as	 reducing	 agents,	 can	 only	 be	 accomplished	 by	 a	 combined	 consideration	 of	
thermodynamic	and	kinetic	aspects	of	the	reduction	reaction.			

In	the	special	case	of	iron	ore	reduction,	 a	 distinction	 between	 two	 different	 possible	
reduction	paths	has	to	made;	the	direct	and	indirect	reduction,	distinguished	from	each	other	by	
the	 physical	 condition	 of	 the	 reducing	 agent	 (either	 solid	 or	 gaseous).	 Depending	 on	 the	
operational	temperature,	pressure	and	concentration,	it	is	obvious	that	the	reduction	of	an	iron	
oxide	 to	 the	 final	 product	 metallic	 iron	 is	 only	 possible	 within	 a	 small	 operational	 slot.	 Within	
this	window	it	is	possible	to	produce	iron	but	still	the	form	and	shape	of	the	metallic	iron	formed	
and	especially	the	time	that	the	reaction	takes	differs	widely.	 Within	 the	 subsequent	 sections,	
the	basics	of	both	thermodynamic	and	kinetic	aspects	will	be	outlined	and	by	describing	the	
different	types	of	metallic	iron	formation,	an	example	of	the	combined	impact	can	be	depicted.			
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4.1 Thermodynamic	Aspects	of	Iron	Oxide	Reduction	

The	most	important	phase	stability	diagram	for	the	reduction	of	iron	oxides	to	metallic	iron	is	
the	Fe‐O	system	at	atmospheric	pressure	as	given	in	Figure	4‐1	[82].	There	the	phase	equilibria	of	
the	different	oxides	(in	both	solid	and	liquid	states)	and	metallic	iron	respectively	can	be	seen,	
depending	on	the	oxygen	content	(in	fact	depending	on	the	partial	pressure	pO2).	For	industrial	
applications	 in	 different	 reduction	 facilities	 the	 equilibrium	lines	 and	 the	 stability	 fields	 of	
magnetite	and	wustite	are	of	the	utmost	importance	[3,7,82–84].	
	

Since	the	reaction	between	metal	and	oxide	can	be	given	as	
	

	↔	 																																																												4 1	
	
and	the	equilibrium	constant	(Kp)	of	this	reaction	can	be	written	as		
	

∙
																																																																4 2	

	
it	can	be	seen	that	Kp,	as	the	driving	force	of	the	reaction,	only	depends	on	the	partial	pressure	
pO2.	It	can	be	noted	that	from	a	thermodynamic	point	of	view,	the	reducibility	of	oxides	or	oxide	
mixtures	is	defined	by	their	oxygen	 partial	 pressure.	 Furthermore	every	oxide	has	its	own	
oxygen	partial	pressure	which	is	dependent	on	the	temperature	and	the	pressure	of	the	external	
system.	To	gain	a	shift	of	the	reaction	(4‐1)	from	the	right	to	the	left	(hence	the	reduction	of	the	
oxide	to	the	element	with	simultaneous	generation	of	gaseous	oxygen)	either	one	component	of	
the	equation	has	to	be	removed	by	keeping	Kp	constant,	or	Kp	must	be	influenced	by	changing	the	
pressure	or	temperature	of	the	system	[15].		

When	thinking	of	the	latter	possibility,	the	change	in	temperature	 and	 pressure	 of	 the	 system,	
with	a	comparative	look	at	the	phase	diagram	in	Figure	4‐1	[82],	the	difficulties	for	an	industrial	
scale	 application	 can	 be	 assumed.	 The	 decomposition	 temperature	 of	 an	 oxide	 at	 atmospheric	
pressure	would	be	very	high	and	hence	would	make	a	technical	application	uneconomical	(the	
decomposition	 temperature	 of	 hematite	 is	 1455	°C,	 at	 atmospheric	 conditions).	 On	 the	 other	
hand,	due	to	the	very	low	oxygen	pressure	of	the	iron	oxides,	decreasing	 the	 pressure	 of	 the	
system	would	require	almost	vacuum	conditions	for	a	reduction	reaction	[15,17,83].			
	
At	the	chemical	equilibrium,	the	oxygen	partial	pressures	of	gas	(left	side	of	equation	4‐1)	and	
the	oxide	are	equal	and	therefore:		
	

	 													
																																																			4 3	

	
After	transforming	the	equation	4‐2,	the	dependence	of	the	oxygen	partial	pressure	can	be	
expressed	as	the	ratio	of	activities	of	metal,	oxide	and	equilibrium	 constant.	 With	 the	
assumption	that	oxides	and	metals	contained	in	the	system	in	pure	state	have	an	activity	value	
of	 one,	 the	 oxygen	 partial	 pressure	 only	 depends	 on	 the	 equilibrium	 constant	 in	 an	 indirectly	
proportional	way:		
	

1
∙ 									 → 									 			

1
																																																	4 4	
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Hence	carbon	is	able	to	reduce	most	of	the	oxides	under	blast	furnace	conditions.	Furthermore	
carbon	 monoxide	 and	 hydrogen	 are	 the	 most	 important	 gaseous	 reductants,	 their	 oxygen	
potential	 rises	 with	 increasing	temperature.	 Therefore	 the	 reduction	with	CO,	H2	and	C	are	
subsequently	depicted.		

4.1.1 Direct	and	Indirect	Reduction	of	Iron	Ores	

As	reducing	agents	applied	on	an	industrial	scale	only	carbon,	hydrogen	and	carbon	monoxide	
are	used,	though	theoretically	the	reduction	could	be	conducted	with	electrical	energy	or	other	
more	oxygen	affine	elements	like	aluminium	but	these	are	not	used	due	to	economic	reasons	[85].		

In	 1812	 the	 French	 metallurgist	Jaques	Assenfratz	 suggested	 a	 classification	 of	 iron	 ore	
reduction	based	on	the	type	of	reducing	agent.	The	reduction	by	carbon	with	formation	of	CO	as	
a	 final	 product	 is	 called	 “direct	 reduction”	 (contact	 of	 ore	 with	 charcoal)	 whereas	 the	 term	
“indirect	reduction”	refers	to	the	reduction	by	gaseous	reducing	agents	(carbon	 monoxide	and	
hydrogen	with	the	formation	of	CO2	and	H2O(g)	as	final	products).	The	sum	of	direct	and	indirect	
reduction	in	a	reduction	process	is	100	%	[5,8,10,15].		
In	every	case	the	oxygen	that	is	chemically	bound	to	iron	is	progressively	released,	starting	from	
the	 most	 oxidized	 oxide	 hematite	 (Fe2O3)	 via	 magnetite	 (Fe3O4)	 and	 wustite	 (Fe1‐yO)	 to	 finally	
achieve	metallic	iron.	As	illustrated	in	Figure	4‐2,	below	570	°C	wustite	is	not	a	stable	phase	and	
therefore	there	are	two	reduction	pathways	that	have	to	be	distinguished:		

	

		 570°												 	→ → 																																												4 9	

		 570°					 	→ → → 																												4 10	
	

For	industrial	scale	applications	the	latter	mentioned	pathway	is	of	more	importance,	there	are	
hardly	any	processes	that	operate	at	temperatures	below	570	°C.	 The	 following	 chemical	
equations	describe	the	development	of	the	“indirect	reduction”	process	steps,	the	reduction	with	
the	gaseous	reductants	CO	and	H2.	Additionally	the	qualitative	heat	tone,	the	plus/minus	sign	for	
the	enthalpy	of	reaction	is	given	(calculated	according	to	FactSage).	Subsequently,	for	the	sake	of	
simplification,	the	values	for	δ	and	y	are	assumed	to	be	0.		
In	the	first	step	the	hematite	is	reduced	to	magnetite:		
	

	↔2	 																								∆ 	 						4 11	

	↔ 2	 																			∆ 	 						4 12	

	
For	the	reduction	path	according	to	temperatures	above	570°C	(equation	3‐10)	the	magnetite	is	
reduced	to	wustite	with	a	composition	Fe1‐yO	whereas	y	has	values	ranging	from	0.05‐0.12	(but	
again	the	simplified	form	with	y=0	is	given):		
	

	↔	 																															∆ 					4 13	

	 ↔ 	 																												∆ 					4 14	

	
The	final	reduction	to	metallic	iron	refers	to:	
	

	 ↔ 																																∆ 	 						4 15	

	↔ 																											∆ 	 						4 16	
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Below	temperatures	of	570	°C	the	magnetite	is	directly	reduced	to	metallic	iron:	
	

4	 	 ↔ 3	 4	 																												∆ 	 								4 17	

4	 	↔ 3	 4	 																							∆ 	 								4 18	

	
From	a	thermodynamical	point	of	view	the	process	of	indirect,	hence	gaseous	reduction	does	not	
depend	on	the	gas	pressure	because	the	gas	volume	does	not	change	 (the	 moles	 of	 gas	
components	are	the	same	on	both	sides	of	the	equations).	From	the	reactions	4‐11	to	4‐18	it	can	
be	summarized	that	the	reduction	of	hematite	to	magnetite	is	exothermic	 and	 irreversible.	
Further,	the	reduction	of	magnetite	 to	 wustite	 and	 metallic	 iron	 is	 a	 reversible	 process	 and	
greatly	depends	on	temperature	[15].	According	to	the	Hess	Theorem	the	heat	tone	of	the	overall	
reaction	can	be	calculated	(calculated	with	FactSage):		
	

3	 	 ↔ 2	 3	 																			∆ 	 		22.69	/ 			4 19	

3	 	↔ 2	 3	 														∆ 	 100.72	 / 			4 20	

	
From	 the	 plus/minus	 sign	 of	 the	 equations	 it	 can	 be	 drawn	 that	the	 reduction	 with	 carbon	
monoxide	 is	 of	 an	 endothermic	 nature	 whereas	 the	 reduction	 reaction	 with	 hydrogen	 is	
exothermic.	 The	 chemical	 equilibria	 of	 the	 reduction	 reactions	4‐11	 to	 4‐16	 as	 well	 as	 their	
temperature	 dependence	 can	 be	 described	 graphically	 by	 means	 of	the	“Baur‐Glaessner	
diagram”.	

4.1.2 Gas	Oxidation	Degree	(GOD)	and	the	Baur‐Glaessner	Diagram	

As	a	deviation	of	the	different	phase	diagrams	of	the	systems	Fe‐C‐O2‐H2	the	chemical	
equilibria	 of	 the	 different	 iron	 oxides	 at	 different	 temperatures	 and	 gas	 compositions	 can	 be	
shown.	Depending	on	the	gas	composition	and	the	temperature	the	different	existence	areas	of	
the	 individual	 solid	 iron	 oxides	 and	 iron	 phases	 can	 be	 distinguished.	 Subsequently	 the	 single	
trinary	systems	Fe‐C‐O2	and	Fe‐H2‐O2	can	be	deduced.	

By	picking	out	an	expanded	part	of	the	Fe‐C‐O2	diagram,	the	Baur‐Gleassner	diagram	results	
as	given	in	Figure	4‐2	[86],	the	stability	fields	of	the	iron	oxides	as	a	function	of	different	mixtures	
of	C	and	O2	or	CO/CO2	respectively.	The	given	Baur‐Gleassner	diagram	shows	the	regions	 of	
stability	of	the	different	oxides	and	metallic	iron	as	a	function	of	temperature	and	the	volumetric	
ratio	 of	 CO/CO2	in	the	reducing	gas.	By	this	means,	for	a	certain	temperature	the	 minimal	
required	 CO	 amount	 of	 the	 gas	 mixture	 for	 the	 full	 reduction	 to	 metallic	 iron	 can	 be	 allocated	
and	vice	versa.	At	the	boundary	line	of	stability	fields	the	two	 phases	 (oxide	 or	 iron)	 are	 at	
equilibrium.		
	

Additionally	the	Boudouard	reaction	according	to	the	chemical	formula	
	

2	 	 ↔ 																																																														4 21	
	
	is	given	within	the	Baur‐Glaessner	diagram.	This	endothermic	and,	in	contrast	to	the	reduction	
reactions,	 pressure	 dependent	 reaction	 divides	 the	 diagram	 into	two	different	regions.	At	gas	
compositions	 and	 temperatures	 above	 this	 curve,	 the	 reduction	 is	 supported	 due	 to	 CO‐
formation	of	carbon	present;	below	the	curve	CO	is	decomposed	to	CO2	and	solid	carbon;	hence	
the	 reduction	 reaction	 is	 retarded.	 The	 intersection	 point	 of	 the	Boudouard	curve	and	the	
Fe/FeO	equilibrium	line	determines	the	minimum	required	temperature	for	indirect	reduction	
to	occur.		
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∙ 100							 		%																												4 25	

	
This	correlation	is	only	valid	for	ideal	conditions,	when	the	formation	of	an	oxide	or	iron	starts	
after	the	full	transformation	of	the	prior	step.	In	contrast	to	that,	in	reality	there	will	always	be	a	
mixture	of	the	different	oxide	for	kinetic	reasons.	As	a	consequence,	a	reduced	iron	ore	sample	
with	a	reduction	degree	of	33	%	can	exist	on	the	one	hand	as	pure	FeO	(MD=	0	%)	or	on	the	
other	hand	as	a	mixture	of	Fe2O3,	Fe3O4,	FeO	and	Femet	with	a	metallization	degree	>	0	%.	

4.2 Kinetic	Aspects	of	Iron	Oxide	Reduction	

In	contrast	to	the	thermodynamic	view	of	any	reaction,	the	kinetics	do	not	give	evidence	about	
the	 possibility	 that	 a	 reaction	 will	 occur,	 but	 rather	 give	 an	idea	about	the	rate	and	hence	the	
time	that	is	needed	to	reach	a	certain	conversion.	In	the	case	of	the	reduction	of	iron	oxides	it	
describes	as	the	rate	at	which	iron	ores	and	oxides	are	transformed	to	metallic	iron	by	removal	
of	oxygen	from	the	solid	oxide	lattice.		

For	 the	 description	 of	 the	 rather	 complex	 topic	 of	 the	 reduction	 reaction	 as	 a	 sequence	 of	
different	reducing	steps	(Fe2O3	to	finally	metallic	iron),	different	kinetic	models	and	approaches	
have	 been	 developed	[49,85,87–90].	 What	 they	 all	 have	 in	 common	 is	 that	 there	 is	 always	 a	
simplification	to	some	extent.	In	a	very	first	approach	the	reduction	 reaction	 is	 described	 as	 a	
homogenous	reaction,	hence	a	reaction	where	it	is	assumed	that	all	participating	reactants	are	
present	in	the	same	aggregate	state	or	phase.	On	a	closer	look	the	description	of	the	reaction	is	
realized	 with	 different	 gas‐solid	 reaction	 models	 (heterogeneous	 reaction	 models)	 and	
subsequently	the	gas‐solid	reaction	is	divided	into	different	rate	determining	steps.		

4.2.1 Simplification	of	the	Reaction	‐	Homogenous	Reduction	Reaction		

In	 homogenous	 reactions	 all	 reacting	 partners	 are	 found	 within	 a	 single	 phase.	 For	 iron	 ore	
reduction	for	it	is	assumed	for	a	first	approach	that	all	reaction	partners	are	of	a	gaseous	nature.	
For	 a	 description	 of	 the	 reduction	 rate	 it	 has	 to	 be	 considered	 that	 the	 reduction	 rate	 is	
influenced	 by	 the	 composition	 and	 the	 energy	 (besides	 temperature	 also	 light	 intensity	 or	
magnetic	field	could	be	considered);	hence	it	is	a	function	of	both,	 temperature	 and	
concentration.	Therefore	the	reduction	rate	is	expressed	by	two	 terms,	 a	 temperature‐
dependent	term	and	a	concentration‐dependent	term,	and	can	be	described	as	[87]:		
	

											 ∙ 	 																									4 26	
	

Here	 the	 reaction	 the	 rate	 (rA)	 of	 the	 reaction	 of	 component	 A	 is	 described.	 According	 to	 this	
definition,	if	A	were	a	reaction	product,	the	rate	would	be	positive	 and	 vice	 versa	 if	 A	 is	 a	
reactant	which	is	being	consumed,	the	rate	is	negative.	Thus	the	term	‐rA	describes	the	rate	of	
disappearance	 of	 the	 reactant	 A.	 The	 concentration	 dependent	 part	 of	 this	 equation	 is	
represented	by	 	and	the	temperature‐dependent	term	with	the	rate	constant	k.		

In	depicting	the	concentration	dependent	part,	in	literature	[3,49,87]	the	reaction	is	distinguished	
and	assigned	into	different	types	of	reaction.	These	types	might	be	elementary	reactions	(either	
irreversible	or	to	an	equilibrium),	series	reactions	or	parallel	reactions.		

Concerning	the	reduction	of	iron	oxides	the	reactions	can	be	allocated	as	equilibrium	and	hence	
reversible	 reactions.	 The	 reaction	 comprises	 of	 both,	 the	 forward	 chemical	 reaction	 and	 the	
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reverse	reaction.	At	the	moment	when	the	reaction	rate	of	both	reactions	is	equal,	the	chemical	
equilibrium	is	reached.		

Subsequently	the	order	of	the	reaction	(in	equation	4‐26	expressed	as	a)	has	to	be	determined.	
Whereas	the	reaction	rate	describes	the	number	of	molecules	per	time	unit	that	are	involved	in	a	
reaction,	 the	 order	 of	 the	 reaction	 is	 dependent	 on	 the	 concentration,	 the	 temperature	 and	
possible	 catalysts.	 The	 order	 of	 a	 reaction	 gives	 the	 probability	 of	 the	 collision	 of	 the	 reacting	
molecules.	 This	 consideration	 is	 concentration	 dependent	 because	 the	 more	 particles	 that	
prevail	within	a	certain	volume	the	more	probable	a	collision	is;	the	reaction	rate	increases	with	
the	 increasing	 amount	 of	 educts	 (with	 the	 assumption	 of	 a	 constant	 temperature).	 Ditto,	 the	
probability	of	collision	of	educt	molecules	by	forming	a	product	increases.		
	
Generally,	when	considering	an	elementary	reaction	A+B→C	the	reaction	or	disappearing	rate	of	
A	can	be	given	as	

											 	 																																																																		4 27	
	
Furthermore	the	term	molecularity	has	to	be	introduced	and	refers	to	the	number	of	molecules	
involved	 in	 the	 reaction	 (only	 valid	 for	 elementary	 reactions)	and	 can	 have	 values	 of	 one	 two	
and	occasionally	three.	The	reaction	rate	can	now	be	written	as:		
	

											 	 …. 									 	 ⋯ 																			4 28	
	
Where	 A,B,..,D	 refer	 to	 the	 acting	 materials	 and	 a,b,..,d,	 hence	 the	 powers	 to	 which	 the	
concentrations	are	raised,	finally	define	the	order	of	the	reaction.		

Practically	 reaction	 orders	 >	 3	 hardly	 occur,	 therefore	 the	 probability	 of	 a	 reaction	 order	 of	 5,	
i.e.	5	molecules	collide	with	sufficient	energy	for	a	reaction,	is	very	low.		

When	 the	 rate	 expression	 for	 a	 homogeneous	 reaction	 is	 written	in	the	form	of	4‐28	the	
dimension	of	rate	constant	k	depends	of	the	reaction	order,	for	a	homogenous	chemical	reaction	
with	nth	order	can	generally	be	given	as	
	

	 ∙ 	 																																																														4 29	
	
Finally	 the	 rate	 constant	 k	 as	 the	 temperature‐dependent	 term	 of	 the	 rate	 equation	 can	 be	
described	with	the	Law	of	Arrhenius:		
		

∙ ∙ 																																																															4 30	
	
with	k0	as	the	frequency	factor	and	EA	as	the	activation	energy.		
	
According	to	literature,	several	researchers	have	found	that	a	first	approach	reasonably	allows	
the	 description	 of	 iron	 ore	 reduction	 as	 an	 irreversible	 equilibrium	 reaction	 of	 the	 first	
order	[49,88–92].	From	equation	4‐29	it	can	be	seen	 that	for	 a	of	 reduction	reaction	assumed	as	a	
non‐reversible	 reaction	 of	 first	 order,	 the	 reaction	 is	 only	 a	function	 of	 concentration	 (by	
keeping	the	temperature	constant).		

4.2.2 Heterogeneous	Reduction	Reaction	–	Selection	of	a	Model		

For	heterogeneous	systems,	hence	a	two	phase	system,	there	are	more	factors	that	must	be	
accounted	for	beyond	what	is	usually	considered	in	homogeneous	systems.	For	the	description	
of	the	mechanisms	that	occur	during	the	reaction	by	means	of	a	mathematical	model,	it	is	always	
necessary	to	try	to	describe	one	single	particle.	For	the	first	step	one	general	consideration	has	
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diffusion	resistance	hardly	contributes	because	of	the	lack	of	an	ash	(product)	layer	and	hence,	
the	 chemical	 reaction	 itself	 is	the	 rate	 controlling	 step.	 From	 that	 point	 on,	 the	 reaction	 front	
moves	inside	the	particle	and	the	thickness	of	the	ash	layer	increases	more	and	more	and	the	
pore	 diffusion	 mechanism	 will	 become	 the	 rate	 controlling	 mechanism.	 Based	 on	 this	
description	 the	 reduction	 reaction	 is	 often	 divided	 into	 two	 different	stages,	earlier	and	final	
stages	of	reduction.	This	phenomenon	has	been	described	by	[92,96].	

For	the	reduction	within	a	shaft	furnace	it	can	be	assumed	that	the	mass	transport	will	hardly	
be	the	rate	determining	step.	The	gas	velocity	is	sufficiently	high	and	the	ratio	of	particle	surface	
to	gas	film	thickness	is	small.	This	is	in	contrast	to	the	reduction	of	fine	ores	within	fluidized	bed	
facilities	where	the	mass	transport	indeed	can	be	rate	determining.		

Different	researchers	have	further	pointed	out	that	the	reduction	from	hematite	to	magnetite	
and	further	to	wustite	proceeds	considerably	faster	and	therefore	the	rate	determining	chemical	
reaction	 is	 the	 final	 step	 in	 transforming	 wustite	 to	 metallic	 iron	[40,43,68,86,89,94,97]	and	that	for	a	
first	approach	the	assumption	of	a	first	order	reaction	is	reasonable	[49,89,91,92].	Most	researchers	
describe	the	reduction	proceeding	according	to	the	“shrinking	core	model”	where	the	reduction	
proceeds	 in	 a	 topochemical	 way	[49,88,89,95,94,97].	However,	those	observations	could	not	be	
confirmed	by	[97]	(in	this	case	at	temperatures	lower	than	1000	°C).	

4.3 Combination	of	Thermodynamics	and	Kinetics	‐	Different	
Types	of	Metallic	Iron	Formation	

If	 hematite	 is	 reduced	 to	 iron	 then,	 in	 the	 course	 of	 the	 removal	 of	 oxygen,	 all	 the	
thermodynamically	stable	oxides	of	iron	appear	either	successively	or	side	by	side.	During	the	
course	of	the	reduction	process,	those	phases	which	can	co‐exist	with	one	another,	i.e.	Fe/FeO,	
FeO/Fe3O4	and	Fe3O4/Fe2O3,	are	always	in	direct	contact	with	each	other.	Which	of	the	reduction	
products	lie	on	the	surface	and	are	in	direct	contact	with	the	gas	phase	depends	not	only	on	the	
corresponding	 phase	 equilibria	 (which	 refer	 to	 the	 thermodynamic	point	of	view)	but	is	also	
determined	by	the	rates	of	removal	of	oxygen	(chemical	reaction	control)	on	the	one	hand	and	
by	the	diffusion	process	(pore	diffusion	control)	on	the	other.		
	
When	 considering	 the	 final	 reduction	 step,	 the	 formation	 of	 metallic	 iron	 as	 the	 rate	

determining	 step,	 this	 context	 of	 thermodynamics	 and	 kinetics	 can	 be	 described	 when	
considering	 the	 different	 types	 of	 metallic	 iron	 formed,	 visualized	 by	 light	 microscopic	 means.	
Altogether	three	different	metallic	iron	formations	have	been	described	[7,13,68,98–101].		
	
 Dense	layer	like,	compact	or	topochemical	iron	formation	occurs	at	lower	temperatures	
but	high	reduction	potential	of	the	gas.	The	reduction	starts	at	conditions	of	high	nucleation	
densities	 at	 the	 grain	 surfaces	by	forming	a	thin	metallic	iron	layer	surrounding	every	
wustite	grain.	Due	to	the	lower	diffusion	rate	the	thin	layer	grows	by	moving	inside	with	a	
sharp	boundary	interface	(according	to	the	shrinking	core	model)	 and	 subsequently	
forming	a	dense	metallic	iron	layer.	Because	of	the	dense	nature	of	the	iron	layers	formed	it	
is	 considered	 to	 be	 reduction	 hindering	 because	 of	 the	 high	 diffusion	 resistance	 and	 can	
even	bring	the	reduction	progress	to	halt.		
	

 At	higher	temperatures	and	reduction	potentials,	the	formed	iron	 occurs	 in	 the	 shape	 of	
porous	iron.	 The	 high	 nucleation	 forming	 rates	 and	 good	 diffusion	 conditions	 lead	 to	 a	
sponge	like	appearance	and	subsequently,	due	to	the	porosity	and	therefore	large	specific	
surface,	this	form	leads	to	a	good	reduction	progress	and	is	desirable.		
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5 Literature	Review	–	Influence	on	Reducibility	
and	Mechanical	Properties		

Depicting	 a	 coherency	 between	 the	 reducibility	 and	 mechanical	 properties	 during	 the	
reduction	 process	 and	 process	 parameters	 like	 temperature	 and	 gas	 composition	 and	
furthermore	 with	 structural	 and	 chemical	 parameters	 of	 the	 ferrous	burden	material	is	a	very	
complex	and	sophisticated	aim.	One	the	one	hand	a	wide	range	of	 parameters	 influence	 the	
progress	 of	 oxygen	 release	 as	 well	 as	 mechanical	 stability	 but	on	 the	 other	 hand	 it	 is	 the	
interaction	 between	the	single	parameters	that	makes	a	prediction	of	the	material’s	behaviour	
so	 difficult.	 These	 circumstances	 have	 led	 to	 comprehensive	 investigation	 work	 by	 many	
researchers	 concerning	all	the	possible	influencing	factors,	and	additionally	to	a	wide	 range	of	
lab	 scale	 testing	 methods	 or	 even	 standardized	 testing	 procedures	 aimed	 at	 depicting	 and	
comparing	 materials	 behaviour.	 Following	 the	 description	 of	 the	 thermodynamic	 and	 kinetic	
fundamentals	 of	 the	 reduction	 of	 iron	 oxides	 in	 the	 previous	 chapter,	 within	 the	 subsequent	
sections	the	actual	influence	of	different	parameters	on	the	reduction	behaviour	is	listed.	Since	
several	 of	 the	 factors	 that	 positively	 influence	 the	 reduction	performance,	 high	 porosity	 and	
small	grain	size	for	example,	adversely	effect	the	mechanical	properties,	it	is	necessary	to	find	a	
compromise	solution	in	order	to	define	the	optimum	material	performance.	

For	 the	 testing	 of	 the	 material’s	 performance,	 a	 variety	 of	 different	 procedures	 have	 been	
developed	in	recent	decades.	Based	on	simple	testing	procedures,	several	standardized	testing	
procedures	have	been	derived,	all	with	the	aim	of	keeping	the	testing	procedure	as	simple	but	
yet	expressive	as	possible.	But	since	this	simplicity	struggles	to	meet	the	conditions	present	in	
an	industrial	scale	process,	it	will	be	reasonable	to	further	develop	testing	conditions	to	better	
meet	different	industrial	scale	process	conditions.		

5.1 Influencing	Factors	Concerning	Reducibility	

Since	 a	 depiction	 of	 parameters	 influencing	 the	 reducibility	 performance	 is	 very	 complex,	
different	 parameters	 are	 described	 separately	 but	 can	 never	 be	seen	 separately	 within	 an	
industrial	 scale	 process.	 A	 distinct	 estimation	 of	 the	 change	 in	 reduction	 performance,	
expressible	 in	 numbers,	 by	 changing	 single	 or	 multiple	 parameters	 is	 almost	 impossible.	
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Table	5‐II:	Summary	of	influencing	parameters	of	reducibility	and	mechanical	properties	

	

	

	

	

	

	

	

	

	

	

Parameter	
Influence	on	
reducibility	

Influence	on	
mechanical	
performance	

Explanation	

Increasing	
temperature		 ↑	 ↑↓	

Higher	temperature	promote	the	reduction	kinetics,	pore	
diffusion	 is	 facilitated	 even	 if	 thermodynamically	 lower	
temperatures	 would	 be	 favourable,	 for	 RDI	 above	 the	 critical	
value	higher	temperatures	are	favourable	

Hydrogen	content	
of	gas	mixture	 ↑	 ↓	

Promotion	 of	 the	 reduction	 kinetics	 because	 of	 better	 pore	
diffusion	 (smaller	 molecules)	 and	 slightly	 better	
thermodynamics	 above	 810	°C,	 more	 stresses	 because	 faster	
reduction	

Particle	size	 ↓	 	 Inhibited	kinetics	due	to	less	specific	surface	

Porosity	 ↑	 ↓	 Provides	 larger	 surface	 for	 reduction,	 enhanced	 gas	 and	 pore	
diffusion,	decreases	strength	

Hematite		 ↑	 ↓	
Better	 reducible	 than	 magnetite,	 also	 wustite	 originated	 from	
hematite	 is	 better	 reducible	 than	 that	 originated	 from	
magnetite.	 Cracks	 during	 transformation	 decrease	 RDI	
stability,	lower	cold	strength	

FeO		 ↓	 ↑	 Higher	 FeO	 indicates	 higher	 magnetite	 content,	 hence	 lower	
reducibility	but	higher	mechanical	performance		

CaO	 ↑	 ↑	
Results	in	greater	portion	of	different	calcioferrite	phases	
which	 are	 better	 reducible,	 CaO	 stabilizes	 spinel	 (better	
strength)	and	creates	more	stable	CaO	phases	

SiO2	 ↓	 ↓	
Formation	 of	 hardy	 reducible	 silicate	 and	 fayalitic	 phases,	
increases	 overall	 slag	 amount,	 formation	 of	 low	 strength	
phases	(fayalithe,	olivine)		

Al2O3	 ↓	 ↓	
Decreases	RDI	because	of	low	melting	phases,	decreases	
reducibility	 by	 forming	 low	 reducible	 oxide	 phases	
(fayalithes,..)	

MgO	 ↓	 ↑(↓)	
Improves	 stability	 against	 disintegration	 (but	 decreases	 low	
temperature	 stability)	 because	 stabilizes	 magnetite	 but	
reduces	reducibility			

Basicity	 ↑	 ↑	
By	increasing	the	basicity	(higher	than	1.6)	the	CaO	amount	
increases,	therefore	better	reducibility	and	higher	overall	slag	
content	 makes	it	 more	stable	due	to	 more	stable	CaO	
containing	phases	
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5.3 State	of	the	Art	–	Lab	Scale	Testing		

All	those	different	parameters	that	will	influence	the	reducibility	performance	as	well	as	the	
material’s	strength	combined	with	the	wide	range	of	material	requirements	 as	 described	 in	
section	2.2,	mean	the	possibilities	of	testing	are	numerous.	Since	the	reducibility	describes	the	
oxygen	release	from	the	crystal	lattice	 by	 a	 gaseous	 reducing	 agent,	 every	 testing	 procedure	
suitable	for	testing	gas	solid	reactions	can	generally	be	considered	as	an	option.	Every	testing	
procedure,	 starting	 from	 thermo	gravimetric	 analysis	 to	 calorimetric	 analysis	 or	 fluidized	 bed	
reactor	testing	to	name	but	a	few,	has	its	own	testing	conditions.	In	order	to	choose	a	lab	scale	
testing	facility	and	procedure	that	best	meets	the	requirements	for	industrial	scale	applications,	
a	comparison	of	for	the	current	standards	in	lab	scale	testing	has	been	performed.	In	choosing	
the	 best	 suitable	 testing	 conditions	 for	 depicting	 reducibility	 properties	 combined	 with	 the	
possibilities	 and	 restrictions	 of	 the	 lab	 scale	 testing	 facility,	 the	 following	 considerations	 have	
been	taken	into	account.		

 The	pressure	during	testing	needs	to	be	atmospheric		
 Temperature	range	should	be	within	the	region	of	indirect	reduction		
 Sample	amount	and	size	should	be	as	close	as	possible	to	the	industrial	 scale	
application	

 At	least	some	comparability	to	literature	and	industrial	data	should	be	granted		
 Simultaneous	testing	of	the	mechanical	properties	for	the	sake	of	simplicity	

A	variety	of	different	standardized	testing	procedures	are	available	and	considered	suitable	

Since	the	foundation	of	“International	Organization	for	Standardization	(ISO)”	in	1946	[150]	and	
covers	 all	 possible	 research	 fields	 except	 electrics	 and	 electronic	the	number	of	ISO	standards	
for	testing	iron	bearing	raw	materials	is	huge.	The	following		

provide	 a	 summary	 of	 the	 most	 commonly	 used	 standardized	 testing	 procedure	 concerning	
reducibility	and	mechanical	properties	of	lump	burden	material.	For	the	sake	of	a	cost	and	time	
saving	lab	scale	test	with	a	maximum	of	information	output,	it	can	be	seen	that	some	of	the	
testing	 procedures	 cover	 both,	 the	 reducibility	 and	 mechanical	testing	 procedures	 and	 are	
therefore	listed	in	both	tables.		

,	 every	 reducibility	 test	 listed	has	a	different	operational	mode,	although	the	basic	steps	of	
testing	are	more	or	less	the	same.	Within	every	test	the	sample	portion	(in	most	cases	between	
500	and	2000	g)	is	heated	up	at	nitrogen	inert	gas	atmosphere	until	reaching	the	desired	final	
testing	temperature.	After	some	homogenization	time	the	gas	is	switched	 to	 a	 reducing	 gas	 of	
variable	 compositions	 of	 the	 components	 CO,	 CO2,	 H2,	 CH4	and	N2,	 which	 makes	 the	 reduction	
potential	 and	 the	 GOD	 of	 each	 test	 unique.	 Also	 the	 construction	 type	 of	 the	 reaction	 vessel	 is	
different.	The	simplest	possibility	of	testing	is	a	static	testing	within	a	small	reduction	tube.	Also	
there	are	test	with	an	application	of	a	load	on	the	burden	material	within	a	bigger	reduction	tube	
(125	mm),	 but	 still	 the	 test	 is	 a	 static	 one.	 Only	 the	 last	 mentioned	is	actually	a	dynamic	test	
within	 a	 so	 called	 “Linder‐Testing	 facility”	 which	 is	 a	 rotating	horizontal	tube.	Finally	the	test	
results	itself,	are	not	straightforwardly	comparable	to	each	other.	Some	test	give	a	time	needed	
to	gain	a	certain	reduction	degree	as	the	result	whereas	other	tests	compare	the	reduction	rate	
at	different	stages	or	the	metallization	degree	after	a	distinct	reduction	time.		

To	 test	 the	 mechanical	 or	 metallurgical	 properties	 concerning	 the	 mechanical	 stability,	 the	
variety	 of	 possible	 testing	 procedures	 becomes	 even	 more	 complex.	Again	only	the	most	
commercially	used	testing	procedures	are	given	in	the	table.	From	the	testing	procedures	listed	
all	 mechanical	 testing	 procedures,	 which	 almost	 always	 comprise	 of	 some	 rotating	 tumbling	
procedure,	refer	to	the	mechanical	stability	after	some	reduction	treatment,	with	the	exception	
of	 the	 determination	 of	 the	 tumble	 strength	 (ISO	 3271).	 These	 tumbling	 and	 abrasion	 indices	
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temperature	 but	 always	 of	 a	 static	 nature.	 The	 subsequent	 tumbling	 procedure	 is	 executed	 in	
different	kinds	of	drums.	The	Linder	Test	is	once	again	an	exception,	 due	 to	 the	 dynamic	
reducibility	 testing	 the	 mechanical	 stress	 is	 applied	 during	 the	 reduction	 procedure,	 not	
afterwards.	The	calculation	always	comprises	a	ratio	of	initial	sample	mass	and	the	mass	portion	
of	some	certain	size	fraction,	determined	by	a	sieving	procedure.		

	
Table	5‐III:	Standardized	testing	procedures	for	determining	reducibility	parameters	

	

Table	5‐IV:	Standardized	testing	procedures	for	different	mechanical	parameters	

Standard	 Name	
Testing	facility	
for	reduction	 	TRed	 Gas	component	 Load	 Aim/Output	

	 	 	 [°C]	 CO	 CO2	 CH4	 H2	 N2	 [kPA]	 	

ISO				
4695	

Iron	ores	‐	Determination	of	
reducibility	[52]	

Vertical	
reduction	
facility,	
	75mm	
retort	
diameter	

950	 x	 	 	 	 x	 	
Determination	of	the	reducibility	
index	(dR/dt)40	

ISO			
7215	

Iron	ores	‐	Determination	of	relative	
Reducibility	[151]	

900	 x	 	 	 	 x	 	
Determination	of	the	RD	after	180	
minutes	

ISO	
11258	

Iron	ores	for	shaft	direct‐reduction	
feedstocks	—	Determination	of	the	
reducibility	index,	final	degree	of	
reduction	and	degree	of	
metallization	[152]	

800	 x	 x	 	 x	 x	 	

Determination	of	RD90	and	
metallization	degree,	reducibility	
index	(dR/dt)40	and	(dR/dt)90	

ISO			
7992	

Iron	ores	‐	Determination	of	
reduction	properties	under	load	[153]	

Vertical	
reduction	
facility,	
125mm	
retort	
diameter	

1050	 x	 	 	 x	 x	 50	

Determination	of	differential	
pressure	and	change	of	height	of	
the	bed	at	RD=80%	

ISO	
11256	

Iron	ore	pellets	–	Determination	of	
clustering	of	feedstock	for	direct	
reduction	by	gas	reforming	[154]	

850	 x	 x	 	 x	 x	 147	

Determination	of	time	needed	for	
RD	=	95%	
	(in	addition	to	Clustering	Index)	

ISO	
11257	

Iron	ores	–	Determination	of	
disintegration	and	metallization	of	
feedstock	for	direct	reduction	by	gas	

reforming	process	[55]	

Horizontal	
rotating	
reduction	
tube	
(Linder‐
Test)	

760	 x	 x	 x	 x	 	 	

Determination	of	Metallization	
degree	after	300	minutes	of	
reduction	(in	addition	to	
disintegration	tendency)	

Standard	 Name	
Testing	facility	
for	mechanical	
stress	

Comment	 Aim/Output	

ISO								
8371	

Iron	ores	for	blast	furnace	feedstocks	—	
Determination	of	the	decrepitation	index	[155]	

‐‐‐	
Heating	up	to	700°C	at	
atmospheric	conditions	

Determination	of	DI‐6.3	(percentage	of	material	
<	6.3	mm)		

ISO	
4696‐1	

Iron	ores	for	blast	furnace	feedstocks		
Determination	of	low‐temperature	

reduction‐disintegration	indices	by	static	
method	—	Part	1	[53]	

Rotating	
tumbling	
drum,	inner	
diameter	
130	mm	

Reduction	at	
500°C	with	CO,	
CO2,	H2,N2	gas	
mixture	

After	reduction	tumbling	procedure	with	300	
revolutions	and	determination	of	RDI‐1+6,3,	
RDI−1−3,15,	RDI−1−0,5;	

ISO	
4696‐2	

Iron	ores	for	blast	furnace	feedstocks		
Determination	of	low‐temperature	

reduction‐disintegration	indices	by	static	
method	—	Part	2	[54]	

Reduction	at	
550°C	with	CO	
,N2	gas	mixture	

After	reduction	tumbling	procedure	with	900	
revolutions	and	determination	of	RDI‐2‐2.8,		

ISO	
4698	

Iron	ore	pellets	for	blast	furnace	feedstocks	—	
Determination	of	the	free‐swelling	index	[156]	

‐‐‐	
Reduction	at	
900°C	with	CO	
,N2	gas	mixture	

Determination	of	the	free‐swelling	index	
(indicates	the	volume	change	of	the	pellets	
during	reduction)	

ISO	
11256	

Iron	ore	pellets	–	Determination	of	clustering	of	
feedstock	for	direct	reduction	by	gas	reforming	

[154]	 Rotating	
tumbling	
drum,	inner	
diameter	
1000	mm	

35	revolutions	
ins	total	

After	reduction	testing,	determination	of	
clustering	index	CI	(percentage	of	mass	that	
have	clustered)		

ISO	
15967	

Direct	reduced	iron	—	Determination		of	the	
tumble	and	abrasion	indices	of	hot	briquetted	

iron	(HBI)	[157]	

25	r/min	for	
200	

revolutions	

Determination	of	tumbling	index	TI	(mass	
portion	>	6.3mm)	and	abrasion	index	AI	(mass	
portion	<	0.5mm)	

ISO	
3271	

Iron	ores	–	Determination	of	tumble					strenght	
[158]	

Raw	material,	
200	

revolutions		

Determination	of	tumbling	index	TI	(mass	
portion	>	6.3mm)	and	abrasion	index	AI	(mass	
portion	<	0.5mm)	

ISO	
11257	

Iron	ores	–	Determination	of	disintegration	and	
metallization	of	feedstock	for	direct	reduction	

by	gas	reforming	process	[55]	 Horizontal	
rotating	

reduction	tube					
	(Linder‐Test)	

Reduction	at	
760°C	with	CO,	
CO2,	CH4,	H2,N2	
gas	mixture	

After	reduction	testing,	determination	of	RDI‐
3.15	(percentage	of	material	<	3.15mm)		

ISO	
13930	

Iron	ores	for	blast	furnace	feedstocks	–	
Determination	of	low‐temperature	
reduction‐disintegration	indices	by	

dynamic	method	[56]	

Reduction	at	
500°C	with	CO,	
CO2,	H2,N2	gas	
mixture	

Calculation	of	the	low‐temperature	
disintegration	indices	(LTD+6.3,	LTD‐3.15	and	
LTD−0.5)	
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6 Experimental	Setup	and	Testing	Facilities		

In	the	following	sections	the	different	testing	facilities	and	investigation	methods	used	for	this	
research	 work	 (as	 a	 consequence	of	 the	 previously	 described	 demands	for	a	suitable	lab	scale	
test)	are	briefly	described.	Since	the	vertical	reduction	aggregate	is	the	most	complex	lab	testing	
facility	 it	 is	 described	 more	 comprehensively,	 whereas	 for	 other	 facilities	 external	 sources	 of	
further	 information	 are	 provided.	However,	a	variety	of	testing	 and	 investigation	 have	 been	
performed	with	other	testing	facilities,	not	all	of	them	located	at	the	Chair	of	Ferrous	Metallurgy.	
This	 description	 is	 intended	 to	 give	 a	 short	 overview	 of	 the	 experimental	 setup	 and	 the	
methodology	 of	 testing:	 a	 detailed	 description	 of	 the	 operation	mode	of	the	facilities	can	be	
found	within	the	aforementioned	literature	references.		

6.1 Reducibility	Testing	‐	Vertical	Reduction	Aggregate	

The	main	lab	facility	for	exploring	the	reducibility	behaviour	of	different	raw	materials	is	the	
vertical	reduction	aggregate.	The	facility	for	performing	the	reduction	tests	as	well	as	reactivity	
tests	was	designed	and	constituted	by	Siemens	VAI	Metals	Technologies	in	2011.	Besides	the	need	

to	 conduct	 various	 standardized	 testing	 procedures	 (see	 Table	 5‐III	and	Table	 5‐IV)	 it	 was	
necessary	to	perform	more	sophisticated	testing	procedures.	To	perform	different	modifications	
of	the	standardized	testing	procedures	or	even	the	approach	of	depicting	 any	 industrial	 scale	
process,	 different	 adaptations	 and	 modifications	 have	 been	 considered.	 Whereas	 any	
standardized	testing	procedure	runs	in	a	more	or	less	steady	state	mode	in	any	industrial	scale	
process,	parameters	like	temperature	and	gas	composition	change	 dependent	 on	 time.	
Therefore	the	process	control	unit	in	particular	can	be	computed	to	that;	hence	it	is	possible	to	
linearly	change	the	gas	composition	within	a	given	period	of	time	through	simultaneous	heating	
or	cooling.	Tests	can	be	run	fully	automatically	or	manually	if	desired.	

A	schematic	drawing	of	the	reducibility	testing	apparatus	is	given	in	Figure	6‐1;	additionally	
Figure	6‐2	shows	pictures	of	the	facility	as	set	in	the	laboratory.	 Table	 6‐I	 summarizes	 all	 the	
technical	 data.	 Besides	 the	 reduction	 retort	 where	 the	 reduction	 reactions	 actually	 occur,	 the	
facility	 consists	 of	 a	 process	 control	 unit,	 a	 gas	 supply	 unit,	 a	 gas	 mixing	 unit	 (including	
humidification	 and	 preheating	 components),	 an	 electrically	 heated	furnace	with	three	heating	
sections,	a	weighing	device	and	finally	an	offgas	system.		
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eriaĺs	behav

Drum	

hanical	 beha
A	 picture	a
nsists	of	a	m
by	 elastic	t
usted	and	mo

e	proper	clo
volutions.	 Af
ing	 the	 sam
re	 accordin
anical	behav

nalysis	an

logical	 char
nvestigated	
us	BX60	fro
an	be	invest
ons	with	a	su

croscopic	 m
red	that	the	
ology.		

ed,	some	pi
ken	 random
ves	or	even	

Picture	and	sk

ES	

66	

pment	an

ent	 burden	
erging	all	th
viour,	far	mo

aviour	 a	 ro
and	 a	 schem
etal	vessel	w
tensioning	c
onitored.		

osed	drum;	
fterwards	t
mple	 portio
ng	 to	[53,54].	W
viour	can	be

nd	Scannin

racterization
with	 the	l
om	 the	 man
tigated.	The
uitable	surf

means	 only	a
number	of	

eces	with	th
mly.	 Due	 to	
quarters.	Th

ketch	of	the	r

nd	Metho

materials	 is
he	single	pie
ore	testing	m

otating	 tum
matic	 drawi
with	an	inne
lamps.	 With

the	rotation
the	 masses	
on	 with	 bo
With	 the	 gr
e	calculated.

ng	Electron

n	for	both,	t
light	 micro
nufacturer	Z
refore	the	s
face,	and	the

a	part	of	the
pieces	is	su

he	size	of	10
the	 restrict
hese	smalle

rotating	tumb

ods	

s	 not	 finishe
eces	of	mate
methods	wit

mbling	 drum
ing	 of	 this	f
er	diameter	
h	the	proce

n	starts	with
of	 the	 grain
th	 standard
rain	 size	 dis
.		

n	Microsco

the	raw	as	w
scope.	 With
Zeiss	as	used
samples	hav
e	preparatio

e	sample	po
fficient	to	g

0‐12.5	mm	(
ted	 size	 of	t
r	pieces	are

bling	drum

ed	 just	 by	d
erials	charac
th	different	

m	 according
facility	 are	
of	130	mm	
ess	 control	

h	a	rotation	
n	 size	 fract
dized	 sieve
stribution,	

opy	

well	 as	 the	
th	 a	 reflect
d	for	this	w
ve	to	be	pre
on	procedur

ortion	 is	 con
give	a	repres

(the	same	si
the	 lab	 facil
e	imbedded	

depicting	
cteristics	
facilities	

g	to	the	
given	 in	
which	is	
unit	 the	

speed	of	
tions	 are	
es	 and	 a	
different	

reduced	
ted	 light	
work,	 the	
epared	in	
re	can	be	

nsidered,	
sentative	

ize	as	for	
lities	 the	
in	resin.	



After	 th
polishin

calico‐si
water	(f
a	partial

Figure	
investig
particles
differen
Araldur	
appeara

6.2.3 B

The	B
Edward	
This	 me
accordin

Durin
(widely	
equivale
perform
depends
adsorbe
adsorpt
surface	
detailed

For	th
summar
type	Qu
terms	o
diamete
grain	 siz
were	wi
with	a	s
and	in	th

Figure	
pellet	p

he	 hardening
ng	steps.		

ilicate	 phas
for	example
l	dissolution

6‐4	 shows
gation.	 On	t
s	that	are	c
nt	resins	hav
HY	905	at	
ance,	visible	

B.ET.	–	Spe

B.E.T.‐techni
Teller	and	d
ethod	 is	 bro
ng	to	the	sta

ng	the	meas
used	gases	
ent	 amount
ming	the	test
s	on	the	pre
ed	 at	 the	m
ion‐desorpt
can	 be	calc
d	description

he	determin
rized.	 The	 la
antachrome
of	 reducibil
er	within	the
ze	 of	 10‐12
ithin	the	siz
sample	weig
he	first	step

6‐4:	Polished
particles	(mid

g	of	the	res

es,	 might	 s
	within	the	
n	of	silicates

s	exemplar
the	left,	som
cut	 into	 qua
ve	been	used
a	ratio	of	1
in	Figure	6‐

ecific	Surfa

ique	 is	 nam
describes	an
oadly	 used,	
andard	DIN	I

urement	of	
are	nitroge
t	 of	 the	 gas
ts	at	a	certa
essure.	Whe
material’s	s
tion‐Isother
ulated	and	
n	of	the	testi

nation	withi
ab	 facility	a
e	NOVA	200
ity	 propert
e	same	grai
2.5	mm	 part
e	range	of	>
ght	of	7‐12	g
p	a	preheatin

d	sections	of	a
ddle)	and	sint

in	the	polis

till	 prevail.	
alcohol	that
s.		

ry	 finished
me	 pieces	o
arters	 and	o
d,	in	most	c
:1	was	decid
‐4	right	side

ace	Area	M

med	 after	 the
n	analysing	
especially	 fo
ISO	9277:20

the	specific
en	or	carbon
s	 is	 adsorbe
ain	and	cons
en	increasin
surface	 and
ms	can	be	
given	 as	su
ing	and	calc

n	this	inves
at	 the	 Chair	
0e.	To	meet
ies	 of	 thos
n	size	as	is	
icle	 diamete
>	6.3	and	<	1
g)	are	set	in
ng	for	degas

a	lump	ore	(le
ter	pieces	(rig

67	

shed	 section

Duri
impo
mate
smea
tran
(disi
be	re
addi
free	
has	
espe
with
inco
still	

These	 can	
t	is	used	for

d	polished	
of	 a	 (reduce
on	 the	 right	
ases	a	mixtu
ded	as	best	
e).	

Measurem

e	 inventors
method	of	s
for	 porous	b
014‐01	[159].	

c	surface	are
n	dioxide)	is
ed,	 dependi
stant	tempe
ng	the	press
d	desorbed
determined
rface	area	p
culation	met

tigation	wo
of	 Non‐Fer
t	the	circum
e	 coarser	p
subsequent
er	 is	 not	 su
10	mm.	In	ev
nside	the	gl
ssing	for	at	

eft),	
ght)	

EXPERIMEN

ns	 pass	 thro

ing	the	who
ortant	 to	a
erial	 due	
aring),	
sformation,	
integration)
etained	rega
tionally	 the
from	 crack
further	 be
ecially	 sinte
h	care	reg
mplete	 and
some	 wate
react	 with	
	cleaning	th

sections,	
ed)	 lump	o
pieces	 of	a
ure	of	the	re
for	the	furt

ent		

	Stephen	Br
sizing	surfac
but	solid	ma
	

ea,	an	equiv
s	passed	ove
ing	 on	 the	
erature	the	a
ure	within	t
	 on	 pressu
d	and	based
per	unit	ma
thods	and	m

rk	the	follow
rrous	 Metall
mstance	of	te
particles,	 it	
tly	used	for	
uitable	 for	 th
very	test	som
ass	sample	
least	three	h

NTAL	SETUP	AN

ough	 a	 num

ole	 preparat
avoid	 any	m
to	 mech
chemical	
reaction

	influences
arding	their
e	polished	
ks,	 open	 por
een	 taken	
r	 samples	h
garding	w
	 insufficien
r	 soluble	 co
water;	 eve
e	polished	s

ready	 for	
ore,	 in	 the	m
a	 (reduced)	
esin	Araldit	
ther	require

runauer,	Pau
ces	by	mean
aterials,	 and

valent	amou
er	the	samp
pressure	 an
adsorbed	ga
the	apparat
ure	 release
d	 on	 those	
ss,	mainly	g
models	see	el

wing	testing
lurgy	 which
esting	lump
was	 aimed
the	reducib
he	 testing	fa
me	particles
container	a
hours	at	350

ND	TESTING	F

mber	 of	 grind

tion	 proced
modification
hanical	 (b
	 (dis
n)	 or	
s.	 The	 phas
r	characteris
sections	 sh
res	and	scra
into	 accou
have	 to	 be	
water.	 Due	
nt	 sintering	
omponents,
en	 small	 por
sections)	ca

light	 mic
middle	 som
sinter	 samp
t	F	and	the	h
ements	(tran

ul	Hugh	Em
ns	of	gas	ads
d	can	be	car

unt	of	adsor
le.	At	the	su
nd	 tempera
as	amount	n
tus,	the	gas	
.	 Subseque
curves	 the
given	as	m2/
lsewhere	[15

g	parameter
h	was	used	
p	burden	ma
d	to	use	a	
bility	tests.	S
facility,	 the	
s	(between	
at	the	testin
0	°C	was	pe

FACILITIES	

ding	 and	

dure	 it	 is	
n	of	the	
breakout,	
solution,	
thermal	
ses	 must	
stics	and	
hould	 be	
atches.	 It	
unt	 that	
handled	
to	 an	
process,	
	such	as	
rtions	 of	
n	lead	to	

croscopic	
me	 pellet	
ple.	 Two	
hardener	
nsparent	

mmet	and	
sorption.	
rried	 out	

ptiongas	
urface	an	
ature.	 By	
now	only	
is	partly	
ntly	 the	
e	 specific	
/g.	For	a	
9–162].	

rs	can	be	
is	 of	 the	
aterial	in	
particle	
Since	the	
particles	
5	and	10	
g	facility	
rformed.	



EXPERIMENTAL	SETUP	AND	TESTING	FACILITIES	

68	

The	gas	used	for	 adsorption	was	nitrogen	and	the	 measuring	temperature	was	 77K.	 For	every	
raw	material	at	least	three	tests	with	a	positive	result	were	performed	and	the	resulting	mean	
value	is	subsequently	used	to	describe	the	specific	surface	of	the	material.		

6.2.4 Chemical	Analysis		

For	 the	 determination	 of	 the	 chemical	 analysis	 both	 for	 the	 raw	materials	and	the	reduced	
samples,	the	samples	were	sent	to	be	examined	at	the	laboratory	of	the	voestalpine	Stahl	Linz.	
Therefore	 a	 series	 of	 chemical	 and	 physical	 methods	 can	 applied	whereas	the	most	important	
ones	 used	 are	 titration	 for	 determining	 the	 metallic	 iron,	 Fe2+	and	further	Fe3+	and	X‐ray	
fluorescence	analyses	for	the	total	iron	content	and	the	elementary	analysis	[163–166].		

6.2.5 Definition	and	Determination	of	the	Loss	on	Ignition	(LOI)	

The	loss	on	ignition,	hence	the	release	of	crystallization	water	or	the	release	of	carbon	dioxide	
on	heating	under	inert‐gas	atmosphere	has	been	determined	prior	to	the	reducibility	testing	as	
part	of	the	raw	material	characterization.	Unlike	some	other	methods	used	in	this	case	the	loss	
on	 ignition	 only	 refers	 to	 the	 release	 of	 crystallization	 water	 within	 limonitic	 parts	 and/or	
calcination	of	siderite	parts	within	the	ore	according	to	the	decomposition	reactions		
	

→ 						 / 						 → 	 	

	
	Therefore	the	sample	portion	of	500	g	(the	same	sample	portion	that	is	subsequent	used	for	
reducibility	 testing)	 is	 set	 inside	 the	 vertical	 reduction	 aggregate	 (cf.	 0).	 Before	 starting	 the	
reduction,	test	the	material	is	heated	up	at	nitrogen	purging	until	reaching	950	°C	and	the	weight	
loss	is	recorded.	From	the	weight	loss	of	these	500	g	sample	portion	the	LOI	given	in	wt.‐%	can	
be	recalculated.		
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7 Methodology	of	Testing	

The	first	approach	to	the	behaviour	of	the	different	materials	after	the	characterization	of	the	
raw	 material	 by	 chemical	 and	 morphological	 characterization	 was	the	testing	at	standardized	
testing	 conditions.	 Since	 the	 standardized	 testing	 procedure	 ISO	 4695	 is	 the	 most	 commonly	
used	 and	 known	 standardized	 test,	 all	 the	 standard	 tests	 were	 executed	 according	 to	 that	
standard.	 This	 enables	 a	 comparison	 of	 the	 materials	 morphology	 and	 reduction	 behaviour.	
Additionally,	by	means	of	interrupting	some	tests,	the	morphological	evolution	of	the	different	
phases	can	be	seen.	Combining	these	results	with	the	testing	of	the	mechanical	behaviour,	a	first	
picture	of	the	different	ferrous	burden	material	can	be	given.		

For	the	next	testing	series,	different	considerations	have	been	taken	into	account.	On	the	one	
hand	an	attempt	to	depict	the	distinct	influence	of	single	process	parameter	variations,	whereas	
on	the	other	hand	it	was	hoped	to	describe	the	performance	at	conditions	 as	 they	 exist	 in	
industrial	scale	processes.	In	order	to	do	so,	testing	procedures	as	an	approach	to	blast	furnace	
and	 direct	 reduction	 facilities	 have	 been	 developed.	 According	to	 literature	 and	 industry	 data,	
time	dependent	temperature	and	gas	composition	profiles	are	determined	which	are	assumed	to	
best	 depict	 the	 conditions	 during	 the	 material’s	 descent	 of	 the	shaft	part.	Additionally	the	
material	 testing	 included	 a	 mechanical	 testing	 procedure,	 before	(for	raw	 material	
characterization)	and	after	each	and	 every	 testing	 procedure	 to	describe	the	evolution	of	the	
material’s	stability	behaviour	after	the	different	reducibility	treatments.		

Subsequent	 to	 the	 ISO	 testing	 and	 some	 modification	 of	 the	 standard,	in	total	five	different	
industrial	 scale	 testing	 conditions	 have	 been	 repeated	 for	 three	 iron	 ores,	 three	 pellet	 brands	
and	 two	 sinter	 samples.	 The	 following	 sections	 describe	 the	 methodology	 of	 testing	 and	 ideas	
behind	it.		

7.1 Calculation	of	the	actual	Reduction	Degree	(RD)		

According	to	the	definition	of	the	reduction	degree	given	in	4.1.3,	the	RD	can	be	calculated	by	

	1
1.5

∙ 100											 														 														 	%																								7 1	
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whereby	O	are	the	moles	oxygen	bound	to	iron	and	Fetot	are	the	moles	of	iron	within	the	
sample.	 The	 reduction	 degree	 of	 0	%	 refers	 to	 pure	 hematite	 and	100	%	to	pure	metallic	iron.	
During	the	test	the	reduction	degree	is	calculated	online	as	a	result	of	the	continuous	weight	loss	
of	the	sample.	Therefore	the	oxygen	content	bound	to	iron	(given	in	g)	of	the	sample	has	to	be	
calculated.	For	this	purpose	the	reduction	degree	of	the	raw	material	(i.e.	magnetite	content)	has	
to	be	taken	into	account	by	calculating	a	pre‐reduction	degree.		
	

 Calculation	of	the	O‐content	and	the	pre‐reduction	degree		
	

The	theoretical	oxygen	content	Otheor	of	the	sample	portion	considers	the	sample	portion	as	only	
consisting	of	hematite,	hence	fully	oxidized	with	a	reduction	degree	of	0.		

	

	 	 ∙
100

∙
3

2
∙
16 

56 
																																		7 2	

	

The	sample	portion	is	known	from	the	sample	preparation	and	is	defined	with	500	±1	g	and	the	
wt.‐%	of	total	iron	(Fetot)	is	known	from	the	chemical	analysis.	Since	known	from	the	chemical	
analysis	that	not	all	raw	materials	are	fully	oxidized	to	Fe2O3,	the	actual	oxygen	content	Oact	takes	
possible	magnetite	parts	into	account:	
	

	 	 ∙ 	 ∙ 0.22 	 ∙ 0.30																			7 3	
	

where	 the	 wt.‐%	 of	 FeO	 and	 Fe2O3	 refer	 to	 those	 from	 the	 chemical	 analysis.	 The	 difference	 of	
those	to	O‐contents	is	referred	to	the	pre‐reduction	degree	RDpr	of	the	raw	material.		

	

	% 																																																														7 4	

	

 Online	calculation	of	the	reduction	degree	
	

The	reduction	degree	can	generally	be	described	as	the	ratio	of	oxygen	that	has	been	removed	
from	 the	 crystal	 lattice	 of	 the	 iron	 oxide	 and	 the	 overall	 oxygen	 content	 prevailing	 in	 the	 raw	
material,	 the	 change	 of	 reduction	 degree	 during	 the	 process	 (depending	 on	 the	 time	 t)	 can	 be	
calculated	by:		
	

∆
	 	

∙ 100												 		%																		7 5	

whereby	both	oxygen	contents	are	given	in	gram.	The	overall	reduction	degree	at	every	stage	of	
the	reduction	process	can	furthermore	be	given	as:	

			

	 ∆ 																																																													7 6	

It	is	this	reduction	degree	RD	that	is	subsequently	used	in	describing	the	reduction	progress	at	
every	stage	for	every	test	result.		

From	the	reduction	curves,	as	a	result	of	the	weight	loss	recorded,	the	reduction	rate	dR/dt	is	
subsequently	 calculated	 and	 described.	 Therefor	 the	 weight	 loss	 curves	 are	 smoothed	 by	



impleme
describe
indicatio

7.2

The	s
quite	sim
of	the	te
summar

A	sam
constan
tempera
30	l/min
process	
stage	is	

7.2.1 D

As	 an
Figure	7
weight	l
plots	lik

	

	
The	 we
designat
can	be	d
for	ever
the	time
is	calcul

enting	 a	 sp
es	 the	 redu
on	of	the	pro

2 Reduc

standardized
mple	test	bu
esting	 proce
rized	and	th

mple	portion
t	 nitrogen	
ature	homog
n	N2	and	20	
data	is	mea
calculated	a

Descriptio

n	example	o
7‐1.	 The	 tem
loss	(grey)	a
ke	these	the	

Figure	7‐

ight	 loss	 du
ted	as	LOI	(
determined.	
ry	test	result
e	needed	to	
lated	from	th

line	 followe
uction	 rate	
ogress	of	re

ibility	Te

d	testing	pr
ut	at	the	sam
edure	 is	 giv
he	way	of	eva

n	of	500±1	g
purging	 g
genization	t
l/min	CO,	w
asured	at	5	
and	plotted.	

on	of	the	E

of	 the	 evalu
mperature	
and	the	calc
following	re

‐1:	Example	o

uring	 the	h
c.f.	6.2.5).	Fr
First	it	is	im
t	and	is	assu
gain	80	%	r
he	time	nee

ed	by	the	ca
at	 any	 poi
duction.		

ests	–	Sta

rocedure	 acc
me	time	the	r
ven	 elsewhe
aluating	the

g	is	set	insid
as	 flow	 of
ime	of	10	m
which	corres
seconds	int
	

valuation	

ation	 of	 the
of	the	samp
culated	redu
esults	and	co

of	the	record

heating	 peri
rom	the	red
mportant	to	
umed	to	des
removal	of	o
ded	to	reach

71	

alculation	o
int	 during	

andardize

cording	 to	I
results	are	v
ere	[52]	but	n
e	results	is	g

de	the	verti
f	50	l/min.	
minutes,	the	g
sponds	to	a	
tervals	and	

–	ISO	4695

e	results,	te
ple	(thin	gr
uction	degre
onclusions	c

ed	data	and	i

iod	 is	 relate
duction	curv
mention	th
scribe	a	mat
oxygen.	The	
h	a	RD	of	30

of	 the	 first	d
the	 reducti

ed	Testin

ISO	 4695	[5

very	express
nevertheless
iven.		

ical	reductio
On	 reachi
gas	compos
GOD	of	0.	T
additionally

5	

est	 data	 of	a
rey	 line),	 th
ee	(black)	v
can	be	deriv

interpretation

ed	 to	 the	r
ves	two	impo
he	value	for	R
terials	perfo
value	(dR/d
0	and	60	%	r

MET

derivative.	T
ion	 process

ng	Proced

2]	is	a	comm
sive.	The	ex
s	the	import

on	facility	an
ng	 950	°C	
ition	is	swit
he	weight	lo
y	the	reduct

a	 limonitic	
he	 gas	 flow	
versus	time	
ved.		

n	of	characte

elease	 of	 cr
ortant	stand
RD80;	this	is
ormance	wel
dt)40	gives	t
respectively

THODOLOGY	OF

This	 first	 de
s	and	gives

dure	

monly	 execu
xact	ways	an
tant	 parame

nd	heated	u
and	 an	 ad
tched	to	a	m
oss	beside	a
tion	degree	

iron	 ore	 is	
(dashed	 lin
are	compile

	

ristic	values	

rystal	 wate
dardized	par
s	subsequen
ll.	RD80	is	de
the	reductio
y.	

F	TESTING	

erivative	
s	 a	 good	

uted	 and	
nd	means	
eters	 are	

up	under	
dditional	
mixture	of	
any	other	
at	every	

given	 in	
nes),	 the	
ed.	From	

er	 and	 is	
rameters	
tly	given	
efined	as	
n	rate.	It	



METH

7.2.2 M

The	fi
the	ISO	
consists
by	 10	%
further	
are	 eith
Table	7‐
the	port
mixture
to	 6	%	H
hydroge

	

Figure
ISO	46

7.3

For	a
profiles,
the	 one
restricti
standard
facilities
calculati
For	 a	 fu
respect	
gas	 com

ODOLOGY	OF	T

Modificati

irst	approac
4695	standa
s	only	of	CO	
%	CO2	in	the
modified	by
her	 graphica
‐I.	Additiona
tion	of	hydr
e	only	compo
H2	respectiv
en	addition	d

e	7‐2:	Gas	com
695	condition

3 Reduc

a	testing	pro
,	some	cons
e	hand	the	
ion.	 On	 the	
dized	testin
s.	 With	 the
ion	or	exper
urther	 desc
to	the	differ
mposition	 at

TESTING	

ion	of	ISO	4

ch	to	more	i
ardized	test
and	N2)	the
e	gas	mixtu
y	adding	3	a
ally	 given	 in
ally,	the	shi
rogen	within
osed	of	CO/
vely.	 Howev
does	not	cau

mposition	of	
ns	

ibility	Te

ocedure	 tha
siderations	h
tests	 cann
other	 hand
ng	procedure
e	start‐up,	
riment,	the	
ription	 of	t
rent	position
t	the	initial	

	

4695	

industrial	sc
t.	Whereas	t
	same	test	w
ure).	For	a	f
nd	6	%	H2	(
n	the	Baur‐G
ft	of	the	sta
n	the	gas	ca
/CO2	wherea
ver,	 from	 a	t
use	any	grea

different	mod

ests	–	Ind

at	 approxim
have	 been	t
not	 exceed	
d	there	is	th
e	and	the	di
by	 consider
parameters
the	 material
ns	within	a	s
stages	 of	r

72	

∙ 100 8

33.3
∙100

cale	related
the	original	t
was	execute
further	 dep
(substitution
Glaessner	 di
ability	fields
an	be	seen	in
as	the	dashe
thermodyna
at	changes.	

	
dified		

dustrial	S

mates	 reality
taken	 into	a
a	 temperat
he	 need	 to	s
ifferent	testi
ring	 differe
s	for	the	blas
ls	 behaviou
shaft	furnac
reduction	 a

80	%										

0					 	

	testing	con
testing	cond
d	with	a	GO
iction	 of	 th
n	of	CO	resp
iagram	 in	 F
s	of	the	Bau
n	this	figure
ed	line	refer
amical	 poin

Scale	Pro

y	by	means	
account	 whe
ture	 of	 100
still	 be	 som
ing	procedu
ent	 literatur
st	furnace	te
ur	 within	 an
ce	are	consid
s	well	as	at

 I
4

 

CO 

CO2 

H2 

N2 

Tabl

		 		

%/ 							

nditions	led	
ditions	presc
D	of	0.10	(b
e	hydrogen
ectively),	th
igure	 7‐2	 or
r‐Glaessner
e.	The	solid	
rs	to	3	%	H2
t	of	view,	th

cess	Con

of	 tempera
en	 defining	
00	°C	 becau
mewhat	 com
ures	for	BF	a
re	 data,	 wh
esting	proce
n	industrial	
dered	by	me
t	the	final	s

SO 
695 

GOD
0.1 

40  36  

-  4  

-  -  

60  60  

e	7‐I:	Gas	com
ISO	469

																						

																						

to	a	modifi
cribe	a	GOD
by	substituti
n	 effect	 the	
he	testing	co
r	 in	 tabular
r	diagram	ca
grey	line	re

2	and	the	do
his	 small	 po

nditions		

ature	 depen
the	 parame
use	 of	 the	
mparable	 to	
and	direct	r
hether	 atta
edure	could	
	 scale	 proc
eans	of	chan
stages.	 As	a

D     
GOD     
0.1   

3	% H2 

[vol.-%] 

6 33  

4 

3 

0 60  

mposition	of	m
95	testing	pro

7 7	

7 8	

cation	of	
D	=	0	(gas	
ion	of	CO	
test	 was	
onditions	
r	form	in	
aused	by	
efers	to	a	
otted	line	
ortion	 of	

dent	 gas	
eters.	 On	
facility’s	
both	 the	
eduction	
ined	 via	
be	fixed.	
ess	 with	
nging	the	
a	further	

GOD 
0.1   

6	% H2 

30 

4 

6 

60 

modified	
ocedures



approac
attentio
adapted
facility,	

7.3.1 A

From
the	shaf
the	 upp
particul
the	 sha
Concom
reaction

	

	

	

	

	

	

	

	

	

	

	

	

For	th
of	 reduc
consider
concent
gas	com
materia
along	th
of	CO	in
at	its	gr
reaching
materia
reaching

These
way.	 To
tempera

ch	to	the	mo
n	 is	 paid	 to
d	to	the	dire
respectively

Approach	

	a	theoretic
ft	part	of	the
per	 part	 of	
arly	hot	and
aft	the	tem
mitantly,	 the
ns.		

F

he	determin
ction	 as	 we
red	[7,8,10,13,19

tration	 profi
mponent	H2,	
l)	 of	 the	 bla
he	shaft	(at	a
ncreases	and
reatest	 with
g	 950	°C.	 Al
ls	and	gas	
g	950	°C	at	w

e	circumstan
o	eliminate	t
ature	(mark

odern	blast	f
o	the	effect	
ect	reductio
y.		

to	the	BF‐

al	point	of	v
e	blast	furna
the	 furnace
d	has	a	low	r
perature	 co
e	gas	comp

igure	7‐3:	Bla
accord

nation	of	the
ell	as	the	fin
9,84,167].	 As	
iles	 are	 give
CO2	and	CO
ast	 furnace	
a	percentag
d	CO2	decrea
hin	a	temper
lso	 at	 the	 u
temperatur
which	point	

nces	have	n
the	 effect	o
ked	as	 Point

furnace	iron
of	 small	 hyd
n	route	of	i

‐Profile		

view,	the	dec
ace	can	be	e
e,	 the	 top	 ga
reduction	p
ontinuously
osition	 cha

ast	Furnace	t
ding	to	Biswa

e	temperatu
nal	 stages	a
an	 examp
en	 in	 Figure
O	along	the	h
is	 shown.	I
ge	of	5	%	(le
ases	as	the	m
rature	 range
pper	 parts	
re	 respectiv
they	only	sl

now	been	ap
f	 LOI,	 the	r
t	I	in	the	su

73	

nmaking	by	
drogen	 amo
ronmaking	

cent	of	the	m
envisioned	a
as	 that	 the	
otential.	Wh
y	rises	due	
anges	 durin

	
	

temperature	a
as	[8]	(left)	and

ures	and	gas
a	variety	of	
ple	 of	 thes
e	7‐3.	The	c
height	(and	
It	 can	 be	 se
eft)	and	2	%
material	mo
e	 of	 500	 an
of	the	shaft
vely,	 is	 incr
lightly	incre

pplied	in	de
reduction	 pr
bsequent	fi

adding	hyd
ounts.	 The	s
and	the	sha

materials	an
as	follows.	W
material	 g
hile	the	iron
to	the	co
ng	 the	 upflo

and	gas	conc
d	Gudenau	[7]

s	compositio
fliterature	a
se,	 two	 dif
hange	 of	 te
correspond
een	 that	 the
%	(right)	resp
oves	downw
nd	 950	°C	 an
t	the	gas	co
reasing	 in	a
ease	further

fining	a	test
rocedure	 sta
gures	and	t

MET

rocarbons	a
same	 consid
aft	part	of	a

nd	the	ascen
When	the	m
ets	 in	 conta
n	bearing	ma
untercurren
ow	 due	 to	

entration	pro
(right)		

on	profiles	f
and	 operati
fferent	 tem
mperature	
dingly	the	re
e	H2	 content
pectively),	w
wards.	The	C
nd	roughly	s
mposition	h
an	 almost	l
.			

ting	procedu
arts	 at	 reac
ables)	with	

THODOLOGY	OF

as	an	additio
derations	 ha
a	smelting	r

nt	of	the	gas
material	is	ch
act	 with	 fir
aterial	is	des
nt	 flow	 of	
different	o

ofiles															

for	the	initi
ional	 data	h
mperature	a
and	 each	 in
esidence	tim
t	 is	 almost	
whereas	the
O	and	CO2	c
stays	 consta
hardly	 chan
linear	 patte

ure	in	the	f
ching	 300	°C
	a	reducing

F	TESTING	

onal	fuel,	
ave	 been	
eduction	

	through	
harged	at	
st	 is	 not	
scending	
the	 gas.	
oxidation	

																									

al	stages	
has	 been	
and	 gas	
ndividual	
me	of	the	
constant	
e	amount	
change	is	
ant	 upon	
nges.	 The	
ern	 until	

following	
C	sample	
g	gas	of	a	

																



METH

distinct,
heating	
reached
potentia
which	 c
zone	of	
tempera
correspo
compos
950	°C)	
reached

Since	
fluidized
assumed
reductio
part	in	a

7.3.2 B

The	n
of	the	in
procedu
as	iron	c

Accor
determi
tempera
have	be
the	form
overall	p
the	GOD
quite	na
is	 rathe

ODOLOGY	OF	T

,	but	weak	
from	 500	°
d,	the	gas	com
al.	This	temp
corresponds
a	blast	furn
ature	 (black
onds	to	a	he
ition	stays	c
the	gas	com
d	a	RD	of	80	

Figure	7

it	 is	 know
d	bed	reacto
d	that	a	co
on	performa
a	shaft	furna

BF‐Profile

next	approac
nitial	and	fin
ures	the	sam
carrier.		

rding	 to	 dif
ined	as	show
ature	profile
een	chosen	a
mation	of	me
performanc
Ds	for	these	
arrow	to	the
er	 small.	 It	

TESTING	

reduction	
°C	 (Point	 II
mposition	li
perature	and
s	 to	 the	 time
nace.	In	Figu
k	line)	is	li
eating	rate	o
constant.	Du
mposition	ap
%	(or	for	a	

7‐4:	Example	

wn	 from	 lite
ors)	that	the
ontinuous	
ance.	Additi
ace,	the	influ

e	–	Effect	o

ch	of	depict
nal	GOD	for	
me	hematitic

fferent	 data
wn	in	the	Ba
e	stays	the	s
at	0.46	and	
etallic	iron	(
ce.	Because	o
	stages	have
e	equilibrium
is	 assumed

potential	(
I)	 until	 the	
inearly	chan
d	gas	compo
e	the	mater
ure	7‐4	one	e
inearly	 risin
of	7.2	K/min
uring	the	ne
pproaches	th
maximum	o

for	the	devel

rature	[43,68,

e	first	reduc
change	 of	
onally	due	t
uence	of	diff

f	Initial	an

ting	the	dist
different	bl
c	ore	(c.f.	Ch

a	two	differ
aur‐Glaessn
same	for	all	
0.54;	it	is	a
(or	intermed
of	the	even	
e	been	chos
m	line	of	Fe‐
d	that	the	d

74	

(comparable
maximum	
nges	to	the	f
osition	is	ke
ials	 need	 to
example	of	t
ng	 from	 30
n.	For	the	fir
ext	60	minut
he	final	GOD
of	210	minut

loped	temper

,94,130]	(at	le
ction	signifi
gas	 compo
to	the	great
ferent	reduc

nd	Final	GO

tinct	influen
last	furnace
hapter	raw	m

rent	 initial	
er	diagram	
	the	four	di
assumed	tha
diate	oxides
more	sever
sen	at	0.10	
‐FeO	and	th
decrease	 of	

e	to	top	ga
testing	 tem
final	compos
pt	constant	
o	descend	th
the	derived	
00	°C	 to	 950
rst	30	minut
tes	(and	sim
D	and	is	kep
tes).		

rature	and	ga

east	 for	 the	
icantly	influ
osition	 and	
t	differences
ction	potenti

OD		

nce	of	single	
operation	m
material	des

and	 two	d
in	Figure	7‐
fferent	testi
at	due	to	the
)	will	differ	
e	difference
and	0.28.	T
erefore	the	
GOD	 to	 0.1

as	 composit
mperature	 (
sition	with	a
for	a	maxim
he	 indirect	(
testing	pro
0	°C	 within	
tes	until	reac
multaneous	h
pt	constant	u

as	concentrat

reduction	
ences	the	ov
temperatur
s	between	th
ials	needs	to

process	par
modes.	For	t
scription)	ha

different	 fin
‐5	whereby	
ing	conditio
e	different	r
and	subseq
e	at	the	final
he	lower	re
thermodyn
10	 will	 noti

tion).	 Upon
(Point	 III)	h
a	stronger	r
mum	of	300	
(gaseous)	 r
cedure	is	gi
90	 minute
ching	500	°C
heating	from
until	the	sam

	

tion	profiles	

of	 iron	 ore	
overall	outco
re	 will	 cha
the	centre	a
o	be	demons

rameter	is	v
the	differen
as	always	be

nal	GOD	ha
the	time	de
ons.	The	init
reduction	p
quently	influ
l	stages	of	r
eduction	pot
namical	drivi
iceably	 enha

n	further	
has	 been	
eduction	
minutes,	
eduction	
iven.	The	
es	 which	
C	the	gas	
m	500	to	
mple	has	

fines	 in	
ome,	it	is	
ange	 the	
nd	outer	
strated.		

variation	
nt	testing	
een	used	

ave	 been	
ependent	
tial	GODs	
otentials	
uence	the	
eduction	
tential	is	
ing	force	
ance	 the	



		

reductio
testing	p

	

	

	

	

Withi
0.10	is	r

7.3.3 B

In	ord
of	H2	–	g
to	 the	t
reducing
hydroca
In	or

gas	 by	s
tempera
the	Bau
for	addi
	
	

	

	

	

	

	

	

	

	

	

	

Figu
prof

on	performa
procedures	

in	 the	 subse
refered	as	th

BF‐Profile

der	to	meet	
generated	b
tuyères	 –	 ar
g	agent	inc
arbons	whic
rder	to	depic
substituting
ature	and	tim
r‐Glaessner
ng	3	%	H2	a

 

 

I 
(300	°
II 

(500	°
 

III
(950	°

Table	7‐III:	G

ure	7‐5:	Testi
files	with	diff

ance.	The	ex
are	summar

equent	 inve
he	so	called	b

e	–	Effect	o

the	require
by	injection	
re	 taken	 int
reases	 the	
h	decompos
ct	these	circ
g	the	same	
me	steps)	st
r	diagram	st
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7.3.4 Approach	to	Direct	and	Smelting	Reduction		

To	develop	testing	conditions	such	as	those	which	can	be	found	in	 shafts	 parts	 of	 different	
direct	and	smelting	reduction	facilities,	the	same	considerations	have	been	taken	into	account	as	
for	the	BF	conditions.	In	order	to	keep	the	most	possible	comparability,	 some	 parameters	 are	
still	kept	constant	while	others	have	been	adapted	for	the	different	 processes.	 In	 the	 end	 two	
different	testing	procedures,	one	for	depicting	a	direct	reduction	 facility	 and	 one	 as	 a	
representative	for	the	shaft	part	of	a	smelting	reduction	process,	have	been	developed	and	are	
graphically	 described	 within	 the	 Baur‐Glaessner	 diagram	 in	 Figure	7‐6	and	the	exact	gas	
compositions	at	every	stage	are	summarized	in	Table	7‐IV.		

Based	on	the	blast	furnace	testing	conditions	BF1	–	BF3	the	initial	and	final	GODs	remain	the	
same	at	0.46	and	0.10	respectivly.	The	heating	pattern	differs	in	that	due	to	the	shorter	time	the	
material	takes	to	descend	the	shaft	compared	to	a	blast	furnace,	the	heating	rate	is	increased	and	
hence	the	time	for	heating	up	from	300	°C	to	the	final	testing	temperature	is	shortened	from	90	
to	60	minutes.	The	concept	of	a	constant	gas	composition	from	300‐500	°C	 remains	 the	 same,	
and	 also	 the	 linear	 change	 in	 gas	 composition	 from	 500	°C	 to	 the	 final	 temperature	 and	 gas	
composition.	According	to	literature	[10,23,24]	and	internal	sources,	[59]	the	gas	compositions	of	the	
two	testing	profiles	DR1	and	DR2	have	been	chosen	as	follows.	For	the	DR1	(dark	grey	in				
Figure	7‐6)	test	the	final	temperature	 is	 restricted	 to	 800	°C	which	 is	 distinctly	 lower	 than	 for	
BF.	At	the	moment	of	reaching	800	°C	the	gas	composition	has	a	rather	high	hydrogen	amount	of	
25	%	which	is	assumed	to	compensate	for	the	lower	kinetics	due	to	the	lower	temperature.	For	
the	dipiction	of	another	direct	reduction	facility	the	DR2	testing	profile	(light	grey	in	Figure	7‐6)	
the	final	temperature	is	specified	at	850	°C	and	additionally	the	hydrogen	is	further	increased	to	
54	%	altough	the	gas	is	enriched	with	water	vapour	to	an	extent	of	27.6	%	for	the	initial	stages	
and	6	%	at	the	final	stages.		

In	the	figure	the	modification	and	the	shift	of	the	equlibrium	conditions	of	the	Baur‐Glaessner	
diagram	are	also	shown.	For	the	conditions	DR2,	especially	at	the	initial	stages	the	reduction	is	
assumed	 to	 be	 very	 retarded	 due	to	 the	 chemical	 equllibrium	 in	addition	 to	 the	 inhibited	
kinetics.	With	these	five	different	testing	conditions,	the	behaviour	of	the	different	materials	at	
most	 industrial	 scale	 processes	 is	 assumed	 to	 have	 been	 described	 and	 an	 estimation	 of	 a	
material’s	behaviour	can	be	given.		

 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

  
BF1 

0	% H2 
    BF2 

3	% H2 
  BF3 

6	% H2 
DR1 DR2 

 [vol.%] 

I      
(300 °C) 
II     

(500 °C) 
 

CO  27.0   24.0   21.0   39.0   21.6  

CO2 23.0   23.0   23.0   46.0   18.4  

H2 -   3.0   6.0   15.0   32.4  

H2O  -   -   -   -   27.6  

N2 50.0   50.0   50.0   -   -  

GOD  0.46  

III 
(950 °C) 

CO  45.0   42.0   39.0   65.0   36.0  

CO2 5.0   5.0   5.0   10.0   4.0  

H2 -   3.0   6.0   25.0   54.0  

H2O  -   -     -   6.0  

N2 50.0   50   50.0   -   -  

GOD  0.10  

Table	7‐IV:	Gas	compositions	and	GODs	at	different	stages	for	all	process	related	testing	conditions.
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These	 two	 values	 have	 been	 determined	 to	 describe	 the	 mechanical	 properties	 in	 the	 best	
possible	way	by	keeping	it	simple.	If	the	material	tends	to	disintegrate,	as	a	raw	material	as	well	
as	after	the	different	reduction	procedures,	the	DT	value	will	increase.	 On	 the	 other	 hand	 the	
values	for	AT	are	desirably	low	for	material	with	good	mechanical	stability.	More	often	than	not,	
both	of	these	values	for	describing	the	mechanical	performance	tend	to	follow	the	same	trend.	If	
the	raw	materiaĺs	properties	are	weaker	and	even	at	room	temperature	without	any	reduction	
progress	 the	 tumbling	 procedure	 leads	to	distinct	increase	of	crumbling	 and	 abrasion,	 most	
likely	 the	 material’s	 performance	 will	 not	 improve	 during	 the	 reduction	 progress.	 The	 volume	
changes	during	reduction,	release	of	the	crystallisation	water	or	other	volatile	components	and	
finally	the	oxygen	release	via	gas	phase	will	additionally	weaken	the	structure.		

It	has	to	be	noted	that	the	values	for	DT	and	AT	cannot	directly	 be	 correlated	 to	 the	
standardized	RDI	values.	All	those	subsequently	described	DT	and	 ATs	 are	 related	 to	 the	 RDI	
values	 but	 are	 not	 exactly	 the	 same.	 They	 are	 a	 result	 of	 the	 different	 reduction	 testing	
procedures	(both	standardized	and	industrial	scale	related),	a	standardized	tumbling	procedure	
(ISO	 4696)	 and	 a	 standardized	 sieving	 and	 calculation	 procedure.	 Nevertheless	 these	 artificial	
and	newly	created	parameters	can	give	a	comparison	of	the	different	 testing	 procedures	 and	
materials	 and	 are	 assumed	 to	 be	 perfectly	 suitable	 to	 describing	 a	 material’s	 performance	 in	
terms	of	mechanical	stability.		
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8 Raw	Material	Characterization	

As	part	of	this	work	the	different	raw	materials	have	been	investigated,	 since	 grain	 size,	
mineralogical	 composition	 of	 grains,	 crystal	 size,	habitus,	 intergrowth	 conditions,	 porosity	 and	
specific	surface	of	grains,	as	well	as	those	of	crystals	are	known	as	main	reducibility	controlling	
parameters	 for	 burden	 material.	It	can	be	pointed	out	that	whenever	 a	 materials	 performance	
needs	to	be	depicted,	the	majority	of	the	subsequent	reduction	performance	can	be	explained	by	
taking	into	account	the	raw	material’s	structure,	chemistry	and	morphology.		

Having	 listed	 the	 whole	 spectrum	 of	 influencing	 parameters	 on	 reducibility	 and	 mechanical	
behaviour	within	the	prior	chapter,	this	knowledge	combined	with	 the	 raw	 material’s	
characterization	 by	 means	 of	 chemical	 analysis,	 specific	 surface	area	measurement	and	finally	
light	microscopic	means	will	contribute	to	a	better	comprehension	of	the	interaction	of	material	
structure	and	the	reduction	performance.		

In	total	eight	different	raw	 materials	were	investigated.	In	a	first	 approach,	 for	 a	
comprehension	 of	 the	 behaviour	 of	 different	 mineralogical	 and	 structural	 types,	 three	
representative	 globally	 treated	 iron	 ores	 were	 selected.	 To	 further	 depict	 the	 effect	 of	 an	
addition	of	binding	phases	as	well	as	the	burning	step	as	a	kind	of	pre‐treatment,	three	different	
pellet	brands	(also	globally	traded	and	used	for	industrial	scale	applications),		were	studied	in	
the	same	way.	At	the	last	step,	due	to	the	most	complex	mineralogical	 and	 morphological	
structure,	two	sinter	samples	from	the	production	line	of	two	different	sinter	plants	as	well	as	
three	lab	scale	produced	sinter	samples	were	investigated.			

8.1 Chemical	Analysis,	LOI	and	B.E.T.	

 Calculation	of	the	Fe2O3	and	Fe3O4	portions	
	

The	 chemical	 analysis	 was	 performed	 by	 the	 laboratory	 of	voestalpine	Stahl	GmbH	in	 Linz	
according	to	wet	chemical	analysis	and	XRF‐analysis	with	the	methods	as	described	above.	With	
the	information	about	the	total	iron	content	Fetot,	the	portion	of	metallic	iron	Femet	and	the	FeO	
content	 (as	 a	 result	 of	 the	 Fe2+	value)	from	these	analyses	and	the	assumption	that	within	the	
raw	material	Fe2+	only	prevails	as	magnetite	(Fe2O3·FeO	c.f.	Chapter	3)	the	following	statements	
can	be	derived.		
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With	 the	 assumption	 that	 the	 total	 iron	 content	 Fetot	comprises	the	sum	of	metallic	iron	parts	
Femet	and	the	oxides	FeO	and	Fe2O3	(given	in	wt.‐%)	it	can	be	calculated	as:	
	

% % 	 % 	 ∙
	 ∙

	 ∙
% ∙

∙ 	 ∙

	 ∙
																			8 1			

	
After	rearranging	the	equation	the	hematitic	portion	can	be	given	as:		
	

% % % % ∙ 0.733∙ 1.429∙ 100%																				8 2		

	

The	chemical	analysis	of	the	investigated	materials	is	summarized	in	Table	8‐I	and	reveals	the	
differences	in	the	raw	material.	Out	of	three	iron	ores	it	can	be	seen	that	Iron	Ore	2	consists	of	
more	 or	 less	 pure	 magnetite	 whereas	 the	 other	 ores	 contain	 hardly	 any	 magnetite	 as	 derived	
due	to	the	absence	of	FeO.	Due	to	the	quite	low	amount	of	FeO	within	the	pellet	samples,	it	can	
be	 assumed	 that	 the	 induration	 process	 was	 successfully	 executed,	and	all	the	(possibly)	
prevailing	 magnetitic	 parts	 of	 the	raw	ore	prior	to	pelletization	have	been	fully	oxidized	to	
hematite	during	the	burning	process.		

	Within	 the	 sinter	 samples	 some	 FeO	 parts	 still	 prevail.	 This	 can	 indicate	 two	 different	
phenomena,	first	the	insufficient	oxidation	during	the	sintering.	 If	 magnetitic	 ore	 or	 recycling	
material	is	mixed	to	the	raw	sinter	burden	it	may	be	that	due	to	 locally	 insufficient	 sintering	
conditions	(not	enough	temperature	or	hot	air	stream)	the	sinter	 mixture	 is	 not	 fully	 oxidized	
during	 sintering.	 Rapid	 cooling	can	also	cause	magnetite	residues	 because	 of	 a	 suppressed	
oxidization	in	the	solid	state	(martitization).	Another	possible	source	of	Fe2+	might	be	because	of	
already	reduced	parts	of	hematite.	Because	of	locally	appearing	reducing	conditions	due	to	the	
insufficient	combustion	of	fuel	some	hematite	parts	can	be	reduced	during	sintering.	However,	
this	effect	is	assumed	to	disappear	on	cooling	(and	reoxidizing)	for	the	most	part	and	therefore	
at	least	wustite	is	not	likely	to	be	present	within	the	cooled	sinter.	 The	 investigated	 sinter	
samples	 show	 moderate	 and	 comparable	 values	 for	 FeO	 which	 indicates	a	proper	sintering	
process	with	uniform	conditions	within	the	considered	sample	amount.		
	

 Gangue	Content	and	Basicity	Values	
	
From	the	chemical	analysis	and	the	calculated	portions	of	the	elements	oxides	respectively,	the	
characteristic	 value	 for	 the	 gangue	 content	 (as	 a	 percentage	 of	 mass)	 can	 be	 given	 just	 as	 the	
basicity	values	B2	and	B4	can	be	calculated	according	to		
	

	 																						8 3																										 																						
	

																			8 4	

	
whereby	the	gangue	content	refers	to	the	sum	of	those	four	oxides.	The	lower	the	basicity	value,	
the	more	acidic	the	designation	of	a	raw	material.	It	has	to	be	noted	that	all	mentions	of	basicity,	
if	not	noted	otherwise,	refer	to	the	B4	value.	

From	the	chemical	analysis	it	can	be	derived	that	only	the	magnetitic	 ore	 has	 a	 considerably	
high	amounts	of	gangue	material	combined	with	an	unusual	high	value	for	B4	for	iron	ores;	since	
most	of	the	gangue	material	of	iron	ores	is	of	an	acidic	nature.	It	can	be	assumed	that	this	ore	
was	sourced	directly	from	the	mine	without	any	beneficiation,	which	explains	the	high	level	of	
silicate	 and	 apatite	 still	 present.	 The	 other	 two	 ores	 contain	hardly	 any	 other	 oxides	 besides	
silicates	and	therefore	the	B4	is	very	low,	and	the	overall	amount	of	gangue	is	also	quite	low.		

The	Pellet	Brands	1	and	3	have	a	rather	similar	chemistry	with	around	5.5	%	slag	forming	and	
binding	material	and	a	basicity	value	of	around	1.	In	contrast	to	that,	Pellet	Brand	2	has	a	larger	
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slag	phase	portion	and	very	low	basicity,	which	is	a	result	of	a	very	high	portion	of	silica	(almost	
triple	the	silica	portion).		

The	Sinter	Samples	consist	of	up	to	almost	one	quarter	of	gangue,	slag	or	binding	phases.	It	has	
to	 be	 noted	 that	 the	 origin	 of	 the	 sinter	 samples	 is	 different	between	 Samples	 1	 and	 2	 and	
Samples	3‐5	respectively.	Samples	1	and	2	originate	from	industrial	scale	sinter	plants,	whereas	
the	others	derive	from	lab	scale	tests	by	means	of	a	sinter	pot	 sintering	 procedure.	 Whereas	
Sinter	 Sample	 4	 consists	 of	 100	%	 sinter	 feed,	 hence	 comparable	 to	 the	 industrially	 produced	
samples,	Samples	3	and	5	consist	of	special	mixtures.	Sinter	5	consists	of	a	mixture	of	sinterfeed,	
pelletfeed	 and	 micropellets	 and	 Sample	 3	 consists	 of	 a	 large	 portion	 of	 iron	 oxide	 containing	
concentrate.		

Sinter	Sample	1	has	quite	a	low	basicity	(which	is	not	too	usual	for	sinters)	whereas	Sample	2	
has	a	higher	B4	value.	Samples	4	and	5	have	the	highest	B4	values	at	almost	2,	which	is	quite	high.	
The	overall	slag	content	is	within	the	same	range	for	the	industrial	sinters	1	and	2,	as	is	the	FeO	
content.	The	main	difference	between	these	two	Sinter	Samples	is	 the	 increased	 CaO	 content	
with	a	difference	of	4	%.	The	sinter	pot	sinter	samples	differ	in	a	wider	range.	Sinter	3	consists	of	
almost	 10	%	 SiO2	and	15%	CaO,	which	make	the	basicity	lower	but	the	overall	slag	 amount	 is	
high	at	28	%.	The	Samples	4	and	5	have	quite	a	similar	chemical	analysis	with	a	low	silica	
content	and	a	low	slag	amount.	

	
Table	8‐I:	Chemical	composition,	specific	surface	and	basicity	of	the	raw	materials	investigated	

 Loss	on	ignition	(LOI)	
	

From	the	investigation	concerning	the	loss	on	ignition	and	therefore	describing	the	portion	of	
limonite	 and/or	 siderite	 only	 the	 third	 ore	 showed	 any	 loss	 on	ignition	 to	 an	 extent	 of	 only	
2.1	%.	 This	 indicates	 that	 this	 ore	 consists	 of	 some	 limonitic	parts,	 but	 to	 a	 quite	 small	 extent.	
Nevertheless	this	ore	is	subsequently	identified	by	the	name	Limonitic	ore.		

The	 other	 two	 ores	 do	 not	 show	 any	 loss	 on	 ignition;	 considering	 artificially	 produced	 burden	
material	like	pellets	and	sinters,	it	is	highly	unlikely	to	determine	any	loss	on	ignition	because	of	
the	previous	burning	or	sintering	procedure.		

	

	

	

material  B.E.T  Fetot Fe 2O3 FeO  Al 2O3 CaO  K 2O  MgO   P2O5 SiO 2 TiO 2 
gangue 
content 

B2 B4 

 [m 2/g]  [wt.-%]   [%]   

 Hemtitic ore  0.42  67.0  94.4  1.30  0.71   0.02 0.12   0.01   0. 09  2.60  0.05  3.34 0.01 0.01 

Magneitic ore  0.08  65.2  63.9  26.4  0.41   2.24  0.02  0.05  0.04  3.76  0.03  8.23 0.68 0.82 

Limonitic ore  3.74  65.1  92.8  0.25  1.03   0.09 0.02   0.01   0. 10  1.68  0.07  2.80 0.01 0.01 

Pellet Brand 1  0.40  65.4  93.1  0.33  1.28  2.26  0.02  0.01  0.65  2.10  0.07 5.56 1.08 0.67 

Pellet Brand 2  0.23  64.6  90.0  1.77  0.38  0.17  0.08  0.33  0.05  6.24  0.04 7.12 0.03 0.08 

Pellet Brand 3  0.66  65.8  93.4  0.65  0.44  2.42  0.01  0.01    2.47  0.07 5.34 0.98 0.84 

               

Sinter 1  0.57  52.41  67.2  6.98  2.25  9.72  0.54  2.99    7.90  0.08 22.86 1.23 1.25 

Sinter 2  0.68  51.6  65.7  7.23  1.64  13.5  0.27  2.88    7.14   25.16 1.89 1.87 

Sinter 3    50.4  62.5  8.62  0.95 15.2 0.13 1.86 9.70 0.04 27.71 1.57 1.60

Sinter 4    55.0  71.2  6.65  1.19  10.6  0.10  3.06    5.83  0.07 20.68 1.82 1.95 

Sinter 5    54.5  68.5  8.46  1.15  11.3  0.14  3.07    6.14  0.07 21.66 1.84 1.97 
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 Specific	Surface	area	(B.E.T)	
	

The	 determination	 of	 the	 specific	 surface	 area	 was	 afflicted	 with	 some	 uncertainties.	 On	 the	
one	hand	the	investigated	materials	grain	size	is	not	straightforwardly	comparable	to	both	the	
literature	 data	 and	 the	 reducibility	 testing	 result.	 Due	 to	 the	restriction	of	the	lab	facility	
concerning	particle	size,	the	particle	had	to	be	smaller	than	10	mm	but	still	desirably	lumpy	with	
a	 minimum	 size	 of	 6.3	mm.	 In	 contrast	 to	 that,	 data	 for	 specific	 surface	 area	 given	 in	 the	
literature	 refer	 almost	 always	 to	 the	 investigation	 of	 powders	or	 at	 least	 crushed	 material.	
Another	 factor	 concerning	 the	 precision	 of	 the	 results	 is	 the	 range	 of	 the	 surface	 area	 of	 the	
samples.	 Due	 to	 the	 coarse	 particles	 the	 specific	 surface	 area	 is	 rather	 small	 compared	 to	
powders	 (where	 the	 results	 indicate	 surface	 areas	 of	 at	 least	 ten	 times	 larger)	 and	 meets	 the	
minimum	 limit	 of	 analytical	 determination	of	the	lab	facility.	Therefore	 the	 results	 should	 be	
seen	more	as	an	indicator	than	as	precise	results.		

Nevertheless,	 the	 investigation	 could	 reveal	 the	 differences	 and	 tendencies	 of	 the	 various	
materials.	The	densest	material	with	the	smallest	specific	surface	the	magnetitic	ore	followed	by	
the	 hematitic	 ore	 with	 a	 surface	 five	 times	 higher.	 In	 addition,	 the	 Limonitic	 ore	 has	 a	
comparably	 high	 value,	 which	 is	a	 result	 of	 the	 limonitic	 parts.	Because	of	the	preheating	step	
within	the	lab	facility	the	crystallization	water	is	released	and	subsequent	cracks	and	pores	are	
formed.	This	newly	created	surface	contributes	to	the	high	specific	surface	area.		

Pellets	 generally	 have	 lower	 specific	 surface	 areas,	 comparable	to	(most)	ores,	which	is	a	
result	of	the	burning	process.	During	heating	up	to	1300	°C	the	binding	phases	are	melted	for	the	
sake	 of	 agglomeration	 and	 hardening	 and	 the	 melt	 infiltrates	 the	 interstices	 between	 the	 ore	
grains	 and	 lowers	 porosity.	 However,	 the	 results	 of	 the	 Pellet	Brands	 are	 noticeably	 different,	
lowest	for	Brand	2	followed	by	1	and	3.	The	Sinter	Samples	are	within	the	same	range,	although	
Sinter	1	has	a	higher	specific	surface	area	than	Sample	2.		

8.2 Morphological	Characterization		

In	the	next	step	of	raw	material	characterization,	the	polished	 sections	 of	 the	 raw	 materials	
were	investigated	by	light	microscopic	means.	It	has	to	be	noted	 that	 this	 characterization	 is	
only	of	qualitative	nature.	The	different	phases	are	shown	but	there	has	not	been	any	attempt	at	
a	quantitative	characterization	in	terms	of	giving	a	distribution	of	the	appearing	phases	as	a	
percentage.		

The	possible	appearing	phases	and	structural	types	thereof	might	be	of	different	iron	oxidic	
nature	(with	the	accompanying	elements),	slag	phases,	gangue	material	 or	 resin	 filled	 pores.	
Concerning	 sinter	 samples	 further	 calcioferrites	 and	 water	 soluble	 silicates	 will	 be	
distinguishable	 within	 the	 light	 microscopic	 pictures.	 Additionally	the	different	kinds	of	
hematite	will	be	described,	distinguished	first	by	their	phenotype	 (coarse	 and	 fine	 hematite	
crystals)	 and	 secondly	 by	 their	origin	 (primary,	 secondary	 or	 tertiary	 hematite).	 The	 possibly	
occurring	 phases	 and	 the	 acronyms	 noted	 in	 the	 subsequent	 pictures	 are	 summarized	 in						
Table	8‐II	(c.f.	Chapter	3)		

8.2.1 Iron	Ores	

Each	 traded	 iron	 ore	 is	 composed	 of	 a	 mixture	 of	 different	 structural	 types;	 exemplary	
pictures	of	the	structures	of	the	different	ores	are	given	in	Figure	8‐1	to	Figure	8‐3.	The	pictures	
only	 show	 a	 small	 but	 hence	 representative	 detail	 of	 the	 morphological	 structure.	 Due	 to	 the	
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inhomogeneities	of	every	iron	ore	deposit,	a	wide	range	of	other	phases,	oxides	and	structural	
types	prevail	though	in	very	small	portions.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	
	
	
Figure	8‐1	shows	two	exemplary	microscopic	pictures	of	the	Hematitic	ore.	The	Hematitic	ore	

is	mainly	composed	of	xenomorphic	to	hypidiomorphic,	finely	(h1	‐	as	shown	on	the	right	side	of	
the	left	picture	(a)),	to	more	coarsely	(h2)	crystalline	hematite.	The	crystal	sizes	of	hematite	vary	
from	a	few	microns	up	to	200	µm.	Some	grains	have	large	specific	surfaces,	but	then	again	many	
others	are	rather	dense.	In	some	regions	even	larger	hematite	crystals	prevail	(not	given	in	the	
picture)	but	the	major	part	of	the	ore	sample	consists	of	the	structural	type	shown.	In	the	picture	
on	 the	 right	 (b)	 another	 prevailing	 structural	 type	 is	 shown,	 the	 banded	 iron	 formation.	 The	
alternate	 layers	 of	 hematite	 rich	parts	(light	grey)	and	silica	 rich	 parts	 (darker)	 can	 easily	 be	
distinguished,	but	on	considering	the	chemical	analysis,	this	structural	type	is	also	not	present	in	
higher	concentrations.	

The	Limonitic	ore	as	given	in	Figure	8‐3	(a)	is	mainly	composed	 of	 finely	 crystalline	 trellis	
martite	 (mr)	 in	 addition	 to	 some	 limonite	 masses	 and	 patches.	 Xenomorphic,	 small	 sized	
hematite	is	situated	interstitially	to	the	martite.	The	average	hematite	crystal	size	is	smaller,	the	
overall	 porosity	 and	 permeability	 is	 significantly	 higher	 than	that	 of	 Hematitic	 ore.	 Due	 to	
incomplete	oxidation	of	magnetite,	trace	amounts	of	xenomorphic	 magnetite	 intergrown	 with	
various	 structural	 types	 of	 martite	 are	 present.	 Limonite	 contents	 of	 ore	 grains	 are	 variable	
depending	on	the	topographic	position	of	the	different	ore	bodies	mined.	In	general	ores	close	to	
the	surface	are	richer	in	limonite	due	to	weathering.	As	well	as	the	Hematitic	ore,	the	limonite	
bearing	ore	derive	from	banded	iron	formations	(BIF,	picture	b).	

	

Acronym  Chemistry   Colour  Description/origin  

h1 

Fe2O3 Light  grey  

Fine hematite crystals, highly porous, naturally occurring within iron ore 

h2 Coarsely crystalline, dense hematite, naturally occurring within iron ore 

hpr 
Primary hematite within sinter samples only refers to hematite originating from 
iron ore (relics)

hsec 

Hematite phase of different origins,  either as grown during the melting within the 
liquid phase, grains are always surrounded by (a thin film) of glass phase, 
idiomorphic to hyp-idiomorphic appearance or hematite which is originating on 
cooling as a result of reoxidation of magnetite, recognizable due to the absence of 
glass/melt phase between the boundary hematite/magnetite 

hter 
Hematite from a returned grain, evolves of hsec within a second sintering period, 
looks similar to hsec but in turn there is a thin slag film between the boundary 
hematite/magnetite

mr Martite, naturally reoxidized magnetite, comparable to hsec 

l Fe2O3·H2O  Grey  Limonite  

m Fe3O4  Brownish  Magnetite,  origin ating from magnetite ore 

sp MeO·Fe2O3 Brownish  
Spinel refers to phases that are similar to magnetite but with a certain but variable 
amount of accompanying elements which replace Fe-atoms within the oxide 
lattice.  

cf (FeO)x(CaO)x Grey  
Calcioferrites of different composition form during the sintering process, different 
apparent forms might be acicular or blocky 

g variable  Dark  grey  Gangue/slag  

p  Black  Pores filled with resin 

Table	8‐II:	Different	appearing	phases	within	the	structure	of	the	different	raw	materials
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calcioferrite	 grows	 at	 the	 expense	of	the	spinel	and	retains	a	very	 blocky	 form	 within	 the	
structure.	Picture	(d)	shows	the	acicular	form	of	the	calcioferrites	which	originated	 due	to	the	
growth	 of	 calcioferrites	 in	 the	 liquid	 melt,	 and	 in	 picture	 (f)	 a	 very	 calcioferrite	 poor	 region	
appears.	Finally,	picture	(e)	shows	a	less	frequent	structure,	an	iron	ore	relic	with	a	lot	of	gangue	
material	(most	probably	formed	from	different	silicates	and	quartz,	q).	This	part	is	assumed	to	
be	of	a	very	acidic	nature.		

Interestingly,	compared	to	lump	ores	and	pellets,	sinter	samples	are	considerably	coarser	and	
have	a	denser	microstructure.	During	the	sintering	process	and	the	liquification	and	subsequent	
solidification,	a	coarsening	of	the	grains	occurs.	The	microporosity	is	also	very	low;	in	the	two	
figures	 hardly	 any	 pores	 are	 visible.	 In	 contrast,	 the	 measurement	 of	 the	 specific	 surface	 are	
indicates	that	the	porosity	is	within	the	same	range	as	those	of	pellets.	

	

In	summary,	the	raw	materials	can	be	characterized	as	follows.	The	three	different	iron	ores	
represent	the	most	commonly	traded	structural	types,	a	more	or	less	pure	hematitic	ore,	almost	
pure	magnetitic	ore	and	finally	a	mixture	of	hematite	and	limonite.	Combined	with	the	chemical	
analysis	and	the	microstructure	it	is	assumed	that	the	Limonitic	ore	is	most	reducible,	after	the	
Hematitic	 and	 Magnetitic.	 The	 pellet	 brands	 as	 raw	 material	 indicate	 that	 due	 to	 the	 fine	
structure	 and	 high	 porosity	 Brand	 1	 is	 well	 reducible,	 whereas	Brand	2	with	the	low	porosity	
(B.E.T)	and	high	amount	of	silica	phases	will	reduce	more	slowly.	All	sinter	samples	comprise	of	
a	 comparably	 dense	 structure	 with	 large	 crystals,	 nevertheless	the	 good	 reducibility	 of	
calcioferrites	 will	 enhance	 the	 overall	 reduction	 performance.	It	is	assumed	that	due	to	the	
higher	CaO	content	Sinter	Sample	2	is	even	more	reducible.		 	
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9 Experimental	Results	

Within	the	first	section	the	behaviour	of	the	material	at	standardized	testing	conditions	was	
described	and	gives	an	initial	picture	of	the	ability	of	oxygen	 release	 and	 mechanical	
performance.	 Based	 upon	 that,	 the	 performance	 at	 all	 industrial	 scale	 conditions	 is	 given,	
whereby	 the	 single	 parameter	 variation	 of	 the	 testing	 procedures	 for	 one	 single	 material	 is	
described.	 For	 this	 special	 investigation	 hematitic	 ore	 has	 been	 chosen	 because	 of	 its	 simple	
structural	composition	(more	or	less	only	consisting	of	hematite	crystals)	and	yet	representative	
chemical	analysis	(medium,	acidic	slag	amount,	no	artificial	binding	phases).	

What	 is	 of	 major	 additional	 interest	 is	 the	 morphological	 evolution	 during	 the	 reduction	
progress	and	subsequently	the	change	in	the	metallic	iron	formation	by	changing	the	reduction	
conditions.	 Every	 microstructural	 phase	 within	 the	 raw	 material	acts	in	a	different	way	
depending	 on	 the	 initial	 microstructure	 and	 the	 reducing	 conditions.	 With	 knowledge	 of	 the	
actual	 way	 iron	 oxide	 is	 converted	 to	 metallic	 iron	 and	 the	 influence	 of	 gas	 composition	 and	
temperature,	a	more	precise	prediction	of	a	raw	materiaĺs	behaviour	is	possible.	

Finally	the	results	are	implemented	in	a	simple	kinetic	approach	 to	 depict	 the	 progress	 of	
reduction.	Altogether	the	elaborated	matrix	of	testing	conditions	and	raw	materials	is	expected	
to	further	illuminate	the	complex	topic	of	iron	oxide	reduction.		

9.1 Comparison	of	Different	Raw	Materials	according	to	ISO	4695	

The	three	iron	ores,	three	pellet	brands	and	five	sinter	samples	as	they	were	characterized	in	
Chapter	8	were	tested	according	to	the	standardized	testing	condition	ISO	4695	and	evaluated	
as	 described	 in	 Section	 7.2.1.	 Subsequently	 the	 mechanical	 properties	 were	 tested	 and	 results	
for	 disintegration	 and	 abrasion	 tendencies	 calculated	 according	 to	 Section	 7.4.	 In	 order	 to	
compare	the	evolution	of	the	mechanical	properties	during	the	reduction	procedure,	as	a	special	
feature	the	mechanical	stability	of	the	raw	materials	was	additionally	tested.		

The	 reduction	 degree,	 calculated	 as	 a	 result	 of	 the	 weight	 loss	(full	lines)	and	the	derivated	
reduction	 rates	 (dash	 dotted	 lines)	 at	 any	 point	 during	 the	 reduction	 progress	 are	 given	
separately	for	ores,	pellets	and	sinters	in	Figure	9‐1	to	Figure	9‐3.	The	numerical	results	of	the	
testing	procedures	are	summarized	in	Table	9‐I.	On	considering	the	ore	samples,	the	following	
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reduction	period	within	this	test,	the	heating	from	300	°C	to	the	final	temperature,	the	reduction	
rate	 progressively	 increased	 until	 it	 reached	 a	 maximum	 value.	This	 maximum	 emerges	 at	
almost	the	same	time	but	the	level	of	the	maximum	reduction	rate	is	different.	As	an	example,	for	
the	BFa‐á́	(BF1‐3	respectively)	profile	(GOD	0.46‐0.10,	left	picture),	the	maximum	reduction	
rate	(peak	level)	is	increased	by	19	%.	On	further	reduction,	the	reduction	rate	is	only	slightly	
enhanced	at	the	higher	final	GODs,	not	at	the	GOD	of	0.10.		

9.3 Comparison	of	Different	Raw	Materials	at	Industrial	Scale	
Process	Conditions	

Having	described	all	the	different	materials	concerning	their	raw	material	characteristics	and	
subsequently	their	reduction	behaviour	at	the	standardized	testing	procedure,	their	behaviour	
at	the	industrial	scale	process	conditions	has	therefore	been	depicted.	Is	a	is	a	question	of	real	
interest	whether	the	sequence	of	reduction	performance	that	was	pointed	out	by	means	of	test	
ISO	4695	test	will	remain	the	same.	Due	to	their	very	similar	behaviour	at	the	standard	test,	only	
two	of	the	five	sinter	samples,	the	industrial	scale	produced	sinter	samples	Sinter	1	and	Sinter	2	
were	tested	at	industrial	scale	process	conditions.		

9.3.1 Different	Iron	Ores	

The	reduction	curves	for	all	five	testing	conditions	are	given	in	Figure	9‐8,	as	is	the	modified	
Baur‐Glaessner	diagram	depicting	the	different	process	conditions.	 Within	 the	 reducibility	
diagrams	the	sample	temperature	during	the	testing	procedure	is	also	 given	 as	dotted	lines.	It	
has	 to	 be	 noted	 that	 the	 pre‐reduction	 stages,	 starting	 from	 300	°C	in	each	case,	of	the	BF	
conditions	 take	 longer	 than	 those	 of	 DR	 because	 of	 the	 slower	 heating	 rate	 and	 therefore	 the	
reduction	 degrees	 in	 dependence	 of	testing	time	are	not	easily	comparable	 to	 each	 other.	 The	
starting	point,	the	base	case,	of	consideration	remains	the	hematitic	ore	(a).	The	acceleration	as	
a	 result	 of	 hydrogen	 addition	 has	 already	 been	 described.	 The	 impact	 of	 lowering	 the	
temperature	with	simultaneous	increase	of	hydrogen	content	is	generally	known	as	opposed,	for	
this	 raw	 material	 the	 observations	 can	 be	 described	 as	 follows.	 Although	 the	 final	 testing	
temperature	for	DR1	(orange	line)	compared	to	BF	is	150	°C	lower,	the	addition	of	hydrogen	led	
to	 an	 explicit	 enhancement	 of	 the	 overall	 reduction	 performance,	 however	 the	 pattern	 of	
reduction	remains	comparable.	The	reduction	rate	reaches	a	maximum	value	upon	reaching	the	
final	temperature,	even	though	the	level	is	almost	twice	the	height	for	DR1,	and	sharply	
decreases	until	the	end	of	the	test.	At	the	testing	time	RD	>	80	%,	the	reduction	rate	is	still	twice	
the	value	of	the	BF	test.	On	further	testing	at	850	°C	(DR2,	green	line)	which	is	50	°C	more	than	
for	DR1,	it	can	be	seen	that	at	the	initial	stages	the	curves	overlap.	On	reaching	the	moment	of	
maximum	temperature	the	reduction	rate	is	at	its	maximum	value	and	then	sharply	decreases	
until	the	end.	The	numerical	results	for	R80	and	for	the	reduction	rate	(dR/dt)40	are	summarized	
in	Table	9‐II,	the	gradual	increase	of	(dR/dt)40	from	BF1‐3	to	DR1	and	DR2	in	terms	of	the	
hematitic	ore	can	be	seen.		

For	the	Limonitic	ore,	shown	in	(c)	the	trend	is	similar	to	that	of	the	Hematitic	ore.	As	already	
shown	with	the	standardized	testing	procedure,	the	reduction	performance	is	better	than	that	of	
the	Hematitic	ore,	for	the	base	case,	BF1	profile,	the	enhancement	for	R80	is	30	%.	There	is	also	a	
trend	towards	better	reduction	performance	when	adding	small	amounts	of	hydrogen	whereas	
the	effect	of	adding	3	%	is	more	pronounced	as	the	further	increase	of	3	%	up	to	6	%.	With	the	
addition	of	further	hydrogen	(DR1)	the	reduction	is	even	faster	despite	of	the	lower	temperature	
and	the	best	possible	conditions	for	Limonitic	ore	is	DR2.	There	is	also	a	continuous	increase	of	
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the	formed	metallic	iron	appears	as	extremely	dense	layers	and	the	retarded	kinetics	at	800	°C	
makes	 a	 diffusion	 of	 the	 gaseous	 reducing	 agents	 to	 some	 extent	impossible.	The	temperature	
increase	 of	 50	°C	up	to	 850	°C	leads	to	the	 very	 same	effect	 although	shifted	to	later	stages.	In	
this	case,	the	reduction	proceeds	to	some	70	%	until	no	more	oxygen	 release	 is	 possible.	
Nevertheless,	in	any	case	the	pattern	 of	 the	 reduction	 rate	 is	comparable	 to	 the	 other	 ores,	 a	
peak	upon	reaching	maximum	temperature	and	a	subsequent	loss	of	reduction	velocity.		

	

	

	

	

	

	

	

	
	
	

9.3.2 Pellet	Brands	

The	next	series	of	material	testing	has	been	executed	with	the	different	 Pellet	 Brands,	 the	
results	are	summarized	in	Figure	9‐9.	Based	on	the	results	from	the	performance	of	the	different	
iron	ores	and	the	standardized	test,	there	will	be	a	comparison	of	their	behaviour.		

Pellet	 Brand	 1	 (a)	 indicates	 good	 reducibility	 properties	 at	 every	 testing	 condition.	 For	 the	
BF1	 test	 R80	 is	 about	 147	 minutes	 which	 corresponds	 somewhat	 to	 the	 value	 of	 the	 Limonitic	
ore.	Also	the	evolution	upon	the	hydrogen	increase	is	similar	to	the	Limonitic	ore:	an	increase	of	
3	%	H2	 enhances	 the	 reduction	 whereas	another	 3	%	 hardly	 has	 any	 impact,	 and	 finally	 the	
difference	between	DR1	and	DR2	is	small	but	yet	present.	The	very	same	behaviour	can	be	seen	
in	the	lower	left	picture	(b)	of	Pellet	Brand	2,	but	what	makes	these	results	a	little	surprising	is	
the	 overall	 reduction	 performance	 when	 comparing	 Brand	 1	 and	 Brand	2.	Whereas	at	the	
standardized	procedure	the	increase	of	time	gaining	R80	between	Brand	1	and	Brand	2	has	been	
84	%	 (78	 to	 140	 minutes),	 it	 is	 only	 23	%	 on	 comparing	 BF1	 condition	 and	 furthermore	 on	
comparing	the	DR2	condition	the	difference	becomes	even	smaller	to	only	9	%	of	increased	time.	
In	both	of	the	cases	there	is	the	step‐by‐step	increase	of	(dR/dt)40	from	BF	to	DR1	and	DR2	
(given	in	Table	9‐III),	which	indicates	that	for	both	of	the	pellet	brands	the	accelerating	effect	of	
the	 hydrogen	 presence	 is	 more	 dominant	 than	 the	 inhibited	 kinetics	due	to	the	lower	
temperature.		

On	further	integration	of	the	last	pellet	sample,	Pellet	Brand	3	(c),	some	general	trends	can	be	
confirmed.	 The	 effect	 of	 the	 small	 amounts	 of	 hydrogen	 corresponds	 to	 the	 observation	 of	 all	
materials	so	far	tested,	including	the	enhanced	reduction	performance	for	DR2	compared	to	BF	
conditions.	A	comparison	of	Brands	1	and	3	 and	 the	performance	concerning	R80	from	the	ISO	
test	leads	to	an	increase	in	time	of	52	%.	By	comparison	of	the	BF1	results,	it	takes	17	%	longer	
(c.f.	Table	9‐III,	147	to	172	minutes)	and	finally	the	DR2	condition	leads	to	an	acceleration	gain	
of	R80	of	15	%.	A	non‐conventional	behaviour	of	Pellet	Brand	3	can	be	seen	in	the	figure,	as	the	
reduction	progress	is	slows	down	considerably	at	the	DR1	condition.	This	behaviour	is	to	some	
extent	comparable	with	the	standardized	testing	results	where	a	deceleration	at	the	later	stages	
was	also	noticeable,	but	it	is	not	comparable	to	the	other	testing	 procedures	 where	 no	 such	
effect	occurs	at	the	later	stages.			

 
BF1  
0 % H2 

BF2 
 3 % H2

BF3  
6 % H2 

DR1  DR2  

Ore type  R80 (dR/dt) 40 R80 (dR/dt) 40 R80 (dR/dt) 40 R80 (dR/dt) 40 R80 (dR/dt) 40 

 [min]  [%/min]  [min]  [%/min]  [min]  [%/min]   [min]   [%/min]  [min]  [%/min]  

     
Hematitic  250  0.53  222  0.65  199   0.72  140  0.98   123  1.40  

Limonitic  175  0.84  159  0.92  155  0.97  100  1.49 95.7  1.70  

Magnetitic   350*  0.38  350*  0.43 345  0.44  ---  0.25*  ---  0.58  

    *    extrapolated 

Table	9‐II:	Reducibility	characteristics	of	different	iron	ores	at	industrial	scale	process	conditions
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subsequently	leads	to	this	peak	on	considering	the	first	derivation.	For	all	three	Brands	the	level	
of	the	first	peak	is	more	or	less	the	same	for	the	different	testing	 conditions.	 At	 the	 DR2	
conditions	 the	 retardation	 at	 the	 initial	 stages	 can	 best	 be	 seen,	 no	 weight	 loss	 is	 measurable	
until	500	°C	and	more	has	been	reached,	but	once	started	the	reduction	proceeds	very	rapidly.	
This	fact	indicates	that	the	presence	of	the	binding	and	glass	phases	within	the	microstructure	
(c.f.	8.2.2	morphology	of	pellet	samples)	inhibit	the	access	of	the	gaseous	reducing	agent	into	the	
internal	parts	of	the	pellet	in	the	early	stages	due	to	the	low	temperature.	Whereas	for	iron	ores	
the	 gas	 reduces	 the	 iron	 oxide	 grains	 at	 least	 to	 some	 small	 extent,	 the	 glass	 phase	 that	
surrounds	every	single	small	hematitic	grain	within	the	pellet	prevents	any	reduction.	Only	upon	
reaching	a	certain	temperature,	which	is	proved	to	be	distinctly	dependent	on	the	gas	
composition	(because	of	the	difference	between	DR1	and	DR2)	can	the	reduction	start.	This	fact	
compared	to	the	standard	test	results	(where	the	reduction	does	not	start	until	the	material	is	
heated	up	to	950	°C	but	starts	with	a	very	high	reduction	rate	at	the	beginning	for	all	pellet	
brands),	indicates	that	due	to	the	high	temperature,	the	structure	of	the	binding	phase	changes	
in	some	way.	It	might	be	that	the	glass	and	binding	phase	already	starts	to	melt	to	some	extent	
or	at	least	becomes	of	lower	viscosity	so	that	the	gas	has	better	access	to	the	reaction	surface.	
The	 diffusion	 resistance	 might	 also	 change	 at	 higher	 temperatures	so	that	the	gaseous	agents	
can	diffuse	more	easily	through	the	glass	film	surrounding	the	grains.					

What	can	be	concluded	about	the	reduction	performance	of	the	investigated	Pellet	Brands	is	
that	their	behaviour	is	different	depending	on	the	reduction	parameters.	Although	there	was	a	
great	 difference	 at	 the	 standardized	 testing	 conditions,	 the	 range	 between	 well	 and	 badly	
reducible	brands	is	no	longer	that	obvious:	even	a	reversal	of	the	 prior	 sequence	 could	 be	
illustrated.		

9.3.3 Sinter	Samples	

The	final	and	most	complex	raw	materials	to	be	investigated	were	 the	 two	 industrial	 scale	
produced	sinter	samples,	and	the	results	of	the	reduction	progress	are	given	in	Figure	9‐10.	In	
good	 accordance	 with	 the	 standardized	 test,	 both	 sinters	 are	 very	reducible	and	showed	a	
comparable	 reduction	 performance	 to	 each	 other.	 Once	 more	 the	 tendency	 towards	 better	
reducibility	by	adding	3	%	hydrogen	can	be	seen	whereas	6	%H2	does	not	further	enhance	the	
reduction	performance.	For	Sinter	Sample	2	(b)	even	the	DR2	test	was	performed,	though	it	is	
not	 of	 particular	 industrial	 interest	 because	 of	 the	 lack	 of	 usage	of	sinter	within	any	direct	
reduction	facility.	It	is,	however,	of	scientific	interest.		

The	progress	of	the	reduction	rate	indicates	a	retarded	start	of	the	reduction	progress	similar	
to	that	of	the	pellet	brands.	But	 then	 on	 reaching	 some	 600	°C	 the	 process	 starts	 at	 very	 high	
velocities	and	the	maximum	peak	values	are	definitely	the	highest	 at	 1.25	 for	 BF1	 and	
>1.5	%/min	for	DR1,	when	compared	to	Pellet	Brand	1.	No	first	peak	is	visible	at	the	early	stages	
of	 reduction.	 After	 reaching	 the	 maximum	 reduction	 rate,	 it	 decreases	again	very	sharply.	For	
both	 sinter	 samples	 the	 conditions	 of	 DR1	 showed	 an	 even	 higher	decrease,	whereas	the	DR2	
condition	did	not	show	this	deceleration	at	the	end.	In	this	case	the	behaviour	is	comparable	to	
Pellet	Brand	2.		

On	 evaluating	 the	 different	 times	 needed	 to	 gain	 R80	 (Table	 9‐IV)	 and	 the	 different	 testing	
procedures	compared	to	the	Hematitic	ore	the	reduction	performance	 is	 better	 for	 sinter	
throughout	 all	 the	 conditions	 but	 the	 distance	 reduces	 from	 ISO	(difference	in	time	is	55	%)	
through	BF1	(difference	of	40	%)	and	finally	to	DR1	(15	%).	Again	it	is	obvious	that	despite	the	
different	chemical	analysis	of	the	Sinter	Samples,	their	reduction	performance	is	very	similar.		
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9.4 Mechanical	Stability	at	Industrial	Scale	Conditions	

For	 each	 material	 at	 any	 testing	 condition	 the	 material’s	 strength	 in	 terms	 of	 disintegration	
and	abrasion	tendency	was	determined	by	means	of	a	tumbling	procedure	 as	 described	 in	
section	 7.4.	 In	 this	 case	 the	 mechanical	 stability	 is	 related	 to	 the	 reduction	 degree	 after	 the	
reduction	procedure,	which	means	a	reduction	degree	of	more	than	 80	%.	 A	 summary	 of	 the	
results	is	given	in	Table	9‐V	and	as	a	conclusion,	the	following	statements	can	be	made.		

Iron	 ores	 showed	 very	 good	 raw	 material	 strength	 as	 well	 as	 stability	after	the	reduction	
procedure	according	to	ISO	standardized	testing	conditions	(c.f.	Table	9‐I);	only	a	loss	of	DT	of	
about	10	%	occurred	due	to	the	reduction	procedure	at	950	°C.	The	other	materials	also	showed	
the	same	tendency	of	proper	raw	material	strength	and	an	insignificant	loss	of	strength	after	ISO	
reduction	 but	 in	 contrast	 to	 that,	 the	 different	 industrial	 scale	 process	 conditions	 exerted	 a	
stronger	influence	on	the	mechanical	properties.		

One	general	tendency	can	be	derived	by	considering	the	table;	at	direct	reduction	conditions	
the	materials	tended	to	disintegrate	more	compared	to	BF	conditions	(valid	for	most	of	the	test	
results,	though	not	all).	Hematitic	ore	shows	comparable	values	for	DT	as	well	as	AT	for	ISO	and	
BF	conditions	and	a	further	loss	of	DT	of	about	10	%	at	DR	conditions.	What	is	interesting	is	that	
the	extent	of	abrasion	stays	constant	at	a	very	low	level	(<	2	%);	hardly	any	formation	of	fines	
occurs.	The	Limonitic	orés	stability	decreased	on	testing	at	BF	conditions	and	further	decreased	
at	DR	conditions;	but	in	this	case	the	abrasion	tendency	increased	as	the	disintegration	tendency	
increased,	 which	 is	 according	 to	 literature	 data.	 Mostly	 a	 bad	mechanical	 stability	 affects	 both	
the	 tendency	 to	 disintegrate	 and	 the	 formation	 of	 fines	 due	 to	abrasion.	 In	 contrast	 to	 the	
Hematitic	and	Limonitic	ore,	here	the	mechanical	stability	decreased	consistently	combined	with	
the	higher	reduction	velocity	due	to	the	higher	hydrogen	content,	the	Magnetitic	ore	showed	two	
different	 phenomena.	 At	 ISO	 as	 well	 as	 BF	 conditions,	 where	 there	 is	 a	 temperature	 of	 950	°C	
and	 the	 material	 gained	 a	 reduction	 degree	 of	 at	 least	 70	%,	 the	DT	is	quite	high	and	the	AT	
values	are	at	some	5‐6	%.	In	turn,	after	the	DR	testing	procedures,	the	DT	values	are	lower	than	
50	%	and	more	than	one	third	of	the	material	has	a	grain	size	smaller	than	0.5	mm,	the	material	
is	almost	crumbled.		

Pellet	Brands	1	and	3	show	similar	behaviour,	it	can	be	noted	that	 after	 every	 reduction	
procedure	the	material	has	hardly	lost	its	initial	mechanical	stability.	Only	the	direct	reduction	
procedures	led	to	a	slightly	increase	in	abrasion.	Brand	2	gives	a	somewhat	different	picture;	at	
the	tests	BF1	and	DR2	the	strength	is	still	very	high	whereas	at	BF2,	BF3	and	DR1,	the	pellets	
disintegrated	to	a	great	extent	by	keeping	the	abrasion	index	very	low.		

As	was	presumed	to	some	extent,	the	Sinter	Samples	showed	the	least	 resistance	 to	 the	
tumbling	procedure	after	the	reduction	tests;	Sinter	Sample	1	even	moreso	than	Sample	2.	This,	
in	relation	to	the	reducibility	results,	stands	in	good	accordance	with	the	literature	review	(c.f.	
Section	5.2)	where	it	is	noted	that	higher	CaO	amounts	will	lead	to	higher	mechanical	stability.	
Though	the	values	for	DT	and	AT	have	been	quite	good,	after	the	ISO	standard	test	the	material	
disintegrated	to	a	very	high	extent.	Again	by	retaining	the	small	portions	of	fine	fraction;	sinters	
obviously	tend	more	to	disintegrate	than	to	form	fines	by	abrasion.		

As	en	explanation	for	the	good	mechanical	stability	after	the	ISO	test	compared	to	the	BF	test,	
although	the	final	testing	temperature	and	the	material’s	reduction	degree	are	comparable,	the	
following	considerations	have	been	taken	into	account.	It	is	assumed	that	the	slow	increase	in	
temperature	 and	 the	 concomitantly	 low	 reduction	 potential	 of	 the	gas	at	the	initial	stages	of	
reduction	 enhance	 the	 low‐temperature	 disintegration.	 This	 low	temperature	 disintegration	
occurs	preferably	in	a	temperature	range	of	500‐550	°C	and	is	caused	by	a	volumetric	increase	
of	the	grains	during	the	transformation	from	hematite	to	magnetite.	The	difference	between	the	
ISO	and	the	BF	testing	profile	is	the	temperature	at	which	the	transformation	 of	 hematite	 to	
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magnetite	takes	place.	At	ISO	conditions,	the	material	is	already	heated	up	to	950	°C	before	the	
first	reduction	can	occur	and	due	to	the	very	strong	reduction	potential	of	the	gas,	it	is	assumed	
that	 some	 metallic	 iron	 appears	 at	 least	 at	 the	 outer	 shells	 of	 the	 grains	 and	 therefore	 the	
disintegration	is	prevented	(by	some	kind	of	sintering	effect).	In	addition,	the	prevailing	glass	
phases	 might	 already	 be	 softened	 at	 temperatures	 of	 950	°C	 and	this	can	further	increase	the	
mechanical	stability	by	keeping	the	grains	together.		
	

	

	

	

	

	

	

	

	

	

9.5 Morphological	Evolution	during	Reduction		

As	described	before,	the	reduction	of	iron	oxide	to	metallic	iron	is	simplified	formulated	as	the	
gradual	release	of	oxygen	from	the	oxide	crystal	lattice	but	in	fact	it	is	a	highly	sophisticated	and	
complex	topic.	In	order	to	depict	the	morphological	evaluation	during	the	reduction	process	the	
materials	 were	 investigated	 by	 light	 microscopic	 means,	 the	 same	as	for	the	raw	materials.	In	
some	cases	the	tests	have	been	interrupted	at	a	certain	reduction	 degree	 to	 facilitate	 the	
visualization	 of	 the	 intermediate	 reduction	 products	 Fe3O4	and	FeO	before	almost	everything	
had	turned	to	metallic	iron	with	it́s	different	kinds	of	metallic	iron	formation.	Table	9‐VI	gives	
an	overview	of	the	different	prevailing	phases	and	their	appearance	 within	 the	 microscopic	
pictures.	
In	order	to	substantiate	the	assumption	of	the	kinetic	model,	which	describes	the	reduction	as	

proceeding	according	to	a	shrinking	core	model	with	a	sharp	phase	boundary,	Figure	9‐11	gives	
a	cross	section	of	a	lump	ore	piece	of	the	Hematitic	ore	(left)	and	an	exemplary	pellet	from	Pellet	
Brand	1	(right).	In	both	cases	the	reduction	degree	is	at	some	30	%	and	both	of	the	materials	
initially	 consisted	 of	 a	 more	 or	less	 porous	 hematite	 matrix.	 What	 can	 be	 seen	 is	 that	 the	
reduction	begins	at	the	surface	of	the	ore	particle	and,	in	the	course	of	reduction;	the	hematite	
(h)	is	first	reduced	to	magnetite	(m),	then	to	wustite	(w)	and	later	to	metallic	iron	(I)	in	a	layer‐	
or	shell‐like	structure.	At	this	time	and	hence	reduction	degree,	all	possible	different	
(intermediate)	 reduction	 products	 prevail	 simultaneously	 and	 three	 different	 reaction	 fronts	
exist.	 These	 reaction	 fronts	 further	 move	 into	 the	 inside	 of	 the	 grain	 on	 further	 reduction.	 On	
taking	a	closer	look	at	the	boundaries	of	these	different	reaction	fronts,	it	can	be	seen	that	the	
boundary	 line	 between	 the	 hematite	and	magnetite	as	well	as	magnetite	 to	 wustite	 is	 a	 very	
sharply	defined	line.	In	contrast	to	that,	the	boundary	between	the	wustite	and	the	metallic	iron	
is	 definitely	 not	 a	 clear	 line	 but	 a	 small	 region	 where	 both	 phases	 exist	 parallel	 to	 each	 other.	

 
Raw  

    material 
BF1  
0 % H2 

BF2 
3 % H2

BF3  
6 % H2 

DR1  DR2  

Material  DT+6.3 AT -0,5 DT +6.3 AT - DT+6.3 AT -0,5 DT +6.3 AT -0,5 DT +6.3 AT -0,5 DT +6.3 AT -0,5 

 [%]  [%]   [%]  [%] [%]  [%]  [%]  [%]  [%]  [%]  [%]  [%]  

       
Hematitic ore 99.0  0.8  87.8  1.8  88.0  0.9   87.8  1.8  77.3   1.6  73.4  1.4  

Limonitic ore 96.6  1.7  67.9  6.3  62.1   6.0   73.6   4.8  60.9   9.7   59.0  11.3  

Magnetitic ore 94.5  4.8  87.7  5.2  86.8   6.4   88.5   5.3  48.6   32.6  48.1  34.6  

Pellet Brand 1 98.0  1.9  98.9  0.5  93.5  1.2   93.9  1.2  87.7   4.8  87.8  6.3  

Pellet Brand 2 98.8  1.2  97.8  0.4  69.5  1.3   65.7  1.2  63.6   2.2  93.4  0.9  

Pellet Brand 3 n.a.  n.a.  98.4  0.8  96.3   0.9   n.a.   n.a.  93.1   3.5   97.8   1.2  

Sinter 1 90.2  1.5  45.8  3.3  39.7   3.7   44.4   3.0  37.6   4.3   n.a   n.a  

Sinter 2 97.0  1.4  61.6  4.9  65.1   3.9   69.4   3.5  53.6   3.5   57.5  3.0  

      n.a….data not available 

Table	9‐V:	Mechanical	properties	after	industrial	scale	process	conditions		
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For	those	materials	with	a	clear	distinction	between	the	two	stages,	the	progress	of	reduction	
might	proceed	as	follows.	The	slope	of	the	initial	stages	lies	somewhere	between	the	dotted	and	
dashed	line	in	Figure	9‐20	and	hence	is	comparable	with	a	mixture	of	reaction	control	and	pore	
diffusion,	but	the	shape	is	more	associated	with	the	reaction	control	curve.	At	this	stage	all	the	
prevailing	 (wustite)	 grains	 are	 unreacted	 and	 the	 surface	 where	 the	 chemical	 reaction	 takes	
place	is	not	covered	with	any	product	layer	so	that	the	rate	determining	step	is	the	removal	of	
the	oxygen.	Due	to	the	coarse	size	of	the	particles,	some	resistance	for	pore	diffusion	will	always	
exist,	also	at	the	very	initial	stages,	but	the	main	rate	determining	step	is	the	boundary	reaction.	
At	the	later	stages,	where	the	product	layer	of	metallic	iron	gets	increasingly	thicker,	the	shape	
of	the	curves	tends	to	approximate	the	gas	diffusion	mechanism.	Although	at	chemical	reaction	
control	the	reduction	rate	gets	lower	during	the	ongoing	reduction	procedure	due	to	the	smaller	
prevailing	reaction	surface,	it	is	the	ash	layer	that	obviously	has	a	greater	effect	as	can	be	seen	in	
the	flattening	of	the	curves	at	the	final	stages	in	Figure	9‐21.		
To	some	extent	the	Hematitic	and	Magnetitic	ores	act	differently	and	the	course	of	reduction	

can	 therefore	 be	 interpreted	 in	 a	 different	 way.	 The	 curves	 seem	 to	 lean	 towards	 the	 mass	
transport	control	regime,	especially	at	the	early	stages.	This	stands	in	contrast	to	the	 common	
opinion	that	indicates	that	only	on	considering	fluidized	bed	reactors	is	the	mass	transport	one	
major	controlling	step.		

On	combining	these	results	with	the	(macroscopic	view	of)	porosity	of	the	materials,	the	
following	statements	can	be	derived.	All	the	investigated	pellet	brands	and	sinter	samples	show	
a	high	porosity	concerning	macropores.	Every	piece	of	sinter	and	every	single	pellet	consists	of	
large	 and	 mostly	 connected	 pores	 that	 can	 be	 seen	 with	 the	naked	 eye	(hence	 without	 any	
microscopic	magnification).	For	the	Limonitic	ore	it	can	be	assumed	that	due	to	the	release	of	
the	 crystal	 water	 on	 heating	 the	 cracks	 initiated	 also	 form	 a	 connected	 network	 of	 pores	 and	
cracks.	In	contrast,	the	Hematitic	and	Magnetitic	ore	do	not	have	any	larger	pores;	the	Hematitic	
consists	of	numerous	but	very	small	pores	and	the	Magnetitic	ore	has	hardly	any	porosity	at	all.	
This	 might	 be	 one	 reason	 for	 the	 different	 reduction	 behaviour	or	path	of	reduction.	Via	the	
larger,	 connected	 pores	 the	 reducing	 gas	 can	 more	 easily	 enter	the	 inner	 parts	 of	 the	 raw	
material	particles	and	the	length	of	the	(pore)	diffusion	way	is	distinctly	shorter.	In	that	case	the	
gas	diffusion	resistance	is	negligible	and	the	subsequent	reduction	is	controlled	by	a	mixture	of	
pore	diffusion	control	and	boundary	reaction	control.	For	the	dense	ores	(or	at	least	ores	with	
no	 connected	 porosity),	 the	 mass	 transport	 of	 the	 gas	 might	 have	 more	 influence	 and	 at	 least	
affects	the	rate	controlling	regime.	It	can	definitely	be	noted	that	there	are	two	different	stages	
and	furthermore	on	describing	the	reduction	reaction,	it	is	reasonable	to	differentiate	between	
the	early	and	the	later	stages	of	reduction	at	least	for	porous	materials.		
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10 Conclusion	and	Outlook	

Within	this	research	work,	a	variety	of	iron	bearing	raw	materials	was	investigated	by	diverse	
ways	 and	 means.	 For	 the	 sake	 of	characterizing	 the	 overall	 performance	 of	 a	 raw	 material	 at	
industrial	 scale	 conditions,	 not	 only	 the	 reduction	 behaviour	 but	 also	 the	 mechanical	
performance	 were	 tested.	 As	 a	 starting	 point	 and	 in	 order	 to	 gain	 an	 idea	 about	 material’s	
behaviour,	 tests	 were	 performed	 according	 to	 a	 standardized	 testing	 procedure.	 From	 that	
testing	 procedure,	 different	 modifications	 concerning	 gas	 composition	 and	 hydrogen	 content	
were	 derived	 and	 finally	 reducibility	 tests	 at	 near	 industrial	scale	 conditions	 were	 performed.	
These	 conditions,	 related	 to	 blast	 furnace	 and	 direct	 reduction	 facilities,	 included	 testing	 by	
means	of	time	dependent	gas	 and	temperature	 profiles	at	different	final	 temperatures	and	gas	
compositions.	Contemporaneously,	the	development	of	the	mechanical	stability	was	investigated	
by	means	of	a	tumbling	test.	All	these	tests	revealed	a	picture	of	the	material’s	behaviour	at	the	
different	conditions	and	led	to	a	recommendation	of	their	use	within	 the	 different	 industrial	
scale	iron	making	process	routes.	At	least	to	some	extent,	these	results	stand	in	contradiction	to	
the	industrieś	state	of	the	art	lab	scale	testing	procedures,	which	 are	 comprised	 of	 only	 very	
simple	testing	procedures.		

What	is	of	additional	major	interest	concerning	the	usage	of	various	 raw	 materials	 is	 the	
possibility	 to	 predict	 the	 materiaĺs	 behaviour	 by	 characterizing	 only	 their	 raw	 material	
morphology	and	mineralogy.	Different	attempts	have	been	made	in	the	past	but	nevertheless	an	
overall	 analogy	 of	 the	 reducibility	 performance	 and	 the	 mechanical	 stability	 to	 the	 mineralogy	
(hence	 the	 chemical	 analysis)	 and	 the	 morphology	 (form	 and	 shape	of	the	different	prevailing	
phases)	is	not	easy	to	depict.	A	multitude	of	effecting	parameters	 has	 to	 be	 collectively	
considered.	It	could	be	revealed	that,	whereas	for	naturally	occurring	 phases	 and	 structures	 a	
prediction	 can	 be	 made	 more	 easily	 and	 precisely,	 the	 numerous	artificially	 created	 phases,	
especially	during	sintering,	made	a	prediction	difficult.		

10.1 	Applicability	of	the	materials	in	industrial	scale	processes	

It	total	11	different	materials	were	investigated.	The	following	sections	give	a	summary	and	
interpretation	of	the	three	different	categories	of	raw	material;	ores,	pellets	and	sinters.	
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during	reduction	revealed	the	different	behaviour	of	various	materials	 and	 structures	 and	
ultimately	led	to	a	characterization	of	their	applicability	for	different	reduction	routes.		

Building	 on	 this,	 the	 upcoming	 research	 activities	 are	 dedicated	 towards	 a	 prediction	 of	 the	
behaviour	of	a	raw	material	without	doing	costly	and	time‐consuming	lab	scale	reducibility	
testing.	 Therefore,	 in	 order	 to	 assess	 the	 tendency	 of	 the	 reduction	 behaviour,	 it	 will	 only	 be	
necessary	 to	 characterize	 the	 microstructure	 by	 means	 of	 light	microscopic	 investigation	 of	
fabricated	 polished	 sections	 and/or	 by	 means	 of	 chemical	 analysis	 combined	 with	 specific	
surface	area	measurement.	Although	within	this	investigation	various	aspects	of	the	correlation	
between	 microstructure,	 chemistry	 and	 mineralogy	 could	 be	 illuminated,	 there	 are	 still	 issues	
that	are	not	yet	fully	understood.	However,	the	investigation	within	 this	 research	 work,	
combined	with	literature	data,	provided	a	basis	for	further	research	activities	concerning:		

 The	 influence	 of	 the	 initial	structural	type.	It	could	be	shown	that	limonite,	due	to	its	fine	
crystalline	 structure,	 is	 the	 best	 reducible	 material,	 hematite	the	second	best	and	finally	
magnetite	 the	 third	 best	 (due	 to	 its	 dense	 and	 coarse	 structure).	 Hence,	 the	 behaviour	 of	
naturally	occurring	iron	minerals	with	only	a	low	amount	of	gangue	material	can	already	be	
sufficiently	 predicted.	 The	 reducibility	 behaviour	 of	 pellets,	which	 more	 or	 less	 consist	 of	
hematite	grains	and	are	assumed	to	reduce	in	a	similar	way,	is	most	likely	influenced	by	slag	
phases	and	their	distribution	and	hence	more	difficult	to	predict.	Sinter	samples	consist	of	a	
broad	range	of	different	phases	and	structures,	which	are	all	reducible	to	a	different	extent.	
Even	the	same	structural	type	(magnetite	 or	 calcioferrites	 for	example)	 acts	 differently	
depending	on	the	exact	chemical	composition.	These	facts	have	to	be	taken	into	account	in	a	
more	sophisticated	way.	

 Since	 it	 is	 known	 from	 the	 kinetic	 point	 of	 view	 that	 increased	porosity	 provides	 more	
surface	area	for	the	chemical	reaction	and	larger	pores	enhance	mass	transport	both	via	gas	
diffusion	and	pore	diffusion,	porosity	is	a	major	factor	influencing	reducibility.	However,	the	
exact	measurement	of	porosity	still	represents	a	problem.	Within	this	work	an	attempt	was	
made	to	measure	the	specific	surface	area	by	means	of	B.E.T	and	it	could	be	shown	that	this	
is	 affected	 by	 uncertainties.	 No	distinction	 between	 micro	 and	macro	 pores	 or	 between	
closed	 pores	 and	 a	 coherent	 pore	 network	 was	 possible	 and	 therefore	a	suitable	testing	
procedure	is	necessary	to	gain	significant	and	comparable	results.	

 Gangue	and	slag	amount	and	distribution	also	need	to	be	characterized	in	a	better	way.	Slag	
phases	comprising	of	silicates	are	very	hard	to	reduce	(mostly	originating	from	acidic	and	
silica	 rich	 nature	 of	 the	 gangue	 within	 the	 ores)	 and	 aluminium	rich	phases	are	also	
assumed	to	influence	the	reduction	behaviour	in	a	negative	way.		

 Since	the	mechanical	performance	of	the	raw	material	is	of	extreme	importance	–	especially	
concerning	the	low	temperature	disintegration	behaviour	of	sinter	samples	–	the	influence	
of	 the	 chemical	 and	 mineralogical	 composition	 on	 the	 mechanical	 stability	 needs	 to	 be	
investigated	further.		

 As	a	limiting	factor	for	the	testing	and	investigation	procedures,	 all	 series	 of	 trials	 were	
performed	at	temperatures	below	1000	°C	in	order	to	avoid	liquid	phases	and	also	due	to	
the	 restrictions	 of	 the	 lab	 scale	 testing	 equipment.	 This	 temperature	 range	 represents	 the	
region	 where	 gaseous	 reduction	 occurs,	 but	 no	 melting	 or	 dripping	 is	 supposed	 to	 take	
place.	 Nevertheless,	 this	 represents	 a	 temperature	 range	 where	sticking	and/or	swelling	
might	occur.		

 There	are	still	factors	that	influence	the	overall	performance	of	the	materials	that	cannot	be	
avoided	 and	 eliminated.	 As	 an	 example	the	presence	of	alkalis	is	assumed	to	greatly	
influence	 the	 reduction	 behaviour	 as	 well	 as	 the	 mechanical	 performance,	 therefore	 this	
influence	needs	to	be	investigated	and	depicted.		

Nevertheless,	 this	 investigation	of	the	materials’	behaviour	concerning	 reducibility	 and	
mechanical	stability,	combined	with	the	morphological	and	structural	characterization	gave	an	
impression	of	the	different	aspects	of	the	raw	materials.	The	lab	 scale	 testing	 of	 selected	
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representatives	 of	 ores,	 pellets	and	sinters	in	accordance	with	 industrial	 scale	 process	
conditions	could	further	reveal	the	evolution	of	the	reduction	progress.	The	test	results	achieved	
indicate	that	a	generally	valid	correlation	between	the	raw	material	structure,	the	standardized	
testing	results	and	the	industrial	scale	testing	procedures	is	not	easy	to	determine.	

Based	 on	 the	 results	 of	 this	 research	 work,	 further	 research	 activities	 have	 been	 planned	 or	
have	already	been	executed.	At	the	Chair	of	Geology,	an	automated	characterization	tool	for	iron	
ores	(fine	ore	as	well	as	lumpy)	has	been	developed	and	is	about	 to	 be	 further	 improved	 for	
characterizing	 pellets	 and	 sinters.	 Therefore	 special	 algorithms	and	programming	steps	for	
implementing	the	materials’	porosity	and	pore	size	distribution	and	subsequently	the	different	
structural	phases	and	quantitative	phase	distribution	are	in	the	final	phase.		

Furthermore,	at	the	Chair	of	Ferrous	Metallurgy,	the	topic	of	the	influence	of	alkalis	is	being	
examined.	Tests	modelled	on	the	testing	procedures	developed,	as	described	within	this	thesis,	
could	 show	 the	 weakening	 of	 the	 mechanical	 performance	 at	 the	 presence	 of	 alkalis	 with	
simultaneous	increase	in	reducibility.		
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