
Institute for Automation

Department Product Engineering,

Montanuniversität Leoben

Computer Vision Based
Realtime Opto-Mechatronic

Tracking System

MASTER THESIS

Ernst Johann Theußl

Field of Study:

Mechanical Engineering

Supervisor:
ASS.PROF. DIPL.-ING. DR.MONT. GERHARD RATH

O.UNIV.-PROF. DIPL.-ING. DR.TECHN. PAUL O’LEARY

March, 2018

Abstract

For purpose of high accuracy image acquisition of moving objects with a finite shutter

speed of the observing camera, a camera-tracking mount is required to avoid blurred

objects during the exposure time. The tracking mount could have one-, two- or multi-

axis kinematics with a fixed location and camera perspective or variable location with

the requirement of calibration of the relative camera coordinate system. The calibration

calculates the correlation of camera position, kinematics of the mount and the movement

of observed objects. For testing, in this thesis a two-axis equatorial mount is used to

track astronomical objects such as stars and satellites. The exact solution of the forward

kinematics is calculated, which includes the coordinate transformation of the projection of

astronomical objects, represented by the camera data, and the mount coordinate system.

Further a reduced kinematics is derived from the exact solution, to provide a generic

two-axis object tracking system using inverse kinematics. A high-performance optimised

multiple object tracking software is developed, which detects objects and calculates the

two-axis movement of the mount in real-time, based on the two-dimensional deviation

in the acquired image. For this reason, optimised computer-vision based algorithms on

a SoC (system-on-a-chip) system are used together with a newly developed electronic

control interface.

i

Zusammenfassung

Zum Zweck der hochpräzisen Bilddatenerfassung von bewegten Objekten mit Kamerasys-

temen mit einer endlichen Verschlusszeit ist es notwendig, dass das Beobachterkoor-

dinatensystem den Objekten mit einer Nachführung folgt, da diese ansonsten unscharf

dargestellt werden. Diese Nachführung kann eine einachsige, zweiachsige oder mehrach-

sige Nachführkinematik mit einer feststehenden Position im Raum und gleichbleibender

Kameraposition sein oder eine variable Position von Nachführung und Kamera haben,

die es notwendig machen, das System zu kalibrieren. Die Kalibration berechnet den

Zusammenhang der Bewegung eines Objekts, der Kameraorientierung und der Kine-

matik der Nachführung. In dieser Arbeit wird für Versuchszwecke eine bestehende,

zweiachsige sogenannte parallaktische Nachführung zur Verfolgung astronomischer Ob-

jekte, wie beispielsweise Sterne und Satelliten, verwendet. Dazu wird eine exakte Lösung

der Vorwärtskinematik berechnet, welche die Transformation der Projektion astronomis-

cher Objekte, die den Kameradaten entsprechen, auf das Montierungskoordinatensystem

vollzieht. Für eine weitere allgemeine Anwendung der Objektverfolgung mittels einer

zweiachsigen Kinematik wird aus dieser Transformation eine vereinfachte Rückwärts-

Kinematik abgeleitet. Um die Nachführung mit zweiachsiger Kinematik zu steuern, wird

eine optimierte Mehrfach-Objektserkennungssoftware entwickelt, welche die zweidimen-

sionale Abweichung am Beobachtungsbild in die gegebene kalibrierte Kinematik umrech-

net. Zu diesem Zweck werden optimierte Computervision-Algorithmen in Verbindung

mit einer speziellen und hochempfindlichen Astrokamera, einem System-on-a-Chip Sys-

tem und einem eigens entwickelten elektronischen Steuer-Interface verwendet.

ii

Statutory declaration

I declare in lieu oath, that I wrote this thesis and performed the associated research my-

self, using only literature cited in this volume.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebe-

nen Quellen und Hilfsmittel nicht benutzt und sonst keiner unerlaubten Hilfsmittel bedient

habe.

Leoben, Tue 6th Mar, 2018 Ernst Johann Theußl

Matr.Nr.: 00630777

iii

Acknowledgement

I dedicate this thesis to those who have supported me in this work and especially those

who have made it possible to me to pursue my interests and always encouraged me to

live my creativity as an essential part of my life.

-

I would like to thank Gerhard and Paul for the opportunity to write a thesis out of my

personal idea and supporting me. In general, I would like to thank the chair of

automation for their great support.

-

Great thanks also to the University of Leoben, especially to Prof. Paris, for the financial

research funding, which made it possible to improve the equipment and thus the result of

this thesis.

-

Many thanks to Prof. Gfrerrer for his great engagement regarding to the exact kinematic

solution.

-

I would like to thank Richard Kunz for having been such an excellent physics teacher

who has supported me already in my younger years.

-

”Teleskop Service GmbH”, Mr. Rolf Nicolay, stood by my side when I needed a

hardware exchange for this project very quickly. Many thanks for that and your trust.

-

Last but not least I want to thank my family, who made my study and creative excursions

possible. Especially I thank my grandpa († 12/25/1999) for his inspiring reflections on

physics and mathematics.

-

iv

Contents

Abstract i

Zusammenfassung ii

Acknowledgement iv

Introduction xi

1 Computer Vision 1
1.1 Object Tracking . 1

1.2 Application . 2

1.3 Algorithms . 2

1.3.1 Colour Based Object Tracking 2

1.3.2 Shape and Size Based Object Tracking 3

1.3.3 Tracking of Non Unique Feature Objects 3

1.4 Limits of Multiple Non Unique Object Tracking 3

2 Astronomy 4
2.1 Two-Axes Equatorial Mount . 4

2.2 Astronomical Coordinate Systems . 4

2.3 Autoguiding . 5

2.4 Image Field Rotation . 6

3 Test Setup 8
3.1 EQ6 Mount . 8

3.2 ST4-Connector . 10

3.3 Raspberry Pi and Periphery . 11

3.4 Touch Displays . 11

3.5 OpenCV . 11

3.5.1 Installation of OpenCV . 12

3.6 Usage of the PiCamera in Python . 13

3.7 Usage of the Astro Camera ZWO Asi 120MM-S 13

v

CONTENTS vi

3.8 Threading . 15

3.9 GUI - PyGame . 15

3.9.1 Installation of PyGame . 16

4 Electrical Interface 17
4.1 Relay Circuit . 17

4.1.1 Transistor Circuit . 18

4.1.2 I2C Circuit . 18

4.2 Optocoupler Circuit . 20

4.3 Summary . 20

5 PCB Design 22
5.1 Combined Circuit . 22

5.2 DesignSpark PCB . 22

5.3 Steps from Circuit to the finished product 23

5.4 Schematic Design . 23

5.4.1 PCB Design - Board Layout . 23

6 Kinematics 27
6.1 Transformation: Telescope to space system 27

6.1.1 E1 to E0 . 27

6.1.2 E2 to E1 . 27

6.1.3 E3 to E2 . 28

6.1.4 E4 to E3 . 28

6.1.5 E5 to E4 . 28

6.1.6 Summary: E5 to E0 . 29

6.2 Transformation of Far Away Points . 30

6.2.1 The Central Projection of the Orbit 31

6.2.2 Reduced Kinematics . 32

7 Optics 35
7.1 Camera . 35

7.2 Telescopes . 35

7.2.1 Newton Telescopes . 36

7.2.2 Refracting Telescopes . 36

7.2.3 Detectable movement of tracked objects 36

7.2.4 Crop Factor and Aperture . 38

8 Software Developement 39
8.1 Program Overview . 39

8.2 Overview Software Functions . 40

CONTENTS vii

8.3 Applied Computer Vision . 41

8.3.1 Read Video Stream Introduction 41

8.3.2 Read Video Stream: Pi Camera 41

8.3.3 Read Video Stream: ZWO Asi 120MM-S 42

8.3.4 Converting the Video Stream . 42

8.3.5 Feature Detection . 42

8.3.6 Unique Labelling of Moving Objects 43

8.3.7 Camera Calibration . 49

8.3.8 Fitting . 50

8.3.9 Coordinate Transformation . 51

8.4 Tracking . 51

8.5 PyGame . 53

8.6 Initialise PyGame . 53

8.6.1 User Inputs: Buttons . 53

8.7 Threading . 55

9 Program Explanation 57
9.1 User Inputs . 57

9.1.1 Exit (Button 1) . 57

9.1.2 Select (Button 2) . 57

9.1.3 Track (Button 3) . 58

9.1.4 Capture Image (Button 4) . 58

9.1.5 Exposure +/- (Button 5-2) . 58

9.1.6 Gain +/- (Button 6-2) . 59

9.1.7 Aim Object (Button 7) . 59

9.1.8 Select Star (Button 8) . 59

9.1.9 Calibration (Button 9) . 59

9.2 Program Outputs . 59

10 Testings 60
10.1 Simulated Test - Video Stream Input . 60

10.2 Static Testing . 60

10.3 Dynamic Testing . 61

10.4 Real World Testing . 61

10.5 Results . 63

10.6 More Shots . 64

11 Conclusion and Outlook 66

A Source Code 68

List of Figures

2.1 Astronomical coordinate system . 5

2.2 Spherical triangle . 6

3.1 Test setup . 9

3.2 Overview test setup . 9

4.1 4 Channel transistor circuit . 18

4.2 8 channel I2C I/O board - datasheet . 19

4.3 Addressing I2C - datasheet . 20

4.4 4 channel optocoupler circuit . 21

5.1 DesignSpark library loader . 23

5.2 Schematic . 24

5.3 Layout . 25

5.4 PCB design 3D rendering . 26

6.1 Reduced kinematics . 34

7.1 Newton reflector telescope . 36

7.2 Achromatic refractor telescope . 37

8.1 Distance determination . 45

8.2 Transformation: Rotation by ϕ und shift by dx and dy 52

9.1 Program screenshot . 58

10.1 Rotating plate . 61

10.2 Calibration procedure . 62

10.3 Guiding . 62

10.4 Comparison . 63

10.5 Orion Nebula . 64

10.6 Andromeda and Plejades . 64

10.7 Milky Way . 65

10.8 Blurred earth objects . 65

viii

LIST OF FIGURES ix

11.1 Histogram . 66

List of Tables

3.1 RA+/RA- speeds . 10

3.2 DEC+/DEC- speeds . 10

4.1 I2C Ports . 19

5.1 Connections . 25

5.2 Parts list . 25

8.1 Function Overview . 41

8.2 Object database . 44

x

Introduction

Computer vision based opto mechatronic object tracking in this thesis is used for the con-

trol of a mechanical system through a software-hardware solution consisting of a system-

on-a-chip computer, a camera and a suitable optics for the magnified observation and

tracking of for away objects. The mechanical system is an existing two-axis equatorial

telescope mount, with the possibility to control the two axis with defined speed. For

this reason, a new electrical control interface is developed. Further, a compact structure

of components are placed on the mount, including the mentioned required components.

For the purpose of easy tracking control, the input can be done via a touch screen and a

developed interface. To developed software is focused on high accuracy tracking and a

user friendly control interface, including parallel tasks, such as image acquisition with a

light sensitive camera. The thesis leads through the whole development process, starting

at computer vision, assembling all required components, required coordinate transforma-

tion of the kinematics and the final result, a derived reverse kinematics.

xi

Chapter 1

Computer Vision

Computer vision with its algorithms is the feature of machines to see, understand images

and evaluate captured images or videos to gather desired information’s and further the

analysis, inspection, process control and mechanical guidance of visual and mechanical

systems. The aim is to extract real world data in numerical and computer understandable

data. For this purpose, the amount of acquired data has to be reduced and classified for

essential information. [1]

1.1 Object Tracking

The potential of computer vision controlled one or more axis kinematics is enormous. The

implementation of theoretical algorithms got possible with the increase of computational

power of microprocessors or whole system-on-a-chip systems, which provides real-time

image or video processing. It is an essential factor for accurate control in closed-loop

systems, which requires fast positioning data. Another cue is the robustness of computer

vision algorithms in real environment and filtering the substantial image data in order to

avoid too intense computational calculations. For this reason, most of the existing algo-

rithms are designed for special applications with exact framework conditions, to provide

a stable functionality [1], which is not always possible. As example, the difference in

needed resources between tracking an special coloured sphere in a certain distance and

multiple objects without a unique shape in any distance of the camera is very different.

Mostly there are combinations of algorithms in advanced and complex systems to produce

the most stable state of the art success in tracking. In this thesis a set of algorithm is ap-

plied on non unique different sized objects in a consistent framework with the possibility

of the change of the number of objects and the special feature of automatic alignment and

calibration of the used kinematics depending on the camera position and kinematic itself.

In particular a video stream divided into image frames is processed with the aim of the

transformation of the image coordinate and the difference of objects from frame to frame

1

CHAPTER 1. COMPUTER VISION 2

into the given kinematics coordinates and controls.

1.2 Application

Many applications make it necessary to track objects for different purposes. That could

be a movement oft the camera for high accuracy image acquisition for reasons of the fi-

nite shutter speed of cameras, security features in autonomous driving vehicles, artificial

orientation of robots in moving environments, satellite tracking, and so on. Fast object

tracking requires fast image processing algorithms and computing power. For this reason,

the application of image processing or computer vision is a relatively young scientific

discipline. Even if the computer power increased, computer vision is based on optimized

matrix based image processing algorithms to reduce the required power and provide the

functionality even on small SoC systems in real time [2]. In the literature and as example

for typical object tracking problems, some different kind of features are presupposed in

single or multiple distinguishable object detection and tracking. A lot of tracking algo-

rithms for multiple object detections are using unique object features such as colour or

shape and size to differentiate between objects . In some cases it is necessary to differ-

entiate between moving objects without unique features or differentiate between moving

objects with a controlled and tracked camera. For each case, different algorithms are

essential to determine a working and stable object tracking mechanism [3].

1.3 Algorithms

As already mentioned there is a variety of different algorithms for different purposes of

object tracking. The achieve better results, even combinations of different algorithms are

possible. Considered separately the basic algorithms will be described in the following

sub chapters.

1.3.1 Colour Based Object Tracking

For single and multiple object detection it is possible to track different objects with differ-

ent colours in an easy way. Every pixel value with its colour is computed and evaluated

for the desired pixel value (colour) in RGB or intensity grey scale images. Connected

same-colour-pixels are summarised to unique labelled objects, which is possible for every

distinguishable colour. The reduce the computing power, the background or all inessen-

tial pixel values are removed through a threshold algorithm, while an algorithm calculates

the moments of each object and returns its centre, area and boundary pixel values. This

algorithm is less dependent on the object speed cause of the colour recognition of the

desired tracked objects [1].

CHAPTER 1. COMPUTER VISION 3

1.3.2 Shape and Size Based Object Tracking

Objects that differ in colour from the background can also be examined on their shape and

size. On the digital image just a two dimensional projection of the object can be observed,

so the most easy algorithms are based on spherical objects which only change their size

dependent on their distance to the camera based on the optical illustration and not their

shape such as cubes or other more complex objects. Based on spherical object tracking,

algorithms for circle detection can be applied with a second differentiation for multiple

objects including features such as colour or size. To reduce the required computational

power a radius range has to be given to avoid the detection of faulty objects like small

edges [1].

1.3.3 Tracking of Non Unique Feature Objects

Multiple non unique coloured or shaped objects with a noticeable difference in colour to

the image background need another kind of algorithm for distinguishable object tracking,

which is a essential part of this thesis. To track multiple objects in this way, just the

position of each object, except overlapping ones, is evaluated. To track objects over any

number of frames, a comparison of all possible positions from frame n to frame n+1 is

necessary. All distances are compared with a Gaussian probability function to obtain the

most appropriate position in the following frame.

1.4 Limits of Multiple Non Unique Object Tracking

Limits are given by the relative movement of the tracked objects and the shutter speed

of the image sensor and the program cycle speed. Neglecting the program cycle speed,

a physical parameter determines the possible speed: The available light-data for object

detection per frame depends on the image sensor sensitivity and the optics. Regarding

the used tracking algorithm, the distance between the movement of all objects are cal-

culated and compared in a Gaussian distribution, to find the most likely distance of the

objects between frame n and frame n+1. However, if the distance of movement between

the compared frames, depending on the shutter speed, is too long, no accurate algorithm

can be applied and the objects get lost. Thus the smaller the shutter speed of the cam-

era is, the smaller the distances of constant moving objects between the frame becomes,

which increases the accuracy and stability. This circumstance shows up the importance of

compliance among object speed and shutter speed of non unique multiple object tracking.

Chapter 2

Astronomy

2.1 Two-Axes Equatorial Mount

To observe distant objects, an optical instrument with a suitable and adjusted focal length

is required. The focal length depends on the distance between the observer and the object

and additionally on the required accuracy of tracking. The focal length in conjunction

with the camera sensor resolution represents the limit of motion detection. To guide the

optical observation instrument, so called mounts are used. To hold the position of an

observed object at the same position for the observer, an apparent movement of objects,

coming into existence through the movement of the earth, which must be balanced. For

astronomical applications are usually equatorial mountings used, with the special feature

of parallelism of one mount-axis and the earth axis [4]. Thereby the parallel axis rotates

with the same angular speed as the earth, but opposite. This condition allows a one axis

object tracking, just in case, the mount is perfectly aligned. If not the, a two-axis tracking

has to be applied to compensate the apparent movement, with calculated angular speeds

of both axes.

2.2 Astronomical Coordinate Systems

To specify the position of astronomical objects, depending on time, date and observer

position, special coordinate systems are required. The basis of that kind of coordinate

systems are spherical coordinates, which split up into the absolute and relative coordinate

system. The relative coordinate system, uses for its basis the origin of the observer, while

absolute systems uses a neutral basis like the centre of the earth. Mostly relative coor-

dinate systems are used to avoid further calculations for exact positions of astronomical

objects. Using that common coordinate system, available GoTo mounts uses a relative

coordinate transformation, by having the observer coordinates, time and date saved due

initialization of the mounting. By that, it is possible the calculate object positions and

4

CHAPTER 2. ASTRONOMY 5

describe their position through two angles, thus one angle is the height over the observers

position horizon, the second angle is given between the north-south line, also called the

meridian, and the object, measured positive clockwise from the north. However, it is

always important to note, that this coordinates are not persistent by their coordinate-time-

date-dependence [4].

x

y

z S

N

W

O

Zenith

Object

Horizon

Figure 2.1: Astronomical coordinate system

2.3 Autoguiding

Autoguiding is the in the literature known term of tracking a star with a given telescope

mount in relation to the misalignment. Through the control of both axes, right ascension

and declination, in positive and negative direction, the star is guided over the whole ob-

servation and stands still in the image coordinate system. That includes the correction

of the movement with two axis, which causes a third, unguided movement, thus results

into an image field rotation in dependence of the misalignment. This condition takes less

effects in finite exposure or observing times. The guiding function is a closed loop sys-

tem, with a cyclic target-actual comparison of astronomic objects from image frame to

image frame. The images are taken through a so called guidescope, with a typical fo-

cal length of about 180 mm, which guarantees in combination with a sensitive camera,

accurate tracking possibilities.

CHAPTER 2. ASTRONOMY 6

2.4 Image Field Rotation

Due a misalignment of the mount a accompanied deviation of the right ascension axis

results. Considering a two-axis kinematics, this leads to a rotation of the acquired image

about its centre. The angular speed is depending on the deviation, while the visibility

of it depends on the focal length of the observer optics and the duration of observation.

This angular speed of image rotation is given by the derivation of the parallactic angle

η . Given is any point on the celestial sphere, where a spherical triangle can be obtained

through the observed object, the celestial north pole and the zenith. The inner angle of the

observed point is designated as the parallactic angle η , together with the right ascension

angle t and the azimuth angle Az [5].

Object

NorthpoleZenith

z

90°-Dec

90°-B

Figure 2.2: Spherical triangle

The sine rule applied on the spherical triangle gives

sin(90◦ −B)
sin(η)

=
sin(z)
sin(t)

(2.1)

with sin(90−B) = cos(B) leads to

sin(z)sin(η) = cos(B)sin(t). (2.2)

CHAPTER 2. ASTRONOMY 7

To obtain the correct quadrant of η , the sine-cosine rule is applied, which gives

sin(z)cos(η) = cos(90−B)sin(90−δ)− sin(90−B)cos(90−δ)cos(t) (2.3)

with sin(90−B) = cos(B) and the division of (4) and (6) gives, with the determination of

η

η = arctan(
sin(t)

tan(B)cos(δ)− sin(δ)cos(t)
). (2.4)

Through the time derivative

η̇ =
dη
dt

(2.5)

η̇ = Ω
cos(ϕ)cos(A)

cos(h)
(2.6)

when

Ω =
1U
d

=
360◦

86146.091s
= 4.178 ·10−3 deg

s
. (2.7)

[5] The angular speed increases with the deviation of the misalignment. The visibility

results in circular arches while long exposures of the observed area on the edges of the

image. However, this phenomenon has a rather small effect and is neglected in the re-

duced kinematics, since this rotation has to be considered only for astronomical objects.

Thus, a generic solution of two axis tracking is intended.

t ... right ascension

δ ... declination of the object

B ... latitude

η ... parallactic angle

z ... zenith

Chapter 3

Test Setup

To test the developed software, especially the kinematics control behaviour, a so-called

equatorial telescope mount of the manufacturer ’SkyWatcher’ (EQ6) is used. The mount

provides high precision guiding of the whole observer system, consisting of a guide-

scope with the astro-camera, a 102mm opening achromatic refractor (TS Optics Photo-

Line 102 mm [6]), an APS-C or full frame observer camera and a system-on-a-chip com-

puter (Raspberry Pi). The focal length of the guide-scope is 180 mm and 700 mm of the

refractor telescope, which is the main observing optics for visual use by eye or camera.

To control the mount, a suitable 4 channel electrical input is given by the manufacturer of

the mount. The complete test setup is shown in figure 3.1.

3.1 EQ6 Mount

The used mount is a so called equatorial mount of the manufacturer ’SkyWatcher’xy. The

particularity of this kind of mount is the parallelism of the right ascension axis of the

mount and the axis of the earth. If the alignment is perfectly done, without any deviation

in parallelism, the apparent movement of the stars can be balanced by one axis. This

alignment-task is not easy to handle, so it is assumed that an standing deviation exists. To

correct the deviation while tracking with an imperfect alignment, a two-axis movement

correction is necessary, which can be provided through two stepper motors, which moves

primary the right ascension axis and the secondary declination axis. For high accuracy

positioning with the given stepper motors, the maximum load of equipment on the mount

is about 15 kg. In stock the mount is controlled via a hand control unit, which allows

additional settings such as observer position, stepper motor rate, ST4 port speed and so

on. The alignment process includes three degrees of freedom. The first degree of freedom

is represented by the parallelism to the ground of the mount, which is adjusted with a

spirit level on it. The second degree of freedom is the pile high which has to be adjusted

via a screw on the mount. The third degree of freedom is the azimuth angle, which can

8

CHAPTER 3. TEST SETUP 9

Figure 3.1: Test setup

Telescope

Guidescope

Two-axis mount

Hand Control Unit

Electrical
control
interface

Raspberry Pi Input/OutputAstro camera

Figure 3.2: Overview test setup

CHAPTER 3. TEST SETUP 10

only be aligned by the declination of the right ascension axis and the rotation centre of

the sky, which can be found through a pole finder in the night sky. The small eccentricity

distance to Polaris depends on the current time of day and date and can be setted up in

the finder scope. The finder scope or pole finder is placed in the hollowed right ascension

axis with the ability of fine adjustment the azimuth angle with screws on the head of the

mount [7].

3.2 ST4-Connector

In stock, the mount assumes a perfect alignment and rotates with the opposite sidereal

speed around the right ascension axis. This leads to errors, so it is necessary to correct

that with the movement of two axes. For this, a predefined electrical input of the mount

is given (ST4 port) which is a 5 pin active low RJ12 port [7], providing ground, right

ascension +/- and declination +/- connection with the given and adjustable speeds of table

3.2 and 3.1 in both axes. The speeds are a multiple of the sidereal speed or the simple

sidereal speed. This port is a standardised port and can be used in many astronomical

devices. To control this port via the GPIOs of the Raspberry Pi, an additional electrical

interface is necessary which fulfils the current and voltage conditions of the Raspberry

Pi’s GPIO ports (3,3V 16mA).

Table 3.1: RA+/RA- speeds

Setup Hand Control Unit RA+ RA-

0.25 1.25 0.75

0.5 1.5 0.5

0.75 1.75 0.25

1 2 0

Table 3.2: DEC+/DEC- speeds

Setup Hand Control Unit DEC+ DEC-

0.25 0.25 -0.25

0.5 0.5 -0.5

0.75 0.75 -0.75

1 1 -1

As seen in table 3.1, the mount is able to move in positive right ascension axis with

twice of the sidereal speed, which effects in a simple sidereal speed, caused by the oppo-

site speed of the speed of the earth. The declination axis as seen in table 3.2 gives positive

and negative sidereal speeds. In theory and perfect aligned mount, only the right ascen-

sion axis has to be driven with the single sidereal speed [7]. Misaligned mounts have to

be controlled in two axes.

CHAPTER 3. TEST SETUP 11

3.3 Raspberry Pi and Periphery

To run the developed software and control the electrical interface, a Raspberry Pi 3 model

B 64 bit, with the operating system ”Jessie”, is in use. To guarantee enough storage,

the partition is expanded to the full available space of the memory card (16GB) right

after the installation of the operating system. Two separate tests are done with the stock

PiCamera and then with special astronomic camera. The PiCamera is connected via a

camera adapter cable to the camera port of the Raspberry Pi. It is supported by standard

drivers. This camera can be run in Python and openCV without any software adjustments.

The situation is different with the astronomy camera. It comes without any native driver

support for Python or openCV. This camera is connected via a USB 3.0 port.

3.4 Touch Displays

For easy controlling the program, two different displays in different sizes are tested. The

first tests are done with a small 3.2” after market touch display connected via GPIO ports

on the 40 pin connector of the Raspberry Pi. In the application the 3.2” display turns out

to be too small and will be replaced by a 7” screen in the following tests.

The installation of the 3.2” display is done by

1 sudo nano / boo t / c o n f i g . t x t

2 d tparam = s p i =on

3 d t o v e r l a y = waveshare32b : r o t a t e =270

4 sudo nano / boo t / cmd l ine . t x t

5 fbcon =map : 1 0

6 sudo nano / u s r / s h a r e / X11 / xorg . con f . d / 9 9 - c a l i b r a t i o n . con f

7 S e c t i o n ” I n p u t C l a s s ” I d e n t i f i e r ” c a l i b r a t i o n ” MatchProduc t ”ADS7846

Touchsc reen ” Opt ion ” C a l i b r a t i o n ” ” 160 3723 3896 181 ” Opt ion ”

SwapAxes ” ” 1 ” E n d S e c t i o n

8 sudo nano / u s r / s h a r e / X11 / xorg . con f . d / 9 9 - f b t u r b o . con f

9 Opt ion ” fbdev ” ” / dev / fb1 ”

10 cd / tmp wget h t t p : / / www. joy - i t . n e t / a n l e i t u n g e n / r p i / t f t 3 2 b / waveshare32b -

o v e r l a y . d t b

11 sudo cp waveshare32b - o v e r l a y . d t b / boo t / o v e r l a y s /

3.5 OpenCV

OpenCV is an open source program library of high performance computer vision algo-

rithms for the purpose of machine vision and image processing which can be used un-

der the BSD license [8]. Available is this library for many platforms such as Python,

CHAPTER 3. TEST SETUP 12

Java, C++ and C and was introduced by Intel. However, the platform independence

makes it necessary to compile the whole library for the desired platform, which is a time-

consuming task [9].

3.5.1 Installation of OpenCV

The installation is done by the following commands as root in the console

1 sudo ap t - g e t u p d a t e

2 sudo ap t - g e t upg rade

3 sudo ap t - g e t i n s t a l l b u i l d - e s s e n t i a l cmake pkg - c o n f i g

4 sudo ap t - g e t i n s t a l l l i b j p e g - dev l i b t i f f 5 - dev l i b j a s p e r - dev

5 l ibpng12 - dev

6 sudo ap t - g e t i n s t a l l l i b a v c o d e c - dev l i b a v f o r m a t - dev

7 l i b s w s c a l e - dev l i b v 4 l - dev

8 sudo ap t - g e t i n s t a l l l i b x v i d c o r e - dev l i b x 2 6 4 - dev

9 sudo ap t - g e t i n s t a l l l i b g t k 2 . 0 - dev

10

11 sudo ap t - g e t i n s t a l l l i b a t l a s - base - dev g f o r t r a n

12 sudo ap t - g e t i n s t a l l py thon2 . 7 - dev python3 - dev

13

14 wget -O o p e n c v c o n t r i b . z i p h t t p s : / / g i t h u b . com / I t s e e z / o p e n c v c o n t r i b /

a r c h i v e / 3 . 1 . 0 . z i p

15 u n z i p o p e n c v c o n t r i b . z i p

16

17 wget h t t p s : / / b o o t s t r a p . pypa . i o / ge t - p i p . py

18 sudo py thon ge t - p i p . py

19

20 cd ~ / opencv - 3 . 1 . 0 /

21 mkdir b u i l d

22 cd b u i l d

23 cmake -D CMAKE BUILD TYPE=RELEASE \
24 -D CMAKE INSTALL PREFIX=/ u s r / l o c a l \
25 -D INSTALL PYTHON EXAMPLES=ON \
26 -D OPENCV EXTRA MODULES PATH=~ / o p e n c v c o n t r i b - 3 . 1 . 0 / modules \
27 -D BUILD EXAMPLES=ON . .

28

29 make - j 4

30 make c l e a n

31 make

32

33 sudo make i n s t a l l

34 sudo l d c o n f i g

After a successful installation, it is tested by importing openCV into a Python program:

CHAPTER 3. TEST SETUP 13

1 i m p o r t cv2 as cv

3.6 Usage of the PiCamera in Python

After connecting the camera via a special camera cable to the Raspberry Pi and activation

in the Raspberry-Pi setup menu, it can be accessed in the console and in Python. The

camera provides up to 1080p video streams at 30 frames per second. To use the camera

in Python especially with openCV, a supported driver has to be loaded via the command

1 sudo modprobe bcm2835 - v4 l2

in the console or

1 os . sys tem (sudo modprobe bcm2835 - v4 l2)

in the Python program. Otherwise the resulting errors are data type related and not easy

to assign.

3.7 Usage of the Astro Camera ZWO Asi 120MM-S

This camera comes with a high sensitive CCD-sensor, which allows higher frame rates or

shorter exposure times, depending on the desired application. The camera is connected

via the USB 3.0 port of the Raspberry Pi. A native driver support for the operating system

is given. The communication follows a manufacturer related communication protocol,

which must be used. So the image data is read via the USB 3.0 interface and the proper

communication protocol which allows live camera controls such as gain, exposure time

and as well reading data like the sensor temperature. The camera manufacturer for stock

provides some programs, to capture images and videos with a pre defined exposure time

and gain value. To communicate with Python, a certain camera manufacturer software

development kit (SDK) is necessary. The SDK provides the communication protocol

within control commands for C/C++. To access the control commands, a wrapper is used

to translate the existing C-library to a Python library and make it accessible.

In this case a camera of the manufacturer ZWO ASI is used. To install the C/C++

Python wrapper [9] for Python 3, the wrapper is available on PIP with the command

pip3 install zwoasi. After the installation, the camera has to be initialized in the Python

program with

1 i m p o r t zwoas i a s a s i

2 a s i . i n i t (” p a t h ”)

CHAPTER 3. TEST SETUP 14

where the path-variable is the path to the dynamic library of the ZWO ASI camera: libA-

SICamera.so. The driver file is available on the manufacturer homepage. To control the

camera, the following commands are mostly used [10]:

1 camera . s e t c o n t r o l v a l u e (a s i . ASI GAIN , CamGain)

2 camera . s e t c o n t r o l v a l u e (a s i . ASI EXPOSURE , 100)

3 camera . s e t c o n t r o l v a l u e (a s i . ASI WB B , 99)

4 camera . s e t c o n t r o l v a l u e (a s i . ASI WB R , 75)

5 camera . s e t c o n t r o l v a l u e (a s i . ASI GAMMA, 50)

6 camera . s e t c o n t r o l v a l u e (a s i . ASI BRIGHTNESS , 150)

7 camera . s e t c o n t r o l v a l u e (a s i . ASI FLIP , 0)

There are two possible ways to capture data from the camera:

• capture a single frame

• start video capture and grab frames

Capturing single images takes much longer and doesn’t allow frame rates like in the video

mode. For every single frame, the camera initializes with the belonging control data, cap-

tures an image and closes the capture process. The frame rate depends on the initializing

speed of the camera. An advantage of that kind of use is the lower CPU load of the

Raspberry Pi, which is about 1/5 of the video capture mode. The image is taken with

the set control parameters and therefore the acquisition duration depends on the expo-

sure time, the initialization time of the camera and the transfer time to the Raspberry Pi.

Under bright conditions the total duration is mainly dependent on the initialization time,

while under dark conditions and longer exposure times, it’s mainly the exposure time, that

determines the total cycle time.

1 camera = a s i . Camera (0)

2 image = camera . c a p t u r e ()

The video capture mode starts a continuous streaming mode with the possibility of reading

the current image data. It must be started in a different way and has to be closed after video

stream acquisition. The possible frame rate mostly, depending on the exposure time, is

much higher than in single capture mode, but it requires more CPU power, which is about

30 percent of the Raspberry Pi total power. It is possible to manipulate the camera control

in every cycle before accessing the video frame without loss of time. This makes the

camera video stream, within its ability to control, highly dynamic and customise able.

1 camera = a s i . Camera (0)

2 camera . s t a r t v i d e o c a p t u r e ()

3 f rame = camera . c a p t u r e v i d e o f r a m e ()

CHAPTER 3. TEST SETUP 15

4 camera . s t o p v i d e o c a p t u r e ()

3.8 Threading

Threading is the simultaneous execution of two or more independent processes [11], with

the ability to communicate between them. In this case, it is used to combine time criti-

cal calculations, movement control of the mount, the GUI and reading image data from

the guiding camera. The cycle time of the calculations and control commands within the

GUI should be as short as possible to get a fast running program and obtain a smoothly

working GUI without time lags caused by button inputs for operation control. While

reading frames from the camera, the program must wait and blocks other processes in a

non-threaded program. Thus the cycle time of the whole program depends on long im-

age exposure times just on reading data from the camera, which expresses in spontaneous

working user inputs, delayed calculations and video visualisation. In the threaded pro-

gram, the camera reads its frames simultaneously to the calculations during the program

cycle, to guarantee a cycle time depending on the calculations. This time is mostly cor-

relating to the number of recognized objects and the associated computational cost. To

process the image data resource-saving, a suitable exposure time and gain value must be

applied, to avoid image noise and the accompanying false detection of objects.

3.9 GUI - PyGame

PyGame is an open source Python library based on SDL (simple directmedia layer) devel-

oped primarily for programming games in Python in a high level programming language.

The advantage of PyGame is the easy to use library for graphical applications, keyboard

and mouse inputs and the optimized performance even on SoC systems such as Rasp-

berry Pi. The requirement in this case is the combination of different party libraries work

together in one program: Image acquisition through threading considering the special

camera communication protocol through a Python/C wrapper, openCV algorithms and a

graphical user interface. This includes the conversion of the image format of the video

stream between openCV and PyGame for the special requirements of PyGame [12].

The program has past the first tests with a simple GUI controlled by keyboard com-

mands entirely written in Python and openCV. To control a program in this way, a short

break waiting for keyboard interrupts is necessary, which reduces the speed of the whole

program. In the PyGame GUI an exception handler interrupts the program for keyboard

and mouse actions without any time delay, which increases the performance, especially in

combination with a threaded video stream capturing. To control the program in the first

tests, four keyboard inputs are used, with a single delay time of 30 ms, which gives a sum

CHAPTER 3. TEST SETUP 16

of 120 ms and results in a cycle time greater than 120 ms. Compared to the camera expo-

sure times in a non threaded program, the input delay time is in a similar or even higher

order than the expsoure time of the camera. These time critical applications produce a

haltingly process of calculations and user-input-possibilities. To optimise the cycle time,

the PyGame library combined with a parallel image acquisition must be applied.

3.9.1 Installation of PyGame

The common installation process of the this widespread library is very easy and is done

by entering sudoapt −get install python− pygame in the console. Also a installation for

Python 3 via pip is available through pip3 install pygame for Python 3. After a successful

installation, the PyGame library can be included through

1 i m p o r t pygame

2 from pygame . l o c a l s i m p o r t *

Chapter 4

Electrical Interface

As already mentioned, a special electrical interface is necessary to control the mount via

the ST-4 interface. Different interfaces are tested, calculated and evaluated for an optimal

solution regarding especially the integrability, required space, electrical safety for the

mount interface, simplicity of use and robustness. The tested interfaces are

• relay circuit,

• transistor circuit,

• I2C interface,

• and optocoupler circuit.

4.1 Relay Circuit

In order to achieve a four port electrical control of the mount, a combination of four

TinkerKit relays is tested. To operate the relays, an addition power source of 5 V is

required, which can be taken from the Raspberry Pi GPIO 5 V power pin. This circuit

guarantees a galvanic isolation [13] between the control interface and the mount RJ12

input connector, which satisfies the electrical safety. A great disadvantage regarding the

mechanical parts of relays, is the inertia of the magnet contact. The mass respectively the

inertia causes a minimal switching time. Also not to be neglected is the space used by the

TinkerKit relays. The minimal switching time is especially unstable for small deviations,

where particularly short pulses are needed. Too long pulses are leading to overshoots in

the deviation control. Nevertheless, in the test setup it works very well for long exposures.

Just for short exposures the overshoot was visible in the observer camera through a little

haziness at long focal lengths. Not to be despised is also the noise of the switching relays

[14].

17

CHAPTER 4. ELECTRICAL INTERFACE 18

4.1.1 Transistor Circuit

Also tested is a four channel NPN transistor BC547B circuit in common emitter setup. It

is calculated with a transistor amplification, regarding to the data sheet, of h f e = 300 and

a base current of 3 mA at 3,3 V to satisfy the GPIO conditions [13]. The series resistor of

the transistor base is calculated by

Rbase =
VGPIO −VDiode

IBase
=

3.3−0.7

3.10−3
= 866Ω. (4.1)

This gives a 866Ω resistor, thus the next larger resistor with a value of 1k Ω is selected. To

BC547

BC547

BC547

BC547

1k

1k

1k

1k

RASPBERRY-PI_REV1
5k

6
5k

6
5k

6
5k

6

T2

T3

T4

T5

R2

R3

R4

R5

SL1

1
2
3
4
5

U$1

5V 2

5V 4

GND 6

GPIO14,UART0_TXD 8

GPIO15,UART0_RXD 10

GPIO18 12

GND 14

GPIO23 16

GPIO24 18

GND 20

GPIO25 22

GPIO8,SPI0_CE0 24

GPIO7,SPI0_CE1 26

3V31

GPIO0,I2C0_SDA3

GPIO1,I2C0_SCL5

GPIO4,GPCLK07

GND9

GPIO1711

GPIO2113

GPIO2215

3V317

GPIO10_MOSI19

GPIO9_MISO21

GPIO11_SCLK23

GND25
R

7
R

8
R

9
R

10

Figure 4.1: 4 Channel transistor circuit

reduce leakage current, an additional resistor parallel to the base-emitter route is applied,

with a value of 5.6k Ω. One great advantage of that circuit is the fast switching time,

the integrability into combined circuits and the less space of the four channel transistor

circuit. The fast switching time reduces the overshoot of the control, depending on the

deviation of the tracked object.

4.1.2 I2C Circuit

In this case an eight channel I2C I/O board I2C-0C8055 (Fig. 4.2) is used, which con-

sists essentially of a I2C controller and a transistor driver (ULN2803). To control the I2C

board, the Raspberry Pi has to be configured, thus the I2C function must be activated in

the Raspberry Pi setup and initialised in the Python program.

CHAPTER 4. ELECTRICAL INTERFACE 19

P0 10

P1 11

P2 12

P3 14

P4 16

P5 17

P6 19

P7 20

SCL2

SDA4

INT1

A06

A17

A29

NC3

NC8

NC13

NC18

V
D
D

5
V
SS

15

U1

1Y1 18

1Y2 16

1Y3 14

1Y4 12

2Y1 9

2Y2 7

2Y3 5

2Y4 3

1A12

1A24

1A36

1A48

2A111

2A213

2A315

2A417

1OE1

2OE19 G
N
D

10
V
C
C

20 U2

IN11

IN22

IN33

IN44

IN55

IN66

IN77

GND9

OUT1 18

OUT2 17

OUT3 16

OUT4 15

OUT5 14

OUT6 13

OUT7 12

COM 10IN88 OUT8 11

U3

ULN2803ADWR

1
2
3
4

J2

1
2
3
4

J4

12
34
56

J3

Q1 C3

D2

1
2

3
4

J1

D1

470R

R7

10K

R1

10K

R2

10K

R6 100n
C1

100n
C2

J5

C1

C2

C3

C4

C5

C6

C7

C8

+V

VCC
GND
SCL
SDA

A0
A1
A2

10K

R3

10K

R4

10K

R5

GND

Figure 4.2: 8 channel I2C I/O board - datasheet

Initialisation in Python:

1 bus = smbus . SMBus (1)

2 a d d r e s s = 0x20 I2C d e v i c e a d d r e s s I /O board

Addressing the ports of the I2C driver and controller in Python:

1 bus . w r i t e b y t e (a d d r e s s , 0 x f f) # a l l low

2 bus . w r i t e b y t e (a d d r e s s , 0 xfd) #RA+

3 bus . w r i t e b y t e (a d d r e s s , 0 x f e) #RA-

4 bus . w r i t e b y t e (a d d r e s s , 0 xfb) #DEC+

5 bus . w r i t e b y t e (a d d r e s s , 0 xf7) #DEC-

The interface is connected to the I2C ports of the GPIO ports of the Raspberry Pi as shown

in table 4.1. Further no additional power source is required. The transistor driver of

Table 4.1: I2C Ports

I2C Interface Port Raspberry Pi Port

SDA GPIO2

SCL GPIO3

GND GND

this interface with its Darlington transistor arrays provides switching times similar to the

standalone transistor solution, which is enough for the guiding pulses. The bottleneck of

this solution is the timing of the I2C bus protocol. The addressing of the channels is done

regarding to the data sheet via a translation between the binary addresses to hexadecimal

addresses for Python. The binary addresses are shown in figure 4.3.

CHAPTER 4. ELECTRICAL INTERFACE 20

Figure 4.3: Addressing I2C - datasheet

4.2 Optocoupler Circuit

Optocouplers (Fig. 4.4) provide a galvanic isolation [13] between the mount and the

control unit and fast switching times similar to the transistor circuit. Depending on the

optocouplers, a previous transistor circuit is required, to not exceed the current specifi-

cations of the Raspberry Pi. This circumstance reduces the integrability compared to the

standalone transistor circuit.

4.3 Summary

Regarding to the evaluation factors (integrability, required space, electrical safety for the

mount interface, simplicity of use and robustness), the transistor circuit is selected for

further work and the final PCB design.

CHAPTER 4. ELECTRICAL INTERFACE 21

LTV826

LTV826

LTV826

LTV826

GNDGND

RASPBERRY-PI_REV1

OK1A
1

2 7

8

OK1B
3

4 5

6

OK2A
1

2 7

8

OK2B
3

4 5

6

ST-4
1
2
3
4
5
6

R1

R2

R3

R4

U$1

5V 2

5V 4

GND 6

GPIO14,UART0_TXD 8

GPIO15,UART0_RXD 10

GPIO18 12

GND 14

GPIO23 16

GPIO24 18

GND 20

GPIO25 22

GPIO8,SPI0_CE0 24

GPIO7,SPI0_CE1 26

3V31

GPIO0,I2C0_SDA3

GPIO1,I2C0_SCL5

GPIO4,GPCLK07

GND9

GPIO1711

GPIO2113

GPIO2215

3V317

GPIO10_MOSI19

GPIO9_MISO21

GPIO11_SCLK23

GND25

Figure 4.4: 4 channel optocoupler circuit

Chapter 5

PCB Design

5.1 Combined Circuit

To provide an all-in-one solution such as 12 V and 5 V power supply for the Raspberry Pi,

the electrical control interface, the touch display and the mount itself, a combined circuit

is designed. The requirement of different input voltages facilitates the practical use of the

system offside the availability of electricity out of the socket with a power supply. Mostly

12 V car battery packs are in use, because of their capacity. Meanwhile the development

of high capacity 5 V battery packs as an available and light-weight solution, concerning

the weight of the battery, provides a good alternative to the mostly heavy-weight 12 V

car batteries. The designed electrical circuit integrates all necessary inputs and outputs

and additionally the power source of the system, matching the requirements. For the

schematic design and the PCB layout, the free to use program DesignSpark PCB is used.

With its integrated part finder of known companies like RS-Components, the availability

of parts and footprints for lay outing are given.

5.2 DesignSpark PCB

As already mentioned, a special program with an easy import of parts including foot

prints is used for the combined circuit. To provide a satisfying and robust connectivity

for controlling the mount, input voltage and the Raspberry Pi connections are special

connectors necessary. The circuit board is a double layered with a 40 pin connector on one

side to attach the board to the Raspberry Pi. On the other side (layer) the other required

parts are soldered, such as transistors, RJ12 connector and so on. The availability of these

special parts and the provided foot prints have to be taken into account, which must be

considered in the search of the parts. DesignSpark PCB with the additional library loader

can import the parts with their footprints via a special online search engine available on

[15]:

22

CHAPTER 5. PCB DESIGN 23

Figure 5.1: DesignSpark library loader

htt ps : //rs.componentsearchengine.com

5.3 Steps from Circuit to the finished product

Every design of circuit boards is separated into some steps: Calculate the circuit consider-

ing the requirements, a schematic drawing of the circuit and the final layout. In the chapter

4 possibilities for controlling the mount are calculated and tested. For the first tests, the

different circuits are build on prototype circuit boards and compared to each other. On

the basis of connectivity and available space, the prototype of a transistor based circuit is

further used. The advantage of the transistors compared to relays is their switching time,

which affects the accuracy control and the less space they need. Compared to the I2C

solution, a more integrated circuit board is possible, without having extra boards, which

must be attached by wires in a housing.

5.4 Schematic Design

After calculating and comparing the different circuits, the transistor variant is drawn in

DesignSpark PCB (Fig. 5.2). To create a step by step solution, a new project in the

program has to be created. The first step is to search for available parts, which are given

in a parts list, made after the first prototypes via the RS-Components search engine. The

individual components of the circuit are describes in table 5.1 and figure 5.2. The 12V and

5V supplies are given by existing DC boost up and down converters. They are attached

by the connectors shown in figure 5.2 by number 7 and 8.

5.4.1 PCB Design - Board Layout

The next step is the placement of the components on the circuit board and give easy

access to the input and output connectors (Fig. 5.3). The whole circuit board has equal

dimensions as the Raspberry Pi, with a global 40 pin connector on the lower side, while

all electrical parts are on the upper side to guarantee the best compactness. To realise this,

CHAPTER 5. PCB DESIGN 24

1

2

3

4

5

6

7

8

9

Figure 5.2: Schematic

a double layer board is necessary. In the PCB design the components can be switched

between the layers and placed by drag and drop on each layer. The board wiring in

DesignSpark PCB can be done with the ’auto-route all nets’ function with additional

conditions, such as used layers and number of vias. After a successful routing, the wiring

can, if necessary, manipulated by hand for position and thickness. A 3D rendered image

can now be viewed as a final check of the placed parts and wires of the circuit (Fig. 5.4).

The 3D model includes all the footprints and available 3D data of each component.

CHAPTER 5. PCB DESIGN 25

Table 5.1: Connections

Number Purpose Raspberry Pi GPIO 40 Pin Connector Port

1 Status LED Driver 33

2 40 Pin Connector - -

3 RA+ Driver 20 38

4 DEC+ Driver 21 40

5 RA- Driver 26 39

6 DEC- Driver 19 35

7 5V Input Voltage Connector NC* NC*

8 12V Input Voltage Connector NC* NC*

9 ST4 Output - -

Table 5.2: Parts list

Position Pieces Part Description Order Number Price p. Pcs.

1 1 Molex RJ12 95501-2661 0.73

2 1 Connector 40 Pin 681-6794 4.07

3 5 BC548B 761-9828 0.188

4 5 R 1k 125-1142 0.035

5 5 R 6k8 132-696 0.091

6 3 2 Pin Connector 4838461P 0.103

7 1 Micro USB Connector 8183361 1.53

8 1 DC Connector 8786787 0.954

Figure 5.3: Layout

CHAPTER 5. PCB DESIGN 26

Figure 5.4: PCB design 3D rendering

Chapter 6

Kinematics

The relatively kinematic view requires the transformation of coordinate systems from the

space system with the movement of heavenly bodies into the mount coordinate system and

further into the image coordinate system to recalculate the misalignment of the mount in

dependence of the star and observer position [16]. To this, the correction pulses for the

mount control are applied [17].

6.1 Transformation: Telescope to space system

6.1.1 E1 to E0

Transformation from the local coordinate system Σ1 on earth into space system Σ0:

The fixed space coordinate system has the origin in the centre of the earth, while φ repre-

sents the geographical latitude and u the rotation of the earth about its axis.

B01 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

r cos(φ)cos(u) cos(φ)cos(u) −sin(u) −sin(φ)cos(u)

r cos(φ)sin(u) cos(φ)sin(u) cos(u) −sin(φ)sin(u)

r sin(φ) sin(φ) 0 cos(φ)

⎤
⎥⎥⎥⎥⎦ (6.1)

6.1.2 E2 to E1

Rotation about the vertical telescope mounting axis (Σ2 → Σ1):

The vertical telescope axis goes through the zero point, the centre of the earth. α repre-

sents a rotation about the x axis of Σ1, which is the first error parameter. If α = 0, no

error on the alignment occurred and the y-axis of the mount is parallel to the tangent of

the circle of latitude. This angle results in a lefter or righter position of the equatorial

27

CHAPTER 6. KINEMATICS 28

telescope axis compared to its nominal-position (Polaris.)

B12 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 cos(α) −sin(α)

0 0 sin(α) cos(α)

⎤
⎥⎥⎥⎥⎦ (6.2)

6.1.3 E3 to E2

Rotation about the horizontal telescope mount axis (Σ3 → Σ2):

This rotation is the second error parameter of the alignment and is represented by β . If

the angle β = φ no error at the alignment occurred. This angle results in a higher or lower

position of the equatorial axis compared to its nominal-position (Polaris).

B23 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cos(β) 0 sin(β)
0 0 1 0

0 −sin(β) 0 cos(β)

⎤
⎥⎥⎥⎥⎦ (6.3)

6.1.4 E4 to E3

Rotation about the hour axis (Σ4 → Σ3):

A rotation about the z-axis of the telescopes equatorial axis −u, the negative speed of the

rotation of the earth. If α = 0 and β = φ , that angular speed compensates the rotation of

the earth, no additional movement of the mount is necessary.

B34 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cos(u) 0 sin(u)

0 −sin(u) cos(u) 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (6.4)

6.1.5 E5 to E4

Transformation of the telescope or camera coordinate system Σ5 to the telescope mount

coordinate system Σ4. It is a shift of the telescope coordinate system on the z-axis of the

mount system into the camera coordinate system.

B45 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

a 1 0 0

b 0 1 0

c 0 0 1

⎤
⎥⎥⎥⎥⎦ (6.5)

CHAPTER 6. KINEMATICS 29

6.1.6 Summary: E5 to E0

The summarised transformation consists of the multiplication of each transformation

B05 = B01B12B23B34B45. (6.6)

A point x with homogeneous coordinates in the camera coordinate system [1,x5,y5,z5]T ,

has the following transformed homogeneous space coordinates:

⎡
⎢⎢⎢⎢⎣

1

x0

y0

z0

⎤
⎥⎥⎥⎥⎦= B05

⎡
⎢⎢⎢⎢⎣

1

x5

y5

z5

⎤
⎥⎥⎥⎥⎦ (6.7)

Distant points such as astronomical objects are represented as homogeneous coordinates

as [0,x,y,z]T .The matrix Bij has the form

Bij =

[
1 oT

dij Aij

]
(6.8)

where Aij is an orthogonal 3x3 matrix (rotation matrix), dij the translation part with 3

components and oT a null vector. So the transformation of a distant point of the camera

coordinate system to the space coordinate system is done with

⎡
⎢⎣

x0

y0

z0

⎤
⎥⎦= A05

⎡
⎢⎣

x5

y5

z5

⎤
⎥⎦ (6.9)

and

A05 = A01A12A23A34A45 (6.10)

so the result of A05 is

A05 =

⎡
⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦ (6.11)

with
a11 = (cos(α)sin(β)sin(φ)+ cos(β)cos(φ)− cos(α))cos2(u)

+ sin(α)(sin(φ)− sin(β))cos(u)sin(u)+ cos(α)
(6.12)

a12 = sin(α)(sin(β)− sin(φ))cos2(u)

+(cos(α)sin(β)sin(φ)+ cos(β)cos(φ)

− cos(α))cos(u)sin(u)− sin(α)sin(β)

(6.13)

CHAPTER 6. KINEMATICS 30

a13 = (sin(β)cos(φ)− cos(α)cos(β)sin(φ))cos(u)+ sin(α)cos(β)sin(u) (6.14)

a21 = sin(α)(sin(β)− sin(φ))cos2(u)

+(cos(α)sin(β)sin(φ)+ cos(β)cos(φ)

− cos(α))cos(u)sin(u)+ sin(α)sin(φ)

(6.15)

a22 = (cos(α)sin(β)sin(φ)+ cos(β)cos(φ))sin2(u)

+ cos(α)cos2(u)+ sin(α)(sin(β)− sin(φ))cos(u)sin(u)
(6.16)

a23 =−sin(α)cos(β)cos(u)− (cos(α)cos(β)sin(φ)− sin(β)cos(φ))sin(u) (6.17)

a31 =−(cos(α)sin(β)cos(φ)− cos(β)sin(φ))cos(u)− sin(α)cos(φ)sin(u) (6.18)

a32 = sin(α)cos(φ)cos(u)− (cos(α)sin(β)cos(φ)− cos(β)sin(φ))sin(u) (6.19)

a33 = cos(α)cos(β)cos(φ)+ sin(β)sin(φ) (6.20)

6.2 Transformation of Far Away Points

To calculate back from distant points in the space system to the camera coordinate system,

A05 must be inverted

A50 = AT
05 =

⎡
⎢⎣

a11 a21 a31

a12 a22 a32

a13 a23 a33

⎤
⎥⎦ (6.21)

. In case α = 0 and β = φ , A05 = A50 = I, a unit matrix is the result. The inverse

transformation gives ⎡
⎢⎣

x5

y5

z5

⎤
⎥⎦= A50

⎡
⎢⎣

x0

y0

z0

⎤
⎥⎦ (6.22)

which means, that x0,y0,z0 are coordinates of a distant point in terms of the space sys-

tem. The equation is the parametrisation of the orbit of the object in terms of the camera

coordinate system. The parametrisation follows

⎡
⎢⎣

x5

y5

z5

⎤
⎥⎦=

⎡
⎢⎣

x5(u)

y5(u)

z5(u)

⎤
⎥⎦ (6.23)

CHAPTER 6. KINEMATICS 31

As example, the coordinates of Polaris are approximately x0 = y0 = 0 and z0 = 1

⎡
⎢⎣

x5

y5

z5

⎤
⎥⎦=

⎡
⎢⎣

a31

a32

a33

⎤
⎥⎦=

⎡
⎢⎣
−(cos(α)sin(β)cos(φ)− cos(β)sin(φ))cos(u)− sin(α)cos(φ)sin(u)

sin(α)cos(φ)cos(u)− (cos(α)sin(β)cos(φ)− cos(β)sin(φ))sin(u)

cos(α)cos(β)cos(φ)+ sin(β)sin(φ)

⎤
⎥⎦

(6.24)

=

⎡
⎢⎣

0

0

cos(α)cos(β)cos(φ)+ sin(β)sin(φ)

⎤
⎥⎦

+ cos(u)

⎡
⎢⎣
−(cos(α)sin(β)cos(φ)− cos(β)sin(φ))

0

0

⎤
⎥⎦

+ sin(u)

⎡
⎢⎣

−sin(α)cos(φ)
−(cos(α)sin(β)cos(φ)− cos(β)sin(φ))

0

⎤
⎥⎦

(6.25)

6.2.1 The Central Projection of the Orbit

The image plane is parallel to the x5,y5 plane, with a distance of z5 = f , where f is the

focal length of the optics. The projection resulting from the telescope focus gives

[
x

y

]
=

⎡
⎣− f · x5

z5

− f · y5

z5

⎤
⎦ . (6.26)

The central projection of the distant orbit of Polaris results into a circle centred at O:

[
x(u)

y(u)

]
=

f cos(u)
cos(α)cos(β)cos(φ)+ sin(β)sin(φ)

[
cos(α)sin(β)cos(φ)− cos(β)sin(φ)

−sin(α)cos(φ)

]

+
f sin(u)

cos(α)cos(β)cos(φ)+ sin(β)sin(φ)

[
sin(α)cos(φ)

cos(α)sin(β)cos(φ)− cos(β)sin(φ)

]
.

(6.27)

At long exposures this circle is visible with its resulting radius on the image, which can

be determined by

r2 =
f 2

(cos(α)cos(β)cos(φ)+ sin(β)sin(φ))2

·
[
(cos(α)sin(β)cos(φ)− cos(β)sin(φ))2 + sin2(α)cos2(φ)

] (6.28)

CHAPTER 6. KINEMATICS 32

If this radius is known through an evaluation of observed objects due long time image

acquisition, with the knowledge of their coordinates in the space system, it is possible

to calculate the misalignment, respectively the deviation angles α and β and further the

two-axis control pulses.

6.2.2 Reduced Kinematics

Further a reduced kinematics is derived of the exact solution, to provide a generic appli-

cable two-axis object tracking system through reverse kinematics. For that reason, the

movement of an object in the observer coordinate system (two-dimensional image) is

compared to the movement of the axes of the kinematics. In this process the position of

the object is stored into a database, distinguished by right ascension and declination axis.

In the first step, the right ascension axis is moved for a defined time and number of data

points, the same goes on for the other axis. The stored data is linearly fitted and differen-

tiated by the axis to calculate the slope of each function. This slope is the rotation angle

α of the axis of the kinematics and camera related coordinate system (camera position

and kinematics behaviour). The calculation of the slope of the second axis gives a second

slope β , which should be α +90 measured in degrees. Due mechanical inaccuracies the

real slope is different to this assumption, but will be neglected in the next steps because

just small deviations are considered [18].

With

rotangle = α (6.29)

and assuming an orthogonal coordinate system

β = α +90 (6.30)

the rotation matrix about the z-axis in homogeneous coordinates [19] is represented by

D=

⎡
⎢⎣

cos(α) −sin(α) 0

sin(α) cos(α) 0

0 0 1

⎤
⎥⎦ (6.31)

considering the additional shift T of the coordinate system

T=

⎡
⎢⎣

1 0 xre f

0 1 yre f

0 0 1

⎤
⎥⎦ (6.32)

CHAPTER 6. KINEMATICS 33

with xre f and yre f are the coordinates of the tracked object in the camera coordinate system

O =

⎡
⎢⎣

xre f

yre f

1

⎤
⎥⎦ , (6.33)

which represents the origin of the transformed coordinate system. The full transformation

of the coordinate system for the reverse kinematics is:

Σ2 → Σ1 = DT=

⎡
⎢⎣

cos(α) −sin(α) 0

sin(α) cos(α) 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 0 xre f

0 1 yre f

0 0 1

⎤
⎥⎦ , (6.34)

which gives the transformed object coordinates O′ for any coordinate R (x,y)

R=

⎡
⎢⎣

x

y

1

⎤
⎥⎦ (6.35)

O′T =RTDT=
[
x y 1

]⎡⎢⎣
cos(α) −sin(α) −(xre f cos(α)− xre f sin(α))

sin(α) cos(α) −(xre f sin(α)+ yre f cos(α))

0 0 1

⎤
⎥⎦ (6.36)

O′ =

⎡
⎢⎣

x′

y′

1

⎤
⎥⎦ . (6.37)

Any deviation measured in the image data is the transformed deviation in the new x′ and y′

coordinate system, which now can control the axes of the kinematics. The orthogonality

error is calculated in degrees as

orthoerror = 90−|α |−|β |. (6.38)

Anticipated, this error only effects in positions distant from the coordinate system origin.

Because objects are approximated to the axis deviations, the error is decreasing in order to

the distance to the origin. In tests, even large deviations compared to the image resolution

were controllable. In case

R=O,O′ =OTDT= 0 (6.39)

the transformation of the point R is equal to 0, which means, that no deviation occurs.

CHAPTER 6. KINEMATICS 34

α

x
y

O
xαxref

yref x

y

Figure 6.1: Reduced kinematics

Chapter 7

Optics

Regarding to calculations, the aperture of the optical system is responsible for the light,

which can be captured by the optics and further by the CCD-sensor. The aperture is given

as the quotient of the opening pupil (effective lens diameter) and the focal length. The

opening pupil gives the size of the optical system and the ability to gather image informa-

tion, while a larger focal length limits the field of view. The focal length in combination

with the CCD-sensor size and resolution physically defines the tracking accuracy with its

movement per pixel. Depending on the application, the distance to the tracked object and

its speed, the optical system has to be chosen. In this case a small refractor lens with a

focal length of 180mm f/3.3 is used, which provides enough light especially under low

light conditions. The refractor also supports a T2 and a 1,25” connection for direct camera

usage.

7.1 Camera

The camera and its sensor with its ability to control the camera settings is an essential part

of the high accuracy tracking system. Typical parameters which has to be controlled are

the exposure time respectively the shutter speed, gain, resolution, bandwidth, and so on.

7.2 Telescopes

For observation of distant objects, the most suitable telescope must be selected by the

focal length, which gives the magnification and the aperture, determined through the lens

diameter and focal length. There are many different design types of telescopes and each

has advantages and disadvantages, such as image quality, diameter, weight, optical reso-

lution and price.

35

CHAPTER 7. OPTICS 36

7.2.1 Newton Telescopes

A newton telescope consists of a concave main mirror, which magnifies the image and

projects it on a 45 degree fang mirror to the eyepiece or camera. The advantage of that

kind of telescopes is the light weight main mirror and the simple design. The focus of

the image is set by the distance of the eyepiece to the fang mirror and the main mirror.

Due thermal influence on the material of the tubus, this distance increase or decrease

depending on the temperature. This makes adjustments via a special adjustment laser

necessary, which is a reasonable disadvantage of this design [4].

Figure 7.1: Newton reflector telescope

7.2.2 Refracting Telescopes

Refracting telescopes magnifies the image through a set of lenses in the tubus, thus the

number of lenses and design gives the quality criteria of the whole telescope together with

the lens materials. Lenses tend to colour errors and aberrations on their edges, therefore

these errors have to be corrected through additional lenses or materials, like in achromatic

refractor telescopes. These are designed with at least two or more corrected lenses. Fur-

ther this telescope design doesn’t need any type of adjustment at all, just a homogeneous

temperature of the tubus and lenses, which can be achieved by a appropriate cooling or

heating time under the needed external conditions [4].

7.2.3 Detectable movement of tracked objects

The least detectable movement of tracked objects results in a combination of the image

sensor resolution of the observing camera and the focal length of the telescope with its

CHAPTER 7. OPTICS 37

fTelescope fEyepiece

Figure 7.2: Achromatic refractor telescope

optical resolution. This factor can be expressed through the field of view equation [20]:

αv = 2 · arctan

(
d

2 · f

)
, (7.1)

combined with the sensor width and height resolution

αv = 2 · arctan

(
wmm

2 · f

)
, (7.2)

and

αv = 2 · arctan

(
hmm

2 · f

)
, (7.3)

which gives the resolution of arc seconds per sensor width or height through

1rad =
360◦

2π
= 57,295◦, (7.4)

1deg =
57,295◦

1rad
·60s = 57,295 ·60s = 3438arcsec, (7.5)

and leads to

barcmin =
wmm ·3438

f
, (7.6)

and

harcmin =
hmm ·3438

f
. (7.7)

CHAPTER 7. OPTICS 38

Applied on the sensor resolution

harcmin =
hmm

resh
, (7.8)

warcmin =
wmm

resw
. (7.9)

The Dawes criteria describes the optical resolution of the optics, in dependence of the of

the wavelength

α = 1,02
λ
d

(7.10)

with,

d ... lens diameter in mm

λ ... wavelength in mm

is neglected. Because the combination of sensor and optics determines the physical limit

of the distinctness of observed objects.

7.2.4 Crop Factor and Aperture

The crop factor indicates the visible area of an image in dependence of the camera sensor

and focal length of the telescope, which gives further the effective aperture of the sensor

and optics combination. The crop factor is calculated as the quotient of sensor width of a

full frame sensor and the used sensor width [21]

c =
width f f

widthcrop
, (7.11)

ke f f =
f · c
D

. (7.12)

with,

ke f f ... effective aperture

c ... crop factor

D ... opening

This aperture determines the depth of field in photography and also the light collect-

ing capability. Thus the objects are almost infinitely far away, the depth of field has no

influence on the acquired image, but the light collecting capability does. The darker an

object appears, the longer must be the exposure time, to gather the desired image data.

This time decreases with a bigger light collecting capability, which is represented by a

smaller k-value.

Chapter 8

Software Developement

After the requirements of the test setup are met and kinematics are calculated, the prereq-

uisites for programming are given. This includes hardware requirements like the electrical

interface, necessary software and driver installations and the calculated kinematics and al-

gorithms for multiple non unique object tracking.

8.1 Program Overview

The software, written in Python, can be divided into the main parts

• image acquisition,

• image processing,

• calculations,

• controlling,

• presentation.

The aim of this software is to hold tracked clearly distinguishable moving objects on an

exact position of the image and control a two-axis mount through calculated reverse kine-

matics. The difficulty of this project is the identification of multiple non unique objects

in a high speed video streams. The faster the shutter speed in correlation to the object

movement, the smaller the deviation of the object between video frame n and frame n+1

is. Once again, the advantage of a fast software and shutter speed is shown. To track

the non unique feature objects, their centre points are calculated through computer vision

algorithms and saved into a temporary object database. After the next frame n+1 is read,

the centre points of frame n and n+1 are compared with a Gaussian distribution to de-

termine the most suitable positions of the objects in frame n+1. The result is saved in a

persistent object database with a consistent numbering of every object. The database also

39

CHAPTER 8. SOFTWARE DEVELOPEMENT 40

includes the object number, the actual coordinates and an online indicator for each object.

If an object leaves the field of view, the online indicator changes to 0 (= offline) and the

coordinates will keep the last coordinates of the seen object. New objects, travelling into

the image, won’t be saved into the object database to keep the focus on the existing and

desired objects.

The image acquisition part reads in the actual video data in a parallel program through

a separate thread. In this project a special high sensitive astronomy camera is used to

minimise the shutter speed and optimise the correlation between its speed and the tracked

object movement. The data is read with a SDK (software development kit) written in

the programming language C. To use it in Python, a wrapper for the SDK is required.

With this library, all essential parameters such as shutter speed respectively the exposure

time, image gain and white balance of the camera can be controlled live in the program.

The image or video processing part is doing all the required calculation depending on the

given pixel values. It starts with a dynamic threshold as the first step in segmentation, to

reduce the data information for further processing.

In the calculation part the relative camera and kinematics behaviour is measured

through a calibration method, which gives a relative coordinate system. This new rotated

and shifted coordinate system is the base for all deviation measurements in the tracking

process. The calibration uses a initial rotation of the kinematic axes to save the com-

bined behaviour of camera orientation and kinematics to recalculate a reverse kinematics

in order to control the mount.

To control the mount, the calculated relative coordinate system is set to the desired

initial object position, which consists of a shift in x,y and a rotation about a calculated

angle. The x,y values of the coordinate shift are the x,y coordinates of the desired object

read out of the object database at the time of initialisation. If a deviation occurs in the

transformed coordinate system, the values of the object are simultaneously the deviation

values for controlling the closed loop system.

The presentation of the video stream, input buttons, camera parameters, coordinate

information and camera controls are shown in an entire window, generated in PyGame.

8.2 Overview Software Functions

Table 8.1 gives an overview of essential functions of this program, which will be explained

in more detail in this chapter. These functions are used in the first tests of the program,

without a PyGame-GUI and also later, without any change.

CHAPTER 8. SOFTWARE DEVELOPEMENT 41

Table 8.1: Function Overview

Function Explanation
Initialize() Initialise GPIOs, load camera driver
getCoordinates() calculate actual coordinates
getInitialStarTable() read initial star database
StarMatching(StarTable) apply the magic matching
getsSlope() get slope of relative coordinate system
RACalibration(StarTable, TrackedStar) right ascension calibration
DECCalibration(StarTable, TrackedStar) declination calibration
PrintLog() show calibration data points
CoordinatesTransformation

(StarTable,TrackedStar) transform coordinate system
TrackingMarkers(StarTable,

TrackedStar) highlight tracked object
Tracking(StarTableTrans) track object

8.3 Applied Computer Vision

8.3.1 Read Video Stream Introduction

In this thesis, two relevant types of cameras are used. The first test starts with the

Raspberry-Pi camera, a out of the box solution for an easy beginning. The limits of this

camera where quickly seen under low light conditions and the ability of adjusting param-

eters live due processing. For this reason, the implementation of an astronomy camera is

necessary. This camera has a more light sensitive image sensor and live adjustable camera

parameters via a SDK. Thus it is possible to detect darker objects and reduce the exposure

time, which is an improvement factor in accurate tracking.

8.3.2 Read Video Stream: Pi Camera

After the Pi-Camera is connected to the Raspberry Pi, it can be accessed via the command

line prompt and also in Python. To read images [22] in a openCV understandable format,

the existing camera driver must be overwritten by the command in the command prompt:

1 sudo modprobe bcm2835 - v4 l2

after are loaded drivers loaded and the camera can be initialized

1 cap = cv2 . VideoCap tu re (0)

where 0 is the hardware device number of the camera. After the successful initialisation,

a video stream can be started through

CHAPTER 8. SOFTWARE DEVELOPEMENT 42

1 r e t , f rame = cap . r e a d ()

The required image data is saved to the variable f rame and is ready for further image

processing. The number of frames per second in this case is depending on the cycle time

and the shutter speed of the PiCamera.

8.3.3 Read Video Stream: ZWO Asi 120MM-S

In a similar way, but with many more requirements (chapter 3), the ZWO Asi camera can

now be used in Python through:

1 camera = a s i . Camera (0)

2 camera . s t a r t v i d e o c a p t u r e ()

3 f rame = camera . c a p t u r e v i d e o f r a m e ()

4 camera . s t o p v i d e o c a p t u r e ()

8.3.4 Converting the Video Stream

Again, the image data is saved into the variable f rame in the same way and can be fur-

ther processed as in the Pi Camera. The only difference is the data format of the image.

The Pi Camera gathers an RGB image, which needs a three-dimensional data array while

the ZWO Asi captures a grey level image, which is saved in a 2-dimensional array. At

a certain point of the program, the same data format must be respected to fulfil the re-

quirements of the applied algorithms. For this reason, the three-dimensional array must

be converted to a two-dimensional grey level image.

1 g ray = cv2 . c v t C o l o r (frame , cv2 . COLOR BGR2GRAY)

After that conversion, a threshold algorithm is applied to filter the image for bright el-

ements (segmentation), which stand out from the dark background. A simple dynamic

threshold value T hreshold, which is 80 percent of the maximum pixel value of the image

is used.

1 T h r e s h o l d = frame . max () * 0 . 8

2 r e t , t h r e s h = cv2 . t h r e s h o l d (gray , Thresho ld , 2 5 5 , 0)

8.3.5 Feature Detection

After ’thresholding’ the image, bright objects are represented by bright pixels (value=255),

while the background is black-coloured (value=0), which are good conditions to apply an

edge or contour detection algorithm. The existing algorithm f indContours provided by

CHAPTER 8. SOFTWARE DEVELOPEMENT 43

the openCV library calculates all boundary pixels of the labelled objects and saves it into

an array:

1 image , c n t s , h i e r a r c h y =

2 cv2 . f i n d C o n t o u r s (t h r e s h , cv2 . RETR TREE , cv2 . CHAIN APPROX SIMPLE)

For further processing, the given data by the contours algorithm is used to determine the

moments of each recognised object:

1 f o r c i n c n t s :

2 M = cv2 . moments (c)

3 i f (M[' m10 '] ! = 0) :

4 cX = i n t (M[' m10 '] /M[' m00 '])

5 cY = i n t (M[' m01 '] /M[' m00 '])

6 TempCoord ina tes = np . append (TempCoordinates , np . a r r a y ([[cX , cY]])

7 , a x i s =0)

The result is an array of found moments of the visible objects in the image:

C=

⎛
⎜⎜⎜⎜⎝

x1 y1

x2 y2

...
...

xi yi

⎞
⎟⎟⎟⎟⎠ (8.1)

8.3.6 Unique Labelling of Moving Objects

In case an object disappears or a new one is added and processed till the coordinate cal-

culation, the position of the moments and their labels are changed in the moment matrix,

which causes identification problems of single objects. This circumstance makes an sup-

plementary calculation necessary to make every object clearly identifiable. For this reason

the moments of frame n are saved temporary to a variable and compared to the next frame

n+ 1 through a matching algorithm. This algorithm calculates all possible distances be-

tween the recognised objects, under consideration, that the dimension of each moment

matrix matches the other. In case, the dimension doesn’t match, additional calculations

must be done. The aim of the matching algorithm is to make every object from a certain

time, which is given by an user input, clearly identifiable and provide a persistent ob-

ject database with a unique sorting. That means, that new objects won’t be visible in the

database, while disappeared objected are marked as offline (Table 8.2).

So the matrix of moments of objects of frame n with its dimensions [i x 2] is given by

CHAPTER 8. SOFTWARE DEVELOPEMENT 44

Table 8.2: Object database

StarTable
Object Number x-Coordinates y-Coordinates online indicator
1 x1 y1 0 or 1

2 x2 y2 0or 1
...

...
...

...

n xn yn 0 or 1

Cn =

⎛
⎜⎜⎜⎜⎝

x1 y1

x2 y2

...
...

xi yi

⎞
⎟⎟⎟⎟⎠ . (8.2)

And the matrix of moments of objects of frame n+1 with its dimensions [j x 2] by

Cn+1 =

⎛
⎜⎜⎜⎜⎝

x̂1 ŷ1

x̂2 ŷ2

...
...

x̂ j ŷ j

⎞
⎟⎟⎟⎟⎠ . (8.3)

Regarding these two matrices of moments, where i and j are the number of objects, the

distances between all objects of frame n and n+ 1 are calculated with equation 8.4 and

summarised in a distance matrix, given by equation 8.5.

ri j =
√
(xi − x̂i)2 +(yi − ŷi)2 (8.4)

R=

⎛
⎜⎜⎜⎜⎝

√
(x1 − x̂1)2 +(y1 − ŷ1)2

√
(x1 − x̂2)2 +(y1 − ŷ2)2 . . .

√
(x1 − x̂i)2 +(y1 − ŷi)2√

(x2 − x̂1)2 +(y2 − ŷ1)2
√

(x2 − x̂i)2 +(y2 − ŷi)2

...
. . .

...
...√

(xi − x̂1)2 +(yi − ŷ1)2
√

(xi − x̂ j)2 +(yi − ŷ j)2

⎞
⎟⎟⎟⎟⎠

(8.5)

Underlying a Gaussian distribution (equation 8.6), the single values are weighted by their

probability of best suitable distance between frame n and n+1. The range of this proba-

bility starts at 0 - which is a very unlikely match, till 1, which gives the best match for the

new position of an object of frame n in the frame n+1.

Gi j = e
−

r2
i j

2σ2 (8.6)

CHAPTER 8. SOFTWARE DEVELOPEMENT 45

x
y

r12'1

2

3‘

2‘

1‘r11'

r13'

r21'

r22'

r23'r31'

r32'

r33'
3

Figure 8.1: Distance determination

G=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e
−

r2
11

2σ2 . . . e
−

r2
1 j

2σ2

...
. . .

...

e
−

r2
i1

2σ2 . . . e
−

r2
i j

2σ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8.7)

In the case, that

dim(Cn) = dim(Cn+1), (8.8)

which means, that the number of objects of frame n and n+1 did not change, a diagonal

matrix will be the result

Ĝ= round(G) =

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0

0 1 . . . 0
...

. . .
...

0 0 . . . 1

⎞
⎟⎟⎟⎟⎠ . (8.9)

As already mentioned, it is possible, that the number of objects decreases or increases in

the following image frame, which leads to different dimensions of the compared matrices:

CHAPTER 8. SOFTWARE DEVELOPEMENT 46

Case a: Number of objects decreasing:

dim(Cn)> dim(Cn+1) (8.10)

Case b: Number of objects increasing:

dim(Cn)< dim(Cn+1) (8.11)

Considering both cases and the requirement to calculate the distance matrix or proximity

matrix, the dimensions of the two input matrices have to be adjusted by the following

steps:

Extract the x any y coordinates from Cn and Cn+1 through

(
x

y

)
= Cn

T (8.12)

and (
x̂

ŷ

)
= Cn+1

T, (8.13)

further

x=

⎛
⎜⎜⎝

x1

...

xn

⎞
⎟⎟⎠ ,y =

⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ ,I =

⎛
⎜⎜⎜⎜⎝

1

1
...

1

⎞
⎟⎟⎟⎟⎠ , (8.14)

where the length of the unit vector I corresponds to the length of Cn+1. Similar the matrix

x̂, ŷ and Î are formed, where the length of this unit vector Î corresponds to Cn.

x̂=

⎛
⎜⎜⎝

x̂1

...

x̂n

⎞
⎟⎟⎠ , ŷ =

⎛
⎜⎜⎝

ŷ1

...

ŷn

⎞
⎟⎟⎠ , Î =

⎛
⎜⎜⎜⎜⎝

1

1
...

1

⎞
⎟⎟⎟⎟⎠ (8.15)

with the outer product of

ÎxT =

⎛
⎜⎜⎜⎜⎝

x1 x1 . . . x1

x2 x2 . . . x2

...
. . .

...
...

xn xn

⎞
⎟⎟⎟⎟⎠= xn (8.16)

CHAPTER 8. SOFTWARE DEVELOPEMENT 47

ÎyT =

⎛
⎜⎜⎜⎜⎝

y1 y1 . . . y1

y2 y2 . . . y2

...
. . .

...
...

yn yn

⎞
⎟⎟⎟⎟⎠= yn (8.17)

and

Ix̂T = xn+1 (8.18)

IŷT = yn+1 (8.19)

the matrices xn, yn, xn+1 and xy+1 are calculated. The result is a uniform length (Equation

8.20) of all necessary matrices for further calculations like the proximity matrix.

dim(xn) = dim(yn) = dim(xn+1) = dim(yn+1) (8.20)

To this, the calculation is done in Python by:

1

2 # E x t r a c t x , y v a l u e s o f f rame n and frame n+1

3 #xO , yO . . . x - old , y - o l d

4 #xN , yN . . . x - new , ynew

5 xO , yO = KoordinatenFrameN0 . T

6 xN , yN = KoordiantenFrameN1 . T

7

8 # C r e a t e ones - m a t r i c e s o f t h e c o o r d i n a t e s

9 # o f f rame n and n+1

10 onesArrA = np . ones ((KoordinatenFrameN0 . shape [0] , 1))

11 onesArrB = np . ones ((KoordiantenFrameN1 . T . shape [0] , 1))

12

13 # c a l c u l a t e t h e o u t e r p r o d u c t s o f ones and x0 , xN

14 xO = np . o u t e r (xO , onesArrB)

15 xN = np . o u t e r (onesArrA , xN)

16

17 # c a l c u l a t e t h e o u t e r p r o d u c t s o f ones and y0 , yN

18 yO = np . o u t e r (yO , onesArrB)

19 yN = np . o u t e r (onesArrA , yN)

20

21 # c a l c u l a t e t h e d e v i a t i o n s o f a l l

22 # p o s s i b l e c o o r d i n a t e s o f f rame n

23 # and n+1

24 dx = np . power (xO- xN , 2)

25 dy = np . power (yO- yN , 2)

26 R = np . s q r t (dx+dy)

CHAPTER 8. SOFTWARE DEVELOPEMENT 48

27

28 # P r o b i b i l i t y f u n c t i o n d e c l a r a t i o n

29 sigma = 5

30 G = np . exp (- (R*R) / (2 * sigma * sigma))

Correlation Matrix

The probability matrix G shows with its rows and columns the correlation between objects

of frame n and frame n+1. An example is shown in the following:

Ĝ= round(G) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ (8.21)

G shows, that every object of frame n and frame n+1 is in a single row. The row indicates

the position of the corresponding object n and n+1 in the following frame n+1. For ex-

ample, the object 1 of frame n corresponds with object 1 of frame n+ 1 and object 3 of

frame n corresponds to object 4 of frame n+1. So the aim of the probability matrix eval-

uation is the classification of objects resulting into a dynamic and easy to use correlation

matrix, which assigns ongoing objects into the persistent object database. The evaluated

probability matrix result for the given example leads to the correlation matrix

CorrMatrix=

⎛
⎜⎜⎜⎜⎝

1 1

2 2

3 4

4 3

⎞
⎟⎟⎟⎟⎠ . (8.22)

This matrix is computed in Python via two loops, which reads the position of ones, eval-

uated for their positions and assigns the values to a new matrix CorrMatrix. With the new

information of the correlation matrix, the updated object database can be calculated:

1 i =0

2 j =0

3

4 w h i l e (i<G. shape [0]) :

5 w h i l e (j<G. shape [1]) :

6 i f (G[i , j]==1) :

7 C o r r M a t r i x = np . append (Cor rMat r ix , np . a r r a y ([[i , j]]) , a x i s =0)

8 j +=1

9 j =0

10 i +=1

CHAPTER 8. SOFTWARE DEVELOPEMENT 49

11 f o r C i n C o r r M a t r i x :

12 c1 , c2 = C

13 s t a r n u m b e r , x , y , o n l i n e = S t a r T a b l e [c1]

14 xnew , ynew = C u r r e n t C o o r d i n a t e s [c2]

15 S t a r T a b l e [c1]= s t a r n u m b e r , xnew , ynew , 1

16 r e t u r n S t a r T a b l e

8.3.7 Camera Calibration

The position of the camera in the guidescope has no fixed orientation and can be rotated

in the eyepiece of the scope, which makes a calibration of the position essential. The

kinematics must also be considered, so its behaviour also influences the result of the

camera calibration, a essential step of relative and further reverse kinematics calculations.

To do the calibration process, the given kinematics is moved into both possible directions,

while a single object is tracked. The information of the tracking process, more precisely

the x and y data of the movement, is logged into two arrays. One array for each axis.

These coordinates are saved in RAlog and DECLog. Depending on the focal length, the

number of measurement points are set regarding to the distance of the movement of the

objects while calibration. (RA = right ascension axis, DEC = declination axis)

RALog =

⎛
⎜⎜⎝

x1 y1

...
...

xn yn

⎞
⎟⎟⎠ ,DECLog =

⎛
⎜⎜⎝

x1 y1

...
...

xn yn

⎞
⎟⎟⎠ . (8.23)

The calibration of the right ascension axis is done by:

1 g l o b a l R A C a l i b I n d i c a t o r

2 g l o b a l RALog

3 i f (l e n (RALog) <= (C a l i b r a t i o n S t e p s - 1)) :

4 #move mount i n RA

5 GPIO . o u t p u t (2 0 , 1)

6 # save x and y v a l u e s t o a r r a y

7 RALog = np . append (RALog , np . a r r a y ([[S t a r T a b l e [T r a c k e d S t a r , 1] , S t a r T a b l e

[T r a c k e d S t a r , 2]]])

8 , a x i s =0)

9 i f (l e n (RALog) == C a l i b r a t i o n S t e p s) :

10 # C a l i b r a t i o n done , s e t i n d i c a t o r t o 1

11 # and d i s a b l e mount movement i n RA

12 R A C a l i b I n d i c a t o r = 1

13 GPIO . o u t p u t (2 0 , 0)

14 cv2 . p u t T e x t (frame , 'RA C a l i b r a t i o n on : ' + s t r (l e n (RALog)) + ' S t e p s '

, (1 0 , 2 0) , 1 , 1 , (2 5 5 , 2 5 5 , 2 5 5) , 1 , 0)

CHAPTER 8. SOFTWARE DEVELOPEMENT 50

And the calibration of the declination axis by:

1 g l o b a l D E C C a l i b I n d i c a t o r

2 g l o b a l DECLog

3 i f (l e n (DECLog) <= (C a l i b r a t i o n S t e p s - 1) and R A C a l i b I n d i c a t o r == 1) :

4 #move mount i n DEC

5 GPIO . o u t p u t (2 1 , 1)

6 # save x and y v a l u e s t o a r r a y

7 DECLog = np . append (DECLog , np . a r r a y

8 ([[S t a r T a b l e [T r a c k e d S t a r , 1] , S t a r T a b l e [T r a c k e d S t a r , 2]]])

9 , a x i s =0)

10 i f (l e n (DECLog) == C a l i b r a t i o n S t e p s) :

11 # C a l i b r a t i o n done , s e t i n d i c a t o r t o 1

12 # and d i s a b l e mount movement i n DEC

13 GPIO . o u t p u t (2 1 , 0)

14 D E C C a l i b I n d i c a t o r = 1

15 cv2 . p u t T e x t (frame , 'DEC C a l i b r a t i o n on : ' + s t r (l e n (DECLog)) + ' S t e p s '

, (1 0 , 3 2) , 1 , 1 , (2 5 5 , 2 5 5 , 2 5 5) , 1 , 0)

8.3.8 Fitting

After successfully creating the log files of right ascension and declination axes, a linear

function is fitted through the data points of each axis (RALog and DECLog). Used is a

least square algorithm provided by the open source numpy library of Python [23]:

1 # c a l c u l a t e s l o p e o f f i t t e d f u n c t i o n t h r o u g h xRA , yRA ,

2 # d e g r e e o f f u n c t i o n = 1

3 slopeRA , zRA = np . p o l y f i t (xRA , yRA , 1)

4 # c a l c u l a t e s l o p e o f f i t t e d f u n c t i o n t h r o u g h xDEC , yDEC ,

5 # d e g r e e o f f u n c t i o n = 1

6 slopeDEC , zDEC = np . p o l y f i t (xDEC , yDEC , 1)

7 # c o n v e r t s l o p e from r a d i a n s t o d e g r e e

8 RAangle = np . d e g r e e s (np . a r c t a n (slopeRA))

9 DECangle = np . d e g r e e s (np . a r c t a n (slopeDEC))

The variables slopeRA and slopeDEC are the slopes of the two fitted linear functions. The

argument of the fitting function requires the data points (x,y) and degree of the polynomial

- in this case a first order degree. The slope, calculated as the quotient of y and x values,

can converted to radians through the evaluation of its tangent value. So the result can be

expressed in radians or converted to degrees with the function np.degrees(radiansValue)

for easy legibility of the user.

CHAPTER 8. SOFTWARE DEVELOPEMENT 51

8.3.9 Coordinate Transformation

The calculated slopes of the data points can now be used to determine a relative coordi-

nate system, which includes the camera position in the guidescope and also the behaviour

of the used kinematics. That circumstance makes the whole tracking algorithm indepen-

dent of the kinematics, the observation site and the camera orientation, which guarantees

a maximum of flexibility. The slope of the declination axis gives the rotation of the coor-

dinate system, assuming orthogonality. Additionally a single object can be set as origin of

the new coordinate system, so the relative coordinate system is rotated and shifted. The

advantage of the additional shift is the easy way to evaluate deviations within a target-

actual comparison. Every value unequal to zero gives the deviation of the object in pixels

in the relative coordinate system.

The transformation of the object database into the relative coordinate system in Python is

done with:

1 S t a r T a b l e T r a n s = np . empty ((0 , 4) , f l o a t)

2 f o r S t a r i n S t a r T a b l e :

3 # e x t r a c t o b j e c t number , c o o r d i n a t e s and o n l i n e

4 # of each o b j e c t o f t h e d a t a b a s e

5 number , x , y , o n l i n e = S t a r

6 # s h i f t

7 x = x - x r e f e r e n c e

8 y = y - y r e f e r e n c e

9 # r o t a t i o n by RA- a n g l e

10 x t r a n s = x*np . cos (slopeRA) +y*np . s i n (slopeRA)

11 y t r a n s = y*np . cos (slopeRA) - x*np . s i n (slopeRA)

12 # w r i t e t r a n s f o r m e d d a t a b a s e

13 S t a r T a b l e T r a n s = np . append (S t a r T a b l e T r a n s , np . a r r a y

14 ([[number , x t r a n s , y t r a n s , 1]]) , a x i s =0)

The transformation process includes the object database values and sets up a new trans-

formed database, while maintaining the order of objects. A successful transformation

can be recognised by the indication, that the value of the desired tracked object in the

transformed object database at time of transformation is equal to zero or very close to

zero.

8.4 Tracking

The tracking functions uses the calculated transformed object database, to track objects

by minimisation of the deviation of the object to the origin of the relative coordinate

system. The minimisation is done by a kinematics movement corresponding to the object

deviation in a closed loop function [24]. The Raspberry Pi creates pulses, send them

CHAPTER 8. SOFTWARE DEVELOPEMENT 52

y

x

y‘ ≈ RA

x‘ ≈ DEC

ϕdx

dy

Figure 8.2: Transformation: Rotation by ϕ und shift by dx and dy

to the electrical interface, which translates them to the ST-4 standard input signal of the

telescope mount. The behaviour of the switching time depends, as already mentioned, on

the used type of interface, such as relays or transistors. Relays need a minimum on-time

cause of their inertia. The speed of the resulting mount speed is set on the EQ-6 hand

controller between 0.25 and 1x absolute sidereal speed. A certain inertia of the mount

has to be considered, and also atmospheric induced distortions, which affect the apparent

object position. The deviation is split into four cases: dx > 0, dx < 0, dy > 0,dy < 0.

Programmed in Python, considering the minimum on-time of relays:

1 i f (dx > 0) :

2 GPIO . o u t p u t (2 0 , 1) #RA+

3 GPIO . o u t p u t (2 6 , 0) #RA-

4 t ime . s l e e p (s l e e p t i m e)

5 i f (dx < 0) :

6 GPIO . o u t p u t (2 6 , 1) #RA-

7 GPIO . o u t p u t (2 0 , 0) #RA+

8 t ime . s l e e p (s l e e p t i m e)

9 i f (dy < 0) :

10 GPIO . o u t p u t (1 9 , 1) #DEC+

11 GPIO . o u t p u t (2 1 , 0) #DEC-

12 t ime . s l e e p (s l e e p t i m e)

13 i f (dy > 0) :

14 GPIO . o u t p u t (2 1 , 1) #DEC-

15 GPIO . o u t p u t (1 9 , 0) #DEC+

16 t ime . s l e e p (s l e e p t i m e)

The correction movement takes place as long as there is a deviation, until dx = 0, dy = 0.

CHAPTER 8. SOFTWARE DEVELOPEMENT 53

8.5 PyGame

The whole GUI is programmed as a combination of openCV and PyGame and the re-

quirement to convert image and video data between the libraries considering their com-

patibility. To use the PyGame library, the initialisation has to be done by:

8.6 Initialise PyGame

1 i m p o r t pygame

2 from pygame . l o c a l s i m p o r t *

A new window with a resolution of 800 by 600 pixels is created by:

1 pygame . d i s p l a y . s e t c a p t i o n (”Window Name”)

2 s c r e e n = pygame . d i s p l a y . s e t mode ([8 0 0 , 6 0 0])

For additional program outputs via textual overlays in the PyGame window, a font and its

size must be initialised by:

1 pygame . f o n t . i n i t ()

2 # . . . SysFont (' FontName ' , T e x t S i z e)

3 myfont2 = pygame . f o n t . SysFont (' A r i a l ' , 1 5)

8.6.1 User Inputs: Buttons

An easy way to implement buttons in PyGame is to load pre created button images and

place them to a specific area in the PyGame window.

1 # wi th p a t h / f i l e n a m e . png

2 b u t t o n n a m e = pygame . image . l o a d (” b u t t o n s / b u t t o n n a m e . png ”)

3 # d i s p l a y b u t t o n a t x , y i n t h e window

4 s c r e e n . b l i t (bu t ton name , (6 5 1 , 5))

To connect a called function and the button, the position of the mouse cursor is checked

when pressed and evaluated by its coordinates in the window as following:

1

2 # d e f i n e f u n c t i o n

3 d e f CheckMousePos () :

4

5 # r e a d mouse c u r s o r p o s i t i o n

6 xmouse , ymouse = pygame . mouse . g e t p o s ()

CHAPTER 8. SOFTWARE DEVELOPEMENT 54

7

8 # check an a rea , where x i s b e t w e e t

9 #x1 and x2

10 # and y i s be tween

11 #y1 and y2

12 i f (ymouse > y1Value and ymouse < y2Value and xmouse > x1Value and

xmouse < x2Value) :

13 # e x e c u t e t h e d e s i r e d b u t t o n f u n c t i o n

14 B u t t o n F u n c t i o n ()

The called function is executed by a transition-function. For clarity in the program code

these functions are outsourced and called by:

1 # d e f i n e t h e b u t t o n f u n c t i o n

2

3 d e f B u t t o n F u n c t i o n () :

4 doSomething ()

5 c a l l O t h e r F u n c t i o n s ()

6

7 # Othe r used f u n c t i o n s

8 # as example :

9

10 d e f S e a r c h () :

11 S e a r c h ()

12 g l o b a l S t a r T a b l e

13 p r i n t (” S e l e c t ”)

14 S t a r T a b l e = g e t I n i t i a l S t a r T a b l e ()

15 p r i n t (S t a r T a b l e)

16

17 #Do s t a r m a t c h i n g an t r a c k o b j e c t s v i s u a l l y

18 # w i t h o u t mount movement

19 d e f T r a c k B u t t o n () :

20 p r i n t (” Track ”)

21 g l o b a l S t a r T a b l e

22 S t a r T a b l e = S t a r M a t c h i n g (S t a r T a b l e)

23 p r i n t (S t a r T a b l e)

24

25 # c a p t u r e image and sa v e i t t o a f i l e

26 d e f CapImgButton () :

27 p r i n t (' CapImg ')

28 im = Image . f r o m a r r a y (t f r a m e)

29 im . sa ve (s t r f t i m e (”%Y-%m-%d-%H:%M:%S” , gmtime ()) +” img . j p e g ”)

30 p r i n t (” CapImg ”)

CHAPTER 8. SOFTWARE DEVELOPEMENT 55

8.7 Threading

Due to image acquisition, depending on the exposure time of the camera, the program is

blocked and allows no user inputs and no program outputs. This circumstance causes a

difficult operability of the program, because the user inputs are only recognised, when the

image acquisition is inactive. The same applies to the output such as image visualisation

and calculations. For this reason a parallel operation of the image acquisition and the rest

of the program is required. In Python, the available threading library provides that kind

of desired parallelism.

In the first step, the library must be imported by:

1 i m p o r t t h r e a d i n g

A global variable, which stores the image data is initialised and preallocated:

1 g l o b a l t f r a m e

2 #x , y , z , wehre z i s t h e image d e p t h

3 # z = 3 = RGB

4 # z= 1 = gr e y l e v e l

5 t f r a m e = np . z e r o s ((4 8 0 , 6 4 0 , 3))

The actual function is packed into a threading class:

1 # t f r a m e . . . t h r e a d e d f rame

2

3 c l a s s ge tFrame (t h r e a d i n g . Thread) :

4 d e f i n i t (s e l f) :

5 t h r e a d i n g . Thread . i n i t (s e l f)

6 s e l f . s t o p T h r e a d = F a l s e

7

8 d e f run (s e l f) :

9 w h i l e True :

10 g l o b a l t f r a m e

11 g l o b a l ExpTime

12 # s e t camera c o n t r o l s

13 camera . s e t c o n t r o l v a l u e (a s i . ASI EXPOSURE , ExpTime)

14 camera . s e t c o n t r o l v a l u e (a s i . ASI GAIN , CamGain)

15 # save image d a t a t o t f r a m e

16 t f r a m e = camera . c a p t u r e v i d e o f r a m e ()

17

18 # s t o p t h e t h r e a d

19 i f s e l f . s t o p T h r e a d == True :

20 b r e a k

21 d e f s t o p T h r e a d (s e l f , s t o p T h r e a d) :

CHAPTER 8. SOFTWARE DEVELOPEMENT 56

22 s e l f . s t o p T h r e a d = s t o p T h r e a d

To start the function of the thread class, it is called by:

1 t 1 = ge tFrame ()

2 t 1 . s t a r t ()

Now the camera starts a continuous video capture and updates the global variable t f rame

with actual data. This data is read parallel to this by the main program for calculation and

presentation.

Chapter 9

Program Explanation

The GUI, programmed with the PyGame library, makes several adjustments possible. To

obtain an optimal result regarding exposure time and gain some settings must be made.

These settings are done by the user input part of the program, while the result can be

estimated by the program outputs. Thus it is possible to adjust all settings till the de-

sired result is visible, such as sharply edged objects, the number of objects and a dark

background with the least possible amount of noise.

9.1 User Inputs

All necessary options are summarised as user input functions, which are connected to

buttons. General settings, such as the number of data points of the calibration process are

fixed global values set in the source code due initialisation.

9.1.1 Exit (Button 1)

The exit button closes the PyGame window, and the GPIO ports and also stops the video

stream of the ZWO Asi camera, to avoid problems in case of a restart of the program.

9.1.2 Select (Button 2)

The select button starts an initial search for objects and shows the calculated boundary

pixels of each object and the number of recognised objects, while a first temporary object

database is generated. The visualisation of the boundary pixels is useful to evaluate the

correct settings of exposure time a gain for accurate object detection. In case the gain

value is too high, the distinguishable of objects is not given through image data noise.

So, a compromise between exposure time and the gain must be considered. With the

select button, that condition can be checked every time as desired. High camera noise

also causes flickering moments of the objects.

57

CHAPTER 9. PROGRAM EXPLANATION 58

2

1

3

4

5

6

789

Figure 9.1: Program screenshot

9.1.3 Track (Button 3)

The track button tracks all recognised objects, excluding new objects, and refreshes the

object database every program cycle. The tracked objects are visually marked. This

option can be deactivated at any point of the process and without any movement of the

mount.

9.1.4 Capture Image (Button 4)

The cap image button acquires an image at any time the user presses this button. It stores

the actual original image data of the camera in a jpeg file with a time stamp as file name.

This makes a parallel use of guiding and image photography possible with a single device.

9.1.5 Exposure +/- (Button 5-2)

This button controls the exposure time of the acquired image. It starts with an initial value

of 1 ms and can be increased and decreased live in the whole process for easy adjustment.

CHAPTER 9. PROGRAM EXPLANATION 59

9.1.6 Gain +/- (Button 6-2)

This button controls the gain value, with an initial value of 50. As already mentioned, a

compromise between gain and exposure time must be set. If the gain is too high, a lot of

noise covers the acquired image, which makes the object detection inaccurate and gives

distortions of the boundary pixels. This leads to inappropriate moments calculations.

Considering, the camera is very light sensitive, there is no need to run the program at high

gain values. An exception might be ultra fast object tracking under low light conditions

with the knowledge of inaccurate object tracking.

9.1.7 Aim Object (Button 7)

This function aims an recognised object with the unique number of the compared and per-

sistent object database, which guarantees, except limit cases, the tracking of one desired

object. This object is specially visually marked in the GUI and starts the movement of the

mount.

9.1.8 Select Star (Button 8)

This function selects the desired object for tracking and controlling the kinematics.

9.1.9 Calibration (Button 9)

This function starts the calibration process, consisting of the right ascension and decli-

nation axis calibration, the linear fitting and the coordinate transformation and gives the

transformed object database in order to the reverse kinematics. The number of calibration

steps is set to an initial value of 100 data points per axis.

9.2 Program Outputs

Any data the program generates can be presented in the GUI. Object are marked as an

overlay of the video stream, consisting the centre point, the object number and the abso-

lute image coordinates in x and y. Through the camera communication protocol, a value

representing the camera sensor temperature, is read and converted to ◦C. The absolute

number of stars recognised in the initial frame is also shown in the GUI. To estimate a

nicely working compromise between exposure time and gain, that values are also shown

in the GUI. The exposure time is calculated by one second divided by the number of

captured frames per second (fps).

Exp =
1s
f ps

(9.1)

Chapter 10

Testings

To evaluate each step in the software development process, a step by step testing is ap-

plied. This is a very important point in the development of a comprehensive and diverse

software, in order to avoid errors of partial program functions.

10.1 Simulated Test - Video Stream Input

The simulation includes a video capture of an astronomic software suite ’Stellarium’,

which shows the two-dimensional movement of heavenly objects. That includes the

change of number of recognised objects. That test was used, to avoid the influence of

camera noise and exposure time, thus the video capture gives perfectly image data for

further processing. The source code is adapted to a static video input stream instead of

reading data from the camera. Especially at the beginning of the software development

phase, the functionality of the object matching algorithm is tested.

10.2 Static Testing

The next step in simulation is testing under fixed conditions, by aiming the tracking cam-

era on the mount to a star constellation on a distant image. This case includes testing

the gain and exposure time of the tracking camera and also testing the calibration and the

two-axis tracking behaviour of the mount. For test purpose, the system is setted up, such

as exposure time, threshold and gain, calibrated and coordinate transformed. After that,

the position of the tracked star is moved out of the coordinate origin to calculate the de-

viations of the object. In the next step, the tracking function is activated to test the mount

kinematics and take back the star to the origin of the coordinate system. A peculiarity of

the mount is the tracking speed in the negative right ascension axis - in real world testing,

this speed is a stop of the kinematics, so the rotation of the earth moves the star in this

particular direction. For this reasons only deviations in the positive right ascension and

60

CHAPTER 10. TESTINGS 61

positive and negative declination axes can be tested.

10.3 Dynamic Testing

In order to move a picture of an object constellation like the stars move in the sky, the

star image is fixed on a rotating plate with an angular speed equal to the earth. The plate

is rotated by a precision gear motor controlled via a B&R PLC (Programmable Logic

Controller). The telescope mount is set up with the pole finder right to the centre of the

rotating plate. The distance of the telescope is determined by the adjustable latitude of

the mount location. This angle must be respected, otherwise no approximate orthogonal

coordinate system results during the calibration process.

Figure 10.1: Rotating plate

10.4 Real World Testing

The first real world tests are done on 8/1/2017 at 47◦7′41.31”N, 15◦21′32.62”E pointing

to the southern hemisphere with the first version of the program without the PyGame

GUI. The tracking mount is positioned with a deliberate alignment error in pile high

and azimuth to provoke permanent correction movements. While the running calibration

process, an image with the observing camera is taken to visualize the procedure: The

lower straight line in figure 10.2 is the result of the continuous capture of the star while

right ascension calibration, costing of 100 data points, while the upper line is the capture

during the declination calibration. In this position, the tracked object reached its end point

of the calibration process and will be centred again after the tracking is enabled. Image

10.3 presents the user interface of the non GUI version of the program in the first test.

The program shows the successful calibration with its steps taken and the selected star

CHAPTER 10. TESTINGS 62

Figure 10.2: Calibration procedure

number of the object database. The blue and white lines indicates the calculated relative

coordinate system, with dRA and dDEC representing the deviation of the object in the

given coordinate system. At this test, the processed orthogonality error is −11.08◦.

Figure 10.3: Guiding

CHAPTER 10. TESTINGS 63

10.5 Results

As a result, a comparison is shown (Fig. 10.4), which represents a long exposure with

(b) and without (a) activated tracking. Both pictures show the same picture detail with an

Figure 10.4: Comparison

(a) unguided (b) guided

exposure time of 180 s, ISO 500 and a focal length of the telescope of 700 mm, captured

with a Canon EOS 50D DSLR and a crop factor C of 1.6, which leads to an effective focal

length of 1120 mm regarding to equation 10.1.

fe f f ektiv =C · fscope = 1.6 ·700mm = 1120mm (10.1)

Each of the images in figure 10.4 (a) and (b) are shot with a statical movement of the

mount of the right ascension axis. Image (a) is unguided, with that already mentioned

static movement. Image (b) is the guided image, with the static movement and additional

calculated correction pulses of the program in both axes. The objects in image (b) are

sharp and not blurred, based on the successful guidance through the developed software.

CHAPTER 10. TESTINGS 64

10.6 More Shots

Figure 10.5 is a summarised long time exposure with about 1.5 hours in total of the Orion

Nebula. The used telescope is a newton refractor (130mm opening, 650 mm focal length)

in combination with a DSLR (digital single lens reflex) camera (Canon EOS 50D). Image

Figure 10.5: Orion Nebula

10.6 shows (a) the Andromeda Nebula with a total exposure time of one hour and a short

exposure of the Plejades (b). A single shot of the Milky Way (Fig. 10.7) with a total

(a) Andromeda (b) Plejaden

Figure 10.6: Andromeda and Plejades

exposure time of only 340 seconds at a low camera ISO setting (ISO 500) in combination

with a wide angle lens (Tokina 11-16 mm f/2.8). Figure 10.8 is a guided wide angle long

exposure image of the Milky Way in the southern hemisphere. The relative movement

of the mount in direction of the tracked objects is shown by the blurriness of the trees in

front of the camera, while the tracked objects are sharp.

CHAPTER 10. TESTINGS 65

Figure 10.7: Milky Way guided

Figure 10.8: Blurred earth objects

Chapter 11

Conclusion and Outlook

As tested, the software worked very accurate for long time exposures. Short exposures

are characterised by a little overshoot of the closed loop controlling part of the software.

To avoid those overshoots, some adjustments and correlations between minimal pulse du-

ration of the guiding signal and the tracking speed have to set up in the mount control for

further must be tests. So far, the closed loop part is programmed as a kind of proportional

controller, where the deviation error is used for the target-actual comparison with a static

pulse time, independently of the distance to the origin. An improvement would be a pro-

portional component controlling the minimal pulse time. This advantage would probably

may make noticeable difference especially at small deviations. Another way to improve

the accuracy in terms of the calculated moments would be an evaluation of the deviation

regarding an in-axis image histogram (Fig. 11.1). Changes distribution of the histogram

would give the actual deviation of the object. This would make the program independent

α

x

y

Figure 11.1: Histogram

of the calculated moments of the object and less susceptible of distortions through the

atmosphere, causing a little twitching of the objects. In order to the distortions, the kine-

matics tries to correct its position regarding to this image information. To minimise these

’false movements’ a short mean distance should be calculated, to react only when there

is actually a physical deviation of the tracked object. Also, it would be interesting to test

66

CHAPTER 11. CONCLUSION AND OUTLOOK 67

the controller on another mount, or even to build a functional and fast kinematics, which

is lightweight and transportable. Another idea is the possibility of remote control of the

software. So far, this is very limited because of the data rates of the USB 3.0 camera.

The difficulty is the remote video access to the Raspberry Pi including the visualisation of

openCV and PyGame. For even easier handling, it might be possible to compile the soft-

ware for Android-devices and connect the electrical control unit via bluetooth to a mobile

device. In this case, the Android-device would process the image data. A big challenge

would be the connection of the camera via USB to the mobile phone or tablet.

Appendix A

Source Code

1 ###

2 # capturing video via threading, convert it, make surface

3 # and represent it via pygame

4 # pip3 install zwoasi

5 # pip install zwoasi (thanks to Steve Marple for the

6 # python wrapper)

7 # Download asi-sdk and copy the armv7 dynamic lib

8 #to /lib/zwoasi/armv7/

9

10

11 import cv2

12 import numpy as np

13 import os

14 import threading

15 import pygame

16 from pygame.locals import *

17 import sys

18 import zwoasi as asi

19 import time

20 from PIL import Image

21 from time import gmtime, strftime

22

23 # Imported from previous program #

24 TrackedStar = 0

25

26 CalibrationSteps = 100

68

APPENDIX A. SOURCE CODE 69

27 StartCalibration = 0

28 RACalibIndicator = 0

29 RALog = np.empty((0,2),float)

30

31 DECCalibIndicator = 0

32 DECLog = np.empty((0,2),float)

33

34 slopeRA = 0

35 slopeDEC = 0

36 slopeIndicator = 0

37

38 StarTableTrans = np.empty((0,4),float)

39

40 dx = 0

41 dy = 0

42

43 TrackingIndicator = 0

44

45 ShowLog = 1

46

47 RAangle = 0

48 DECangle = 0

49

50 def getCoordinates():

51 frame = tframe

52 TempCoordinates_ = np.empty((0,2),float)

53 Threshold_ = 120

54 ret, thresh_ = cv2.threshold(tframe,Threshold_,255,0)

55 image, cnts, hierarchy = cv2.findContours(thresh_, cv2.

↪→ RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

56 for c in cnts:

57 M = cv2.moments(c)

58 if(M['m10']!=0):

59 cX = int(M['m10']/M['m00'])

60 cY = int(M['m01']/M['m00'])

61 TempCoordinates_ = np.append(TempCoordinates_,np.

↪→ array([[cX,cY]]),axis=0)

62 return TempCoordinates_

63

APPENDIX A. SOURCE CODE 70

64 def getInitialStarTable():

65 Coordinates = getCoordinates()

66 TempStarTable = np.empty((0,4),float)

67 StarNumber = 0

68 print(Coordinates)

69 for x,y in Coordinates:

70 TempStarTable = np.append(TempStarTable,np.array([[

↪→ StarNumber,x,y,1]]),axis=0)

71 StarNumber+=1

72 return TempStarTable

73

74 def StarMatching(StarTable):

75 CorrMatrix = np.empty((0,2),int)

76

77 CurrentCoordinates = getCoordinates()

78 i,x0,y0,onlineTable = StarTable.T

79 xN,yN = CurrentCoordinates.T

80 onesArrA = np.ones((StarTable.shape[0],1))

81 onesArrB = np.ones((CurrentCoordinates.shape[0],1))

82 x0 = np.outer(x0,onesArrB)

83 xN = np.outer(onesArrA,xN)

84 y0 = np.outer(y0,onesArrB)

85 yN = np.outer(onesArrA,yN)

86 dx = np.power(x0-xN,2)

87 dy = np.power(y0-yN,2)

88 R = np.sqrt(dx+dy)

89 sigma = 20

90 G=np.exp(-(R*R)/(2*sigma*sigma))

91 G=np.round(G,0)

92

93 i=0

94 j=0

95

96 while(i<G.shape[0]):

97 while(j<G.shape[1]):

98 if(G[i,j]==1):

99 CorrMatrix = np.append(CorrMatrix,np.array([[i,j

↪→]]),axis=0)

100 j+=1

APPENDIX A. SOURCE CODE 71

101 j=0

102 i+=1

103 for C in CorrMatrix:

104 c1,c2 = C

105 starnumber,x,y,online = StarTable[c1]

106 xnew,ynew = CurrentCoordinates[c2]

107 StarTable[c1]=starnumber,xnew,ynew,1

108 print(CorrMatrix)

109 return StarTable

110

111 def getSlope():

112 global slopeRA

113 global slopeDEC

114 global RAangle

115 global DECangle

116

117 xRA, yRA = RALog.T

118 xDEC, yDEC = DECLog.T

119

120 slopeRA, zRA = np.polyfit(xRA,yRA,1)

121 slopeDEC, zDEC = np.polyfit(xDEC,yDEC,1)

122 RAangle = np.degrees(np.arctan(slopeRA))

123 DECangle = np.degrees(np.arctan(slopeDEC))

124

125 def RACalibration(StarTable,TrackedStar):

126

127 global RACalibIndicator

128 global RALog

129 if(len(RALog) <= (CalibrationSteps-1)):

130 GPIO.output(20,1)

131 RALog = np.append(RALog,np.array([[StarTable[

↪→ TrackedStar,1],StarTable[TrackedStar,2]]]),axis

↪→ =0)

132 if(len(RALog) == CalibrationSteps):

133 RACalibIndicator = 1

134 GPIO.output(20,0)

135 cv2.putText(frame,'RA Calibration on: '+str(len(RALog))+

↪→ ' Steps',(10,20),1,1,(255,255,255),1,0)

136

APPENDIX A. SOURCE CODE 72

137 def DECCalibration(StarTable,TrackedStar):

138 global DECCalibIndicator

139 global DECLog

140 if(len(DECLog) <= (CalibrationSteps-1) and

↪→ RACalibIndicator == 1):

141 GPIO.output(19,1)

142 DECLog = np.append(DECLog,np.array([[StarTable[

↪→ TrackedStar,1],StarTable[TrackedStar,2]]]),axis

↪→ =0)

143 if(len(DECLog) == CalibrationSteps):

144 GPIO.output(19,0)

145 DECCalibIndicator = 1

146 cv2.putText(frame,'DEC Calibration on: '+str(len(DECLog)

↪→)+' Steps',(10,32),1,1,(255,255,255),1,0)

147

148 def CoordinatesTransformation(StarTable,TrackedStar):

149 global StarTableTrans

150 global xreference

151 global yreference

152

153 StarTableTrans = np.empty((0,4),float)

154 for Star in StarTable:

155 number, x, y, online = Star

156 x = x-xreference

157 y = y-yreference

158 motionAnglex = abs(DECangle)

159 motionAngley = abs(RAangle)

160 xtrans = x*np.cos(motionAnglex * np.pi/180)-y*np.sin(

↪→ motionAnglex * np.pi/180)

161 ytrans = x*np.sin(motionAnglex * np.pi/180)+y*np.cos(

↪→ motionAnglex * np.pi/180)

162 #xtrans = x*np.cos(slopeDEC)+y*np.sin(slopeDEC)

163 #ytrans = y*np.cos(slopeDEC)-x*np.sin(slopeDEC)

164 StarTableTrans = np.append(StarTableTrans,np.array([[

↪→ number,xtrans,ytrans,1]]),axis=0)

165

166 # Init everything #

167

168 asi.init("/lib/zwoasi/armv7/libASICamera2.so")

APPENDIX A. SOURCE CODE 73

169 camera = asi.Camera(0)

170 global ExpTime

171 global CamGain

172 global tframe

173 global tresh

174 global TempCoordinates

175 global StarTable

176 TempCoordinates = np.empty((0,2),float)

177 ExpTime = 100

178 CamGain = 50

179 tframe = np.zeros((480,640,3))

180 thresh = np.zeros((480,640,1))

181 pygame.init()

182 # GPIOs #

183 import RPi.GPIO as GPIO

184

185 GPIO.setmode(GPIO.BCM)

186 GPIO.setup(26,GPIO.OUT)

187 GPIO.setup(19,GPIO.OUT)

188 GPIO.setup(21,GPIO.OUT)

189 GPIO.setup(20,GPIO.OUT)

190

191 GPIO.output(26,0) #RA#

192 GPIO.output(19,0) #DEC-

193 GPIO.output(20,0) #RA+

194 GPIO.output(21,0) #DEC+

195

196 def closeGPIO():

197 GPIO.output(26,0) #RA-

198 GPIO.output(19,0) #DEC-

199 GPIO.output(20,0) #RA+

200 GPIO.output(21,0) #DEC+

201 GPIO.cleanup()

202

203 # camera initial settings #

204

205 camera.set_control_value(asi.ASI_GAIN, CamGain)

206 camera.set_control_value(asi.ASI_EXPOSURE, 100)

207 camera.set_control_value(asi.ASI_WB_B, 99)

APPENDIX A. SOURCE CODE 74

208 camera.set_control_value(asi.ASI_WB_R, 75)

209 camera.set_control_value(asi.ASI_GAMMA, 50)

210 camera.set_control_value(asi.ASI_BRIGHTNESS, 150)

211 camera.set_control_value(asi.ASI_FLIP, 0)

212 camera.set_control_value(asi.ASI_BANDWIDTHOVERLOAD, camera.

↪→ get_controls()['BandWidth']['MinValue'])

213 camera.set_roi_format(640,480,1,0)

214 camera.auto_wb()

215 camera.start_video_capture()

216

217 ###

218

219 pygame.display.set_caption("Freded window")

220 screen = pygame.display.set_mode([800,600])

221 pygame.font.init()

222 myfont2 = pygame.font.SysFont('Arial',15)

223 #Buttons#

224

225 button_calib = pygame.image.load("buttons/button_calib.png"

↪→)

226 button_capimg = pygame.image.load("buttons/button_capim.png

↪→ ")

227 button_expminus = pygame.image.load("buttons/button_emin.

↪→ png")

228 button_expplus = pygame.image.load("buttons/button_eplus.

↪→ png")

229 button_exit = pygame.image.load("buttons/button_exit.png")

230 button_gminus = pygame.image.load("buttons/button_gmin.png"

↪→)

231 button_gplus = pygame.image.load("buttons/button_gplus.png"

↪→)

232 button_search = pygame.image.load("buttons/button_search.

↪→ png")

233 button_select = pygame.image.load("buttons/button_select.

↪→ png")

234 button_track = pygame.image.load("buttons/button_track.png"

↪→)

235

236 # Display Text and Buttons Func #

APPENDIX A. SOURCE CODE 75

237 def ShowText():

238 screen.blit(SensorTempText,(20,40))

239 screen.blit(StarsFoundText,(20,60))

240 screen.blit(ExpTimeText,(20,80))

241 screen.blit(CamGainText,(20,100))

242

243

244 screen.blit(button_exit,(651,5))

245 screen.blit(button_select,(650,50))

246 screen.blit(button_track,(650,95))

247 screen.blit(button_capimg,(650,140))

248 screen.blit(button_expplus,(650,185))

249 screen.blit(button_expminus,(650,230))

250 screen.blit(button_gplus,(650,275))

251 screen.blit(button_gminus,(650,320))

252 # Check Mouse Position for Button #

253 def CheckMousePos():

254

255 global SearchIndikator

256 xmouse,ymouse = pygame.mouse.get_pos()

257

258 if(ymouse < 50):

259 ExitButton()

260

261 if(ymouse > 51 and ymouse < 91 and xmouse > 650 and

↪→ xmouse < 800):

262 SelectButton()

263

264

265 if(ymouse > 96 and ymouse < 135 and xmouse > 650 and

↪→ xmouse < 800):

266 TrackButton()

267

268 if(ymouse >141 and ymouse < 181 and xmouse > 650 and

↪→ xmouse < 800):

269 CapImgButton()

270

271 if(ymouse >185 and ymouse < 225 and xmouse > 650 and

↪→ xmouse < 800):

APPENDIX A. SOURCE CODE 76

272 ExpPlusButton()

273

274 if(ymouse >231 and ymouse < 269 and xmouse > 650 and

↪→ xmouse < 800):

275 ExpMinusButton()

276

277 if(ymouse >277 and ymouse < 313 and xmouse > 650 and

↪→ xmouse < 800):

278 GainPlusButton()

279

280 if(ymouse >320 and ymouse < 360 and xmouse > 650 and

↪→ xmouse < 800):

281 GainMinusButton()

282

283 # Button Control Functions #

284

285 def ExitButton():

286 print('Exit')

287 print(pygame.mouse.get_pos())

288 pygame.quit();

289 closeGPIO()

290

291 def SelectButton():

292 Search()

293 global StarTable

294 print("Select")

295 StarTable = getInitialStarTable()

296 print(StarTable)

297

298 def TrackButton():

299 print("Track")

300 global StarTable

301 StarTable = StarMatching(StarTable)

302 print(StarTable)

303

304 def CapImgButton():

305 print('CapImg')

306 im = Image.fromarray(tframe)

APPENDIX A. SOURCE CODE 77

307 im.save(strftime("%Y-%m-%d-%H:%M:%S",gmtime())+"img.jpeg

↪→ ")

308 print("CapImg")

309

310 def ExpPlusButton():

311 global ExpTime

312 ExpTime = int(ExpTime * 1.3)

313 print("E+")

314

315 def ExpMinusButton():

316 global ExpTime

317 ExpTime = int(ExpTime * 0.75)

318 print("E-")

319

320 def GainPlusButton():

321 global CamGain

322 if(CamGain == 150):

323 CamGain = 150

324 else:

325 CamGain+=10

326 print("G+")

327

328 def GainMinusButton():

329 global CamGain

330 if(CamGain == 10):

331 CamGain = 10

332 else:

333 CamGain-=10

334 print("G-")

335

336

337 # Init Controls #

338 SearchIndikator = 0

339

340 #############################

341

342 def Search():

343 global thresh

344 global TempCoordinates

APPENDIX A. SOURCE CODE 78

345 global SearchIndikator

346 SearchIndikator=(SearchIndikator+1)%2

347

348 if(SearchIndikator == 1):

349 TempCoordinates = np.empty((0,2),float)

350 Threshold = 120

351 blurred = cv2.blur(tframe,(2,2))

352 #blurred = cv2.bilateralFilter(tframe,11,17,17)

353 reth,thresh = cv2.threshold(blurred,Threshold,255,0)

354 image, cnts, hierarchy = cv2.findContours(thresh, cv2

↪→ .RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

355

356 for c in cnts:

357 M = cv2.moments(c)

358 if(M['m10']!=0):

359 cX = int(M['m10']/M['m00'])

360 cY = int(M['m01']/M['m00'])

361 TempCoordinates = np.append(TempCoordinates,np.

↪→ array([[cX,cY]]),axis=0)

362

363

364 # Draw Stars #

365

366 def drawStars():

367 if(len(TempCoordinates) > 0):

368 for x,y in TempCoordinates:

369 pygame.draw.circle(screen,(255,0,0),(int(x),int(y)

↪→),10)

370

371 # Capture Fred #

372

373 class getFrame(threading.Thread):

374 def __init__ (self):

375 threading.Thread.__init__(self)

376 self.stopThread = False

377

378 def run(self):

379 while True:

380 global tframe

APPENDIX A. SOURCE CODE 79

381 global ExpTime

382 camera.set_control_value(asi.ASI_EXPOSURE, ExpTime

↪→)

383 camera.set_control_value(asi.ASI_GAIN, CamGain)

384 tframe = camera.capture_video_frame()

385 if self.stopThread == True:

386 break

387 def stopThread(self, stopThread):

388 self.stopThread = stopThread

389

390 # Convert frame to gray for surface#

391 # pygame want's it this way #

392

393 def gray (im):

394 im = 255* (im/im.max())

395 w,h=im.shape

396 ret = np.empty((w,h,3),dtype=np.uint8)

397 ret[:,:,2] = ret[:,:,1] = ret[:,:,0] = im

398 return ret

399

400 # Start Fred #

401

402 t1 = getFrame()

403 t1.start()

404

405 ##############################

406

407 # warm up camera before start #

408

409 time.sleep(1)

410 i=0

411 while(i==5):

412 tframe = camera.capture()

413 i+=1

414

415 ############################

416 # here begins the loop of the main program #

417

418 try:

APPENDIX A. SOURCE CODE 80

419 while True:

420 SensorTemp = (asi.ASI_TEMPERATURE * 10 - 32)/1.8 #

↪→ convert fahrenheit to real unit

421 SensorTemp = int(SensorTemp)

422 SensorTempText = myfont2.render("Sensor Temp: " + str

↪→ (SensorTemp) + " C",False,(255,0,0))

423 ExpTimems = ExpTime / 1000

424 ExpTimeText = myfont2.render("Exp Time: " + str(

↪→ ExpTimems) + " ms",False,(255,0,0))

425 StarsFoundText = myfont2.render("Stars: " + str(len(

↪→ TempCoordinates)),False,(255,0,0))

426 CamGainText = myfont2.render("Gain: " + str(CamGain),

↪→ False,(255,0,0))

427 screen.fill([0,0,0])

428

429 if(SearchIndikator == 0):

430 frame = gray(tframe)

431 if(SearchIndikator == 1):

432 Search()

433 frame = gray(thresh)

434

435 frame = np.rot90(frame)

436 frame = pygame.surfarray.make_surface(frame)

437 screen.blit(frame,(5,5))

438

439

440 #print(pygame.mouse.get_pos())

441

442 #Always draw button before text ->overlay

443 #DrawButtons()

444 ShowText()

445 if(SearchIndikator == 1):

446 drawStars()

447

448 pygame.display.update()

449

450 for event in pygame.event.get():

451 if event.type == KEYDOWN:

452 sys.exit(0)

APPENDIX A. SOURCE CODE 81

453 if event.type == pygame.MOUSEBUTTONDOWN:

454 CheckMousePos()

455

456 except (KeyboardInterrupt,SystemExit):

457 pygame.quit()

458 cv2.destroyAllWindows()

Bibliography

[1] Gregory D Hager, Markus Vincze, and IEEE Robotics and Automation Society.

Robust vision for vision-based control of motion. 2000.

[2] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov. Real-time

computer vision with OpenCV. Communications of the ACM, 55(6):61, jun 2012.

[3] Richard Szeliski. Computer Vision. Texts in Computer Science. Springer London,

London, 2011.

[4] Hannu Karttunen, Pekka Kröger, Heikki Oja, Markku Poutanen, and Karl Johan

Donner, editors. Fundamental Astronomy. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2007.

[5] W.M.Smart. Textbook on Spherical Astronomy. Press Syndicate of the University of

Cambridge, 1931.

[6] TS Optics. PhotoLine 102mm Duplet Apo Manual.

[7] SkyWatcher. EQ6 Mount Manual, 2016.

[8] Alex Zelinsky. Learning OpenCV—Computer Vision with the OpenCV Library

(Bradski, G.R. et al.; 2008)[On the Shelf]. IEEE Robotics & Automation Magazine,

16(3):549, sep 2009.

[9] Michael Kofler. Linux 2013. Addison-Wesley Verlag, 2012.

[10] ZWO Asi. 120MM-S Mono Software Developement Kit Manual. 2017.

[11] Mark Pilgrim. Python 3 - Intensivkurs. Xpert.press. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2010.

[12] Al Sweigart. Making Games with Python & Pygame. 1 edition, 2012.

[13] Ulrich Tietze and Christoph Schenk. Halbleiter-Schaltungstechnik. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1993.

82

BIBLIOGRAPHY 83

[14] Simon Monk. Make Your Own PCBs with Eagle: From Schematic Designs to Fin-

ished Boards. Mcgraw Hill Book Co, 2017.

[15] Went Tzu Lin Hsieh Tsung Han. DesignSpark PCB Guidebook.

[16] Toshimi Taki. Matrix Method for Coordinates Transformation. 2002.

[17] Manfred Husty, Adolf Karger, Hans Sachs, and Waldemar Steinhilper. Kinematik

und Robotik. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[18] Linda G. Haralick, Robert M., Shapiro. Computer and Robot Vision. Prentice Hall,

2002.

[19] Gary Bradski, Adrian Kaehler, and Gary Bradski. Learning OpenCV, volume 53.

2013.

[20] Robert F. Fischer. Optical System Design. Mcgraw Hill Book Co, 2 edition, 2008.

[21] M. Bass and Optical Society of America. Handbook of Optics: Fundamentals,

techniques, and design. McGraw-Hill, 1994.

[22] Joseph Howse. OpenCV Computer Vision with Python. Packt Publishing, 2013.

[23] Travis E. Oliphant. Python for Scientific Computing. Computing in Science &

Engineering, 9(3):10–20, 2007.

[24] F. Chaumette, P. Rives, and B. Espiau. Positioning of a robot with respect to an

object, tracking it and estimating its velocity by visual servoing. In Proceedings.

1991 IEEE International Conference on Robotics and Automation, pages 2248–

2253. IEEE Comput. Soc. Press.

