A Recovery Curve Based Method for
Calculation of the Matrix-Fracture Mass
Transfer in Naturally Fractured Petroleum
Reservoirs

A DISSERTATION
SUBMITTED TO THE
CHAIR OF PETROLEUM AND GEOTHERMAL ENERGY RECOVERY
AND THE COMMITTEE ON GRADUATE STUDIES OF THE
UNIVERSITY OF LEOBEN, AUSTRIA,
IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
“DOKTOR DER MONTANISTISCHEN WISSENSCHAFTEN”

written by
Dipl.-Ing. Dipl.-Ing. Christoph Steiner
December 2017

Advisor: O.Univ.Prof. Dipl.-Ing. Dr.mont. Dr.h.c. Zoltan E. HEINEMANN



Affidavit

I declare in lieu of oath, that I wrote this work and performed the associated research myself,
using only literature cited in this volume.

Dipl.-Ing. Dipl.-Ing. Christoph Steiner
Leoben, 14. December 2017

il



Acknowledgments

First of all, I would like to thank O.Univ.-Prof. Dipl.-Ing. Dr.mont. Dr.h.c. Zoltan E. Heinemann
for his advice and support throughout this work. Without his ideas and encouragement this work
would have not been possible.

I also want to thank Univ.-Prof. Dipl.-Ing. Dr.mont. Herbert Hofstdtter for his suggestions that
vastly improved the quality of this thesis.

Special thanks also to Dr. Georg Mittermeir of Heinemann Consulting GmbH Leoben who not
only supported me in the development of this work but also taught me invaluable reservoir
engineering skills.

I also want to thank Professors Heinemann’s Doctorate Group (PHDG), which provided
generous scholarships and PHDG’s proprietary software package HS, which was essential to the
success of this dissertation.

I also want to express my gratitude to Dr. Pavle Matijevic Technologie und
Forschungsimpulszentrum GmbH and PM Lucas Enterprises for providing office room and all

necessary software packages.

Last but not least I want to thank my parents and my partner Lisa Bindhofer for their
comprehensive support and encouragement throughout this work.

il



Abstract

This dissertations presents a method for the calculation of the matrix-fracture mass transfer in
naturally fractured petroleum reservoirs based on the recovery curve concept, which was first
introduced by Heinemann in 2004. This work extends previous efforts of research and
development of Prof. Heinemann’s research group by successfully defining practically usable
techniques for scaling recovery curves and thereby improving the recovery curve method. Clear
evidence for the correctness of this method is presented in this dissertation. The applicability of
other transfer models is also assessed and demonstrated utilizing numerical experiments.

In 1960 Barenblatt, Zheltov and Kochina introduced the dual continuum concept and applied it
to fractured reservoirs. In this concept a transfer term describes the interaction between the
matrix and the fracture continuum. One of the most used and accepted methods for defining this
transfer term is the transfer function introduced by Kazemi et al. in 1976. Using fine grid single
matrix block calculations, the applicability of this type of transfer equation using shape factors
is tested. It is evident that it is applicable in certain cases like single phase expansion, but not
generally. Other concepts like Multiple Interacting Continua or Discrete Fracture Networks
have been developed, but do not have industrial significance and are therefore not part of the
investigations.

Following the principle of the recovery curve concept, numerically derived recovery curves are
directly utilized for determining the matrix-fracture mass transfer, instead of matching fitting
parameters of equations to the results of single matrix block calculation. It is proved that it is
possible to utilize a single recovery curve, calculated at bubble point pressure, for all possible
matrix pressure and saturation conditions by scaling it. The therefore required scaling consists
of two parts, one for the recovery factor increment and the other for the ultimate oil recovery of
the single matrix block. The significance of the presented scaling method is demonstrated on
both small and large scale models. It is shown that for accurate and reliable results both scaling
of the recovery curve increment as well as the ultimate recovery is necessary.



Kurzfassung

In dieser Dissertation wird eine Methode zur Berechnung des Matrix-Kluft Massenaustausches
fiir gekliiftete Kohlenwasserstoftlagerstitten basierend auf der von Heinemann 2004
eingefiihrten  Entdlungskurvenmethode vorgestellt. Diese Arbeit fiihrt vergangene
Anstrengungen im Bereich der Forschung und Entwicklung von Prof. Heinemann’s
Forschungsgruppe weiter, indem praktisch anwendbare Techniken zum Skalieren der
Entolungskurven zur Verbesserung der Entdlungskurvenmethode definiert werden. Klare
Beweise fiir die Richtigkeit der Methode werden in dieser Dissertation prisentiert. Die
Anwendbarkeit anderer Massenaustauschmodelle wird diskutiert und anhand numerischer
Experimente gezeigt.

1960 wurde von Barenblatt, Zheltov und Kochina das Dual-Kontinuum Konzept eingefiihrt und
fiir gekliiftete Lagerstitten eingesetzt. In diesem Konzept beschreibt ein Austauschterm die
Interaktion zwischen dem Matrix und Kluft Kontinuum. Eine der meistverwendeten und
akzeptierten Methoden um diesen Austauschterm zu bestimmen ist die Austauschfunktion, die
von Kazemi et al. in 1976 eingefiihrt wurde. Mittels feingittrigen Einzelmatrixblockrechnungen
wurde die Anwendbarkeit von diesem Typ von Austauschfunktion getestet. Es ist bewiesen,
dass diese nur in bestimmten Féllen wie der Einphasenexpansion anwendbar ist, jedoch nicht
allgemein. Andere Konzepte wie die Multiplen Interagierenden Kontinua oder Diskrete
Kluftnetzwerke wurden entwickelt, aber sie haben bis heute keine Relevanz in der Industrie und
sind deshalb auch nicht Teil der Untersuchungen.

Dem Prinzip der Entdlungskurvenmethode folgend werden numerisch kalkulierte
Ent6lungskurven direkt zur Bestimmung des Matrix-Kluft Massenaustausches verwendet,
anstatt ~ Parameter = von  Funktionen an das  Ergebnis von  numerischen
Einzelmatrixblockkalkulationen anzupassen. Es ist bewiesen, dass es moglich ist eine einzelne
Entolungskurve, berechnet am Blasendruckpunkt, fiir all moglichen Matrix Druck- und
Sattigungszustinde anzuwenden. Die dafiir notwendige Skalierung besteht aus zwei Teilen,
einem Teil flir die Zuwachsrate des Ent6lungsgrades und einem anderen Teil fiir den Endpunkt
der Entolungskurve eines Einzelmatrixblocks. Die Signifikanz der présentierten
Skalierungsmethode ist gezeigt an Modellen im kleinen und auch grofen Mafstab. Es ist
gezeigt, dass fiir akkurate und zuverlédssige Ergebnisse sowohl das Skalieren der Zuwachsrate
des Entolungsgrades als auch das Skalieren des Endpunktes der Entdlungskurve notwendig ist.
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Chapter 1

Introduction

1.1 Motivation of Work

1.1.1 Background

Naturally fractured reservoirs (NFRs) contain a significant amount of the world’s oil and gas
resources. They are highly complex due to the matrix-fracture interaction and to date the
industry was not able to solve the issue of modeling them satisfactorily. The most challenging
aspect regarding NFRs is describing the matrix-fracture fluid transfer. Heinemann (2004)
introduced "The Recovery Curve Method" (RCM) to numerical reservoir modelling, providing
a new approach for calculating this transfer. In this concept the fluid transfer between the
fracture and matrix is determined utilizing numerically derived recovery curves (RC). The
concept has then been applied to the dynamic modeling of NFRs and was topic of dissertations,
master thesis and scientific papers. The RCM concept was later utilized for the development of
a dual porosity material balance method by Mittermeir (2015). Gharsalla (2015) applied this
method to a two-phase NFR. It was the first material balance calculation correctly considering
the interaction between matrix and fracture.

1.1.2 Objectives

The objective of this work is to make the RCM approach generally applicable for the dynamic
modelling of NFRs and to demonstrate, to the best knowledge of the author, its superiority over
all previously applied solutions. This requires scaling of a RC, which was derived at constant
pressure conditions, to the actual state of the matrix block in the numerical model and a correct
determination of the mass transfer rates based on the scaled RC.



1.1.3 Relevance

A significant part of the world’s oil resources is in NFRs. For determining the reserves, reservoir
engineers have to develop a depletion plan, considering well placement, flow regimes, etc.,
leading to an estimate for the expected ultimate recovery. This estimate also considers
parameters impacting the ultimate recovery that cannot be influenced, as they are given by
nature (rock properties, fluid types, etc.) or by the surrounding world (oil price, taxes, etc.).

One of the most effective approaches for optimizing the development strategy and thereby
maximizing the depletion and associated ultimate recovery, is deploying numerical reservoir
simulation. NFRs are modeled by splitting them into two separate domains, matrix and fracture.
In dynamic modeling this distinction is represented by utilizing dual porosity models,
containing both a matrix and a fracture continuum. These continua are linked by a transfer term.
Many attempts to model the mass transfer between the continua have failed or were only
partially successful and led to significant overestimations of reserves and non-optimized project
value. It is critical to realistically model the depletion of individual SMBs by an appropriate
transfer term for obtaining justifiable results for the ultimate recovery factor. If already the
ultimate recovery of the SMBs within the reservoir is wrong, then the one for the entire reservoir
will reflect this error.

Therefore, an assessment of the available methods for determining the matrix-fracture mass
transfer is necessary. It is already widely published that the RCM, utilizing the results SMB
calculations, provides the most appropriate method for modeling the transfer term. To further
improve this method, a scaling of the RC’s has proven to be necessary and is presented in this
work.

1.2 The Approach

1.2.1 Working Environment

The author was supported by Professor Heinemann’s Doctorate Group (PHDG) and by the
Chair of Petroleum and Geothermal Energy Recovery of the University of Leoben. In
compliance with the rules of the PHDG, members do not claim "property right" for texts
displaying the general understanding and knowledge within the group. In this thesis, these texts
are inside ¢ and ’ and are not claimed to be originally drafted by the author. Using these texts
without adaptations is allowed and encouraged. Some of the sentences will be identical to ones
written before, others will be changed to improve it. The author of this thesis does not claim to
be the original creator of the concerned text parts and encourages others to use the written
formulations.

(The author wishes to state that he would not have been able to conduct and complete this
complex research and development work entirely by himself. Although this dissertation has



been written by the author alone, it is the result of a close cooperation within PHDG, which has
accumulated know-how, documentation, case studies and software tools on reservoir
characterization and analysis. Members of this group include theoreticians, numerical analysts,
computer experts and practicing reservoir engineers.

No author claims ownership for any produced written texts that are written within the working
environment of the group. It is encouraged to use existing formulations, also for individuals
outside of PHDG.

As a principle, all team members can use the collective knowledge of the group. Available
formulations are not reformulated but used unchanged in subsequent documents, publications
and in theses unless improvements in clarity and use of English can be achieved. The author of
this dissertation makes use of the group’s common knowledge, especially that which has not yet
been published but only documented in internal reports, master’s theses and PhD dissertations
of former group members. All of these are referenced in general, but not attributed in every
Instance.

During this research, the author had access to proprietary information. Sources of such
information are not referenced unless written permission, including the right of publication, has
been provided by the source.

In order to clearly separate collegial contributions from the individual work of the author, the
author’s scientific ideas, achievements and his additions to future technology are explicitly
indicated at the end of this chapter.’

1.2.2 Previous Related Works

The following works, which are originating from the PHDG, are listed thematically, instead of
chronologically.

( Heinemann (2004) suggested in that instead of trying to estimate individual rock and fluid
properties, the RCs should be determined and used directly in a numerical reservoir simulation
model. The dimensionless RCs display the recovery factor as function of dimensionless time.

Heinemann and Mittermeir (2012) derived a general formulation of the Kazemi, Gilman and
Elsharkawy (1993) shape factor, considering permeability anisotropies and all possible irregular
matrix block shapes.

Pirker (2008) presented a more efficient numerical methods for calculating RCs for SMBs. She
accounted for the fact that matrix blocks are not uniform and therefore RCs have to be
calculated for classes of blocks. Subsequently, the individual RCs had to be consolidated by
averaging according to the frequency of each class. The averaged curve was then assigned to a
simulation cell.

Amiry (2014) suggested a method based on statistical analysis of matrix blocks in outcrops of



fractured formations. He showed that the RC was not influenced by the actual shapes of blocks
and could be scalable with respect to the shape factor and apparent permeability. Additionally,
he showed that under the same conditions, the results of the RCM and those of the classical
conventional method were similar and the two approaches could be combined both in space and
time.

Heinemann and Mittermeir (2016) published their approach for a numerical implementation of
the RCM. It is based on the premise that from the recovery curve fracture-to-matrix injection
rates will be calculated. Expansion of the fluids in the matrix is then handled with the
conventional transfer function.

Ghaedi et al. (2014, 2015) investigated a possible application of recovery curves by determining
the curves directly from historical production data. Based on the findings of the history
matching fundamental rock properties such as wettability, capillary pressure and relative
permeability functions are determined.

Mittermeir (2015) presented the first dual porosity material balance method that fully accounts
for the matrix-fracture interaction by using recovery curves to determine the mass transfer
between matrix and fracture. It fully accounts for expansion, capillary and gravitational driving
forces, as they are already considered in the numerically derived recovery curves.

Gharsalla (2015) presented the first successful material balance application to a realistic dual
porosity two-phase reservoir. The oil-water contact has been matched by adjusting the recovery
curve for oil displacement by water. )

1.2.3 Utilitarianism

(Utilitarianism is one of the basic principles of the PHDG. The actual research and development
was conducted in close connection with real field projects. The new developments are used in
parallel with standard methods, whereas new ideas can be discarded if they do not satisfy the
expectations of quality and efficiency, within the time constraints of the project. This dualism
provides the possibility of close control and will quickly reveal if the standard method is not the
best in each step. ’

1.3 Software Tools

(The simulation software HS is an alternative to other commercial simulators such as ECLIPSE.
It is a proprietary software system developed by Professor Zoltan Heinemann and associates
and is the fifth generation of research simulators developed under the supervision of Prof.
Heinemann. The first generation was written in FORTRAN-IV in 1968. The development of the
fifth generation began in 2006, using FORTRAN-1995 and C++ programing languages. The
various "H"-versions served as the foundations for commercial software packages including



SIMULA, SURE, PRS-2012 and PRS-2015. Prior to version H4, the simulators were used as
teaching and research tools at the Montanuniversitit Leoben.

PhD candidates sponsored by PHDG have access to the HS source code so they can experiment
with the existing modules and can design and implement new procedures. Student researchers
cannot make unsupervised modifications to the H5 code but can develop standalone modules or
simply present detailed descriptions of suggested improvements and extensions to be
implemented by professional programmers. Testing and benchmarking is the responsibility of
the project author. H5 can operate on ECLIPSE input without any modifications, so identical
runs can be made on ECLIPSE, HS5 and PRS. These runs can be started in parallel and the results
must either be close to each other or the differences must be explainable.

The author has greatly benefited from the H5 software and PHDG technical support which
provided the opportunity to develop and test new concepts and procedures for reservoir
simulation.’



1.4 Outline

Chapter 1 Introduction
This is the current chapter which contains a brief introduction to the objectives and
contents of this dissertation. The scientific and technical achievements of the author
are stated.

Chapter 2 State of the Art of Modeling Naturally Fractured Reservoirs
An overview over the dynamic modeling approaches for fractured reservoirs is given.
This includes the dual continuum, the multiple interacting continua and the discrete
fracture modeling approach for numerical models. Also current dual porosity material
balance will be mentioned.

Chapter 3 Matrix-Fracture Mass Transfer Concepts in Dual Continuum Models
Three main types of transfer models are discussed: the analytical recovery curve
approach, the transfer-equation and the RCM.

Chapter 4 Verification of Mass Transfer Equations
In this chapter a set of numerical SMB experiments is used to test dual continuum
transfer models.

Chapter 5 The Recovery Curve Method
The principles of the approach are discussed and a method for applying recovery
curves calculated at two-phase constant pressure conditions to a general case are
discussed. The necessary scaling of RCs is described.

Chapter 6 Verification of the Recovery Curve Method
A column model with discretized SMBs is used for verifying the presented approach
for the scaling of the recovery curves. The results will also be compared to the
Kazemi et al. (1976) transfer function results.

Chapter 7 Full Field Application
A full field model with a realistic production scenario serves as a basis for three
distinct numerical models, which differ in the matrix-fracture mass transfer model.
The first utilizes the RCM with scaling, the second without scaling and the third the
Kazemi et al. (1976) transfer equation. The results and the impact of the
matrix-fracture transfer model on the production scenario are presented.

Chapter8 Conclusions



1.5

1.5.1

1.5.2

Scientific Achievements and Technical
Contributions of the Author

Original Ideas Presented

The author proposes a scaling of the RCs, which are determined at bubble point
pressure, and then utilized as input for the RCM. Both speed and ultimate value of
matrix oil recovery can be described as a function of the pressure and the individual
pressure history of the matrix blocks.

The author suggests to utilize numerical SMB models, operated at various pressure
conditions, for determining scaling factors that can accurately correct the ultimate
recovery to all pressure values.

Scientific Achievements

The author’s investigations on numerical SMB models gave clear evidence that the
transfer equation after Kazemi et al. (1976) is applicable for single phase expansion
and solutio-gas-drive only.

The same SMB investigations also demonstrated that the mass transfer concept after
Reiss et al. (1973) is not generally applicable, as it cannot account for changing drive
mechanisms, pressure changes, etc.

The author showed that it is possible to scale recovery curves, which are numerically
derived at constant pressure conditions, to changing and different pressures. This is
shown on a dual porosity column model where the results of the RCM based
calculations are compared to results where the matrix is finely gridded.

The author’s investigations on the dual porosity column model proved that the
correction of the recovery curves can be split into a scaling of the increment and one
of the ultimate recovery value.

The author derived an approach for the matrix-fracture mass transfer rates based on
the Heinemann & Mittermeir approach also for non-uniform saturation conditions in
the fracture based on theoretical considerations.



1.5.3 Technical Contributions

* The possibility of implementing the RCM including the scaling options into a
multi-purpose reservoir simulator was proved.

* The author demonstrated a workflow for finding the recovery curve scaling factors,
which is applicable to water and gas displacement of oil.

1.6 Publications of the Author

Steiner, C. and Mittermeir, G.M. 2017. Applicability of the shape-factor concept for naturally
fractured reservoirs and an alternative approach. Journal of Petroleum Science and
Engineering 154: 60-75. https://doi.org/10.1016/j.petrol.2017.04.009

Mittermeir, G.M., Steiner, C., Gharsalla, M.M. and Heinemann, Z.E. 2016. Verification of
Geological Models With One Single Simulation Run. Paper presented at the SPE
Europec/EAGE Conference and Exhibition, Vienna, Austria, 30 May - 2 June 2016.
SPE-180122-MS

In preparation:

Brand, J., Steiner, C. and Mittermeir, G.M. Naturally fractured reservoirs (NFR) recovery
factors and development planning - A case study comparison of the Recovery Curve Method
(RCM) and current industry practice. Paper prepared for the SPE Annual Technical
Conference & Exhibition, to be held 24 - 26 September 2018, Dallas, Texas, USA.

Steiner, C. and Heinemann, Z.E. An Improved Recovery Curve Method for Modeling Naturally
Fractured Reservoirs. Paper prepared for submission at the SPE Journal.



Chapter 2

State of the Art of Modeling Naturally
Fractured Reservoirs

In this chapter current methods and practices for modeling NFRs are discussed. As all industry
relevant approaches and also this work are based on the dual continuum modeling (DCM)
approach, the focus of this chapter will be set on these methods. Discrete fracture modeling
(DFM) will be mentioned only briefly, as no industry relevant application is known and it has
no intersection with this work. Additionally, recent advances in the material balance calculation
for NFRs will be discussed.

2.1 Characterization and Classification of Naturally
Fractured Reservoirs

To design an appropriate development plan utilizing a dynamic reservoir model, one needs a
credible reservoir description that includes fracture related properties such as (Heinemann and
Mittermeir 2014):

» Size of the fractures,

* Number of fractures per length (called fracture count),
* Fracture orientation,

* Fracture aperture,

* Fracture porosity,

* Conductivity,

* Fracture connectivity,

» Fracture relative permeabilities.

For a full description of the reservoir also matrix properties have to be estimated. It should be
noted that although some properties like porosity can be determined accurately, they are only
known for an extremely small part of the reservoir. This measured data is then used in some
form (stochastic modeling, kriging, interpolation, etc.) for estimating the properties throughout
the reservoir. Creating an initial model, that encompasses well founded matrix and fracture

9
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properties, is a crucial task in modeling NFRs. However, it is not in the scope of this work and
will therefore not be discussed in more detail. One of the basic assumptions of this work is that
there is already a possibility to find a reasonable starting point for matrix and fracture properties.

Based on the storage capacity and permeability ratio, NFRs can be classified. Nelson (1992)
gave a classification based on both porosity and permeability (Figure 2.1), where four types are
distinguished. Type I is a reservoir where both fluid flow and storage capacity is predominantly
in the fracture and the matrix contribution is only minor. In type II the flow is also dominated
by fracture flow with low matrix permeability, but the matrix also stores parts of the oil. Type
IIT and type IV both have most of the storage capacity in the matrix. In type III the permeability
is still largely in the fractures, whereas in type IV also the total permeability is matrix
dominated.
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Figure 2.1: Classification of fractured reservoirs after Nelson (1992)

Another widely used classification is the one by Aguilera (1980), who defined three types of
NFRs based on the ratio of storage capacity between matrix and fracture (Figure 2.2). Type A
NFRs store most of the oil in the matrix, in type B neither matrix or fracture are dominant and
in type C the oil is stored only in the fracture.
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Figure 2.2: Classification of fractured reservoirs after Aguilera (1980) based on

porosity distribution (McNaughton and Garb 1975)
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2.2 Recovery Processes in Fractured Reservoirs

Oil recovery from NFRs is based on the same physical principles as in non-fractured reservoirs,
namely (Heinemann and Mittermeir 2014):

1. Rock compressibility and compaction,

2. Single phase fluid expansion,
3. Solution gas drive,

4. Gravity drainage,

5. Capillary Imbibition,

6. Diffusion,

7.

Viscous displacement.

However, there are significant differences in the exploitation of oil from fractured compared to
non-fractured reservoirs. In most NFRs the matrix contains the majority of the oil and the
fractures provide the main fluid flow pathways through the reservoir due to their much higher
permeability. The described reservoir would be of type A according to Aguilera (1980) and of
type II or III according to Nelson (1992). To produce the oil from the reservoir through wells,
which drain from the highly permeable fractures, a fluid transfer between matrix and fracture
must occur. The efficiency of this transfer process determines the recoverable oil and the
production capacity.

The recovery processes 1-3 are purely pressure dependent, as transient effects can be neglected
in nearly all instances. As the pressure in the fractures drops, the fluid in the matrix expands and
flows out. When this happens in a saturated system, also solution gas liberates and expands.

Gravity drainage (4) is a mostly dependent on the saturation in the fracture. However, especially
in the case of gas filled fractures, this driving force is also pressure dependent. This is because
the compressibility of the gas in the fracture and the oil in the matrix is different, resulting in
changing differences between the gravitational gradients.

(5) only depends on the saturation in the fracture and can therefore be seen as a purely
time-dependent process.

(6) acts on light hydrocarbon components and can be considered only in a compositional
formulation. Fluid flow in the fracture results in a pressure gradient along the matrix block,
resulting in (7).
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Figure 2.3: Recovery process in a dual porosity / dual permeability three phase
reservoir (Heinemann and Mittermeir (2014))

Figure 2.3 is an illustration of the oil recovery process from a NFR. Initially, both the matrix and
fracture are oil filled between the initial oil-water contact (OWC) and the initial oil-gas contact
(OGC). When production starts, oil is removed from the fracture network and the equilibrium
between matrix and fracture is disturbed. As pressure in the system drops, solution gas is
liberated and the OGC moves downward. Water influx from the aquifer causes an upward
movement of the OWC. As saturation and pressure in the fracture change, the resulting driving
forces (expansion, capillary and gravitational forces) cause the displacing phase, gas or water,
to enter the matrix and oil is expelled from it. The expelled oil forms an oil rim in the fracture
domain, resulting in a possible oil resaturation of matrix regions that have previously been
swept by water or gas.
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2.3 The Dual Continuum Concept

The dual continuum approach is a mathematical concept which is widely used for modeling
NFRs, where both matrix and fracture store oil and interact. In a NFR, where there is no
interaction between matrix and fracture (e.g. tight matrix), this concept is not applied and these
reservoirs can be regarded as single porosity reservoirs for the purpose of reservoir simulation.

Dual continuum models (DCMs) have been introduced into reservoir simulation by Barenblatt,
Zheltov and Kochina (1960) and Warren and Root (1963). The basic concept is that two
separate continua, fracture and matrix, are interacting. In the original dual continuum concept
only the fracture cells are connected with each other and have one adjacent matrix cell. The
matrix cells cannot communicate with each other (Figure 2.4).

matrix

fracture

Figure 2.4: Dual porosity (single permeability) concept, only the fractures are
continuous

Pseudo-steady state conditions are assumed for the mass transfer between fracture and matrix
and only single-phase flow was considered. The transfer between fracture and matrix was
calculated on equations of the form:

qr/ = cf%‘(pm -pp, @.1)

where ¢ is the mass transfer rate between fracture and matrix, o is a constant shape factor, o is
the fluid density, # is the fluid viscosity, & is the permeability and p the pressure. The indices p
denote the phase, m the matrix and fthe fracture. With this transfer term the equation of mass
conservation for two immiscible and compressible fluids can be written for the fracture
continuum:

N mf — 0
V(pu)ﬁ?—qpf— _a—t((l)fsfppfp)a (2.2)

and for the matrix continuum:

VPR, 4 = 20,5, ): (2.3)

where # is the filtration velocity, ¢ is the porosity and S is the saturation.
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Kazemi et al. (1976) extended this to provide the original multiphase DCM leading to a transfer
function for component ¢ and a matrix cell volume ¥, considering the phase potential @:

k
- .
Doy VckaZHpo(d)pf @ ). (2.4)
p

When a transfer function is defined the balance equations for all three phases in a black oil
formulation can be written:

[k N o ¢S

\V " rw kV(I)W:| +qwiqwmf = 8_tB_W (2.5)
L™ ww w
k oS

ro g T = -9

\% MOBOkV(DO} 4o T Doy a_t( Boj (2.6)
Mk R k P S RS
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As described by Gharsalla (2015): "Equation 2.5 to Equation 2.7 give the black oil balance
equations considering three components in three phases (subscripts w, o, and g for water, oil and
gas). Each continuum is a single porosity medium, therefore, the flow equations are identical

for both continua. The only difference is that the transfer terms have the opposite sign: +/_qwmf

for water, +/_q0mf for oil and +/-qgmf for gas. B is the formation volume factor and ¢ is the
volumetric source/sink term. Equivalent compositional and non-isothermal formulations are
also well known. The balance equations have to be written for both continua.The last terms at
the left hand side represent the rate of the mass transfer between the fracture and matrix
continua."

When also matrix-to-matrix transmissibilities are considered, allowing flow in from one matrix
grid cell to another, the model is called dual-permeability model (Figure 2.5). Dual continuum
models of this type are useful when e.g. the matrix significantly contributed to fluid flow within
the reservoir. However, when also matrix-to-matrix flow has to be calculated the linear equation
system becomes larger and more CPU-time is required for a solution.

matrix

Figure 2.5: Dual porosity - dual permeability dual permeability concept
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Multiple models exist for the determination of the transfer term. They will be discussed in
Chapter 3 and the verification of the models can be found in Chapter 4 and Chapter 6.

2.3.1 Matrix Blocks and Simulation Cells

Figure 2.6: Fractured Rock, Matrix cell vs. matrix block, (Roxar training)

Heinemann and Mittermeir (2014) described the difference between matrix blocks and
simulation cells in dual continuum models as follows:

(In order to calculate fluid flow within the dual porosity system numerically, Equation 2.5 to
Equation 2.7 have to be discretized. To avoid ambiguities one should distinguish between
matrix blocks and simulation cells. The red squares in Figure 2.6 (or cubes in 3D) represent the
control volumes, in other words the “simulation cells”. The dual continuum approach considers
two simulation cells at each location (i.e. at the place of each red square); one is the “matrix cell”
and the other is the “fracture cell”. This divides the space into two identically-shaped domains:
the “matrix domain” and the “fracture domain”. The fracture domain, built by the fracture cells,
commonly has a much higher permeability and less porosity than the matrix domain. This
means that the fracture cells can exchange fluids easily with their neighboring fracture cells
(along the black arrows in Figure 2.6). Matrix cells, may or may not be able to exchange fluids
with their matrix neighbors resulting in dual permeability or dual porosity models, respectively.
Figure 2.6 is the two dimensional outcrop of a naturally fractured formation. This figure
explains the fundamental problems that should be overcome while modeling fluid flow in such
a discontinuous domain. The fractures surrounding the blue-framed “matrix blocks” determine
their boundary conditions, imposing how the hydrocarbon will be recovered from the matrix
block. On the other hand, the matrix blocks serve as the internal mass source and sink for the
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fracture system. )

This clear distinction is important to avoid ambiguities and therefore this nomenclature is also
followed in this thesis.

2.4 Subgridding of Matrix Blocks

Saidi (1983) presented at method, where the matrix is gridded into vertical cylinders (Figure
2.7). After evaluation of the pressure in the fracture and the individual matrix blocks the phase
potential is determined for all grid cells, also accounting for capillary forces. The
transmissibility between fracture and matrix is then distributed to the grid cells based on open
matrix boundary area. It is possible to define sealing boundaries, for example to restrict flow
from the bottom and top of the matrix blocks. Using this method the Iranian Haft-Kel field was
history matched.
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Figure 2.7: Matrix element with grid block definition (Saidi 1983)

The Multiple Interacting Continua (MINC) concept was introduced by Preuss and Narasimhan
(1985). In this method, the matrix cells are discretized into nested elements with surfaces
parallel to the nearest bounding fracture (Figure 2.8). This is done because it is assumed that the
condition at a certain point in space of the matrix primarily depends on its distance to the
fracture plane. The fracture provides a uniform boundary condition to the outermost matrix
element. It is clear that this assumption is never fully valid, because within the fracture potential
gradients or a non-uniform saturation could exist. In their presented method, the flow is
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restricted into the outwards direction from matrix to fracture.

Preuss and Narasimhan (1985) describe a three-step procedure for defining a MINC mesh:

1. Creation of the primary mesh. This mesh considers the general geometry and
parameters of the reservoir.

2. Defining elemental volumes, interface areas, nodal distances and volume fractions
of the individual discrete elements.

3. Applying scaling laws to consider that the in a typical matrix cell more than one
SMB is located.

A verification of this method was done by Wu and Pruess (1988) by comparing MINC results
with one of a model with discretized matrix blocks bounded by a uniform fracture. Generally,
high CPU time of the MINC method is problematic. Naimi-Tajdar et al. (2006) therefore
implemented the MINC method in a 3D, compositional reservoir simulator that using parallel
computing. By using 16 processors instead of 1 the calculation time of their test model was
decreased by a factor of over 10.
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Figure 2.8: The MINC discretization (Preuss and Narasimhan (1985))

Gilman and Kazemi (1988) presented a method for subgridding the matrix blocks, similar to the
MINC method. They showed two options for dividing the matrix blocks (Figure 2.9), one with
stacked blocks in vertical direction and one with nested blocks similar to the one used in MINC.
Vertically stacked matrix blocks allow for the modeling of phase segregation within matrix
blocks. As this is a strict dual-porosity approach, no fluid transfer can happen between matrix
blocks of different grid cells. For the matrix-fracture mass transfer still the transfer equation
Equation 2.4 is used, with possibly different shape factor values for the individual matrix grid
blocks that are connected to the fracture. Naturally, also the matrix subdivided cells
communicate with each other. Problematic is the increased CPU time, which is stated by Gilman
and Kazemi (1988) to be between 20 and 80%.



19

T
i [ 7
NE =
/IR B RaSERl
% MATRIX % é | ImaTRIX! Z
%* . ﬂ% /-—»«r»arblﬂr-l-ﬁ-*rg
(. I Bl

Stacked Blocks Nested Blocks
Figure 2.9: MINC-type method after Gilman and Kazemi (1988)

2.5 Discrete Fracture Modeling

In the last decades many efforts, mostly of academic nature, have been undertaken to create
Discrete Fracture Models (DFM) and make them applicable for reservoir simulation. In this
concept the fractures are considered explicitly as discretized entities and therefore they rely
heavily on unstructured grids. The discretization method used can be either finite element (e.g.
Karimi-Fard and Firoozabadi 2003), control-volume finite element (e.g. Fu, Yang and Deo
2005) or control-volume finite difference (e.g. Karimi-Fard, Durlofsky and Aziz 2004). Figure
2.10 shows how fracture are represented in a DFM, in this case a control-volume finite element
one. Hoteit and Firoozabadi (2006) also developed a compositional formulations for DFM.

Physical Domain

Grid Domain
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Figure 2.10: Representation of fractures in a DFM using control-volume finite
elements (Karimi-Fard, Durlofsky and Aziz 2004)

Drawbacks of DFMs are the high computational cost (Geiger et al. 2009) as well as the complex
and challenging grid generation for such models (Moinfar et al. 2014). The grid has to represent
the modeled fractures. If parameters like the fracture density or length of fractures is adapted
during the modeling process, it is required to generate a new grid for each manipulation. Thus,
an application to a full field with multiple geological realizations is time consuming and
expensive. Most of the models applied are small in scale, with one of the most often used being
a Bristol Channel outcrop (Figure 2.11). The author of this work asserts that models dealing
with such scales are not directly connected to the objective this thesis.

~
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Figure 2.11: Bristol Channel fracture pattern (left) and corresponding DFM model
(right) (Geiger et al. 2009)

Recently, Embedded Discrete Fracture Modeling (EDFM), which is a hybrid method between
DFM and DCMs emerged. Li and Lee (2008) were proposed such a method where based on
stochastic modeling of fracture networks the fractures are divided into classes of different
fracture lengths. Shorter fractures are accounted for by manipulating the matrix permeability,
longer ones are explicitly modeled. The transfer between the larger fractures and the matrix is
calculated using a transfer equation based on Peaceman’s well equations. Moinfar et al. (2014)
improved this method by including the possibility to model fractures of different orientations,
whereas the Li and Lee (2008) only considered fractures perpendicular to layers. A geometrical
representation of an EDFM grid can be seen in Figure 2.12.
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Figure 2.12: Geometrical representation of an EDFM grid with discrete fractures
(Moinfar et al. 2014)

2.6. Single Matrix Block Modeling

SMB models have been used to investigate the oil recovery from SMBs since decades. Whereas
in the dual continuum formulation only averaged pressure and saturation is considered, fine grid
SMB models can model all non-uniformities within the matrix associated with the recovery
process. However, on a reservoir scale it is not feasible to discretize the matrix into individual
fine grid SMB models. Approximations like the MINC by Pruess and Narasimhan (1985) or
Gilman and Kazemi (1988) to this fine grid SMB models for full field simulation have been
mentioned above.

The following two paragraphs, providing a brief historical overview, is taken from Steiner and
Mittermeir (2017):

(Historically Yamamoto et al. (1971) were the first to perform calculations on a SMB model,
followed by Kleppe and Morse (1974). Both used two-dimensional models, surrounded by
narrow fractures. Later authors also used 3D models. The following have to be mentioned in
this context: Thomas et al. (1983), Rossen and Shen (1987), Coats (1989), Fung and Collins
(1991), Kazemi et al. (1992), Chen et al. (1995), Gurpinar and Kossack (2000), Famy et al.
(2005), Kossack (2006). Balogun et al. (2007). Practically all possible recovery mechanisms,
under various model setups were considered. The available literature clearly demonstrates the
continuous efforts to capture the parameters influencing the flow behavior of any matrix block
assembling the reservoir body.

One of the widely discussed properties of a SMB is its shape, which may be approximated by
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various geometrical bodies like cubes or cylinders. Barker (1985) identified that the flow
behavior of the model depends on its surface-to-volume ratio and not its shape. Thus, if these
ratios of two matrix blocks of different shapes are the same, the matrix-fracture mass change
rate will be the similar, as long as the driving forces are the same. The forces to consider are the
compressional, capillary, gravitational and viscous ones. The first two act uniformly on the
block, but the latter two are influenced by the extension of the block in the direction of the
pressure gradient in the bounding fractures. Considering gravity drainage means that the flow
behavior is the same if the heights of the matrix blocks are identical. Wuthicharn and
Zimmerman (2011) concluded that for an expression of the shape factor considering only a
surface to volume ratio, it is possible to predict shape factors for irregular shaped matrix blocks
with an error of less than 10%. Consequently, for all practical s the shape of matrix blocks can
be disregarded as long as the surface to volume ratio is correct, since a determination of the
matrix block shape in a real reservoir is in any case impractical. Therefore, although the blocks
in Figure 2.13 have a different shape, as long as they have the same surface-to-volume ratio and
the same height, they are equivalent.”’

Figure 2.13: Different matrix block shapes with the same shape factor and flow
behavior (Heinemann and Mittermeir 2016)

The SMB model, which is used in this work was already used by Pirker, Mittermeir and
Heinemann (2007) and since then used for many scientific and technical works. Gharsalla
(2015) proved that a grid dimension of 7x7x21 for a quarter model, as shown in Figure 2.14, is
generally applicable. Because of symmetry reasons it is only necessary to calculate on a quarter

model, although the herein used reservoir simulator H5 also offers the possibility to use a full
block.

The user of the SMB model can manipulate input parameters for modeling the desired matrix
block. Rock properties that can be changed are the porosity and the permeability, which can be
different in x, y and z direction. The size of the SMB is chosen explicitly by defining the vertical
and horizontal extension or alternatively by providing only the vertical extension together with
a shape factor. Naturally, also the saturation dependent rock functions and PVT data can be
changed.

The initial pressure of the SMB is based on an input pressure, which will be assigned to the
central matrix layer. The pressures above and below that are then set according to the present
fluid density. This gravitational gradient is generally different for matrix and fracture.
Therefore, initially the average pressure is the same for fracture and matrix, but the system is
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not necessarily in equilibrium. The initial saturation of the SMB depends on if oil recovery or
oil resaturation should be calculated. In case of oil recovery, the initial saturations are: S,, =S,
Sy =0, S, = 1-S,,;. For oil resaturation this depends on what beforehand occurring recovery
mechanism is assumed. For oil resaturation after waterdrive the initial saturations are: S, =S,
S, =0, S, = 1-S,,, and after gasdrive they are: S, = S, S,, = S;, S, = 1-S,,-S,;. Expansion
and solution-gas drive are modeled by filling and re-filling the fracture with oil, which has a
slightly higher bubble point than the one in the matrix.

Wi

The fracture planes, which can be seen as the grey grid cells in Figure 2.14, are used to set the
boundary condition for the matrix block. They can be either on all sides of the matrix block or
only vertically bounding. The hydrostatic pressure distribution in the fracture imposes the
pressure boundary condition for the matrix. It is also possible to model fluid movement in the
fracture by setting a viscous pressure gradient in the fracture. During the calculation all fracture
parameters, like fluid content, pressure, and pressure gradient can be changed. The fracture
volume is high, so that the saturation changes during a time step do not have an influence on the
calculation. At the end of every time step the from the matrix expelled fluid is removed and the
saturation is set back to the desired boundary condition.

IFracture

Matrix

Figure 2.14: Quarter of a SMB model, fully surrounded by fractures (left) and with
vertical fractures only (right). (Heinemann and Mittermeir 2016)
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2.7 Dual Porosity Material Balance

Material balance (MB) calculation was first introduced into reservoir engineering by Schilthuis
(1936) and later well known formulations are by Tarner (1944) and Muskat and Taylor (1946).
Until reservoir simulation emerged, MB calculation was the only reservoir engineering method
for determining drive mechanisms and making predictions on a field level.

Figure 2.15: The scheme of the material balance of an oil reservoir

Figure 2.15 shows the principal of material balance calculations. Initially (left) the reservoir is
at pressure p;, and the oil phase occupies a reservoir volume of NB;, where N is the original oil
in place and B the original oil formation volume factor. Additionally, a gas cap with the volume
mNB,; is present, where m is the gas cap factor. After some time and an oil production N, and
a water production W, the pressure drops. The volume of the reservoir remains constant and
therefore the gas cap expands and water influx W, from an aquifer occurs. It can be seen that
this classical material balance, when applied to a NFR, does not provide any indication of if the
fluids are in the fracture or the matrix and does not consider the fracture-matrix interaction.

Efforts to make the MB suitable for NFRs have been made by distinguishing between fracture
and matrix. One approach was to consider the different pore compressibility of the fracture and
the matrix (Penuela et al. 2001, Sandoval Merchan et al. 2009, Bashiri and Kasiri 2011).

However, such methods still do not consider any interaction between the matrix and the fracture.

Based on the Heinemann (2004) concept of using recovery curves directly for determining
fracture-matrix fluid transfer, Mittermeir (2015) developed the first dual porosity MB method
which accounts for the interaction and mass transfer between fracture and matrix and considers
capillary, gravitational and viscous forces. Instead of the single approach of the classical MB,
two barrels are used, one representing the matrix and the other the fracture volumes. The fluid
transfer is determined directly from oil recovery curves, which could be gained from fine grid
SMB experiments. The schematic of such a MB model can be seen in Figure 2.16. In Zone 3,
water enters the matrix and displaces oil, after the oil water contact has risen. In this zone the
fluid transfer is determined by a waterdrive recovery curve. Zone 1, where the fracture is filled
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only by oil, expansion is the sole driving force and therefore no recovery curve is applied. In
zone 2, the fracture is gas-filled and displaces oil from the matrix and the fluid transfer is
determined by a gasdrive recovery curve.

Matrix Fracture
Barrel Barrel

0GC

T owcT

1m thickness

Unit Tranche

Mini Barrel

Figure 2.16: Dual porosity MB model with moving phase contacts (Mittermeir
2015)



Chapter 3

Matrix-Fracture Mass Transfer Concepts in
Dual Continuum Models

This chapter summarizes the different approaches for modeling the mass transfer between
matrix and fracture in DCMs. Available experimental evidences are also briefly discussed and
it will be shown that a verification of the matrix-fracture mass transfer concepts cannot be done
based on these experiments.

3.1 Experimental Evidences of Matrix Oil Recovery

This section is taken from Steiner and Mittermeir (2017) without major modifications. The
review of published experimental evidences was done at the end of 2016 and can therefore be
considered to be up to date.

Authentic results of experiments dealing with the recovery of oil from the matrix would require
representative matrix blocks (rock-type, size), reservoir fluids and physical conditions
(temperature, pressure) as well as an appropriate time of investigation. At a minimum the most
important driving forces (capillary imbibition, gravity drainage, solution gas drive) should be
considered.

Up to now, no experimental work is known which would fully satisfy these requirements. The
experiments were made on small plugs, mostly on Berea sandstone cores or artificial compacted
packs (often using Al,O5 powder). The Berea samples will be signed by BS in the following.

Most experiments focus solely on the driving force of capillary imbibition. Mattax and Kyte
(1962) have published the first experimental evidences for the capillary imbibition results. They
conducted six experiments for both linear and three-dimensional oil displacement from
cylindrical samples and recorded the recovery factors as a function of time. The sizes of the
samples ranged between 2.8 to 11 c¢m in length and from 2.54 to 5 cm in diameter. For the
creation of the samples for linear displacement Al,O; powder was used, for the

three-dimensional displacement a sandstone was used.

26
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Kleppe and Morse (1974) used BS for the creation of cylindrical samples (10.16 cm diameter,
121.92 cm length) for their experiments. The cylinder was mounted vertically in a tube with 2.5
mm annular space, representing the surrounding fracture. Capillary pressure curves as well as
relative permeability have been determined experimentally. The results have been documented
as cumulative oil production from the core as a function of cumulative water injection.

Kazemi and Merrill (1979) conducted experiments on both cylindrical (2.54 cm diameter, 7.62
cm length) and rectangular block (5.08 x 10.16 x 10.16 cm) samples made of BS with a single
artificial fracture. The artificial fracture cut the matrix in two halves, creating two separate
matrix blocks. Injection and production was done only through the fracture. For one of the
samples also capillary pressure measurements using the centrifuge method were performed.

Hamon and Vidal (1986) used Fontainebleau sandstone and Al,O5; samples with lengths

ranging from 10 to 85 cm and a diameter of 7.6 cm. A total of 18 imbibition and waterflood
experiments have been conducted.

Morrow et al. (1994) used 21 cylindrical samples of BS (3.8 cm diameter, 6.2 - 7.2 cm length)
for imbibition and waterflooding (forced imbibition) experiments.

Zhang and Morrow (1996) conducted imbibition experiments on 13 cylindrical samples (3.81
cm diameter, 1.17 - 10.24 cm length) from BS. Zhoue, Morrow and Ma (2000) performed
imbibition and waterflood experiments on 41 BS plugs. The cylindrical samples were 3.8 to 3.82
cm in diameter and 6.4 to 7.8 cm long.

The issue of co-current vs. counter-current imbibition was examined by Bourbiaux and
Kalaydjian (1990) with parallelepiped shaped sandstone samples (6.1 x 2.1 x 29 cm). Oil
recovery rates from co-current imbibition, modeled by opening top and bottom of the sample,
was much faster compared to counter-current imbibition, where the fracture was open only on
one side. In addition, Pooladi-Darish and Firoozabadi (2000) experimented with co-current vs.
counter-current imbibition. Cubic Kansas chalk (6 x 18.75 x 30.48 cm) and BS (14.71 x 14.71
cm x 60.47 cm) samples have been used. Co-current imbibition was modeled as a slowly
advancing water level surrounding the matrix block, showing a faster oil recovery compared to
a fully immersed block.

Rangel-German and Kovscek (2002) studied the capillary imbibition process on cubic BS
samples with X-ray CT using mostly water and air as fluids. Injection and production took place
from a single fracture located at the bottom of the sample. It was found that for very high
matrix-fracture transfer rates the recovery scales linearly with time and in the case of lower
transfer rates and finer fissures the recovery scales with the square root of time. Le Guen and
Kovscek (2006) conducted experiments with the same technique as Rangel-German and
Kovscek (2002) with cylindrical cores of 9 cm length and 2.5 cm diameter and found that at core
scale the capillary imbibition process is a non-equilibrium process. However, due to the
different scale and timeframe of laboratory core investigations these results cannot be seen as
evidence for the field scale (Hirasaki 1980).

To consider the gravity drainage driving force in addition to the capillary imbibition would
require samples with heights representative of the reservoir conditions, which is far beyond any
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experiment found in literature. Kyte (1970) presented experiments including gravity drainage
using centrifuges to scale the potential difference due to gravitational forces. However, as
already stated by Hassler and Brunner (1945), it is not possible to exactly scale gravitational
forces with a centrifuge. The acceleration on the sample is not constant over the entire length
leading to a non-linear apparent gravity gradient. For the experiments, cylindrical samples from
preserved cores were used with matrix block heights of 4.9 cm and 9.8 cm and diameters of 1.88
and 3.76 cm, respectively.

Li et al. (2000) used two cylindrical BS cores with lengths of 24.45 cm and 48. 74 cm and a
diameter of 10.16 cm. The timeframe of investigation was 30 days for the smaller core and 18
days for the larger one. Recovery curves (RC) for both cores have been determined. However,
the cores have been artificially fractured in different positions and therefore both cores do not
act as a SMB.

Rangel-German and Kovscek (2002) demonstrated the influence of gravity drainage by testing
water displaced by air with a fracture on top of the core-sized matrix block, in contrast to their
other experiments that had the fracture at the bottom. However, the scale dependency of the
gravity drainage driving force was not further investigated.

Laboratory experiments dealing with single-phase expansion and solution gas drive are
described e.g. in Morel et al. (1992), Sahni et al. (2001) or Bayon, Cordelier and Nectoux
(2002). Experiments both on cores as well as on outcrop samples with live oil under reservoir
conditions have been conducted. Pressure drawdown was achieved by producing oil from the
bottom of the sample and gas from the top.

To summarize, it was not possible to find experimental results representative of a full-size SMB
at reservoir conditions. Most experiments deal with the capillary imbibition only and do not
model other driving forces simultaneously.

3.2 Approach with Analytical Recovery Functions

Reiss, Bossie-Codreanu and Lefebvre Du Prey (1973) presented a method for determining
three-dimensional multi-phase mass transfer rates in dual-porosity models for NFRs. Their
transfer model uses RCs for the determination of the matrix-fracture transfer rate. They
presented 7 numerical models of varying complexity and scale, including a SMB one. It is
suggested to use the SMB calculation for evaluating the RCs used for determining the
matrix-fracture mass transfer.

Initially, matrix and fracture are oil saturated. When production commences the pressure in the
fracture drops and oil is flowing fro the matrix into the fissures based on fluid/rock expansion
and solution gas drive. (When the matrix block is reached by the water-oil or gas-oil contact, the
depletion of the matrix is caused by capillary and gravity effects. This depletion process is
modeled as a function of the elapsed time after water (or gas) comes in contact with the matrix
block via the surrounding fractures. The phases are completely segregated in the fissures and
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the matrix block is completely surrounded by water or gas. The matrix-fracture exchange will
be represented by time-dependent source or sink functions, also named as recovery functions or
RCs. Rossen (1977) used the same approach with semi-implicit handling of the source terms. ?

After the phase contact arrival and the application of the purely time-dependent transfer
functions, the fluid and rock compressibility as well as the fracture viscous flows are not
considered for the matrix-fracture mass transfer. Although Reiss, Bossie-Codreanu and
Lefebvre Du Prey (1973) claimed that this is not restrictive for usual field applications, this
assertion is not proven or acknowledged in the literature, as mentioned by Heinemann and
Mittermeir (2014).

With their CFRAC numerical model, which is a SMB with a surrounding fracture, Reiss,
Bossie-Codreanu and Lefebvre Du Prey (1973) presented a tool for creating the RCs. Another
possibility for deriving such time functions would be laboratory experiments, where the work
of Mattax and Kyte (1962) must be mentioned. Based on their experiments, Kazemi, Gilman
and Elsharkawy (1992) showed that for water imbibition the RC can be approximated by using
an exponential equation as already suggested by Aronofsky (1958):

Ep(t) = Ep yon(1. =€) (3.1)

Many other equations have been suggested for estimating the RC of a SMB by either
superimposing multiple exponential functions (Kazemi, Gilman and Elsharkawy 1992) or using
early and late time functions (Rangel-German and Kovscek 2002).

3.3 The Transfer Function Approach

The transfer function (TF) approach, goes back to Barenblatt, Zheltov and Kochina (1960) and
Warren and Root (1963), as already described in Chapter 2. Warren and Root (1963) derived
their transfer equation based on the sugar cube model, an idealized model of a NFR (Figure 3.1).
After the extension to multi-phase flow by Kazemi et al. (1976) the TF became the most widely
used method for determining the matrix-fracture mass transfer.
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Figure 3.1: Idealization of a fractured reservoir (after Warren and Root 1963)

Their transfer function with the obligatory shape factor will be discussed:

k
— rp _
qcmf_ VcelleQZM B ((Dpf_ (me) P =W, 0,8, (32)
p PP

where V., is the pore volume, index p denotes the phase, &, is the apparent matrix permeability,
4 the viscosity, B the formation volume factor, k, the relative permeability and @ the phase

potential in the fracture (f) and in the matrix (m). The shape factor (SF), o, is a characteristic
value of the matrix block considering its geometry.

For the application of the TF it is critical to find suitable values for the SF. Warren and Root
(1963) proposed an equation for determining the SF:

o = 4N - N12) (3.3)
LZ

where N is the number of fracture sets and L is the dimension of the cubic matrix block.

Kazemi et al. (1976) derived a SF for their transfer equation, which is widely accepted and used:
1 1 1 )
c = (——+—+—— ) (3.4)
2 2 2
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Kazemi, Gilman and Elsharkawy (1992) then provided a more general expression for the shape
factor as:

14
= — _, 3-5
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where V' is the matrix block volume, A4 is the surface area open to flow at surface s, and d is the
distance from the open surface to the center of the matrix block.
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Heinemann and Mittermeir (2012) gave the most general version for the shape factor as:

N TR
1 k'n.
m=y |

where 7, is the volume of the matrix block, k is the normalized permeability tensor, subscript
j denotes the sno. and N the total number of surfaces 4 towards the surrounding fracture

network. 7 is the unit normal vector and 4 is the distance vector to these surfaces. Heinemann
and Mittermeir (2012) showed that Equation 3.6 contains all other forms of shape factors
introduced earlier. Heinemann and Mittermeir (2012) also showed that the general shape factor
definition is only valid for pseudo-steady-state conditions, a linear potential gradient and
uniform matrix saturation.

(Numerous efforts for finding an improved shape factor can be found in the literature. They are
either derived from theoretical considerations, laboratory or numerical experiments.
Derivations can be found in Thomas et al. (1983), Barker (1985), Ueda et al. (1989), Coats
(1989), Kazemi and Gilman (1993), Chang (1993), Zimmerman et al. (1993), Lim and Aziz
(1995), Gilman (2003), Gerke and van Genuchten (1996) and Lewandowska et al. (2004). In all
of the mentioned publications shape factors are derived, that are either smaller or greater than
the one by Kazemi et al. (1976), but still constant.) In Chapter 4 it is shown that for a general
case it is not possible to find a constant shape factor value.

Recognizing the problem with constant shape factors, some researchers developed
time-dependent shape factors (Penuela 2002, Rangel-German and Kovscek 2003, Su et al.
2013), although the shape of the matrix block is not changing. Therefore, this can be seen as a
band-aid for correcting a fundamentally flawed approach.

A more detailed review of the development of the shape-factor concept as well as the derivation
of the generalized shape factor can be found in Heinemann and Mittermeir (2012). As the shape
factor concept is widely applied and in many cases useful despite its flaws, Steiner and
Mittermeir (2017) conducted a thorough analysis of the applicability of the shape factor
concept, which can also be found in Chapter 4.

Another difficulty is the determination of the potential differences in Equation 3.2. Generally,
the potential difference comprises capillary, gravitational and compressional forces and can be
written for the three phases water (w), oil (o) and gas (g):

chm - chf - pom_pofF Pcwom + Pcwof+ Phwom o Phwof (3.7)
Pom™ (Dof =~ Pom ~Pof~ Prvom ™ Phwof (3.8)
(ng_q)gf: pom_pof+Pcogm_Pcogf+Phgom_Phgof (3'9)

where @is the potential, subscripts m and f'denote "matrix" and "fracture", p is the pressure, P,
the capillary pressure and P, the hydrostatic pressure. For the pressure only the average pressure
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of the cell can be considered, the pressure at the midpoint of the matrix block is not known. The
capillary pressure is based on a capillary pressure curve, which is a function of saturation. In
this case the known saturation is the average saturation of the matrix cell, which is also assumed
to be the average saturation of the matrix blocks inside the cell. The general assumption is that
this average saturation is uniformly distributed. Efforts to account for the non-uniformity of the
saturation distribution can be found in commercially available simulators (Schlumberger
ECLIPSE, BeicipFranlab PumaFlow) by adjusting the capillary pressure curve. For the
determination of the differences in hydrostatic pressure multiple models exist. The most widely
used ones are the one by Gilman and Kazemi (1988) and Quandalle and Sabathier (1989).

3.3.1 Efforts to Find an Improved Transfer Function

This brief literature review on the efforts to find an improved version of the transfer function is
taken from Steiner and Mittermeir (2017), as it is up to date and fits the objective of this work:

Many attempts have been made for improving the Kazemi et al. (1976) transfer equation or
finding alternative transfer functions. Viscous forces and gravity drainage was included into the
model by Gilman and Kazemi (1983), Gilman (1986) and Gilman and Kazemi (1988).

Quandalle and Sabathier (1989) separated horizontal and vertical flow. This makes it possible
to consider anisotropy and different shape factors in horizontal and vertical direction. For this
method an estimation of the apparent fluid density is required for the horizontal flow. Because
this is done explicitly, the numerical stability is reduced and smaller time steps may be required.
Abushaikha and Gosselin (2008) suggested that based on their SMB investigations the
Quandalle and Sabathier (1989) gravity drainage model is more suitable when gravity is the
dominant driving force, as is the case in gas-oil gravity drainage cases.

Zimmerman et al. (1993) modified the transfer equation for the single-phase case to account for
the early time transient flow behavior within the matrix. The results were compared with
MINC-type (Pruess and Narasimhan 1985) simulations, showing good agreement.

A different approach without shape factors was chosen by Di Donato et al. (2007) and Lu et al.
(2008), who decomposed the overall mass transfer into multiple rates from different physical
processes, called “Generalised Transfer Function”. Each of these processes is described in a
functional form. Corrections for early and late time behavior are used. This non-shape factor
based method was “validated” by comparing it against the results of numerical fine grid models
of SMBs. Independently, this method was also compared with SMB results by Abushaikha and
Gosselin (2008). They concluded that the match with SMB results is good for early times, but
the speed of recovery is overestimated for later times. Geiger et al. (2013) presented a higher
order multirate model, but calibrating the individual transfer functions is difficult also for their
approach.

Abushaikha and Gosselin (2009) developed the so-called “SubFace Transfer Function”. Similar
to the Quandalle and Sabathier (1989) approach, the vertical and horizontal flow is separated,
where the vertical part is again divided based on the matrix saturation.
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Su et al. (2013) used fine grid SMB calculations for calibrating time-dependent shape factors.
With these time dependent shape factors they were able to match the results of the fine grid
SMB calculations using a dual continuum formulation. In contrast to the SMB model used in
this work, Su et al. (2013) did not include capillary pressure and dissolved gas in their
calculations.

None of the above-mentioned methods was experimentally validated.

3.4 Application of Numerical Recovery Curves

Heinemann (2004) suggested, that instead of using numerical SMB experiments for validating
or correcting transfer equation, to use them directly for determining the matrix-fracture mass
transfer in dual-porosity models of NFRs. The principle of this concept is the separation of
driving forces into pressure and saturation dependent ones and that their impact can be
superposed.

Expansion and solution-gas drive are purely pressure dependent processes and can be modeled
with a transfer equation like the Kazemi et al. (1976) one. If no pressure change happens in the
system then this part does not contribute to the oil recovery. Water or gas displacement of oil
are mostly saturation dependent and therefore primarily time-dependent and only to a lesser
degree pressure dependent. This should be modeled using numerically derived RCs, similar, but
more general than the Reiss et al. (1973) approach. The RC already contains information about
the capillary and gravitational forces. The capillary driving force is purely saturation dependent
and can be modeled with a time-function. The gravitational driving force is a function of block
geometry and fluid density. The information about block geometry is exactly given in the RC,
the information about fluid density is also given, but only for a certain pressure at which the RC
was calculated. The changes in the gravitational force can be considered, as will be shown in
this thesis.

Pirker (2008) presented an implementation of the RCM, where the applicability was shown in
a two-phase water-oil example. Matrix blocks of different sizes within one single simulation
grid cell were modeled using so-called lumped RCs. These are "averaged" RCs from a number
of SMB calculations. It should be noted, that this is not the same as using RCs of averaged
matrix sizes and properties.

Amiry (2014) introduced to concept of RC regions, where input RCs are assigned on a gridcell
basis. This is necessary for heterogeneous reservoirs with strongly varying matrix block
parameters.

Heinemann and Mittermeir (2016) later introduced the first type of scaling to a RC based on its
pressure and saturation condition. The applicability of their implementation of the RCM

including the scaling of the RC increment was shown on a dual continuum single matrix cell.

The next step in the development of this method is presented in Chapter 5 of this dissertation.



Chapter 4

Verification of Mass Transfer Equations

Some of the herein described SMB experiments have already been published by Steiner and
Mittermeir (2017). Parts of the text have been reused for this chapter without modification (with
the consent of the co-author of the publication), other parts have been rewritten, re-ordered or
extended. Thus, the level of detail and the structure of this chapter is significantly higher than
the one of Steiner and Mittermeir (2017). Results of experiments, which were omitted in Steiner
and Mittermeir (2017) will be shown and discussed.

4.1 Experimental SMB Setups

A SMB model setup with 20% porosity and 10 Darcy permeability is the basis for all
experiments. The model has a size of 10x10x10 m, which yields a shape factor of 0.12 m when
using the KGE shape factor definition. All calculations were performed for a period of 15 years.
The matrix can be bounded at all sides or only in vertical direction with fractures, where either
a constant pressure or a constant pressure drop rate is imposed as boundary conditions. Viscous
forces are neglected to enable calculations on a quarter-block model.

Two PVT data sets, presented in Table 4.1, and two sets of rock-functions are used. Each
rock-function set consists of capillary pressure- and relative permeability data. Figure 4.2 shows
the data for rock region no.1, which is strongly oil wet. Rock data set no.3. is water wet and is
shown in Figure 4.3. Rock data sets n0.9 and 10 have the same relative permeability functions
as the sets no.1 and 3, but the capillary pressures are equal to zero. Different combinations of
PVT and rock-function sets are considered.

The calculated setups are summarized in Table 4.2. Differences are in ROCK and PVT region,
in fracture configuration, in the initial pressure and in allowing phase segregation or not. The
pressure decline rate, if defined, is constant 0.05 or in one case -0.01 bar/day, which means that
the pressure is increasing. Setups 1 to 8 deal with expansion and solution gas drive. Setups 9 to
24 test oil displacement by water or gas for different conditions with regard to pressure decline
rates, initial pressure, phase segregation and fracture configuration. Setups 25 to 28 have
changes of drive mechanisms, displacing oil with water from previously gas-flooded matrix
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blocks and vice versa.

For all cases the apparent shape factor was calculated.

Table 4.1: Fluid properties of the 15t and 2" PVT data set

Property PVT data1 | PVT data 2
Reservoir Temperature [°C] 93.3 44.2
Bubble Point Pressure, p,, [bar] 276.8 155
Water Density [kg/m?] 1037.5 1094
Oil Density [kg/m?] 786.5 793.8
Gas Density [kg/m?] 1.025 0.788
Reference Pressure, p,.¢ [bar] 330.9 168.9
Water Viscosity at p,.r [cP] 0.31 0.854
Water Formation Volume Factor at p,.; [rm?/sm?] 1.0213 1.01
Water Compressibility at [ 1/bar] 4.51E-05 2.35E-06
Oil Viscosity at p,, [cP] 0.51 0.4819
Oil Formation Volume Factor at [rm3/sm?] 1.695 1.259
GOR at pb [sm?/sm?] 214.6 111.4
Gas Viscosity at pb [cP] 0.0268 0.0181
Z-factor at pb [-] 0.9799 0.717
2.0 - 250 2.0 ——— 120
Si6 e o0 || S16 . i - 100
Z r 1 2 o 1
S12 o Liso~ || 312 < r8
£ <b o | R /’ 160 %
BO8 L A F100% 1 508 e 1 a0 =
T4 B bt R Toa =" it tebeiek | 20
=] [ .,~~‘ ] = e ]
0.0 - ‘ ‘ —+0 00 —* ‘ ‘ ‘ 0
0 100 200 300 0 50 100 150
Pressure (bara) Pressure (bara)
—Bo —-0il viscosity -&-Rs —Bo —-0il viscosity -&-Rs

Figure 4.1: Oil formation volume factor (B,), oil viscosity and solution gas ratio
(R,) for PVT data set 1 (left) and PVT data set 2 (right)
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Table 4.2: SMB Setups

£
<

55 |z 52§38

Bz E £ §/& %

wn = n": 2 S 9| 4 .2

. S 2l o O 58 =
si¥peE 2 2 & LEd
&% 2 S g AR
s E=E S|z 2 &£ 4%
é é E 8 z a8 & & é & £  Abbreviation Meaning
1 {1 1T N na|E VOY |3300.05 Sno. serial number
211 1 N na|E VON |330 0.05 Y yes
3|1 1T N na.|E AS Y [330 0.05 N no
411 1 N na|E AS N [3300.05 n.a. not applicable
511 2 N na|E VOY |2800.05 WW waterwet
6 |[I 2 N na|E VO N |2800.05 ow oilwet
7 |1 2 N na|E AS Y |280 0.05 E expansion drive
8 {1 2 N na|E AS N |280 0.05 W water drive
911 T N na /W AS Y [3300.00 G gas drive
10{1 1 N na |G AS Y [277 0.00 VO vertical only
111 1Y ow|W AS Y |277 0.00 AS all side
12(1 1 N na.|G AS Y |277-0.01
133 1 N na.|W AS Y [3300.00
143 1 N na|G AS Y [3300.00
153 1 Y ww|W AS Y (330 0.00
163 1 Y ww|G AS Y [330 0.00
17(1 1 N na|W AS Y [3300.05
181 1 N na.|G AS Y |3300.05
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203 1 Y ww|G AS Y |277 0.05
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4.2 The Reiss at al. Approach

Kazemi at al. (1992) stated that the exponential constant A in the equation of Aronofsky
(1958):

Ep(t) = Eg o(1.—€7) (4.1)

should be considered purely as a curve fitting parameter and no physical meaning should
assigned to it. Another potentially useful empirical function other than Equation 4.1 for fitting
cumulative recovery data was suggested by Kazemi, Gilman and Elsharkawy (1992) also:

—At At

where FE =ER1+ER2+...

R, max

One parameter is valid for a given single recovery process. Therefore, such a function cannot
be used to model complex schemes as e.g. water-alternating-gas.

For SMB setup 1 parameters Ey,,,, and A for matching the RC cannot be determined. As can be
seen in Figure 4.4, the ultimate recovery is correct but it is impossible to find a constant A for
matching the recovery factor for all times before the ultimate recovery is reached.

For SMB setup 19 two exponential functions have been determined, one describing the early
and the other one the late time behavior (Figure 4.5). For the early time the pressure is still above
the bubble point pressure and parameters can be found that result in a good fit. When the
pressure further drops also solution gas drive occurs and this cannot be described with the early
time match. A second function for this part is able to match the late time behavior, but it
underpredicts the early time speed of recovery.

Also for SMB setup 24 two functions, one for the early and the other one for the later part can
be found (Figure 4.6). However, as for setup 19, the early time matched function is not suitable
to estimate the speed of recovery for the late time and vice versa.

The results of the SMB calculation show, that it is not possible to define the recovery factor as
a function of time, e.g. using an exponential function (Aronofsky, 1958) or a square root
function (Rangel-German and Kovscek 2000). Also, as shown by Rangel-German and Kovscek
(2002) the oil recovery function has a different shape, ranging from a linear function to a square
root function, depending e.g. on matrix-fracture fluid transfer rate and fracture aperture.
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4.3 The Kazemi et al. Approach

Based on the derivation of the shape factor by Heinemann and Mittermeir (2012), the Kazemi
et al. (1976) transfer equation

k
— 14 .
Demf ~ Vbulkckaz—LM A ((I)pf— (I)pm) ,Pp = W,0,g, (4.3)
p pp

is valid and the shape factor is a constant if the following conditions are assured: (1) the matrix
block is homogenous and the saturation in it is uniform, (2) the pressure distributions between
the midpoint and the side surfaces are linear (3) the average pressure in the matrix block is a
good approximation for its midpoint pressure, (4) the fracture pressure at the matrix block
boundaries are uniform (identical).

It must be clear that these conditions can only be more or less, but never completely satisfied.
Therefore, the applicability of the transfer equation for specific cases would need experimental
verification. What the literature provides in this respect is more than limited. In any case, the
feasibility of relevant experiments is questionable. An overview of the available literature can
be found above.

Theoretically, the shape-factor is dependent on the geometry of the matrix block, but
independent of time or recovery process. Consequently, after establishing pseudo-steady state
flow conditions, constant shape factors are the prerequisite when the Kazemi et al. (1976)
transfer function is applied. In lack of experimental results representative of reservoir matrix
blocks in terms of size and time of evaluation, numerical experiments on a fine grid SMB model
are the only option for testing the applicability of the transfer function.

The SMB calculation provides the matrix mid-point and the average pressures, the average
matrix saturations and therefore also the average relative permeabilities. The average oil rate
from the matrix are calculated for every time point:

_ RF(t+At)—RF(t—

At) .
Doms Y OOIP. (4.4)

Based on matrix properties, the apparent shape factor is calculated by rearranging the
fracture-matrix transfer equation:

_ l'loBoqomf
Vbulkkakro(q)om N (Dof) ’

o (4.5)

where the viscosity £ and the formation volume factor B, are evaluated at the average matrix
pressure and the relative permeability £, at the average saturation. The potential difference is
calculated as follows:

Do~ qDof = Pom " PosT Peow™ P, og " KPhWOfJr KPhng (4.6)
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where xis 4 and the terms P,,,,-and P, are the potential differences stemming from difference
of the pressure gradients in the fracture and in the matrix. P,,, and P, ,, are the potential
differences originating from the capillary pressures for the oil-water and oil-gas case,
respectively. When the fracture is filled with gas Py, .and P, ,,, is zero and when it is filled with
water P,,-and P, is zero. For evaluating the potential difference, there are two possibilities:
firstly, using the midpoint and secondly the average matrix pressure. Average and midpoint

matrix pressures are usually different, unless the SMB model is operated at constant pressure.

4.3.1 Results

4311 Summary

For all cases the apparent SF was calculated as function of time based on Equation 4.5 using
both the midpoint and the average matrix pressures. The results are summarized in Table 4.3,
which informs about minimum, maximum and average values.

Setups, where only expansion and solution gas drive occurs, show a similar apparent shape
factors. When calculated using the center point pressure, the value is also near the theoretical
value of 0.12 m2, when calculated with the KGE definition. For all other drive mechanisms and
combinations of them, the shape factors are never constant and also not at the nominal value of
0.12 m2.

A detailed description of all results can be found below.
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Table 4.3: Results of the SMB calculations

Shape Factor
(Avg. Matrix

minimum

Pres.) [m?]

m

average

maximu

Shape Factor
(Matrix Pres. at
Center Point) [m?]

minimum
um
average

maxim

0.205
0.205
0.258
0.204

0.233 0.211
0.233 0.211
0.275 0.269
0.206 0.205

0.110 0.115 0.114
0.101 0.115 0.114
0.126  0.138 0.135
0.101 0.115 0.114

0.207
0.207
0.277
0.205

0.211  0.209
0.211  0.209
0316 0.289
0.207  0.206

0.112 0.116 0.115
0.109 0.116 0.115
0.138 0.146 0.140
0.109 0.116 0.115
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0.040
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0.036 0.048 0.042

N = = =
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0.008 0.059 0.022

NN NN
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0.020
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0.001 0.086 0.006
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4.3.1.2 Expansion Drive

All expansion drive examples with sno. 1-8 show nearly constant shape factors throughout the
calculation. When the bubble point pressure is reached slight deviation of less than 0.03 m2 can
be seen for examples 1, 2, 3, 7 and 8. When considering the midpoint pressure, the average
shape factor values vary between 0.114 m for sno. 1, 2 and 4 and 0.140 m*? for sno. 7. The

differences between the numerically derived SF and the nominal value of 0.12 mm calculated
with the KGE definition is caused by the slight non-linearity of the matrix pressure distribution.

Otherwise the following conditions, requested by the Heinemann and Mittermeir transfer
model, are nearly perfectly satisfied (Heinemann and Mittermeir 2014):

L]

L]

CUniform boundary conditions: The fracture is filled by oil and no flow takes place in
it. Therefore, the potential in the boundary is uniform.

Uniform properties: The matrix contains a single movable fluid and so the fluid and
rock parameters are within the matrix uniform

Semi-state-flow: The pressure in the boundary will be reduced, inducing pressure
drop within the matrix. The matrix pressure is initially uniform therefore at the
beginning the flow is transient. The length of the transient period depends on the
matrix block size and on the permeability. This is shown in Section 4.3.2. After the
transient period the flow is semi-steady state and the matrix-fracture pressure
difference becomes nearby time independent.

Linearity in potential gradient’
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Figure 4.7: SMB experiments 1 (left) and 2 (right) (Steiner and Mittermeir 2017)
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Figure 4.9: SMB experiments 5 (left) and 6 (right) (Steiner and Mittermeir 2017)
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Figure 4.10: SMB experiments 7 (left) and 8 (right)

The KGE shape factor can be reproduced using the SMB calculation when the midpoint
pressure is used, but it is approximately double when the average pressure is used for the
calculation. When implemented in a DCM, only the average pressure is determined and the
midpoint pressure is unknown. Aso in the literature publications deriving increased shape
factors can be found. Zimmerman et al. (1993), Chang (1993), Kazemi and Gilman (1993) and
Lim and Aziz (1995) analytically derived that the coefficient of 4 in the shape factor definition
of Kazemi et al. (1976) should be replaced by n?, which is an increase by more than a factor of

two.
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43.1.3 Gas- or Waterdrive at Constant or With Increasing

Pressure

Setups 9 and 10, shown in Figure 4.11, are waterdrive and gasdrive at constant pressure and
without considering capillary pressure. For both cases the recovery factor increases nearly
linearly and also the SF is increasing. It can also be seen that the SF values are different for
waterdrive and gasdrive. As the difference between average pressure and pressure at the
midpoint is only very small, the SF based on average and midpoint pressure are also nearly
identical. The average pressure is only slightly different to the midpoint pressure because the
phases distributed non-uniformly within the SMB and therefore the pressure gradient within the
SMB is also not symmetrical around the center cell.
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Figure 4.11: SMB experiments 9 (left) and 10 (right) (Steiner and Mittermeir
2017)

Setup 11 (Figure 4.12, left) is identical to setup 9, but capillary pressure is considered. The
development of the RF is not linear but approximates the shape of a square-root function. The
calculated SF are high in the beginning and then decreasing strongly. In the late time the SF
starts to slowly increase again. Again there is nearly no difference between average pressure and
midpoint pressure based SF, since the pressure remains constant. Setup 12 (Figure 4.12, right),
which is identical to setup 10, but with increasing pressure, shows again a linear increase of the
RF. The SF increases during the calculation and this increase is stronger than in setup 10.
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Figure 4.12: SMB experiments 11 (left) and 12 (right) (Steiner and Mittermeir
2017)
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In setups 13 and 14 (Figure 4.13) the matrix is considered to be water-wet and the pressure is
constant. In both cases the RF and SF show a nearly linear increase from the start until the
end.The two setups are identical with the exception of the driving force. The SF values are
similar for waterdrive and gasdrive, but not identical.
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Figure 4.13: SMB experiments 13 (left) and 14 (right) (Steiner and Mittermeir
2017)

Setups 15 and 16 (Figure 4.14) are identical to setups 13 and 14, but capillary pressures are
considered. For waterdrive this results in a RC that is not linear. The SF for setup 15 is much
lower than for setup 13, which is without capillary forces. In setup 16 the SF is also not constant
and does not exhibit the slight increase over time as seen in setup 14. At late time the SF
decreases for setup 16, resulting in a SF of approximately half the SF of setup 14 at the end of
calculation.
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Figure 4.14: SMB experiments 15 (left) and 16 (right) (Steiner and Mittermeir
2017)

Generally, for constant pressure or slightly increasing pressure water- or gasdrive, the calculated
SFs are neither equal for waterdrive and gasdrive nor constant.

4.3.1.4 Gas- or Waterdrive With Decreasing Pressure

Setups 17 and 18 (Figure 4.15) are identical, with the exception of the driving force. It can be
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seen, that as long as the bubble point pressure P, is not reached, both setups show a similar
behavior than the ones where the pressure is constant. After reaching P, the slope of the RC
increases instantaneously. The SF also increases at the same time, but not identically for
waterdrive and gasdrive. In setup 17 the SF decreases afterwards, whereas in setup 18 this
cannot be observed. Also the difference between the SF based on midpoint and average pressure
is significant for both setups and more distinct in setup 18.
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Figure 4.15: SMB experiments 17 (left) and 18 (right) (Steiner and Mittermeir
2017)

Setup 19 (Figure 4.16, left), which is waterdrive using oil-wet rock data, has a RC that is neither
linear nor has a square-root function shape. The SF decreases rapidly in the early time and
remains relatively constant until the P, is reached. After the average gas saturation in the SMB
is higher than the critical gas saturation, the SF starts to constantly decrease until the end of
calculation. Setup 20 (Figure 4.16, right), which is gasdrive and is considering capillary
pressure, starts its calculation at P, therefore the time when P, is reached is not shown in the
figure. The SF decreases until approximately day 2000 and then increases slightly until the end
of calculation. The SF based on average pressure and midpoint pressure shows differences until
day 2000.
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Figure 4.16: SMB experiments 19 (left) and 20 (right) (Steiner and Mittermeir
2017)

Setups 21 and 22 (Figure 4.17) are identical, except for the drive mechanism. It can be seen that
for both setups the slope of the RC changes significantly when the bubble point is reached.
Because of the combination of solution gas drive with water-/gasdrive the RC is not linear
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afterwards, even tough no capillary forces are considered. When P, is reached the SF increases

instantaneously and the SF based on average and midpoint pressure separate for both setups.
However, for setup 21 the SF decreases afterwards, for setup 22 it remains relatively constant.
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Figure 4.17: SMB experiments 21 (left) and 22 (right) (Steiner and Mittermeir
2017)

Setup 21 (Figure 4.18, left) uses the water-wet rock data and starts directly at Pb, therefore Pb
is not marked in the figure. In this case the RC shows the form of an exponential function. The
SF drastically decreases in the beginning at remains at a very low level throughout the
calculation. Setup 22 (Figure 4.18, right) also uses the water-wet rock data, but the calculation
starts above bubble point and the driving mechanism is gasdrive. Until Pb is reached, the RF
increases linearly and the SF remains nearly constant. After PB is reached the slope of the RC
changes and it is not longer linear. The SF decreases and shows differences between the
midpoint and average pressure after the average gas saturation in the matrix is above the critical
gas saturation.
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Figure 4.18: SMB experiments 23 (left) and 24 (right) (Steiner and Mittermeir
2017)

Generally, for the scenarios of combined expansion or solution-gas drive with water-/ or
gasdrive, the SF is neither constant nor at the nominal value of 0.12 m-2. Also differences
between the average and midpoint pressure based SF arise. The deviation from a constant SF
value is also not the same for all experiments, which would make a common correction for all
driving mechanisms in form of a time-dependent shape-factor impossible.
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4.3.1.5 Changing Drive Mechanisms

Setup 25 (Figure 4.19, left) is expansion and solution-gas drive followed by waterdrive using
the water-wet rock data. Three phases can be identified. In the first on only expansion occurs
without above Pb. In this phase the RF increases linearly and the SF based on midpoint pressure
is approximately equal to the nominal value of 0.12 m-2. In phase two, between the time when
Pb is reached and the time when waterdrive starts, solution-gas drive occurs and the slope of the
RC increases. For a short time also the SF shows a fluctuation but then remains constant again
at the nominal value. Phase three starts with the beginning of the waterdrive. This is marked by
a sharp increase in the slope of the RC and a strong decrease of the SF value.

Setup 26 (Figure 4.19, right) is identical to setup 25, with the exception that instead of
waterdrive gasdrive is activated after expansion and solution-gas drive. Until gasdrive starts
also the RC and the SF is identical to setup 25. However, as soon as gasdrive starts, the slope of
the RC decreases. The SF decreases, but not as much as for the change to waterdrive.
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Figure 4.19: SMB experiments 25 (left) and 26 (right) (Steiner and Mittermeir

2017)

Setup 27 (Figure 4.20, left), is waterdrive followed by gasdrive in combination with expansion
and solution-gas drive. In this case the oil-wet rock data is used. The drive-mechanism changes
after 1612 days, where a decrease in the slope of the RC can be observed. The SF decreases in
the beginning and remains roughly constant until the drive mechanism changes.

Setup 28 (Figure 4.20, right) is identical to setup 27, but in this case gasdrive is followed by
waterdrive. The change in drive-mechanism occurs also after 1612 days, where an increasing
slope of the RC can be seen and a spike in the calculated SF.
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Figure 4.20: SMB experiments 27 (left) and 28 (right)

4.3.2 Transient Effects

Transient effects can be observed in the calculation when either the temporal resolution is very
high or the speed of the recovery process is very low, which can be achieved with a low
permeability. To show the impact of the permeability on the calculated shape factor SMB
experiments with permeabilities varying between 10-9 D to 10-4 D are created. PVT data set
no. 1 and the ROCK functions no. 1 are used, the matrix block has a dimension of 10x10x10 m
and the drive mechanism is expansion only. The initial pressure is 380 bar and with a constant
decline rate of 0.04 bar/day the pressure reaches the defined minimum pressure of 280 bar after
2526 days. The results of the experiments can be seen in Figure 4.21. The apparent shape factor,
which is calculated using the midpoint pressure of the matrix, is expected to be constant during
the calculation. For very low permeabilities (10° D, 10® D, 107 D) the shape factor is not
constant due to transient effects. For permeabilities greater than 10° D the transient effects
cannot be observed and are negligeable.
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Figure 4.21: Impact of matrix permeability on the shape factor

The transient pressure behaviour inside the SMB can be seen in Figure 4.22. There the
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horizontal pressure distribution for the case with a permeability of 10”7 D is shown for different
times. It is evident that the distribution is not linear. Figure 4.23 shows for the same SMB model
a plot of shape factor and pressure decline rate at the matrix midpoint versus time. As long as
the pressure decline is in the transient phase the shape factor is not constant. When the
pseudo-steady state regime, marked by a constant pressure decline rate also at the midpoint,
starts, the shape factor is constant from this point forward.
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Figure 4.22: Horizontal pressure distribution at different times (107 D
permeability) (Steiner and Mittermeir 2017)
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Chapter 5

The Recovery Curve Method

The Recovery Curve Method (RCM) is based on the concept suggested by Heinemann (2004).
Since then this concept has been applied to material balance calculations (Mittermeir 2015) and
also numerical models (e.g. Pirker 2008, Heinemann and Mittermeir 2016). In this chapter a
RCM, used for numerical models will be presented, which uses scaled RCs for the
determination of the matrix-to-fracture mass transfer. Also non-uniform saturation boundary
conditions and oil-resaturation will be discussed.

5.1 Inter-Porosity Molar Flux

Generally, the inter-porosity molar flux of component ¢ for one cell is:

P
n+l n+1 n+1
quf = Tmfz (lprxpc)mf ((me—q)pf) (51)
P p=1
n+1 n+1
+8mfz [Dpc(Spr)m (xpcm—xpcf) ]
=1

where n denotes the sno. of the time step, 4, is the phase mobility, @, is the phase potential, x,,.
is the mole fraction of component ¢ in phase p, D, is the specific mole density, 7, is the

?

interblock transmissibility, 6, is the matrix-fracture transmissivity and S, is the phase

saturation. When the RCM is applied, the term g, 4, is calculated using the RC time derivative,
providing the injection rate for phase p. The phase potentials @, and @, do not consider
capillary pressures or gravitational forces, as they are already accounted for in the RC. Diffusion
is already included in the RC:

P
n+1 n+1
Demf — Tmf Z [(}Lprxpc)mf
p=1

n

P
pm CDpf) -2, @ pxpcqp,fm) (5:2)

p=1

(CD n+1

52



53

5.2 Determination of the Recovery Factor Increment

The general procedure to apply RCs to numerical models, as described by Heinemann (2004)
and Mittermeir (2015), starts with obtaining RCs from SMB models, considering a single
displacing phase (either water or gas) in the fracture. ( The situation when using and changing
these curves is equivalent to the assumption that the recovery factor resulting from both the
water and gas drive curves remains valid independently from the recovery history.
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Figure 5.1: Schematic of a RC. Determination of recovery increment based on virtual
time.

As Heinemann and Mittermeir (2014) described, Figure 5.1 "shows a schematic of a RC which
will be given for water and gas drives and oil resaturation after water and gas displacement. Let
Ep be the cell recovery factor at time ¢ after any possible displacement history. The recovery

factor values of Ez and EY correspond to the virtual times «, and # on the water and gas RCs

respectively. Adding now an arbitrary time step 4,,,¢ and reading the normalized recovery
factors at the new virtual time on the RCs

fy1 = Dyt B0 (5.3)

By = B0t (5.4)
results in the recovery factor increments for grid cell £:

Ay 1Ek = (EXk(tl§+ 1) _Egk(t:;’)) ; (5.5)

A Efy = Byt )= Egi (). (5.6)

This recovery factor increment is then used for determining the phase rates after it has been
scaled in both the time (increment) and RF (ultimate recovery) axis".
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5.2.1 Manual Scaling of the Recovery Curve

It is possible to manually scale RCs. This type of scaling was already introduced for the dual
porosity material balance by Mittermeir (2015). These factors are used for matching the phase
contact history of the reservoir.

The two factors are the RC scaling factor « and the time-scaling factor . o is used for scaling
the RC on the vertical axis, S stretches or compresses the time-axis.

The virtual time ¢ is determined on the RC, which is scaled with o.. Let Ey; be the RF of cell

k, then the virtual time is read for a scaled RF of Ey,/c. The time step 4, ;¢ is then multiplied
with the time scaling factor [3:

fhivy = byt B A1 (5.7)
rfjﬂ = t§j+BgAj+1t. (5.8)
The recovery factor is then determined for tlj. .1 and multiplied with the scaling factor a:
Ay 1Erk = (E}fk(tlﬁ 1) _Ezk(&;)) o (5.9)
AJ.HE;ik = (Eﬁk(ffjﬂ)—Eﬁk(tfj))-ag. (5.10)

Figure 5.2 shows the schematic when the factors a and S are used. Firstly, the virtual time for
the scaled recovery factor Ei/c is determined. The time increment is then multiplied with the
timescale factor £ and the new value of Ep/c is determined. The increase in Ep/a of the input
RC is determined and then multiplied with « to obtain the actual applied increase in Ej.
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Figure 5.2: Schematic of a RC and determination of the increment when recovery
curve- and timescale factors are used.
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5.3 Determination of the Oil, Gas and Water Rates
for the Constant Pressure Case

The fracture-to-matrix flux depends on the boundary condition for the cell provided by the
fracture. The matrix-to-fracture mass transfer can comprise all mobile phases within the matrix
block. At all times for a single cell at constant pressure conditions the in- and outflowing phase
volume rates g, are equal:

Y Ay = 2 pms (5.11)
PZOagaW p=0,g,w

Note, that the index fm and mf indicate the flow direction. Index "mf” indicates
matrix-to-fracture, "fm" fracture to matrix flow. Based on this volumetric balance the
matrix-fracture and fracture-matrix transfer rates resulting from the RC increment can be
determined for waterdrive, gasdrive and also for non uniform fracture saturations.

5.3.1 Waterdrive and Gasdrive

When the drive mechanism is waterdrive or gasdrive, the matrix and fracture cells are filled with
oil or gas, as shown in Figure 5.3 and Figure 5.4.

Matrix @erdrive

Figure 5.3: Fully water-filled fracture: waterdrive

Matrix Qgisdrive

Figure 5.4: Full gas-filled fracture: gasdrive

From the RC the net flux of the oil phase

9o = 90, mf~ 9o, fm (5.12)

can be determined. In case of waterdrive or gasdrive g, is zero and therefore the
matrix-to-fracture oil phase rate g,, ,rcan be determined directly from the RC for the displacing
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phases p, which is water (w) or gas (g). Let A, . E% be the oil recovery increment from water or
gas drive for the time step interval 4, ;¢ = ¢;, -1, then the volumetric oil matrix-to-fracture rate is:

P
F o= 00IP Aj+ 1ER
o, mf

(1 _xog)Do Aj-i-l

,withp =wg (5.13)

where OOIP is the original molar oil in place, x,, is the mole fraction of the gas component in
the oil phase and D, is the specific molar density of the oil phase. The injecting phase must
replace all volumes leaving the matrix. When the RCM is applied the phase potentials in
Equation 5.1 only consider the pressure difference, since the capillary pressures and
gravitational forces are already incorporated into the RC. Therefore, the differences of the
potential () between matrix and fracture for all phases are identical:

P, ~ Py =Py —D =D D =p —p (5.14)

For expansion the phase matrix-to-fracture transfer can be expressed as a linear relationship of
the fracture-matrix potential difference (as in conventional transfer equations), as shown in
Steiner and Mittermeir (2017). Therefore, using the mobility (A1) of the oil phase and the
transmissibility =

9o, mf ~ Tm]}\’o(pm _pf) (5.15)

Separating the variables into phase dependent variables to the left side and phase independent
variables to the right side:

4o, mf
n,  mfPm P (10

Using Equation 5.16 Equation 5.11 can be rewritten, where the unkowns g,,, and ¢, ,, are
eliminated:

A

pP=8&w p=o.gw 0

For a water filled fracture and gas filled fracture the injection rates are:

}»p W
G = L L g (5.18)
p=o,gw O
}»p 2
qg,fm = Z 7\‘_ ’ qo’ mf> (519)
p=o,gw O

where the superscript g (gasdrive) and w (waterdrive) denote the RC that is used for determining
the oil matrix-to-fracture rate.
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5.3.2 Oil Resaturation

From the RC (or resaturation curve) the net volumetric flux of the oil phase

90 = 4o, fm ~ 90, mf (5.20)
can be determined. In case of oil resaturation g, ;, is not zero. Therefore, from the RC net oil
flux g, and not only the matrix-to-fracture oil flux is determined:

0

OOIP Aj+ 1ER

90 = ‘ : (5.21)
© (I-x,)D, Ayt
The volumetric rate balance can then be written as
9o = Do, fm Yo,mf = 9w, mf " 9g, ms- (5.22)

The net oil flux is always positive for oil resaturation as the amount of oil in the matrix increases
during this process. When the oil is injected into the matrix and the pressure must be constant,
the volume that is injected as oil phase must come out of the matrix as water and gas phase.
Outflowing oil must not be considered since it is already included in the net oil flux. Therefore,
the water rate can determined with the matrix phase mobilities:

A
_ W
Dy, mf ~ o+ Xg 90 (5.23)

and the gas rate with:

A
= __8 .
Yoomr = 7 1+ o (5.24)
woog

In Equation 5.23 and Equation 5.24 the denominator does not include the oil mobility, since the
calculated rate can only be replaced by water or gas. Therefore, the term "total mobility" is
omitted in this instance.
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5.3.3 Non-Uniform Fracture Saturation

Both sides of Equation 5.17 are dependent on the fracture boundary condition. The left side
directly, and for the right side g, is different for different drive mechanisms, since the RCs for
waterdrive and gasdrive are generally not identical. Theoretically possible boundary conditions
comprise one, two or even three mobile phases in the fracture cell. When complete phase
segregation is assumed in the fracture cell, the matrix-fracture pair can be imagined as shown
in Figure 5.5 to Figure 5.8. It should be noted that in reality cases where all three mobile phases
exist around the same matrix block in significant amounts would only occur if OWC and OGC
would be approaching each other very closely.

expansion

Figure 5.8: Fracture partially filled by oil, gas and water

Based on the boundary condition a weighting of the contribution of the recovery mechanisms
with the fracture saturations can be done. This allows, when considering phase segregation
within the fracture, to model different drive mechanisms within one grid cell that contains
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multiple SMBs. When ¢, ;, represents the total fracture to matrix flow rate Equation 5.17 can be
rewritten as:

A
qt,fm = Z 7Tp'q0,mf . (5.25)

p=o,gw 0

The weighting of which type of recovery curve is used can be done by using the fracture
saturations S,,:

— w g
Do,mf ~ SWf' Do, ms™ ng" Do, mf> (5.26)

where the superscript w (waterdrive) and g (gasdrive) denotes the type of RC used for
determining ¢, ,,~ Inserting Equation 5.26 into Equation 5.25:

A w g
i, fm ~ )y ;Tp'(Swf'qo,mf*Sg"qo,mf) (5.27)

p=o0.gw ©

The water injection rate can then be expressed as:

)
Dfin = 2 XE'(Swf“Ime) (5.28)

p=o0.gw ©

and the gas injection rate:

A
_ g
Qofin = 22 55 Sgr o, mp- (5.29)

p=o,gw O
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5.4 Scaling of the Recovery Curve

When an input RC, calculated for a matrix block at bubble point pressure in a two-phase
condition, is used for matrix blocks at different conditions, scaling of the RC is necessary.
Parameters like absolute permeability, matrix saturation or pressure influence the speed of
recovery and the ultimate recovery factor. Similar to the introduced scaling factors a and f3, also
for an automatic scaling based on the matrix block condition, it can be distinguished between
scaling of the increment (time-axis) and the ultimate recovery (vertical axis).

It should be noted, that this scaling of the RC is fundamentally different to the one implemented
in the commercial reservoir simulator PumaFlow of Beicip-Franlab. In a letter received from

Jean-Marc Gueri, the regional account manager of Beicip-Franlab from 2014, the correction is
described:

Ultimate oil recovery by gravity drainage

REALITY SIMULATOR

c C

Block fully immersed in gas: 1 value of Sg and Pc per cell
- Changing Pc in z direction Block fully immersed in gas:
- Changing Sg in z direction - Constant Pc and saturation

- Sg can be greater than Sg eq !

Final oil recovery predicted by the simulator can be wrong !

Figure 5.9: Explanation of the PumaFlow Eg .., correction (Beicip-Franlab 2014)

"Rf [recovery factor] is computed internally by the software in each cell based on the capillary
pressure curve, block height ¢ and fluid densities. To do this, we can analytically express
equilibrium saturation as a function of the depth z within one block (Pc(z) + gravity(z) = 0). As
a result the average saturation in the block is the integral of saturation*dz with z between 0 and
¢, divided by c. We can do a change of variable in the expression to switch from dz to dPc and
since we know the capillary pressure curve we can finish the computation. Then, during the
simulation, the software will not accept values of gas or water saturation greater than this
theoretical maximum value. (...) As a result, PumaFlow is “less wrong” than other simulators
that will sometimes overestimate final recovery by allowing gas or water saturation to go above
this theoretical maximum. In fact, we have made tests to compare with Eclipse and VIP (CMG
was not tried). (...) The reference solution is obtained by very finally [sic] meshing a matrix
block initially filled with oil and putting it in contact with fracture cells constantly filled with
gas or water (...)".
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Schlumberger’s ECLIPSE 100 offers a similar correction, called "integrated capillary pressure
option". Also in this case the capillary pressure function is manipulated to account for the
non-uniform saturation distribution within the single matrix blocks and the resulting incorrect
final recovery value.

This correction in PumaFlow for £y .. is not necessary for the RCM, since the input RC already
accounts for the situation that the saturation has a vertical variation within the SMB, since it is
derived by fine grid SMB calculation.

5.4.1 Correction of the Increment

A factor, scaling the speed of recovery similarly to the manually input time-scale factor 3, can
be determined based on the condition of the matrix block. The input RC is determined at a
specific condition, at bubble point pressure, at a defined absolute permeability. Since the
pressure and saturation condition changes in time and the absolute permeability from grid cell
to grid cell, a scaling of the input RC is required.

5.4.1.1 Absolute Permeability

The absolute permeability changes the speed of the recovery process in, as can be clearly seen
in e.g. the multiphase Darcy equation. Therefore, it is possible to scale the RC calculated at a
effective permeability k&, to any other value of effective permeability k, for grid cell k& by
stretching or compressing the time-axis of the RC. Generally, the effective permeability k&,
takes into account lateral and vertical permeability:

oy = 3K (5.30)

The values on the virtual time axis of the RC calculated at reference conditions, ¢,,, is then
scaled to the scaled virtual time ¢, of the RC for grid cell £ with:

k
_ b

This mean, when the permeability is higher, the scaled virtual time is lower.

Because it is desired to use one RC and apply it to many different permeability values, it more
convenient to scale only the timestep and not the entire virtual time. To scale the timestep 4,, ¢,

it has to be considered that the timestep is applied to the reference virtual time of the input curve:

A. A.

bk = At By (5.32)
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where the time-scaling factor £, is:

B, = —. (5.33)

It should be noted that in this case k; is in the numerator and &, in the denominator because the
scaling of the timestep is applied to the input RC. This means that when £, is higher than £, the
timestep on the virtual time axis for cell k 4,7, will be increased.

Figure 5.10 illustrates the simple stretching and compressing of the time-axis. A SMB model,
where only the uniform and isotropic permeability was changed was calculated. The time to
reach a RF of 0.4 is also indicated for each RC. When the case with 1.0 md is considered as the
reference case, it must be possible to determine the times required to reach a RF of 0.4 also for
the other permeability values with the scaling factor f,. Let ¢, = 5630 days be the time required
to reach a RF of 0.4 for the case of 1 mD. For 2 mD f, = 2, therefore the actual virtual time is
t,/f, = 2815 days, for 0.5 mD £, = 0.5 and ¢,/, = 11260 days and for 0.2 mD S,= 5 and ¢,/5, =
28150 days. This is within numerical errors of the calculated days as shown in Figure 5.10.
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Figure 5.10: Recovery curves and time to reach RF = 0.4 for four permeabilities.

5.41.2 Pressure and Saturation Dependent Variables

Gharsalla (2015), Mittermeir (2015) and Heinemann and Mittermeir (2016) showed that it is
possible to scale the RC increment during timestep 4,,, with regard to the pressure and

saturation dependent variables for the displacing phase p:

A!-+1E§(p) _ (( k. (S,) J/(kw(sob)DAjﬂEg(pb) (5.34)
Aj+ 1t Mo(p)BO(p) l’lobBob Aj+ 1!

where the index b denotes the reference pressure of the RC, £, is the relative permeability of
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oil, x4, is the oil viscosity, S, is the oil saturation and p is the average matrix block pressure.

5.4.2 Correction of the Endpoint

A factor can be determined or defined, which scales the value of ultimate recovery. This is
similar to the RC scaling factor ¢, but not purely based on manual input but automatically
changing to the condition present in the grid cell.

5.4.2.1 Changing Gravitational Driving Force

In a constant pressure scenario, the ultimate recovery of a matrix block is determined either by
the point at which these two driving forces are in equilibrium or by the minimum mobile oil
saturation. In a two-phase system the minimum mobile oil saturation as well as the capillary
pressures are pressure independent, as long as it is constant. Although mostly a function of the
saturation in the fracture, the gravitational force is also a function of pressure. The pressure
dependence comes from the different phase compressibilities and the changing oil composition
and is especially expressed when the fracture is gas filled. This can shift the equilibrium point
and alter the ultimate recovery. Therefore, this correction is only necessary when negative
oil-water capillary pressures are defined or when a gas-fluid capillary pressure is applied.

Gas Filled Fracture

To show this effect for gas filled fractures, four numerical SMB experiments are created. PVT
data set no.1 and the rock data set no. 1 from Section 4.1 is used. The matrix has an isotropic
permeability of 2 mD, a dimension of 10x10x10 m and fractures on all sides. Setup 1 is operated
at bubble point pressure and setup 2 at 200 bar, setup 3 at 150 bar and setup 4 at 100 bar. Table
5.1 shows the oil and gas densities as well as the resulting ultimate recovery and average
residual oil saturation in the matrix for all setups. The water saturation is constant at S,,; = 0.18
for all cases.

Table 5.1: SMB Setups for gas drive

# | Ppacure [bar] | p, [kg/m®] | p, [kg/m®] | p, - p, [kg/m] | p, By | Egmax | Sor
1 276.8 593.8 225.1 368.7 0.510 | 1.695 | 0.428 | 0.470
2 200.0 608.1 162.7 445 4 0.611 | 1.543 | 0.473 | 0.432
3 150.0 620.6 122.1 498.5 0.678 | 1.455 | 0.489 | 0.419
4 100.0 641.7 81.50 560.2 0.770 | 1.357 | 0.509 | 0.402

The resulting RCs for the setups can be seen in Figure 5.11. It can be seen that for using the
constant pressure RCs calculated at P, at another pressure, the curve has to be scaled, not only
increment but also the endpoint.
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Figure 5.11: Recovery curves for setups 1 - 4.

It is possible to find a factor for scaling the RC endpoint. Using the ratio between the endpoints
of two curves (Eg; .4 and Ex; ,...) the values for the recovery factor of curve 1 can be adjusted
(adj) to ensure a fit of the endpoints:

E
Ep aqf() = 7222 Epy (1), (5.35)

R1, max

With Equation 5.34 also the speed of recovery can be adjusted for the different viscosity £, and
B,. The value of k,, does not need to be considered for this example since it will be the same for
both curves, as the pressure does not change and therefore a constant relationship between S,
and Ej exists. From Equation 5.34 follows that the speed of recovery in curve 1 can be adjusted
for by defining a adjusted time #,4(2) with:

B, n
g (D) = 12221, (5.36)
! BOZMOZ
resulting in:
E
_ ~R2,max
ER, adj(tadj(t)) - Epny ma_x'ERl(tad/(t))- (5.37)

The using Equation 5.37 adjusted RCs of setup 2-3 can be seen in Figure 5.12, exhibiting a good
match with the RC calculated at bubble point pressure. It can be seen that it is possible to find
a factor for scaling the RC and account for the changes in the gravitational driving force.
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Figure 5.12: Recovery curves for of setups 2-4 adjusted to setup 1.

If the at bubble point pressure calculated RC is to be used for a DCM, the ultimate recovery is
now known for all possible pressure scenarios and Equation 5.37 cannot be used for such cases.
It is suggested to find this factor for a certain pressure using numerical SMB calculation. With
a linear relationship between this factor and pressure the endpoints can then be adjusted for any
pressure with good accuracy.

As an example, setup 3, calculated at 150 bar, can be used to estimate the ultimate recovery for
setup 2 and 4. This is done with a linear equation used for interpolation and extrapolation
between and beyond the data points:

E _
R3, max lj ' pP—DPq ' (5.38)

=1+
ER, max(p) 1 (E P3Py

R1, max

This leads to estimated endpoints of E, .. = 0.465 and Ey, .. = 0.513. For setup 2 this is an

overestimation of the ultimate recovery of 0.81% and for setup 4 an underestimation of 0.41%,
when compared to the correct values from the SMB calculation. Figure 5.13 shows the RCs for
setups 2 and 4 using the estimates for £y .. from Equation 5.38 and the scaling by Equation
5.37. If the scaling is correct, then the curves should match.
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Figure 5.13: Recovery curves for setup 1 and the adjusted curves for setups 2 and

4 with estimated ultimate recovery.

Water Filled Fracture

To show the effect for water filled fractures, 6 SMB setups have been created, which are listed
in Table 5.2. The matrix blocks have a dimension of 10x10x10 m, an isotropic permeability of
1 mD and fractures on all sides. PVT data set no.2 and the rock data set no. 1 from Section 4.1
is used. Naturally, the density difference between water and oil maximal at bubble point

pressure.

Table 5.2: SMB setups for water drive

# | Pracure [bar] | p, [kg/m®] | p, [kg/m’] | p, - p, [kg/m?] | M, By | Eimax | Sor
1 155.1 700.0 1084.0 -384.0 0.482 | 1.259 | 0.150 | 0.697
2 200.0 735.4 1084.1 -348.7 0.548 | 1.199 | 0.130 | 0.714
3 250.0 776.7 1084.2 -307.5 0.632 | 1.135 | 0.113 | 0.728
4 280.0 802.6 1084.3 281.7 0.688 | 1.099 | 0.104 | 0.735
5 120.0 717.1 1083.8 -366.8 0.554 | 1.198 | 0.139 | 0.706
6 80.0 738.8 1083.8 -345.0 0.660 | 1.129 | 0.128 | 0.715

Figure 5.14 shows the calculated RCs for the 6 setups. It can be seen that the highest recovery
is reached when the calculation takes place at bubble point, where also the gravitational driving

force is the highest.
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Figure 5.14: Recovery curves for setups 1-6

The RCs can be adjusted using Equation 5.37, using the determined endpoints from the SMB
calculation. The results show that also for waterdrive it is possible do determine a factor to
correct the RC, as can be seen in Figure 5.15.
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Figure 5.15: Recovery curves for setups 2-6 adjusted to setup 1.

For the estimation of the ultimate recovery in case of waterdrive, two linear equations are
needed. One is needed for when the oil is undersaturated, where the gravitational driving force
increases with decreasing pressure. The second for when the oil is below bubble point pressure
and the gravitational driving force decreases with decreasing pressure. This can be explained by
the relatively constant water density and shape of the function B, (p) (see Figure 4.1 right).

Setup 3, calculated at 250 bar, is selected for the function above bubble point and setup 5 (120
bar) for the one below bubble point. Using Equation 5.38 the estimated endpoints are Ep; . =
0.132, Egy pa = 0.101 and Egg,,. = 0.128. For setup 2 this is an overestimation of the ultimate
recovery factor of 0.22%, for setup 4 an underestimation of 0.29% and for setup 6 an
underestimation of 0.04%. The difference for setup 4 is the highest, which results in a not
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perfectly matched RC when adjusted using this ultimate recovery factor (Figure 5.16).
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Figure 5.16: Recovery curves for setups 2,4 and 6 adjusted to setup 1 with
estimated ultimate recovery.

Suggestion

This correction is only necessary when a negative oil-water capillary pressure exists or when a
gas-fluid capillary pressure curve is used. Otherwise the saturation endpoints are strictly
determined by the used relative permeability curves and the endpoint scaling with regard to the
gravity drainage force is not necessary.

For gas drive one correction factor should be determined at the expected minimum pressure at
which the RC will be applied. As this factor is a function of pressure, linear interpolation
between the determined value and a value of 1 at bubble point gives the required correction
factor.

For water drive, two correction factors should be determined at the expected highest and lowest
pressure at which the RC will be applied. One should be above bubble point and one below
bubble point. If the system is never expected to go below bubble point, the second linear
interpolation and extrapolation function is not required.

5.4.2.2 Changing Oil Formation Volume Factor

When the pressure during the recovery process changes, also the oil formation volume factor B,
will change. When both the actual oil saturation and B, are defined as a function of time then
the recovery factor £, can be written as

So(t)Boi

Ep(t) = l—B—O(t)SOi.

(5.39)
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When considering only one point in time, at which the ultimate recovery Ey . 1s reached, then
S, will be the residual oil saturation S, and B, is a function of pressure:

E (p) = 1 SorBo'P) (5.40)
p) = 1-o—c, :
R, max Bo(p)Soi

where p); is the initial pressure. The input RC calculated at reference condition b is calculated at
constant pressure. Therefore Equation 5.40 can be rewritten as

S

or
ERp, max = 1—3; (5.41)

for the input curve, since B, (p) is always the same as B,;. When the constant pressure RC is used
the endpoint has to be scaled by building the ratio:

_ SorBo(pi)
ER, max(p) _ Bo(p)Soi (5 42)
ERb, max Sor
=5
o}
an rearranging it to get Equation 5.43:
B SorBo(pi)
B,(p)S,;
ER, max(p) - ERb, max OS - (5'43)
or
=3

ol

Using this equation the endpoint of the constant pressure RC can be scaled for cases when the
pressure is changing. It should be noted that in Equation 5.43 all variables except for B, (p;) and
B,(p) are considered constant.

In case of water drive in a three-phase system the expected residual oil saturation is different
than the one calculated for the input RC. The amount of water that displaces the oil in the matrix
is determined by the balance of gravitational and capillary forces. How to account for changing
gravitational forces has already been discussed in the previous section. The capillary forces
between water and oil are a function of the water saturation and do not change with pressure or
the presence of gas in the matrix. Therefore, after the mobile gas has left the matrix block, the
residual oil saturation can be approximated by:

S = Sor—Sgc, (5.44)

orm

where S, is the critical gas saturation. Inserting this in Equation 5.43 gives:
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SormBo(pi)

B (p)S .
ER,max(p) - ERb, max OS =1 (5'45)

1___0_”
Soi

5.4.3 Considering Permeability Anisotropy

After scaling of the input RC with regard to pressure dependent variables and absolute
permeability, the handling of varying permeability anisotropies remains. Commonly, the ratio
between vertical to horizontal permeability k,/k;, is used for quantifying anisotropy.

In contrast to the scaling of the increment for different values of absolute permeabilities, the
situation for strongly differing anisotropy ratios is more complex. To show the effect of
anisotropy, six SMB calculations with an identical effective permeability of 2 mD but
anisotropy ratios varying between 0.01 and 8.0 are performed. The calculation is done at bubble
point pressure and the displacing phase is water. The results can be seen in Figure 5.17.
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Figure 5.17: Influence of permeability anisotropy on the oil RC

All SMB setups are trending to the same asymptotic value. Up to a recovery factor of 0.06, the
curves are nearly identical. This can be explained by spontaneous imbibition into matrix block
surface near regions. After this immediate water imbibition, the RC speeds depend on the
permeability anisotropy. This is not simply a linear relationship, because the varying anisotropy
causes different a saturation distribution within the matrix block. This significantly influences
the gravitational and capillary driving force. This results in a complex effect, which cannot be
easily described as a function of the form RF = fk,/k,).

The solution is to provide input RCs for a given range of anisotropy ratios. For example, if the
anisotropy ratio varies between 1.00 and 0.10, four input RCs representing successive ratio
intervals of 0.25 could be created. For this the RC region concept can be applied, which was
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already introduced by Amiry (2014). This assigns RCs on a gridblock basis. Therefore, no
scaling for permeability anisotropy is applied, rather an adequate definition of RC regions is
suggested.



Chapter 6

Verification of the Recovery Curve Method

In lack of experimental evidences, assessing the applicability of mass transfer methods between
fracture and matrix can only be done by comparing the results of dual continuum and fine grid
SMB calculations. A comprehensive evaluation can be accomplished with a dual porosity
column model where the matrix is either represented by a single cell or finely gridded. If the
results are similar the transfer model is applicable. In this chapter the RCM, as described in
Chapter 5, is verified.

6.1 The Column Model

A homogenous column model with 12 layers serves as a basis for three numerical experiments.
Every layer has a lateral dimension of 10x10 m and a height of 10 m. The top and the bottom
layer are single porosity, where only the fracture domain exists. The other 10 layers in between
consist of both matrix and fracture domain.

The matrix has a porosity of 20.0% and an isotropic permeability between 0.2 mD and 1.0 mD,
depending on the setup. The fracture has a vertical permeability of 1000 mD and a porosity of
5%. The top and bottom cell have well perforations (Well 1 and Well 2), used for operating the
column model. The matrix cells are numbered top-to-bottom from 1 to 10. PVT data, SCAL
data, initial oil-water contact, oil production and water or gas injection rates vary with each
setup.

The two utilized approaches for modeling the described column are the creation of a DCM and
a single continuum (SCM) model using finely gridded SMBs. Figure 6.1 illustrates the
conceptual model, but for practical reasons only 4 layers are shown. For the SCM at every time
step the SMB is calculated on a quarter model with the boundary condition defined by the
fracture cell of the column model.

72
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Well 1 Well 1

o o
Well 2 Well 2

Figure 6.1: Conceptual column model in a dual continuum formulation (left) and
with finely gridded matrix block (right)

6.2 PVT Data and Rock Functions

Two setups of PVT data and two sets of rock functions are used. All data sets are taken from
real field cases but the owners of this propriety data do not permit the name of the reservoirs to
be published. PVT no. 1 and ROCK data no. 2 are taken from the one reservoir and PVT no. 2
and ROCK data no. 1 are taken from another reservoir. Therefore, in the setups PVT no. 1 will
used combined with ROCK no. 2 and PVT no. 2 with ROCK no.1. The two PVT data sets have
already been used in Section 4.1 and are shown there.
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Figure 6.3: Capillary pressure and relative permeability functions of data set no.2
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6.3 Experimental Setups

6.3.1 Summary

Six setups, listed in Table 6.1, are created. They vary in type of drive mechanism, PVT data,
ROCK data, initial pressure, pressure drop during the calculation, days of calculation, matrix
permeability and number of mobile phases.

Each setup is calculated using the SCM, the DCM with RCs and, for comparison, the Kazemi
et al. (1976) transfer equation with the Gilman and Kazemi (1988) gravity drainage model. To
show the effect of the increment and endpoint scaling factors, which are described in Section
5.4, all setups are calculated with

a.) ER max and increment scaling
b.) only increment scaling and
c.) without and scaling of the RC.

Table 6.1: Column model setups

Setup PVT | ROCK | P, init. | P, end Drivei Days (ff k mobile
sno. sno. [bara] [bara] | Mechanism | calculation | [mD] | phases

1 2 1 184 183 water 6574 1.0 2

2 2 1 140 123 gas 5113 0.2 2

3 2 1 160 142 water 6209 1.0 3

4 1 2 330 327 water 10957 0.5 2

5 1 2 200 166 gas 18262 1.0 2

6 1 2 283 248 water 6209 1.0 3

For the RC option the input curves are created with SMB calculations at bubble point pressure.
The dimensions, permeability, PVT and ROCK data is the same as in the corresponding dual
continuum matrix blocks. The RC were also calculated for pressures above and below bubble
point, to correct the ultimate recovery for different pressures as described in Section 5.4.2.1.
ER max and the parameters required for scaling the input RC can be seen in Table 6.2. For all
setups also the oil resaturation curves are created.
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Table 6.2: Input RC parameters and correction factors

Setup fof‘l‘;“:"l,b fof‘l‘;“;*"‘l,b fof‘l‘;“;”l,b u, [cP] | B, [rm¥/sm:]
1 0.1496 - 0.1341 @190bar | 0.482 1.259
2 0.4792 0.4893 @]115bar - 0.482 1.259
3 0.1496 0.1440 @135bar | 0.1451 @165bar | 0.482 1.259
4 0.5316 - 0.5299 @340bar | 0.510 1.695
5 0.2541 0.2769 @160bar - 0.510 1.695
6 0.5471 0.5446 @?240bar | 0.5466 @290bar | 0.510 1.695

The saturation initialization for setups with water injection (no. 1, 3, 4 and 6) is as shown in
Figure 6.4.
The initial saturations are:

¢ Matrix: S,, = S,;;, S, = 1-S;;;and S, = 0

¢ Fracture and cell containing Well 1: S, =S, =0 and S, = 1

¢ Cell containing Well 2: S, =1,S,=5,=0

I
—_—— —
I
s

Figure 6.4: Initial saturations in the column for setups 1, 3,4 and 6

The saturation initialization for setups with gas injection (no. 2 and 5) is as shown in Figure 6.5.
The initial saturations are:

¢ Matrix: S,, = S,;;, S, = 1-S;;;and S, = 0

* Fracture and cells containing Well 1 & 2: S, =S, =0 and S, =1
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Figure 6.5: Initial saturations in the column for setups 2 and 5.

6.3.2 Setup 1

Setup 1 exhibits waterdrive at a nearly constant pressure of 184 bar. This is 29 bar above the
bubble point pressure of the used PVT data set no. 2, therefore it is assured that the oil is
undersaturated throughout the calculation and only 2 mobile phases exist. The matrix
permeability is | mD and SCAL data set no. 1 is used.

Well 1 is an oil production well with a constant liquid production rate of 1.0 sm3/day. It produces
from the beginning until day 608 and is shut in afterwards. Well 2 is a water injection well
operating at a constant bottom hole pressure of 188.8 bar, which is also shut in after 608 days.
The overall duration of the calculation is 6574 days.

6.3.3 Setup 2

Setup 2 tests gasdrive in combination with expansion. PVT table 2 with a bubble point pressure
of 155 bar and the oil-wet SCAL data set no.1 are used. Initially, the average pressure in the
column model is to 140 bar and the fracture is filled with oil, as shown in Figure 6.5, and the oil
is fully saturated. The matrix permeability is 0.2 mD.

Well 1 is a gas injection well, which starts injecting at day 32 with a constant injection rate of
190 sm?/day. At the same time Well 2 starts producing oil at a rate of 1.0 sm?/day. On day 455,
shortly before gas breakthrough at Well 2, Well 1 is converted into a gas production well and is
assigned a constant production rate of 10 sm3/day. At the same time the oil production rate at
Well 2 is reduced to 0.05 sm?/day. On day 1247 both wells are then shut-in. The overall duration
of the calculation is 5113 days.



78

6.3.4 Setup 3

In setup 3 waterdrive in combination with expansion is tested. PVT table 2 with a bubble point
pressure of 155 bar and the oil-wet SCAL data set no.1 are used. During the calculation the
pressure drops below the bubble point and three mobile phases will be present. Initially, the
average pressure in the column model is 160 bar and every cell is above bubble point and
undersaturated. The matrix permeability is, as in setup 1, 1 mD.

Well 1 is an oil producer, which starts producing immediately with a production rate of 0.8
sm¥/day. Well 2 is a water injection well and is controlled by a defined bottom hole pressure. At
the beginning the injection pressure is 163.3 bar and is stepwise dropped by 0.2 bar each month.
After 2372 both wells are shut-in. At this time the injection pressure dropped already to 147.9
bar. The overall duration of the calculation is 6209 days.

6.3.5 Setup 4

Setup 4 tests waterdrive at a nearly constant pressure of 330 bar, like setup 1. However, it uses
different PVT and SCAL data and has a lower matrix permeability. The pressure is 53 bar above
the bubble point pressure of the used PVT data set no. 1, therefore the oil is undersaturated
throughout the calculation and only 2 mobile phases exist. The matrix permeability is 0.5 mD
and SCAL data set no. 2 is used.

Well 1 is an oil production well with a constant liquid production rate of 1.0 sm*/day. Well 2 is
a water injector with a constant bottom hole pressure of 333.2 bar. Both wells are shut-in after
415 days. The overall duration of the calculation is 10957 days.

6.3.6 Setup 5

Setup 5 tests gasdrive in combination with expansion, like setup 2. However, it uses different
PVT and SCAL data and has a higher matrix permeability. PVT table 1 with a bubble point
pressure of 276.8 bar and the water-wet SCAL data set no.2 are used. Initially, the average
pressure in the column model is to 200 bar and the fracture is filled with oil, as shown in Figure
6.5, and the oil is fully saturated. The matrix permeability is 1.0 mD.

Well 1 is a gas injection well, which starts injecting at day 32 with a constant injection rate of
215 sm?/day. At the same time Well 2 starts producing oil at a rate of 1.0 sm*day. On day 334,
shortly before gas breakthrough at Well 2, Well 1 is converted into a gas production well and is
assigned a constant production rate of 10 sm3/day. At the same time the oil production rate at
Well 2 is reduced to 0.05 sm#/day. On day 1247 both wells are then shut-in. The overall duration
of the calculation is 18262 days.
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6.3.7 Setup 6

Like setup 3, setup 6 tests waterdrive in combination with expansion. However, it uses different
PVT and SCAL data. PVT table 1 with a bubble point pressure of 276.8 bar and the water-wet
SCAL data set no. 2 are used. During the calculation the pressure drops below the bubble point
and three mobile phases will be present. Initially, the average pressure in the column model is
283 bar and every cell is above bubble point and undersaturated. The matrix permeability is 1
mD.

Well 1 is an oil producer, which starts producing immediately with a production rate of 0.8
sm¥/day. Well 2 is a water injection well and is controlled by a defined bottom hole pressure. At
the beginning the injection pressure is 286.3 bar and is stepwise dropped by 0.3 bar each month.
After 3469 both wells are shut-in. At this time the injection pressure dropped already to 252.7
bar. The overall duration of the calculation is 6209 days.

6.4 Results

6.4.1 Summary

Setups 1 to 3 show that the RC is appropriate for modeling the matrix-fracture mass transfer.
The TF overpredicts the speed of recovery as well as the ultimate recovery for these setups. For
the waterdrive setups, which use the oil-wet rock data, only the scaling of Eg, .., is significant
and for gasdrive only the scaling of the increment has an influence.

For setups 4 to 6, which use water-wet rock data, all transfer models show acceptable results for
the maximum recovery factor. For gasdrive, the TF overpredicts the speed of recovery
significantly, whereas all RC scaling options give accurate results. In case of waterdrive, all
transfer models give acceptable results. Generally, the scaling options only have a minor
influence, but the mixture of increment and Ey, .., scaling gives the most correct results.

In the following sections a detailed description and visualization of the results can be seen.

6.4.2 Setup 1

The cumulative oil and water production and the average pressure of the column model for the
Single Continuum Model (SCM), the transfer function (TF) and the recovery curve method
(RC) can be seen in Figure 6.6. Oil is produced from the top of the column and water is injected
with constant pressure at the bottom of the column. The hydrocarbon-weighted average
pressure decreases as the oil is displaced in the lower parts of the column, where the pressure is
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higher. The constant liquid production rate results in a constant slope of the cumulative oil
production curve, until water is produced. Water breakthrough at Well 1 happens later, when
the TF is used. This can also be seen in Figure 6.7 to Figure 6.11, where a time lag of the start
of waterdrive when using the TF compared to SCM/RC exists, which increases upwards in the
column. This is because the estimated oil recovery is much faster when using the TF and more
water enters the matrix.

~ 1200 TS E N ol = -SCM water 195 _
'é’ ----- RC oil - -RC water . 5
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Figure 6.6: Setup 1: Average pressure and cumulative oil and water production
when using the RCM, the TF and the SCM.

In the top matrix cell 1 (Figure 6.7, left) the time lag between the start of waterdrive when using
the TF is most expressed. The start of waterdrive can be identified by the sudden change of
slope, when the recovery mechanism changes. Additionally, oil resaturation occurs in cell 1
after the production is stopped but oil is still displaced from the matrix cells. As the mobile oil
and water phase separate in the fracture, oil starts filling the fracture column again beginning
from the top. After the oil saturation is high enough also in the fracture neighbor of matrix cell
1, oil will re-enter the matrix.

Generally, Figure 6.7 to Figure 6.11 show a very good agreement between the SCM and the RC
results. The speed of recovery as well as the ultimate recovery at the end of the calculation is
similar. The TF overpredicts both speed of recovery and the asymptote of the recovery factor.
The reason for the difference will be discussed and explained in detail in Section 6.5.

The results show also a slight increase in Eg ,,,, from the bottom to the top, with the exception
of cell 1, where oil resaturation occurs and the asymptote is not approached. This is also
observable for the RC and the TF. This can be explained by the fact that the pressure is higher
at the bottom of the column than at the top of the column, leading to a decreasing Eg ,,, in the
bottom cells, as shown in Section 5.4.2.1. The TF includes the changing densities at different
pressures and the RC also corrects for this automatically with the defined Eg ,,, for a higher
pressure (see Table 6.2).

Table 6.3 shows the maximum recovery factors for all matrix cells and all calculation setups
(SCM, RC (a) with Eg ,,,,, and increment scaling, RC (b) with increment scaling, RC (c) without
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scaling and TF). It is evident that the RC method is more accurate in predicting the ultimate
recovery than the TF. It can also be seen that for the SCM, RC (a) and TF the recovery factor
increases upwards, where the pressure is lower. For RC (b) and RC (c), although still more
accurate than the TF, this is not the case, as the Eg ., scaling is not applied.

Table 6.3: Maximum recovery factors for Setup 1

Maximum Recovery Factor Eg ... (-)
“%aetl‘i“‘ SCM RC (a) RC (b) RC (¢) TF
1 0.123 0.124 0.129 0.131 0.143
2 0.140 0.136 0.137 0.138 0.180
3 0.139 0.136 0.137 0.138 0.180
4 0.139 0.136 0.137 0.138 0.179
5 0.138 0.135 0.137 0.138 0.178
6 0.137 0.135 0.137 0.138 0.177
7 0.136 0.134 0.137 0.138 0.177
8 0.136 0.134 0.137 0.138 0.176
9 0.135 0.133 0.137 0.138 0.175
10 0.134 0.133 0.137 0.137 0.175
0.30 0.30
1 RC (a) 2 RC (a)
0.25 {--15CM 025 {--25CM
? -e-1TF ? -2 TF
5020 5020
§0-15 Lio.ls
%0.10 %0.10
& i & i
0.05 0.05
0.00:'::“?"‘?"‘?“‘}‘ 0.00:'::“}"‘}"‘}“‘}‘
0 1461 2922 4382 5843 0 1461 2922 4382 5843
Time (days) Time (days)

Figure 6.7: Recovery curves for matrix cells 1 and 2 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.8: Recovery curves for matrix cells 3 and 4 when using the RC method

with scaling (RC (a)), the SCM and the TF.
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Figure 6.9: Recovery curves for matrix cells 5 and 6 when using the RC method

with scaling (RC (a)), the SCM and the TF.
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Figure 6.10: Recovery curves for matrix cells 7 and 8 when using the RC method

with scaling (RC (a)), the SCM and the TF.
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Figure 6.11: Recovery curves for matrix cells 9 and 10 when using the RC method
with scaling (RC (a)), the SCM and the TF.

The saturation distribution of the SCM in the matrix can be exactly reproduced with the RC, but
not with the RF. At day 362 (Figure 6.12) the matrix water saturation is already clearly higher
for the TF in the lower parts of the matrix column. Both SCM and RC exhibit very similar
saturation values. At the end of the calculation (Figure 6.13) all three calculations show an
relatively constant water saturation in the matrix, except for the matrix cell 1, where oil
resaturation occurred. However, for both SCM and RC the maximum oil saturation is 0.29,
whereas the one for the TF is 0.32.
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Figure 6.12: Saturation in the matrix and fracture for the SCM, RC and TF on day
362
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Figure 6.13: Saturation in the matrix and fracture for the SCM, RC and TF on day

6574

6.4.3 Setup 2

The cumulative oil and gas production as well as the HC-weighted average pressure can be seen
in Figure 6.14. For setup 2 the cumulative oil and gas production is identical for the SCM, TF
and RC. This is due to the fact that the gas did not break through at the oil producer Well 2 and
because the pressure is identical for all setups, the produced solution gas is identical.

The average pressure in the column drops from 140 bar to 123 bar within the first 1247 days of
calculation, which is an average pressure decline rate of 0.014 bar/day or 4.98 bar/year.
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Figure 6.14: Setup 2: Average pressure and cumulative oil and gas production.

Figure 6.15 to Figure 6.19 show the recovery curves for all 10 matrix blocks. For the SCM and
the RC, gasdrive occurs in cells 1 - 9, oil resaturation in cells 6 - 9 and purely expansion in cell
10. For the TF gasdrive only occurs for cells 1 - 7 and oil resaturation for cell 5 - 7, with cells 8
- 10 only under expansion drive.
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For cells 1 - 5 the RC reproduces the SCM results accurately. The TF overpredicts the speed of
recovery and the maximum recovery factor at the end of the calculation. For the TF, this results
in a higher amount of oil in the fracture. In the fracture the mobile phases separate and oil
resaturation occurs also in cell 5 for the TF, but not for the RC and SCM. The time when oil
resaturation starts is matched accurately for the RC, as evident in cells 6, 7, 8 and 9.

An overview over the maximum recovery factors for all matrix cells and all calculation setups
(SCM, RC (a) with Eg ., and increment scaling, RC (b) with increment scaling, RC (c) without
scaling and TF) can be seen in Table 6.4. It should be noted, that here the maximum achieved
recovery factors are shown, and not the recovery factors at the end of calculation, which would
be different for the matrix blocks where oil resaturation occurs. For setup 2 it is evident, that all
RC variants reproduce the results of the SCM more accurately than the TF. Among the RC
variants, RC (a) and RC (b) achieve the best results, whereas RC (¢) overpredicts the maximum
recovery factor slightly. In this example the increment scaling of the RC clearly has more
influence on the results than the scaling of Eg 5.

Table 6.4: Maximum recovery factors for Setup 2

Maximum Recovery Factor Eg ... (-)

“%aetl‘ii" SCM RC (a) RC (b) RC (¢) TF
1 0.331 0.323 0.323 0.352 0.425
2 0.330 0.322 0.330 0.352 0.424
3 0.329 0.321 0.329 0.352 0.424
4 0.329 0.320 0.328 0.351 0.423
5 0.328 0.319 0.327 0.351 0.354
6 0.269 0.236 0.235 0.234 0.219
7 0.170 0.163 0.163 0.164 0.089
8 0.114 0.113 0.113 0.114 0.023
9 0.073 0.061 0.060 0.058 0.022
10 0.061 0.041 0.041 0.041 0.022
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Figure 6.15: Recovery curves for matrix cells 1and 2 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.16: Recovery curves for matrix cells 3 and 4 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.17: Recovery curves for matrix cells Sand 6 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.18: Recovery curves for matrix cells 7 and 8 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.19: Recovery curves for matrix cells 9 and 10 when using the RC method
with scaling (RC (a)), the SCM and the TF.
6.4.4 Setup 3

The cumulative oil and water production and the average pressure of the column model for the
Single Continuum Model (SCM), the transfer function (TF) and the recovery curve method
(RC) can be seen in Figure 6.20. Oil is produced from the top of the column and water is injected
with a stepwise declining pressure at the bottom of the column. The pressure is reduced by 0.2
bar each month, but at the beginning of the calculation the HC-weighted average pressure shows
a steeper decline. This is for the same reason as discussed for setup 1: Water displaced oil from
the bottom of the model, where the pressure is higher and therefore the HC-weighted pressure

is reduced. In the first 2372 days the pressure drops from 160 to 142 bar, which is a decline rate
of 0.008 bar/day or 2.77 bar/year.
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Figure 6.20: Setup 3: Average pressure and cumulative oil and water production
when using the recovery curve method, the TF and the SCM.

Figure 6.21 to Figure 6.25 show the calculated RCs for setup 3. It can be seen that all matrix
cells show a period of expansion followed by waterdrive. The change in drive mechanism can
be identified by the sudden change in slope of the curve. As waterdrive starts when the water
saturation in the fracture adjacent to a matrix cell is filled with water, the WOC movement can
be identified. The WOC movement is identical for the SCM and the RC. When using the TF the
WOC is moving upwards at a slower pace, as marked by the delayed start of waterdrive.
Naturally, for the top blocks this effect is more evident than for the lower ones.

ER max When using the TF is around 0.20, which is significantly higher than when using the RC
or for the SCM, where Eg ,, 1s around 0.15. Also here the effect at the top matrix cell 1 E
is lower than for cell 10 can be observed in all calculations. The final recovery factors of cell 01
are 0.146 for the SCM, 0.149 for the RC and 0.196 for the TF. At the bottom cell they are 0.166
for the SCM, 0.167 for the RC and 0.205 for the TF. This shows that the RC can handle the
different pressure history of the individual cells and predict the final recovery factor very
accurately. The reason for the difference in the ultimate recovery factor between the TF and the
SCM/RC will be discussed and explained in detail in Section 6.5.

An overview over the maximum recovery factors for all matrix cells and all calculation setups
(SCM, RC (a) with Eg, ., and increment scaling, RC (b) with increment scaling, RC (c) without
scaling and TF) can be seen in Table 6.5. It is evident that all RC option give more accurate

results than the TF, but the change of the maximum recovery factors with depth is not modeled
for RC (b) and RC (c).
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Table 6.5: Maximum recovery factors for Setup 3

Maximum Recovery Factor Ey ... (-)
“%aetl‘iix SCM RC (a) RC (b) RC (¢) TF

1 0.146 0.150 0.149 0.149 0.197

2 0.150 0.150 0.147 0.148 0.200

3 0.151 0.154 0.149 0.150 0.202

4 0.154 0.155 0.148 0.148 0.204

5 0.156 0.159 0.150 0.150 0.205

6 0.157 0.161 0.150 0.150 0.206

7 0.160 0.162 0.149 0.149 0.206

8 0.161 0.165 0.150 0.150 0.206

9 0.164 0.166 0.149 0.149 0.206

10 0.166 0.168 0.150 0.150 0.196
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Figure 6.21: Recovery curves for matrix cells 1 and 2 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.22: Recovery curves for matrix cells 3 and 4 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.23: Recovery curves for matrix cells 5 and 6 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.24: Recovery curves for matrix cells 7 and 8 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.25: Recovery curves for matrix cells 9 and 10 when using the RC method
with scaling (RC (a)), the SCM and the TF.

6.4.5 Setup 4

The cumulative oil production and the average pressure of the column model for the Single
Continuum Model (SCM), the transfer function (TF) and the recovery curve method (RC) can
be seen in Figure 6.26. The oil production is identical for all calculations, as the water did not
break through at Well 1. Oil is produced from the top of the column and water is injected with
a constant pressure at the bottom of the column. The average HC-weighted pressure declining
in the beginning, because oil is displaced in the bottom of the column, where the pressure is
higher. This is the same effect as described for setup 1.
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Figure 6.26: Setup 4: Average pressure and cumulative oil production.

Figure 6.27 to Figure 6.31 show the RCs for all 10 matrix blocks. Waterdrive occurs in cells 3
- 10. It can be seen that both the RC and the TF match the results of the SCM well. The TF
slightly underpredicts the speed of recovery up to a recovery factor of 0.45, but the deviation
from the SCM is only minimal.
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An overview over the maximum recovery factors for all matrix cells and all calculation setups
(SCM, RC (a) with Eg ., and increment scaling, RC (b) with increment scaling, RC (c) without

scaling and TF) can be seen in Table 6.6. For setup 4, using the water-wet SCAL data, all tested
transfer models accurately predict Eg ;..

Table 6.6: Maximum recovery factors for Setup 4

Maximum Recovery Factor Eg ... (-)
hgflrl‘" SCM RC (a) RC (b) RC (¢) TF
1 0.001 0.001 0.001 0.001 0.001
2 0.001 0.001 0.001 0.001 0.015
3 0.297 0.327 0.323 0.321 0.312
4 0.426 0.430 0.429 0.429 0.399
5 0.497 0.503 0.502 0.503 0.471
6 0.512 0.511 0.512 0.513 0.508
7 0.512 0.511 0.512 0.514 0.508
8 0.512 0.511 0.512 0.514 0.508
9 0.512 0.511 0.512 0.514 0.508
10 0.512 0.511 0.512 0.514 0.508
0.50 0.50
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30.30 30.30
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Time (days) Time (days)

Figure 6.27: Recovery curves for matrix cells 1 and 2 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.28: Recovery curves for matrix cells 3 and 4 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.29: Recovery curves for matrix cells 5 and 6 when using the RC method
with scaling (RC (a)), the SCM and the TF.
0.50 * » 050 + - oo
T0.40 T0.40
s s
21 21
£0.30 £0.30
g g
20.20 20.20
g +7RC () g 8 RC ()
L L
MO.IO --7SCM MO.IO --8§SCM
-e--7TF o8 TF
0.00 e B e L — 0.00 e B B I
0 1826 3652 5478 7304 9130 10956 0 1826 3652 5478 7304 9130 10956
Time (days) Time (days)

Figure 6.30: Recovery curves for matrix cells 7 and 8 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.31: Recovery curves for matrix cells 9 and 10 when using the RC method
with scaling (RC (a)), the SCM and the TF.

6.4.6 Setup 5

The cumulative oil and gas production as well as the HC-weighted average pressure can be seen
in Figure 6.32. For setup 5 the cumulative oil and gas production is identical for the SCM, TF
and RC. This is due to the fact that the gas did not break through at the oil producer Well 2 and
because the pressure is identical for all setups, the produced solution gas is identical.

The average pressure in the column drops from 200 bar to 166 bar within the first 1247 days of
calculation, which is an average pressure decline rate of 0.027 bar/day or 9.95 bar/year.
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Figure 6.32: Setup 5:Average pressure and cumulative oil and gas production.

Table 6.7 shows the maximum recovery factors for all matrix cells and all calculation setups
(SCM, RC (a) with Eg ., and increment scaling, RC (b) with increment scaling, RC (c) without
scaling and TF). RC (a) matches the SCM results most accurately. Matrix cells 1-6 have a
similar Eg, ., for all calculation modes. Matrix cell 7 is matched more accurately by all three
RC modes, the TF exhibits a lower Eg ,,, for cell 7. Also in matrix cell 8 discrepancies occur
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due to the different phase contact movement between the calculation modes.

Figure 6.33 to Figure 6.37 show the RCs for all 10 matrix blocks. Matrix cells 1-8 experience
gasdrive in the SCM and RC. For the TF no gasdrive occurs in matrix cell 8, since the oil-gas
contact never reached the depth of this cell.

Matrix cells 1-6 exhibit expansion followed by gasdrive and no oil resaturation. It can be seen
that the RC matches the results of the SCM accurately. The calculated Eg ,,, 1s underpredicted
by roughly 0.002, which is insignificant. The TF overpredicts the speed of oil recovery. Eg ;5
is also overpredicted by approximately 0.01.

Matrix cell 7 also underground oil resaturation, which can be seen in all calculations. In cell 7
the maximum recovery factor when using the RC is by 0.01 higher than for the SCM. The begin
of oil-resaturation is delayed. But once oil resaturation also starts for the RC the slope of the
decrease in RF is similar to the SCM.

Matrix cells 8 only has a very short time of gasdrive and cells 9 and 10 undergo expansion only.

Table 6.7: Maximum recovery factors for Setup 5

Maximum Recovery Factor Ey ... (-)

“%aetl‘ii" SCM RC (a) RC (b) RC (¢) TF
1 0.257 0.255 0.240 0.246 0.266
2 0.257 0.255 0.240 0.246 0.266
3 0.256 0.254 0.240 0.246 0.265
4 0.256 0.253 0.240 0.246 0.265
5 0.256 0.253 0.240 0.246 0.264
6 0.256 0.252 0.239 0.246 0.264
7 0.190 0.200 0.203 0.202 0.092
8 0.100 0.051 0.077 0.052 0.024
9 0.059 0.066 0.066 0.066 0.024
10 0.059 0.066 0.066 0.066 0.024
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Figure 6.33: Recovery curves for matrix cells 1 and 2 when using the RC method

with scaling (RC (a)), the SCM and the TF.
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Figure 6.34: Recovery curves for matrix cells 3 and 4 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.35: Recovery curves for matrix cells 5 and 6 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.36: Recovery curves for matrix cells 7 and 8 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.37: Recovery curves for matrix cells 9 and 10 when using the RC method
with scaling (RC (a)), the SCM and the TF.

6.4.7 Setup 6

The cumulative oil and water production as well as the HC-weighted average pressure can be
seen in Figure 6.38. For setup 6 the cumulative oil and water production is identical for the
SCM, TF and RC. Oil is produced from the top of the column and water is injected with a
stepwise declining pressure at the bottom of the column. The pressure is reduced by 0.3 bar each
month, but at the beginning of the calculation the HC-weighted average pressure shows a
steeper decline. This is for the same reason as discussed for setup 1: Water displaced oil from
the bottom of the model, where the pressure is higher and therefore the HC-weighted pressure
is reduced. The average pressure in the column drops from 283 bar to 248 bar within the first
3469 days of calculation, which is an average pressure decline rate of 0.01 bar/day or 3.68
bar/year.
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Figure 6.38: Setup 6: Average pressure and cumulative oil and water production.

An overview over the maximum recovery factors for all matrix cells and all calculation setups

(SCM, RC (a) with Eg ,,,,, and increment scaling, RC (b) with increment scaling, RC (c) without
scaling and TF) can be seen in Table 6.8. All transfer models achieve a similar result, with RC

(a) being the closest to the SCM.

Figure 6.39 to Figure 6.43 shows the RCs for the SCM, RC (a) and the TF. The TF slightly

underpredicts the speed of oil recovery in the early phases of waterdrive up to RF values of 0.45
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Table 6.8: Maximum recovery factors for Setup 6

Maximum Recovery Factor Ey ... (-)
“%aetl‘iix SCM RC (a) RC (b) RC (¢) TF
1 0.523 0.526 0.514 0.514 0.515
2 0.521 0.527 0.514 0.514 0.516
3 0.526 0.527 0.515 0.515 0.516
4 0.527 0.527 0.515 0.515 0.517
5 0.522 0.527 0.516 0.515 0.517
6 0.529 0.527 0.516 0.515 0.518
7 0.529 0.528 0.517 0.516 0.519
8 0.523 0.528 0.517 0.516 0.519
9 0.532 0.528 0.517 0.516 0.519
10 0.529 0.527 0.517 0.516 0.519
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Figure 6.39: Recovery curves for matrix cells

with scaling (RC (a)), the SCM and the TF.

1 and 2 when using the RC method
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Figure 6.40: Recovery curves for matrix cells 3 and 4 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.41: Recovery curves for matrix cells 5 and 6 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.42: Recovery curves for matrix cells 7 and 8 when using the RC method
with scaling (RC (a)), the SCM and the TF.
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Figure 6.43: Recovery curves for matrix cells 9 and 10 when using the RC method

with scaling (RC (a)), the SCM and the TF.
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6.5 Explanation of the Difference in E; ., between
TF and SCM/RC

Setups 1 and 3 show significant differences in the estimation of the maximum recovery factor
between the SCM/RC and the TF. These setups are waterdrive and the SCAL data of an oil-wet
rock is used.

The maximum achievable matrix recovery factor is defined by the equilibrium between
capillary and gravitational forces. In the calculation some model for determining the forces have
to be found. The capillary forces are well defined by the capillary pressure (P.) function. The
SCM considers it for all small cells of the SMB individually, which means the P, is not constant
in matrix. The RC considers these non-uniform P, also because it is already defined with the
input RC. The TF determines the P, based on the average matrix saturation and does not
consider the variation within the matrix blocks.

For the gravitational forces the SCM inherently considers them because both matrix and
fracture are finely gridded. When the RC is used, the gravitational forces are already included
in the input RC and only slightly adjusted for changing pressures. In the TF a mathematical
model for the gravitational forces is used, which is based on average matrix and fracture
properties (average saturation and pressure). Various gravity drainage models exist, but all use
average properties of the matrix.

When the TF is used, the ultimate recovery factor can easily determined by writing the balance
of forces:

D +P P (6.1)

wm (Dwf ~ Pom Pof” Pcwom cw0f+ hwom ~— Phwof
where the subscript f denotes the fracture and m the matrix. P,,, is the water-oil capillary
pressure, P,,,, the hydrostatic pressure difference and po the average oil pressure. In the fracture
(Peyvop) 18 assumed to be 0. When using the PVT data set 1 the individual forces and the resulting
difference can be seen in Figure 6.44. In this figure the net hydrostatic pressure, P} ,orPhwom> the
imbibition capillary pressure and the resulting net potential, @ P, is shown. It is assumed
that the pressure in the matrix and fracture is identical. It can be seen that the average water
saturation Sw at the equilibrium of the forces is 0.33, which is equivalent to an ultimate recovery
factor of 0.18. This value for Eg . is also reproduced with the numerical calculation in setup 1.
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Figure 6.44: Equilibrium of forces for waterdrive when using the TF
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In the SMB calculation, the saturation is not uniform. At ultimate recovery the equilibrium
between gravitational and capillary forces will result in a vertical saturation distribution, as
shown in Figure 6.45. At the top of the SMB the water saturation is lower and at the bottom
higher than the average saturation determined for the DCM. Averaging the saturation of the
SMB results in a water saturation that is lower than the one of the DCM using the TF. For the

SMB the average Sw is 0.29, which is equivalent to an ultimate recovery factor of 0.13.

Figure 6.46 show the vertical distribution of the matrix, fracture and capillary pressure in the
SMB. It can be clearly seen that in equilibrium, the average matrix pressure is lower than the
average fracture pressure. The difference between the two pressures is exactly the capillary
pressure, determined for the saturation at the specific depth.

Figure 6.45: Water saturation in the matrix block after waterdrive at ultimate

recovery.
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Figure 6.46: Vertical matrix, fracture and capillary pressure distribution of the
SMB after waterdrive at ultimate recovery.

It can be concluded, that when the TF is used, the determination of the capillary pressure based
on average saturations together with the used gravity drainage model is not able to accurately
predict the final average water saturation in the SMB after waterdrive. Therefore, e.g. in setup
1 the Eg 5, predicted by the TF is higher than the on calculated by the fine grid SMB model.

For the water-wet SCAL data this effect is not observed, e.g. in setup 4. This can be explained
by the fact that the equilibrium between capillary and gravitational forces occurs already very
near to the residual oil saturation after waterdrive based on the relative permeability input data.
Nearly the entire recovery process occurs with a positive oil-water capillary pressure, resulting
in spontaneous imbibition of oil up to a water saturation of roughly 0.71. Since only a very small
part of the imbibition capillary pressure curve is in the negative (from S, = 0.71 to S, = 0.75)
the vertical distribution of the water saturation within the SMB is nearly homogeneous.
Therefore, the oil recovery when using the water-wet SCAL data, is dominated by capillary
forces and the gravitational forces have only little influence on the final recovery.

Generally, the RC can be used independently of the wettability of the rock, since the information
about the capillary and gravitational forces as well as their variation within the SMB are already
included in the input RC. When the TF is used, only average properties can be considered and
the results will also depend on the chosen gravity drainage model.
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6.6 Influence of Recovery Curve Scaling

All setups have been calculated with three modes for the RCM, to show the influence of the in
Chapter 5 introduced scaling options. The variance are RC (a), RC (b) and RC (c), where the
letter in the brackets denotes the type of scaling used:

a.) Eg max and increment scaling
b.) only increment scaling and
c.) without and scaling of the RC.

To highlight the differences, also an error-plot will be shown, where on the vertical axis the
absolute error in RF between the SCM and the other models will be shown. If the error is
positive, the transfer model overpredicts the RF at this point in time, if it is negative the RF is
underpredicted. The TF results and errors are also shown, but will not be discussed in this
section. They are included to illustrate the magnitude of error, when the TF is used, compared
to the RCM options.

Figure 6.47 shows the RC for all calculation setups (left) and the error in recovery factor (right)
for setup 1, in which waterdrive occurs. It can be seen that only the scaling of Eg . has a
significant influence on the RC. RC (b) and RC (c¢) produce identical result. In this case the
calculation is at a pressure, which is 30 bar above bubble point pressure, at which the input RC
is calculated. As shown in Section 5.4.2.1, the gravitational force is lower at this higher
pressure, which is not considered by RC (a) or RC (b). As the pressure remains nearly constant
during the calculation, the scaling of Eg .., due to gravitational forces it the only significant
scaling option.
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Figure 6.47: Setup 1: Recovery factor and error in recovery factor for cell 3.

Figure 6.48 and Figure 6.49 show the RCs (left) and the error in recovery factor (right) for cells
2 and 7 setup 2, in which expansion and gasdrive occurs. For both matrix cells RC (a) and RC
(b) match well and RC (c) overpredicts the speed of recovery. This means that in this case only
the increment scaling option is significant and the scaling of Eg ., is not. The start of oil
resaturation in cell 7 is also exactly matched by RC (a) and RC (b). Because of the
overprediction of the speed of oil recovery, oil resaturation starts earlier in case that the input
RC is not scaled.
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Figure 6.48: Setup 2: Recovery factor and error in recovery factor for cell 2

n 0.3
[ --7sCM
0.60 1| .7 TF
i —7RC (a) 0.2
320,50 —;gg Eb)) T
i 1 < 2
= 201
£0.40 Cé;
= =
= 500 ¥,
£030 Sk N
2 =) R
$0.20 5 S S (o 7TF
& == e _
i e
—7RC (¢)
0.00 e e B -0.3 T
0 1826 3652 5478 7304 9130 10956 0 1826 3652 5478 7304 9130 10956
Time (days) Time (days)

Figure 6.49: Setup 2: Recovery factor and error in recovery factor for cell 7, with
oil resaturation.

Figure 6.50 shows the RCs (left) and error in recovery factor (right) for cell 10 of setup 3, in
which expansion and waterdrive occurs. In this example RC (a) matches accurately, whereas
both RC (b) and RC (¢) are identical and underpredict the final recovery. In setup 3 the pressure
drops below bubble point, which means that a scaling of the final recovery factor is necessary
with regard to the change of B, gravitational driving force and residual oil saturation. The
residual oil saturation changes because of the presence of a critical gas saturation in the matrix.
All of these factors are considered in RC (a), which therefore shows the best match.
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Figure 6.51 shows the RCs (left) and error in recovery factor (right) for cell 10 of setup 4, in
which waterdrive occurs. In this example the matrix is strongly water-wet. All RC scaling
options give very similar result. In the error plot it can be seen that RC (a) and RC (b) have a
slightly lower error, so increment scaling has a minor influence. An influence of Eg ., scaling
cannot be identified. The reason why also the result of the TF is very accurate in this instance
is explained already in Section 6.5.
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Figure 6.51: Setup 4: Recovery factor and error in recovery factor for cell 10.

Figure 6.52 shows the RCs (left) and error in recovery factor (right) for cell 3 of setup 5, in
which expansion and gasdrive occurs. For this setup it can be seen that all three RC scaling
options give different results. In the early time RC (a) and RC (c) are very similar but at RF
values of about 0.23 also these curves separate. The lowest error occurs for RC (a), which means
both increment and Eg ., scaling are significant for setup 5.
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Figure 6.52: Setup 5: Recovery factor and error in recovery factor for cell 3.

Figure 6.53 and Figure 6.54 show the recovery factors (left) and the errors in recovery factor
(right) for matrix cells 5 and 10 of setup 6, in which expansion and waterdrive occurs. In this
setup the matrix is strongly water-wet and therefore also the TF gives a good estimate of Eg ..
All RC scaling options give a very low error, with RC (a) being the best fit. RC (b) and RC (c¢)

are nearly identical, which means that the increment scaling option does not have an influence
in this setup.
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Figure 6.53: Setup 6: Recovery factor and error in recovery factor for cell 5.
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Figure 6.54: Setup 6: Recovery factor and error in recovery factor for cell 10.
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6.7 Discussion

The RCM shows correct results for all setups, but the accuracy of the TF results depends
strongly on the wettability of the rock and the drive mechanism. The TF cannot account for a
non-uniform saturation distribution within the matrix block. The RCM has all this information
already included in the input RC, because it was obtained with fine grid SMB calculation.

Setups 2 and 5 experience gravity drainage with gas filled fractures. Su et al. (2013) showed that
if multiple matrix blocks in a column are immediately surrounded by gas filled fractures, most
of the oil does not come out at the sides of the matrix blocks but moves vertically to the
neighboring matrix block. The oil then enters the fracture at the gas oil contact. As this behavior
is not modeled in conventional transfer function and also not in the RCM, this could lead to an
overestimation of the oil recovery from matrix blocks within a single simulation cell. It should
be noted that in the applied Warren-Root approach, all matrix blocks within a cell have the same
fracture boundary condition. Also in strict dual-porosity formulation, flow between neighboring
matrix cells is not allowed.



Chapter 7

Full Field Application

In this chapter the applicability of the herein presented RCM on a realistic full field model of a
NFR is demonstrated. The influence of the RC scaling as well as a comparison between the
RCM and a conventional TF matrix-fracture mass transfer model are presented. A realistic
comparison of the transfer approaches can be done by operating the field model for a given
production scenario and monitoring the phase contact movement within the reservoir and
thereby checking the feasibility of the scenario. If all transfer models are applicable, they should
produce the same phase contact movement for a specific production plan. If this is not the case,
choosing a non-accurate transfer model would result in a non-optimized development plan.

The reservoir model, which was modified in some respects, is derived from a full field study
that included a history match using a classical transfer function for the matrix-fracture mass
transfer. This synthetic model still shows the same characteristics as the original one and is
therefore suitable for demonstration of the RCM. The same model was also used by Brand,
Mittermeir and Heinemann (2017) for the demonstration of a RC workflow, which utilizes a
RCM without the herein presented scaling options.

The concept is to utilize the history matched real field case and treating it as a green field, where
only the structure, the static reservoir parameters and the initial dynamic data are kept from
original model. The real oil production rate is modified and taken as a target oil rate for the
production scenario. This specific production plan is calculated using the before mentioned
different matrix-fracture transfer models. The impact of the transfer models on the feasibility of
the production scenario is then analyzed. This way it can be determined if all transfer
approaches are equally suited for prediction or not.

7.1 Reservoir Model

The reservoir is a NFR, modeled as a dual porosity-dual permeability one. The structure of the
reservoir and the position of the 44 introduced wells can be seen in Figure 7.1. The initial OWC
is 945 m SS in average. The distance between this and the crest is 455 m.
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The average permeability and porosity are listed in Table 7.1. The matrix porosity and
permeability were modeled by stochastic simulation. The average permeability in lateral and
vertical direction is equal but the variances of the permeability distributions are not. The
minimum vertical permeability is 0.0 mD, whereas the minimum lateral permeability is 1 mD.
A uniform facture porosity (¢=0.0045) and permeability (k;,=750 mD, k,=100 mD) was

assumed over the entire reservoir.

Table 7.1: Average permeability and porosity for matrix and fracture

Unit Matrix Fracture
(geostatistical distribution)| (uniform distribution)
Average lateral permeability | mD 2.23 750
Average vertical permeability| mD 1.92 100
Average Porosity - 0.17 0.0045

Depth [m]
—1300
—1200
—1100

I —1000
—900

800
700
600
500

Figure 7.1: Top depth of the reservoir with proposed well locations

7.1.1 The Grid

The model has a refined grid to 100x100 m in x- and y-directions in the region where the wells
are located. The resulting grid model is shown in Figure 7.2. The total number of grid cells is
140 x 167 x 14 = 327,320, from which 201,740 are active. The cell parameters resulted from
upscaling of a geocellular model.
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Figure 7.2: Simulation grid

7.1.2 PVT and SCAL Data

The reservoir is modeled with black-oil fluid description. PVT data set no.2, which was shown
and described in Section 4.1 is used because of the similarity to the original PVT data of the full
field model. The SCAL data set no. 1 of Section 6.2 is used for the matrix. This is data of an oil
wet rock. The fracture is modeled with straight line relative permeability curves and zero

capillary pressure. The model was initialized with drainage, the depletion with the imbibition
capillary pressure function.

7.1.3 Initialization

The grid model was initialized assuming capillary-gravitational equilibrium. The water
saturation in the matrix cells resulted from the drainage capillary function. Complete phase

separation was assumed in the fracture, which means that above the OWC §,,,=0 and below that
SOi =0.
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7.1.4 Boundaries

The outer boundary is built by 4 segments, two in the North and two in the South, as shown in
Figure 7.3.
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Figure 7.3: Model boundary definition

Fetkovich aquifer models with the following values are used for the parameters maximum
encroachable water (/,,) and aquifer productivity index J,:

. BI: W, =7.06602E+07
. B2: W, =8.07545E+07
. B3: W, =7.06602E+07
. B4: W, = 8.07545E+07

rm3], J,, = 24.8 [(rm3/d)/bar
rm3], J,, = 24.8 [(rm3/d)/bar
rm3], J,, = 24.8 [(rm3/d)/bar
rm3], J,, = 24.8 [(rm3/d)/bar

— e d e

The parameters have been determined using the Target Pressure Method (TPM), which was
already introduced by Pichelbauer (2003) and improved by Mittermeir, Pichelbauer and
Heinemann (2004), based desired target pressures. The procedure of how to determine target
pressure for the TPM is not be further discussed here, but could be found in the before
mentioned publications or in Mittermeir et al. (2016).

7.1.5 Wells

44 wells are introduced into the reservoir and a target oil rate is assigned to them. The target
reservoir oil production rate can be seen in Figure 7.4. It should be noted, that this is not the real
field case oil production rate, but was modified. The distribution of the overall oil production to
the wells is done according to the real field case. As more and more wells are drilled, the peak
oil production is desired to occur approximately 18000 days after production start.
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The location of the wells can be seen in Figure 7.1. When a GOR of 200 sm3/sm3 is reached,
the worst offending perforation is squeezed. This is done to avoid and undesirable high gas
production. The bottom hole flowing pressure is calculated using the Dupuit equation.
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Figure 7.4: Target oil production rate

7.2 Matrix-Fracture Mass Transfer

To show the effect of the increment and endpoint scaling factors, which are described in Section
5.4, all setups are calculated using the RCM with

a.) Eg max and increment scaling: RC (a)
b.) no scaling: RC (b)

Additionally, the Kazemi et al. (1976) transfer function (TF) with the Gilman and Kazemi
(1988) gravity drainage model is used for comparing it with the RCM results.

7.3 Results and Discussion

As shown in Figure 7.5 (left), the target field oil production rate cannot be achieved for the case
RC (a), for the other two variants it is possible. When scaling of the RC is considered, not
enough oil is available at the planned open perforations. This means, that to fulfill the
production scenario, wells and/or perforations have to be moved or added. When the pressure
dependence is neglected for the RCM, this issue would not be recognized. Similarly, also the
TF shows not issue with achieving the target oil production rate.

The average HC-weighted reservoir pressure (Figure 7.5 right), is very similar for all
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calculation options. This is not surprising, as the same aquifer model is used for all three cases
and the overall cumulative produced reservoir volume differs only slightly.

7000 180 +
H - Target F E —RC (a)
56000 | —RC @) 2170 \ —RC (b) []
& H —RC (b) 2160 £ —Conv | |
£ 5000 4 _cony 2 g
24000 + £150 %
S g : 140 £
< 3000 + — - N\
2 g Z130 £
& 2000 £ ¥ 210 £ N~
= E o & E ~N
C 1000+ @110 £
S E :
0 100 F——mf g e
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Time (days) Time (days)

Figure 7.5: Oil production rate (left) and average reservoir pressure (right)

The field water production rate (Figure 7.6 left) exhibits an earlier massive increase for RC (a)
compared to the other two scenarios. Starting approximately at day 25000 the water production
rate is then lower for RC (a).

Naturally, the field water cut (Figure 7.6 right) shows a similar behavior as the water production

rate. However, because the oil production rate is lower for setup RC (a), the water cut is higher
relative to the other setups.
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Figure 7.6: Water production rate (left) and water cut (right)

The field gas production rate (Figure 7.7 left) is similar for all setups, with the lowest gas
production in RC (a). This is due to the oil production being lower and therefore the produced
solution gas is less. This can be seen in Figure 7.7 (right), where the GOR is very similar for all
setups. Gas breakthrough happens slightly earlier for RC (a), followed by RC (b). The TF
predicts the latest gas breakthroughs at the wells. This causes the worst offending perforation to
be squeezed at different times for all cases. At the end the GOR is constant, since no free gas is
produced anymore and the solution gas ratio remains constant due to the constant pressure.
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Figure 7.7: Gas production rate (left) and GOR (right)

The different results for the oil, gas and water production can be explained by the oil-water
contact (OWC) (Figure 7.8 left) and oil-gas contact (OGC) (Figure 7.8 right) movement.

The OWC movement can be divided into four phases. The first phase lasts until day 8000 and
for all models the contact movement is nearly identical. This can be explained by spontaneous
imbibition and a dominance of the capillary driving force. The second phase then lasts roughly
until day 18000, where a peak in the OWC can be observed. During this period for RC (a) the
contact is advancing the fastest and for the TF the slowest. In this period already some matrix
blocks are already nearly oil depleted and the balance between gravitational and capillary forces
is important. This balance is best captured with the RCM and the speed of recovery and the
ultimate recovery is also adjusted for RC (a). The TF overpredicts the oil recovery of the matrix
blocks under water displacement. Phase three then lasts until day 24000, where the constant
production ends. During this phase oil resaturation of previously water flooded zones occurs.
RC (a) shows the strongest oil resaturation. This is due to the fact that for RC (a) more matrix
blocks are already surrounded by water, due to the higher OWC. Therefore, many matrix cells
transfer oil to the fracture continuum and cause a fast receding OWC. The TF exhibits no oil
resaturation, as the phase contact remains constant is this period. This is because in the
preceding phases the matrix recovery was overestimated. The fourth and last period shows a
relatively parallel movement of the OWC for all transfer models. RC (a) again shows the
steepest increase of the OWC in the beginning of the phase, as already previously water flooded
zones are flooded again.

The OGC movement shows that both RC (b) and the TF overestimate the speed of oil recovery
from the matrix through gas flooding. For both of these cases the OGC advances slower than
for RC (a). This shows that for gasdrive, the scaling of the RC has a significant influence on the
results.
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Figure 7.8: OWC (left) and GOC (right) movement



Chapter 8

Conclusion

The objective of this dissertation was the development of a generalized RCM for modeling the
matrix-fracture mass transfer of naturally fractured petroleum reservoirs. For this also an
assessment of the applicability of currently available methods based on TF was required.
Therefore, in the following paragraphs the conclusions are split into the assessment of the
available transfer functions, the verification of the herein presented RCM and the possibility of
implementing this new method into a reservoir simulator and applying it to a full field model.

8.1

Applicability of available transfer functions

Extensive literature review showed that no transfer equation is experimentally
validated on a full scale matrix block, considering all potential drive mechanisms.
Thus, as utilized in this work, fine grid SMB calculation is the best option for testing
transfer models.

Based on numerous numerical SMB calculations, it can be concluded that the KGE
(1992) shape factor definition is applicable for single-phase expansion and solution
gas drive as long as the matrix permeability is not extremely low. For permeabilities <
106 D the duration of the transient period becomes so long that it cannot be neglected.
For higher permeabilities it can be seen that the transient period is very short and
almost immediately a pseudo-steady state pressure regime is present, which is a
requirement for using a constant shape factor.

Generally, the transfer function with its constant shape factor is not applicable. It
varies with time and for different recovery processes.

The Reiss, Bossie-Codreanu and Lefebvre Du Prey (1973) approach is also shown to
not be generally applicable. It may be deployed when the depletion of matrix blocks is
strongly capillary dominated and other drive mechanisms or oil resaturation can be
neglected. By matching the exponential function to early time behavior the later time
cannot be reasonably described and vice versa. In the case of single phase expansion
followed by solution gas drive neither an early nor late time match could be achieved,
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8.2

8.3

therefore the exponential function cannot be used at all for this drive mechanisms.

Verification of the Recovery Curve Method

The investigations on the dual porosity column model prove that the Recovery Curve
Method (RCM), based on the concept of Heinemann (2004), gives more accurate
results than the transfer function by Kazemi et al. (1976) using the Gilman and
Kazemi (1988) gravity drainage model.

The RCM is applicable to waterdrive and gasdrive for oil-wet and water-wet rock
data. This was shown by the experiments using two types of rock data with different
wettability. The error in the RF estimation when using the TF is strongly dependent
on the rock-data used, the RCM is equally suitable for both used rock data sets.

The most accurate results are gained by using both scaling of the increment, which
was already shown by Gharsalla (2015) and Heinemann and Mittermeir (2016), and
scaling of the estimated ultimate recovery factor.

Oil resaturation curves can be used to model the re-imbibition of oil after waterdrive
or gasdrive, as shown in setups 1, 2 and 5.

Significant errors in the estimation of the ultimate recovery factor can occur
especially for oil-wet rock data, where the balance between gravitational and capillary
forces is strongly influenced by the non-uniformity of the saturation distribution
within matrix blocks.

The average pressure within a matrix block can be slightly lower than the one of the
surrounding fracture. The difference between the pressures is exactly the capillary
pressure for a given matrix saturation.

Applicability to Full Field Models

The herein presented RCM is proven to be applicable on a full scale reservoir model.

Scaling of the input RCs has a strong influence on the results for the calculated full
field case. Optimizing of a production plan without considering the scaling of the RCs
or even using a transfer equation would lead to a non-optimized production plan.

Optimizing a Field Development Plan without utilizing a correct matrix-fracture mass
transfer model can lead to unexpected water or gas breakthroughs at wells, potentially
under- or overdimensioning well- and surface production equipment.
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Chapter 10

Nomenclature and Abbreviations

Symbols

A - area, [m?]

B - formation volume factor, [-]

B, -  matrix-fracture mass transfer from recovery curve, [kmol/day]
d - distance, [m]

D - specific mole density, [kmol/m?]
Ep -  recovery efficiency/factor, [-]

k - permeability, [mD]

L - length, [m]

m - gas cap factor, [-]

n - unit normal vector, [-]

N - original oil in place, [sm?]

N - number of fracture sets, [-]

Np - cumulative oil production, [sm?]

OOIP -  Original Oil In Place, [kmol]]

P. - capillary pressure, [bar]

P, - gravitational head pressure, [bar]

p - pressure, [bar]

q - flow rate, [m*/day]

qg’f - matrix fracture mass transfer term, [kg/s/m?]
qemy -  matrix fracture mass transfer for component ¢, [m*/s]
Ry - solution gas-oil ratio, [sm?*/sm?]

S - phase saturation, [-]

t - time [days]

i - filtration velocity, [m/day]

V - volume, [m?]

W, - cumulative water encroachment, [sm?]

Wp - cumulative water production, [sm?]

Xpc -  mole fraction of component ¢ in phase p, [-]
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Greek Symbols

o - recovery curve scaling factor, [-]

p-  time-scaling factor, [-]

Smf - matrix-fracture transmissivity, [m?]

A - correlation factor, [-]

A - mobility, [1/cp]

w - viscosity, [cp]

p - density, [kg/m?]

c - shape factor, [1/m2]

¢ —  porosity, [-]

) - potential, [bar]

8mf - matrix-fracture transmissivity, [m?]

Tof - matrix-fracture transmissibility, [m?]
Subscripts

a - absolute

adj -  adjusted

b - bubblepoint/ reference condition for recovery curve

c - component

eff -  effective

f - fracture

g - gas

h - horizontal

i - initial conditions

k - grid cell index no.

m - matrix

max -  maximum/ultimate

0 - oil

p - phase

r - relative

t - total

v - virtual

v - vertical

w - water

x,y,z -  coordinate directions
Superscripts

fm - fracture-to-matrix (direction)

g - gasrecovery curve

mf -  matrix-to-fracture (direction)

n - old time level

ntl - new time level

0 - oil resaturation curve

p - phase of recovery curve
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]/' -

Abbreviations

DFM -
DFN -
DCM -
EDFM-
GOC -
GOR -
KGE -
MB -
MINC -
NFR -
OOIP -
OowC -
PVT -
RC -
RCM -
RF -
SCAL -
SCM -
SF -
SMB -
TF -

residual
water recovery curve

Discrete Fractured Models
Discrete Fracture Network
Dual Continuum Modeling
Embedded Discrete Fracture Modeling
Gas Oil Contact

Gas Oil Ratio

Kazemi, Gilman and Elsharkawy
Material Balance

Multiple Interacting Continua
Naturally Fractured Reservoir
Original Oil In Place

Oil Water Contact
Pressure-Volume-Temperature
Recovery Curve

Recovery Curve Method
Recovery Factor

Special Core Analysis

Single Continuum Model
Shape Factor

Single Matrix Block

Transfer Function



