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Abstract

The simulation of Naturally Fractured Reservoirs (NFRs) has always been a challenging 
topic from the time of their discovery. One of the main problems in their simulation is 
calculating the matrix-fracture transfer which governs the dynamic behavior of the 
reservoir. This work is a thorough investigation of the transfer term. It will be shown that 
the conventionally practiced method to calculate the potential difference for displacement 
of one fluid by another is unreliable; however, when the saturation distribution is 
homogeneous (e.g. for single-phase expansion drive or solution gas dive), the 
conventional transfer equation can be reliably used. In 2004, Heinemann[44] suggested that 
recovery curves could be used to calculate the matrix-fracture transfer term. This research 
focuses on this idea contributing to its theoretical foundation and practical 
implementation. 

A workflow for using recovery curves for simulation of NFRs is (1) field investigations, 
(2) generating the recovery curves for the matrix blocks, (3) lumping (weighted-averaging 
of) matrix block recovery curves to generate the simulation cell recovery curves, (4) using 
the recovery curves in the mathematical model and finally, (5) utilizing recovery curves 
in the simulation model. 

New concepts are devised and different tools and methods that were necessary are 
designed and developed which include:

• “Single Matrix Block Analysis” method and software tools are developed that allow 
detailed study of matrix blocks with different fluid and rock properties under various 
initial and boundary conditions. Each investigation produces a recovery curve and 
average saturation versus time plots.

• “Matrix Block Classes” are defined that allow scaling the recovery curve of matrix 
blocks with different porosities, permeabilities, and even different shapes by use of a 
theoretically-derived “dimensionless time” scaling factor.

• “Recovery Curve Regions” are defined on the full field. For each such region and 
distinct drive mechanism a “lumped recovery curves” represents the overall 
recovery from all the different matrix blocks in the simulation cell.

• “Using Recovery Curves instead of the Matrix-Fracture Transfer Function”.

Several challenges existed for each of these steps. They were successfully overcome and 
the developed methodology was implemented in an industrial reservoir simulator. The 
new concept can be easily implemented in any mature dual-porosity reservoir simulator 
by making only minor extensions to it. Thus they can also benefit from the additional 
accuracy of the recovery curve method without reducing the industrial practicability of 
the simulators.
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Kurzfassung

Bereits mit der Auffindung einer natürlich geklüfteten Kohlenwasserstofflagerstätte stellt 
deren Simulation eine Herausforderung dar. Eines der Hauptprobleme ist die Berechnung 
des Matrix-Kluft Transferterms, welcher das dynamische Verhalten der Lagerstätte 
bestimmt. Diese Studie ist eine sorgfältige Untersuchung des Transferterms. Die 
Unzulänglichkeit der Potentialdifferenzberechnung - praktiziert bei der konventionellen 
Methode -  für die Verdrängung eines Fluids durch ein anderes wird gezeigt; ist jedoch 
eine homogene Sättigungsverteilung (wie z.B. bei der Einphasenexpansion bzw. dem 
Gasentlösungstrieb) gegeben, ist die konventionelle Transfergleichung zuverlässig. Im 
Jahr 2004 regte Heinemann[44] an, Entölungskurven für die Berechnung des Matrix-Kluft 
Transferterms zu verwenden. Diese Forschungsarbeit konzentriert sich auf diese Idee und 
trägt zu ihrem theoretischem Fundament und ihrer praktischen Anwendbarkeit bei.

Ein Arbeitsablauf für die Simulation von solchen Lagerstätten gliedert sich in (1) 
Felduntersuchungen, (2) Generierung der Entölungskurven für die Matrixblöcke, (3) 
Zusammenfassung (gewichtete-Mittelung) von Matrixblockentölungskurven zu 
Simulationszellenentölungskurven, (4) Verwendung dieser Kurven im mathematischen 
Modell und schlußendlich (5) Anwendung der Entölungskurven im Simulationsmodell.

Neue Konzepte wurden erdacht und unterschiedliche Werkzeuge und die dafür 
notwendigen Methoden wurden entworfen und entwickelt. Diese beinhalten:

• Es wurde die "Einzelmatrixblockanalyse" Methode und Softwareanwendung 
entwickelt, welche eine detailierte Untersuchung des Matrixblocks unter 
Berücksichtigung verschiedenster Fluid- und Gesteinseigenschaften sowie 
Randbedingungen ermöglicht. Eine Entölungskurve und die mittlerer Sättigung als 
eine Funktion der Zeit sind das Ergebnis dieser Untersuchungen.

• "Matrixblockklassen" werden eingeführt, welche die Skalierung der 
Entölungskurven eines Matrixblockes für verschiedenen Porositäten, Permeabilitäten 
und sogar verschiedener Matrixblockformen mithilfe eines theoretisch abgeleiteten 
"dimensonslosen Zeitfaktors" erlauben.

• "Entölungskurvenregionen" werden für das Gesamtmodell definiert. Für jede dieser 
Regionen und eine bestimmte Triebart repräsentieren "Zusammengefasste 
Entölungskurven" die Gesamtentölung aller Matrixblöcke einer Simulationszelle.

• "Verwendung von Entölungskurven statt der Matrix-Kluft Transferfunktion."

Für jeden der hierin erklärten Schritte bestanden zahlreiche Herausforderungen. Diese 
wurden erfolgreich überwunden und die entwickelte Methodology wurde in einem 
industriellen Lagerstättensimulator umgesetzt. Das neue Konzept kann einfach in jedem 
gereiften Doppelporositätslagerstättensimulator zum Einsatz gebracht werden. Lediglich 
wenige Erweiterungen sind notwendig. Somit können auch diese von der zusätzlichen 
Genauigkeit der Entölungskurvenmethode profitieren, ohne Reduzierung der 
industriellen Praktikabilität des Simulators.
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Chapter 1

Introduction

1.1 Motivation of the Work

1.1.1 Background

Naturally Fractured Reservoirs (NFRs) play an important role in petroleum industry and the 
global economy. Natural fractures exist practically in all reservoirs, dividing the reservoir rock 
in pieces, called “matrix blocks”. In this case one must distinguish between matrix and fracture 
porosities and permeabilities. The reservoir is a single porosity one when it does not need 
special considerations and the reservoir rock can be regarded as a single continuum if the 
fractures are isolated or the matrix is tight. The reservoir cannot be modeled as a single 
continuum if the matrix has reservoir quality and the fractures are interconnected, building more 
or less extended networks. However, accurately simulating the naturally fractured reservoirs is 
still a real challenge as it has ever been. For fractured reservoirs, obtaining the correct data and 
forecasting the reservoir performance are much more difficult than for conventional reservoirs. 
In order to design an appropriate development plan, one needs a credible reservoir description 
that includes fracture maps in terms of size, orientation, connectivity, conductivity, and 
frequency distribution. This information has to be turned into a reliable fracture network 
characterization. 

The multiple-continua concept is generally used to model NFRs, where typically two continua, 
the matrix and the fracture, overlap. The main problem is then to find the right description of 
the fluid exchange between them while modeling a recovery process. Mathematically, this leads 
to the extension of the flow equation by the so-called matrix-fracture transfer term. It can 
consider some or all of the acting forces such as the force of compression, chemical potential 
(diffusion), gravitational force, capillary forces and viscous forces with or without hysteresis or 
alteration of the properties (e.g. wettability). By considering all factors, the mathematical 
description of the matrix-fracture transfer becomes so complex that the corresponding 
mathematical model can be only numerically handled. An ideal approach would be to use a 
Discrete Fracture Network (DFN) giving the frame and the boundary conditions for the 
discretized matrix blocks individually. Such an approach tries to model the conductive fractures 
and matrix blocks based on statistically generated fracture distribution maps. Physical 
properties such as transmissivity or storage, and geometrical properties such as size, elongation 
and orientation are assigned to each (matrix or fracture) element based upon measured data or 
geologically conditioned statistical distributions derived from the measured values. 
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However, gathering these additional data is quite difficult and more importantly, the required 
calculation cost (in terms of CPU-time and memory) for large carbonate fields (such as the ones 
existing in the middle east) makes this approach industrially senseless. Academic toys can be 
created but it is difficult to imagine how they could be coupled with the geologic reality. 
Heinemann believes[42] that the application of such an approach in connection with the current 
industrial praxis and future needs is neither possible nor necessary.

In another approach, it is possible to upscale the discrete fracture model to a continuous one, 
and to reduce the matrix conglomerate to a cluster of identical blocks. This is then the Warren 
and Root[99] sugar cube concept. A fracture cell is now connected to an overlapping matrix cell 
and the mass transfer is calculated based on the average pressures, saturation and composition 
at both sides. The transfer between the matrix and the fracture is calculated using a simplified 
scheme, considering two points, i.e. two control volumes.

To summarize, modeling NFRs appropriately is much more complicated than conventional 
reservoirs, especially for industrial use. The most commonly used methods in petroleum 
industry are dual-porosity and/or dual-permeability approaches in which the reservoir is 
modeled as two overlapping domains: the matrix domain and the fracture domain.

1.1.2 Suggested Improvements

One of the major problems in simulation of NFRs conventionally, is calculation of the 
matrix-fracture fluid transfer term. Heinemann[44] suggested that it is possible and 
advantageous to use recovery curves to calculate the matrix-fracture transfer term. Pirker[81] 
proved its applicability on a column model with only one recovery curve. The goal of this work 
is to apply the recovery curve method in a commercial industrial simulator overcoming all the 
challenges existing in that direction. The deficiencies of the other existing dual-porosity 
approaches, in short, are the following:

For the conventional dual-porosity/dual-permeability approach (used in industry):
• Unrealistic and nonphysical modeling of matrix blocks representing several matrix 

blocks as a single simulation cell.
• Over-homogenization of the matrix blocks to levels that makes the results 

inacceptable.
• Inadequacy of defining a common transfer function that can accurately predict how 

all the matrix blocks in a simulation cell exchange fluid with the fracture.
• Oversimplifying physical phenomena that occur in the model.

and for the DFN approach:
• Very difficult to measure the parameters necessary to calculate the grid and relying on 

statistics.
• Currently impossible to be used for large-scale reservoirs and too far away from being 

industrially applicable to full fields.
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This work is an attempt to use the recovery curve method in the industry for simulation of 
naturally fractured reservoirs, with the following criteria:

• should assure a considerably higher physical reality than the currently applied 
conventional approach,

• should capture the heterogeneity of the matrix domain,
• should be practical and readily usable in industry with a clearly specified workflow,
• should be, unlike DFN, not too costly in terms of computational time and should be 

industrially applicable with today’s computational technology.

“The reason of the emphasis on achieving a ready-to-use method is that all university campuses 
are paved with aborted ideas and wasted efforts of former PhD graduates. To avoid this fate, the 
author searched for solutions only, which are usable in connection with industrial standard 
procedures and tools. Looking back, none of the earlier engineering achievements are still 
viable or part of mankind’s scientific heritage. Engineering Sciences seemingly do not create 
permanent values. No work should be invested in something which is not timely.”[1] 
Engineering research must concentrate on the actual problems and must lead to “ready-to-use” 
results:

• The new solution should not require supplementary research or development before 
applying it.

• The new solution should fit today’s existing technology.
• The new solution should be developed on real cases and not only demonstrated on 

simple models (such as the SPE comparative examples). Academic examples always 
work; real field cases seldom do! The extension of a solution from academic problems 
to the real world is never straight forward as researchers often like to declare so.

1.2 Objectives

The objectives of this work are therefore the following:

• achieving a higher physical reality than the conventional dual-porosity model,
• while considering the high heterogeneity of the matrix domain, by taking into account 

the distribution of different matrix properties (e.g. porosity, permeability and shape 
factor) even within a single simulation cell,

• not as CPU-costly as DFN, for the increase of the accuracy; some extra preliminary 
effort is needed to create the recovery curves, but the tools to help perform this task 
with as little effort as possible are also developed and applicable,

• and more importantly, propose a method that is practical at the time-being and can be 
implemented in all currently used industrial reservoir simulators with minimum 
efforts.
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1.3 The Approach

In this work, it is proposed to simulate naturally fractured reservoirs using the matrix recovery 
curve to calculate the matrix-fracture transfer term (instead of using the transfer function) in the 
conventional dual-porosity/permeability model. This method is validated theoretically and also 
implemented in a commercial reservoir simulator and tested on small scale test models and a 
real reservoir.

The recovery curves can be obtained from any source. The procedure to measure it in the 
laboratory for a piece of matrix rock is described (as well as the detailed method to measure its 
shape factor). A software tool is also designed and implemented that can model the laboratory 
experiment and output the recovery curve for a matrix block from its shape factor (and the 
boundary conditions).

The proposed dimensionless time conversion factor is used to scale the recovery curves and to 
classify the matrix block IDs into matrix block classes. The distribution of matrix block classes 
in the reservoir, helps defining the recovery curve regions.

In the simulation of naturally fractured reservoirs using recovery curves, one recovery curve 
region is assigned to a simulation cell (like any other property such as PVT region number) and 
the recovery curve(s) associated with this number is used to calculate the matrix-fracture 
transfer rate. The details of this method as well as the definitions of all the mentioned terms here, 
are explained in Chapter 3 and Chapter 4.

The applicability of the proposed methods are always regarded as the topmost priority (along 
with its theoretical validity). In other words, if a proposed academic method is too accurate to 
be ever applicable in the industry, it will remain just as an academic and research method like 
hundreds of such investigations that are proposed yearly around the world. However, the value 
of a research (especially in the petroleum industry) is much more emphasized when it can 
actually be applied in the industry. Therefore, the suggested methods in this work, while 
improving the accuracy of the simulations way better than the conventional dual-porosity 
model, will not make it impractical or impossible for industrial application.
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1.4 Outline

Chapter 1           Introduction
This is the current chapter which contains a brief introduction to the objectives and 
contents of this dissertation.

Chapter 2          State of the Art of Modeling Naturally Fractured Reservoirs
In this chapter a brief literature-review of the relevant methods of simulating naturally 
fractured reservoirs is presented.

Chapter 3          The Elements of the New Approach
In this chapter some concepts, ideas and theories are presented as separate headlines. 
All of the mentioned concepts in this chapter are related to the new presented 
approach of simulating naturally fractured reservoirs using recovery curves, that will 
be explained in details in Chapter 4. The elements covered in the this chapter, are all 
developed/improved/suggested in this work to overcome the problems of creating and 
using recovery curves for dual-porosity simulation listed as follows:

• Shape Factor, 
• Calculation of the Shape Factor, 
• Single Matrix Block Analysis, 
• Investigation of the Transfer Term,
• Matrix Block Identification Methods, 
• Calculation of the Matrix-Fracture Transfer from a Recovery Curve, 
• Lumping Recovery Curves.

Chapter 4          Theory of the Work
In this chapter, the “new concept for modeling and simulating naturally fractured 
reservoirs using recovery curves” suggested by this research is presented and 
explained in details. The following terms will be here only defined, but their practical 
application will be in Chapter 5 presented:

• Simulation Cell Model,
• Dimensionless Time,
• Matrix Block IDs,
• Matrix Block Classes,
• Recovery Curve Regions.

Chapter 5          Recovery Curve Approach to Simulation of NFRs
In this chapter, the workflow for the new approach of using recovery curves for 
calculating the matrix-fracture transfer to be used in the dual-porosity concept and the 
preparatory steps are explained in detail:

• Identifying Matrix Blocks and Their Distribution,
• Generating Recovery Curves for Matrix Block IDs,
• Classifying Recovery Curves,
• Identifying Recovery Curve Regions,
• Using Region Recovery Curves for Simulation of NFRs,
• Advantages and Limitations.
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Chapter 6          Verification and Case Study
This chapter verifies the proposed method on a case study using a column model. 
Amongst other tests, this case study also includes the simulation results of the newly 
proposed recovery curve method and comparing them to the conventional approach.

Chapter 7         Conclusions
In this chapter, the findings and conclusions from this work are briefly presented.

References
This chapter lists all the references for this work (including the Appendices).

Appendix A       The Mathematical Model
In this chapter, mathematical modeling of naturally fractured reservoirs is briefly 
explained.

• Dual-Continua Model,
• Matrix-Fracture Transfer Term.

Appendix B       Derivation of a Generalized Shape Factor
This chapter describes the derivation of Heinemann and Mittermeir[48] generalized 
shape factor which is used in this work as the basis for calculations and recommended 
to be used industrially as well.

Appendix C       Laboratory Experiment of Measuring Recovery Curve
The recovery curve of any piece of rock can be measured in the laboratory with a 
method similar to what is explained in this chapter. Following scenarios are 
considered:

• Water Imbibition
• Gas Gravity Drainage

Furthermore, other Experiments and Considerations are discussed.

Appendix D       Implementation of Single Matrix Block Analysis
Single Matrix Block (SMB) analysis is an attempt to numerically simulate the 
laboratory experiment of studying the matrix block depletion under different 
conditions and recovery mechanisms.
The laboratory experiment is described in Appendix C and the theory about the 
proposed SMB model is explained in Section 3.4. In this chapter, the details about the 
implementation of the proposed Single Matrix Block Analysis model in a commercial 
reservoir simulator, PRS[45], is explained.

Appendix E       Production Mechanisms in Naturally Fractured Reservoirs
In this chapter, the mechanisms that take part in extraction of hydrocarbons from the 
matrix to the fracture are described:

• Expansion and Solution Gas Drive,
• Capillary Imbibition,
• Gravity Drainage,
• Viscous Displacement,
• Molecular Diffusion.
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1.5 Scientific Achievements and Technical 
Contributions

1.5.1 New Scientific Ideas Presented

• The shape factor is a physical parameter and should not be treated as a meaningless 
tuning parameter for history-matching. (Section 3.2.4)

• The boundary conditions for the matrix-fracture transfer calculation are fluid 
saturations and not phase potentials. (Section 3.4.8)

• Defining “Recovery Curve Regions” for calculation of the matrix-fracture transfer 
term in different parts of the reservoir. (Section 4.3.4, Section 5.2.1.4)

1.5.2 Scientific Achievements

• It is demonstrated that the conventional transfer equation is valid for single-phase and 
solution gas expansion drives and is questionable under displacement processes. 
(Section 3.5)

• It is demonstrated that the recovery curve can be used to calculate the matrix-fracture 
transfer in the conventional dual-porosity model. (Section 3.8)

• A theoretical definition of a dimensionless time is derived which successfully allows 
use of a dimensionless recovery curve to represent the recovery of a wide range of 
matrix block IDs (of different shape factor, porosity, permeability, oil compressibility 
and viscosity values) as long as the drive mechanism is the same. (Section 3.10)

• A method is devised to consider the effect of viscous pressure gradient in calculation 
of the single matrix block recovery. (Section 3.4.8.4, Section 3.4.8.5)

• A detailed method to measure and calculate the shape factor for a matrix block is 
presented. (Section 3.3)

• Considering the phase segregation assumption in calculating the gravitational effect is 
unrealistic and is one source of complication in calculation in the conventional 
dual-porosity model; (Section 3.5.3) the proposed recovery curve approach considers 
the gravitational effect without phase-segregation assumption. (Section 3.4.8.3.1)
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1.5.3 Technical Contributions

• Developing Single Matrix Block Analysis software tool to calculate the recovery 
curves for the matrix blocks of any ID from anywhere in the reservoir model. (Section 
D.3.2)

• Developing a data repository software for handling and storing all the recovery curves 
for different matrix block IDs in a reservoir and performs lumping them into region 
curves. (Section D.4.2)

• Integrating the Single Matrix Block Analysis tool in a commercial reservoir simulator 
to allow this analysis on actual reservoirs easily just by a single line of input in the full 
field model. (Section D.3)

• Implementing the use of recovery curves for calculation of the matrix-fracture 
transfer term (instead of the conventional transfer function) in a commercial reservoir 
simulator. This allows using the recovery curves for calculation of the current 
reservoir models without any hassle.

• A standard model for calculation of the single matrix block recovery curve is 
presented. (Section 3.4)

• The single matrix block analysis has to be performed in parallel to the full field 
simulation to have control and insight over the physical processes. (Section 3.4)

1.5.4 Publications of the Author

1. Amiry, M.T.: “Importance and Applicability of a Generalized Shape Factor by 
Modeling Dual Porosity Reservoirs”, Conference paper, ECMOR XIII, Sep. 2012.

2. Amiry, M.T., Heinemann, Z.E.: “The Heinemann-Mittermeir Generalized Shape 
Factor and Its Practical Relevance”, accepted to print in Journal of Chemical and 
Petroleum Engineering, 2014.

3. Amiry, M.T.: “Heinemann-Mittermeir Shape Factor: Measurement and Significance 
of Anisotropy in Modeling Dual-Porosity Reservoirs”, Hungarian Journal of Mining 
and Metallurgy OIL and GAS, March 2014.

4. Amiry, M.T, Heinemann, Z.E.: “Limitations of the Conventional Transfer Function 
and the Practical Implications”, prepared for Erdöl Erdgas Kohle journal, 2014.
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Chapter 2

State of the Art of Modeling Naturally 
Fractured Reservoirs

2.1 Introduction

In this chapter the state of the art of modeling naturally fractured reservoirs is presented briefly. 
Some parts that are be used in this work are explained in more details.

2.2 Characterization

During the characterization process of naturally fractured reservoirs a sound understanding of 
the fractures, the fracture network and its influence on the fluid flow behavior should be gained. 
Based on this knowledge realistic geomodels are constructed that provide the full field 
parameters needed for dynamic simulation. The modeling itself, faces some inherent problems 
as the range of scales on which the data are measured is so broad, the fracture types vary and 
the fracture network is complex. A state of the art fracture modeling workflow consists of the 
following steps:

1. Definition of the fracture sets.
2. Fracture indicator identification and derivation.
3. Identification and ranking of fracture drivers.
4. Neural network fracture modeling.
5. Creation of discrete fracture network realization.
6. Fracture property modeling.

Probably, the main challenge in construction of reliable fracture models is generally the limited 
amount of data and the difference in scale on which the data are measured, e.g. as small as cores 
taken from the well up to 3D seismic attributes calculated for the entire field. Besides, it is 
difficult to obtain representative samples of the reservoir because of the extreme heterogeneity 
of fractured rocks. Some questions arising during the characterization process of a naturally 
fractured reservoir might be:[68]
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• Which of the many fractures in a well affect the fluid flow and are important?
• How is the diverse data from different sources integrated in the fracture network 

characterization (e.g. core analysis of one well and well logs in another)?
• Which strategy should be used to interpolate the fracture information through a given 

volume (e.g. the reservoir volume)?
• How to translate and simplify the fracture information for a reservoir simulator?

Consequently, not single deterministic models are constructed, but several equally probable 
realizations will be constructed which need to be screened and verified by dynamic simulation 
runs.

In order to design an appropriate development plan (dynamic reservoir model), one needs a 
credible reservoir description that includes all fracture related properties such as:

• size of the fractures,
• number of fractures per unit length (fracture intensity),
• fracture orientation and spatial organization,
• fracture aperture,
• fracture porosity,
• fracture conductivity,
• fracture connectivity, and
• fracture relative permeabilities.

The parameters mentioned above are inferred from direct (e.g. core analysis) and indirect 
sources (e.g. well logging methods) of measurement to get the required information for the 
fracture characterization process.

Figure 2.1:  Fractured Core[102]



11
2.2.1 Characterization methods

Various options of fracture detection are presented in the literature[15],[32],[68],[77],[79]. The 
question is how to gather all the information into a complete reservoir description. When facing 
the problem of modeling a fractured reservoir, oil and gas companies have three available 
approaches:

The first one is the geomechanical approach where it is attempted to reconstruct the tectonic 
history of the fractured reservoir. Unfortunately, all the existing tools based on this approach use 
over-simplistic models in which the complex geology of the reservoir is ignored and 
homogenous and isotropic rock properties are assumed in the calculations. Furthermore, the end 
result of this approach is a strain map which mostly is very similar to a simple curvature map, 
easily derived from the current structural surfaces. In addition to the inability of this approach 
to account for the complex and heterogeneous geology of all fractured reservoirs, there is no 
room to incorporate any 3D seismic attribute in the geomechanical process.

The second approach commonly used to model fractured reservoirs is the Discrete Fracture 
Network (DFN) where the reservoir volume is filled with fractures that are represented by 
planes or disks. For many years, the DFN models lacked geological realism since they were 
randomly distributed in the reservoir, ignoring the fact that fracture density at any point is 
affected by the thickness of the reservoir at that point, its lithology and porosity, its proximity 
to faults and numerous other geologic drivers.[79] Since the introduction of DFN models, there 
was a need for constraining the realizations to some geologic input. Attempts have been made 
to control the fracture generation with some indicators. However, these attempts used one single 
geologic driver and ignored the others, and most importantly did not account for the complex 
interplay of the drivers. Ouenes and Hartley[73] introduced the concept of conditioned DFN 
whereas a large effort is spent to integrate all the geological drivers in a continuous fracture 
model which is then used to constrain the DFN models. A field example illustrating this 
approach is given by Zellou[103]. 

Finally, the third approach uses a continuous framework where many geological drivers could 
be incorporated in creating an integrated fracture model. These continuous fracture models stem 
from the simple observation that fracture intensity depends on many geological drivers (the 
most commonly known being the structural setting, proximity to a fault, lithology, porosity and 
thickness). Because all these drivers and their complex interaction must be accounted for during 
the modeling process, Ouenes and Hartley[73] use a regular 3D grid model similar to the one 
used in geological modeling or in seismic cubes along with a collection of artificial intelligence 
tools to create truly integrated fractured reservoirs. The approach described in detail by Ouenes 
and Feng[72] was successfully used in various fields and basins and one of its most striking 
advantage is its ability to integrate seismic data in the modeling process.
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2.2.2 Shape Factor Distribution

The fracture intensity is the number of fractures per unit length of a sample line. Therefore, it 
estimates the distance between the individual fractures. The shape factor is directly related to 
the fracture intensity, since it is determined by the size of the matrix blocks in the dual-porosity 
system, which depends on the fracture intensity.[81] 

During the characterization process of the naturally fractured reservoirs, a statistical distribution 
of the fracture intensity is obtained. Figure 2.2 shows an example of such distribution. Zones of 
high fracture intensity are in red, those with low fracture intensity are in purple. In order to 
assess the recovery for a given field a single average value for the fracture intensity can be 
calculated. In order to assess the correct range of the expected recovery and its probability 
realistically not only a single average value but rather the calculated distribution should be 
utilized. Because of the fact that there is a direct relationship between fracture density and shape 
factor, the distribution of the fracture intensity can be transformed to the corresponding 
distribution of the shape factor.[81]

Different statistical distributions of the fracture parameters can be found in the literature. For 
example, a negative exponential distribution for the fracture length was published by Panek[74], 
by Miller[63] or by Bloomfield[12]. Rouleau and Gale[90] assume exponential distribution; 
Gudmundsson[40] and Jamison[51] have found power law distributions of different fracture 
characteristics (length, spacing). Some authors[12],[25],[39],[63],[74],[87] found the fracture 
spacing, and some authors[6],[12],[25],[34],[39],[63], the fracture length to be lognormal distributed.

Ultimately, these parameters can be used to estimate the shape factor distribution in the reservoir 
which demonstrates how matrix and fracture interact in different parts of the reservoir (for 
example using FracaFlow[71] software tool).

 

Figure 2.2:  Fracture intensity distribution
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2.3 Discrete Fracture Modeling

The idea behind Discrete Fracture Modeling (DFM) is that the fracture planes are represented 
individually and the fluid flow behavior can be predicted from the fracture geometries and data 
on the transmissivity of individual fractures.[77] This methodology combines “a forward 
approach based on geosciences and an inverse approach based on reservoir engineering”[14] 
utilizing the mapping of fracture planes in 3D space to develop an interconnected fracture 
network. To perform a field-scale simulation, average reservoir properties such as conductivity, 
anisotropy and storage capacity are required and therefore, discrete fracture information such as 
size, orientation, location and spacing are used in building DFMs. Unlike the previous 
approaches, DFM depends upon a very accurate fracture network description, without an 
emphasis on any given type of information, and is best suited for those situations where the flow 
behavior is dominated by significant fractures. Information about fractures and geological 
setting is not only used to construct the models, but also to constrain the models, ensuring that 
a realistic geological model is produced. The final outputs of DFM are the equivalent fracture 
parameters which can be used in any fractured reservoir simulator. These parameters are[14] 
effective permeabilities, matrix block size, fracture porosity.

2.3.1 Discrete Fracture Modeling Methods

Different methods exist to create discrete fracture models (DFM). Some authors[56],[69] use 
fracture geometry data (location, orientation and size) with boundary element or finite element 
methods to derive the so-called “equivalent permeability tensor of the discrete fracture 
network”. Geostatistics is another tool which has been used to estimate the large-scale hydraulic 
conductivity, also based on fracture geometry data.[17] Alternative DFM methods[7],[13],[27],[92] 
have the advantage of being implemented as stochastic models, in which multiple realizations 
provide a quantitative measure for uncertainty and variability.[26] Figure 2.3 demonstrates the 
fracture network where each plane represents one single fracture and the colors represent the 
fracture set that it belongs to.

Figure 2.3:  Representation of a DFN (by courtesy of Franlab[71])
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2.4 Conventional Modeling of Naturally Fractured 
Reservoirs

The foundation of the dual-porosity model was laid down by Barenblatt et al.[8] and Warren and 
Root[99] fifty years ago. The following era has seen many modifications to the basic 
dual-porosity model by various researchers. In this approach, NFRs are thought to comprise of 
an interconnected fracture system that provides the main flow paths (with high permeability and 
low storage volume) and the reservoir rock (or matrix) that acts as the main source of 
hydrocarbons (which has low permeability and high storage volume).[10] Thus, it is the matrix 
system that contains most of the petroleum, but the production to the wells is through the 
high-permeability fracture system, implying that it is the matrix-fracture interaction that mainly 
controls the fluid flow. The NFR is modelled with two overlapping domains: the matrix domain
and the fracture domain. A sample model of such reservoir (in Cartesian grid) is illustrated in 
Figure 2.4(a). There are two identically shaped domains. The reservoir consists of grid cells or 
simulation cells in each domain.

This means that at the position of the same grid cell, there exists a matrix cell (in the matrix 
domain) and a fracture cell (in the fracture domain). Each cell can have neighboring cells from 
(up to) six directions in its own domain plus one (or more, in some models) extra neighbor in 
the other domain that is the overlapping cell from that domain.

 

Figure 2.4:  Warren and Root[99] Model
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Figure 2.5:  Dual-porosity dual-permeability concept

In other words, it is assumed that two continua exist at the same location, both fill the space 
completely without gaps. Each porous material has its own variables. The matrix properties and 
variables are signed by the subscript m and the fracture by f. For example the porosities are m  

and  f  which are functions of the pressures pm and pf, respectively. The pore space is occupied 
by fluids and separated by phase surfaces. The proportion of a phase, p, in the pore volumes are 
defined as the phase saturations Spm and Spf. Figure 2.5 shows such a model (in which the matrix 
and fracture domains are actually overlapping, but are displayed separated to show the 
neighborhood relations). The combination of the matrix cell and fracture cell displayed in 
Figure 2.5, is equivalent of the Figure 2.4(c) cell. It is necessary to clarify some ambiguities in 
nomenclature and distinguish between matrix blocks and simulation cells:

Figure 2.6 is a two-dimensional outcrop of a naturally fractured formation. In order to model it 
numerically, the space has to be discretized. The red squares in Figure 2.6 (or cubes in 3D) 
represent the control volumes, in other words the “simulation cells”. 

Figure 2.6:  Simulation cell vs. Matrix block, (by courtesy of Roxar training[91])
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The dual-continua approach considers two simulation cells at each location (i.e. at the place of 
each red square), one is the “matrix cell” and the other is the “fracture cell”. This divides the 
space into two identically shaped overlapping domains: the “matrix domain” and the “fracture 
domain”. The fracture domain, consisting of fracture cells, usually has a much higher 
permeability and less porosity than the matrix domain. This means that the fracture cells can 
exchange fluids easily with their neighboring fracture cells (along the black double-arrows in 
Figure 2.6). Matrix cells, may or may not be modelled to exchange fluids with their matrix 
neighbors (along the same black double-arrows) resulting in dual-permeability or dual-porosity 
models respectively.

2.4.1 Single Porosity Model Mathematical Formulation

The molar continuity equation in a single continuum space can be written for component c from 
Equation 2.1. The first term on the left-hand side in Equation 2.1 is the convection term or flow 
term. It gives the moles of component c flowing through the unit surface per unit time (molar 
velocity). The summation over all phases is necessary, because the particular component may 
be present in several phases. The second term is the diffusion term. It gives the moles of the 
component c moving through the unit of surface per unit time, driven by the concentration 
gradient. The third term is the volumetric source/sink term. It determines how much of 
component c will be taken out, or is supplied to the unit volume per unit time. The right-hand 
side is the accumulation term. The summation over all phases and the integral over the whole 
control volume gives the accumulation of component c within this control volume.
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where, 
P  is the number of phases,
k  is the permeability tensor [m2],
 p  is the mass mobility of component c in phase p [kmol/m3/cp],
Dp  is the specific molar density [kmol/m3],
xpc  is the mole fraction of component c in phase p [-],
Jpc  is the molar flux of the component c in phase p [kmol/s/m2],
qc  is the molar source/sink of the component c [kmol/s/m2],
Sp  is the saturation of phase p [-].

2.4.1.1 Permeability Tensor

“The permeability tensor is symmetric and positive definite per definition. Some upscaling 
methods can produce a non-symmetrical permeability tensor, which would mean that the Darcy 
flow has shear effects. For such an effect, no physical evidence exists.”[49]



17
The asymmetric permeability tensor is solely the product of the upscaling method. The 
permeability tensor from Equation 2.1 can be split into a normalized dimensionless tensorial 
part and an effective scalar apparent permeability ka. Therefore, the permeability tensor of 
Equation 2.1 can be rewritten as:
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ka can be any number to calculate the new tensor values as k'ij kij ka= . This step is to 
separate the apparent permeability, which is more locally variant and the anisotropy tensor, 
which tends to be valid for larger scales. 

However, when calculating the actual matrix-fracture interflow, this value will be multiplied 
again in the tensor to result in the actual kij directional permeability values (in Darcy) as will be 
shown in Equation 2.8.

Mathematically speaking, this can be regarded as a simple factorization of the value ka (along 
with its dimension) from the tensor to normalize the tensor and to make it dimensionless. It has 
been tried by different researchers[18],[23],[60] over the years to give physical definitions for ka
and k’ij tensor values; what is common, is that they all suggest that for the matrix apparent 
permeability ka the following inequality should hold:

b ka   a , (2.3)

where κb is the harmonic mean and κa is the arithmetic mean of kij’s in Equation 2.1. But as 
mentioned, theoretically, this number can be any value greater than zero. It is suggested to use 
the maximum principle permeability value, kx, (Equation 2.4) or the equivalent isotropic 
permeability after Muskat[67] (Equation 2.5):

ka kx= , (2.4)

ka kxk yk
z3= , (2.5)

where kx, ky, kz are the permeability values in x-, y- and z-principle permeability directions 
respectively. The principle permeability direction is explained in Section 3.3.8.
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2.4.2 Dual-Porosity Balance Equation

In the dual-porosity model (described in more details in Appendix A), it is assumed that a 
single-porosity flow occurs in the fracture domain; and in dual-permeability model also an 
independent single-porosity flow occurs in the matrix domain. Consequently, Equation 2.1 
should be duplicated, once with the subscript m and once with the subscript f. 

The fluid transfer between the two otherwise-independent domains is considered through a 
molar flow term called, the matrix-fracture transfer term, qcmf  which is the amount of fluid 
transfer, in moles, for each fracture cell to/from the same cell in the matrix domain. Therefore, 
the balance equation (Equation 2.1) will be written as Equation 2.6 for the fracture and Equation 
2.7 for the matrix.
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(2.6)

(2.7)

2.4.3 Production Mechanisms in NFRs

In NFRs, it is mainly the matrix-fracture fluid interaction which governs the production from 
the reservoir, therefore, the production mechanisms are focused on how the matrix is depleted 
and the petroleum is transferred from the matrix to the fracture (where it will be transported to 
the producing wells). The importance of each production mechanism differs from a 
single-porosity system, since the interaction of the two systems (matrix and fractures) has to be 
taken into account. The dominant forces in the two distinct systems can also be quite different. 
The relative importance of the different production mechanism is basically determined by the 
shape of the matrix blocks and by rock and fluid properties of the system. In the conventional 
dual-porosity model the production mechanisms in naturally fractured reservoirs are modelled 
to calculate a so-called “transfer term” which represents the matrix-fracture fluid transfer rate. 
These main production mechanisms, described in details in Appendix E, are:

• Fluid expansion and solution gas drive
• Imbibition
• Gravity drainage
• Viscous displacement
• Molecular diffusion
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2.4.4 Matrix-Fracture Transfer

Kazemi et al.[52] extended Warren and Root[99] formulation for multi-phase flow and 
numerically solved the dual-porosity system in three dimensions and derived the transfer term:

qcmf V cellka  pck'  pf  pm– 

p 1=

P

= , (2.8)

where
Vcell  is cell pore volume [m3],
ka  is the apparent permeability of the matrix block [D],
  is the shape factor [m-2],
  pc  is the mass mobility of component c in phase p [kmol],
 k'  is the dimensionless normalized anisotropy tensor,
  pf  is the fracture potential [bar],
  pm  is the matrix potential [bar].

Shape factor was first introduced by Barenblatt et al.[8] (see Section 3.2.3) who did not discuss 
its physical meaning other than to point out that it was inversely proportional to the square of 
some “characteristic length” of the matrix block. Since then, numerous equations for the shape 
factor have been proposed for various block shapes. The most commonly assumed shape has 
probably been for a cube of length L. For cubical blocks, Warren and Root[99], based on an 
obscure derivation suggested that σ = 60/L2. Kazemi et al.[53] suggested σ = 12/L2 based on a 
finite-difference approximation to the flow equations with the entire matrix block represented 
by a single finite-difference cell. Coats[21] suggested the value σ = 24/L2. Quintard and 
Whittaker[85] used volume averaging to conclude that σ = 49.62/L2. Zimmerman et al.[104] used 
Fourier analysis with transient flow assumption and derived the result σ = 3π2/L2. This value 
was confirmed by Lim and Aziz[58], and was re-derived by Mathias and Zimmerman[61] in the 
Laplace domain. Kazemi-Gilman-Elsharkawy[52] suggested a generalized pseudo-steady state 
shape factor, valid for all possible irregular matrix block shapes:

  1
V m
--------

A j

d j

--------
j 1=

N

= , (2.9)

where Vm is the volume of the matrix block, Aj is the area of a surface open to flow and dj is the 
distance from the open surface to the centroid of the matrix block. Note that in this shape factor, 
it is assumed that the permeability (ka) is isotropic and the same in all directions.

Heinemann and Mittermeir[48] used a control volume finite-difference discretization on an 
anisotropic dual-continuum of irregular shape (presented in Appendix B) and generalized 
Kazemi et al.[52] shape factor and mathematically proved that it is exact under pseudo-steady 
state conditions for anisotropic matrix blocks as well:
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 1
V m
-------- Aij

kn̂ j

d j

-------------
j 1=

N

= , (2.10)

where k  is the permeability tensor and n̂ j  is the unit normal vector of each surface open to flow.

The wide range of values that have been proposed for the shape factor can, in part, be explained 
by the fact that as have been known for many decades (cf. de Swaan[28]), Equation 2.8 is only 
accurate in the pseudo-steady state regime. Since, Equation 2.8 is not valid over all times and 
conditions, there is no unambiguous way to define the most appropriate value of σ. De 
Swaan[29] proposed that σ be chosen so as to render Equation 2.8 accurate at the time at which 
the (mean) pressure change in the matrix block has attained 50% of its eventual value, for the 
case of a step-change in the fracture pressure. This approach has some practical advantages, but 
causes the model to no longer be asymptotically accurate at large times.

In this work, the transfer function is put to test (see Section 3.5) and it will be shown that unlike 
the general assumption over the decades, it is not the shape factor which is the cause of the 
discrepancy in the calculation of the matrix-fracture transfer term, but actually ignoring the 
effects of saturation distribution when calculating the driving forces in the conventional model.

The deficiencies of the conventional transfer equation has been known for a long time and many 
authors have tried to tackle this problem by different approaches, none of which have been 
applicable enough to be vastly practiced in industrial scale. Here, two of such approaches are 
briefly explained. In the first approach, the matrix cells are gridded finely in an attempt to 
consider the effect of inhomogeneous saturation distribution in the transfer, but it will be shown 
that it fails to consider all the recovery mechanisms appropriately while it increases the 
calculation time several times. The second approach, is an attempt to redefine the transfer 
function to consider much more details, but the process is so complex that it is virtually 
impossible to imagine it would ever get the chance to be industrially applicable either.

2.4.4.1 The MINC method

In 1985, Pruess and Narasimhan[83] proposed the Multiple INteracting Continua (MINC) 
method for numerical simulation of heat and multiphase fluid flow in multidimensional 
fractured media. The MINC method is able to handle the transient flow of heat and fluids 
between matrix and fractures numerically. This is in contrast to the standard dual-porosity 
model which uses an analytical expression, under the assumption of pseudo-steady state flow 
for coupling the flow between matrix and fracture. Thus, the MINC model can be regarded as a 
generalization of the Barrenblatt et al.[8] and the Warren and Root[99] models. 

For most cases the pseudo-steady state flow description is sufficient.[94] Only for some cases, 
such as a well test in a dual-porosity system, the transient nature of the matrix-fracture flow is 
of importance for reservoir simulation.
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The traditional dual-porosity approach assumes that the matrix can be accounted for as a single 
simulation cell in the matrix domain. But in the MINC approach it is different, as it assumes two 
kinds of grid:

1. A primary grid, which is the discretization of the reservoir volume into simulation 
cells.

2. A secondary grid, which is formed by nested matrix sub-cells that represent each 
matrix cell (in the primary grid).

Such a MINC grid is illustrated in Figure 2.7. Figuratively speaking, each matrix grid cell could 
be regarded as a “Russian Doll” of nested sub-cells. Even though the MINC method is a 
generalization of the dual-porosity model, it is based on some assumptions:

1. The fractured reservoir is represented by uniform cubes, representing the matrix, 
which are bounded by fracture planes on all faces. A generalization to arbitrary 
fracture geometries is available, using a proximity function.

2. The depletion process is influenced by two aspects: First, the global movement of 
fluid and heat through the reservoir, mainly taking place in the fracture system. 
Second, fluid and heat flow between the matrix and the fracture. Thermodynamic 
conditions, such as temperatures, pressures, vapor saturations, in the matrix depend 
primarily on the distance from the nearest fracture. This leads to a discretization of 
the matrix into sub-volumes, where the interfaces between the matrix volume 
elements are parallel to the nearest fracture.

3. The equipotential surfaces of pressure, temperature and other thermodynamic state 
variables are assumed to be planes parallel to the nearest fracture. This assumption 
will hardly be the case for real flow problems. Nonetheless, some conditions can be 
imagined where a “distance-only” approximation leads to an accurate prediction of 
interporosity flow:
3.1 Initial thermodynamic conditions in the matrix depend approximately only on 

the distance from the fracture. This includes the special case of uniform initial 
conditions in the matrix blocks.

3.2 The boundary conditions for the matrix blocks have to stay approximately 
constant at all times. If the transient conditions taking place in the fractures 
occur in a certain way this condition will be satisfied.

However, the MINC method can be correctly applied to more than the latter conditions. As soon 
as the pressure and respectively the temperature gradient, calculated with the distance-only 
approximation leads to correct total flow rates over a sub-cell interface area, the MINC method 
can be regarded as accurate. With the distance-only approximation of MINC pressure, viscous 
and capillary forces can be handled properly, but gravity force, because of its directional 
dependency, would be problematic.
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Figure 2.7:  The MINC descritization

The grid generation for the MINC method can be described in three steps:

1. In the first step, the primary mesh has to be defined. This may be done by 
considering global reservoir geometry, global variations of reservoir properties and 
the desired spatial grid resolution. The global mesh divides the reservoir into N
elemental volumes Vn, where the subscript n ranges from 1 to N.

2. In the second step, the geometric parameters of the nested volume elements, Vj, 
within the primary volumes, Vn, have to be determined. In order to do this, the 
volume fraction, fj, of each individual sub-cell has to be known (specified) upfront. 
The variable j is valid from 1 to J, where 1 refers to the fracture and J corresponds to 
the innermost matrix sub-cell. 
The volume fraction f1 can be easily derived from the fracture spacing, L, and the 
fracture aperture, . Thus leading to:

f 1
L3 L – 3– 

L3
------------------------------------- 3

L
------= . (2.11)

The other volume fractions can be chosen arbitrarily, only the constraint of 

f j
j 1=

J

 1=  has to be fulfilled.

The region closest to the fractures is of special interest.
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As a consequence, the outer matrix cub-cells having the indices j = 2,3,... will be 
more closely spaced than the elements farther from the fracture with the indices j = 
J, J-1,.... This can be also seen in Figure 2.8.
Based on the fracture spacing, L, and the volume fraction of the jth continuum, fj, the 
sub-cell volume can be calculated by

V j f jL
3= . (2.12)

Details on how the nodal distances and the interface areas are defined, as well as the 
used discretization scheme, integral finite difference formulation, for the MINC 
method can be found in the publication by Pruess and Narasimhan[83].

Figure 2.8:  Nested matrix sub-cells with different spacing[95]

3. Usually the fracture spacing, L, is much smaller than the size of the grid cells of the 
primary grid. Thus Pruess and Narasimhan[83] formulated scaling laws, how to 
partition the volume elements, Vn, of the primary grid into a sequence of interacting 
continua elements, Vnj, where j is indexing a continuum within Vn.

In a simulation grid cell with nested volume elements as outlined above, only one flow direction 
will be possible. This will be an outward directed flow, from the matrix to the fracture, as 
production of reservoir fluids causes a pressure decline in the fracture system. This imposes a 
limitation to the MINC method. For instance, compositional problems arising in EOR 
operations require a modification of the method which would allow flow through the matrix.

ECLIPSE[95] offers a method similar to the MINC method. Three different geometry options, 
with increasing dimensional complexity, are available, a linear (1D), a cylindrical (2D) and a 
spherical (3D) one. The cylindrical and the spherical geometries are approximated by square 
cylinders and cubes, respectively.
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2.4.4.2 Defining very complex transfer functions

Some authors have tried to redefine the transfer functions considering more complexity to 
achieve a higher level of accuracy than the conventional transfer function. However, these 
attempts nearly always lead to transfer functions that are so complex that makes them virtually 
impractical and useless anywhere else but the academic case for which they were originally 
developed. In this section, the final form of the suggested transfer function by Sarma[93] is 
briefly mentioned. Sarma[93] suggests rewriting the material balance equation, on each face of 
the (cubic) matrix cell separately, as shown in Equation 2.13 and Equation 2.14 respectively for 
the matrix and fracture domains:
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where, 
p  is the subscript for different phases,
c  is the subscript for each component,
s  is the subscript for each cell face,
W  is the superscript for the well,
n  is the superscript for the current time step,
n+1  is the superscript for the next time step,
p  is the mobility of phase p [1/cp],
p  is the phase density of phase p [lbm/ft3],
Xpc  is the mole fraction of component c in phase p [-],
  is the porosity [-],
p  is the potential of phase p [psia],
V  is the cell volume [ft3],
Sp  is the saturation of phase p [-],
WI  is the well index [mD.ft],
p  is the pressure [psia],
T  is the transmissibility [md.ft],
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cmf
 is the matrix-fracture transfer term for component c, calculated from Equation 2.15:

cmf
V kaPD  p p X cp  pm  pf–  

p
 V mSD  p X cp S p S pi–  

p
–=

(2.15)

where, 
i  is the subscript for initial property value,
ka  is the matrix apparent permeability [mD],
PD  is the shape factor for pressure diffusion [1/ft2],
SD  is the shape factor for saturation diffusion [1/day].

Equation 2.15 consists of two different terms: the pressure diffusion term and the saturation 
diffusion term which are meant to take different recovery mechanisms into consideration. For 
each one of them, a different time-dependent shape factor function is used which have to be 
separately calculated from fine-grid simulation of the matrix block under the specified 
conditions before actually being able to use the values in the conventional dual-porosity 
simulation.

Figure 2.9 shows the fine-grid model to calculate the best fitting function values for the 
“pressure diffusion shape factor” from Equation 2.16 and the “saturation diffusion shape factor” 
from Equation 2.17.

PD f t = , (2.16)

SD bt m–= , (2.17)

Figure 2.9:  Fine-gridded matrix block for calculation of shape factors[93]

It is obvious that such an attempt would never get a chance to be industrially applicable. This is 
one of the main reasons that although the industry is aware of the limitations of the conventional 
transfer equation, they still widely apply it simply because a practical alternative has not been 
offered yet.
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2.5 Permeability Tensor Measurement

Measuring the permeability tensor is a challenging task and many 
authorse.g.[5],[31],[59],[64],[88],[98],[100] have tried to design methods or instruments to measure it. 
In this section, the method suggested by Asadi et al.[5] is briefly explained.

A sample from the rock that is large enough to eliminate the end-effect is shaped as described 
by Asadi et al.[5] (which is the 3D extension of Rose[88] method for 2D):

The cubic sample is reshaped into a parallelepiped in three steps performed in each direction 
one after the other. The angle of each outlet face of the sample is changed to achieve the state 
in which the upper flow and the lower flow become the same (and the inlet face angle is also 
changed in parallel to the outlet face).

Figure 2.10:  The first step for reshaping the cubic sample to measure anisotropy

Figure 2.10 shows the first step of reshaping the cube sample. The same procedure is also 
performed on the other two directions and ultimately the block is reshaped into a parallelepiped 

as shown in Figure 2.11. The plot of angle vs. 
qtop

qbottom
------------------
 
 
 

ln  shall produce the final values for 

the angles of each face. 

Figure 2.11:  The final parallelepiped, formed by reshaping the cubic sample

It is expected that the direction of pressure gradient along each side of this parallelepiped is 
along the flow path.[5],[88] Now three permeability measurement experiments can be performed 
along each side of the parallelepiped measuring the pressure drop for a given flow rate and 
writing the Darcy’s flow equation for that face as in Equation 2.18:
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where the 9 permeability tensor values are unknown. Three additional equations come from the 
fact that the permeability tensor is symmetric by the Onsager[70] reciprocal relations:

kij k ji ,   i j x y z   = . (2.19)

In order to calculate the remaining unknowns, Asadi et al.[5] consider the directions of 
maximum, minimum and intermediate permeability and their angles to the direction of pressure 
gradient: The angles of the maximum permeability direction to each component of the pressure 
gradient vector are M1, M2, M3 respectively and for the minimum permeability direction, m1, 
m2, m3 and for the intermediate permeability direction (which is perpendicular to both minimum 
and maximum permeability directions) are i1, i2, i3. The principal permeabilities kxx, kyy, kzz are 
the eigenvalues of the following matrix (Anton and Rorres[2]):
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M 1cos M 2cos Mcos 3+ + 0
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i1cos icos 2 icos 3+ + 0=

=
= . (2.23)

Equation 2.18 to Equation 2.23 altogether contain 18 unknowns and 18 equations; by solving 
them, all the permeability tensor elements can be calculated as explained by Asadi et al.[5].
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Chapter 3

The Elements of the New Approach

3.1 Introduction

In this chapter, some concepts, ideas and theories are presented in separate headlines which are 
independent from each other; however, all of the mentioned concepts in this chapter are related 
to the new presented approach of “simulating naturally fractured reservoirs using the recovery 
curves” which will be explained in details in Chapter 4.

The elements covered in the current chapter are all either devised, developed, improved or 
suggested in this work to justify the necessity of the new approach and/or to overcome the 
problems of creating and using recovery curves for dual-porosity simulation.

3.2 Shape Factor

The shape factor, as briefly introduced in Section 2.4.4, is used in the matrix-fracture transfer 
term (Equation 2.8) in the conventional dual-porosity model. In this part, some more details and 
noteworthy explanations about the shape factor are presented.

3.2.1 Pseudo-Steady State vs. Transient

In small-scale laboratory experiments and measurements, the fluid transfer between the matrix 
and the fracture is affected by the transient period, causing different results from when 
considering pseudo-steady behavior. However, as discussed and stated by Sarma and Aziz[94]:

“The shape factor converges asymptotically to the pseudo-steady state shape factor 
for dimensionless times greater than 0.1, which in typical reservoirs, the real time 
equivalent to this is usually very small (e.g. in the scale of a few hours to just a few 
days) and it is often justified to only use the pseudo-steady state shape factor. The 
transient period can be significant in transient well tests, or in very tight gas 
reservoirs”.
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This means that in practical field studies, where the time-steps are in the range of several days, 
the transient period would not have any influence on the results, and the pseudo-steady 
assumption accurately describes the conditions of the system (much less CPU-intensively). 
Therefore, in most industrial reservoir simulators, only pseudo-steady state shape factors, such 
as Kazemi-Gilman-Elsharkawy[52] (KGE), are used.

Moreover, the term “shape factor” semantically suggests that it is a factor based on the shape 
(geometry) of the system (and not the potential difference or other parameters). Therefore, it 
should be necessarily only dependent on the shape of the matrix block. However, some 
authorse.g.[19],[75],[76],[86] have considered the transient flow between matrix and fracture 
(which leads to shape factors that change in time) and used the term “time-dependent shape 
factor” which is logically incorrect; as the “shape” of the system does not change in time (and 
therefore, it is expected that the shape factor remains constant too). Note that the scale of time 
in which the behavior is transient, and these time-dependent shape factors are changing would 
be usually in a few hours to just few days[94]. 

The pseudo-steady state assumption, on the other hand, leads to a constant parameter for the 
geometry function i.e. the “shape factor”. Since the goal of this work is simulation of the 
full-scale NFRs, only the pseudo-steady state geometry functions are considered. It is also 
noteworthy to mention that those time-dependent shape factors are not meant to account for the 
possible changes of the fracture network as a result of pressure change (such as fractures being 
closed), but the changes of the shape factor are only an attempt to consider the transient state 
effects.

3.2.2 Permeability Anisotropy

KGE[52] introduced a generalized shape factor formula for matrix blocks of any shape, with the 
pseudo-steady state and isotropic permeability assumptions. Heinemann and Mittermeir[48] 
mathematically derived the KGE shape factor formula for anisotropic cases, generalizing it for 
these blocks as well (as described in Appendix B). Unlike the pseudo-steady state assumption 
(which as discussed, does not have any practical effect in full field studies), the isotropic 
permeability assumption that many authors (like KGE[52]) have considered, can have a 
considerable effect on the full field behavior. 

In order to demonstrate the significance of matrix permeability anisotropy on the 
matrix-fracture transfer, a piece of rock with the shape factor of σ = 0.183 m-2 and the effective 
height of LZ = 7.62 m was modelled using the Single Matrix Block analysis under water 
imbibition drive (see Section 3.4, Appendix C and Appendix D). The apparent permeability was 
ka = 0.4 and the principle permeability values (Section 2.4.1.1) are kx = 0.4, ky = 0.12 and kz = 
0.12 mD. The modeling was done once assuming the isotropic apparent permeability in all 
directions and once the actual permeability anisotropy was considered. The results of the 
isotropic and anisotropic cases (as well as their difference) is plotted in Figure 3.1.
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As it can be observed in Figure 3.1, the two scenarios present two completely different trends 
of production: The isotropic case time vs. recovery factor curve starts with a higher slope than 
the anisotropic curve and this continues until about 40% of the oil is recovered, when the 
anisotropic curve’s slope becomes higher than the isotropic one. 

A closer look at the results, shows that recovering 40% of the matrix oil content, takes nearly 
18000 days (~49 years) for the isotropic case while it only takes about 6000 days (~16 years) 
for the anisotropic case which is quite a remarkable difference of about 33 years in estimation 
of the production from the same block, with the same initial and boundary conditions.[4]

Figure 3.1:  Isotropic & anisotropic time vs. recovery factor curves

It is also observable that the difference between the two curves starts on zero (obviously as the 
initial conditions are the same) and also ends on zero at 64.68% (the ultimate) recovery. The 
reason is that the ultimate recovery from the matrix block only depends on the driving 
mechanisms in action and the saturation endpoints which are the same in both scenarios and is 
not dependent on the permeability or viscosity. In other words, the two scenarios will ultimately 
produce the same amount of oil but with different trends. However, it is essential that this trend 
is known as accurately as possible to be able to make appropriate plans for the production from 
naturally fractured reservoirs. 

Figure 3.1 demonstrates the significant effect that permeability anisotropy, which is commonly 
ignored in the industry, can have on the matrix-fracture transfer; therefore, in this work, a rather 
simple method to measure the anisotropic permeability tensor on outcrops of reservoir 
formations is proposed (Section 3.2.2) and it is suggested to be practiced and used in reservoir 
simulations along with shape factor formulas which take the anisotropy into account (such as 
Heinemann-Mittermeir[48]).
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3.2.3 Shape vs. Shape Factor

The shape factor is generally based on the surface-to-volume ratio of the model as introduced 
by Barker[9]:

 
V m
Am
--------
 
 
  2–

= , (3.1)

where Vm is the volume, Am is the surface of the matrix block and α is a dimensionless 
parameter. It means that the flow behavior of the model depends not really on the shape, but also 
on its surface-to-volume ratio. Consequently, if the surface-to-volume ratios of two different 
matrix blocks of different shapes are the same, the matrix-fracture flow will be the same as long 
as the driving forces are the same. The considered driving forces are capillary imbibition 
(between the fracture and the matrix) and gravity drainage (which depends on the height of the 
matrix block).

Figure 3.2:  Different matrix block IDs (shapes) with the same shape factor and 
flow behavior

Therefore, if the heights of the blocks are the same (to impose the same gravitational drive), all 
models will have the same shape factor, as long as their surface-to-volume ratio remains the 
same. It is illustrated in Figure 3.2 how an arbitrarily shaped matrix block, can have the same 
shape factor as a cuboid with the same height. This means that in order to model the flow 
behavior of a matrix block of any shape, it is possible to use a simple cuboid (which is easier to 
model and simulate) with the same “shape factor” as the irregularly shaped matrix block. The 
procedure is explained in Section 3.3.6.
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3.2.4 Shape Factor Is Not a History-Matching Parameter

The shape factor is a meaningful physical parameter that reflects the geometry of the matrix 
block; and can be theoretically derived from the flow equations for pseudo-steady state 
conditions as shown by Heinemann-Mittermeir[48] and explained Appendix B.

This means that the shape factor is in a similar category of properties such as porosity and is not 
just a meaningless multiplier of the matrix-fracture transfer equation that can be regarded as a 
simple history-matching parameter. It should be tried to estimate the shape factor as accurately 
as possible and regard it as a statistical parameter. Therefore, the statement: “The shape factor 
acts as a multiplier on the matrix-fracture coupling, it may simply be treated as a history 
matching parameter.”[95] from ECLIPSE simulator technical description is not correct and can 
lead to completely unreliable history-matched models that cannot be trusted for predictions.

3.3 Measuring the Shape Factor

The parameters and steps necessary to use the pseudo-steady state shape factor after 
Heinemann-Mittermeir[48] (HM) for an irregularly shaped anisotropic piece of rock, are 
described in this section:

3.3.1 Global Coordinate System

Consider a homogeneous anisotropic matrix block of any shape. A global 3-Dimensional 
Cartesian coordinate system is required to make the measurements. The origin can be any 
arbitrary point in space (based on which all the distances will be measured). Such an arbitrary 
global coordinate system and a piece of rock are shown in Figure 3.3.

3.3.2 Surface Area Measurement

In geometry, Heron's formula named after Heron of Alexandria, states that the area T of a 
triangle with side-lengths of a, b and c (as described by Dunham[30]) is:

T s s a–  s b–  s c– 
s a b c+ +  2

=
=

. (3.2)

This formula can be used to measure the surface of any irregular shape by masking it with 
non-overlapping triangles (as shown in Figure 3.4), measuring their sides, calculating their 
areas and adding them up for all the triangles to calculate the surface area of the object.
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Figure 3.3:  Matrix block; Arbitrary global Cartesian coordinate system

3.3.3 Measuring the Volume of the block

The corner points of Figure 3.4 can be used to divide the irregular shape to 3D polygons (such 
as pyramids) and calculate the total volume of the block (Vm) based on the volumes of these 
polygons.

Figure 3.4:  Measuring the surface area and the volume
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3.3.4 Finding the centroid of the block

The centroid of the matrix block shape can be calculated from the positions of the corner points:

rc
1
n
--- ri

i

n

= , (3.3)

where rc  is the position vector of the centroid, n is the total number of corner points and ri  is 
the position vector of each corner point of the block (shown in Figure 3.4).

3.3.5 Face distance from the centroid

The distance of a surface to a point can be calculated[101] from Equation 3.4:

d n̂ rO rc– = , (3.4)

where d is the distance of the surface to the centroid, n̂  is the unit normal vector of the surface, 

rO  is the position vector of any arbitrary point on the surface and rc  is the position vector of 
the centroid of the block.

3.3.6 Calculating the Representative Cuboid

The representative cuboid which has the same shape factor as the irregularly shaped block can 
be calculated assuming Lx = Ly, and Lz = the effective height of the original block (to keep the 
effects of gravity which is height-dependent the same between the cuboid and the original rock, 
see also Figure 3.2). The values can be easily calculated for a cuboid from Equation 3.14 for 
KGE shape factor or Equation 3.15 for HM shape factor as explained in Section 3.4.7.

3.3.7 Finding unit normal vectors of each block face

Three arbitrary points are chosen on the desired surface: O(ox, oy, oz), A(ax, ay, az), B(bx, by, bz) 

as shown in Figure 3.5. The unit normal vector n̂  can be calculated from the cross product of 

the two vectors of OA  and OB , divided by its length as in Equation 3.5:
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. n̂ OA OB

OA OB
-------------------------= (3.5)

Figure 3.5:  Finding the unit normal vector of the face

3.3.8 Principle permeability coordinates and permeability 
tensor diagonalization

The permeability tensor can be measured by any feasible method; for instance the method which 
was explained in Section 2.5.

Since the permeability tensor is[49] both symmetric and positive definite(1), it is always 

diagonalizable[2]. In order to diagonalize the permeability tensor, its eigenvectors, X 1 X 2 X 3  , 
respectively for the eigenvalues of kx, ky and kz should be calculated. Equation 3.6 is the 
definition of eigenvalues and eigenvectors for the permeability tensor:

kX 1 kx X 1= kX 2 k y X 2= kX 3 kz X 3=  , (3.6)

E X 1 X 2 X 3

X 1x
X 2x

X 3x

X 1y
X 2y

X 3y

X 1z
X 2z

X 3z

= = , (3.7)

where E is the matrix comprised of eigenvectors of k  written as column vectors and put side 
by side. 

(1)  Positive definite matrix: a matrix M such that xTMx > 0 for all nonzero x.
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Since k  is positive definite, E is an orthonormal(1) matrix and represents simply a rotation 
transform.[2] Because kx, ky, kz are the eigenvalues of the permeability tensor, Equation 3.8 and 
as a result, Equation 3.9 are always true (by definition)[2]:

kE E
kx 0 0

0 k y 0

0 0 kz

k E
kx 0 0

0 k y 0

0 0 kz

E 1– = = , (3.8)

k E k E 1– = . (3.9)

 k
kx 0 0

0 k y 0

0 0 kz

=  is the diagonalized permeability tensor in the principle permeability direction.

This expression helps describe the procedure of matrix diagonalization in the following 
sequence of operations (reading Equation 3.9 from the right):

1. First, multiplying (the space) by E-1. It can be thought of as performing a linear 
change of coordinates, i.e. transforming the coordinates to some special coordinate 
system called the “principle permeability coordinate system”.

2. In that coordinate system, multiplying by k . But this is a particularly easy matrix to 
multiply with, since the coordinates do not mix: it means that each coordinate gets 

stretched or squeezed by just one of the eigenvalues of k .
3. Finally, going back to the global coordinates, multiplying by the inverse of E-1, 

namely E.

Note that the order of choosing the eigenvalues as kx, ky or kz is not important, since the rotation 
transform matrix is created by the corresponding eigenvectors in the same order as the selected 
eigenvalues. In other words, the values of the diagonalized permeability tensor in the 
transformed coordinate system, is always the same, regardless of the order of selection of the 
eigenvalues as x, y and z subscripts. 

Applying the rotation transform of E-1 to the global coordinate system, the principle 
permeability coordinate system X ' Y ' Z '   can be calculated as shown in Figure 3.6 with the 
dashed arrows. In this coordinate system, the diagonalized permeability tensor can be directly 
used in calculations.

(1)  Orthonormal matrix: matrix M where MTM = I.
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Figure 3.6:  Principle permeability coordinate system

3.3.9 Equivalent isotropic permeability and normalized 
anisotropy tensor

Muskat[65] introduced the term equivalent isotropic permeability to calculate the isotropic 
permeability in case of having anisotropic permeability tensor (to be used in calculations and 
simulations that are based on the isotropy assumption) which is nothing more than the geometric 
mean of the directional permeability values:

 ka kxk ykz3= . (3.10)

This value can be used to normalize the permeability tensor to a dimensionless tensor that 
represents the anisotropy of the medium which is called dimensionless normalized anisotropy 
tensor, which represents the anisotropy of the rock:

k' p

k'x 0 0

0 k'y 0

0 0 k'z

kx 0 0

0 k y 0

0 0 kz

ka= = . (3.11)



38
3.3.10 Practical Simplifications

The presented method to measure the shape factor parameters from outcrops, is mathematically 
accurate, but would be difficult to manually practice on a large scale. However, there are 
software applications (e.g. 3D Software Object Modeller Pro[22]) that help make 3-Dimensional 
models from the pieces of rock just by analyzing pictures from different angles of the rock. 
These 3D models can be then used to easily determine the surface areas, centroid and the 
distance of each face to the centroid and all the other necessary parameters required to 
ultimately calculate the shape factor using Equation 2.10.

An alternative practical method is to express the Heinemann and Mittermeir[48] shape factor 
formula, as in Equation 3.12, in a form which facilitates estimating the parameters intuitively:

HM 1
V m
--------

AKmin

d Kmin

--------------
AKmax

d Kmax

---------------
AKorth

d Korth

---------------+ +
 
 
 

 , (3.12)

where Vm is the volume of the matrix block, Kmin, Kmin and Korth are the inspected directions of 
minimum and maximum permeability and a direction orthogonal to both the latter, respectively. 

AK is the projected area of the matrix block on a plane orthogonal to the direction of each K  and 
dK is half of the mean length of the matrix block in the same direction. Figure 3.7 shows the 
schematic representation of AKmax, the projected area and dKmax, half of the mean length of the 
matrix block in the direction of maximum permeability.

It is possible to estimate AK and dK as well as the matrix block’s volume, Vm, by some 
measurements intuitively which makes utilizing this shape factor more practical onsite. These 
principle permeability directions can be estimated itself by close inspection of the formation 
sedimentation. The permeability values can be measured in lab for some cores and averaged for 
the formation.

Note that in Equation 3.12, the normalized directional permeability values are not explicitly 
observable; as their effects are already included in the terms AK d K  (i.e. since this terms are 
determined in the directions of principle permeability, they are dependent on the anisotropic 
permeability tensor). However, the (average) apparent permeability, ka, has to be measured in 
the laboratory at least for some samples from the formation.

Such simplifications make it practical to use outcrop investigations to measure the anisotropic 
shape factor more accurately than what is currently being used, but still not as time-consuming 
and accurate as measuring everything in the lab for the pieces of rock, as described earlier 
(which could make this procedure impractical or even impossible in large scale).
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Figure 3.7:  Area and length of the matrix block in the principle permeability 
direction

3.4 Single Matrix Block Analysis

The idea of using Single Matrix Block (SMB) models comes from the ambition to simulate 
laboratory experiments of studying the matrix block depletion under different conditions and 
the recovery processes for every single matrix block (Section 4.3.1) and to generate the recovery 
curve under the specified conditions. Such an approach (and laboratory experiment) gives a 
detailed insight about the processes that are going on between the matrix and the surrounding 
fractures at different places and under different conditions. 

This would be the most general and the best approach, if it could be practiced throughout the 
reservoirs. But unfortunately, this approach is not applicable on the reservoir scale, both because 
it is impossible to access different matrix blocks (in full) from all around the reservoir to take 
them to the lab, and that such experiments needs a lot of time and cost to perform and produce 
the desired outcome. Therefore, SMB laboratory experiments remain restricted only to some 
research studies and not a standard practice in reservoir modeling. 



40
In general, the experiment (explained in Appendix C in details) is to submerge the matrix block 
in a fluid and collecting the extracted oil and plotting the recovered oil volume versus time. This 
plot is called a “Recovery Curve” which demonstrates how the matrix block under study, 
depletes in time with the ceratin boundary conditions and active driving mechanisms of the 
experiment (such curves are shown in Figure 3.22, Figure 4.7 and Figure 4.9 for different matrix 
blocks and driving mechanisms). As will be explained in Section 4.3 in details, knowing the 
matrix block distribution within a given simulation cell, it is possible to accurately estimate the 
overall recovery curve for the simulation cell. 

As stated earlier, since the actual laboratory experiments are not practical (enough) to be used 
routinely for the real reservoirs, single matrix block models have been developed to numerically 
simulate such laboratory experiments which makes the study much easier and more affordable. 
Different applications of small-scale single matrix block models can be found in the 
literaturee.g.[20],[33],[41],[54],[89]. These publications deal with recovery mechanisms in fractured 
reservoirs, primarily with water/oil countercurrent imbibition and gas/oil drainage, and the 
matrix-fracture transfer. 

Most of these calculations have been made using commercial simulators placing production and 
injection wells in the fracture cells. However, such a workaround (to model the laboratory 
experiment) is impractical and in most cases numerically instable, and will produce 
questionable results with long CPU times. Some of the problems of using commercial 
simulators to model single matrix blocks are mentioned:

• For every matrix block, a new grid model has to be created which requires recreating 
the grid cells, setting permeability, porosity distributions etc. This is undoubtedly a 
tedious work and one of the main reasons why such an informative analysis is not 
even numerically practiced in full field studies.

• The very small pore volumes of the grid cells, especially for the fracture cells causes 
numerical instability.

• The necessity to use bottomhole-pressure-controlled production (and/or injection) 
wells to maintain the fracture conditions causes further numerical instability.

• The boundary conditions for the matrix are determined by the fracture pressure 
mainly since the fracture saturation cannot be even set as the boundary condition; and 
even so, these parameters cannot be properly set in such a conventional grid model.

• Due to the matrix-fracture fluid transfer, the fluid contents of the fracture changes in 
time. Assuring constant pressure and saturations in the fracture cells (as in the 
laboratory experiment of Appendix C) is required for a proper SMB investigation. 
Setting both pressure and saturations of the fracture cells as constant is in no way 
achievable in commercial reservoir simulators.

• The influence of viscous displacement cannot be considered in such models because 
no fluid movement can be incorporated along the fracture cells.

Pirker[81] made some experiments with some commercial software tools, mostly with 
ECLIPSE[95] and showed that a more sophisticated approach than to model each single matrix 
block separately is necessary. Pirker[81] tried to standardize this method and developed it to 
some extent leaving it open with some suggestions. 
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In this work, the single matrix block analysis concept suggested by Pirker[81] is completely 
developed and integrated in PRS[45] (described in Appendix D), which is available to be used 
in any reservoir model for different matrix blocks and conditions with minimal effort and can 
also be implemented in any conventional reservoir simulator. The objective of this section is to 
introduce a practical and efficient method for performing Single Matrix block calculations. This 
method should satisfy the following requirements:

• The calculation should be mathematically and numerically correct; e.g. using fully 
implicit control volume finite difference method on a fine orthogonal grid. The result 
will be the oil recovery as function of time or dimensionless time.

• The recovery mechanism of a single matrix block should be calculated without any 
simplifications, by considering all driving forces, pressure and saturation distribution 
within the matrix and changing states in the surrounding fractures.

• Only black oil models are considered.

3.4.1 New Features and Improvements

In this work, the Single Matrix Block Analysis concept after Pirker[81] was modified, extended 
and new features were added to complete it. Here only the differences are briefly mentioned:

1. Pirker, after many studies on different SMB models, advised that the simulation grid 
and run setup had to be standardized and optimized for a proper use of the on single 
matrix block models. This advise is followed; however, three more layers have been 
added (for the reasons described in Section 3.4.3).

2. Pirker implemented the SMB analysis only for water imbibition and gravitational 
drives, based on one simple example. This is now implemented as a standard option 
in PRS[45] commercial simulator and is readily usable for any reservoir model.

3. Pirker did not implement the gas gravity drainage. The main reason could be that for 
the gas drive case, in such small models, the convergence is even poorer than water 
drive is. The gas gravity drainage drive was successfully implemented, standardized 
and tested like the water drive and is available in PRS[45].

4. The time-step regulation was completely revised and redesigned in order to allow 
better convergence for the small cells.

5. The problem of imposing both a constant pressure and a constant saturation (at the 
beginning of each time step) for the fractures was successfully overcome and 
therefore, much better convergence is achieved with results that are completely 
physical (no oscillations nor negative second derivative for the recovery curve are 
now observed, as they are not theoretically excepted either).

6. The single matrix block analysis recovery curves are output versus both the normal 
time (in days) and the dimensionless time, so that each one can be used properly 
wherever needed.

7. A completely new option to allow adding a pressure gradient for considering the 
effect of viscous displacement in the SMB analysis is devised and implemented.
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8. Pirker implementation only considered two vertical fracture sets, but used a shape 
factor formula for a case that is surrounded by fractures (i.e. also with horizontal 
fractures) which was a mistake in Pirker’s implementation. In this work, by default 
the matrix block is considered to be surrounded on all sides by fractures (i.e. both 
vertical and horizontal fractures) and also optionally allows sealing the block on the 
top and bottom faces to consider only the vertical fractures (see Figure 3.8). For 
each case, unlike in Pirker’s implementation, the correct shape factor formula will 
be used.

9. Pirker imagined that using a dimensionless time for the recovery curve would help, 
but did not explain why and how; therefore, only used the normal time for the actual 
recovery curve calculation (even though Pirker had introduced an empirical 
dimensionless time formula). In this work the idea of using the dimensionless time 
is proven to be not only helpful but necessary. Additionally, from the flow equation 
a proper dimensionless time for this purpose is derived (Equation 3.26) and also its 
applications and benefits are explained (Section 4.3.2 and Section 5.2.2.1).

10. The SMB Analysis is made generally available in a commercial reservoir simulator 
(Appendix D) for all reservoir models with just a single keyword in the input for 
many different conditions. A graphical user interface tool (Section D.4) is also 
developed which allows creating such curves, putting them in a database (for each 
reservoir model) and recall them for future use along with the functionality to lump 
them (Section 3.9) and for preparing the recovery curve regions (Section 5.2.1.4.1).

Note that for a matrix block, the z-direction in this case is not necessarily vertical, however, it 
should be considered that all parameters in the single matrix block examination are highly 
hypothetical. Therefore, in order to keep it simple, it is advisable to have the model vertical and 
assume that the permeability coordinate axes are identical with the geometrical ones.

3.4.2 The SMB Grid

In order to get reliable results, the SMB should represent credible and scalable real matrix 
blocks. In this respect, not the volume nor the average permeability is decisive, but the shape 
factor and the effective pressure gradient along the matrix block sides are. This is so because 
the recovery processes are, in fact, only defined by the saturation end-points and the acting 
deriving mechanisms. The volume and permeability play as scaling factors on the recovery and 
depletion time respectively. 

The shape factor depends on the matrix-fracture connection surfaces, their distance from the 
center of gravity, the orientation of principle permeability axes and the surface-to-volume ratio 
explained in Section 3.2.3 and derived in Appendix B.

One conclusion of Heinemann-Mittermeir[48] mathematically derived shape factor, is that any 
arbitrarily shaped matrix block can be mapped to any other arbitrary shape, as long as the 
surface-to-volume ratio, by considering the permeability anisotropy, are identical. In other 
words, it is possible to find many geometries that have the same shape factor (and therefore the 
same flow behavior).
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So once the shape factor for the actual (irregularly shaped) matrix block is measured, one can 
calculate a vertical cuboid which behaves identically to the actual irregularly shaped matrix 
block (as long as the driving forces are the same).

For instance the resulting recovery curve on the three geometries shown in Figure 3.2 have to 
be the same if their shape factors are equal. The third model is easy to discretize correctly with 
orthogonal Cartesian grid but for the other ones would be more time-consuming and difficult 
(while the results will be approximately the same for all cases). Therefore, it is of course 
preferred to use of the cubic model to investigate the matrix behavior numerically. 

Figure 3.8:  Single matrix blocks with different fracture constellations (fracture 
cells in green and matrix cells in red). On the left: two vertical fracture sets along 
x- and y-planes. On the right: two vertical fractures plus a horizontal fracture set on 
top and bottom.

There are two basic methods to construct the Cartesian grid: One using the matrix width, length 
and the effective height, and the other one using the shape factor and the effective matrix block 
height as briefly explained here (and in Section 3.4.7 in more details):

1. The vertical cuboid’s size can be calculated by specifying the shape factor,  , for 
which the investigation should be performed, the anisotropic permeability values 
(k'x k'y k'z   and ka from Equation 3.11), and the effective matrix block height in the 
direction of gravitational force, Lz, using Equation 3.13:

 Lx Ly k'x k'y+   4 k'z Lz
2– = = . (3.13)

2. The vertical cuboid can also be created by specifying the matrix block side lengths, 
Lx, Ly and Lz (note that Lz is here also the effective matrix block height in the 
direction of the gravitational force). The shape factor can (optionally) be calculated 
from Equation 3.14 but is not used in the run.
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As discussed, the results from a regular cuboid for which the X, Y, Z coordinate axes are the 
principal permeability directions can be assumed to be also valid for any matrix block having 
the same shape factor and driving forces. Note that the z-direction in this case is not necessarily 
vertical. It should be seen that all parameters in the single matrix examination are highly 
hypothetical. 

The matrix block model is discretized into grid cells. Fracture planes are added to the sides of 
the matrix block. The simple geometrical shapes of the cubic single matrix block models do not 
require any special gridding technique, therefore simple Cartesian grids are used to discretize 
the matrix block and the surrounding fracture planes.These fracture planes can be set up in 
different combinations. They can surround the entire matrix block or only the (vertical) sides. 
Figure 3.8 shows a quarter of the model for the two patterns of possible fracture constellations.

3.4.3 Model Dimensions

Due to the symmetry of the cubic block model, it is sufficient to conduct the simulation only on 
one quarter of the model, leading to considerable calculation time reduction. Since only a 
quarter of the cube is calculated, the side length of the cube is reduced in x- and y-direction to 
Lx 2  and Ly 2  respectively. The dimension in z-direction remains the same as in the vertical 
direction the gravity is in action making it not feasible to halve the block height. Figure 3.8 
shows a single matrix block model, as used in the further investigations with two- and 
three-dimensional fracture networks (2D or 3D).

Pirker[81] conducted a sensitivity analysis of the effect of the grid resolution on numerical 
accuracy and calculation time. Different grid resolution scenarios were calculated on the quarter 
model.

Figure 3.9 shows the results with 4x4x18, 8x8x36 and 16x16x72 matrix grid cells. With the 
vertical fracture planes the grid models have dimensions of 5x5x18, 9x9x36 and 17x17x72 grid 
cells respectively. Based on a greater number of numerical experiences, Pirker[81] recommends 
the 9x9x36 grid cells for the quarter model as generally applicable.

In this work, one layer was added to have a mid-layer based on which the initial equilibrium 
properties are calculated which makes the model dimensions 9x9x37. This change was tested 
against the Pirker[81]’s 36-layer case and the difference was negligible. In order to also consider 
the horizontal fractures, one additional fracture layer is added to both top and bottom of the 
model which will be deactivated if a 2D fracture network (i.e. only vertical fractures) is 
considered. This makes the final grid dimension to 9x9x39 for the single matrix block model 
including both the matrix and fracture cells.
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Figure 3.9:  Sensitivity analysis on grid cell number (after Pirker[81])

3.4.4 Grid Cell Properties and Parameters

There are two different (fluid-in-place) volume regions: VR_Frac (green) for the fracture 
(single-porosity) domain and VR_Matr (red) for the matrix (single-porosity) domain as shown 
in Figure 3.8. The actual volumetric calculations will be performed based on the matrix volume 
region as only this is the representative of the matrix block under study. The fracture domain is 
modeled just as the boundary to the matrix domain.

The matrix domain is considered to be, homogeneous (as it is representative of a single matrix 
block, i.e., one purple polygon in Figure 2.6). The porosity of all matrix cells are, therefore, the 
same as that of the actual matrix block. The net-to-gross ratio is considered to be 1.0 for obvious 
reasons for the whole model.

The fracture domain’s volume has no effect in the process as that domain’s content is not 
considered in the calculations. However, it has to be large enough, so that the saturation of the 
fracture cells does not effectively change during each time step while oil flows out from the 
matrix until it is taken out at the end of the time step.

The matrix domain inherits the rock data of the original matrix block. The single-porosity 
fracture domain, has straight-line relative permeabilities and no capillary pressure. Note that the 
fracture domain here is not intended to be a medium of fluid flow, but just a boundary to the 
matrix cells. There is no theoretical restrictions on the PVT data, except that the PVT data for 
both the matrix and the fracture domains are essentially the same.
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3.4.5 Transmissibilities

There are three types of inter-cell transmissibilities that can be considered: 

1. matrix cell to matrix cell, this is the single-porosity transmissibility between the 
matrix cells (the red cells in Figure 2.6). The values of k'x k'y k'z   are used to 
calculate the transmissibilities in x-, y- and z-directions respectively. Note that since 
all cells are of the same size (and with the same parameters), the value of 
transmissibility in each direction is the same for all matrix cell pairs.

2. fracture cell to fracture cell, since the flow in the fracture domain is uninteresting 
(and the fracture domain content will be always restored to the initial state as will be 
explained in Section 3.4.8), the fracture-fracture transmissibility is by default set to 
zero to prevent the uninteresting flow between the fracture cells.

3. matrix cell to fracture cell; the boundary matrix cells can have one, two or three 
fracture neighbors. The transmissibility is calculated as in the single porosity model 
but only considering the matrix cell length and permeability (as the fracture cell acts 
just a boundary to the matrix cells). 

3.4.6 Permeability Anisotropy

The single matrix block can have different permeability values in x-, y- or z-directions. Since it 
is assumed that the grid is in the principle permeability coordinate system (Section 3.3.8), the 
principle permeability values of kx, ky and kz can be assigned in each coordinate direction. The 
normalized dimensionless permeability anisotropy values are k'x kx ka= , k'y k y ka=  and 

k'z kz ka=  in x-, y- and z-direction in the principle Cartesian coordinate system.

3.4.7 Shape Factor

One may argue, in Figure 3.8, the shape factors are different for the two cases (which is a correct 
argument). Note however, that the shape factor cannot be even defined in the single matrix block 
model as it is a single porosity matrix block (i.e. a single piece of rock) and should not be 
confused with the conventional dual-porosity model. Here, the shape factor is used to determine 
the geometry and size of the matrix block model (as described in Section 3.4.8) as well as for 
outputting purposes and for further analysis. It is never used in the course of calculations in the 
single matrix block model. 

This means that when creating the model with 2D or 3D fracture network (i.e. without and with 
horizontal fracture planes respectively), the matrix block size is calculated from the correct 
simplification of Equation 2.10 for a cuboid. For the 3D case Equation 3.14 and for the 2D case 
Equation 3.15:
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In this way, the effect of different fracture constellations will be considered in the matrix block 
size through usage of different shape factor formulas. Note that if the shape factor after Kazemi 
et al.[52] is to be used instead of Heinemann and Mittermeir[48] shape factor, the values of 
k'x k'y k'z   would be set equal to 1 in Equation 3.14 and Equation 3.15 as the permeability in 

KGE[52] shape factor is considered to be isotropic.

3.4.8 SMB Model Initialization, Drive Mechanisms and 
Production Method

Pirker[81] showed that using bottomhole-pressure-controlled wells to handle injection into 
and/or production from the fracture domain is instable, time-consuming and impractical; and 
suggested using fractures as boundaries to the matrix domain. In doing so, the fracture content 
should not change in time and the oil that flows from the matrix domain to the fracture domain, 
is extracted when it enters the fracture domain so that the fracture domain content always 
remains as it originally was. This condition is also valid in the actual laboratory experiment of 
placing the matrix rock in water (or gas) as the extracted oil would immediately rise up (or fall 
down) due to buoyancy, leaving the matrix again completely surrounded by100% water (or gas) 
as explained in Appendix C. Therefore, the appropriate boundary conditions are the fluid 
saturations and not the phase potentials for the single matrix block model.

The amount of extracted oil from the fracture domain, which is the same as the entered amount 
of water (or gas) into the matrix domain, is directly collected and reported as the produced 
amount of oil in each period (without the need of any wells).

As mentioned above, depending on the scenario under study, different types of initialization can 
be considered. The matrix can be initially saturated with any desired amount of oil, water and 
gas under equilibrium conditions and the pressure of the system should also be specified. The 
initialization is done by assigning the pressure at the middle layer (which will be the same both 
in matrix and fracture) and both domains will be initialized using their own hydrostatic head. 
The matrix will be fully oil-saturated with residual water saturation but if necessary, this is 
theoretically possible to use any desired initial saturation as well (as long as the system is in 
equilibrium).
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The fracture domain, depending on the desired scenario can have only one of these three states 
during the whole calculation time: either is fully saturated with water, gas or undersaturated oil 
and needless to mention that these are for modeling submerging the matrix block in each of thsse 
mentioned fluids; and the outflow of oil from the matrix domain is extracted from the fracture 
at the end of each time step, leaving the fracture fluid content the same as it was at the beginning 
of the time step; this can be done by restoring the fracture content to its original status in terms 
of fluid content (in moles) and reporting the difference in oil content as the oil production from 
the matrix block in that time step. Some examples of possible undersaturated scenarios that can 
be studied using the single matrix block model are mentioned here:

3.4.8.1 Water gravity drainage drive

The matrix domain is saturated with the maximum oil saturation (i.e. 1-Swc). The fracture 
domain is fully water-saturated. There is no capillary pressure defined for the matrix and 
therefore, the capillary pressure is zero. There will be a hydraulic pressure gradient difference 
between the fracture domain with water pressure gradient and the matrix domain with oil 
pressure gradient that drives water into the matrix domain from the bottom, pushing the oil out 
to the fracture domain from the top. The oil outflow from the matrix to the fracture will be 
collected as the recovery, leaving the fracture fully water-saturated.

3.4.8.2 Gas gravity drainage drive

The matrix domain is saturated with the maximum oil saturation (i.e. 1-Swc). The fracture 
domain is fully gas-saturated. There is no capillary pressure defined for the matrix and 
therefore, the capillary pressure is zero. There will be a hydraulic pressure gradient difference 
between the fracture domain with gas pressure gradient and the matrix domain with oil pressure 
gradient that pours the oil out from the matrix to the fracture domain from the bottom while gas 
enters the matrix from the top. The oil outflow from the matrix to the fracture will be collected 
as the recovery, leaving the fracture fully gas-saturated.

3.4.8.3 Water imbibition drive

The matrix domain is saturated with the maximum oil saturation (i.e. 1-Swc). The fracture 
domain is fully water-saturated. Matrix now has an imbibition capillary pressure function. The 
water will imbibe from the fracture domain into the matrix domain displacing the oil out of the 
matrix domain. The oil outflow from the matrix to the fracture will be collected as the recovery, 
leaving the fracture fully gas-saturated. Note that in this case, water gravity drainage drive is 
also active and works in favor of extracting oil from the matrix domain; in order to just study 
the effect of water imbibition, the gravitational drive can be artificially cancelled by setting the 
same value for the water and oil densities so that the only active driving force would be the 
capillary imbibition, or to decide to study the effect of both drives simultaneously.
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3.4.8.3.1 No phase segregation assumption required

In the conventional model, in order to analytically calculate the gravitational force, an inevitable 
assumption is made: The phases are completely segregated in both the matrix and the fracture 
cells as explained in details in Section E.4.2. Use of single matrix block analysis completely 
removes the need for such assumption as the gravitational effect, is simulated and considered in 
the final recovery curve. To illustrate this advantage of using single matrix block recovery curve 
for considering the gravitational force over the analytical method: consider a single matrix 
block, having a vertical water-filled fracture neighbor as shown in Figure 3.10. In order to 
calculate the gravitational drive in the conventional model, the block saturation distribution 
after a certain time is assumed to be as shown in Figure 3.15 which is clearly neither physically 
nor theoretically correct. The physically correct representation is shown in Figure 3.17 which is 
actually a display of how the recovery curve is calculated considering the correct saturation 
distribution. It is noteworthy that the single matrix block model, also considers the complicated 
interactions of the gravitational force with the capillary force (which is observable in the 
transition zone in Figure 3.17). This is in no way possible in the conventional approach to be 
calculated analytically. This is a big theoretical advantage in favor of using the recovery curve 
to calculate the matrix-fracture transfer (as proposed in this work) rather than the conventional 
transfer term formula used in the conventional dual-porosity model. The same also applies for 
gas-filled fractures. 

Figure 3.10:  Single Matrix Block with a vertical fracture

3.4.8.4 Water viscous displacement drive

The matrix domain is saturated with the maximum oil saturation (i.e. 1-Swc). The fracture 
domain is fully water-saturated. The matrix may or may not have a capillary pressure while the 
gravity drainage is active in the vertical direction. An additional pressure gradient (due to the 
viscous displacement) in the fracture domain is imposed to the system in the desired 
direction(s): the pressure of the mid-fracture cell (in the desired direction) will be the same as 
the initialization pressure, and the pressure gradient will be added in the positive direction and 
subtracted in the negative direction from the center cell. This extra pressure difference, drives 
the water from the fracture domain into the matrix domain in the upstream and the oil out from 
the matrix domain to the fracture domain in the downstream. 
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3.4.8.5 Gas viscous displacement drive

Similarly to the previous case, the matrix domain is saturated with the maximum oil saturation 
(i.e. 1-Swc). The fracture is fully gas-saturated. The matrix may or may not have a capillary 
pressure (which would act against the oil flowing out of the matrix block) while the gravity 
drainage is active in the vertical direction. An additional pressure gradient (due to the viscous 
displacement) in the fracture domain is imposed to the system in the desired direction(s): the 
pressure of the mid-fracture cell (in the desired direction) will be the same as the initialization 
pressure, and the pressure gradient will be added in the positive direction and subtracted in the 
negative direction from the center cell. This extra pressure difference, drives the gas from the 
fracture domain into the matrix domain in the upstream and the oil out from the matrix domain 
to the fracture domain in the downstream. This can be thought of as submerging the matrix 
block in flowing water with a velocity that causes the specified pressure gradient across the 
desired direction(s) in the matrix block.

3.4.8.6 Solution gas drive study

Both matrix and fracture domains are filled with undersaturated oil. The pressure in the fracture 
is dropped at a specified rate. The amount of oil which is expelled from the matrix domain is 
collected from the fracture and plotted versus time to represent the transient solution gas drive 
effects.

To study the solution gas drive under pseudo-steady state, the pressure is dropped at small steps, 
and the system is allowed (given enough time) to reach the steady state after each pressure drop 
step. The total amount of oil which leaves the matrix domain in that pressure drop step is plotted 
versus the pressure drop step number (which is not a recovery curve in this case).

3.4.8.7 Capillary hysteresis and wettability study

Different matrix and fracture initial saturations can be studied with different rock types 
(water-wet, oil-wet, mixed-wet) with or without capillary hysteresis. The fracture content can 
be switched from full saturation of one fluid to full saturation of another one (after certain time) 
to study the effects of capillary hysteresis.

3.4.8.8 Oil resaturation study

The matrix is saturated with maximum gas saturation (or also by maximum water saturation for 
oil-wet rocks). The fracture is filled with oil and the amount of oil which enters the matrix 
domain from the fracture domain is reported and plotted as a Resaturation curve which is 
similar to a recovery curve, but instead of the oil extracted from the matrix domain, the oil which 
enters it is plotted in time.
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3.4.9 SMB Model Validation

To demonstrate the applicability of the proposed method, the numerical results of the single 
matrix block calculations are compared to well-known analytical methods for different 
production scenarios.[80] The Pirson[82] method serves as reference for solution gas drive, and 
the Buckley-Leverett[16] solution for water displacement.

3.4.9.1 Solution gas drive - Pirson method

In order to ensure the applicability of the model for reservoirs produced by solution gas drive, 
numerical results are compared with the analytical solution to the Pirson[82] method. To fulfill 
the assumptions of the Pirson method in the simulation model, communication in z-direction is 
only allowed between the outer matrix grid cells and the adjacent fracture plane, and along the 
vertical fractures. All other transmissibilities in z-direction are set to zero.The displacement 
starts at the bubble-point pressure. As the pressure drops, gas is liberated in the matrix and the 
displaced oil flows toward the fractures. Figure 3.11 shows the results of the analytical and the 
numerical calculations. The good accordance with the analytical solution proves the 
applicability of single matrix block models to the investigated expansion-drive scenarios.

Figure 3.11:  Model validation solution gas drive

3.4.9.2 Water displacement - Buckley-Leverett solution

The Buckley-Leverett[16] theory is used to calculate the displacement efficiency in case of water 
displacement. This theory proves that the displacement can proceed as a front and provides a 
clear description of how the phase mobilities and gravity influence this displacement. 
Assumptions in the Buckley-Leverett theory are:
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• The two fluids are immiscible and incompressible.
• The porous medium is homogeneous.
• The displacement is one-dimensional and stable.
• The filtration can be described by the multi-phase Darcy’s law.
• The capillary force is negligible.

To make the results of the numerical and analytical calculations comparable, these assumptions 
have to be fulfilled in the simulation model as well. Only the fracture planes at the top and the 
bottom of the matrix block are set active to ensure one-dimensional frontal displacement. To 
simulate the frontal displacement, water is added (injected) to the bottom fracture layer and oil 
is produced from the top layer. The capillary pressure in the matrix is set equal to zero.

Three models with different grid resolutions are calculated to verify the decision of using the 
8x8x36 grid model. Figure 3.12 shows the results of the analytical and the numerical models. 
For the coarsest grid model, the final recovery from the matrix block matches the analytical 
solution very well, but the plot of the recovery factor versus the injected pore volume shows 
some deflection between 0.5 and 1.5 injected pore volumes. Refining the grid by a factor of two 
gives much better results in this region. An additional refinement results in a slightly better 
match, but unfortunately the runtime is increased approximately by a factor of 20. 

These results underline the decision of using the 8x8x36 grid model in terms of optimal 
accuracy and run time. The results also show that the single matrix block model is capable of 
representing water displacement in a matrix block.

Figure 3.12:  Model validation water displacement (from Pirker[81])
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3.5 Investigation of the Transfer Term

In order to study the transfer term, a series of single matrix block analyses (see Section 3.4) of 
an oil-wet matrix block from a full field with the type described in Table 6.2, PVT properties of 
Table 6.1 and SCAL data of Figure 6.1 and Figure 6.2 is performed under the following five 
different conditions:

1. fully submerged in gas,
2. fully submerged in gas with only vertical fractures (and no horizontal fractures),
3. fully submerged in water,
4. fully submerged in water with only vertical fractures (and no horizontal fractures),
5. fully submerged in water considering the permeability anisotropy.

Note that in cases 1 to 4, the apparent permeability value (the geometric mean of the directional 
permeability values) is used in all directions, since the conventional transfer function (as shown 
in Equation 2.8) assumes only the isotropic permeability ignoring the anisotropy effect; and in 
the 5th case, this assumption is also put to test.

3.5.1 Results

The recovery curve (i.e. the recovery factor vs. time) from the matrix block to the fracture for 
each of the five test cases is plotted in Figure 3.13. Since the matrix block is oil-wet, the ultimate 
recovery from gas drive is much higher than the water drive (due to a larger gravitational force 
for the gas drive than the water drive). 

Figure 3.13:  Recovery curves for all the test cases
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It is noteworthy to consider the significant difference between the third and the fifth case which 
demonstrates the effect of anisotropy on the matrix-fracture transfer. In this case, the isotropy 
assumption results in about 10% less oil recovery and a much earlier abandonment time (i.e. the 
ultimate recovery time) than the actual anisotropic case. This fact, on its own, shows that since 
the conventional transfer term does not consider the anisotropy, it can lead to completely 
irrealistic predictions in terms of both the amount and time of recovery from the matrix block.

The results show that ignoring the effects of the horizontal fractures for this example, results in 
more than 10% less ultimate recovery than when considering the horizontal fractures (for both 
water and gas cases). On the other hand, in the conventional transfer function, when the 
gravitational drive is analytically calculated, only the vertical fractures are actually considered 
and it is assumed that the fracture and matrix blocks are located side-by-side and complete phase 
segregation occurs immediately in both matrix and fracture (see Figure E.9 in Appendix E). 
Both of these assumptions are obviously wrong and sources of further discrepancy.

3.5.2 Calculated Shape Factors

Figure 3.14 plots the calculated shape factors from the conventional transfer equation at every 
time step for each of the five test cases. This can be done by solving Equation 2.8 for  :


qcmf
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
---------------------------------------------------------------------------------= . (3.16)

As it was earlier mentioned, based on the conventional model assumptions, it is expected to see 
only one single constant value for the shape factor for all the cases in all times on this plot, since 
this single value of the shape factor is used in the conventional transfer equation for all the cases. 
However, the most outstanding observation in Figure 3.14 is that:

Contrary to the assumption in the conventional dual-porosity models, the 
conventionally calculated shape factors are anything but constant!

In Figure 3.14, the actual constant shape factor value of 0.1 m-2 in this example for a certain 
matrix cell (which was also used in the full-field simulation) is plotted in back dashed line. For 
all the test cases, at the initial time steps, the calculated shape factors are larger than the actual 
value at least by a factor of ten and they continuously change in time and go down as low as 
about four orders of magnitude below the initial value at the point of ultimate recovery (for these 
cases). 

This means that in order to get the same flow rate out of the matrix block in the full field 
simulation as the fine-scale single matrix block model, the shape factor should change at each 
time step according to the plots in Figure 3.14 for each one of the cases. In other words, just 
using a constant value of shape factor for calculation of all boundary conditions, fluid types etc. 
cannot possibly describe the physical processes that go on between the matrix and the fracture. 
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However, by a more detailed investigation of the model, it will be shown that the real problem 
with the discrepancy of the conventional approach is not the shape factor, but actually using the 
conventional transfer term beyond its limitations. In the next section, it will be shown that the 
commercially applied methods to calculate the conventional transfer equation under which 
conditions can be relied upon and under which conditions should not be totally relied on. 

Figure 3.14:  Calculated shape factors versus time

3.5.3 Discussion

The conventionally assumed saturation distribution is displayed in Figure 3.15. However, the 
realistic saturation distribution for water imbibition tests with and without considering the 
horizontal fractures (test cases 3 & 4), at a certain point in time are shown respectively in Figure 
3.16 and Figure 3.17.

It is obvious that the conventional representation (Figure 3.15) is absolutely irrelevant to the 
reality of the saturation distribution in the matrix block. But what should be even more 
emphasized on here is that the matrix water saturation near the fracture is much higher than the 
mean matrix water saturation value. In the conventional approach, the mean matrix saturation 
is used to calculate the capillary force between the matrix and the fracture, however, in the fine 
scale model, the capillary force is calculated based on those actual higher water saturations of 
the matrix cells closer to the fracture (since the water saturation in the matrix cells near the 
fracture is higher than the average). The same fact also makes analytical calculation of the 
gravitational force impossible considering the real saturation distribution. This results in 
completely different driving forces when the average saturations are used comparing to the case 
when the actual saturation distributions are considered and can be regarded as the number one 
cause of the apparent discrepancy in the conventional dual-continuum model.
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Figure 3.15:  Saturation distribution for a certain time in the conventional method 

Figure 3.16:  Saturation distribution for a certain time for Case 3

Figure 3.17:  Saturation distribution for a certain time for Case 4

On the other hand, in the conventional approach, both the gravitational and imbibition drives 
are calculated ignoring the effects of horizontal fractures: it is not possible to analytically 
calculate the simultaneous co-current and countercurrent imbibition along with the sidewise 
imbibition which occurs when considering the horizontal fractures neither is it possible to 
analytically calculate the gravitational force for such boundary conditions. 
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Therefore, as explained in Appendix E, when calculating the potential difference between the 
matrix and the fracture, the horizontal fracture planes are ignored in the conventional approach. 
This is another source of discrepancy in the conventional approach: the outstanding difference 
in saturation distribution pattern as well as the average saturation values when considering or 
ignoring the horizontal fractures can be seen in Figure 3.16 and Figure 3.17. It should be noted 
that no matter how different the saturation distributions between these two cases are, the 
conventional approach calculates the potential difference for both of them using in exactly the 
same manner. The extent to how irrealistic such assumptions are can be seen in Figure 3.14 by 
how differently the shape factors are calculated at any time step for cases 1 & 2 and 3 & 4.

The conventional transfer term, completely ignores the anisotropy effect (and simply uses one 
absolute permeability value in the transfer equation) which is in turn another important source 
of discrepancy which can be observed on Figure 3.13 (cases 3 & 5) on the recovery pattern (and 
even the ultimate recovery) and in Figure 3.14 (cases 3 & 5) on how differently the calculated 
shape factors would be if anisotropy is considered or ignored. The effect of anisotropy on the 
saturation distribution for cases 3 and 5 can be observed in Figure 3.18 and Figure 3.19 
respectively. 

What can be observed in Figure 3.15, Figure 3.16, Figure 3.17, Figure 3.18 and Figure 3.19 is 
that the critical deficiency in the calculation of conventional transfer equation is inadequacy of 
the analytical approaches to calculate the matrix-fracture potential difference and not the shape 
factor! The analytical methods for calculation of the potential difference depend upon the 
assumption of segregated fluid saturation distribution in the matrix block which. Although this 
assumption is practically acceptable for calculating the fluid properties (e.g. oil viscosity) but 
in this work it was shown that using the average saturations for calculating the potential 
difference can bring in very large sources of discrepancy which can in no way be blamed on the 
definition of the shape factor!

This study shows that:
the conventionally practiced method is not reliable to calculate the potential 
difference in case of displacement of one fluid by another one (when the saturation 
distribution would become inhomogeneous), it also shows that in cases where the 
saturation distribution is homogeneous (e.g. expansion drive or single phase 
transfer), the conventional transfer equation can be reliably used.
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Figure 3.18:  Saturation distribution for a certain time for Case 3 (isotropic)

 

Figure 3.19:  Saturation distribution for a certain time for Case 5 (anisotropic)

3.6 Matrix Block Identification Methods

The matrix block shapes can be identified from any method which is available and that can be 
used. In this section, two methods are suggested.

3.6.1 Discrete Fracture Models

The matrix block shapes can also be extracted from the discrete fracture models. The corner 
points can be used to build the 3D model of all matrix blocks which are modelled in the 
reservoir. This data can be scanned to find the occurrence of similar matrix block IDs at different 
locations in the reservoir to produce the matrix block ID distribution in the reservoir.
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Normally when speaking of the DFM, the image that comes to the mind, is like what is shown 
in Figure 2.3, which is actually a correct one (as it displays the individual fractures that are 
modelled in the DFM). However, what is less focused on in this image, are the matrix blocks 
existing in between the fracture planes or in other words: the complement of the fracture planes.

Figure 3.20 is an illustration of how matrix blocks would look like in a DFM, if instead of the 
fractures, the matrix blocks were to be drawn. It clearly shows how it is possible to use DFM to 
know the matrix block shapes and their distribution in the reservoir (and in the upscaled 
simulation cells).

Figure 3.20:  Representation of matrix blocks extractable from Discrete Fracture 
Models (by courtesy of yuku.com[50])

3.6.2 Outcrop Investigation

Outcrop investigation can be used to obtain the shape of the matrix blocks as shown in Figure 
2.6 and Figure 3.21 for the formation. The information gathered from the outcrop study about 
the surface matrix blocks and fracture sets, can be used in the geological models to estimate the 
fracture network (and the matrix block shapes) in the reservoir statistically.
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Figure 3.21:  Outcrop of a fractured formation (from Lash[55]) 

3.7 Cell Recovery Curve from Conventional 
Simulation

It is possible to monitor a cell in the conventional dual-porosity simulation for changes of the 
(molar or volumetric) fluid contents and calculate the amount of recovered oil from it versus 
time (i.e. the recovery curve) using Equation 3.17:

RF t 
So t  Boi

Soi B i t 
------------------------- 1–= . (3.17)

This feature is implemented as a standard feature in different commercial reservoir 
simulatorse.g.[45],[95] and it is possible to specify the matrix cells in the conventional simulation 
run, to output the recovery curve versus time as well as the additional information about the 
pressure and saturation changes in the matrix cell and the adjacent fracture cell. In Section 6.3 
an example of using this method to produce the recovery curve from a conventional simulation 
and then using it for the recovery curve simulation is demonstrated.

3.8 Calculation of the Matrix-Fracture Transfer Rate 
from a Recovery Curve

In order to calculate the transfer term from the recovery curve in each time step, the increment 
in recovery is read from the recovery curve based on the current recovery factor and the time 
step length as will be explained in this section.
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The original oil in place in moles of the matrix cell I is calculated volumetrically:

OOI PI V i Soi Boi= , (3.18)

where Vi is initial the pore volume of the block, Soi is the initial oil saturation in the block and 
Boi is the initial oil formation factor. The actual oil in place, OIPI, in moles contained at the 
beginning of the time step, t, in the matrix block I is:

OI PI t V  1 Sw– Sg–  Bo= . (3.19)

The pore volume V is the pore volume and (1-Sw-Sg) is the oil saturation of block I at the 
beginning of the time step t. The recovery factor of the block at the beginning of each time step 
is:

RF I t  1
OI PI t
OOI PI
------------------–= . (3.20)

The increment in the recovery from the matrix block is calculated as illustrated in Figure 3.22, 
starting from the known recovery factor, RF(t), and finding the new recovery factor, RF(t+∆t), 
by adding the time step length ∆t to the virtual time axis on the recovery curve. This is called 
the virtual time because the time value on the recovery curve horizontal axis corresponding to 
the RF(t) is not the same as the actual simulation time, t. But only the recovery curve increment 
for the time step on the curve is interesting, and not the absolute time.

qmf
block I

t t  OOI PI RF I t t+  RF I t –  t= . (3.21)

The volumetric matrix-fracture transfer rate for the time step is then calculated from Equation 
3.21 which can readily be used instead of Equation 2.8 in the conventional dual-porosity 
formulation (Equation 2.6 and Equation 2.7). In other words, in this approach nothing in the 
conventional model needs to be changed, except the matrix-fracture transfer term. 

Figure 3.22:  Estimation of the time and recovery factor at the beginning of the 
time step.
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3.9 Lumping Recovery Curves

As described in the previous section (Section 3.8), the recovery curves represent the oil outflow 
rate from the matrix block (under a certain set of conditions) from a known recovery factor 
(state) parameter at any time for a known interval of time. In other words, Equation 3.21 can be 

rewritten in the volumetric form as shown in Equation 3.22 where V o
I t t   is the volume of 

oil that was extracted from the matrix block I in the time interval t t t+   in standard cubic 
meters:

V o
I t t  qmf

block I
t t  t

V o
I t t  OOI PI RF I t t+  RF I t – =

= . (3.22)

If there are different matrix blocks under the same condition, the amount of oil which is 
extracted from each one can be calculated from Equation 3.22 based on its own recovery curve. 
In a simulation cell, there are several matrix blocks (see Figure 3.20). It is obvious that if the 
cell conditions can be assumed to be independent of the matrix blocks’ productions (at least for 
the time interval under consideration), the produced moles from the matrix blocks can be 
summed up to form the total amount of oil extracted from the matrix simulation cell by 
superposition. In other words, in Figure 3.20, considering (all) the matrix blocks to represent the 
matrix cell (and the empty spaces in between them, to represent the fracture cell), the amount 
of oil transferred from the matrix cell to the fracture cell in a time interval, is the summation of 
all the oil amounts extracted from each individual matrix blocks (in the matrix cell) in that time 
interval. 

This means that the recovery curve of the simulation cell, is simply the weighted average of the 
recovery curves of the matrix blocks in that cell. It should be “weighted” average because the 
same matrix block, can be several times present in the cell. Knowing the frequencies of each 
matrix block, the cell recovery curve can be calculated from Equation 3.23 and also displayed 
in Figure 3.23.

RFcell t  RF I t  f I
blocks
= . (3.23)

Lumping recovery curves is not only used to calculate the cell recovery curve from the block 
recovery curves, but it can be used in any instance which the recovery from some curves are to 
be collected (and counted) as one entity; for instance, to calculate the class recovery curves and 
region recovery curves which will be introduced in Chapter 4. Figure 3.23 shows how Equation 
3.23 can be applied on the matrix block recovery curves to create the lumped 
(average-weighted) recovery curve.
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Figure 3.23:  Graphical representation of lumping recovery curves

3.10 Dimensionless Time

The component rate given by the Equation 2.8 is a function of the time. The phase potential and 
the relative permeabilities are function of the saturation, which naturally changes if the water or 
gas in the surrounding fractures invades the matrix block. Two immiscible and low 
compressible phases are considered. One of them is the displacing phase the other the displaced 
one. The composition of the displaced phase can be simplified to a single pseudo-component 
named as oil, therefore xpc = xoo= 1. The cumulative production of the component oil is:
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Divided with the original number of moles within the matrix block, the fracture matrix mass 
transfer can be expressed also with a time-dependent recovery factor, RF:
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In Equation 3.25, the constant factor before dt has the dimension of one over time. Multiplying 
this factor with the time value, a dimensionless variable of time is achieved called the 
dimensionless time, tD shown in Equation 3.26:
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tD
ka
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The recovery function (matrix block recovery factor vs. time) can be written in terms of this 
dimensionless time to give the scaled recovery factor, RF  assuming that the functions under 
integral, i.e. of om–  , are independent of the factors scaling the time variable to the 
dimensionless time. Note that this assumption holds within it that the driving forces do not 
change with the factors defining the dimensionless time conversion factor (e.g. the shape 
factor). Rewriting Equation 3.25 in terms of the dimensionless time yields:
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RF tD  RF tD  = , (3.28)

where,

tD  is dimensionless time,
ka  is the apparent permeability of the matrix block [m2],
  is the shape factor [m-2],
 coini  is the initial, oil compressibility [bar-1]
 oini  is the initial oil viscosity [cp] multiplication and,
   is the porosity [-],
  is the dimensionless time conversion factor,
N o  is the initial oil in place [sm3],
kro  is the oil relative permeability,
Do  is the oil specific molar density [kmol/ sm3],
of  is the fracture oil potential [bar],
om  is the matrix oil potential [bar].
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Chapter 4

Theory of the Work

4.1 Introduction

In this chapter, the new concept for modeling and simulating naturally fractured reservoirs 
suggested by this research is presented and explained in details.

4.2 Modeling Simulation Cell

After spatial discretization of the reservoir, the simulation cell (shown in Figure 4.1) is modelled 
(most-commonly in industrial simulators such as ECLIPSE[95]) with the Warren and Root[99] 
approach, as illustrated in Figure 4.2.

Figure 4.1:  Representation of the actual discretized reservoir simulation cell
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Comparing Figure 4.2 with Figure 4.1 clearly demonstrates that such homogenization of the 
matrix blocks inside the simulation cell, suggested by Warren and Root[99] sugar cube model, 
is clearly not the best ever representation; and one cannot assign a single value (for all 
properties, including the shape factor) to all of the matrix blocks in the simulation cell as 
suggested by this model.

Figure 4.2:  Representation of simulation cell in Warren and Root[99] concept

Figure 4.3:  Representation of the ideal model
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This irrealistic level of idealization and homogenization has ever been known to be physically 
incorrect, and other methods (such as DFM) have been presented to tackle this problem. But 
unfortunately, there always have been problems in using other methods on large industrial 
scales. As can be easily imagined, the best approach would be to model the matrix and fractures, 
exactly as they exist in the reservoir (Figure 4.3). But it is a dream too good to become true, since 
we can never know how the fractures really exist inside the reservoir with this level of precision 
(hundreds of meters under the ground) and even if so, we are far away from being able to 
economically calculate a model with that level of precision. On the other hand, it is still possible 
to statistically estimate the fracture distribution and create a discrete fracture model (DFM) 
from fracture network orientation, aperture, size etc. Although DFM cannot have the accuracy 
represented in Figure 4.3 but can offer a much closer matrix block ID distribution to reality than 
the sugar cube model (of Figure 4.2). 

The advantage of using DFM over the sugar cube model is that instead of homogenizing all the 
matrix blocks in a simulation cell to the same ideal (cubic) shape, each matrix block shape is 
calculated statistically from the available input from the actual field and the matrix-fracture 
transfer could be offered to be calculated in a micro-scale single-porosity boundary-condition 
approach. As mentioned, this leads to a bigger problem that has prevented the DFM approach 
to be applied in industry: the fact that this method is too CPU-intensive to be applicable for large 
reservoirs due to high level of statistically generated details and unknowns.

Pirker[81] followed the suggestion of Heinemann[44] that it is possible and advantageous to use 
recovery curves to calculate the matrix-fracture transfer term, and proved its applicability on a 
column model with only one recovery curve for the simulation of the water imbibition of the 
cells containing matrix blocks of different shape factors. Figure 4.4 is a schematic of the model 
that Pirker[81] used for the simulation cells. It is assumed that the simulation cell consists of 
matrix blocks with different shape factors.

 

Figure 4.4:  Representation of the Pirker[81] model of simulation cell
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In brief, what was done by Pirker[81] is explained here: 
In a column model, the recovery from different matrix blocks (with different shape 
factors) under water imbibition drive was calculated (before the actual run) and then 
lumped based on the shape factor distribution in the simulation cell; then the recovery 
of the simulation cell in the actual run would be calculated from this curve. This 
method was proven to be not only much more accurate than the conventional sugar 
cube model, but unlike DFM, was shown to be applicable for using in today’s 
industrial NFR simulators (without additional hardware requirements).

In the present work, the Single Matrix Block Analysis (to study the depletion process on a 
matrix block level) is extended for using in all cases easily with current reservoir simulation 
models and applied in PRS[45]. The proposed single matrix block model and its usage are 
explained in detail in Section 3.4. Additionally, while trying to implement the recovery curve 
approach to calculate the matrix-fracture transfer term that was suggested by Pirker[81], in this 
work it was observed that although the suggested model (illustrated in Figure 4.4) is much better 
than the conventional sugar cube model (Figure 4.2), it still needs too much of (pre-processing) 
data to be really practical in a full field reservoir (and just would remain as a theoretical model 
too difficult to be practicable). Therefore, a new concept to model the simulation cell was 
devised which completes the recovery curve approach to simulation of naturally fractured 
reservoirs and is easily applicable in all mature conventional simulators with minor 
modification of the equations and practically no additional simulation time. 

This concept is illustrated in Figure 4.5: the matrix blocks with the same scaled recovery curve
have the same color, and all the blocks of the same matrix block ID share the same texture (and 
color). The detailed definition of these concepts are explained in Section 4.3.

Figure 4.5:  Simulation Cell belonging to a Recovery Curve Region
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In the new presented concept, the approach is from small-scale to large-scale. In other words, 
the steps to perform a full field naturally fractured reservoir simulation using recovery curve 
approach are:

1. Generating the recovery curve (Recovery Factor vs. time) for each matrix block ID
(Section 4.3.1).

2. Using the dimensionless time (Section 3.10) to scale the recovery curves (Section 
4.3.2).

3. Setting up the matrix block classes and determining matrix block ID distribution in 
each class (Section 4.3.3).

4. Defining recovery curve regions and assigning one such region to each simulation 
cell in the model (Section 4.3.4).

5. Simulation of the naturally fractured reservoir with the new method (Chapter 5).

4.3 The new approach to modeling Matrix-Fracture 
Interactions using recovery curves

In this section, the new proposed model to simulate naturally fractured reservoirs using recovery 
curves is explained in details. This method is also successfully applied in PRS[45].

4.3.1 Matrix Block ID Recovery Curves

In naturally fractured reservoirs, as a result of interaction of different fracture sets, a pattern of 
(approximately) the same matrix block shape being repeated over a large scale might be 
observed. In Figure 4.6 two different matrix block shapes occurring in a cell are displayed (in 
white and yellow colors). Such a shape for matrix blocks is called Matrix Block ID if the static 
properties (such as rock and fluid types, porosity, permeability, etc.) of the blocks are also the 
same.

Figure 4.4 shows a sugar cube representation of a simulation cell containing different matrix 
block IDs (shown by different colors) which is a more realistic representation than the original 
Warren and Root[99] model shown in Figure 4.2.

It is obvious that these blocks will have the same (or very similar) shape factors since they have 
the same static properties and similar shapes. If the difference of block sizes (or shapes) is large, 
then they cannot be counted as the same matrix block ID even if the shape factor is the same. 
The criteria for a matrix block ID, is the following:

“The recovery curve under a certain set of conditions is the same for all matrix blocks 
of the same ID”.
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Figure 4.6:  Matrix Block IDs

4.3.2 Scaled Recovery Curve

Scaled recovery curve is the recovery curve, scaled on the time axis by the dimensionless time 
conversion factor,   from Equation 3.26. Figure 4.7 is the plot for three matrix block IDs, with 
various apparent permeability and porosity combinations while everything else is the same. All 
these matrix blocks are initially saturated with maximum oil amount and undergo water 
imbibition and gravity drainage surrounded by fully water-saturated fractures. 

However if the same curves are plotted versus the dimensionless time rather than time, all the 
curves will become one scaled curve as shown in Figure 4.8.

The same conditions is repeated for one matrix block ID with three different oil viscosities 
undergoing gas drainage, as shown in Figure 4.9. However, if the recovery factors are plotted 
versus the dimensionless time, they would become one curve as shown in Figure 4.10.
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Figure 4.7:  Water imbibition recovery curves with different matrix properties

Figure 4.8:  Scaled recovery curves for the results in Figure 4.7
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Figure 4.9:  Gravitational gas drainage with different oil viscosities

Figure 4.10:  Scaled recovery curve for the result in Figure 4.9
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4.3.3 Matrix Block Classes

As it was explained in Section 4.3.2, it is possible to represent the production trend of many 
different matrix block IDs with a single scaled recovery curve using the dimensionless time 
conversion factor. A Matrix Block Class consists of all matrix block IDs of different shapes (i.e. 
shape factors,  ), porosities, apparent permeabilities, with different oil viscosities and 
compressibilities that are combined into the same scaled recovery curve, given that the driving 
forces are the same for all. This means that it is theoretically possible to measure/calculate the 
recovery curve for one matrix block ID (under a certain set of driving forces) and then scale it 
using the dimensionless time conversion factor, and to use it for other matrix block IDs in the 
same matrix block class, which may even have quite different shapes, sizes and apparent 
permeabilities. So the criteria for creating the matrix block classes would be the following:

“The scaled recovery curve under the same driving forces are the same for all matrix 
block IDs of the same matrix block class”.

4.3.4 Recovery Curve Regions

Since it would be impossible (or impractical) to calculate the recovery curve for each matrix 
block ID that exists in a reservoir, matrix block classing gives the advantage to assign a 
distribution of matrix block classes to different regions of the reservoir called, recovery curve 
regions.

Figure 4.11:  Recovery Curve Regions
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Figure 4.11 shows an example of a reservoir with three recovery curve regions, each with a 
certain distribution of the four matrix block classes (of red, green, blue and purple) that exist in 
the reservoir. Each simulation cell, will be assigned a recovery curve region number (of 1, 2 or 
3). Figure 4.5 illustrates a simulation cell, belonging to recovery curve region 1 in Figure 4.11 
(which does not contain any matrix blocks of the purple matrix block class). 

In Section 4.3.5 it is described in detail how recovery curve regions are set up and how to 
calculate the simulation cell recovery for each recovery curve region during the simulation run.

4.3.5 Simulation Cell Model

The proposed model for simulation cell is illustrated in Figure 4.5. All the matrix blocks are 
displayed as colored textured rectangles; however, they do not need to be necessarily rectangles 
and they can be of any arbitrary matrix block ID as long as the recovery curve for that matrix 
block ID is known from any possible source (see Section 5.2.1.2 to name a few).

Figure 4.12:  Matrix Block IDs’ Frequencies for Figure 4.5
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The simulation cell displayed in Figure 4.5, belongs to recovery curve region 1 in Figure 4.11. 
Each color indicates a common matrix block class; so it displays three matrix block classes in 
the recovery curve region of the simulation cell: red, green and blue with the frequency of about 
40%, 25% and 35% respectively as shown in Figure 4.11 (with 0% of the purple matrix block 
class which exists in other recovery curve regions in the reservoir).

In Figure 4.5 each matrix block class, consists of different matrix block IDs 
(illustrated with different textures for each color). The frequencies of each matrix block ID in 
each matrix block class (in the reservoir) is displayed in Figure 4.12 (with different textures for 
each color representing a matrix block ID for that matrix block class). Figure 4.12 shows that 
each one of the four matrix block classes consists of different matrix block IDs (the red and 
purple have four and the green and blue matrix block classes have two matrix block IDs 
respectively) each with a known frequency (which sum up to 100%) for the matrix block class.

4.3.5.1 Summing up the matrix block recoveries

Consider the simulation cell displayed in Figure 4.1. As it can be observed, the cell consists of 
many matrix blocks of different IDs. The production from the matrix simulation cell during each 
time step, clearly is the summation of the productions of the matrix blocks. Since it is assumed 
that the matrix-fracture transfer of matrix blocks in each time step is independent of the other 
matrix blocks in the simulation cell, their production can be summed up for that time step to 
form the total transfer for the matrix simulation cell in that time step:

qmf
cell t  qmf

I t  f I
blocks
= , (4.1)

where qI
mf is the transfer term and fI is the frequency of occurrence for the matrix block I in the 

simulation cell. The transfer term can be calculated from the recovery curve for the matrix block 
as described in Section 3.8 and Equation 3.21 which is the method used and proposed here. It is 
however, also possible to calculate it from the conventional transfer function (Equation 2.8 with 
the shape factor from Equation 2.9 or Equation 2.10).
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Chapter 5

Recovery Curve Approach to Simulation of 
NFRs

5.1 Introduction

In this chapter, the workflow for the new approach of using recovery curves for calculating the 
matrix-fracture transfer in the dual-porosity concept is explained in details.

Section 5.2.1 describes the detailed theoretical workflow to make the necessary preparations for 
the presented approach and Section 5.2.2 describes how to use these prepared items in a 
conventional simulator to benefit from the advantages of the additional accuracy that can be 
achieved by using recovery curves to calculate the matrix-fracture transfer. In Section 5.3, the 
steps to practice the recovery curve analysis in the industry are presented (so that this concept 
is not only limited to theory). Finally, in Section 5.4 the advantages and limitations of this new 
approach are mentioned.

5.2 The Workflow

The workflow is separated in two parts: pre-simulation (which is defining recovery curve 
regions and their distribution) and simulation (which is using the region recovery curves, to 
calculate the matrix-fracture transfer in the actual simulation):

5.2.1 Pre-simulation

It is obvious that for using recovery curves in the simulation, at first the matrix block IDs should 
be identified and their recovery curves should exist. Section 5.2.1.1 suggests how the matrix 
block IDs could be identified and Section 5.2.1.2 presents some of methods that can be used to 
prepare the recovery curves for the matrix block IDs. These curves, are used to define matrix 
block classes (Section 5.2.1.3), identification of recovery curve regions (Section 5.2.1.4) and to 
calculate the recovery curve for each region (Section 5.2.1.4.1) which will be used in the 
simulation step (Section 5.2.2).
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5.2.1.1 Identifying Matrix Blocks and Their Distribution

As explained in Section 3.6, the matrix block shapes can be known from any source including 
outcrop investigation and/or discrete fracture models. Once the matrix block shapes are 
identified (i.e. each matrix block shape is numbered/named), the frequency of appearance of 
each matrix block ID in different parts of the reservoir can be considered to have the distribution 
of the matrix block IDs as well.

5.2.1.2 Generating Recovery Curves for Matrix Block IDs

The recovery curves for matrix block IDs can be from any source (as long as they represent the 
matrix-fracture transfer process under the specified set of conditions). In this section, three of 
such methods are briefly mentioned.

5.2.1.2.1 Laboratory Measurement

In order to measure the recovery curve for a certain matrix block under a certain set of 
conditions the matrix block should be cleaned and saturated with oil. Then the desired 
conditions are imposed in the laboratory apparatus and the recovery curve is created by plotting 
the collected oil versus time as explained in Appendix C.

Note that the same procedure can be repeated for any conditions e.g. under different pressures, 
fluids (if the fluids’ type varies in the reservoir) or even applying a pressure gradient to the 
surrounding fluid to simulate viscous displacement (if it is expected that this happens in the 
reservoir). Each combination of the driving forces, generates a different curve which should be 
used for the matrix block ID during the simulation run, if it undergoes the same condition. In 
other words, it can be expected that the same matrix block ID exists in different parts of the 
reservoir: in one place it can be in the water-invaded zone while a matrix block of the same ID 
in some other part of the reservoir is in the gas-invaded zone; therefore, each of them will be 
depleted on different processes and from different recovery curves that can be pre-measured in 
the laboratory under their own similar condition. Hence for each block ID, different curves can 
exist for different conditions.

Also note that the orientation of the block can affect the gravitational driving force if the 
difference between the length of the sides of the matrix block is large. If block orientation affects 
the recovery trend much, each orientation should be regarded a different matrix block ID with 
its own recovery curve, and will be treated completely independently from the rest of 
orientations. Figure 5.1 shows one matrix block in two orientations (horizontal in red and 
vertical in blue). Figure 5.2 shows the recovery curves for each of these orientations. Since it is 
an isotropic matrix block with different orientations, the shape factor and pore volume is the 
same for both cases. The gravitational force is changed (as a result of different effective heights) 
which is the only factor responsible for the difference in the recovery curves. Therefore, when 
categorizing the matrix block IDs, these different orientations should be considered as two 
different matrix block IDs as if they were two completely different-looking blocks.
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Figure 5.1:  The same matrix block in different orientations

Figure 5.2:  Recovery Curves of the matrix block IDs in Figure 5.1

5.2.1.2.2 Simulating Each Matrix Block ID

Since it is impossible to measure the recovery curve for all matrix block IDs in the laboratory 
(for all the possible conditions they might undergo throughout the reservoir during the course 
of simulation), it is more realistic to model the same laboratory experiment using a conventional 
single-porosity commercial reservoir simulator. It is possible to create the matrix block models 
of any shapes in any coordinate system exactly in the same manner as a full-scale reservoir is 
modelled.
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A simulation model of the actual matrix block ID (with a grid representing it) can be created 
using any appropriate reservoir simulator. Different applications of small-scale single matrix 
block models can be found in the literature[20],[33],[41],[54],[89]. The recovery curve can be 
created from the simulation output of such models under the imposed boundary conditions. The 
shape factor can be measured as explained in Section 3.3 and the dimensionless time conversion 
factor from Equation 3.26.

5.2.1.2.3 Single Matrix Block Analysis

Since it is absolutely impractical to create small-scale reservoir models for every individual 
matrix block ID that exists in a reservoir, a new standard approach is presented and developed 
which can be used readily for any matrix block ID from an existing reservoir model. As 
explained in Section 3.4 and Appendix D in details, the new Single Matrix Block Analysis 
concept and tool can be utilized to use the shape factor of the matrix block ID (which is 
calculated as described in Section 3.3) from an existing reservoir model as well as the 
matrix/fracture rock and fluid types and the driving forces acting on the block to extract matrix 
oil to the surrounding fracture to output the recovery factor versus both time and the 
dimensionless time for the matrix block ID under the specified conditions.

5.2.1.3 Classifying Recovery Curves

After the recovery curves of all matrix block IDs (for the specified drive mechanisms) are 
known, their recovery curves (for every driving force) are scaled on the time axis as described 
in Section 4.3.2 to have the scaled recovery curves. All the matrix block IDs having the same 
scaled recovery curve, are classified as one matrix block class (as long as the driving mechanism 
is also the same for all of the curves). As displayed in Figure 4.8 and Figure 4.10 the 
dimensionless time conversion factor, combines several recovery curves (respectively in Figure 
4.7 and Figure 4.9) as a single scaled recovery curve. It is necessary to keep the frequency of 
occurrence of each matrix block ID in each matrix block class. It is sufficient to tabulate the 
frequency of dimensionless time conversion factors of each matrix block ID in the matrix block 
class. Figure 5.3 shows the scaled matrix block class and Table 5.1 displays the dimensionless 
time conversion factor frequencies for the “red” matrix block class in Figure 4.12. For the other 
matrix block classes, similar tables exist as well. 

Table 5.1: Defining a Matrix Block Class

Matrix Block ID Dimensionless Time 
Conversion Factor Frequency [%]

1 7.151476 43.75
2 2.860590 25.00
3 20.369980 18.75
4 1.220978 12.50
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Figure 5.3:  Matrix Block Class Scaled Recovery Curve

5.2.1.3.1 Calculating Class Recovery Curves

After preparing the scaled recovery curve (vs. dimensionless time) and defining the table pairs 
for each class (e.g. Figure 5.3 and Table 5.1), the recovery curve (vs. time) for the class can be 
easily calculated in the following steps:

1. Restoring the matrix block ID recovery curves from the scaled class recovery curve, 
by dividing the dimensionless time value of the matrix block class by the 
dimensionless time conversion factor for each matrix block ID. This step produces 
as many recovery curves (vs. time) as the number of matrix block IDs. 
(The thin colored lines in Figure 5.4 are all created by dividing the time value from 
the class recovery curve of Figure 5.3 by the second column values of Table 5.1.)

2. Then at every point in time, the values from each matrix block ID’s recovery curve, 
is multiplied by its frequency (the third column of Table 5.1) and summed up to 
calculate the lumped class recovery curve (thick dashed black line in Figure 5.4).
(See also Section 3.9 for more details about lumping recovery curves.)
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Figure 5.4:  Calculating Class Recovery Curve

5.2.1.4 Defining Recovery Curve Regions

After the matrix block classes are set up, they should be mapped on the full reservoir (based on 
the gathered data of the matrix block IDs that exist at every point in the reservoir and the matrix 
block class that they belongs to). It will become clear that the matrix block classes are 
distributed with different frequencies in different regions of the reservoir. Based on these 
different frequencies, the reservoir can be split into different recovery curve regions.

Figure 5.5 is an example of a reservoir containing three recovery curve regions and their 
distribution in the reservoir. Each region consists of a known frequency of matrix block classes 
which was shown in Figure 4.11 and tabulated in Table 5.2. The frequency of each matrix block 
class is the number of matrix block IDs in a recovery curve region belonging to it, divided by 
the total number of matrix block IDs in the recovery curve region.

Different recovery curves can be assigned to a matrix block class for different conditions; 
therefore, each recovery curve region, too, can have more than one curve for different driving 
mechanisms and conditions. The region recovery curve for every set of conditions, is prepared 
from the class recovery curves (of that same condition set) as described in Section 5.2.1.4.1 and 
all the curves plus the condition of each one, define the recovery curve regions.
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Figure 5.5:  Recovery Curve Regions

Table 5.2: Defining Recovery Curve Regions

Class: 1 - Purple 2 - Blue 3 - Green 4 - Red

Region 1: 00.0% 35.0% 25.0% 40.0%

Region 2: 20.0% 25.0% 15.0% 30.0%

Region 3: 45.0% 10.0% 10.0% 35.0%

5.2.1.4.1 Calculating Region Recovery Curves

After defining the recovery curve regions and calculating the distribution of each matrix block 
class in each region (e.g. Table 5.2), the recovery curve (vs. time) for each region can be easily 
calculated with the same procedure described in Section 3.9 for lumping recovery curves with 
known frequencies.

Figure 5.6 plots the class recoveries from water imbibition drive for the four recovery classes in 
the example shown in Figure 4.11 as solid lines. The curves are lumped (multiplying the 
recovery factor value of each class by its frequency and summing them up for all classes to have 
the region recovery factor for every time point) with the frequencies shown in Table 5.2 to 
calculate the region recovery curves for each of the three regions (shown in thick broken lines). 
It can be observed in Figure 5.6 that the same set of matrix block classes form different region 
recovery curves just by different frequencies. Note that in this example, in recovery curve 
region 1, no “purple” matrix block class exists.

It is worthwhile to remind that all the recovery curves in Figure 5.6 (both class recovery curves 
and region recovery curves) are for a certain set of conditions and driving mechanism (e.g. here 
for water drive). For each drive mechanism, a similar curve should be assigned to each recovery 
curve region.
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Figure 5.6:  Regions’ Recovery Curves from Class Recovery Curves

5.2.2 Simulation

After performing all the pre-simulation steps described in Section 5.2.1, the following 
information is available to be used as additional input for simulation of NFRs using recovery 
curves:

• Definition of recovery curve regions: recovery curve (vs. time) for every drive 
mechanism and set of conditions for every region.

• Recovery curve region distribution in the reservoir: to every simulation cell, one (and 
only one) recovery curve region is assigned.

These additional input data are used to calculate the matrix-fracture transfer term, instead of 
Equation 2.8 in the conventional dual-porosity simulation if the appropriate recovery curve 
exists for the conditions the cell undergoes in the run. If the recovery curve does not exist for 
the current conditions of the simulation cell, still the conventional transfer function (Equation 
2.8) will be used until the condition of the cell changes to match the condition of an available 
recovery curve, after which the matching recovery curve will be used as explain in the following 
section.
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5.2.2.1 Description of the new approach

As already mentioned, the new approach is an improvement to the conventional dual-porosity 
formulation explained in Section 2.4.2. The continuity equations are the same as Equation 2.6 
and Equation 2.7 for the fracture and the matrix domains for every simulation cell (in both 
fracture and matrix domains respectively).

For calculation of the matrix-fracture transfer term, qcmf , during the course of simulation for 
every simulation cell, the following steps are performed:

• The actual conditions (pressure, active drive mechanisms etc.) of the cell (at each time 
step) are identified.

• If the recovery curve region that the cell belongs to, does not contain a curve for the 
actual conditions of the block, the matrix-fracture transfer term is calculated from the 
conventional method, Equation 2.8, for that time step.

• If the recovery curve region that the cell belongs to, contains the curve for the actual 
conditions of the block, the matrix-fracture transfer term is calculated with the 
procedure described in Section 3.8:

- The actual recovery factor of the block is calculated from Equation 3.20.
- The volumetric matrix-fracture transfer rate during the current time step is 
calculated from Equation 3.21.

Everything else is handled exactly in the same manner as the conventional approach. The 
advantages and limitations of the new approach, are explained later in Section 5.4.

5.3 Practical Steps for Full Field Simulation

The theoretical workflow explained in Section 5.2 assumes the situation where all the matrix 
block IDs are known and the recovery curves for all of them is generated. This procedure, 
although could be possible, still has too much of pre-simulating work which might make the 
procedure impractical. In this section, an equally acceptable practical workflow which can be 
used in the industry is presented as well.

The matrix block IDs can still be identified from the discrete fracture model as explained in 
Section 5.2.1.1. However, in the practical step, instead of generating the recovery curve for 
every single matrix block ID, they are manually classified considering the dimensionless time 
conversion factor formula Equation 3.26. The rule of thumb for manually classifying the matrix 
block IDs (just by their appearance and location in the reservoir) would be:

“All matrix block IDs with the same rock and fluid IDs and approximately similar 
effective heights and not so-variant initial conditions can be readily counted as one 
matrix block class”.
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Note that in this definition, the matrix block IDs can have different effective permeabilities, 
porosities and more importantly, shape factors and still be considered in the same class. The 
reason is that the dimensionless time conversion factor, Equation 3.26, uses all these parameters 
(even the initial oil viscosity and compressibility) as the scaling parameter. Since the Darcy’s 
flow equation is used for derivation of the proposed dimensionless time conversion factor, the 
basic flow theories apply for scaling. For example, if the porosity is higher or the apparent 
permeability is less, the block takes longer to deplete and the ka   ratio scales the time access 
accordingly (see for instance Figure 4.7 and Figure 4.8).

5.3.1 Pre-Simulation

The interesting part which needs more consideration, is the occurrence of the shape factor in the 
derived scaling factor for the time axis. This means that the matrix block IDs of different shapes 
would have the same scaled recovery curve (given that the driving forces are similar). This is 
the same fact which was discussed in Section 3.2.3 as “Shape vs. Shape Factor”. This gives the 
great practical advantage that reduces the amount of pre-simulation workload several times, and 
as a result, the practical steps would be the following:

1. Identifying matrix block IDs (as described in Section 5.2.1.1).
2. Calculating the shape factor for each matrix block ID (Section 3.3).
3. Calculating the dimensionless time conversion factor for each matrix block ID 

(Section 3.10).
4. Gathering all matrix block IDs which fit into the rule of thumb explained in Section 

5.3 as one matrix block class.
5. Choosing one matrix block ID from each matrix block class to calculate the scaled 

recovery curve (vs. dimensionless time) for the whole class.
6. Scaling the dimensionless time axis from the previous step, back to the time axis for 

all the matrix block IDs in the class. This step is nothing more than a simple division 
of the dimensionless time axis values by the dimensionless time conversion factor 
for each matrix block ID.

7. Calculating the class recovery curve, in the same manner as described in Section 
5.2.1.3.1.

8. Calculating the region recovery curves, in the same manner as described in Section 
5.2.1.4.1.

As it can be observed, all the practical steps are identical to the theoretical workflow except for 
steps 4-6. In the practical approach, it is not needed to measure/simulate the recovery curves for 
every single matrix block IDs; but instead, only one block in the matrix block class is selected 
to calculate the scaled recovery curve of the class. From this scaled recovery curve, the recovery 
curves of all the other matrix block IDs in that class is simply calculated. This is a very 
significant advantage of using dimensionless time conversion factor and scaling recovery 
curves which is promoted here and effectively reduces the workload several times.
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5.3.2 Simulation

Since it is impossible to generate region recovery curves for every possible set of conditions that 
all the cells of that region might undergo during the run, the recovery curves are used in a 
practically acceptable threshold above and/or below the actual conditions under which they 
were created. For instance, if the pressure goes (to a certain limit) below or above the actual 
pressure in which the recovery curve was created, still the same curve would be used to calculate 
the matrix-fracture transfer. The same is true for the fracture fluid saturation, e.g. if the curve is 
created considering that the fracture is fully water-saturated, it can be practically accepted that 
the same curve still can be applied if the fracture fluid saturation goes below that down to a 
certain threshold value (e.g. until saturation of 85%). However, if the difference is larger than 
the acceptable threshold, and no recovery curve exists for that condition for the region (e.g. 
fracture water saturation is 50%), the fracture-transfer term will be conventionally calculated.

5.4 Advantages and Limitations

The advantages of the developed single matrix block (SMB) analysis and the recovery curve 
(RC) approach over discrete fracture network (DFN) approach and the conventional 
dual-porosity sugar cube (SC) approach are as follows:

• In SC the homogenization of the matrix blocks in the simulation cell is too high to be 
either physically or practically acceptable. In DFN, the level of details is too high to 
be industrially applicable; even if DFN is used for upscaling the shape factor 
distribution to be used for large reservoir models, still a similar over-homogenization 
and using a single shape factor value for an entire simulation cell is inevitable. RC 
approach brings the results of a detailed study on the matrix blocks in the large scale 
of the simulation cell with superposition of the effects of each matrix block ID it 
contains in time. Theoretically, RC needs no homogenization, yet it can still be used 
to simulate any large-scale reservoir that SC can simulate.

• The drive mechanisms in RC can be studied in detail with no theoretical 
simplifications in laboratory or using mathematical models and included in the 
recovery curve for each matrix block. This is simply not feasible in SC since always 
some simplifications has to be considered to be able to calculate the effect of the 
combination of the acting drive mechanisms in the transfer function. DFN also fails in 
the sense that it tries to calculate all the interaction of the active drive mechanisms for 
every matrix block during the course of the simulation which is too many calculations 
for an industrially applicable solution.

• SMB can be used to create recovery curves for matrix blocks in different conditions to 
be used for creation of the lumped class recovery curves and the recovery curve 
regions which will be used in the dual-porosity calculations. All these steps are 
available to be used on any dual-porosity reservoir on a commercial reservoir 
simulator[45].

• The additional level of accuracy brought by RC, allows better simulation results and 
allows using recovery curves as a better history matching parameter.
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The following items were outside the planned scope of this work and were not considered in the 
described recovery curve approach devised and improved in this work:

• the effects of hysteresis on the recovery curve calculation and the simulation with 
recovery curve,

• endpoint scaling,
• compositional fluid description, and
• matching the recovery curves based on historical data.

The theoretical recovery curve approach which was devised and improved in this work was 
implemented in PRS[45], an industrial commercial reservoir simulator to the following extent:

• The matrix-matrix transfer (dual-permeability) is calculated during each time-step as 
in SC, but at the beginning of the next time-step it is assumed that all the recovery is a 
result of matrix-fracture transfer. This assumption was tested on a real reservoir with 
practically no difference with the complete dual-permeability case.

• The implementation of the recovery curves does not consider pressure changes. In 
practice, it was tested that an average under-saturated recovery curve for operating 
pressures above the bubble-point pressure and a few saturated recovery curves for the 
pressures below the bubble-point pressure can be used, but switching the recovery 
curves while simulation creates a shock that goes along with the pressure drop shock 
and forces the run to be calculated with very small time-steps. Therefore, this option 
was not implemented and always one curve (per drive mechanism) is used.

• The drive mechanisms are identified based on the saturation of the fracture cell: 
- if the water saturation in the fracture cell is above 85%, the drive mechanism is 
assumed to be water imbibition;
- if the gas saturation in the fracture cell is above 85%, the drive mechanism is 
assumed to be gas gravity drainage;
- for any other transitional state between the mentioned states, the conventional 
transfer formula is used to calculate the matrix-fracture transfer.

• If the drive mechanism changes during the run, the actual drive’s recovery curve will 
be used and all the previous recovery would be considered to be from this drive (e.g. 
if a fully water-filled fracture cell becomes gas-filled during the simulation run, no 
longer the water RC is used and instead the gas RC will be used for the future and the 
starting point on the gas recovery curve, is the cell’s actual recovery factor exactly as 
if the block were being depleted from the beginning with the gas).
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Chapter 6

Verification and Case Study

6.1 Introduction

In this chapter the proposed method of using recovery curves to simulate naturally fractured 
reservoirs is verified in a case study and by comparison with the conventional run for a column 
model with the same properties as in a real reservoir model.

6.2 The Column Model Description

In order to verify and demonstrate the applicability of the proposed recovery curve method, a 
dual-porosity column model was set up. The reason that a column model was used is that in this 
model, every matrix cell is connected only to one fracture cell and therefore, the effect of 
matrix-fracture is emphasized and can be studied for verification of the recovery method for 
calculating the matrix-fracture transfer term.

The model consists of a column of 700 one-meter-thick dual-porosity cells and a 
fifty-meter-thick single-porosity aquifer cell at the bottom. The cells are 100 meters on each 
side. The PVT and rock data are taken from a real field. Some of properties of the model are 
listed in Table 6.1. The capillary pressures and relative permeabilities are plotted in Figure 6.1 
and Figure 6.2 respectively for oil/water and oil/gas systems.

A constant-pressure aquifer is attached to the bottom cell and a liquid producer well is 
completed on the top layer in the fracture, producing with a constant rate of 50 standard cubic 
meters per day. No maximum watercut is specified so that the well continues to produce even if 
it is producing 100% water; the reason is that in this work the main focus point is the trend of 
entrance of water to matrix cells; and the goal is to allow the bottom half of the model to be 
nearly completely depleted which needs more time than the time of water breakthrough to the 
well.

The model is dual-porosity to allow concluding that any entered water in the matrix must have 
come from the fracture (and not from a matrix neighbor). In this way, the matrix-fracture 
transfer in every simulation cell can be accurately monitored (and used for verification).
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This base model is used to create three different cases starting from a homogeneous one to a 
complex case and for each case, the conventional simulation is performed, necessary recovery 
curves are created and used in a recovery curve run and finally the results of the recovery curve 
simulation run are compared against the conventional run.

Figure 6.1:  Oil/Water capillary pressures and relative permeabilities

Figure 6.2:  Oil/gas capillary pressure and relative permeabilities
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Table 6.1: Model Properties

Water Density 1037.491 [kg/m3]
Oil Density 786.487  [kg/m3]
Gas Density 1.025    [kg/m3]
Water Viscosity 0.31     [cp]

Water Compressibility 4.51E-4  [bar-1]
Oil Viscosity @Pb 1.728    [cp]

Oil Formation Volume Factor @Pb 1.723    [rm3/sm3]
Solution GOR @Pb 253.459  [sm3/sm3]
Bubble Point Pressure 139.0    [bar]

Water Oil Contact 1001.0   [m]

Initial Pressure at WOC 330.95   [bar]

6.3 Case I - Verification

Case I is a homogeneous case used for verification of the recovery curve approach. The idea is 
that a simulation cell in a conventional run can be monitored and its recovery curve can be 
extracted (see Section 3.7). The validity of the proposed method for calculation of the 
matrix-fracture transfer term using the recovery curve is verified if inputting the derived curve 
from the conventional run in the recovery curve run, gives similar results to the conventional.

The implemented procedure allows using the recovery curves from every individual cell in the 
model from the conventional run, in the recovery curve run by assigning a different recovery 
curve region to each cell. The results of the conventional and the recovery curve runs were 
identical: because the same matrix-fracture transfer from the conventional run for each cell was 
used as the input for the recovery curve run and since this step’s result is too obvious, this step’s 
results are not demonstrated here and instead, the results of one step further are discussed which 
validates the model even if the recovery of one cell from the conventional run is used and 
assigned to all cells for the recovery curve run.

In other words, instead of “outputting the recovery curves from every matrix cell in the 
conventional run and in the recovery curve run, assigning to each cell its own recovery curve”, 
this time “the recovery curve from one matrix cell in the conventional run is used and assigned 
to all cells in the recovery curve run”. All the grid properties are the same for all cells and are 
as listed in Table 6.2. The red curve plotted in Figure 6.3 is extracted from one cell during a 
conventional simulation.
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Table 6.2: Case I - Properties

Property Matrix Fracture

Porosity [-] 0.2 0.01

Permeability [mD]
1.0

10000[2  2  0.25]
Matrix Height [m] 15 -

Shape Factor [m-2] 0.1 -

Figure 6.3:  Recovery Curves used for the recovery curve simulations of Case I
and Case II (red and blue respectively)

The red curve in Figure 6.3 was used as the recovery curve input for all cells in for the recovery 
curve run. It is worthwhile to mention that for every cell in the recovery curve run, as long as 
the water saturation in the fracture is less than the threshold of 85%, the matrix-fracture transfer 
term is calculated conventionally and after water enters the neighboring fracture cell, the 
matrix-fracture transfer term will be calculated as described in Section 3.8.

Figure 6.4 is the plot of the conventional run’s water production rate (in dark blue), oil 
production rate (in dark green) and average reservoir pressure (in red) and the plot of the 
recovery curve run’s water production rate (in light blue), oil production rate (in light green) and 
average reservoir pressure (in pink). As it is clear in Figure 6.4, the results are close to identical 
for the two runs: 1) the conventional run and 2) using the recovery curve from one cell in the 
conventional run and using it as input recovery curve for all cells in the recovery curve run.
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Figure 6.4:  Case I: Reservoir Production Rates and Pressure

Figure 6.5:  Vertical saturation distribution before water breakthrough for the 
conventional run (with dashed line) and the recovery curve run (in colors)
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Figure 6.5 is the plot of vertical saturation distribution in both the conventional run (plotted with 
the dashed line) and the recovery curve run (plotted in colors) at the same point in time before 
the water breakthrough to the producing well. As it can be observed, not only the production 
and reservoir pressure are the identical for the two runs, but even the saturation distributions are.

This validates the proposed method and proves that the recovery curve method can be used as 
an alternative approach for calculation of the matrix-fracture transfer term in the conventional 
dual-porosity model.

6.4 Case II - SMBLOCK Analysis Curve

In the next step, a Single Matrix Block Analysis (see Section 3.4 and Appendix D) is performed 
to calculate the recovery curve from water imbibition for the conditions of the model (listed in 
Table 6.1 and Table 6.2). The result of the SMBLOCK Analysis is the blue curve in Figure 6.3. 
As it can be observed Figure 6.3, the recovery curve from the SMBLOCK Analysis looks very 
close to the cell recovery curve from conventional simulation.

Case II is identical to Case I except that for the recovery curve run, the recovery curve 
calculated from the SMBLOCK Analysis is used (instead of the recovery curve output from the 
conventional run). Figure 6.6 is the plot of the conventional run’s water production rate (in dark 
blue), oil production rate (in dark green) and average reservoir pressure (in red) and the plot of 
the recovery curve run’s water production rate (in light blue), oil production rate (in light green) 
and average reservoir pressure (in pink).

Figure 6.6:  Case II: Reservoir Production Rates and Pressure
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As it can be observed in Figure 6.6, although the results are still close enough, they are not as 
close to the conventional run as they were in Case I; the only difference in input data is that once 
the red and once the blue curve in Figure 6.3 (which look very similar to each other) are used. 
What should be kept in mind is the time scale of Figure 6.3 (which is about 11 centuries) to have 
the specified cell fully depleted while the actual simulation is performed to only about 2 
centuries, meaning that none of the cells would be fully depleted in the simulation even after 
this long period.

6.4.1 Discussion

Figure 6.6 displays the simulation results from the two models. One is the conventional model 
and the other is the proposed method to use recovery curves. It is not possible in any ways to 
say if one result is correct or more correct just by looking at Figure 6.6. However, it is possible 
to argue that the difference comes from different methods of considering the drive mechanisms 
which are the only difference between the two curves in Figure 6.3.

As discussed in Section 3.4.8.3.1, the single matrix block analysis (Section 3.4) does not make 
the physically incorrect assumption of phase segregation in the matrix block and therefore can 
account for the gravitational and capillary forces more physically appropriately. Therefore, it is 
expected that the proposed recovery curve approach is more physically correct and closer to the 
reality than the conventional approach. 

Additionally, in reality the amount of oil which enters the fracture, usually goes away much 
faster than the oil needs to come out from the matrix. In other words, it can be assumed that as 
soon as a droplet of oil comes out of the matrix to the water-filled fracture, it raises to the top 
leaving the matrix rock again in contact with a fully water-filled fracture (see Appendix C). But 
in the conventional approach, the fracture saturation is calculate only at the intervals of the time 
steps and the fracture is practically never fully water-saturated (as explained in Section C.2), 
while this fracture saturation is taken into account for calculation of the gravitational force 
(explained in Section E.4) which makes the results different from the more accurate and detailed 
calculation of the interaction of the forces that is considered in the recovery curve approach.

6.5 Case III - Multi-region Case

Case III is actually a transition step that was created between Case II and Case IV which has to 
be created because the conventional method is incapable of calculating the upcoming Case IV. 
Thus, here the model of Case III which is the basis for Case IV is explained.

For this case the data in Table 6.1 are still valid but instead of the homogeneous properties of 
Table 6.2, seven property regions are defined as in Table 6.3 with the distribution displayed in 
Figure 6.7.
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Table 6.3: Case III - Properties

PORO [-] PERM [D] LZ [m] Matrix Block ID 
Distribution

Region 1 0.2 0.001 15 1

Region 2 0.5 0.025 15 2

Region 3 0.2 0.005 15 2

Region 4 0.3 0.002 15 3

Region 5 0.2 0.001 10 5 (the same as 1)

Region 6 0.5 0.025 10 5 (the same as 1)

Region 7 0.5 0.001 10 4

As can be seen in Table 6.3, each region has a Matrix Block ID Distribution. This represents the 
matrix blocks which exist in each region. In other words, each simulation cell in these regions 
is expected to have matrix blocks with the given distribution ID (from 1 to 5 where distribution 
ID, 5 is the identical to 1, except that the matrix block height is different). 

For Case III, the weighed-averaged shape factor values listed in Table 6.4, represent each matrix 
block ID. Figure 6.8 is the plot of the conventional run’s water production rate (in dark blue), 
oil production rate (in dark green) and average reservoir pressure (in red) and the plot of the 
recovery curve run’s water production rate (in light blue), oil production rate (in light green) and 
average reservoir pressure (in pink). As it can be observed in Figure 6.8, the two runs still show 
similar trends, but the additional complexity has brought more difference between the 
conventional run and the recovery curve run in Case III comparing with Case II. More 
explanations about this difference will be given in Case IV.

Table 6.4: Case III - Matrix Block IDs

Matrix Block ID
Weighted-Averaged 
Shape Factor [m-2]

ID 1 0.121

ID 2 0.693

ID 3 0.222

ID 4 0.507
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Figure 6.7:  Case III: Property Regions’ Distribution

Figure 6.8:  Case III: Reservoir Production Rates and Pressure
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6.6 Case IV - Matrix Block ID Distribution

Case IV is the most complicated column model test that is presented. As explained, it is the same 
as Case III except that instead of using the averaged values for shape factors of Table 6.4 for 
the matrix block IDs of Table 6.3, the actual values listed in Table 6.5, Table 6.6, Table 6.7 and 
Table 6.8 are used for each region. 

As it can be observed, for each matrix block ID of Table 6.3, a shape factor distribution (shape 
factor and frequency pair) is available as input. This means that each simulation cell in each 
region, contains different matrix block IDs with different shapes and trends of depletion under 
certain drive mechanism (which is always the case in reality). 

The conventional approach assumes an average shape factor for each simulation cell, imposing 
that all the matrix blocks are identical; but the new recovery curve approach allows taking this 
physical reality into calculations (the differences were explained in details in Section 4.2 
“Modeling Simulation Cell”; see Figure 4.2 and Figure 4.5 for the representation of the 
simulation cell in the conventional and the recovery curve approaches respectively for the 
physical model of Figure 4.1).

Table 6.5: Case IV - Matrix Block ID 1

Shape Factor [m-2] Frequency [-]

0.25 0.28
0.08 0.40
0.15 0.03
0.05 0.29

Table 6.6: Case IV - Matrix Block ID 2

Shape Factor [m-2] Frequency [-]

0.32 0.40
0.02 0.30
5.50 0.10
0.045 0.20

Table 6.7: Case IV - Matrix Block ID 3

Shape Factor [m-2] Frequency [-]

0.22 0.37
0.30 0.31
0.18 0.12
0.13 0.20
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Table 6.8: Case IV - Matrix Block ID 4

Shape Factor [m-2] Frequency [-]

0.5863 0.59
0.35 0.17
0.44 0.14
0.39 0.10

Figure 6.9 is the recovery curve plots for Matrix Block ID 3 (Table 6.7). The recovery curves 
for each shape factor is respectively drawn in blue, green, red and purple lines. The recovery 
curve with the average shape factor, is plotted with black dotted line and the lumped (class) 
recovery curve (see Section 3.9) in black dashed line. 

As it can be observed, the difference between the average shape factor r recovery curve and the 
lumped recovery curve here is even larger than for the two curves in Figure 6.3 (which was 
responsible for the differences in Case II). 

Each individual matrix block ID curve (which represents the detailed production trend for that 
matrix block) has a direct influence on the final lumped cell recovery curve (exactly in the same 
way as it is in the reality). However, in the conventional method a completely different 
hypothetical matrix block is imagined to represent the average production trend of all the matrix 
blocks which is shown in Figure 6.9 to be not the a correct assumption comparing to the 
physically correct lumped curve..

Figure 6.9:  Recovery curves for Matrix Block ID 3
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Figure 6.10:  Case IV: Reservoir Production Rates and Pressure

6.6.1 Discussion

Figure 6.10 is the plot of water production rate (in dark blue), oil production rate (in dark green) 
and average reservoir pressure (in red) for the conventional run of Case III (as the conventional 
run cannot consider the additional valuable information about matrix block ID distribution in 
cells) and the plot of water production rate (in light blue), oil production rate (in light green) and 
average reservoir pressure (in pink) for the recovery curve run of Case IV. As it can be observed, 
the difference is even larger than in Case III.

It is worthwhile to mention that the results of a modeling approach has no direct connection to 
the reality. The simulation results must be checked against the real data and the simulation 
model that best matches the reality (by considering the physics of the system), is a better one to 
use for prediction. But as the recovery curve method takes much more physical details into 
account and needs much less homogenizations than the conventional run, it is logical to expect 
that the results from the recovery curve approach are very closer to reality than the results from 
the conventional run. Therefore, one can argue that in Figure 6.10, the results from the recovery 
curve run should be trusted instead of the conventional run.

However, it is still necessary to perform a history matching to fine-tune the region recovery 
curves to get the best results from the recovery curve run.
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Chapter 7

Conclusions

7.1 Introduction

In this chapter, the main findings and conclusions from this work are presented in brief.

7.2 Conclusions

• Conventional transfer function is accurate for fluid expansion and solution gas drives.
• For displacement processes and in instances of gravity or capillary drive, the 

conventional transfer term cannot accurately represent the physics, due to ignoring 
the effects of saturation distribution when calculating the driving forces.

• The conventional transfer function cannot consider the effects of anisotropy on the 
matrix-fracture transfer which can be outstanding.

• In calculation of the matrix-fracture transfer (as well as in the single matrix block 
calculations), the fluid saturations should be used as the boundary condition and not 
the phase potentials.

• The shape factor is a physical parameter that represents the geometry of the matrix 
block and should not be regarded as a meaningless history-matching parameter.

• The shape factor can be measured from the outcrops of the fractured formations.
• Heinemann-Mittermeir shape factor formula is the most general form of the shape 

factor which considers anisotropy and can be used for matrix blocks of any shape.
• Single Matrix Block Analysis, which was developed a standard model and a 

preprocessing tool, should be performed to study the detailed physical behavior of the 
matrix blocks under different conditions and to generate the recovery curves for the 
matrix block under those conditions.

• In addition to using the SMB analysis, the recovery curves can be generated from the 
output of a matrix cell in a conventional run or measured in the laboratory.

• The derived dimensionless time can be used to classify many matrix blocks of 
different properties and shapes and describe them with one scaled recovery curve.

• The distribution of matrix blocks of different classes in the reservoir defines recovery 
curve regions with a lumped recovery curve which combines the effects of all the 
matrix blocks in that recovery curve region under different conditions.

• Recovery curve method is a more accurate yet practical approach to simulate NFRs.
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7.3 Future research and development ambitions

• Developing the Single Matrix Block (SMB) Analysis also for compositional fluid 
description.

• Developing the possibility to study hysteresis in SMB Analysis.
• Studying the effect of hysteresis and oil resaturation on recovery curves.
• Applying recovery curve method for compositional fluid description.
• Investigation of matching the recovery curves based on historical data.
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Appendix A

The Mathematical Model

A.1 Introduction

In this chapter, mathematical modeling of naturally fractured reservoirs is briefly explained.

While mathematically modeling fractured oil and gas reservoirs, two fundamentally different 
approaches are possible:

The first approach commonly used to model fractured reservoirs is the Discrete Fracture 
Network (DFN) where the reservoir volume is filled with fractures represented by planes or 
disks. In the DFN model, each conductive fracture is modeled explicitly as one or more 1D, 2D, 
or 3D element. Physical properties such as transmissivity or storage, and geometrical properties 
such as size, elongation and orientation are assigned to each polygon based upon measured data 
or geologically conditioned statistical distributions derived from measured values. However, 
gathering the additional data is rather difficult and more importantly, the required calculation 
cost (in terms of CPU and memory) for large carbonate fields (such as the ones existing in the 
middle east) makes this method currently industrially impractical. The difficulty to model fluid 
flow in such a model is obvious. Applying this method to the current well-known commercial 
industrial-scale reservoir simulators is not possible and is not tried.Theoretical models can be 
created but it is difficult to imagine how they could be coupled with the geologic realism. 

The second approach uses a Continuous Framework model (CFM) where many geologic 
drivers could be incorporated in creating an integrated fracture model. These continuous 
fracture models are described with properties as fracture intensity (fracture count), orientation, 
connectivity, etc. offering the possibility to derive the usual rock properties as porosity, 
directional permeability and relationship to the rock matrix between the fractures. The approach 
leads to the Dual-Continuum concept. In every point of the space two values of each properties 
exist, one for the fracture the other for the matrix continuum. 

In the presented research project the second approach will be applied only. The actual chapter 
is extracted from the work of Prof. Heinemann’s Lecture Notes “Introduction to Simulation of 
Dual-Porosity Reservoirs”[43] and other underlaying publications of the author.
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A.2  Dual-Continuum Model

It will be assumed that two continua exist in the same space, both fill the space completely 
without gaps and overlaps. One continuum represents the fractures and one the matrix. Both 
continua have the same type of properties and their own variables. The matrix properties and 
variables are signed by the subscript m and the fracture by f. For example the porosities are m , 

and  f  which are functions of the pressure pm and pf, respectively. The pore space is occupied 
by fluids and separated by phase surfaces. The proportion of one phase in the pore volumes are 
defined as the phase saturations Spm and Spf. 

Figure A.1:  Dual-porosity dual-permeability concept

The balance equation for the fracture continuum:
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The balance equation for the matrix continuum: 
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Note that the third term in the left side of the Equation A.3 is split into two terms. The 
source/sink term qcm and qcf represent is the wells, while qcmf is the matrix-fracture transfer 
term. The Equation A.1 and Equation A.2 can be rewritten in terms of mole balance rather than 
mass balance by using Equation A.17 and Equation A.24 in Equation A.1, to get the fracture 
mole balance equation,
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and using Equation A.17 and Equation A.24 in Equation A.2, to gives the matrix mole balance 
equation.
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Equation A.1 and Equation A.2 describe a dual-porosity dual-permeability case in which the 
fluids can flow within both domains as shown in Figure A.1. 

Figure A.2:  Dual-porosity (single-permeability) concept

The porous material has a porosity  , which is a function of the pressure (and temperature). The 
pore space is occupied by fluids and separated by phase surfaces. The proportion of one phase 
in the pore volume is defined as the phase saturation Sp. It is obvious that:

S p 1=
p 1=

P

 . (A.5)

Equation A.5 is called “saturation constraint”. The fluid system is composed of C components. 
The composition of the pth phase is given by the mole fractions xpc; Equation A.6 is called “mole 
constraint”. 

x pc 1;       p 1 ...  P{ , }=
c 1=

C

 . (A.6)
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A.2.1 Convection and Diffusion Terms

Equation A.1 and Equation A.2 assume that two transport mechanisms have influence on the 
mass flow rate for which the driving forces and parameters has to be specified:

• Convection, described by Darcy’s law and
• Diffusion, defined by Fick’s law.

The total molar flux [kmole/s1/m2] for the component c, in general, is:

U c u pD px pc J pc
p 1=

P

+
p 1=

P

= . (A.7)

 The filtration velocity of the phase p, u p , is given by the Darcy's law (for the multi-phase case):

u p pk p–= , (A.8)

where the permeability tensor, k , in general, is a symmetric tensor (see Section 3.3.8).

k

k11 k12 k13
k21 k22 k23
k31 k32 k33

, where kij k ji== . (A.9)

 p
krp
 p
-------= , is the phase mobility, and (A.10)

 p p p  pg–= , the potential gradient, and (A.11)

D p D p p p, T p, x pc = , the specific molar density. (A.12)

The phase densities, p can be calculated as:

 p D p M cx pc
c 1=

C
= . (A.13)

The component mass mobility,  pc , is:

  pc  pD px pc= . (A.14)
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To get an approximate value for  p , some sort of averaging is necessary. For multi-phase flow 
upstream-weighting has shown to converge to the physically correct solution. The simplest way 
is to take one of the values, which leads to one-point upstream-weighting.[81] The differences 
between the phase pressures is the capillary pressure:

p p p p– Pcpp= p p , p p' 1  P   . (A.15)

Jpc [kmol.m-2.s-1] is the molar flux of the component c in phase p, which can be expressed by 
Fick’s law:

J pc S pD p– D pcx pc= , (A.16)

where D pc [m²/s] is the diffusion coefficient. The diffusion coefficient is specific for the 
compound (solute) and depends on temperature and the composition of the system (solvent).

Very often the permeability of the matrix is of magnitudes less than the permeability of the 
fractures and/or is not continuous (i.e. it is broken into noncontinuous chunks). The matrix 
serves just as volume source or sink for the continuous fracture system, as shown in Figure A.2. 
Therefore, production is only possible from the fractures but not from the matrix. In this case 
Equation A.2 simplifies to:
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m
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where the matrix-fracture transfer qcmf  term includes convective and diffusive material 
transport as well. Figure A.3 shows a schematic of a dual-continuum model, including the 
transfer term.

 

Figure A.3:  Illustration of a dual-continuum model.
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A.2.2 Application of Green Divergence Theorem

In order to be able to discretize the differential equations on a generalized grid, the control 
volume finite difference method (CVFD) method should be applied. This will be explained here 
just for one of the domains without using the subscript m or f but the same equations are valid 
for both continua. The Equation A.2 can be integrated over an arbitrary control volume Vi,
leading to:
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where the diffusion and production terms were disregarded for the sake of simplicity. Vi is a 
finite control volume around the grid point i.

Figure A.4:  Control volume around grid point

The flow term can be rewritten using the GREEN divergence theorem:
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where 
Ai

  denotes the integration over the total surface Ai of Vi and n  is normal vector (the 

outward pointing unit vector) to the surface Ai. The same theorem can be applied to the diffusion 
term in the same manner. Inserting into Equation A.18 yields
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Equation A.20 is a mass balance. But it is obvious that mass and mole balances are equivalent 
when cancelling the constant mole mass Mc from both sides. This leads to a mole balance 
equation:

u pD px pc
p 1=

P

 
 
 

n Ad
Ai

–
t
  S pD px pc

p 1=

P

 
 
 

V i

Vd= . (A.21)

Substituting the velocity according to Darcy's law and splitting up the double integral 
Ai
  into 

a sum over all surfaces Aij connecting the block i with its neighbors j, yields for the flow term:

u pD px pc
p 1=

P

 
 
 

n Ad
Ai

–  pckak'  p
p 1=

P

 
 
 

n Ad
Aij


j 1=

N

= , (A.22)

where already the component mobility and the normalized permeability tensor 

 pc  pD px pc=     and    k kak'= , (A.23)

were substituted. A similar expression can be written for the diffusion term:

J pcM c
p 1=

P
 

 
 

n Ad
Ai

– S pD pD pcx pc n Ad
Aij


j 1=

N

= . (A.24)

Now the fluid flow equation in integral formulation has the following form:

 pckak'  p
p 1=

P

 
 
 

n A S pD pD pcx pc n A qc q cmf
+d

Aij


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N

+d
Aij


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N



t
  S pD px pc
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P

 
 
 

V i

Vd

=

(A.25)

where qc is the discrete sink/source term for the component c acting in the volume Vi. 
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A.2.3 Matrix-fracture transfer term

The matrix-fracture fluid transfer while numerical modeling of dual-porosity reservoirs has ever 
been and is still an area of extensive research and discussion. Warren and Root[99] gave the first 
definition of the shape factor when they introduced their idealized sugar cube model of fractured 
porous rocks. One of the most accepted and widely implemented shape factor definitions used 
in numerical modeling was given by Kazemi et al.[52]:

 4 1
Lx

2
------ 1

Ly
2

------ 1
Lz

2
------+ + 

 = . (A.26)

Coats[21] recommended a shape factor that is twice the value of Kazemi et al.[52]. All mentioned 
authors assumed the mass transfer between matrix and fracture to be pseudo-steady state. 
Numerous other authors proposed shape factors based on numerical and/or laboratory 
experiments. Vicarious Thomas et al.[96] and Ueda et al.[97] are mentioned. Gilman[37] claims 
that the shape factor is a function of fracture spacing (or intensity), and is not inherently a 
time-dependent parameter. 

To the knowledge of the author, Barker[9] presented the most general formulation of the 
matrix-fracture transport equations so far. In his formulation the matrix block has an arbitrary 
shape with a volume to surface ratio of a. The boundary value problem leads to a solution 
containing the time depending dimensionless Block-Geometry Function (BGF). The BGF
depends on the geometry of the characteristic matrix block but not on its absolute size. The 
volume to area ratio of the blocks captures the block shape. Assuming pseudo- (quasi-)steady 
state conditions, the BGF becomes time independent and leads to a definition of the shape 
factor. The shape factor after Barker[9] is:

 
V m
Am
--------
 
 
  2–

= , (A.27)

where Vm is the volume, Am is the surface area and   is a dimensionless parameter.

Consequently, the assumption of pseudo-steady flow between matrix and fracture leads always 
to a constant parameter, called “shape factor”. Otherwise, the time depending Block-Geometry 
Function must be considered and a function should not be named as factor. Nevertheless, some 
authors (Penuela[75], Rangel-German and Kovscek[86]) published such functions calling them 
time-dependent shape factors. The supposition that the exchange term for all possible physical 
situations will depend on the geometry of the discontinuous element (the matrix) of the model 
was postulated from the beginning, at first time by Warren and Root[99]. It should be also 
mentioned that their sugar cube model and the resulting shape factor is based already on 
discretization and homogenization. The weakness of the concept was that the shape factor was 
defined for specified geometries. In reality, the matrix blocks are neither cubes nor spheres; 
therefore, it was necessary to find a general applicable geometrical measure.
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Based on water imbibition experiments of Mattax and Kyte[62], Kazemi et al.[52] introduced a 
generalized shape factor given by Equation A.28. It is easy to show that for idealized (cuboid) 
cases this equation becomes identical to the Warren and Root[99] expression given in Equation 
A.29. Despite of this asymptotic accordance and its widely acceptance, its general validity was 
shown at first by Heinemann and Mittermeir[48]. The derivation of Heinemann and Mittermeir 
will be presented in the Appendix B in details.

  1
V m
--------

A j

d j

--------
j 1=

N

= . (A.28)
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------+ +
 
 
 
= . (A.29)

Also Gerke and van Genuchten[35] tried to find a generalized geometrical factor and found that 
such a factor must contain the relation of the surface to the matrix volume as given in Equation 
A.27. Their geometry factor still contains, similar to Barker[9], an imprecisely defined 
dimensionless geometry-dependent coefficient. It should be emphasized that the 
dual-continuum concept is one but not the only method to describe flow in heterogenous porous 
media. On the other hand, the dual-continuum approach is still the most accepted and a very 
successful method to describe oil and gas recovery from naturally fractured dual-porosity 
reservoirs. Lewandowska et al.[57] claim to have found a more general approach. Their work 
contains interesting ideas but does not give any experimental evidence or demonstrates its 
practical applicability.

A.2.4 Nomenclature

The terms used in this chapter are defined as follows:

N - number of neighboring blocks 
ij - interblock transmissibility, [m3]
x pc - mole fraction of component c in phase p, [-]
 p - mobility of the phase p, [1/cp] 
D p - specific mole density, [kmol/m3]
 p - phase potential, [bar]
q p - source/sink term for phase, [m3/day]
t - time step, [day]
V i - grid block volume, [m3]
 - porosity, [-]
S p - phase saturation, [-]
t - time difference operator, t n 1+ n–=  
n - subscript, denoting the time step, [-]
n+1 - subscript, new time step, [-]
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Appendix B

Derivation of a Generalized Shape Factor

B.1 Introduction

This chapter describes the derivation of Heinemann and Mittermeir[48] generalized shape factor 
which is used in this study as the basis for calculations and recommended to be used industrially 
as well.

B.2 Mathematical Derivation

This description is based on the original work of Heinemann and Mittermeir[48] but 
reformulated for black oil fluid description, instead of the more general compositional one. For 
sake of simplicity the diffusive and production terms were omitted too. For more details refer 
to the original article[48]. It will be assumed that two continua exist in the same space, both fill 
the space without gaps. One continuum represents the fractures and the other the matrix. The 
matrix properties and variables are signed by the subscript m and the fracture by f. Two balance 
equations have to be written, once with the subscript m and once with the subscript f. 

The balance equation of oil for the fracture and matrix continua are:


kro
oBo
-------------kak o
 
 
 

f
qomf–

t
 So

Bo
---------
 
 
 

f
= , (B.1)


kro
oBo
-------------kak o
 
 
 

m
qomf+

t
 So

Bo
---------
 
 
 

m
= , (B.2)

where the diffusion and production terms were disregarded for the sake of simplicity.

qomf is the matrix-fracture transfer term. Equation B.1 and Equation B.2 describe a 
dual-porosity dual-permeability case in which the fluids can flow within both domains.
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The permeability tensor k  in the equations above is already split into a normalized tensorial 
part and an effective (or apparent) scalar permeability, ka. Therefore, the permeability tensor can 
be rewritten as:

k
k11 k12 k13
k12 k22 k23
k13 k23 k33 

 
 
 
 
 

kak ka

k'11 k'12 k'13
k'12 k'22 k'23
k'13 k'23 k'33 

 
 
 
 
 

= = = . (B.3)

Muskat[67] suggested to calculate the effective permeability as the geometrical mean of the 
values in the principle permeability directions (; which generally do not coincide with the 
coordinate axes x,y,z: 

ka kk


k


3= . (B.4)

Generally, the matrix permeability is of magnitudes less than the fracture permeability and is 
not continuous (i.e. it is broken into noncontinuous chunks). The matrix serves just as volume 
source or sink for the continuous fracture system. Therefore, flow is only possible in the 
fractures but not in the matrix domain. Consequently, the flow term disappears and the Equation 
B.2 simplifies to

qomf

t
-----

So
Bo

---------
 
 
 

m
= . (B.5)

On the other hand Equation B.2 can be applied directly to an isolated matrix block with arbitrary 
shape, shown in Figure B.1. Equation B.2 can be integrated over the matrix block volume 
leading to:

kro
oBo
-------------kak o
 
 
 

m
 Vd

V mi
 t

 So
Bo

---------
 
 
 

V mi

Vd= . (B.6)

Vmi is a finite control volume around the point of gravity i. The flow term can be rewritten using 
the GREEN divergence theorem:

kro
oBo
-------------kak o
 
 
 
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 nij Ad

Aij


j 1=

N

 t
 So

Bo
---------
 
 
 

V mi

Vd= , (B.7)

where the double integral was spilt up into a sum over all surfaces Aij, displayed in Figure B.1. 

The matrix block is surrounded by fractures represented by the points j facing the surfaces Aij. 
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n j  is the normal vector (the outward pointing unit vector) to the surface Aij.

Figure B.1:  General 3D grid matrix block

The dual-continuum approach handles the matrix-fracture transfer as a discrete term, expressed 
as the rate of a volume source. This rate can be derived from Equation B.7 by discretizing it in 
time and in space. The matrix block becomes then the control volume for which the flow term 
is integrated. Replacing the right side of Equation B.7 by average values:

t
 So
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---------
 
 
 
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V mi


V mi
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 
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= , (B.8)

results in:
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Equation B.9 is already divided by Vmi.. The permeability in Equation B.9 is the effective 
matrix-fracture permeability which, if the fracture block volume compared to the matrix block 
volume, is equivalent to the matrix permeability. t  is the time step and t  the time difference 

operator t x xn 1+ xn–= . It is evident that the left side of Equation B.9 is the specific 
matrix-fracture flow rate of Equation B.5, therefore

qomf
1

V mi
---------

kro
oBo
-------------kak o
 
 
 

m
 nij Ad

Aij


j 1=

N

= . (B.10)

In order to be able to introduce this value in Equation B.1 and Equation B.2 the right hand side 
of Equation B.10 has to be discretized. This means that the surface integral will be replaced by 
multiplication with the area Aij, the mobility will be determined from the average of the block 
state variables and the potential gradient by its component effective on the block sides.
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Therefore, one has to approximate:

• the surface Aij facing the matrix block i to the fracture side j,
• the oil mobility, kro oBo  ,

• the scalar product, k o nij knij  o= .

The surfaces Aij and the orientation of the unit normal vector nij  are determined by the shape 
of the matrix block. Once the matrix block is identified, as in Figure B.1, the area and the 
orientation can be computed by means of geometry.

The mobility kro oBo  , is required on the surface Aij. To get an approximate value, some 
type of averaging is necessary. For multi-phase flow upstream-weighting has shown to converge 
to the physically correct solution. The simplest way is to take one of the values, which leads to 
one-point upstream-weighting.

For the approximation of the scalar product k  p n j imaginary grid points must be set into 

the surrounding fracture network to every block faces j 1 N= . The fracture width is assumed 
negligeable compared to the matrix block volume, therefore they are situated within the plane 
of the block sides. The fracture cells, containing a greater number of matrix blocks according 
the Warren-Root[99] concept is represented by the average pressure and saturations. 
Consequently, all of the neighboring fracture grid points have the same potential and can be set 
anywhere into the matrix block sides. The vector d ij  measuring the distance must be 
k-orthogonal to the surface Aij between the point i and its neighbor j; therefore: 

knij d ij ; (B.11)

 and so,

 p kn  ij knij
oj oi– 

d ij

----------------------------= . (B.12)

Inserting Equation B.12 into Equation B.10 yields:

qomf
1

V mi
--------- Aij

knij

d ij

--------------
kro
oBo
-------------ka oj oi– 

j 1=

N

= . (B.13)

The first of term of Equation B.13 contains only quantities depending on the geometry of the 
matrix block and its orientation in the coordinate system built by the principal permeability 
direction. These terms can be united into one constant, called, according the Warren-Root[99]

concept, shape factor:
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 1
V mi
--------- Aij

knij

d ij

--------------
j 1=

N

= , (B.14)

which has to be seen as a characteristic parameter of the dual-continuum theorem and has a 
dimension L-2. Shape factor as expected semantically, has to be a factor representing the effects 
of the shape of the system in the matrix-fracture transfer function and obviously it is expected 
that as long as the shape of the system (matrix shape, orientation etc.) has not changed, it 
remains constant. The resulting matrix-fracture transfer rate for a component is then

qomf 
kro
oBo
-------------ka oj oi– = . (B.15)

B.3 Nomenclature

The terms used in this chapter are defined as follows:
A - surface, [m2]
Bo - formation factor, [-]
d ij - distance, [m]
ka - average permeability, [m2] 
kro - relative permeability of oil phase, [-] 

N - number of neighboring blocks, [-]
nij - normal unit vector of surface Aij, [-]
qomf - fracture-matrix transfer rate, [sm3/s]
So - phase saturation, [-]
p - pressure, [Pa]
t - time, [s]
t - time step, [s]
V i - grid block volume, [m3]
 - shape factor, [m-2]
 - viscosity, [Pas] 
o - phase potential, [Pa]
 - porosity, [-]

             Subscripts
o - oil
x,y,z - coordinate directions

               Operators
t - time difference operator 
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Appendix C

Laboratory Experiment of Measuring 
Recovery Curve

C.1 Introduction

The recovery curve of any piece of rock can be measured in the laboratory with a method similar 
to what is explained in this chapter.

C.2 Water Imbibition Recovery Curve Experiment

Figure C.1:  Schematic representation of the laboratory apparatus for measuring the 
recovery of the matrix block submerged in water.
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The experiment is performed in the following steps:

• The matrix block is saturated with oil. It is usually fully oil-saturated but for other 
studies it can also be initially saturated with any percentage with oil/water (and even 
gas) to study different conditions. The initial oil volume should be also measured 
before saturating the block to know the original oil in place for the matrix block.

• The matrix block is submerged in a pressure container full of water with the desired 
average pressure as shown in Figure C.1.

• The recovered oil volume is measured periodically.
• The plot of the recovery factor (= the recovered oil volume / the initial oil volume) 

versus time to create the recovery curve for each case.

C.3 Gas Gravity Drainage Recovery Curve Experiment

Figure C.2:  Schematic representation of the laboratory apparatus for measuring the 
recovery of the matrix block submerged in gas.

The experiment is performed in the following steps:

• The matrix block is saturated with oil. It is usually fully oil-saturated but for other 
studies it can also be initially saturated with any percentage with oil/water/gas to 
study different conditions. The initial oil volume should be also measured before 
saturating the block to know the original oil in place for the matrix block.

• The matrix block is submerged in a pressure container full of water with the desired 
average pressure as shown in Figure C.2.

• The recovered oil volume is measured periodically.
• The plot of the recovery factor (= the recovered oil volume / the initial oil volume) 

versus time to create the recovery curve for each case.
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C.4 Studying other conditions

That the same procedure as described in Section C.2 and Section C.3 can be repeated for any 
conditions, for instance under different pressure, fluids (if the fluids type varies in the reservoir) 
or even applying a pressure gradient to the surrounding fluid to simulate viscous displacement 
(if it is expected that this happens in the reservoir). Each combination of the driving forces, 
generates a different curve which should be used for the matrix block ID during the simulation 
run, if it undergoes the same condition. In other words, it is expected that the same matrix block 
ID occurs in different parts of the reservoir and in one place it can be in the waterflooded zone 
while a matrix block of the same ID in some other part of the reservoir is in the gas-invaded 
zone; therefore, each of them will be depleted on different processes and from different recovery 
curves that can be pre-measured in the laboratory for the same condition.

C.4.1 Effect of Orientation

The orientation of the block can affect the gravitational driving force if the matrix height and 
lengths differ. If the orientation of the matrix block ID affects the recovery trend too much, then 
it can be regarded as two or more different matrix block IDs with different recovery curves for 
each and also later in the simulation, which will be treated as different matrix block IDs. Figure 
C.3 shows one matrix block shape in two (horizontal and vertical) orientations. Figure C.4 
shows the recovery curves for each of these orientations. Since it is the isotropic matrix block 
just with different orientations, the shape factor and pore volume is the same for both cases and 
only the gravitational force is changed (by difference of heights) which is the only factor 
responsible for the recovery curve difference. Therefore, in categorizing the matrix block IDs, 
these different orientations should be considered as two different matrix block IDs.

Figure C.3:  The same matrix block in different orientations



127
Figure C.4:  Recovery Curves of the matrix block IDs in Figure C.3
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Appendix D

Implementation of Single Matrix Block 
Analysis

D.1 Introduction

Single Matrix Block (SMB) analysis is an attempt to numerically simulate the laboratory 
experiment of studying the matrix block depletion under different conditions and recovery 
mechanisms.

The laboratory experiment is described in Appendix C and the theory about the proposed SMB 
model is explained in Section 3.4. In this chapter, the details about the implementation of the 
proposed Single Matrix Block Analysis model in a commercial reservoir simulator, PRS[45], is 
explained.

D.2 Objectives

The objective of this section is to introduce a practical and efficient method for performing 
Single Matrix block calculations. This method should satisfy the following requirements:

• The calculation should be mathematically and numerically correct; e.g. using fully 
implicit control volume finite difference method on a fine orthogonal grid. The result 
will be the oil recovery as function of time or dimensionless time.

• The recovery mechanism of a single matrix block should be calculated without any 
simplifications, by considering all driving forces, pressure and saturation within the 
matrix and changing states in the surrounding fractures.

• In this work, only black oil models are considered.



129
D.3 PRS[45] Implementation

D.3.1 Problem Explanation

The idea of using Single Matrix Block (SMB) models comes from the ambition to simulate 
laboratory experiments of studying the matrix block depletion under different conditions and 
the recovery process for every single matrix block ID (Section 4.3.1) and to generate the 
recovery curve under the set conditions. Such an approach (and laboratory experiment) gives a 
detailed insight about the processes that are going on between the matrix and the surrounding 
fractures at different places and under different conditions. This would be the most general and 
the best approach, if it could be practiced throughout the reservoirs. But unfortunately, this 
approach is not applicable on the reservoir scale both because it is impossible to access different 
matrix block IDs (in full) from all around the reservoir to take them to the lab, and that such 
experiments needs a lot of time and cost to perform and produce the desired outcome. Therefore, 
SMB laboratory experiments remain restricted only to some research studies and not a standard 
practice in reservoir modeling. 

In general, the experiment (explained in Appendix C in details) is to submerge the matrix block 
either in water or gas, and collecting the extracted oil and plotting the recovered oil volume 
versus time. This plot is called a “Recovery Curve” which demonstrates how the matrix block 
under study, depletes in time with the ceratin boundary conditions and active driving 
mechanisms of the experiment. Knowing the matrix block ID distribution within a given 
simulation cell, it is possible to accurately estimate the overall recovery curve for the simulation 
cell (as explained in Section 4.3). As stated earlier, since the actual laboratory experiments are 
not practical (enough) to be used routinely for the reservoirs, single matrix block models have 
been developed to numerically simulate such laboratory experiments which makes the study 
much easier and more affordable. 

Different applications of small-scale single matrix block models can be found in the 
literature[20],[33],[41],[54],[89]. These publications deal with recovery mechanism in fractured 
reservoirs, primarily with water/oil countercurrent imbibition and gas/oil drainage, and the 
matrix-fracture transfer. Most of these calculations have been made using commercial 
simulators placing production and injection wells in the fracture cells. Such a workaround (to 
model the laboratory experiment) is impractical and in most cases numerically instable, and will 
produce questionable results with long CPU times. Some of the problems of using commercial 
simulators to model single matrix blocks are mentioned:

• For every matrix block a new grid model has to be created which requires recreating 
the grid cells, setting permeability, porosity distributions etc. This is undoubtedly a 
tedious work and one of the main reasons why such an informative analysis is not 
even numerically practiced in full field studies.

• The very small pore volumes of the grid cells, especially for the fracture cells causes 
numerical instability.
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• The necessity to use bottom-whole-pressure-controlled production (and/or injection) 
wells to maintain the fracture conditions causes further numerical instability.

• The boundary conditions for the matrix are determined by the fracture and these 
cannot be properly set in such a conventional grid model.

• Due to the matrix-fracture fluid transfer, the fluid contents of the fracture changes in 
time. Assuring constant pressure and saturations in the fracture cells (as in the 
laboratory experiment of Appendix C) is required for a proper SMB investigation. 
Setting both pressure and saturations of the fracture cells as constant is in no way 
achievable in commercial reservoir simulators.

• The influence of viscous displacement cannot be considered in such models because 
no fluid movement can be incorporated along the fracture cells.

Pirker[81] made some experiments with some commercial software tools, mostly with 
ECLIPSE[95] and showed that a more sophisticated approach than to model each single matrix 
block separately is necessary. Pirker[81] tried to standardize this method and developed it to 
some extent leaving it open with some suggestions. In this work, the single matrix block 
analysis suggested by Pirker[81] is completed and integrated in a commercial reservoir 
simulator, PRS[45], which is available to be used for any reservoir model for different matrix 
block IDs and conditions with minimal effort and can also be implemented in any conventional 
reservoir simulator.

D.3.2 Solution and Workflow

In order to overcome the problems discussed in Section D.3.1, a new option is proposed that has 
the following specific advantages and can be implemented very easily in any commercial 
simulating software. The PRS[45] implementation is briefly described in these steps:

• The grid is automatically set up (based on the actual model) internally and does not 
require the user to set up a separate grid model for every single matrix block analysis. 
The great advantage is that no manual preprocessing is required and all the data can 
be extracted from the full field model and the grid is also automatically generated.

• The time step control and Newton-Ruphson iteration regulation methods were 
modified so that they work best for micro-scale models (which is neither useful nor 
included in conventional reservoir simulators) that helps achieve a much better 
stability which gives the great advantage of being able to calculate even with time 
steps as large as 180 days; It is worthwhile to mention that using the methods offered 
in commercial reservoir simulators, the time step lengths can be as short as a fraction 
of a day. On the other hand, the single matrix blocks usually have to be simulated for 
several decades or even centuries to be fully depleted! Therefore, being able to 
calculate with very large time steps accurately enough is really considerable and 
important.
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• Both of the problems of bottom-whole-pressure-controlled wells and variant 
boundary conditions are overcome by setting back the dynamic fracture properties to 
their initial values at the end of each time step, after automatically removing all of the 
fracture oil content from the fractures and reporting it as the amount of extracted oil 
from the single matrix block.

• The generating recovery curve files that can be readily plotted or used for 
investigations, study as well as the recovery curve runs are automatically generated.

The following section describes how the single matrix block calculation could be implemented 
and used in a mature (i.e. in a commercial) reservoir simulator. The coupling of the single matrix 
calculation to the full field model is essential to enable the interpretation and usage of the single 
matrix block analysis results directly on the field scale. In this respect other approaches may be 
possible too, but this description strictly follows the application in PRS[45] (See PRS Technical 
Description[47] and PRS Time Dependent Data Manual[46]).

D.3.3 Activating Single Matrix Block Analysis

The possibility of performing a single matrix block analysis on a real reservoir simulation 
model, without the necessity to create a new model from scratch with different grid properties 
for every existing shape factor class, as well as copying different initialization, PVT and rock 
properties schemes to the new model etc., is really helpful and handy and can shift the single 
matrix block analysis for a full field from being impossible (or absolutely impractical) to not 
only possible, but fully automated; this opens a valuable path towards understanding the details 
about the recovery processes in the reservoir.

PRS[45] provides the single matrix block analysis for any simulation model (currently available 
only for black-oil) with no effort, just by adding a simple SMBLOCK instruction in the input. If 
this instruction is used, then the normal run will not be performed and instead, the single matrix 
block grid is created internally (as described in Section 3.4.2 and Section 3.4.3).

The PVT and ROCK data of the normal model are taken over and the SCHEDULE section and 
any other unnecessary input (that are related to the actual full field simulation model) will be 
skipped. 

In Section D.3.4, some examples of usages of this instruction are presented.
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D.3.4 Practical Grid Construction Alternatives

In addition to the general procedures to construct the grid, described in Section 3.4.2, other 
practical alternatives can be also imagined for cases that not all the required input exists.

1. Using the matrix block sizes Lx, Ly, Lz in x-, y- and z-directions respectively. The 
shape factor will be calculated from Heinemann and Mittermeir[48] formula which 
is simplified for a cube. If the shape factor is also input in addition to matrix block 
side lengths, the input shape factor will be discarded and the calculated value is 
used.

2. Using the shape factor,  , and the normalized anisotropic permeability values (k’x, 
k’y, k’z) and the matrix block height, Lz, for which case, it is assumed that Lx, Ly are 
equal and calculated from Equation D.1 and the shape of the matrix block would be 
a cuboid.

 Lx Ly
k'x k'+ y


4
---

k'z

Lz
2

------–
-------------------= = . (D.1)

3. Using the shape factor,  , for which the investigation should be performed and the 
normalized anisotropic permeability values (k’x, k’y, k’z). In this case Lx, Ly, Lz are 
assumed to be equal and are calculated from the shape factor as in Equation D.2 and 
the matrix block would be in shape of a cube.

 Lx Ly Lz 4 k'x k'y k'z+ +  = = = . (D.2)

D.3.5 Rock and PVT input

In order to assign the rock and PVT input, it is just required to give the PVT region number, 
PVTREG, the matrix rock region number, ROCKREG, and the fracture rock region number, 
ROCKREGF keywords in the SMBLOCK instruction.

D.3.6 Porosity and Permeability values

The porosity of the matrix, is input using the keyword PORO, and the porosity of the fracture 
domain porosity (and therefore its volume) is internally set to 10 times this value. The 
anisotropic permeability values kx, ky, kz, are input using keywords PERMX, PERMY and PERMZ
respectively. There are other keywords to assist entering these values too: PERMXY and 
PEMRMALL. The fracture cells do not need to be assigned any permeability to (since the 
transmissibility between two fracture cells, is by default internally set to zero.
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D.3.7 Initialization

The equilibrium data of the first equilibrium region of the actual full field simulation model are 
considered for the single matrix block analysis. The single matrix block model will be initialized 
based on the input middle-layer PRESSURE and the gravitational gradient in the matrix and 
fracture separately based on their own fluid saturation. 

The matrix is initialized with maximum oil saturation. The fracture is saturated either fully with 
water, gas or oil for water drive, gas drive or expansion drive mechanism respectively. For oil 
resaturation study, the fracture is oil-filled and the matrix can have other saturation distribution. 
In addition to these cases, other combinations of saturation distributions also is possible.

D.3.8  Multi-Case Analysis

In case that different mechanisms and/or shape factors or rock/fluid properties are needed to be 
tested (which is the usual case in the full-field study process), more than one SMBLOCK

instructions can be input in the *.tdd file and PRS[45] performs them one after another 
automatically. For instance, adding the following instructions in the *.tdd file would 
sequentially perform 6 SMBLOCK runs and create 6 different output files. Note that the last two 
are “lumped” runs and each will perform more than one SMBLOCK analysis which will be output 
to the same file. The keywords and attributes are described in details in PRS TDD Manual[46].

# 1
 SMBLOCK  gasdrive   pvtreg 1 rockreg 1 poro 0.2 permall 0.001            &
          rockregF 3     pressure 175 asymplim 1.E-2 lx 20 ly 25 lz 30
# 2
 SMBLOCK  waterdrive pvtreg 2 rockreg 1 poro 0.2 permxy 0.001 permz 0.002 &
          pressgrad 0.05 pressure 175.0 shapefac 0.51 lz 30 
# 3
 SMBLOCK  waterdrive pvtreg 1 rockreg 1 poro 0.2 permxy 0.001 permz 0.002 &
          verticalfr     pressure 167.5 shapefac 0.51
# 4
 SMBLOCK  gasrdrive  pvtreg 1 rockreg 1 poro 0.2 permx 0.001 permy 0.012  &
          permz 0.002    pressure 167.5 rockregF 3 shapefac 0.239
# 5
 SMBLOCK  waterdrive pvtreg 1 rockreg 2 poro 0.2 permall 0.001 rockregF 3 &
          verticalfr     pressure 167.5          LZ 30                    &
          lumped 3 shapefac 0.5  0.01 0.05      frequency 0.5  0.2  0.3   &
          FILENAME smblck_recovery1.out
# 6
 SMBLOCK  waterdrive pvtreg 1 rockreg 1 poro 0.2 permall 0.001           &
          pressure 167.5 lumped 2 shapefac 0.01 0.01  LZ  30  25
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D.4 Graphical User Interface

After development of the Single Matrix Block concept and implementing it in PRS, the need of 
a user-friendly tool which offers the full range of advantages of the recovery curve approach to 
simulation of NFRs in practice was felt. Thus, in the course of this study a comprehensive user 
interface was developed as an auxiliary option in PRS which can be readily used in full-field 
studies and is here briefly introduced. The SMBAux tool works on full field model setup in PRS
to 1) perform Single Matrix Block Analyses under desired conditions, 2) offer a repository for 
the calculated recovery curves, 3) plotting recovery curves and scaled recovery curves, 4) 
calculating class recovery curves, 5) lumping recovery curves and 6) creating region recovery 
curves.

D.4.1 Single Matrix Block Analysis

A single matrix block analysis can be easily performed for a full-field model using SMBAux
tool. On the Model tab, Figure D.1, there are four sections to input the necessary data to perform 
the SMB run and a Run button in the bottom which actually starts PRS.

Figure D.1:  Single Matrix Block Analysis Tool - Model Tab
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D.4.1.1 File Section

In the file section, the main input file of the full field model to the PRS can be browsed and the 
SMBAux tool would used this to access the PVT and SCAL data of the full field. 

The names of the temporary files and folders which would be created for SMB calculation can 
also be modified in this section. Checking Add curve to repository, means that the 
calculated recovery curve should be added to the SMBAux repository for plotting and further 
operations. Otherwise, SMBAux runs PRS with the appropriate input settings to calculate the 
requested SMB analysis and the output would be found in the folder specified by Recovery 
Output Folder Name input field and the file with the name specified in Recovery Output 
File Name field.

D.4.1.2 Regions Section

In this section, the PVT region serial number and the Rock regions serial numbers of the matrix 
and fractures are input based on the full-field input.

D.4.1.3 Properties Section

In this section, the mandatory input of initial average pressure for the matrix block is input. 
This pressure is assigned to the mid-layer in both matrix and fracture and the pressure of the 
other layers would be calculated based on the gravitational pressure gradient based on the initial 
fluid saturations respectively in the matrix and the fracture cells. Another optional pressure 
gradient can be applied in the fracture domain in addition to the gravitational pressure gradient 
to model the viscous forces using Additional Viscous Pressure Gradient field.

The porosity and directional permeability values of the matrix block are also input in this 
section.The drive mechanism can be chosen as either water drive or gas drive which means 
that the fracture would be filled with water or gas respectively. If Only Vertical 
Fractures is checked, the horizontal fracture cells would become inactive.

D.4.1.4 Matrix Shape Section

In this section, the matrix block size is defined using one of these methods:

• Inputting the side lengths of the matrix block cuboid Lx, Ly, Lz.
• Inputting the shape factor and optionally the matrix block height, Lz, and the 

matrix block side lengths will be calculated internally as previously explained.

In this section, another option also exists which will be explained in Section D.4.3.
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D.4.2 Recovery Curve Repository

On the Analysis tab, Figure D.2, there are two main sections on each side of the screen. On 
the left side, a list of all the SMB analyses in the repository exists. A checkbox exists for each 
SMB analysis and checking it, activates the according SMB analysis and plots it in the right-side 
plot section.

Using the Add Recovery Curve to Repository button, an SMB Analysis output from 
PRS which was not calculated using SMBAux tool can also be added to the repository.

Figure D.2:  Single Matrix Block Analysis Tool - Analysis Tab

On the top of the plot section, it can be selected if the recovery factor should be plotted versus 
time (RF vs. t) or dimensionless time (RF vs. td) which is the scaled recovery curve; and 
this is applied to all of the curves on the plot.
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D.4.3 Lumping Recovery Curves

It is possible to lump the recovery curves (Figure 3.9) by checking the desired recovery curves 
and clicking the Lump Checked Curves button which pops up the window of Figure D.3.

Figure D.3:  Lump Recovery Curves window

Figure D.4:  Plot of the Lumped Curve (orange) and the curves it was calculated from
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In this window, a list of all the selected curves exists (in Figure D.3, the three selected curves 
plotted in Figure D.2 can be seen). The frequency of each curve should be input in the field to 
the right of its title; the summation of the entered frequencies has to be 1. After clicking the 
Lump button, SMBAux lumps the curve (by calculating the new recovery factor values from 
Equation 3.23 at any time) and adds the lumped curve to the repository where it can be plotted 
as shown in Figure D.4.

Note that the lumped curve continues in time as much as the longest of the curves being lumped 
(e.g. the green curve in Figure D.2) and the values of the curves which end earlier for lumping 
after their finish time is taken as their ultimate recovery since this is their actual recovery also 
after the finishing time. In Figure D.4 the orange curve is the lumped curve of the three selected 
curves in Figure D.2 with the frequencies displayed in Figure D.3.

D.4.4 Preparing Class Recovery Curve

If the SMB analysis of one matrix block belonging to a certain class is known, it is possible to 
calculate the class recovery curve explained in Section 5.2.1.3.1 by checking the desired SMB 
Analysis recovery curve (only one curve can be checked at this time) and the Create Class 
Recovery Curve button enables. The checked recovery curve from the repository would be 
called the Base Curve from now on. Clicking this button opens Figure D.5.

Figure D.5:  Lump Class Recovery Curve window

In Figure D.5 any desired number of rows can be added using the + button and the values can 
be input directly or imported from comma-separated-values file or pasted from clipboard. The 
table has two columns: the first column is the dimensionless time conversion factor (β from 
Equation 3.26) of all the matrix block IDs (see Section 4.3.1) in the desired recovery curve class; 
the second column is the frequency of each matrix block ID in that class. After clicking the 
Lump button, the following operations are performed one after the other one:

• For each input matrix block ID (i.e. each row in Figure D.5), a new recovery curve is 
internally created where its time axis values are equal to the dimensionless time 
values from the base curve divided by the input dimensionless time factor for that 
matrix block ID and the same recovery factor values as the base curve.
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• These curves are lumped with the frequencies entered for each with the same 
procedure as in Section D.4.3 resulting in a new recovery curve.

• The calculated recovery curve is actually the class recovery curve of a class with the 
scaled recovery curve as the base curve and the entered distribution of matrix block 
IDs. The class recovery curve will be added to repository and is shown in Figure D.6.

Figure D.6:  Plot of the lumped Class Recovery Curve (flushed pink #19) and the plot of 
the Base Curve (pale pink #9)

D.4.5 Creating Region Recovery Curves

In order to create the region recovery curves, nothing more is required than to check the class 
recovery curves created in Section D.4.4 and lump them based on their distribution in every 
region exactly in the same manner described in Section D.4.3.

The last column in the left side grid in the Analysis tab is File Name in Repository
which is self explanatory and all the recovery curves in the repository can be accessed in the 
SMB_Repository folder in separate files with *.smb extension.
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Appendix E

Production Mechanisms in Naturally 
Fractured Reservoirs

E.1 Introduction

In this chapter, the mechanisms that take part in extraction of hydrocarbons from the matrix to 
the fracture are described.

The same processes that are active in nonfractured, single porosity systems are important in 
fractured reservoirs. These include rock compaction, fluid expansion, viscous drive, gravity 
displacement, capillary imbibition and diffusion. However, the majority of the oil is contained 
in the high porosity but low permeability matrix system while the wells drain the fluids directly 
from the high permeability fractures. Therefore, the degree of importance of the physical 
mechanisms may be quite different in the two systems. 

Production from the matrix blocks can be associated with various physical mechanisms 
including:

• Rock compressibility and compaction,

• Single phase fluid expansion,

• Solution gas drive,

• Gravity drainage,

• Capillary Imbibition,

• Diffusion,

• Viscous displacement.
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E.2 Expansion and Solution Gas Drive

As the pressure drops in the fracture system, as a consequence of production, fluid expands and 
flows out from the matrix to equilibrate the matrix pressure with the surrounding fracture 
pressure. Also the compressibility of rock or the secondary compaction can gain importance 
especially low fluid compressibility or low porosity. The pore compressibilities for matrix and 
fracture are in most of the cases quite different. 

Below the bubble point pressure the solution gas liberates and expands. The efficiency of the 
matrix recovery under solution gas displacement can be calculated in a standalone way, using 
the well-known Muskat[65] or Pirson[82] methods. According to Pirson[82], the equations that 
describe the performance of the reservoir in case of solution gas drive reservoir can be written 
in finite difference form of the material balance:
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The instantaneous gas-oil ratio is:
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Muskat[65] used also a differential form of the material balance equation to evaluate the 
performance of a reservoir with internal gas-drive (solution gas drive). The change in the oil 
saturation is:
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where (p), (p), (p) and (p,So) are special Muskat[65] functions:
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The cumulative amount of produced oil is then:
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The method proposed by Muskat[65] is advantageous if a larger number of calculations is 
required. The Muskat[65] functions (Equation E.5 - Equation E.8) are readily available in form 
of curves (see Figure E.1).

Figure E.1:  Muskat functions[65]

Muskat and Taylor[66] analyzed the influence of the oil viscosity, the initial pressure, the 
solution GOR, the connate water saturation and the relative permeability ratio on oil production.

The pressure and GOR will be developed similar to those in Figure E.2, calculated by Muskat 
et al.[65]. The method can be applied to a single matrix block and to the whole matrix-fracture 
system as well. Note that in the first case the reservoir pressure and the recovery factor is valid 
for the matrix, and not for the entire porosity system including the fractures. The numerical 
calculations of expansion mechanism are very accurate on every scale (also in full field models), 
while it is free of time truncation, numerical dispersion and grid orientation errors.
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Figure E.2:  Pressure and gas oil ratio histories of solution gas-drive reservoirs producing 
oil of different viscosities (after Muskat and Taylor[66])

E.3 Capillary Imbibition

Let’s imagine a piece of porous rock, called matrix, surrounded by fractures. The matrix is 
assumed to be water wet. The water invading the fractures flows, driven by capillary forces, into 
the matrix, displacing oil in countercurrent way, which means that water imbibes the matrix 
from the same side where oil is expelled. Depending on the fracture configuration, the 
displacement has two or three dimensional character, but it can be examined on a simplified one 
dimensional model. 

Now let’s consider a core sealed on all sides except the bottom surface, as shown in Figure E.3. 
The core is saturated by oil and the initial water saturation is equal with the connate water 
saturation Swm. At the bottom side the core is contacted with the wetting phase. Due to capillary 
forces the wetting phase, the water tends to intrude at the bottom side and thus displaces the 
nonwetting phase, the oil, in counterflow.

To calculate the displacement process the following assumptions will be made:

1. The rock is homogenous.
2. The displacement is one dimensional.
3. The two phases are incompressible and immiscible.
4. Multi-phase Darcy’s equation is valid.
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Figure E.3:  Countercurrent imbibition

As consequence of these assumptions the overall fluid velocity must be everywhere zero: 
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The difference of the phase pressures is the capillary pressure: 
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The continuity equation for the water and oil are:
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The saturation constraint is:

Sw So+ 1= . (E.16)

Then Equation E.11 is divided by krw/w and Equation E.12 by kro/o. Afterwards, they are 
subtracted one from another:
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or written it in a more compact form:
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Substituting of Equation E.18 into Equation E.14 leads to
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The boundary conditions are:

At the outlet x = L:
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At the inlet x = 0, the capillary pressure is zero, thus: 

Sw x 0= SwM 1 Sor–= = , (E.24)

where Sor is the residual oil saturation and SwM is the maximum possible water saturation. The 
solution of the above boundary value problem (Equation E.22 – Equation E.24) is the saturation 
as a function of the location and time:

Sw Sw x t = , (E.25)

which can be found just by applying numerical methods.

Figure E.4:  Capillary pressure and relative permeability functions used in the 
calculations (Blair[11]).

Blair[11] presented numerical solution for the model defined by Figure E.3. Figure E.4 shows 
the capillary pressure and relative permeability curves used in the calculations. The results 
showed similarity to a concurrent linear displacement, which means that a relative narrow 
transition zone, interpreted as water front, was formed between the displacing and displaced 
phases. 

Figure E.5 shows the pressure and saturation profile when the water front has reached 
approximately half the length of the sample. The water saturation is high at the open end of the 
core, but decreases then abruptly. The pressure gradient in the water phase is highest near the 
front. The greatest pressure gradient in the oil phase occurs near the open end of the core, 
because of the fact that with the maximum oil flow rate the oil relative permeability is the 
minimum. In case of strongly water wet rock the process of spontaneous imbibition lasts 
theoretically until the oil saturation in the matrix reaches its residual value. The results of the 
calculations showed that the rate of imbibition depends strongly on rock and fluid properties.

The numerical results from Blair[11] were verified by experiments of Graham and 
Richardson[38]. They measured the oil production as function of the time. One result is shown 
in Figure E.6 where all parameters, except the core lengths, were constant. The results give a 
feeling to the time dependence of the imbibition process.
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The results presented above are strictly valid for one dimensional displacement of two 
incompressible fluids. The matrix recovery processes under real conditions are more 
complicated, and therefore the applicability of the Blair[11] model is limited. General 
mathematical models, as used in reservoir simulation practise, make it possible to investigate 
the mechanisms in fully complexity.

Figure E.5:  Distribution of pressure and saturation after 6.6 hours. (by Blair[11]).

Figure E.6:  Recovery in case of linear counterflowing imbibition and the experimental 
determination of the influence of a certain in core-length. (by Graham and 

Richardson[38]) 

Mattax and Kyte[62] demonstrated that the recovery behavior of a large reservoir matrix block 
can be predicted from an imbibition test on a small core sample. The oil recovery can be scaled 
for a given rock type and oil-to-water ratio by a dimensionless rate parameter:
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where t is the imbibition time, k is the permeability,  is the porosity, ow is the interfacial 
tension, w is the water viscosity and L is a characteristic length for a matrix block. From 
Equation E.26 can be concluded that in an imbibition displacement the time of recovery is 
proportional to the square of the block height, L. Mattax and Kyte[62] showed that if the 
imbibition oil recovery is plotted against the dimensionless scaling parameter the same recovery 
curve will be obtained for the model and all reservoir matrix blocks of the same rock type and 
geometry:

t k

--- 

wL2
-------------

 
 
 

model

t k

--- 

wL2
-------------

 
 
 

matrix block

= . (E.27)

Figure E.7 shows the results of the verification of the scaling parameter. 

Figure E.7:  Verification of imbibition scaling[62]

In gas-oil systems the oil is the wetting phase and tends to imbibe into the matrix. In practice 
this means in absence of gravity drainage no oil production occurs from the matrix block when 
the associated fracture block is filled by gas.
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E.4 Gravity Drainage

When the fluid contents of the matrix and fracture are not the same (e.g. fracture is filled with 
gas or water), a difference in the hydrostatic head due to gravitational force exists between the 
matrix and the fracture. This additional potential difference, may force water or gas from the 
fracture into the matrix and expel the oil out of the matrix; this process is called gravity 
drainage.

E.4.1 Gravity drainage assuming homogeneous vertical 
saturation

Regard a matrix block surrounded by vertical fractures. The matrix is saturated by oil and the 
fracture filled by (a) water or (b) by gas. In absence of capillary forces there would no difference 
between the phase pressures: p = po = pg = pw. The pressures at the middle depth of the matrix 
block and in the fracture are in a pseudo-steady state situation equal. During a transient process 
such as well testing, the pressures could be different at this point but then they will be equalized 
within a short time. The different hydrostatical gradients create a pressure difference above and 
bellow the midpoint as it is shown in Figure E.8. 

Figure E.8:  Vertical pressure distributions in matrix and in fracture (a) filled with water, 
(b) filled with gas

In the case that the fracture is filled by water the water will be enter in the matrix at the lower 
half and the oil expels at the upper one. The average hydrostatic pressure difference between the 
matrix and the fracture are the same for both phases: 
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where hm is the vertical extension of the matrix block. This pressure difference act on the half 
length of the matrix block which has to be considered while calculating the effective potential 
differences for the water and for the oil phases:
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Similar for the gas filled fracture case:
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and the potential differences for the gas and for the oil phases:
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The gas enter at the upper half of the matrix and the oil expels at the lower one. Above it was 
assumed that the fracture is entirely filled by water or gas. In this case the fracture capillary 
pressures are zero per definition:

Pcwof Pcogf 0= = . (E.34)

This remains valid also if no 100% water or gas but a homogeneous vertical fluid saturation in 
the fracture is still assumed.

E.4.2 Gravity drainage assuming phase segregation

E.4.2.1 Two-phase water-oil case

Figure E.9 illustrates an idealized matrix block surrounded by fractures. Both the matrix and 
corresponding fractures contain oil and water. Assuming perfect phase separation both in the 
fracture and in the matrix, the hydrostatic pressure difference can be calculated for the matrix 
and for the fracture:

Phwof hwf w o– g= , (E.35)

Phwom hwm w o– g= . (E.36)
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Figure E.9:  Matrix block partially merged in water

The difference in the hydrostatic head is an additional driving force for the interporosity flow 
and must be considered:

wm wf– pom pof– Pcwom– Pcwof Phwom Phwof–+ += , (E.37)

om of– pom pof– Phwom– Phwof+= . (E.38)

The hydrostatic heads hf and hm can be expressed using the saturations. For the fracture:

hwf Lz
Sw Swi–

1 Swi– Sorw–
-----------------------------------
 
 
 

f
Lz Swf= , (E.39)

and for the matrix:

hwm Lz
Sw Swi–

1 Swi– Sorw–
-----------------------------------
 
 
 

m
= . (E.40)

Inserting Equation E.39 and Equation E.40 into Equation E.36 and Equation E.35 the 
hydrostatic pressure differences become functions of the saturation too, and so they are formally 
similar to the well-understood capillary pressure:

Phwof Swf  Lz Swf w o– g = , (E.41)

Phwom Swm  Lz
Sw Swi–

1 Swi– Sorw–
-----------------------------------
 
 
 

m
 w o– g= . (E.42)

For this reason, the hydrostatic pressure difference usually is referred to as pseudo-capillary 
pressure and the fluid exchange induced by the gravitation as gravity imbibition and drainage.
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E.4.2.2 Two phase gas-oil case 

Figure E.10 illustrates an idealized matrix block surrounded by fractures. Both the matrix and 
corresponding fractures contain oil and gas. Similarly to the water/oil case, the following is 
valid for oil and gas:

Phgof Sgf  Lz Sgf o g– g = , (E.43)

Phgom Sgm  Lz
Sg

1 Swi– Sorg–
----------------------------------
 
 
 

m
 o g– g= ; (E.44)

gm gf– pom pof Pcogm Pcogf–+– Phgom Phgof–+= , (E.45)

om of– pom pof– Phgom– Phgof+= . (E.46)

Figure E.10:  Matrix block partially invaded by gas.

E.4.2.3 Quandalle and Sabathier gravity drainage model

An alternative gravity drainage model was suggested by Quandalle and Sabathier[84]. The 
matrix-fracture flow is taken to be the sum of three flows from the center of the matrix to the 
fractures: one horizontal one vertical upwards and one vertically downwards[95] as shown in 
Figure E.11. Theoretically this model has the following advantages:

• The shape factor can be different in vertical and horizontal directions,

• The vertical anisotropy can be considered,

• The gravity force (in vertical direction) can be considered,

• The relative permeability depends on the direction.
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Figure E.11:  Modified gravity drainage model (after Quandalle and Sabatier[84])

Nevertheless, the practical advantage of this method is questionable. There is no way to 
determine the necessary parameters for the Quandalle and Sabatier[84] approach in a reliable 
way. On top of that, to calculate the lateral oil, water and gas rates (showed by horizontal arrows 
in Figure E.11) requires an estimate for the apparent fluid density in the fracture. While this can 
be done explicitly[84], the numerical stability of method is reduced and therefore the applicable 
time step length is limited.

E.5 Viscous Displacement

Consider a representative matrix cell, shown in Figure E.12. The average pressure in the matrix 
cell and in the fracture will be equalized due of the capillary and gravitational forces. In the 
isolated matrix cell the fluid does not move therefore, the pressure is uniform. Contrarily, there 
is a pressure gradient in the fracture system while the fluid is moving towards the production 
wells (and away from the injection wells). Therefore, there is a pressure difference p  between 
the two edges of the cell.
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Figure E.12:  Schematic of the viscous effect in fluid exchange between the matrix block 
(in the center) and the surrounding fracture

A pressure difference of  p 4  acts in average at the upstream half and – p 4  at the 
downstream half of the matrix block. Consequently, fluid enters from the fracture into the 
matrix at the upstream half and flows out from the matrix to the fracture at the downstream half. 
This additional driving force can contribute to the matrix recovery process.

The pressure gradient for the phase p at the grid point i is

 p  pxi  py j  pzk+ += , (E.47)

where  are the partial derivatives. The potential difference between the grid point i and the 
neighbor j is given by the scalar product of the neighbor’s position vector

 rij xiji  yij j zijk+ += , (E.48)

and the potential gradient. In the case of N neighboring grid points a linear equation system of 
N equations with 3 unknowns can be created: 

 pxxij  py yij  pzzij+ +  pj  pi–= , j 1 N= . (E.49)

To achieve the three components of the potential gradient  p ; x y z =  the Gauss normal 
equations has to created and solved:
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 px xij
2

  py  yijxij  pz zij xij+ +  pj  pi– x ij

 px xij yij  py  yij
2

  pz zij  yij+ +  pj  pi– y ij

 px xijzij  py  yijzij  pz zij
2

+ +  pj  pi– z ij

=

=

=

(E.50)

where the summation is over the neighbors j=1,...,N. Assuming that the matrix block has the 
size of Lx,Ly,Lz, the potential difference between matrix and fracture at the two sides of the 
matrix block is:

 pv
1
4
---  p Lxi Ly j Lzk+ + = . (E.51)

The potential difference at the grid point is

 pmf  pm  pf–= . (E.52)

If  pmf  pvand pmf  pv–+ , have the same sign then at both half of the matrix 

block either the matrix or the fracture is the upstream side and the term  pv will be cancelled 
out in the flow equation, consequently the viscous force has no effect. 

If both  pmf  pv 0+  and  pmf  pv 0–  then the phase p enters the matrix block 

at the upstream side (if  pf 0 ) and expels at the downstream one. 

Finally, the matrix fracture fluid exchange rate for the phase p with considering of the viscous 
force is:

 qmfp
mf

2
--------- pf  pmf  pv+ 

mf
2

--------- pm  pmf  pv– –= . (E.53)

Note that the Equation E.53 is applicable only if the mentioned inequalities are valid. In the 
derivation above, no restriction regarding the positions of the neighboring grid point were made, 
so the approach can be applied on unstructured grid too. The disadvantage is that the calculation 
time is very high. 

A simpler approach can be applied only on a structured grid as it is used by ECLIPSE[95] using 
a viscous displacement model, based on a technique described by Gilman and Kazemi[36].
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E.6 Molecular Diffusion

In naturally fractured reservoirs, as opposed to unfractured reservoirs, molecular diffusion may 
be very important, because the dispersive flux through fractures rapidly increases the contact 
area for diffusion. Similarly, Fick’s molecular diffusion potential may even override viscous 
forces when hydrocarbon or inert gases are injected and the fracture spacing is small. 

The following method is used to calculate the diffusion between fracture and matrix blocks. 
However, it is not used for grid blocks within the same grid system. The method can also be 
used to calculate gas-gas and gas-liquid diffusion rates. This approach was described by da Silva 
and Belery[24].

Figure E.13:  Schematic of gas-gas and liquid-gas diffusion

When hydrocarbon gas is injected at pressures below the oil bubble point pressure, two-phase 
diffusion can take place. For example, the injected gas dispersed throughout the fractures may 
contact large areas with two-phase saturated matrix blocks. Due to concentration differences, 
the injected gas tends to diffuse through both hydrocarbon phases, which simultaneously cause 
counterflow to the fractures. However, the gas-gas diffusion is approximately ten times faster 
than the gas-liquid diffusion.

The mixing process observed during multicomponent fluid displacements in porous media is 
typically of convection-diffusion type. Convection arises from the heterogeneity of the medium 
inducing local bulk velocity differences, while diffusion refers to the random motion of the 
molecules. The combination of the two types of molecular motion causes dispersion (i.e., a 
mechanism which will tend to abrogate any spatial concentration differences). In principle, the 
dispersive flux of a particular fluid component depends upon the concentration gradients of all 
other components. The use of effective coefficients eliminates all the cross terms. The following 
simulation approach can be proposed based on the work described by Coats[21] and da Silva and 
Belery[24]:

Diffusion is only calculated between matrix and fracture blocks (and not between blocks that 
are lying in the same grid system). Only the gas-gas diffusion or the gas-liquid diffusion is taken 
into consideration (if both are taken into consideration, an equilibrium-state dilemma arises 
which would require all matrix component K-values to be equal). 
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Furthermore, the effective diffusion coefficient must be known for each component. The 
diffusion coefficients are calculated from a static variable group as reservoir temperature, 
component molecular weights and critical properties of the components and from dynamic 
variables as pressure and composition. When dealing with black-oil models it is only possible 
to calculate the liquid-gas diffusion rate since the gas phase consists of a single component. In 
compositional simulation more phases exist, therefore the gas-gas diffusion rate can also be 
calculated. If, for example, gas with a different composition than the reservoir gas is injected 
into a reservoir the gas-gas diffusion should be taken into account. Figure E.13 shows a 
schematic of gas-gas and liquid-gas diffusion between a matrix and a fracture grid block. The 
matrix-fracture diffusion transfer is given for gas-gas diffusion as

qDc g g– DSgm jgc Dgxgc m Dgxgc  f–  1 Swf– = , (E.54)

and for the gas-liquid diffusion as

qDc o g– DSom joc Doxoc m Dgxgc  f–  1 Swf– = , with (E.55)

D V m 8 1

Lx
2

------ 1

Ly
2

------ 1

Lz
2

------+ +
m
or
------- = , (E.56)

where

qDc g g– - gas-gas diffusion rate for component c [mol/d],
qDc o g–  - liquid-gas diffusion rate for component c [mol/d],
D - diffusion transmissibility [m],
jgc - effective gas diffusion coefficient for component c [m2/d],
joc - effective liquid diffusion coefficient for component c [m2/d],
or  - tortuosity (porous medium correction factor) [-].

The multiplication by (1-Swf) (Equation E.54 and Equation E.55) is performed to prevent the 
requirement for a diffusion calculation for immersed matrix blocks by water. The contribution 
of the diffusion will be added to the matrix-fracture transfer term.
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