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Abstract

This thesis investigates the use of deep learning for the automatic identification of ma-
chine operations from multivariate time-series data emanating from sensors and actuators.
Methods from deep learning and time-series analysis are reviewed with the aim of deter-
mining their suitability. A new approach is introduced to alleviate weaknesses in current
approaches which include insufficient signal selection, requirement of large amount of
training data or neglection of the physical nature of the system. It consists of: a prepro-
cessing methodology based around stationarity tests, redundancy analysis and entropy
measures; a deep learning algorithm classifying time series segments into operation cate-
gories; a process analytics framework dealing with operation length and frequency. The
approach was applied successfully to several datasets from heavy machinery bulk handling
systems.
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Kurzfassung

Die vorliegende Arbeit untersucht die Anwendung von Deep Learning zur automatis-
chen Identifikation von Maschinenoperationen aus von Sensoren und Aktoren stammenden
multivariaten Zeitreihen. Methoden des Deep Learning sowie der Zeitreihenanalyse wer-
den analysiert um ihre Tauglichkeit festzustellen. Ein neuer Ansatz wird vorgestellt
um die Schwichen in aktuellen Ansétzen zu beheben, welche unter anderem unzure-
ichende Signalauswahl, den hohen Bedarf an Trainingsdaten sowie die Vernachlédssigung
der physikalischen Natur des Systems umfassen. Dieser besteht aus: einer Methodik zur
Signalvorverarbeitung rund um Stationaritétstests, Redundanzanalyse und Messung der
Entropie; einem Deep Learning Algorithmus, der Segmente von Zeitreihen in verschiedene
Operationskategorien klassifiziert; einem Konzept zur Prozessanalytik rund um Lange und
Héaufigkeit der Operationen. Der Ansatz wurde erfolgreich auf mehrere Datenséitze von
Schwermaschinen zum Schiittgutumschlag angewandt.
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1 INTRODUCTION

1 Introduction

The manufacturing industry has been undergoing drastic changes in recent years. Tech-
nology innovation has lead to a situation where all the elements of production are entirely
connected - machines, workers, equipment, resources, processes or even costumers. The
industrial world has been disrupted and a new key production factor has been moved to
the center of attention: data. Though the increased availability of manufacturing data
through advances in sensor technology and storage systems can be seen as progressive,
the potential of data as a production factor can only be unleashed by gathering insights
into the production process from it. This can only be achieved by designing suitable
data analytics approaches. Though a variety of applications is possible, the most work
is done in the area of predictive maintenance. The area of process analytics, referring to
generating a holistic analysis of a machines operational behaviour, is not explored with
the same intensity.

Data analytics methodologies exist in a variety of domains. Analytics in the manufac-
turing domain has to deal with a number of special requirements and challenges. This
is especially true for advanced methods, such as machine learning algorithms, that are
forming the core element of many analytics approaches. Their successful application is
mostly data dependent and manufacturing data is providing a rough environment in this
regard.

Firstly, it is required that used methods have to be able to process high dimensional
data within a remarkable timeframe as well as uncover dependencies within a process and
between different processes, being represented by correlation and causality. Furthermore,
data quality (e.g. name) or data composition (e.g. availability of labelled data) have
to be considered and a high amount of redundant or irrelevant data can lead to a lower
performance [93]. A respectable try to sum it up in one sentence from [56]: problems in
manufacturing are "data rich but information poor".

Another noteable feature of manufacturing data is resulting from its origin, as it is sensor
data in most cases and therefore has a temporal component. Each measurement results
in a specific value at a specific point in time and falls into the category of time series data.
This data type comes with a number of characteristics. Summed up in [46], reaching from
the need to have a certain ratio between the amount of data and system complexity and
an explicit dependency on time to non stationarity and invariance.

A further requirement is that sensor data analytics needs to correctly include the in-
evitable causalities lying within the data through the underlying physical process [63].

In spite of all the difficuties, there are clear implications that machine learning meth-
ods are potentially filling a gap in such applications, being the high amount of successful
examples in manufacturing and obvious intersections of its strengths with the require-
ments of the domain. Though a generalization to all algorithmus can not be made, ML
is handling high dimensional datasets relatively well. Furthermore, the fact that ML is
using past data to understand the problem allows proper handling of dynamic systems,
as adjustments are made to changing behaviour that would be hard for a deterministic
model. Some of the mentioned challenges and problems might have had a fostering effect
on the rise of a novel machine learning technique. Deep Learning, a set of methods em-
powering models consisting of multiple layers learning representations from data with an
increased level of abstraction [48], have shown great results on several important machine
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learning problems and therefore attracted a considerable amount of attention. One of
the reasons might be that classic machine learning approaches can not be applied to raw
data easily [48]. Taking a classification task as an example, the algorithm is in need for
so called "features" to tell him what characterises the data with respect to the classes.
This can be quite problematic, as the construction of such features (called "feature engi-
neering') is a very time consuming step that often requires a priori knowledge and feature
quality is crucial for the learning phase [1].

1.1 Motivation

Nature has been an inspiration for computer science several times, as with deep learning
and the human brain. As humans are able to analyze sensory information by letting
it propagate through a hierarchy of layers which basically learns representations from it
without preprocessing [1]. As mentioned in [5], perception with regard to sensor data can
be seen as assigning a meaning and a semantic representation to sensory observation. This
seems to be an interesting starting point to lead over to the need for new data analytics
approach.

Predictive maintenance, failure detection and process optimization require automated
process analysis. A key enabler for all these is a human understandable, event based
representation methodology which segments the production process of a machine into its
steps. There are several existing techniques that are able to overcome individual parts
of the challenge posed, but can not solve it in total. Concerning the selection of the
most promising variables from a high number of sensor dimensions, concepts like sta-
tionarity, entropy or correlation have been considered before, but mostly individually. A
comprehensive approach to select the optimal set of signals with respect to all of them
has not been presented yet. Symbolic representations are able to represent sensor data
and provide its information with reduced dimensionality, but require a priori concerning
the data. Well established machine learning approaches are able to classify time series,
but often require large sets of labelled training data. This again requires knowledge to
enable the definition of classes (e.g. machine operations) and a manual labelling step. In
addition, as complex machine operations are formed by a simple suboperations, the length
of time series segments processed hugely matters. Current literature does not cover this
adequately.

1.2 Goals

This situation motivates an evaluation of the potential of deep learning methods in man-
ufacturing process analytics. This is carried out via analyzing the specific requirements of
this application and matching it with what an algorithm can actually provide, including
statistical analysis and preprocessing that can be combined with deep learning.

In concrete, the goal of this work is to provide a thorough literature review on time series
preprocessing methods relevant for the specific features of the dataset as well as deep
learning models applicable to this type of task. The lessons learned from this review will
be used to select the most suitable methods and construct a novel approach for sensor
data analytics from it.

In detail, the following shall be achieved:

o A discussion of the strengths and weaknesses as well as successful applications of
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statistical preprocessing methods and deep learning models.

o The conception of a preprocessing methodology capable of signal inspection and
selection. Increasing applicability and performance of machine learning algorithms
as well data insights shall be achieved. The focus will be the removal of redundant,
information poor or random data as well as normalization.

o A deep learning algorithm able to classify machine operations from time series data.
An ideal combination of a deep architecture and a training algorithm is selected,
whereby the feature extraction capabilites of deep methods are of special interest.
The limited use of training data plays an important role.

o A framework for aggregating the results into useful information on the manufactur-
ing process.

1.3 Organization

This work is structured as follows: Part 2 reviews statistical methods for preprocessing
time series data and tries to come up with recommendations while Part 3 reviews different
deep learning models including their architecture, training process and way of application.
Part 4 introduces the analytics approach introduced in this work and Part 5 evaluates
the approach on machine sensor data. Part 6 concludes this thesis and proposes possible
directions for future work.
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2 Statistical Preprocessing of Time Series Data

The purpose of the following section is to introduce a theoretical background for the
preprocessing tasks considered necessary in the course of this work. This is relevant as a
preprocessing algorithm will form an important part of the analytics approach. Reviewing
different methods mainly follows the purpose of enabling and supporting an appropriate
selection. The areas covered were defined by basic assumptions about the data and what
statistical properties and methods can do to support analysis. Their main contribution is
related to either improving performance of algorithms, guaranteeing model validity and
reducing dimensionality.

For all the four preprocessing aspects considered in the following, it starts with identifying
methods that are considered capable of performing the required tasks. Moreover, litera-
ture is reviewed for possible method selection or short-listing via uncovering strengths and
weaknesses and draw possible conclusions for sensor data classification. The focus lies on
possible successes of a method on similar problems, data sets or domain of applications.
In the ideal case, works that provide a valid comparison can be referenced.

Three of the four aspects deal with eliminating or selecting signals with respect to key fea-
tures while normalization is performing an actual transformation on the data. The latter
is assuring a common scale which is beneficial for further steps. Stationarity assessment
is verifying the presence of an important property which is a prerequisite for any model
trained on the data to be valid. Redundancy analysis is attempting to identify time series
that contain redundant information to reduce data dimensionality. Lastly, signals shall be
compared with respect to their "interestingness', which means presence of patterns and
probability of learn characteristics of the process form them. This idea is best covered by
methods from the domain of time series complexity measurement [83].

It needs to be mentioned that although the specifics of multivariate time series data are
of huge importance for the overall approach, the signals will be preprocessed individually.
The capability of the methods to handle MTS is therefore not a factor in their evaluation.

2.1 Normalization

In the following, different possibilities for normalizing time series are presented, including
their drawbacks and limitations. The purpose of this section is to select a suitable nor-
malization technique for a manufacturing analytics approach. This is done via analyzing
their essential properties and reviewing literature where comparisons have been made.
The following aspects are considered especially important:

1. Handling of time series data properties (Stationarity, Volatility, Outliers, Distribu-
tion)

2. Effects on performance of machine learning algorithms

Simply explained, normalization takes given values of a specific attribute and then adjusts
them so that they fit into a defined range. As formulated in [67], these techniques take a
variable X and replace it by any function of it (square root, mean, divided by etc.). The
authors also state that normalization becomes more important when data has attributes
of varying units and with different scales, as data mining algorithms rely on comparing
data points and this only works if they are proportioned. As mentioned, this argument is
highly relevant in manufacturing as sensor systems lead to that exact situation: high vari-
ations in scale across different dimensions. As it will be pointed out in the course of this

4
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section, time series data is fraught with some other perils when it comes to normalization.
Two important properties of time series shall be outlined here for a better understanding,
as they will be mentioned during explanation and discussion of normalization methods.

An often discussed feature in time series analysis is stationarity. Due to its complex-
ity and relevance, it will be elaborated in a seperate section.

Another property is uniform and non-uniform volatility, respectively. In contrast to sta-
tionarity, volatility does lack a consistent statistical definition. Intuitively speaking, it is
describing the degree of fluctuation within data. An illustration might help to imagine
how a time series with non uniform volatility might look like (see Figure 1). According
to the previously made definition, this time series is also non stationary, as variance is
varying over time. Although it is true that volatility can not be computed without a solid
definition, the idea behind it allows the intuition that time series collected by sensors in
manufacturing will often have changes in volatility from one segment to another.

High Volatility

Low Volatility

Figure 1: Time series with non-uniform volatility

Almost any work done in machine learning states that data quality is crucial for success
and the importance of preprocessing is mutually agreed upon. Now, this alone does not
provide a justification for data normalization.

Nayak et al. (2014) [73] mentioned a few positive effects of placing normalization tech-
niques in front of machine learning, stating that scaling the input features is reducing bias
within a neural network and that training time can be reduced as the training process
can start in a similar range for each feature. In [70], the authors are reminding fellow
researchers of the inevitability of normalization in time series analysis to produce mean-
ingful results. An example from video analysis is provided, illustrating that small changes
in scale or offset are significantly increasing the classification error if normalization is not
used.

As a next step, the meaning of normalizing data in problems from an industrial environ-
ment shall be pointed out. Sola & Sevilla (1997)[82] are applying a multilayer perceptron
to several variables measured in a nuclear power plant. Their experiments lead to two
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interesting observations: Firstly, the error rates decrease with reduced difference in vari-
ation of variable. It is argued that this is caused by the fact that all variables are equally
influencing the output error as they are in a similar range. Secondly, there is a threshold
in the iteration number at which the error starts rising again, which seems to depend on
the normalization method. This is explained by the over-fitting effect and the downsized
searching space, which reduces the effort for the backpropagation algorithm.

In the following, a selection of normalization techniques shall be discussed. The three most
common methods, frequently appearing in work on comparing them (such as [60]) are Min-
Max normalization, Z-score normalization and decimal point normalization, which can be
found in [26]. Median normalization and sigmoid normalization can be found in [73].

Min-Max Normalization.
Min-Max normalization is defined as:

To — Xmm
= —— 1
’ Xmaa: - Xmm ( )
Where the new value of variable z, z,, is calculated from the current value xy and the
minimum and maximum value for the variable in the dataset, X,,;, and X,,... The
variable can be mapped into a defined range. While the above definition only works for
the range [0, 1], other ranges as [—1, 1] can be achieved by using [73]:

(xub - Jflb)(%o - Xm'm)

n — 2
v b * Xmax - szn ( )

where z,, and xj, are the upper and lower bounds defining the range.

In [62], the authors state that the min-max normalization faces the problem of not knowing
if future values are lying within the minimum and maximum values of a sample. They
mention two possibilities to overcome this issue:

» Setting every out-of-bounds value to X,,;, or X,,.,. This might lead to a significant
information loss, as lower and higher values can not be considered less important
just because they are out of range for earlier data and might even be characteristic
for the dataset. In addition, it might very well be the case that a lot of future
data is out of bounds. This would lead to a high number of samples being set to
exactly a boundary value which results in a concentration that is not existing before
normalization. The negative effect of this issue on machine learning performance is
validated in [82].

« Using sliding window technique (for example in [85]) normalizing a window of certain
length on its own. The necessary assumption of uniform volatility might not always
hold up.

Z-Score Normalization.
This method is computed as:

_Z’Q—X

Ty =

(3)

Here, the specific value x,, of a certain attribute X is normalized to z,, while X and ox
are the mean and the standard deviation of that attribute. It can be concluded intuitively
and is mentioned correctly in [34] that this leads to data with zero mean and unit variance.
In terms of properties of this method, the authors stated that z-score normalization is

Ox
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not depending on knowing the overall minimum and maximum of the dataset and is able
to reduce the effect of outliers. Both are valuable assets in normalizing time series sensor
data. On the negative side, the method is limited to stationary environments where mean
and variance do not change over time.

Decimal Scaling Normalization.
Decimal normalization is computed as:

~10¢c

(4)

whereby ¢ must be chosen so that maxz|X,| < 1. Decimal scaling has the already men-
tioned problem of being dependent on knowing maximum values (the number of decimal
points moved depends on it).

Tn

Median Normalization. N
Each sample is divided by the median, represented by X, for all samples:

2 )
As assessed by [73], this method benefits from the fact that the median is not affected by
the magnitude of extreme deviations in the data, as the mean would be.

Sigmoid Normalization.
A sigmoid function has to be chosen to perform this normalization:
e’ —e™”

" e Tes R
Sigmoid normalization does not depend on the distribution of the data [73].
Being interested in the interaction of normalization techniques and machine learning al-
gorithms, [60] provide a study involving the three methods above. Being tested together
with a least squares support vector machine (LS-SVM) on a prediction task, decimal point
normalization is achieving the best results in terms of mean squared error and accuracy,
followed by min-max and Z-Score. Unfortunately this is accompanied by the highest com-
putational time, min-max having the lowest. The authors repeated the experiment with
neural networks, receiving similar results.
A similar evaluation has been done by [81], who used normalization in the course of
univariate time series forecasting with evolutionary ANN. Their results show that vector
normalization led to the highest forecast accuracy on the test set, stated for the sake of

completeness:
To

k 2
\/ Zj:l Ty

On the training and validation set, min-max normalization delivered the best result.

In [34], the authors show that the classification performance of a feed forward back prop-
agation neural network is depending on the used normalization method. In their experi-
ment, min-max normalization slightly outperforms Z-Score and Sigmoid normalization.
[73] provide an evaluation of normalization techniques on four different time series fore-
casting models based on artificial neural networks. On average, min-max, Z-score and
decimal point normalization performed poorly while sigmoid normalization lead to a very

(7)

Ty =

7
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high forecasting accuracy.

In [16] min-max and Z-score normalization are evaluated. In terms of time series fore-
casting accuracy. The methods acted as a preprocessor for MLP and other algorithms,
whereby min-max (linear scaling) had the better performance. More interesting is the
fact that accuracy was varying with different scales results for linear scaling. Variation in
post-normalization range can therefore be seen as a possible adjustment with respect to
an ideal analytics approach.

Other conclusions on relevant method particularities can be drawn from a visualization
of normalization results for a simple time series example (see Figure 2a and 2b).

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) Example comparison of min-max, (b) Example comparison of median,
Z-Score and decimal point normalization sigmoid and vector normalization

Figure 2: Visual analysis of normalization methods

Further analysis is heavily relying on the presence of characteristic patterns within the
time series. The possibility of identifying those with machine learning shall not be nega-
tively affected by changing the shape of the series. It needs to be pointed out that though
the time series look smoothed after normalization, the relative distances between individ-
ual data points have not changed. Looking at figure 2a, both methods are preserving the
shape of the original time series, with Z-Score normalization coming a bit closer. Apart
from that, it is notable that data points of value 0 are moved in both methods. This
seems problematic in a sensor data environment, as zeros represent a special causality in
the respective system (e.g. no activity).

This is different for the methods visualized in figure 2b, as zeros remain unchanged. The
flattened shape which is mainly a visual effect as the values are set to a smaller range.
This random example also reveals a possible effect of median normalization, which is in-
verting the signal in case of a median of -1.

Although this multi-perspective analysis revealed some interesting aspects on time se-
ries, it does not allow an unambiguous conclusion on a preferable method. That was
to be expected, as this is obviously depending on data and algorithms and both factors
are varying within the analysed studies. Still, it remains to be noted that min-max nor-
malization preserves the shape of the original time series and is flexible on normalization
ranges, which puts it on a short-list for practical applications.
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2.2 Stationarity Assessment

As it has already been mentioned in the introduction, time series stationarity has clear
relevance when performing analytics on it. In concrete, the effect of stationarity on ap-
plicability and validity of results of certain normalization techniques has been mentioned.
In this part, the need to consider this property in the context of this work is explained on
a broader basis. To present this explanation in an understandable manner, it is required
to introduce the concept of stationarity first.

As a time series is a series of observations, there is always some kind of process generating
this observations. A stationary time series is therefore originating from a stationary pro-
cess, characterised through the fact that its stochastic properties are not changing over
time [61]. In formal definitions, it is distinguished between [61]:

1. A strictly stationary process, meaning that given time points ¢4, ....., t,, and random
variables X (1), ....., X (t,), the joint distribution of X (1), ....., X(¢,) is the same as
for X(t14+), ..., X (tnsr). The definition holds for all n and 7 and means that all
moments of all degrees are the same throughout the entire process. Furthermore,
the joint distribution of two variables cannot depend on their time instance, but
only on the interval between them.

2. A process of second order or weak stationarity, limiting the definition to mean and
variance (independent from t) and autocovariance (only depends on lag 7)

To expect that the assumption of strict stationarity holds for a dataset is asking a lot,
especially if it is collected over a longer period of time. We may actually be seeking points
in the data who are non stationary. These may be points in time where causal events
occur. Most work on the analysis of time series stationarity with regard to practical ap-
plications is therefore focusing on weak stationarity. As the purpose of this section is to
introduce stationarity as an interesting property for applying machine learning on sensor
data time series, the term stationarity will be used for the latter.

To rephrase the above given definition, the vector (z1, ....., z,) and its time shifted coun-
terpart (z14k, ..., Tnrx) have the same mean vectors and covariance matrix, holding for
every integer k and every positive integer n [14]. In [14], the author lists several elemen-
tary characteristics of strictly stationary time series from which some can be used here to
further reinforce the distinction to weak stationarity:

1. Random variables from a strictly stationary time series are identically distributed

2. Strict stationarity is given for sequences which are 7id (independent identically dis-
tributed).

3. A time series for which weak stationarity has been assessed is not guaranteed to be
strictly stationary

For the third one, it is noted that the generalization of stationarity is possible the other
way round. This trivial conclusion can be drawn from the fact that if all statistical prop-
erties are constant over time, this has to be true for mean, variance and autocorrelation,
which are relevant for second order stationarity.

Having introduced the concept of stationarity, the statistical properties are not suffi-
cient to make the necessity of its consideration obvious. This can only be achieved by
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linking the concept with relevant, practical issues.

Modelling approaches for univariate as well as multivariate time series often include a
stationarity assumption, questioning its usability for non-stationary data and making
stationarity testing necessary. Although this property is causing inconvenience, general-
izing any model by relaxating the assumption of stationarity would increase its size and
its number of parameters [35] reducing its ability to solve real world problems. A quite
general interpretation of stationarity in the context of data modelling might be that in its
absence, the accuracy of a model is time-dependent, which is of huge importance. In [61],
an interesting example is brought up, explaining the problem with applying the problem
to non stationary data generated by a process which is evolving over time. Considering
X; = 047, as a time series model. In case of non-stationarity o; could change with every
time step. One has to estimate the quantity oy only using one single data point (at time
t), which will usually be not very successful.

The same idea can be thought through with the help of an illustration (see Figure 3).
The data was generated using an stationary AR(2) process and a non stationary unit
root process. In the stationary example, it is visible that the mean and variance of any
segment of the time series could be used to represent the entire series, whereas this would
fail in the non stationary case.

(a) Time series fulfilling stationarity -  (b) Time series not fulfilling stationarity -
AR(2) process unit root process

Figure 3: Concept of stationarity for time series data

With some adjustments, the previous arguments concerning models in general can be
extended to machine learning algorithms and their issues with non stationary data. In
detail, it is sufficient to rephrase the above ideas, as it has been done by [86], who are sum-
ming up the evolving challenges in two points: What has been learned by the algorithm
from past data is not automatically useful for future samples. Furthermore, training data
is not always a suitable preparation for the test phase, if the data is not iid and stationary.
Ways of overcoming these problems might be to repeatedly train the model over again on
a window of the dataset or combining different models, each focused on a certain part.

Lastly, the relevance of stationarity to manufacturing sensor data is pointed out. Though
processes are frequent sources of manufacturing signals [88], several explanations for the
occurrence of non stationary times series in this domain are given in [9]:

1. Changes in the data generating phenomena

10



2 STATISTICAL PREPROCESSING OF TIME SERIES DATA

2. Sensor malfunction
3. Modification of sensor location

An additional possibility that comes to mind is that wear and tear in machine components
reflects as a trend in the respective measurements.

Two other statistical properties which are often mentioned in the same context as station-
arity are ergodicity and randomness. They are dealt with here as connections between the
concepts can be identified. As with stationarity, ergodicity and randomness are making a
statement about the data generating process and are relevant for analytics. Interdepen-
dencies can be drawn formally and intuitively.

According to [89], an ergodic process is one where the existence of one of its realizations
can be used to derive its statistical properties. As stationarity, ergodicity is independently
defined per property, indicated by the terms mean ergodicity and covariance ergodicity.
This can be enhanced to time series, done in [15]. The mean of a single time series realized
from a mean stationary time series model is required to converge to the ensemble mean
with increasing series length:

lim X L (8)

n—o0 n

Per this definition alone, the relevance of ergodicity in a time series and manufacturing
context might not be obvious. Firstly, time series data is not independent, which is one
of the characteristics making it challenging. Ergodicity intuitively stands for the indepen-
dence of two relatively far away observations in the series. Furthermore, time series data
from the economic area can be described as a single instance of a hypothetical model.
This is contrasted to technical experiments, where each run can yield to varying results
(caused by e.g. slightly changed starting conditions) and is represented by a time series
in the ensemble [15].

The term hypothetical can be interpreted as a reference to economical data not being gen-
erated by an identifiable model. It is therefore impossible to state that two economical
series are realizations of a common model. This is different with respect to an experimen-
tal setup.

Transferring this to sensor data analysis in a production environment, one would not see
it as several runs but more as a continuously monitored process. This would lead to a
long, single realization of the manufacturing process, not raising the question of ergodicity.
This does not hold up if you consider factors like wear and tear of machine components,
component failures or different ways of manual operation as different starting conditions
for the process model, questioning ergodicity.

Contemplating this idea, the usage of machine learning, whether supervised or unsu-
pervised, will make it necessary to split measurement data segments or training/evalua-
tion/test sets. The concept is therefore worth considering in addition to stationarity, as
an ergodic process is always stationary, but not necessarily in reverse [10]. In [18], the
authors mention that non ergodicity is negatively affecting ML performance in a signal
processing application.

Passing on to random time series, which are generated by an underlying random pro-
cess. The latter is defined as a sequence of variables and can be thought of as a random
vector with an infinite number of dimensions [24]. More specifically, random data is nei-
ther deterministic nor periodic [39]. Making a connection to the concept of stationarity,

11
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the authors of [19] mention that those two properties are are independent to each other
with respect to time series and that stationarity is referring to temporal relations in the
data while randomness is not.

Testing

After introducing a theoretical background for important time series properties, the focus
of the following is on testing procedures for evaluating the presence of them in actual
time series data. Several important aspects of analytics making it necessary to differen-
tiate according to bespoke features. Firstly, different models are needed for processing
stationary /non-stationary data and conclusions and insights drawn from it might need to
be interpreted differently. In other words, it makes no sense to let the same algorithm
run over stationary and non-stationary data, as this inconsistency can affect validity of
results. Another aspect lies in the use of testing procedures as a filter, which reduces
amount and dimensionality to be processed. Lastly, extending this to the practical ap-
plications in manufacturing, irregularities like sensor failure can be discovered by a signal
considered random. This statement can be made as a random time series will not have
periodic elements, which should be immanent in this context as a production process is
generally of a repetitive nature.

There are several of individually developed approaches in the literature for testing sta-
tionarity and randomness geared towards specific applications and datasets. As a novel
preprocessing approach including testing methods is developed in the course of this work,
only the foundational methods shall be outlined. Those are runs testing, unit root testing
and autocorrelation function. Regarding ergodicity, one of the few practicable testing
methods identifiable in current literature is mentioned.

Runs Test.

The runs test [13], also referred to as Wald-Wolfowitz runs test, is a non-parametric test
which can be used to assess whether or not a dataset is originating from a random process.
A run within a sequence is referring to a segment of equal adjacent elements. Originally,
runs were series of increasing or decreasing values, as the probability of a certain value
being larger or smaller than its predecessor is following a binomial distribution in a ran-
dom dataset. It is therefore foundational for the test. To apply runs test, any sequence
must be transformed into a two-valued representation.

In time series applications, the representation is usually generated by differentiating be-
tween values above and below the median of the series. For the actual test, the fact that
the series is random is defined as the null hypothesis. It is rejected if:

Z> 7 _a. (9)

Assuming a significance level of 5 percent, the hypothesis is rejected if the test statistic

Z > 1.96. It is computed via:
R — R,
Z = : (10)

OR

with R being the number of runs observed in the series. The expected number of runs,
R, and the standard deviation are defined as:

2711712

R, = +1, (11)

n1+n2
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and
2n1ny(2n1ng — Ny — o)

(n1 4+ n2)?(ny +ne — 1

whereby n; being the number of runs above the median, ny the ones below.

Ok = (12)

The authors of [42] are using this test in the course of a selection process for seismic
time series. In [68], Wald-Wolfowitz is used as one of several tests to perform sensor ver-
ification, which is an argument for its applicability in the course of this work. It can also
be used with non-stationarity as the hypothesis, demonstrated within [37], which applies
it in the domain of hyperspectral images.

The main advantages of the runs test is that it is non-parametric and distribution free.
This means that the significance level holds for any distribution and the method is appli-
cable to a case were only small samples are available [30].

Unit Root Test.
The principal functioning of a unit root test can be explained introducing an AR(1) time
series model:

z(t) =0x(t — 1) + e, (13)

where z(t) is a time series value of time ¢ and ¢, is an error term.

Models used to describe processes consist of one or several single term expressions, where
each of them corresponds to a root. A root of size 1 (unity) is a unit root which is one
of the causes on nonstationarity and nonpredictability of time series. For equation (13),
a unit root test evaluates 6. In case of |0] = 1, the test is accepting the null hypothesis
(Hp) that the times series has a unit root. The alternative hypothesis would be that the
time series is stationary in case of 6 < 1.

This procedure basically describes the Dickey-Fuller test [20]. As the complexity of the
AR(1) process above is exceeded in most applications, the Augmented Dickey-Fuller(ADF)
test [74] is far more used. It is able to capture a more complex model with components for
trend and drift. This allows several versions of the test to be carried out. As an example,
it is possible to test for trend stationarity specifically by restricting other coefficients to
zero and neglecting the respective terms.

In [2], the authors compared several unit root and stationarity test and present recom-
mendations for different time series lengths. The ADF test performs well on all samples,
particularly as length increases, which is the usual case in sensor data analysis. In ad-
dition, they bring up the idea of supplementing a unit root test with the KPSS test [44]
which tests the null hypothesis of stationarity against an alternative of unit root. Think-
ing that through, the two could be used to reassure results mutually. A rejected Hy from
ADF test and an accpeted one from KPSS test would vehemently imply stationarity. A
failed rejection from both could indicate that the number of observations is insufficient.

Autocorrelation Function.
The autocorrelation function (ACF) [11, 80] allows the computation of a coefficient that
describes the correlation of a time series with itself at a later point in time. For a time
series x of length n at time t with a lag of k representing the delay, the ACF is given by:
> (z — @) (zk — @)
r(k) = S . (14)

n
1

> (v — )2

t=
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The result describes the correlation of future and past values. The use of this function
for stationarity testing is relying on the development of autocorrelation with increasing
lag. A fast approach of the ACF towards 0 is an indicator of a stationary time series
[89], while a nonstationary time series will manifest in slow decay. This assessment can
be assisted visually via a correlogram. Figure 4 visualizes the autocorrelation function for
the exapmle time series from Figure 3.
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(a) Autocorrelation function of a (b) Autocorrelation function of unit root
stationary AR(2) process process

Figure 4: Autocorrelation of stationary and non-stationary time series

Problems of this approach include that (non)stationarity is indicated, but not explicitly
proven. Furthermore, the conclusions that can be drawn from the ACF visualization
could as well be drawn by the series itself, as signs of nonstationarity such as mean shift,
trend, seasonality or periodicity are visible.

Ergodicity Test.
Ergodicity tests are not as common as the ones for stationarity. In [89], a testing procedure
composed of several components is presented. It is structured as follows:

1. Time series t is tested for stationarity via its autocorrelation function as it is a
prerequisite for ergodicity

2. The sample mean value series M; and the variance series of mean value D(M,) are
calculated

3. D(M,;) is simulated with RBF neural network (as it is nonlinear) and predict its
trend with the time parameter tends towards infinity

4. Check the series for mean ergodicity (confer equation (8))

Details can be found in [89].

Transformation of Nonstationary Time Series

After nonstationarity has been detected by one of the proposed testing methods, one might
still be interested in using the time series in further analysis. If a model is used that is
unable to handle nonstationary data, we need a way to transform it into a stationary
form. A simple, but often sufficient method is differencing [14]. It can be computed for
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different orders, but as pointed out in [41], first-order differencing is enough if the data is
free of seasonal effects:

y(t) =x(t —1) —z(t) = Va(t — 1) (15)

with y being the new stationary series and x is the nonstationary form. Lei et al. (2015)
[38] successfully removed the trend from chemical process viscosity data.

2.3 Redundancy Analysis

Multivariate Time Series (MTS) are multidimensional data. Amongst other challenges,
the number of problems can reach a level where problems arise. The curse of dimension-
ality is an often used term in machine learning and other domains. Briefly explained,
it describes that the amount of training data necessary for an ML task exponentially
increases with data dimension.

Its specific relevance in time series analysis has been analyzed in [87]. The authors point
out that the problem with high dimensional time series lies in the fact that the intuition
behind many analytics approaches is based on low dimensional spaces. It is significantly
harder to draw intuitive for problems in higher dimensional spaces. This problem is also
affecting a deep learning algorithm, as it is a non-linear model which usually uses more
parameters than inputs, leading to overfitting and numerical instability.

This leads to the concept of redundancy analysis. The idea here is to reduce the di-
mensions of MTS via removing or not considering single time series. The potential of
significant reduction of dimensions is especially high if the MTS dataset consists of ma-
chine sensor signals. The same physical phenomenon, occurring in a part of the machine,
is observed by several sensors, makes a certain degree of redundancy inevitable.

Cross Correlation.
Such an analysis can be carried out using the cross correlation function. A normalized
version, able to handle varying amplitude of signals, is presented in [3]:

~ _ 0501502 (T)
Coia(T) = G 0)Crran0)

where 7 represents a time offset and C,,,, is the autocorrelation of the first signal. The
normalized cross correlation, Cy,,(7), will lead to result between [-1,1]. Both boundary
values mean identically shaped series, while 0 means uncorrelation. A possible drawback
of this function arises when applied to autocorrelated signals, producing misleading re-
sults [28].

(16)

Having a set of multiple signals, cross correlation is applied pairwise, ending up with
a cross correlation matrix. Such a matrix R is then:

Cxlxl mez e Ol‘lwn
R=| : P Lo (17)
Cmm:vl memg e mezn

A possible result of such a cross correlation coefficient matrix for an example of four signals
would look like in Figure 5 below. The diagonal obviously contains now information.
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Figure 5: Exemplary cross correlation matrix

So far, only correlation information about the signals has been determined. For actually
reducing data dimensionality, a concrete selection procedure needs to be defined. Possi-
ble examples include [55], who perform pairwise correlation and classify signals above a
threshold as cancelled. Mutually correlated signals are grouped and only one representa-
tive of each group is considered further. Bacciu (2016) [3] uses this concept on features
instead of signals. Pairwise cross correlation and identification of noisy features via auto-
correlation are repeated until a final set of features is found.

Mutual Information.

Mutual Information (MI) [43] is based on the concept of Shannon Entropy [78]. It is
capable of evaluating the dependencies of two random variables, whereby the amount of
information on one variable that can be deducted from the other is quantified.

For the two random variables X and Y, mutual information is defined as:

MI(X,Y)=H(X)+ H(Y) - H(X,Y), (18)

where H(X) and H(Y') are the Shannon Entropies of the variables and H(X,Y) is the
joint entropy. With the definition of Shannon Entropy , this is equal to:

pxy (z,y)

MI(X,Y) /X /Y pxy(z,y)log P e dxdy. (19)
An important prerequisite for the computation is the estimation of pX,Y (joint probabil-
ity density function. Details on this are omitted here, but a promising method is k-nearest
neighbour estimation [43].
MI has been used successfully in input selection for time series forecasting in [12] and
[95] and for MTS feature selection in [22]. While correlation methods measure the degree
of linear association, MI can detect nonlinear relations between two variables with no
limitations concerning statistical moments. Though this definitely is a desirable feature
considering possible nonlinear dependencies in a sensor dataset, problems can emerge in
real world applications. MI results can be misleading and difficult to interpret, as will be
shown in Chapter 5.
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2.4 Time Series Complexity

The previously introduced allowed to identify a group of time series that are correlated
to each other. If it is decided that only one of them needs to be analyzed, it is needed to
determine which one. It is therefore of interest to measure the relative "interestingness"
of a time series with respect to an application.

It is impossible to present a general definition of when data is interesting, as it is prob-
lem dependent and even in a defined setting, the characteristics of a dataset are often
unknown. What can be said, at least for the problem of sensor data classification, is
that data is interesting if it is able to describe the underlying process well and should be
suspect to patterns.

Considering this, the field of time series complexity measures, especially entropy-based
techniques, show potential to cover the problem. The concept of information entropy was
introduced by [78] and describes the average amount of information in data generated by a
stochastic process. A high amount of information thereby corresponds to unpredictability
of the data, as e.g. a periodic signal contains less potential for new information arising.
This is interpreted differently in applications like this one, as high predictability is bene-
ficial for well founded process analysis.

It has to be noted that there are few applications of entropy-based complexity measures
in a manufacturing context, but potential can definitely be spotted.

Approximate Entropy.

Approximate Entropy (ApEn) [66] is a technique which can be used to measure the pre-
dictability of a time series. Like other entropy based techniques, it is able to provide a
quantification of the occurrence of patterns in the data.

To perform ApEn, one has to construct a sequence of vectors out of your time series,
whereby each vector is formed via

x(i) = [s(2),s(i + 1), ..., s(1 + m — 1)], (20)

whereby s is the time series and m is the length of the runs that are compared. One
should end up with the sequence z(1), x(2), ....,z(N —m + 1) with N being the length of
the time series. Next, the following computation is done for each vector:

(nyldlz(i), z(5)] <)
(N—-m+1)

Cm(r) =

)

(21)

with
dlz(i),z(j)] = max |s(i+k—1)—s(j+k—1), (22)

k=1,2,.....m

whereby the distance function computes the maximum difference in scalar components of
the vectors. Now, we define

Cm(r) = (N —m + 1)1 _fj cm(r). (23)

The Approximate Entropy value of the time series is equal to

Happn(m,r) = C™(r) — C™ L (r) (24)
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Approximate Entropy will deliver a lower value for time series showing recurring patterns
which are therefore more predictable.

An issue with ApEn is that it has been developed and mainly used within the physio-
logical domain. On the other hand, this is true for the majority of suchlike methods. In
addition, physiological time series are also sensor measurements. They are equally subject
to noise, can be monotonous a majority of the time with an unsteady occurring of events.
Unfortunately, ApEn is also a subject to general drawbacks pointed out in [71]: heavy
dependence on sequence length and a poor relative consistency. The latter is referring
to different results with varying paramters when comparing two series. This actually is
alarming, as the technique shall be used for a relative evaluation of different signals.

Sample Entropy.

Motivated by the weaknesses of ApEn, [71] developed another complexity measure called
Sample Entropy (SampEn).

Again, a time series of length N is introduced and vectors of length m such as X,,(i) =
iy Tig1y s Tizm—1. A filter criterion r is needed again, as well as a distance function d,
which can be any common distance function. SampEn than counts the number of vector
pairs that have a distance below r for all pairs of length m (represented by B) and length
m + 1 (represented by A). Sample Entropy is then computed as:

A

HSampEn = —ZOQE, (25)

which will deliver a positive result, with lower values indicating higher predictability.
An important feature is the exclusion of self-comparisons regarding the vector pairs, mean-
ing that d[X,, (i), X;,(j)] is not computed for ¢ = j. This is considered advantageous, as
those comparisons influence the overall result and will create the impression that the time
series is more regular than it actually is. In addition, there is less variance in the result
with varying data length and implementation is easier.

Permutation Entropy.
Permutation Entropy (PE) was introduced by [4], is a complexity measure where the
temporal order of values is considered.

For a time series s = s;, S;y1, ...., Sy the permutation entropy is defined as

Hperm(n) - - Z p(ﬂ-) lOg p(ﬂ-) (26)

In addition, it is possible and recommended to define permutation entropy per symbol of
order n:

H(n)
n—1
This is obviously asking for further explanation. PE is depending on the definition of a
permutation order n. The summation in equation (26) is running over all permutations
7 of order n, equalling n! possibilities.

Considering an example series with NV = 6 elements and a chosen order n = 2, one can
find 5 pairs of consecutive values. It is now distinguished between pairs where s; < s¢11,
forming one permutation, and such where s; > s;,1 forming the other. Assuming that
the pairs fall into the categories 3:2, permutation entropy is equal to

3 3 2 2

H(2) = —(5)log ) — () log =), (28)

hy =

(27)
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Further details, explanation and examples can be found in [72]. In their review, possible
parameter choices are proposed as well. For n, a range of 3 to 8 is recommended for
applications to physical systems.

The main advantages of this method include simplicity, less calculation effort as well as
robustness and variance. In contrast to ApEn and SampEn, PE has been successfully
applied to sensor data in the manufacturing domain. In [58], differences in permutation
entropy of turbine monitoring signals are used to identify problematic working conditions.
[69] have pointed out a connection of increased permutation entropy measures and failures
in wind energy converters.
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3 Deep Learning on Time Series Data

This chapter is reviewing different models from the deep learning domain. It will focus
on introducing their basic structure as well as some more specific traits. A special focus
lies on reviewing successful applications from the time series domain. Studies related to
image data is also considered interesting if concepts can be applied to time series data.

3.1 Deep Belief Network

A Deep Belief Network (DBN) is a probabilistic, generative model introduced by Hinton et
al. (2006) [31]. It has a deep architecture, meaning that the network consists of multiple
layers whereby each consists of a restricted Boltzmann Machine (RBM).

An RBM itself has two layers, formed by visible units v and hidden units h. For both,
there are bias vectors b and c. In addition, a weight matrix W connects visible and hidden
layer, while intraconnections in the layers do not exist. To build a DBN, a number of
RBMs are stacked on top of each other. The output of the bottom RBM is used as an
input for one above. This continues until the top layer is reached. Figure 6 visualizes this

structure.
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Figure 6: A Deep Belief Net is build by stacking Restricted Boltzmann Machines

The structure of a DBN is analog to the one of Multilayer Perceptron (MLP). The dif-
ference between the two is that a DBN uses a bias vector for the visible units. This is
necessary for being able to reconstruct the input (called decoding). The reconstruction
error is very important in the training process of a Deep Belief Net.

As other neural networks, different activation functions exist for an RBM. Taking a
bernoulli-bernoulli version as an example, the probability that any hidden unit h; is
activated given the visible vector v is defined as:

1
1+ expbit 2o iWivi

1
1+ exptit2iWish;

P(vilh) = (30)

It basically works the other was round for any visible unit, v;.
For both the visible and hidden vector, the energy function £ and joint distribution p is
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defined as:
E(v,h) =h"Wov+b"h+clv (31)

1
p(v,h) = Seap™ (32)

During training, the parameters W, b and c are adjusted in order to minimize the re-
construction error. The rule for parameter update is using contrastive divergence [31] to
approximate the gradient of the log likelihood of v. Introducing a learning rate o, the
change of parameters within one step can be expressed as follows:

AW — o((vih)° — (v;h;)Y) (33)
Ab = a((hj)® = (h;)") (34)
Ac  o({v:)® — (v)") (35)

Via the introduction of their training algorithm, Hinton et al. (2006) triggered an in-
creased usage of neural networks which is sometimes referred to as a renaissance. It is
seen as one of the breakthroughs of deep learning. The training methodology proposed
consists of an unsupervised part, pretraining each layer individually and a supervised part,
finetuning the network with training data for the actual task. While the latter is kind of
similar to other training algorithms, the unsupervised pretraining is an interesting feature
that deserves further attention. Putting data through a neural network is like applying
a nonlinear function to it. In the unsupervised training process, each layer is learning a
nonlinear transformation of its input that captures the main variations in it. Pretrained
layers build a foundation for supervised learning and generally increase performance.
Though this positive effect is observed, little is known about its causes. In [21], the
authors elaborate on that question. As potential causes, they identify:

1. Network preconditioning: parameters are adjusted to a suitable range which leads
to a better starting point for their optimization

2. The model is initialized in the parameter space in a way that a lower cost function
value is attainable

3. Pretraining works as a special form of regularization, shifting bias in a useful direc-
tion and lowering variance

Their experiments proof several of the benefits of unsupervised pretraining. Firstly, an
increase in depth is not recommended without pretraining because of poor results. Fur-
thermore, better model generalization and higher feature quality can be expected. The
presumed generalization effect was shown, though it deviates from classic regularization
techniques as the effect is not fading away with more training data.

Variations of DBN

Modified versions of deep belief nets can be found in the literature. The most interesting
examples are convolutional and conditional DBN.

A convolutional DBN [52] is a special realization of a DBN. It is constructed by stacking
convolutional restricted Boltzmann machines (CRBM) on top of each other. To achieve a
convolutional character, the hidden layer consists of groups and those are sharing all the
weights between the visible and the hidden layer. To illustrate this concept, the energy
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function of a CRBM with real valued visible units shall be outlined here. Lee et al. (2009)
[53] apply it to single channel audio time series:

1 Ny ny Nw k np Ny
Zv — ZZthWkUJJFT 1 — Zkah;‘? — chi. (36)
k=1j=1r=1 k=1 j=1 i

Here, k is the number of groups in the hidden layer. The visible layer is n, dimensional
array of binary units. This equals to nj, and ny for the hidden units and weights. The
bias by is shared among each group and c is shared for visible units.

The authors show that good classification performance is achievable learning feature rep-
resentations from unlabelled data.

A conditional DBN [6] consists of conditional RBM (cRBM). Those also consist of a
hidden and a visible layer, but are extended with additional visible units which are di-
rectly connected. Those are used to provide further information to the network, e.g. past
data.
Considering RBM equations, this extension is replacing the standard bias terms b and ¢
with a dynamic bias:

b=b+ Byé=c+ Cy (37)

The weight matrices B and C' represent the direct connections and vector y contains the
additional (conditioning) data. Figure 7 illustrates the idea of cRBM.
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Figure 7: RBM can be extended with conditional units (cf. Battenberg & Wessel (2012)

Battenberg & Wessel (2012) [6] demonstrate the ability of conditional DBN in drum
pattern analysis. The possibility to use the conditional units to take past data into
consideration indicates potential for all tasks in the temporal domain.

3.1.1 Time Series Applications

In [45], the authors face a multivariate time series classification problem. Five different
sleep stages shall be classified using four channels of measurement from the human body.
They have been classified originally by a method requiring expert knowledge. The stages
occur in epochs of 20 to 30 seconds and channels are segmented to 1 second windows.
Three approaches are compared, whereby two are relevant in the context of this work: a
Deep Belief Net (DBN) approach based on handmade features and a raw DBN approach,
learning features without the use of expert knowledge.

The feature DBN approach operates on 28 handmade features, which are relative power,
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mean value, signal kurtosis, signal entropy, spectral mean and others for all signals. A
DBN with two layers and 200 units per layer with a Softmax-classifier on top. The train-
ing process consists of a pretraining phase for each layer and a fine-tuning phase for the
top layer. The raw DBN approach uses the same network structure. The training happens
in an unsupervised manner, using a concatenated signal matrix as the visible layer, where
a — d are the channels, n is the number of samples per second and w is the window size.

n s a3 n

o, uooa

n+w n+w n-+w mn-+w
V= |afe Wie die d

1+w (38)

This results in an input dimension of n x w x numberofchannels.

The approaches were compared with respect to classification accuracy and the confusion
matrix. The raw DBN had good results on most subjects, but very poor ones on a small
number. Although the feature based approach had better results overall, it should be
stated that the features learned seem to have a good quality. They cover high and low
frequencies as well as high and low amplitudes which is also true for the hand engineered
features.

Some lessons learned from the discussion of results can be taken away:

e Setting an initial bias value for the hidden units can influence the result.

o Pretraining the DBN with a relatively large number of epochs is considered crucial
for classification performance.

o Even size of different classes present in the training dataset is preferable
o The DBN is struggling on test datasets that are clearly different from training data

o [t seems that correlations within the time series are not captured well enough when
learning features from raw data. In a feature based approach, correlation can simply
be added as an additional feature.

« Increasing the number of hidden units and/or layers has not increased classification
accuracy, but simulation time.

In [36], DBN is used for fusing multifeature vibration signal data to improve detection of
bearing faults. This is done as noisy vibration datasets are information poor and diagnosis
is difficult.

The algorithm they use works as follows:

o Features are extracted from the samples as they are nonlinear. In detail, 14 features
from the time domain are computed.

« A DBN is trained and finetuned using training data with the features computed
above.

o Having target labelled data, the reconstruction error is computed using the out-
put. According to it, the network structure is adjusted and the training process is
repeated until the error is low enough.

o The ideal DBN structure is used for the actual fault diagnosis
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This leads to a 42-12-12-4 network structure, whereby the number of input nodes result
from 14 features for each sensor and the number of hidden units was determined by the
algorithm above. No feature selection is applied. Their results show that DBN is more
accurate and robust compared to other machine learning algorithms such as Support Vec-
tor Machine, K-Nearest-Neighbour and backpropagation neural network.

Another manufacturing application can be found in [29], where unsupervised learning
is executed via a DBN to detect faults in a gear transmission chain. The diagnosis hap-
pens via classifying time series segments into one of 8 predefined health conditions. The
interesting part is a comparison of DBN with multilayer back-propagation neural network
(BPNN). Shortly, their approach works like outlined below:

1. Time Series Segmentation: Through apriori knowledge, it is considered relevant
to segment the data according shaft cycles. Those are identified through axis cross-
ings. The data in between the axis crossings is then interpolated using a cubic spine
function.

2. BPNN Setup: For this approach, 15 features are preselected. 11 of those are from
the time domain (mean, peak-to-peak, standard deviation, kurtosis etc.) and four
are from the frequency domain (mean frequency, frequency center etc.). Not all of
them, but a varying number is used during experiments. The selection is done via
distance evaluation technique (DET). The network has three hidden layers with a
structure of 100-50-10 and the output dimension is the number of health conditions.

3. DBN Setup: The RBM parameters are set up heuristically using a genetic algo-
rithm and pretrained individually. A shallow (1000 hidden units) as well as a deep
(1000-500-200) approach is evaluated.

In their experiment, deep belief nets significantly outperformed the BPNN approach. The
latter is found to very unstable, meaning the results for different feature sets show high
variations. The feature learning ability of DBN is proven by the fact that using those
features with BPNN improves results compared to using predefined features. The authors
reached up to 100 percent accuracy with their methodology.

3.2 Autoencoder Networks

Autoencoders [7] are neural networks learning data representations in an unsupervised
manner. Consisting of one input and output layer and one or more hidden layers, the data
is usually compressed into a lower dimensional form. This works through the combination
of an encoder and a decoder. During encoding, the input is forwarded through the network
and is thereby transformed:

21 = El(Wll' + bl), (39)

where ¥, is the activation function, W; and b; are representing the encoder weights and
biases. In the decoding step, the input is reconstructed from the representation. The
indices are used as the parameters are different for the different layers. In a one-layer
case, they are not needed. The reconstructed input is computed as:

Ty = EQ(WQZl + b2) (40)
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The training of an autoencoder works via adjusting the parameters to minimize the re-
construction error:

E(z,z,) = [lv — 2| (41)
Another feature of autoencoders is that input and output layer have the same dimension.
Their structure is shown in Multiple layers are referred to deep or stacked autoencoders.
The encoded input can be a useful discriminative feature and can therefore be extracted
and used for further analysis on this dataset. Apart from that, the stacked layers can also
be finetuned and used as a classifier itself.
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Figure 8: Structure of a stacked autoencoder

3.2.1 Time Series Applications

In [47], the authors improve on sparse autoencoders (SAE) by enhancing them with a
cost-relevant feature. Their work is motivated by the fact that SAEs face problems when
applied to noisy datasets. As this problem is based on the fact that a standard cost
function treats the reconstruction error of each unit equal, a learnable parameter, called
learning vector, is added to the cost function which allows the network to favour certain
units and therefore increase their effect on parameter update. Two possible implementa-
tions are proposed:

o A fixed weighting vector set before training through a feature selection algorithm

o An adaptive weighting vector learned during training with other model parameters

The results show that SAEs enhanced with this element offer superior performance com-
pared to standard versions on practical datasets.

In [25], Guenther et al. use a deep autoencoder to extract features from image data
in the context of laser welding. Their implementation consists of the following parts:

e A region of interest is identified within the images as their dimensionality makes
efficient training of an ANN impossible. In addition, subsampling is used for dimen-
sionality reduction.

o The multilayer autoencoder consists of a relatively large number of neurons in the
early layers (1024, 2048) as a more general representation should be learned. Overall,
16 features are extracted through 11 hidden layers.

o Their representation is compared to PCA, showing that while PCA has a lower
reconstruction error, the autoencoder representation is superior for classification.
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3.3 Convolutional Neural Networks

Convolutional neural networks (CNN) are another variant of deep learning algorithms.
They fall into the category of feed-forward neural networks. Those, in contrast to recurrent
networks, process information solely in the forward direction and their node connection
graph is free of cycles. LeCun et al. (2010) present CNNs in [51] describing their multiple
stage structure, where each input and output is represented by multiple arrays called
feature maps. As in DBNs and other deep networks, CNNs consist of input, output and
hidden layers, whereby the hidden layers perform operations on the feature map. Those
operations are either convolution, pooling, processing via fully connected layer or normal-
ization. A good introduction into the foundations of CNNs, being their training process
and the different layer structures, can be found in [92]. The basics will be introduced in
this section. Figure 9 visualizes the structure of a convolutional neural network.
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Figure 9: Principal structure of a Convolutional Neural Network (CNN)

When the input is put through the layers initially, the output result is not going to be
very valuable because the weights (and other parameters) are initialized randomly. To
quantify this situation, the loss function comes into play, represented by a loss layer in
CNN structure. Realized through one of different possible functions, the loss quantifies the
degree of accordance between data labels and network prediction. The network parameters
are then optimized to reduce this loss. In CNN; this is realized via stochastic gradient
descent (SGD) [49]. For parameters W, user defined learning rate 1 and cost function
output z, the parameters are updated as:

The term éf—‘; describes the rate of changes in z based on changes in W. A vector like that
is called gradient, and SGD reduces the loss function value by optimizing the parameters
in the opposite direction of the gradient. A common variant is to update the parameters
based on a single sample, which shows fast conversion [49]. The gradient is searched for
using error-backpropagation [50]. Now some details on the different layer types in a CNN
are provided.

o Convolutional Layer. In the convolutional layer, a kernel operator is moved over
the input. As both are represented numerically, a product will be computed and
transferred into the output. This is done for every possible position the kernel can
be shifted on the input, as visualized in Figure 10a. In most applications, multiple
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kernels are used in every convolutional layer. What those kernels basically do is
'highlighting" features of the input so they can be considered by the algorithm. So
if the convolution layer is followed by an activation layer, the neuron activation
will be made based on these features. A simple example would be the vertical or
horizontal edges of an image, whereby more complex features, such as a specific
combination of edges, can be learned by convolutional layers deeper in the network.
The area of the input the kernel is currently located on is often called a receptive
field.

A general formulation of the operation is given in [51]:

whereby y and z represent the feature map before and after the convolution, respec-
tively. The kernel £ is applied and a trainable bias b is used.

e Pooling Layer. Pooling layers are inserted in between in convolutional layers in a
CNN. In general, they follow the purpose of reducing the feature maps representation
size, reducing computational effort and prevent overfitting. This happens by using a
nonlinear function to combine the input of a defined a group of units into one unit.
Max-pooling is one of the most used variants. Scherer et al. (2010) [76] evaluate
its performance impact compared to subsampling and show it is superior. With
a pooling window size n x n and a window function u, max-pooling identifies the
maximum value in a certain area of the input transfers it to the output. Figure 10b
illustrates this principle, as well as the following equation:

Pu(n,n)) (44)

T; = maxrNyN (2]

However, this comparison has been made on image data. In [17], max-pooling is
used in successfully applying a CNN in time series classification. The authors report
that a larger pooling size has the benefit of the layers only learning local features
and a larger number of layers can be employed.

o Fully-connected Layer. Fully connected layers usually form the last stage in a
CNN before the output is computed. All its neurons are connected to all activations
in the previous layer. This layer uses the input from all convolutional and pooling
layers and draws a conclusion with respect to the actual task.

Input Kernel Input * Kernel Input

116|2]|5 111 19 [ 23| 18 116[2]5 Pooled

4 (8| 7|4 111 2212313 41874 8 | 7

317111 21|17 | 11 3| 7|11 9 | 7

912|712 912 |72

(a) Convolution (b) Max-Pooling

Figure 10: Ilustration of convolution and pooling

3.3.1 Time Series Applications

Although Time series are applications are rare, some lessons can be learned from them.
Manufacturing oriented applications are mainly based around image recognition.

27



3 DEEP LEARNING ON TIME SERIES DATA

Encoding Time Series as Images

As stated, CNNs are mainly applied to images and time series applications are rare. While
the few time series approaches are adjusting the model, the authors of [27] take a different
path and transform a time series into an image before using it as an input for a CNN.
Their methodology holds several interesting aspects in the context of this work. This is
an outline of their work:

1. Time Series Encoding. A time series z is taken and a 2D phase space trajectory
is computed. Each spot in that space is defined by s; = (z;,;11). A recurrence
plot (RP) is computed. Each index is defined as R;; = dist(s;, s;).

2. Deep Architecture. A CNN consisting of two feature learning stages is used, each
having concolution, activation and pooling operators. ReLu is used as an activation
function and maxpooling is in place.

3. Training Process. Training happens via a gradient based optimization method
using backpropagation and stochastic gradient descent for parameter optimization.

Figure 11 illustrates the concept of recurrence plots (RP) for time series.
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Figure 11: Exemplary sensor time series and respective recurrence plot

The authors reported that their results are superior to comparable studies, including the
ones were were RPs are combined with other learning algorithms. Especially the concept
of RP is considered interesting for applying deep networks to sensor data. Firstly, the
use of RP is based on the fact that a time series can be characterized by its recurring
behaviour, which is especially true for time series from a production environment. Fur-
thermore, the transformation of time series into images broadens the amount of suitable
existing concepts out there.

Unifying Feature Learning and Classification

In [94], Yang et al. (2015) use convolutional neural networks for human activity recog-
nition (HAR). Their methodology, which capitalizes on the fact that a combination of
unsupervised feature learning and supervised classification can enhance the discrimina-
tive power of features, is outlined below.

The multivariate time series dataset originating from several sensors placed on a subjects
body is segmented using a sliding window approach. An instance processed by the CNN
ends up to be matrix with the sample rate and the number of variables as dimensions.
The CNN is constructed consisting of five sections:
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o Section 1 and 2: A convolution layer and a ReLu layer is used. A max pooling layer
finds the maximum feature map and a normalization layer is in place.

e Section 3: Just a convolution and ReLu layer, as convolution reduces the feature
map dimension to one and pooling becomes unnecessary.

e Section 4: A fully connected layer unifies the feature map for all sensor dimensions,
followed by a Rel.u and optimization layer.

e Section 5: A fully connected layer maps features to output classes and a softmax-
function provides probabilistic classification result and an entropy cost function
quantifies the error using labelled examples.

The results show that CNN outperforms shallow methods such as kNN and SVM, which is
explained by feature representation capturing the characteristics of the time series better.
The fact that a deep belief net (DBN) is outperformed as well indicates superiority of
supervised deep methods. The interesting features of this work are the problem similarity
of HAR and machine operations classification as well as the reported success of unifying
feature learning and classification in one model.

3.4 Long Short Term Memory Networks

One of the shortcomings of traditional neural networks is that past samples are not a fac-
tor in making a prediction for the current one. Although all prior samples are influencing
the parameter adjustments, no special dependencies are considered between two examples.
This has been the main motivation behind Recurrent Neural Networks (RNNs). A loop
structure is allowing their output to have a partial influence on the following inputs. This
feature makes them suitable for sequence data and they have been applied successfully to
time series problems.

A lot of this success was based on Long Short Term Memory Networks (LSTMs) intro-
duced in [32]. In practice, it is not clear and not consistent which past information is
relevant for the current sample. Although the loop structure of RNNs would allow them
to capture dependencies with different time spans between them, they perform poorly in
experiments when required to learn the ones that are widely apart in time, as reported by
[8]. LSTMs also have a chain-like structure, but in a more sophisticated form. Initially,
they consisted of an input gate unit, protecting memory from irrelevant input and an
output gate unit, protecting other units from irrelevant unit of the current one as well as
a memory cell. The latter is a central linear unit receiving information from the output
and the input [32]. The output and input activation, ¥, and y;, work like:

Yout = fout(netout (t»ym = fzn(netm(t)) (45)

where f,.,; and f;, are the activation functions and net,,;, net;, are current units output
and input. This initial structure has been adjusted several times. A practicable variant,
which can be found in [33, 23] shall be outlined below. The structure is visualized in
Figure 12.
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Element-wise
multiplication

Figure 12: Structure of a LSTM network

An LSTM in this form consists of three high level elements:

1. Forget gate f: This layer decides how much of the previously stored information
(memory) needs to be retained. It is realized by a sigmoid layer who takes the
previous hidden state h;_; and the current input, x; into account.

2. Input gate i: Here, the amount of current information to be maintained is deter-
mined. This is done in a similar manner compared to the forget gate. In addition,
a hyperbolic tangent layer who creates a temporary cell state y [33]. This two will
be used combined for a state update.

3. Output gate o: A sigmoid layer decision what part of the cell state is outputted.
The new hidden state is determined via putting it through another tanh layer.

A LSTM consists of gates, which are controlling how much information is forgotten or
remembered. In addition, they deal with the problem of vanishing gradients [33]. For
steering the information flow, sigmoid functions and hyperbolic tangent functions are used.
The sigmoid produces values between 0 and 1, where 0 means that all the information is
forgotten. The information in the network is represented via the cell state C, the hidden
state h and a temporal cell state y. The hidden state is the one actually put out. The
vector x; represents the current input data at time stamp t.

3.4.1 Time Series Applications

The work of [91] deals with detecting anomalous behaviour in time series data from the
Large Hidden Collider (LHC). In detail, the authors use voltage data streamed from su-
perconducting magnets, which form a critical part in the system. The anomalous event
of interest is a so called quench, describing an incident where a superconducting cable
starts to conduct normally. It is decided to model the data with LSTMs. This decision is
influenced by the existence of quench precursors, meaning that past events are influencing
the likelihood of a quench with different probabilities. As stated in this section, recurrent
networks are capable of modelling this dependencies.

With a logging database accessible with years of magnet data, several data selection deci-
sions need to be made. As quenches are relatively rare within this huge database, a group
of magnets with the highest quench frequencies are selected. Another crucial factor is the
window length, as all relevant event precursors should be considered with the amount of
data staying reasonably low. The authors choose a trade-off between those two factors
with a window size of 24 hours before the quench.
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The deep learning structure employed consists of an input layer, four LSTM hidden lay-
ers, one feed-forward hidden layer and an output layer. For the hidden layers a different
number of cells is evaluated together with variations in other parameters. Two of the four
LSTM layers are using a dropout rate of 20 percent. Dropout is referring to the practice
of leaving some hidden units during testing, but not during training. Root mean squared
error (RMSE) and mean percent error (MPE) are used to evaluate accuracy. The signals
are normalized between (0 and 1 and the dataset is split between training and testing in
a 70:30 ratio. The results show that the setup perfroms well and a very low RMSE is
achieved. The accuracy declines when predictions are made more steps ahead.

Mehdiyev et al. (2017) [57] use an LSTM autoencoder network to extract features from
multivariate sensor data from steel manufacturing. The authors are trying to measure the
quality of semifinished products to choose further production stages. The surface defects
(if any), caused by the chemical properties of steel, are classified based on the learned
feature representations by a deep feed-forward neural network. The dataset includes data
from 89 sensors measuring process variables in different positions.

The results when directly applied show high average accuracy. Though the results on
samples without defect were high, the approach was not able to assign the parts with a
defect to the correct production step. To improve that, a sensitive learning approach was
used, penalizing misclassification based on financial implications. Although the overall
accuracy went down, defect classification improved as they have higher cost effect.
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4 An Approach for Manufacturing Process Analytics

4.1 Preprocessing Approach

In the course of gathering valuable insights from sensor data, a novel preprocessing ap-
proach for multivariate time series data is introduced. Right away, it is important to put
the term nowel into perspective.

Calling a set of computations Preprocessing is just done inconsistently to some degree.
Even if this very broad term is limited to techniques applied before machine learning,
what is summarized under this description is just varying a lot. When the methods used
here are looked up in the work of other authors, they are often referenced as feature selec-
tion. This mainly, but not always means selecting characteristics computed from the data
that describe it best. In fewer cases, similar to this approach, the term signal selection is
used. Though technically different, those two terms are synonymous in a way, as different
signals measured from a piece of machinery are features of the process, where some might
be more characteristic than others.

It is still considered valid to label the introduced approach novel, as the exact same or
at least clearly similar combination of methods can not be found in the literature. Their
selection has been made based on specific requirements of the application in this work
and from reviewing them in a relevant way in Chapter 2.

Generally, a physical system is described by a number of variables. What we basically
want to end up with is a subset of variables offering the same information. This is
achieved by the preprocessing structure visualized in Figure 13 testing and comparing the
data with different regards. After selecting the (sub)system that should be analyzed and
a basic data validity check, the data is normalized to a common scale and null signals are
removed. A stationarity test is performed and used as a filter for nonstationary signals.
Signals are grouped via their redundancy to each other. The ones that are considered the
most relevant with respect to information content are selected to finish the process.
Details on each step are following below. Some special traits of the approach shall be men-
tioned. The preprocessing is actually contributing to the process analysis itself, which is
quite unusual. The signals dismissed for low entropy and nonstationarity are not dropped
entirely but are further analyzed with the same methods. If it is revealed that only par-
ticular segments of the data are unpredictable, an intersting event in the process might
already be discovered, as this can be indicative for non regular system behaviour. The
separate analysis of those channels is considered a good path to take as partial selection
of a signal is not possible. When passing an MTS dataset to a learning algorithm , the the
timeframe has to be the same for all dimensions. It is therefore recommended to perform
the approach over the entire dataset, select the respective signals and then continue with
any necessary separation (e.g. into training and test data) afterwards. Other operations
o the data, such as smoothing, representations or feature extraction will be covered in the
learning approach as it is inseparably linked to it.
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Figure 13: Approach for preprocessing sensor signals

In addition to the selective functionality, the approach is also able to perform further data
investigation based on the result during selection. This is done in a segmental manner,
meaning that results of the overall series are compared with those of smaller segments.
Whenever a segment differs considerably from the series, it is considered anomalous be-
haviour. Figure 14 illustrates how this feature is embedded in the preprocessing approach.
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Figure 14: Investigative analysis in the course of preprocessing

Normalization

The scale shown at the illustrative time series shall indicate that normalization has been
performed as an initial step. In the method review in Section 2.1, Min-Max normalization
and sigmoid normalization showed some desirable features. Because of the scalability,
Min-Max seems favourable. In addition, its main drawback of not knowing if future
values fit into initial minimal and maximal values as it is applied to the entire dataset
at once. If it is planned to use the approach on data streams or with in the course
of real time applications, this choice has to be reconsidered. As normalization is the
preprocessing step with the least computational effort, trials with other techniques are
carried out sporadically to check the compatibility with the learning algorithm. Overall,
Min-Max has worked on the presented tasks.
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Algorithm 1 Normalization
Dataset S, Signal s, Scale upBound, lowBound

1: for each sin S do

2: maxg < max(s)

3 ming < min(s)

4 if ming, max, = 0 then
5 Break

6: Remove s from S
7 else

8 $p < lowBound + (upBound — lowBound)(s — miny))/(maxs — mins)
9 Replace s by s,

Stationarity Assessment

The stationarity assessment is designed as a filter method, removing signals classified as
nonstationary from the further steps. The runs-test has caused some difficulties when
applied to sensor data, as the majority of channels were classified non-stationary. Though
a concrete cause for this behaviour can not be identified and comparable applications in
the literature are rare, it seems evident that the datasets are not suitable for this tech-
nique. Either, the consideration of sequences of values above and below the mean only is
not enough to capture complex processes. Another explanation might be that the large
values of null values causes the results.

Autocorrelation function (ACF) delivers reasonable results in an efficient manner. On
the other hand, issues with automatic execution arise as the convenient use of is visual
inspection. The automation is complicated by the fact that the drop of the ACF, which
is an indicator for stationarity, happens at a different lag every time depending on the
nature of the process. Considering this, a combination of Augmented Dickey-Fuller Test
(ADF), testing the unit root hypothesis, and KPSS-test, testing the stationarity hypoth-
esis remains as a decent option. Though both tests are reported as error prone to some
degree, the combination leads to a mutual reassurance and will be enough to deliver a
valid result.The announced further investigation of nonstationary signals is mainly the
same algorithm on segmented data.

Algorithm 2 Stationarity Assessment
Dataset S, Signal s, Test Hypothesis hypxpss, hypapr

1: for each sin S do

2: hypk pss < kpss(s)

hypapr « adf (s)

if hypxpss =0 AND hypapr = 1 then
Break

else if hyprgg =1 AND hypADF =0 then
remove s from S

else
Conflicting Test Result
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Redundancy Analysis

The task of identifying redundancies is well executed by cross-correlation introduced in
Section 2.3. As stated there, the only problem with it is that it produces misleading
results in the presence of autocorrelation in the series. As this part of the selection
process strongly influences the end result, this needs to be avoided.

The redundancy analysis happens via assigning a pair of signals into the same cluster if
their cross correlation exceeds a threshold. Whenever another signals is highly correlated
with one already assigned in a cluster, it joins there. In case of problematic results, the
analysis can be done by replacing cross-correlation by mutual information (MI). As the
entire process is supposed to be as automated as possible, the detection of such a result
to be implemented as well.  As the entire process is supposed to be as automated as

Algorithm 3 Redundancy Analysis
Dataset S, Signal s, Correlation Matrix X, Cluster ¢

1: for i =1 to S.size do
2: for j =1 to S.size do

3: Xij ¢ crosscorr(S;, S;)
4: c; < S;.getCluster

5: ¢; « S;.getCluster

6: if ¢;! =0 then

7 if Cj = ¢ then

8: Cj < ¢

9: else if ¢;! = 0 then
10: Ci < Cj

11: else

12: ¢; + newC'luster
13: Cj < ¢

possible, the detection of such a result to be implemented as well. It is decided to do
this via checking intracluster consistency. Whenever any pair within a cluster shows a
correlation coefficient below threshold, re-evaluation is needed. The algorithms below
cover both.

Algorithm 4 Consistency Check
Cluster Set C, Cluster ¢, Correlation Matrix X, Threshold ¢
1: for each c in C do
2: Load X for ¢
3 for 1 =1 to S.size do
4: for j =1 to S.size do
5
6

if Xij < t then
Conflicting Result

Complexity Analysis

From all the redundant information within each cluster, we want to make sure that the one
that is picked actually is the most interesting one. More specifically, We want to maximize
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the probability of being able to identify patterns from the signals which are finally passed
on to a learning algorithm. This idea is represented in time series complexity. The review
in Section 2.4 revealed permutation entropy (PE) as the best choice, due to its positive
traits and successful application on machine sensor data. The algorithm below selects the
most complex signal from every cluster.

Algorithm 5 Complexity Analysis
Cluster Set C, Cluster ¢, Signal s, Selection Sfine, Complexity h

1: for each ¢ in C do
2: for each s in ¢ do

3 h < permutation Entropy(s)
4 if h > max), then

5: maxy, < h

6 Smaz < 8

7 S finat-add(Smaz)

4.2 Machine Learning Approach
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Figure 15: Approach for classifying machine operations from sensor signals

In the following, the experimental setup for analyzing the potential of (deep) machine
learning for machine state classification from time series segments shall be defined (illus-
trated in Figure 15). Instead of providing a set-in-stone approach, the analytics pipeline
is constructed in a way that allows experimentation and comparison of different concepts
to be able to make recommendations for future work in this field. In detail, the following
assumptions should be clarified:

1. Representations: The time series segments need a representation that can be
handed to a neural network. It is evaluated if a set of features containing infor-
mation related to the physical process, such as differentiations, can outperform one
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without those. Furthermore, the idea of time series image encoding is evaluated
as an alternative to feature representations. For this purpose, recurrence plots,
proposed in a similar context by [27] are used.

2. Representation Learning: It shall be evaluated if methods from deep learning,
more specific autoencoders, are able to learn a proper representation from time series
in an unsupervised manner. By proper, we mean that when used for classification,
the achieved accuracy can be seen competitive to other representations.

3. Multiple Network Layers: Although no classic deep learning algorithm is in use,
the power of representation learning using multiple layers is evaluated. This is done
by training a second autoencoder using the features from the first one as an input.
The 2-layer features showing higher quality would proof the ability of capturing a
more complex structure.

It shall be noted that for all experiments, the amount of training data is kept small,
as labelled data is usually a limited resource in time series problems and therefore is
a realistic condition. Below, the main components of the experimental setup shall be
outlined.

Segmentation

After defining a machine part and timespan that shall be analyzed, one signal is selected
using the preprocessing methodology introduced in this section. To have segments to
classify, the entire time series is split up using a simple sliding window approach. Its only
parameter is the window size w. It is not possible to provide a reference point for the
choice of w as this is data and problem dependent. In general, if one wants to classify
machine operations, the length should be chosen in a way that a segment is long enough to
capture them. The larger the window size, the more complex operations can be classified.

Clustering

Although unsupervised learning will be a part of this approach, the classification step
requires labelled examples for training as well as classifier testing. For that reason, a way
to cluster the computed segments is needed and an algorithm performing this needs to be
developed. Before the computations can be performed, two parameter choices have to be
made manually. Firstly, the number of clusters has to be determined. Via visual inspection
of the signal, one has to identify the main parts it consists of. The number of clusters
will define the number of classes in the classification problem. Note that this approach
can only be recommended for time series that show recurring behaviour, which is mainly
true for manufacturing data. If used on datasets with random behaviour, the choice of
clusters will be very difficult. The same argument applies to the second parameter, the
cluster centroids. Those are representative segments for each cluster. They should be
chosen in a way that they show high correlation to all segments belonging to this cluster,
as cross-correlation is employed as a similarity measure in the algorithm. This, again, can
only be done via visual inspection.

The algorithm then performs:

1. Perform cross-correlation between segment s; and each cluster centroid ¢; — c;.

2. Choose the cluster index with maximum correlation as the label.
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3.

Repeat for all segments.

Figure 16 provides an illustration.

Figure 16: Segment clustering methodology

Time Series Features

A time series segment will be presented to the classification in a represented form. A
common approach to this is to represent the data by a feature vector, which is a set of
variables being discriminative with respect to the classification problem. As a reference
point, a set of features will be picked from prior, comparable studies such as [84, 36],
where several possibilities are listed. The set is picked randomly and restricted to the
time domain.
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2.
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Skewness, describing the symmetry of the probability density function of the time
series amplitude,

Lskew = (47)
(n—1)ady
. Kurtosis, describing the peak degree of the probability density function,
n Y
T = M (48)

(n— 1)x§td

Mean value, x

To evaluate if physical information can enhance classification, differential features are
used in the second feature set. Three of the six random features are replaced, the other
three stay the same to make the comparison as accurate as possible. Please note that this
is by no means an effort to select the optimal features or the optimal number of features.
The feature sets are used experimentally to show the superiority of the added features:
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1. First differentiation, xqy = .

2. Second differentiation, x4 = .

3. Average permutation entropy, Zp.
4. Skewness

5. Kurtosis

6. Mean

Permutation entropy, described in Section 2, is also used as it provided useful insights in
preprocessing that could possibly improve classification.

Recurrence Plots

Recurrence plots been briefly introduced in Section 3. Shortly, they offer a visualization
of the recurring elements in a process. They are chosen as it seems reasonable to to use a
representation based on recurrence for classifying segments that are supposed to represent
frequent pattern. An additional motivation comes from the successful application in [27].
Alternative time series image encoding methodologies can be found in [90].

Autoencoders

Autoencoders are introduced in Section 3 and their basics shall not be repeated. They are
used to extract features from time series segments, and the segments will be used directly
as the input. To allow a comparison with selected features, the extracted feature vector
should also have a dimension of six. That means that the autoencoder reduces the input
dimension to a compressed representation. Figure 17 illustrates this process.

Encoder Decoder

wj ==

Segment length

Features per
sample

Feature
Vector

Figure 17: Feature extraction from autoencoder

During its training, the encoder transforms the input into the representation and the
decoder processes it back to into the output, being time series data. The features learnt
during this process can be extracted from the encoding layer. For the 2-layer approach,
the feature representation is achieved in two steps. The features extracted from the first
encoder are used as an input for the second one. Therefore, a larger dimension for the
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hidden layer can be selected in the first autoencoder. A visualization of this principle can
be seen in 18.

Encoder Decoder

Segment length '—"

Feature
Vector

Encoder Decoder

Features per
sample

Figure 18: Two-step feature extraction through autoencoders

To achieve the best possible result, several parameters of the sparse autoencoder have
to be adjusted. The best selection will be found during experimentation (Section 5)
evaluating different combinations of the main parameters, shortly outlined below.

Error Transfer Function. Defines the activation function for the autoencoder
units. This has to be defined for both the encoding and the decoding part. Examples
include the logistic sigmoid function,

1
= 4
or a linear transfer function,
f(z) == (50)

Loss function for training. This function measures how close the reconstructed
output is to the input. For sparse autoencoders, the mean squared error can be
used with additional terms for weight and sparsity

1 N K

bE= N Z (xkn - CE'k‘n>2 + )‘wweights + 5wspa'r’sity (51)
n=1 k=1

Weight regularization. Defines how strong L2 regularization will influence the
weights

Sparsity regularization. Defines a sparsity constraint on the hidden layer output.

Training algorithm. Defines the procedure of propagating data through the au-
toencoder and performing weight updates. An often used variant is scaled conjugate
gradient descent [59)].
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The experiments are carried out using the Autoencoder class of the MATLAB Neural
Network Toolbox.

Feed Forward Neural Network

To perform a comparison on the different variants of our methodology, a supervised clas-
sification has to be performed using the computed features. This is done using a classic
feed forward neural network [77]. Concerning parameter optimization, it should be noted
that similar conditions shall be simulated to make feature quality comparable. Slight
optimizations can still be made if improvement can be spotted. The network takes the
representation as an input and provides a classification result. The example in Figure
shows the setup for a threelabel classification problem taking recurrence plots as an in-
put.

Hidden 1 Hidden 2 Output

Representation ‘ Number of classes ‘

dimension

Figure 19: Feed forward neural network performing classification using feature
representation

41



5 EXPERIMENTAL EVALUATION

5 Experimental Evaluation

5.1 Data Sources

Before the results of the actual analytics operations on the data are shown, it is important
to introduce the datasets used and explain some of their crucial features. This is necessary;,
as the way of processing it is clearly influenced by those properties and this information
will be helpful in understanding why specific steps were chosen.

The analytical methods developed within this work are evaluated on datasets measured
by sensor networks on three different manufacturing sites. The respective machines are
large size bulk handling systems. More specifically, we are dealing with three bucket wheel
reclaimers, whereby one of them is executed as a ship loading system. Each of them is
equipped with several sensors. As they are transmitting simultaneously, the result is a
multidimensional dataset, paraphrased multivariate time series. Some of the issues with
this type of data have already been discussed.

The main differences between the three datasets are the number of sensors installed on
the machine and therefore the time series dimensionality, as well as the amount of data
available. In addition, the sensors can be grouped according to the machine parts they are
installed on. This matters, as signals from the same group will usually show more mutual
information and stronger correlation. This groups of course are varying from machine to
machine as well.

Figure 20 provides an overview.

Burnside - Bulk Ship Loader 231 Days x 86400 Measurements
\

Multivariate Time Series

El K
B
151 Sensors -
-]

SP TU

93 Days x 86400 Measurements
|

20 Sensors 4 Multivariate Time Series

159 Days x 86400 Measurements
|

106 Sensors Multivariate Time Series

WIND ESTOP

Figure 20: The three sites subject to analysis
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As stated, several important properties of the acquisition process are presented. A more
complete description can be found in [64].

Measurement. Each sensor is transmitting with a sampling period of one second,
therefore at a frequency of one Hertz. This leads to 86400 data points per sensor
per day. The monitoring is continuous.

Batch Data. For analysis, the data is available in daily batches. This creates a
task that is clearly different from working with data streams and performing real
time computations.

Data Structure. To achieve a unique identification, each measurement is treated
as a data object described by three attributes: Timestamp, Channel Tag and Sensor
Value. Appended to each other, these data elements form a time series.

Interconnectability. By checking the first and last values in the daily batches
for consistency, seamless interconnectability is assured. Datasets of arbitrary length
can be created.

Sensors and Actors. Data is collected from sensors and actors to maximize
insights into system behaviour.

Furthermore, the data provides several challenges that were discovered during investiga-

tion.

5.2

Null Signals. The number of measurements of value 0 is high. This is mainly
caused by inactivity of the entire machine or parts of it. Signals with value 0 during
the entire period to analyze are less of a problem as they can be easily identified
and removed. Relatively long periods of inactivity interrupted by shorter active
operations are complicating analysis, as we end up with a long time series containing
little information.

File Size. The size of the daily datasets varies a lot. This is caused by inactive
periods and incomplete transfer. It can be dealt with by not considering days for
which the dataset has a size below a threshold. This is easy to include into an
automated approach but bears the risk of information loss.

Change in Sensor Network. Sensor removal, replacement or subsequent instal-
lation lead to inconsistency in the multivariate time series.

Data Quality and Forming an MTS Dataset

To form a time series dataset to analyze, a set of sensors and a timeframe have to be
selected. As stated, the data is segmented into daily portions. As long periods of machine
inactivity can occur and these are only increasing the size of datasets without providing
valuable information, any possibility to exclude those segments is welcome. A simple one
can be realized by considering the size of the daily datasets. Their size significantly varies
over time due to the varying degree of machine activity. This is revealed by an analysis
visualized in Figure 21. Although being aware of the possible information loss, it was
decided that days with not at least a third of average size will not be considered and
flagged invalid. Intuitively, the probability of this periods containing crucial information
is just not high enough to justify a negative influence on the results of all the rest.
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Figure 21: Varying sizes in daily sensor datasets

As the desired timeframe for analysis can exceed a day, it is necessary to concatenate data
to form a larger MTS dataset, as illustrated in Figure 22.

As said, connectivity between day ¢ and day 7 + 1 is pre-assured. This, however, is not
the case if datasets are left out following the size criteria defined previously. As this can
not be avoided, day ¢ then has to be connected to day ¢+ k with missing data in between.

Data (i) Data (i+1) Data(i+2)

Concatenated Data
1500 . T T T T

1000

500

Sensor Value

-500 ' ' '
7.36565  7.365655  7.36566  7.365665  7.36567  7.365675  7.36568

Timestap x10°

Figure 22: Dataset formed by concatenation

5.3 Time Series Selection

As a next step, an ideal set of time series is searched via the the algorithms introduced in
section 4.1. The methods will be evaluated on the Hongsa dataset recorded from 23rd to
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26th August 2016. After having 21 dimensions originally, after removing the timestamp,
the calibration signal and one null signal, 18 remain. Considering four days with 86400
measurements each, we end up with a 345600218 multivariate time series dataset.

Stationarity is assessed with a combination of Augmented Dickey-Fuller test and KPSS
test to avoid failures and create as much clear results as possible. During experimen-
tal evaluation, the effect of smoothing on stationarity assessments has been experienced.
Without smoothing or with smoothing with a small window size, a majority of the sig-
nals was tested without a clear result. When applying a Savitzky-Golay filter [75] of
cubic order and with a window size of 1000, the number of contradictive results drops
significantly. Although this is not recommended, it seems to be necessary to achieve a
stationarity test result. Please note that no information is lost as the original data can
used for further steps The result is presented in Table 1.

The assessment classified 15 out of 18 signals as nonstationary. For them, the ADF test
fails to reject the null hypothesis of a unit root and the KPSS does reject Hy of trend
stationarity. Three signals lead to unclear results, as both tests reject the hypothesis.
Such a result is not uncommon on a sensor dataset. In [54, 41], nonstationary results

Sensor Name Result ADF | Result KPSS | Stationarity Result
Tag H, H, Res
bw-current-ValueY 0 1 Nonstationary
bw-speed-ValueY 0 1 Nonstationary
bwb-cyll-pist-side-ValueY 0 1 Nonstationary
bwb-cyl2-pist-side-ValueY 1 1 No Result
bwb-cyl-angke-ValueY 0 1 Nonstationary
crw-current-m1-ValueY 0 1 Nonstationary
crw-current-m2-ValueY 0 1 Nonstationary
dsc-cyl-angle-ValueY 0 1 Nonstationary
dsc-cyl-pist-side-ValueY 0 1 Nonstationary
dsc-cyl-rod-side-ValueY 0 1 Nonstationary
slew-current-m1-ValueY 0 1 Nonstationary
slew-current-m2-ValueY 0 1 Nonstationary
slew-pos-ValueY 1 1 No Result
slew-speed-m1-ValueY 0 1 Nonstationary
slew-speed-m2-ValueY 1 1 No Result
slew-torque-m1-ValueY 0 1 Nonstationary
slew-torque-m2-ValueY 0 1 Nonstationary

Table 1: Results of stationarity assessment after smoothing with large window size.

were documented on sensor data. The reason might be that in larger signals of machine
data, cyclic behaviour due to recurring operations becomes more likely. The presence of
a single unit root in one signals is enough to produce a nonstationary results. Interpret-
ing the smoothing effect on the results, noisy datasets are obviously harder to test for
stationarity. Nevertheless, it is unlikely that the noise itself is classified as nonstation-
ary. A better explanation is that in the presence of noise, it is more difficult to proof a
unit root. For the signals with contradicting results, the obvious guess is that they are
nonstationary, just not caused by a unit root. All the results were reassured with a third
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test, the Phillips-Perron test [65]. Facing a result like that, it is decided not to exclude
any signals from further steps, as there is no justification for that. Instead, the signals
are transformed to stationary ones by applying differencing, introduced in Section 2.2.

Without having achieved a dimensionality reduction so far, redundancy analysis is the
next step. The cross-correlation between every pair of the 18 signals is computed, lead
ing to a correlation matrix (Figure 23). The goal now is to define a threshold and assign
pairs with a cross-correlation coefficient above the threshold to the same cluster. Details
can be found in section 4.1.

It is important to note that negative coefficients below the inverted threshold are also con-
sidered. Negatively correlated signals have simultaneous behaviour, just in the opposite
direction, which is considered relevant in this context.

Cross-Correlation Matrix

0.8

Figure 23: Cross-Correlation matrix for Hongsa dataset

As stated in section 2.3, cross-correlation (CC) can produce misleading results. For that
reason, it can be interesting at the mutual information (MI) matrix to have a reference
point. Unfortunately, the highest values in the CC matrix are not equally high in the MI
matrix in all cases. This can be caused by CC focusing in linear dependencies while MI
captures nonlinear relation. As linear dependencies are interesting in this context and
there is no indication to doubt the results, they are used for further steps.
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Cross-Correlation Matrix Mutual Information Matrix

2 4 6 8 10 12 14 16 18

(a) Cross-Correlation matrix for Hongsa (b) Mutual Information matrix for Hongsa
dataset dataset

Figure 24: Comparison of Cross-Correlation and Mutual Information results

For this dataset, three redundancy clusters are identified and visualized in Figure 25.
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Figure 25: Three clusters were identified in the redundancy analysis

Now, the actual dimensionality reduction is achieved by selecting only one signal from each
cluster. This is done by performing a robust version of permutation entropy (PE) [40]. A
lower value indicates a more predictable, less random signal which is more promising for
further analytics. Figure 26 shows how PE looks for two signals being in the same cluster,
while Table 2 contains the results for all time series with high correlation including the
selection.
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Figure 26: The left signal is selected from the cluster due to lower permutation entropy

As we can see here, the PE value allows to pick a representative channel for each cluster.
A closer investigation of the results allows some conclusions on the suitability of permu-
tation entropy for this task. Especially for clusters 2 and 3, the results lie within a very
close range. This bears the risk that in case of computation inaccuracies or an unsta-
ble algorithm, the evaluation could end up as a random guess. The obvious explanation
seems to be that a signals cross-correlation is correlated to its permutaion entropy. This
is somewhat contradicted by both definitions, as correlation measures linear dependen-
cies over the length of the time series while entropy refers to the predictability of every
part based on previous ones. In addition, the results of cluster 1 show a much higher
intracluster variance. Even in the very close case of cluster 2, PE selected to smoother
and probably more predictable channel. Overall, the combined use of cross-correlation
and permutation entropy can be considered useful and should not be omitted out of fear
of performing redundant computations. The authors of [79] also reported a success as
they developed a methodology to analyze time series coupling dependencies connecting
ideas from both concepts. With regards to cross-correlation, the results of cluster 1 might
suggest to increase the correlation threshold to only cluster signals with high similarities.
This leads to 13 signals remaining and therefore a significant reduction of dimensions.

Sensor Name Cluster | Permutation Entropy | Selected
Tag C PE y/n
bw-current-ValueY 1 0.2572 no
bwb-cyl1-pist-side-ValueY 1 0.0891 yes
bwb-cyl2-pist-side-ValueY 1 0 no
dsc-cyl-angle-ValueY 1 0 no
dsc-cyl-rod-side-ValueY 1 0.0948 no
crw-current-m1-ValueY 2 0.1200 yes
crw-current-m2-ValueY 2 0.1209 no
slew-current-m1-ValueY 3 0.2524 yes
slew-current-m2-ValueY 3 0.2639 no

Table 2: Results of entropy-based selection from cross correlation clusters .

Considering that 15 signals were evaluated at the start and stationarity results could not
be used for selection, this appears as a strong dimensionality reduction. As only 9 out
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of the 18 signals showed high enough correlation to be assigned to a cluster, lowering the
correlation threshold would lead to an even higher rate, but bears the risk of information
loss. In general, it can be said that such methods seem to be highly data dependent and
in need of adjustments.

After the signal selection abilities of the proposed method have been presented, the
segmental investigation feature shall be evaluated. For the three main concepts used
in preprocessing, being stationarity, cross-correlation and permutation entropy, the re-
spective computations are broken down to time series segments. The investigative part
thereby deals with the identification of anomalous segments. For a segment to be con-
sidered anomalous, it needs to have a value in one of the three categories that strongly
differs from the rest of the signal. In the stationarity domain, no interesting results could
be identified. After all channels were tested nonstationary, the initial guess was that
those results were caused by a small number of nonstationary segments that can now be
identified and investigated. However, it turned out that the majority of segments showed
nonstationary characteristics and the ones that did not showed low informational content.
Regarding cross-correlation, some anomalous events have been identified . In Figure 27
left, two channels showing high correlation are presented. Nevertheless, the highlighted
timespan had a significantly lower coefficient when correlated with its parallel counter-
part. Performing a visual inspection as a follow up on this result, it can be seen that
the constant line interrupting the slewing is at a different level. Although it can not be
clarified, this indicates that the operator has stopped the machine at a maximum slewing
torque, which has only happened once in the entire timespan evaluated and can not be
considered standard operation. The highlighted segment in Figure 27 right might not
seem as anomalous, as it shows a decrease in temperature when motor activity stops. A
closer look reveals that it is labelled because not all temperature decreases come with
such an abrupt downshut.

Based on those results, it can be stated that correlation measures are suitable for anomaly
detection in this manner, as rare differences between normally similar system behaviour
will often be interesting events.
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Figure 27: Anomalies detected via cross correlation segmental investigation

In Figure 28, a motor activity signal has been checked for segments with a relatively low
permutation entropy. This resulted in the identification of different motor behaviours.
This is especially interesting, as the signal pattern seems to change after this event, which
could indicate a break between two different machine tasks. This shows that permutation
entropy can be used in searching anomalies in sensor data from technical systems, which
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has also been demonstrated in [58]. However, it should be pointed out that the execution
of several experiments has created the impression that PE tends to identify segments with
low activity. Therefore, it should be questioned if less expensive computations, such as
variance, could lead to the same results.
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Figure 28: Lower permutation entropy of segment indicates anomaly

As large amounts of nonstationary data has to be processed, differencing (Section 2.2)
provides a way to transform those into a stationary representation. It is, however, not
an obligatory part of the preprocessing approach, and will only be used if poor machine
learning results give a reason to do so. Figure 29 provides an example.
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Figure 29: Differencing of nonstationary Signal

5.4 Classifying time series segments with neural networks

Now, the results produced by the proposed machine learning methodology shall be pre-
sented to answer the research questions introduced in Section 4.2. To do this, it is required
to select a dataset. Through performing the developed selection algorithm on a specified
set of machine groups, the two signals visualized in Figure 30 are selected.

Although the overall approach is able to handle a multivariate time series dataset, the
machine learning part is geared towards analyzing a univariate series. It is decided to con-
tinue with the hydraulic pressure signal, as it offers interesting characteristics for analysis.
Furthermore, a timespan for the analysis has to be determined. As already stated, a rel-
atively short period is selected, as generating training data leads to a high effort and can
be prone to error. Below, the key information on the data is outlined:

e Sensor. The respective time series is generated by a hydraulic pressure sensor
installed on a discharged boom. It is part of the Buekkabrany dataset.

o Length. A time period of four days is chosen four analysis. This leads to a time
series consisting of 345600 data points. A period with a relatively high activity rate
is chosen, as data from non-activity days normally provide no information.

« Range. The signal has a symmetric value range, meaning that z,,.. ~ —Zmin.

51



5 EXPERIMENTAL EVALUATION

20 T T T T T T

S
T
1

20 F i

Luff Angle

-40 1 1 1 1 1 1

Time x10°

100 T T

50

Hydr. Press.

-50

-100

w

0 0.5 1 1.5 2 2.5 3.5
Time x10°

Figure 30: Two signals selected for classification

In order to be able to perform classification, it is necessary to identify classes that the
dataset consists of. Before any computations can be done, we are required to look at
the dataset and draw a conclusion on what characteristic events occur frequently, as only
those are suitable class definitions. Considering the specifics of the pressure time series,
it seems reasonable to base the classification around the signal direction. The following
classes are considered the most valuable for machine process analysis:

1. Decreasing Pressure

2. Increasing Pressure

3. Constant Pressure

4. Positive Turn (decrease to increase)
5. Negative Turn (increase to decrease)

Note that the hydraulic pressure will depend on the load that is handled by the machine.
It should be pointed out that the process analysis performed on this data will not go
into too much detail on the technical specifications of the machine, but rather attempts
to analyze the data with respect to different machine states on an abstract level. This
concepts can be generalized to different processes, as long as the classes are chosen in a
useful manner.

As the desired classes are now defined, all parts of the time series have to be labelled
correctly. To achieve this, it is crucial two defined two parameters of the segmentation
and clustering method introduced in section 4.1, being the length of the segments and
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the cluster centroids. A proper manual choice of the segment length is important as
the defined operations will only be recognizable in the right timespan. Referring to this
concrete example, if segments are too short, it is less likely to capture a turn segment. If
they are too long, it is not possible to capture an individual increasing/decreasing event,
as multiple of them will occur in a long segment. It is determined manually that a segment
length of four minutes, leading to 240 data points per segment are ideal.

Now, proper cluster centroids have to be picked. They should be a clear instance of their
respective class to minimize clustering error. The chosen ones can be seen in Figure 31.
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Figure 31: Cluster centroids for the five segment categories respective to signal and
window size

The clustering algorithm now assigns a label to each segment. Table 3 shows the distri-
bution of classes along the dataset. While an equal distribution will be desired in most
classification tasks, such as digit classification, it is hard to achieve when labelling time
series data automatically, as infrequent occurrences will be inevitable. In addition, it is
pointed out that in case of long sequences of the same event, such as long inactive peri-
ods, it is advisable to shuffle the dataset before training, as this can harm classification
accuracy. It has to be done in a way that indices are stored to avoid throwing away
important process information. Furthermore, it should only be done if temporal relations
between the samples are ignored. The analysis continues with performing experiments
using a feed-forward neural network classifier. Network parameters are optimized using
a trial-and-error approach. The best results are achieved using two hidden layers of size
31. The learning rate is set to 0.012, with the increase and decrease ratio being 1.08 and
0.7, respectively. Gradient descent with adaptive learning rate and momentum training
is used. The data is divided in a 70/15/15 ratio into training, validation and test set.
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5 EXPERIMENTAL EVALUATION

Segment Label Number of Segments
Decreasing Pressure 421
Increasing Pressure 434
Constant Pressure 291
Positive Turn 172
Negative Turn 122

Table 3: Number of segments per defined event

For the autoencoders, we use two separate approaches. When a single autoencoder is used,
the input features are directly transformed into a representation of the desired dimension.
When the features are learned using two autoencoders, the first one uses a larger number
of hidden layers. The parameters used for both are:

 Transfer function (encoder and decoder): logistic sigmoid function
o Maximum number of training epochs: 400

o Loss function: mean squared error with sparse adjusted

o L2 weight regularization: 0.0009

e Sparsity regularization: 1

o Training algorithm: scaled conjugate gradient descent

Figure 32 shows the confusion matrix for the random feature set (left) and the selected
features containing differential values and entropy measures (see section 4.2 for details).
The results show a way better accuracy for the selected features. The misclassifications
indicate that the first difference vector is the main reason for this success. When random
features are used, the classifier seems to encounter difficulties distinguishing between
increasing and decreasing segments, as a feature able to capture the signal direction
seems to be missing.

Test Confusion Matrix Test Confusion Matrix

E ¢
o &)
< B
g g
S S
Target Class Target Class
(a) Confusion matrix using random (b) Confusion matrix using selected
feature set features

Figure 32: Classification accuracy - selected features outperform random features
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5 EXPERIMENTAL EVALUATION

As a next step, the experiment is repeated with the feature vectors learned by autoen-
coders (33. The representation learned by a single sparse autoencoder leads to an excel-
lent, almost perfect classification result, which emphasizes the representational power of
autoencoders. It has to be noted that such a result could only be achieved by learning
the features from a dataset with comparable feature composition. When data from lower
activity periods is used, the performance is clearly worse, as discriminative features can
not be extracted. When the two layer approach is used, the results deteriorate. Although
the classification still works well for some classes, such as negative turn, the network now
seems unable to identify the constant segments. As more abstract, higher level features
are learned when multiple layers are used, they might not be suitable for something as
simple as a straight line.

Test Confusion Matrix Test Confusion Matrix

o oy
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o O
3 8
B B
o) o)
Target Class Target Class
(a) Confusion matrix using features (b) Confusion matrix using features
extracted by single autoencoder extracted by two-layer autoencoder

Figure 33: Classification accuracy - results deteriorate with a second autoencoder

Now, the representative ability of recurrence plots needs to evaluated experimentally.
Figure 34 shows the recurrence plots for the cluster centroids. Right away, a major flaw
of this concept can be spotted. The plots of the classes 1 and 2 as well as 4 and 5 look
almost identical, as recurrence plots represent the signal slope, but make no difference
regarding its direction. This problem has not been encountered by other authors such as
[27], as they deal with longer and more complex time series.
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Figure 34: Recurrence plots for cluster centroids

This problem manifests itself in the classification results (Figure 35). The mentioned
classes are misclassified to a high degree. To show that classifying recurrence plots does
work in general, the problem is reduced to three classes. Now, increasing/decreasing as

well as positive turn/negative turn share one label. In this setup, the accuracy rises from
60,6 to 91,7 percent.

Test Confusion Matrix Test Confusion Matrix

Output Class
(%)

Output Class

Target Class Target Class
(a) Confusion matrix using recurrence (b) Confusion matrix using recurrence
plots for five classes plots for three classes

Figure 35: Classification accuracy - recurrence plots fail to represent five classes
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5 EXPERIMENTAL EVALUATION

Finally, the feature extracting ability of autoencoders is tested on the image representa-
tion. As the features for a sample have to be provided to the network as a row vector,
the recurrence plots have to be transformed into vectors and are stacked on top of each
other, as visualized in Figure 36.
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Figure 36: Recurrence plots aligned in stacked vectors for classification

Figure 37 presents a visualization of features extracted by the autoencoders. While one
layer seems to learn a representation with a sharper realization of the edges in the dataset,
the two layer approach produces a less accentuated version.
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5 EXPERIMENTAL EVALUATION

200
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(a) Features extracted from RP (b) Features extracted from RP
representation by single autoencoder representation by second autoencoder

Figure 37: Visualization of features extracted by autoencoder networks through

unsupervised learning

Those figures have more of an illustrative purpose, as feature quality can only be investi-
gated through the classification experiment. For the three-class problem, both approaches
fail to improve on the original result (Figure 38).

Test Confusion Matrix Test Confusion Matrix
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Target Class Target Class
(a) Confusion matrix using single (b) Confusion matrix using two-layer
autoencoder features learnt from autoencoder features learnt from
recurrence plots recurrence plots

Figure 38: Classification accuracy - no improvement through representation learning

A summary of the classification result is provided in Table This classification provides
useful information on the machines operating process, as frequencies of certain machine
states are known. This can be helpful in estimating maintenance intervals or creating key

performance indicators. An example of a possible report generated from a classification
result
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5 EXPERIMENTAL EVALUATION

Experimental Setup | 5-class Accuracy | 3-class Accuracy
Random Features 67,6% -

Selected Features 89,4% -

1-layer AE 98,6% -

2-layer AE 79,6% -

RP Representation 60,6% 91,7%
1-layer AE (RP) - 89,4%
2-layer AE (RP) - 87,5%

Table 4: Summarized classification results

Machine State Occurrence Time in State Percentage
Pressure Decrease 59 236 min 28%
Pressure Increase 72 288 min 33%
Constant Pressure 37 148 min 17%

Positive Turn 27 108 min 12,5%

Negative Turn 18 72 min 8%

Figure 39: Example of process information included in classification result

Note that the results from Table 4 are from the test dataset, previously unknown to the
algorithm. For a better understanding, some exemplary confusion matrices for the entire
training process are provided. In general, the test error should be above the training error
in most cases.
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Figure 40: Confusion Matrix - Random Features
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Figure 41: Confusion Matrix - Selected Features
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Figure 42: Confusion Matrix - 2-layer AE
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Figure 43: Confusion Matrix - 1-layer AE on RP
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6 Conclusions and Future Work

This Thesis is evaluating the potential of deep learning techniques in the context of
analysing manufacturing processes. In concrete, their contribution to the classification
of time series segments originating from machine sensor data has been evaluated. As a
prerequisite, research on relevant statistical concepts from time series analysis has been
done leading to a preprocessing methodology based around stationarity, entropy and cor-
relation measures. The results on the datasets show that cross-correlation as well as
permutation entropy can be considered useful in analysing redundancies and information
content of time series. Regarding stationarity, it can be concluded that the widely used
definition of second-order stationarity should be questioned in the context of sensor data.
Throughout analysis, none of the signals was tested as stationary when a certain length
was exceed, meaning that standard testing procedures are not helpful as a finite sensor
signal is very likely to have at least one segment being nonstationary in relation to the
rest.

For classification, a selected time series was segmented using a sliding window approach
and a small amount of segments was labelled using a clustering algorithm. This was done
for short and simple and more complex segments. In the course of this, the concept of
recurrence plots was tested as an alternative to feature vectors. Although advantageous
for some classes, fundamental flaws were discovered, as the plots are not sensitive enough
for signal direction and failed being distinguishable for such examples. As this is a very
important feature in data from technical systems, their use is limited to specific cases.
For the actual learning task, autoencoder networks were tested for their ability to extract
features from time series. The learnt features were compared to ones manually computed,
whereby a random selection as well as a selection geared towards physical processes is
used. The latter contains features such as differentials and outperformed the random
selection. It is concluded that this is caused by the fact that differentials are more dis-
criminative towards the physical nature of the process than the majority of classic time
series features. The features extracted by an autoencoder were superior to both, showing
the usefulness of unsupervised feature learning in sensor data classification. Depending
on the dataset, an accuracy of up to 98 percent was reached. A performance effect when
extracting features using two stacked autoencoders could not be shown. This is attributed
to the fact that the segment structure is not complex enough for a multilayer representa-
tion to be beneficial. The actual classification was performed using a classic feed-forward
neural network with two hidden layers. In addition, it can be shown that the classification
result contains useful information on the machine operation process, such as frequency of
certain operations or time spent on certain tasks.

Regarding future work, the evaluation of recurrent neural networks, especially long-short
term memory networks might be a valuable contribution, as this type is able to cap-
ture temporal relations which are ignored in a segment based approach. Furthermore, a
combined use of machine learning and analytical methods for sensor data, such as linear
differential operators, can be considered. Such methods can help a learning algorithm to
capture a higher level representation of the underlying physical process, such as a differ-
ential equation. This should be defined as a long term goal in manufacturing analytics.
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