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Abstract

This thesis presents a new solution to photometric stereo and its application to the au-
tomatic inspection of metallic surfaces. Four images are acquired with one camera and
four light sources with different positions. This enables the reduction or elimination of
undesirable effects associated with specular reflection. Three cases are considered: without
specular reflection, the use of pseudo-inverse in obtaining a least squares approximation
for the surface normal vectors; in the case where one image pixel is subject to specular re-
flection then the three remaining pixels are used, enabling complete reconstruction; when
more than one pixel is affected then the normal vector is assumed to be vertical.

Surface reconstruction from the surface normal vectors is performed using a new tech-
nique based on global discrete polynomial moments. This is a new general solution to sur-
face reconstruction from gradient fields. The equation needing to be solved is a partitioned
Lyapunov equation - commonly encountered in control engineering. This reconstruction
method is numerically more efficient than past solutions and delivers better reconstruction
performance.

This solution enables the reconstruction of the surface geometry independent of the
surface albedo. This is important for surface inspection.
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Kurzfassung

Diese Arbeit präsentiert einen neuen Lösungsansatz im Bereich Photometric Stereo (PS)
sowie dessen Anwendung in Bezug auf die Möglichkeiten der automatischen Oberflächenin-
spektion von Metallen. Vier Bilder werden durch eine einzige Kamera und vier unter-
schiedlich positionierte Lichtquellen aufgenommen. Dadurch sollen unerwünschte Neben-
effekte der spekularen Reflexion reduziert bzw. eliminiert werden. Drei Fälle werden betra-
chtet: 1) ohne spekulare Reflexion durch die Verwendung der Pseudoinversen mit der eine
,,Methode der kleinsten Quadrate” die Oberflächen–Normalvektoren zu erhalten, 2) der
Fall in dem ein Bildpixel Gegenstand spekularer Reflexion wird und die drei verbleibenden
Pixel verwendet werden, um eine vollständige Rekonstruktion zu erhalten und 3) wenn
mehr als ein Pixel betroffen unter der Annahme, dass sich der Normalvektor vertikal
verhält.

Die Oberflächenrekonstruktion mittels Oberflächen–Normalvektoren wird durch den
Einsatz einer neuen Methode gezeigt, welche auf global-diskreten polynominalen Mo-
menten basiert. Es handelt sich hierbei um eine neue, generelle Lösung zur Oberflächenrek-
onstruktion ausgehend von Gradientenfeldern, die aufzulösende Gleichung ist eine geteilte
Lyapunov Gleichung, wie sie gewöhnlicherweise im Bereich der Regelungstechnik Anwen-
dung findet. Die in diesem Ansatz gewählte Rekonstruktionsmethode ist numerisch ef-
fizienter als bisherige Lösungsvorschläge und zeigt bessere Rekonstruktionsergebnisse.

Eine solche Vorgehensweise erlaubt die Rekonstruktion der Oberflächengeometrie un-
abhängig von der jeweiligen Oberflächenalbedo, ein für die Oberflächeninspektion nicht
zu hoch einschätzbarer Faktor.
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Chapter 1

Introduction

Quality control has become a vital part of industrial production process. In the steel
industry, for example, different types of inspection techniques and methods are often
employed to inspect intermediary and finished products during and after production.
Surface inspection methods are many and varied, what is finally adopted is based on a
number of factors. Some of this methods form a group of inspection method known as
non-destructive testing technique (NDT). A summary of NDT methods can be found in
[37].

The use of computer vision in the task of inspecting material surfaces automatically
has been widely studied and documented as shown in [2, 9] and [36]. However, a lot still
needs to be done as suggested by [36] to improve the quality and suitability of this branch
of science for inspection . There are obvious advantages as well as disadvantages of this
method over others, these are summarised below as:

Advantages

1. Flexibility:

A potentially greater class of objects can be inspected without any contact to
the objects. For example touching a highly polished surface with a probe may
not be acceptable.

2. Speed:

A large number of measurements can be made in a given time without any
contact to the object.

3. Reliability:

Any inferences made about surface in particular should be more reliable due
to the large number of measurements made. On the other hand, inspection
done by coordinate measuring machines typically uses four or five readings to
test a plane or cylindrical hole [36]. Three points define a plane, in which case
there is only one reading serving to check the ”goodness of the fit”. A feature

1



1.1. WHAT IS UNIQUE IN THIS THESIS 2

sampled over an invariant Cartesian grid of say 1mm×1mm would lead to a
large number of readings. Least square approximation technique can then be
used to get the best fit to the surface.

4. Automatic Registration:

A vision system can determine the position and orientation of the object before
inspection takes place, eliminating the need to place the object in a known
position or to register it manually. Whilst coordinate measuring machines
(CMMs) could achieve this time required to gather enough data to be able to
accurately recognize an arbitrary pose would be considerably larger.

5. Increased Productivity:

Computer vision systems enable small batch jobs to be inspected efficiently.
This cannot be done economically with some other methods. If the system is
a real-time one information about any defects detected could be passed back
to the manufacturing stage so that remedies could be effected.

6. Tireless:

The system once programmed can perform the same task repeatedly and to
the same accuracy without been tired.

Disadvantages

1. Lack of Access:

A visual inspection system can only check visible features. Consequently any
feature which cannot be seen from any position of the camera(s) cannot be
inspected by this method. Such features are defects imbedded within the mate-
rials and are referred as subsurface defects. Also, it may be difficult to reliably
inspect features which can not be completely imaged in its totality by the
camera from a single viewpoint.

2. Resolution:

The resolution of the imaging device limits the size of flaws it can detect. Thus
flaws smaller than its resolution go undetected.

1.1 What is Unique in this Thesis

The idea of photometric stereo is not new and its application to surface inspection has
been used before [2] and [10]. What is new, however is the use of the number of light source
in solving the problem of specularity without need to go into more laborious computations
such as thresholding and other probabilistic measures in eliminating specularity in image
pixels as suggested in many works such as [10] and [11] just to mention but two.
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It is one thing to perform photometric stereo and another to reconstruct the inspected
surface. A new method of surface reconstruction using discrete polynomial moments was
developed and tested in the course of this work. A number of methods are available for
surface reconstruction using moments and these are summarized in [34] together with their
advantages and limitations. In their work Bang-Hwan and Rae-Hong [38] used the Leg-
endre polynomials derived from gradients obtained from multi-image photometric stereo
for surface reconstruction. However, they only succeeded in reconstruction small patches
of the image at a time. This was as a result of the error encountered in generating their
polynomial basis. This error limited the degree and size of the polynomial that could be
used. However, we believe that the new method proposed and used in this thesis is better
than any previous work because the new method can reconstruct any surface of any size.

1.2 Organisation of the Thesis

This thesis is organized as follows:

Chapter two: This chapter is divided into two parts: in the first part a brief review of
the mathematical foundation of projective geometry as it pertains to image formation
and transformation is given. The second part introduces the various reflection models and
explains the model chosen for this work. This chapter enables us understand the processes
involved in the theme of this work.

Chapter three: The method of photometric stereo in its original form is presented in
this chapter. Problems associated with the use of this technique for metallic surface in-
spection are also presented. The second part of this chapter is a discussion on two types of
moments and the polynomial from which they are generated. Specifically, non-orthogonal
and orthogonal moments are presented.

Chapter four: This chapter describes the experiment carried out in acquiring the images
using four white light source. The new surface reconstruction algorithm is also presented
and their application to the acquired images is shown. The results are also shown.

Chapter five: The results of the experiment is discussed and conclusions are drawn.

Chapter six: It is our belief that there is still room for continuation as far as this work
is concerned. Areas where this could be done are highlighted in this chapter.

Appendix MATLAB R© source code.



Chapter 2

Mathematical And Geometrical
Backgrounds

2.1 Introduction

The word geometry is derived from the Greek word geometria which means “measurement
of the earth” [1]. In the realm of image processing four different types of geometries are
encountered. These are: Euclidean; similarity; affine; and projective geometries.

Euclidean geometry is familiar to us because it describes our three-dimensional world so
well. In Euclidean geometry, the sides of objects have lengths, intersecting lines determine
angles between them, and two lines are said to be parallel if they lie in the same plane and
never meet. Moreover, these properties do not change when the Euclidean transformations
(translation and rotation) are applied. When the imaging process of a camera is considered
it is seen that Euclidean transformation is insufficient in describing the process because
lengths and angles are no longer preserved and parallel lines may intersect.

The relationships between the various types of geometries are shown in Table 2.1 below.

2.2 Projective Geometry

Projective geometry applies to a variety of disciplines. This section gives a brief introduc-
tion to projective geometry and its application to computer vision. Projective geometry
in two dimension is the geometry of the projective transformations of a plane. These
transformations model geometric distortions which arise when a plane is imaged by a
perspective camera. The most important aspect of projective geometry is the introduc-
tion of homogeneous coordinates which represents projective transformation as matrix
multiplication [4]. This compact form allows many of the significant aspects of projective
transformations and projective geometry to be demonstrated using simple matrix algebra

4



2.2. PROJECTIVE GEOMETRY 5

Euclidean Similarity Affine Projective
Transformations

rotation X X X X
translation X X X X
uniform scalling X X X
non-uniform scalling X X
shear X X
perspective projection X
composition of projection X

Invariants
length X
angle X X
ratio of length X X
parallelism X X X
incidence X X X X
cross-ratio X X X X

Table 2.1: The four different geometries, the transformations allowed in each, and the measures that
remain invariant under those transformations [1].

computations. In Euclidean coordinates, many of these derivations become difficult, if not
impossible.

Another major contribution of projective geometry to computer vision according to
[4] is the formulation of invariants under projective transformation. Under perspective
imaging certain geometric properties are preserved, such as collinearity (a straight line
is imaged as a straight line), whilst others are not, for example parallel lines are not
imaged as parallel lines in general. Projective geometry models this imaging and also
provides a mathematical representation appropriate for computations. A wide variety of
these invariants are available for sets of points and lines as well as higher order algebraic
curves.

2.2.1 Homogeneous Coordinates

As it is well known a point in the plane R
2 may be represented as ( x,y )in the Euclidean

plane R
2 [18]. To represent the same point in the projective plane, we simply add a third

coordinate of 1 at the end:( x,y,1 )1. Overall scaling is unimportant, so the point (x,y,1 )
is the same as (αx, αy, α) for any non-zero (α). In other words,

(X, Y, W ) = (αX, αY, αW ) (2.1)

for any (α �= 0). (Thus the point (0,0,0) is disallowed). Because scaling is unimportant,
the coordinates (X,Y,W) are called the homogeneous coordinates of the point. In vector
notation (X,Y,W) is written [X,Y,W ]T

1In general, a point in an n dimensional Euclidean space is represented as a point in an (n+1 )
dimensional projective space



2.2. PROJECTIVE GEOMETRY 6

In other to represent a line in the projective plane, we begin with the standard Euclidean
formula of a line

(ax + by + c) = 0, (2.2)

and use the fact that the equation is unaffected by scaling to arrive at the following

(aX + bY + cW ) = 0, (2.3)

uTp = pTu = 0, (2.4)

where u = [a, b, c]T is the line and p = [X,Y,W ]T is a point on the line. We see that
points and lines have the same interpretation in the projective space.

To transform a point in the projective plane back into the Euclidean coordinates, we
simply divide by the third coordinate: (x,y) = (X/W,Y/W ). We immediately see that
the projective plane contains more points than the Euclidean plane, that is; points whose
third coordinate is zero. These points are called ideal points or points at infinity. There is
a separate ideal point associated with each direction in the plane: for example, the points
(1,0,0) and (0,1,0)are associated with horizontal and vertical directions, respectively. All
the ideal points lie on a line, called the ideal line or line at infinity, which is represented
as (0,0,1).

2.2.2 Image Formation

Consider the figure shown in Fig.2.1. Let p denotes a scene point with coordinates (X,Y,Z)
and p′ denotes its image with coordinates (x, y, z). Since the three points p,o,p′ are
collinear, then �op′ = λ�op, for some number λ. This gives the perspective projection equa-
tions, to which we are familiar:

x = −f
X

Z
(2.5)

y = −f
Y

Z
(2.6)

where the point (X,Y,Z ) in the world is projected to the point (x,y) on the image plane.
Equations 2.5 and 2.6 are inherently nonlinear. Converting to homogeneous coordinates,
however, makes them linear, that is

p′ = Tpp (2.7)

where p′ = [x, y, w]T and p = [X, Y, W ]T and the perspective projection matrix Tp is given
by:

Tp =

⎡
⎣ −f 0 0 0

0 −f 0 0
0 0 1 0

⎤
⎦ (2.8)

The collineation of R
2 is defined as the mapping from the plane to itself such that the

collinearity of any set of points is preserved.
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Figure 2.1: The perspective projection of a point onto a plane.

In applying projective geometry to the imaging process, it is customary [18] to model
the world as a three dimensional projective space, equal to R

3 along with points at in-
finity. This is similar to modelling of a two-dimensional projective transformation of the
image in a plane R

2. Central projection is simply a map from R
3 to R

2. Consider points
in R

3 wrtitten in homogeneous coodinates (X,Y, Z,W )T . Let the centre of projection be
(0, 0, 0, 1)T , then it is seen that for all points (X, Y, Z, W )T ; when X, Y and Z are fixed
but varying W this forms a single ray and passing through the point, the centre of pro-
jection, and hence all map to the same point. Thus, the final coordiante of (X,Y, Z, W )
is irrelevant to where the point is imaged. The image point is the point in R

2 with co-
ordinate (x, y, z)T . The mapping may be represented by a mapping of 3D homogeneous
coordinates, represented by 3 × 4 matrix T with the block structure T = [I3×3|03], where
I3×3 is the 3 × 3 identity matrix and 03 is a zero 3-vector. Generally image projection is
represented by an arbitrary 3×4 matrix of rank 3 acting on the homogeneous coordinates
of the point in R

3 mapping to the image point in R
2. The matrix T is called the camera

matrix.

Following from the above, the action of a projective camera on a point in space may be
expressed in terms of a linear mapping of homogeneous coordinates as:

⎛
⎝ x

y
z

⎞
⎠ = T3×4

⎛
⎜⎜⎝

X
Y
Z
W

⎞
⎟⎟⎠ (2.9)

Furthermore, if all the points lie on a plane (this plane can be choosen as the plane
Z = 0) this reduces the linear mapping to⎛

⎝ x
y
z

⎞
⎠ = H3×3

⎛
⎝ X

Y
W

⎞
⎠ (2.10)
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which is a projective transformation.

Referring to Fig.2.1, each point p is transformed into a point p′ :

p = Tp′ (2.11)

The entire image formation process includes perspective projection,along with matrices
for external and internal calibration:

P = TiTpTe =

⎡
⎣ ku kv u0

0 kv v0

0 0 1

⎤
⎦
⎡
⎣ −f 0 0

0 −f 0
0 0 1

⎤
⎦ [ R t

]

=

⎡
⎣ αu −αucotθ u0

0 av/sinθ v0

0 0 1

⎤
⎦ [ R t

]
= AD (2.12)

where Ti, Te are internal and external calibration matrices respectively and αu and αv

are the scale factors of the image plane ( in unit of the focal plane f ), θ is the skew (θ =
π
2

for most real cameras). The point ( u0 and v0) is the principal point, R is the 3 × 3
rotation matrix and t is the 3 × 1 translation vector. The matrix A contains the internal
parameters and the perspective projection, while D contains the external parameters.

It is sometimes convenient to decompose the 3 × 4 projection matrix P into a 3 × 3
matrix P and a 3 × 1 matrix p

P = [P p] (2.13)

so that
P = AR and p = At (2.14)

2.2.3 Orthographic Projection

The figure shown in Fig 4.1 depicts the central projection of points in 3D onto an image
plane. The essential geometric properties of this projection can be modelled by the map-
ping of 3D projective space onto a projective plane , which conveniently can be represented
by a linear homogeneous transformation.

Just as discussed in Section 2.2.2 for 2D transformation, a general transformation in
3D onto a plane is defined by a 4 × 4 matrix multiplication:⎡

⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

⎤
⎥⎥⎦
⎡
⎢⎢⎣

X1

X2

X3

X4

⎤
⎥⎥⎦ . (2.15)
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Figure 2.2: Perspective camera geometry

A projection onto space of one lower dimension can be achieved by eliminating one of
the coordinates of the transformed projective space. If, for example, the plane defined
by x4 = 0 is chosen, that means all points on the plane can be represented by the
homogeneous coordinate vector, (x1, x2, x3)

T . The image projection is then given by :

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

⎤
⎦
⎡
⎢⎢⎣

X1

X2

X3

X4

⎤
⎥⎥⎦ . (2.16)

or x = TX.

The Euclidean projection of a point P in the world coordinate frame to a point p in
the camera frame is given by :

pcam = R(Pworld − O) (2.17)

where the matrix R given by

R =

⎡
⎣ R1

R2

R3

⎤
⎦ =

⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ (2.18)

is the rotation matrix from the world coordinate frame to the camera coordinate frame.
O is the translation vector from the the world origin to the camera origin. The origin of
the camera is taken to be the centre of projection. The transformation is carried out by
applying translation O followed by rotation R.
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These transformation can be applied by a single homogeneous 4 × 4 transformation
matrix:

TE =

⎡
⎢⎢⎣

R1 −(R1.O)
R2 −(R2.O)
R3 −(R3.O)

0 0 0 1

⎤
⎥⎥⎦ (2.19)

Next, the transformed point is projected into the image plane by the matrix:

Tproj =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1/f 0

⎤
⎦ (2.20)

The composite transformation matrix T = TprojTE

T =

⎡
⎣ R1 −(R1.O)

R2 −(R2.O)
R3/f −(R3.O)/f

⎤
⎦ (2.21)

As opposed to perspective transformation orthographic projection results from the limit
where the rays from the centre of projection are parallel. This limit can be represented
by letting the focal length approach infinity while keeping the scale factor at unity. The
form of the perspective transformation matrix becomes,

Torth =

⎡
⎢⎢⎣

r11 r12 r13 −(R1.O)
r11 r12 r13 −(R2.O)
r11 r12 r13 −(R3.O)
0 0 0 1

⎤
⎥⎥⎦ (2.22)

The main difference between orthographic projection and weak prospective is that dis-
tances along directions parallel to the image plane are preserved under orthography. For
this reason, orthographic projections are used extensively to define 3D dimensions of
object [4]

2.2.4 Mappings between planes

The general projective transformation matrix can be used to specify the mapping between
two planes in space. Here the points in space are assumed to lie on a plane. Without loss
of generality, it can be assumed that the first plane corresponds to the X,Y plane of the
world coordinate system and the second plane is the image plane. That is⎡

⎣ x1

x2

x3

⎤
⎦ =

⎡
⎢⎢⎣

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

⎤
⎥⎥⎦
⎡
⎢⎢⎣

X
Y
0
1

⎤
⎥⎥⎦ . (2.23)

which can be rewritten as⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ t11 t12 t14

t21 t22 t24

t31 t32 t34

⎤
⎦
⎡
⎣ X

Y
1

⎤
⎦ . (2.24)
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This shows that the general projective mapping between planes in space is specified by a

Figure 2.3: The perspective mapping between two planes.
Note that the line u0 is fixed under the perspectivity.

3 × 3 homogeneous transformation. The elements of the 3 × 3 matrix corresponds to the
first, second and fourth columns of the original matrix T.

The perspective mapping between two planes is a central projection from a single
point in space where corresponding points in the planes are collinear with the centre of
projection. In the case of perspective mapping it is observed that the first two columns of
the 3×3 matrix must be orthogonal and have the same norm in a coordinate frame where
f = 1. These perspective transformation could be called perspectivities [4]. The geometry
of perspective transformation is shown in Fig.2.3. The line of intersection between the
two planes is fixed under perpectivity. Perspective mapping of the plane do not form
a group since the composition of the two perspectivities is not in general a perspective
transformation, this means that the special form of the perspective matrix is not in general
preserved by the product of two such matrices.

2.3 Illumination Geometry

In this section the definition of illumination angles relating the light source to the viewed
object is introduced. These angles and how they are positioned in space are shown in Fig
2.6 below. It is assumed that the test surface mounted in the (x, y) plane is perpendicular
to the camera axis (the z-axis). Orthogonal camera model, briefly discussed in Section
2.2.3, is also assumed. Also assumed is that the test surface is illuminated by a point
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light source located at infinity. This means that the incident vector field is uniform in
magnitude and direction over the test area.

For the purpose of this thesis the illumination angles are defined as follows:
i. τ is the tilt angle, that is the angle that the projection of the illuminant vector

incident onto the test surface plane makes with an axis in that plane.

ii. σ the slant angle is the angle that the illuminant vector makes with a normal
to the test surface.

Figure 2.4: Illumination geometry showing the tilt angle τ and the slant angle σ.

2.3.1 Diffuse and Specular Reflections

When light strikes a smooth surface such as a mirror or a still body of water the resulting
reflection is highly directional, it is known as specular reflection (Fig.2.5a) and it has a
spectral distribution similar to that of the illuminate. For a normal object this reflections
is only a part of the total reflection.

Another type of reflection, which is obtained from a rough surface is called diffused
reflection. In this type of reflection a collimated beam emerges in all directions (Fig.2.5b).
Diffused reflection may in turn be divided into two parts: directionally diffused and uni-
formly diffused. In the former case the incident light is scattered in all directions, while in
the latter case the light is scattered uniformly over the surface after undergoing multiple
internal reflections. The spectral distribution is modified by the colour of the object.

In practice the reflection process may well be a combination of both diffuse and spec-
ular components. An example of this is a spread reflection (2.5c), which has a dominant
directional component that is partially diffused by surface irregularities.
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Figure 2.5: Various types of reflection. (a) specular, (b) diffuse, (c) spread

2.4 Mathematical Representation of Reflection Mod-

els of Image Formation Process from a Surface

Given a light source, a surface, and an observer, a reflectance model describes the inten-
sity and spectral composition of the reflected light reaching the observer. It, therefore,
describes the manner in which incident light interacts with an object surface. Three things
happen when a ray of light interacts with a solid material: it may be reflected; absorbed; or
transmitted. The manner in which light is reflected from an object surface is dependent
upon various optical properties, together with the surface microstructure of the object
material, and the wavelength, angle of incidence, and polarisation of the incident light [2].

Various optical modelling techniques used for explaining the formation of 2D images
from 3D objects are now presented.

2.4.1 Surface Roughness Model

The manner in which light is reflected by a surface is dependent on the shape characteris-
tics of the surface. To analyse the reflection of incident light, a mathematical model of the
surface will be used to describe what happens when light is reflected. To this effect two
models are reviewed. These are: the height distribution model; and the slope distribution
model [3].

2.4.1.1 Height distribution model

This model expresses the height coordinate of the surface as random function from which
the shape of the surface is determined by the probability distribution of the height coor-
dinates. For this purpose two types of surface are differentiated. A surface is said to be
isotropic if it exhibit the same surface texture in all directions. Conversely a surface whose
texture changes as it is rotated about its normal but with the direction of illumination
unchanged is said to be anisotropic. Consider the figure shown in Fig 2.6. For a surface
which is isotropic the height of a point on the surface is represented by a Gaussian random
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function:

p(s) =
1

σs

√
2π

es2/2σ2
s (2.25)

where σs is rms roughness of the surface [19].

Figure 2.6: surface height distribution model.

For an anisotropic surface the surface roughness is represented as the measure of the
standard deviation of the surface heights denoted by σs (i.e. the root-mean-square rough-
ness) and the average roughness denoted by Rcla (Centre Line Average CLA). Both func-
tions are represented mathematically as shown below.

σs =

√√√√ 1

n

n∑
n=1

[
s(x) − s(x)

]2
(2.26)

Rcla =
1

n

n∑
n=1

|s(x)| (2.27)

s(x) represents the height of a surface at a point x along the profile and s(x) is the
expectation of s(x) and n is the number of pixels. Hence, they provide measures of the
localised surface deviation about a nominal path [3].

2.4.1.2 Slope distribution model

[3] postulated that the scattering of light rays by a surface is dependent on the local slope
of the surface and not the local height of the surface. The slope model, he concluded, is
more suitable for the investigation of the problem of surface reflection. For this purpose,
it is useful to think of a surface as a collection of planar micro-facets. This is shown below
in Fig.2.7. For a surface, which is mathematically smooth and whose facets ε are small
compared to the area L of the surface patch (that is L >> ε), we may use two slope
parameters, prms and qrms, as a measure of roughness. They correspond to the standard
deviation of the surface partial derivatives p and q

prms =

√√√√ 1

n

n∑
n=1

(
∂s(x, y)

∂x
− ∂s(x, y)

∂x

)2

(2.28)
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Figure 2.7: A surface as a collection of planar micro-facets.

qrms =

√√√√1

n

n∑
n=1

(
∂s(x, y)

∂y
− ∂s(x, y)

∂y

)2

(2.29)

where p = ∂s(x,y)
∂x

and q = ∂s(x,y)
∂y

are partial derivatives measured along the x and y axes
respectively. Therefore, prms and qrms can be used to describe surfaces with both isotropic
and directional roughness.

2.5 Reflection Modelling

The figure below Fig 2.9 illustrates the geometry of light reflection at a surface. The
Bidirectional Reflectance Distribution Function (BRDF) is the basis of all reflection
models. It is the general model that relates the energy arriving at a surface from the
direction of the illuminate, to the reflected intensity in the direction of the viewer. It is
defined as the ratio of the total reflected intensity in the direction(θr, φr) to the energy
incident per unit time and per unit area onto the surface from the direction(θi, φi) [20].

The BRDF is material and wavelength (λ) dependent, and with the variables shown in
Fig.2.9 the function is represented as:

Fbdrf (λ, θi, φi, θv, φv) =
dIr(θr, φr; θi, φi)

Ii(θi, φi) cos θidωi

(2.30)

where λ is the wavelength of the incident light, (θi and φi) denotes its direction, and (θv

and φv) describes the direction to the viewer.

Fig 2.8 shows the various components of the reflection model and the angle dωi, which
is known as the incident solid angle. In the following sub-sections two reflection models
are considered: the Phong reflection model; and the Lambertian reflection model.
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Figure 2.8: Components of light reflection model.

Figure 2.9: The geometry of light reflection [3].

2.5.1 The Phong Reflection Model

The most commonly used type of reflection model in computer vision is known as Phong’s
reflection model. It was developed by Bui Tuong Phong [5]. It is a linear combination
of three parts: ambient; specular; and diffuse, see Fig 2.8. The ambient, or constant
component, is a surrogate in the absence of a simple mechanism to model global diffuse
inter-reflection. The specular component is a lobe, which spreads out around the specular
direction and is modelled by using a cosine function raised to a power. This model is given
in terms of unit vectors associated with the geometry of the point under consideration.

In the figure shown below Fig 2.10, L is the light source, N is the surface normal and R
is the reflected light. By Nell’s law the angle θ is constant. Therefore, the Phong’s model
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states that
I(n.Φ) = Iaka + (

∑
lights

Iikd(L.N) + Iiks(R.V )n) (2.31)

where,
I represents the intensity of the surface location under consideration;
Ia is the constant intensity of the ambient light;
Ii is the intensity of the input light;
kd is the coefficient of diffuse reflection for the material;
ks is the coefficient of specular reflection;
n is a shininess constant for this material; which decides how ”evenly” light is

reflected from a shiny spot [21];
N is the local surface normal;
R is the direction a perfectly reflected ray of light (represented as a vector) would

take from the point where the ray strikes the surface;
V is the direction towards the viewer (such as a virtual camera);
φ is the angle between the mirror vector R and the viewing vector V; and

(L.N) and (R.V) and are dot products of the respective vectors.

Figure 2.10: [Phong’s Vectors]Vectors used in the Phong’s reflection model.

In Phong’s model, the light sources are considered as point sources situated at infinity.
Therefore, the angle θ between the incident light and the normal to a planar surface
is constant over the surface. The observer is assumed to be positioned at infinity and
hence the angle φ is constant over a planar surface also. The diffuse and specular terms
are modeled as local components only. Shadows are not considered. The colour of the
specular term is assumed to be that of the light source.

In the this model the diffuse term does not use the direction towards the viewer V ,
as the diffuse term is equal in all directions from the point, including the direction of
the viewer. The specular term, however, is large only when the reflection vector R is
nearly aligned with viewpoint vector V , as measured by the n power of the cosine of the
angle between them, which is the dot product of the normalized direction vectors R and
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V . When n is large, representing an almost mirror-like reflection, the specular reflection
will be very small because the high power of the cosine will go rapidly to zero with any
viewpoint not aligned with the reflection.

Estimating the specular component involves the computation of the reflected vector R
This is computationally expensive [3] and therefore, it is replaced with the computation
of H, a vector half-way between L, and V,. This is called the Blinn’s method. Therefore,
H, is given by

H =
L + V

2
(2.32)

Then the specular term in Phong’s model becomes

Ispecular = Iiks(N.H)n (2.33)

2.5.2 The Lambertian Illumination Model

Let us consider a diffuse surface, which is an optically rough surface, reflecting a portion
of the incident light with radiant intensity uniformly distributed in all directions. A Lam-
bertian surface will look equally bright from any illumination direction [3]. This means
that the reflected intensity is independent of the viewing direction.

However, the intensity does depend on the light source’s orientation relative to the sur-
face. This can be represented mathematically as the dot product of the surface derivative
vector with the illuminant vector. Thus the Lambert’s Law is represented as

I(x, y) = ρλ(N.L) = ρλ
−p cos τ sin σ + cos σ√

p2 + q2 + 1
(2.34)

where i(x,y) is the image intensity;

N =

(
−p√

p2 + q2 + 1
,

−q√
p2 + q2 + 1

,
1√

p2 + q2 + 1

)
(2.35)

where N is the unit vector normal to the surface s(x,y) at the point x,y ;

p = ∂s(x,y)
∂x

and p = ∂s(x,y)
∂y

are surface partial derivatives measured along the x and y

axes respectively; L =( cos τ. sin σ, sin σ. sin τ, cos σ ) is the unit vector towards the light
source; σ and τ are the illuminant vector angles as shown in Fig.2.4.
ρ is surface albedo, a material dependent coefficient;
λ is the strength of the light source,

However, a number of assumptions are needed before this model can be used. These
are highlighted below as:

i. The surface is ideally diffused, which means the entire incident light is equally
re-distributed in all directions, and its reflectance function is uniform.
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ii. The viewer is far away from the surface relative to the size of test surface, so that
orthographic projection in the image system can be assumed.

iii. Light sources are supposed to be at infinity from the surface, such that the light
source energy does not depend on the position of the surface. This means that we
assume that illumination is constant over the whole surface.

iv. For a perfect Lambertian model both self and cast shadows are ignored as
well as inter-reflections.

v. Only incident angle in the range from 0 to 90 degrees are considered. Greater
angles (giving rise to negative N.L ) are blocked by the surface and the reflected
energy is 0. The light is incident on the back of the surface, which means that it
is blocked by the object.

It has to be said that the Lambertian model cannot describe specular reflections, which
occur at places where the direction of direct reflection equals the viewing direction. The
problem of specularity and how it was dealt with is discussed in the next chapter.



Chapter 3

Implementation

3.1 Photometric Stereo

The idea of photometric stereo was first introduced by Robert J. Woodham [6] and since
then it has seen an increased industrial usage for material surface inspection. For example
it was used by Smith [2] to inspect ceramic tiles where he isolated surface albedo and
surface flaws.

The fraction of light reflected by an object surface in a given direction depends upon
the optical properties of the surface material, the surface microstructure, the spatial and
spectral distribution and state of polarisation of the incident illumination. In chapter
two reflectance models were developed to characterise image irradiance with respect to
the illumination environment, viewing angles and material properties. The technique of
photometric stereo uses these reflection models to estimate the surface properties from
the transformation of image intensities arising from illumination change.

In photometric stereo several images of a static scene from the same viewpoint is taken,
while alternating the illumination direction. This means, that a particular pixel in each of
the consecutively acquired images corresponds to the same object point. For any particular
surface location or pixel there exists three degrees of freedom (or unknowns), which are
the surface reflectance factor (albedo) and two degrees of freedom, which specify the
orientation of the surface. Fig.3.1 shows the schematic representation of this technique.

3.2 The Gradient Space

For a lot of surfaces, the fraction of the incident illumination reflected in a given direction
depends only on the surface orientation [6]. Consider the arrangement shown in Fig.3.2.
The reflectance characteristics of the surface can, therefore be represented as a function
φ(i, e, g) of the three angles i,e and g. These angle are known as incident, emergent and
phase angles respectively. The incident angle is the angle between the incident ray and
surface normal, The emergent angle is the angle between the emergent ray and the surface
normal, while the phase angle is the angle between the incident and emergent rays. They

20
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Figure 3.1: A schematic diagram of a 4-light source photometric stereo.

are defined relative to a local surface normal. The function φ(i, e, g) determines the ratio
of surface radiance to irradiance measured per unit surface area, per unit solid angle, in
the direction of the viewer. This function is related to the BDRF defined in chapter two.

Fig 3.3a shows how perspective transformation of a surface is done by an image forming
device. However, if the size of the object viewed is small compared to the viewing distance,
then the perspective projection can be approximated as an orthogonal projection. This is
shown in Fig 3.3b.

Consider an imaging device which performs orthographic projection. To standardise the
imaging geometry, it would be convenient to choose a coordinate system such that the
viewing direction is aligned with the negative z-axis. Let us also assume an appropriate
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Figure 3.2: Incident, emergent and phase angles.

scaling of the image plane such that object point (x, y, z) maps onto the image point (u, v)
where u = x and v = y. One advantage for doing this is that image coordinates (x, y)
and objects coordinate (x, y) can be referred to interchangeably.

If the equation of a plane is given as ax + by +cz + d = 0, then a surface normal
in this plane is (a,b,c). We can extend this to a curved surface by consideration of the
tangent plane at a point on the surface patch. If the equation of a curved surface is given
by

z = f(x, y) (3.1)

then the surface normal is given by the vector[
∂f(x, y)

∂x
,
∂f(x, y)

∂y
,−1

]
(3.2)

If parameters p and p are defined as:

p =
∂f(x, y)

∂x
, and q =

∂f(x, y)

∂y
,

then the surface normal can be written as [p, q,−1]. The quantity (p, q) is called the
gradient of f(x, y) and gradient space is the two dimensional space of all such points
(p, q). Gradient space is a convenient viewer-centred representation of surface orientation.
Parallel planes map into a common point in the gradient space. Planes perpendicular to
the viewing direction map onto the origin of gradient space. Moving away from the origin
in gradient space, the distance from the origin equals the tangent of the emergent angle,
e, between the surface normal and the viewing point.
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Figure 3.3: Characterizing image projections. (a) illustrates perspective projection. (b) For objects
that are small relative to the viewing distance, the image projection can be modelled as orthographic
projection
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3.3 The reflectance map and Image Irradiance Equa-

tion

The surface normal vector relates geometry to image irradiance because it determines
the angles i and e appearing in the surface reflectance function φ(i, e, g) . In this work
orthographic projection is assumed, this means that the viewing direction and hence the
phase angle is constant for all the surface elements.An ideal imaging device produces image
irradiances proportional to the scene radiances. Thus for a fixed light source and geometry,
the ratio of scene radiance to irradiance depends only on the gradient co-ordinates p and
q (i.e. on the surface normal vector ). If we suppose each surface element receives the
same irradiance, then the scene radiance, and hence image intensity, depends only on the
surface normal defined by p and q.

The reflectance map is represented as a function R(p, q). A reflectance map captures
the surface reflectance of an object material for a particular light source, object surface
and viewing geometry [6]. It determines the proportion of light reflected as a function of
p and q. The viewed image intensity is directly proportional to the surface radiance [7].
Setting the proportionality constant to one, the image intensity and reflectance map are
equivalent. This is expressed mathematically as:

I(x, y) = R(p, q) (3.3)

Recall that for two vectors x and y, x.y = ‖x‖‖y‖ cos θ, where θ is the angle between x
and y. Therefore expressions for cos (i), cos (e) and cos (g) can be derive using normalised
dot products of the surface normal vector, n = [p, q,−1], the vector l = [ps, qs,−1], which
points in the direction of the light source, and the vector V = [0, 0,−1], which points in
the direction of the viewer. Thus,

cos(i) =
1 + pps + qqs√

1 + p2 + q2
√

1 + p2
s + q2

s

(3.4)

cos(e) =
1√

1 + p2 + q2
(3.5)

cos(g) =
1√

1 + p2
s + q2

s

(3.6)

Equations 3.4 - 3.6 are used to transform a surface reflectance function φ(i, e, g) into a
reflectance map R(p,q). In the simplest case of a Lambertian surface

I(x, y) = Iaρ cos(i) = Iaρ

(
1 + pps + qqs√

1 + p2 + q2
√

1 + p2
s + q2

s

)
(3.7)

where Iaρ is also known as the reflectance factor or the albedo. This reflectance function
corresponds to the phenomenological model of a perfectly diffuse (lambertian) surface
which appears equally bright from all viewing directions.
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3.4 Photometric Stereo and The Reflectance Map

The idea of photometric stereo was discussed in section 3.1. Suppose two images, repre-
sented as I1(x, y) and I2(x, y), are obtained by varying the direction of incident illumina-
tion. Since there has been no change in the imaging geometry, each picture element, pixel,
(x, y) in the two images corresponds to the same object point and hence to the same same
gradient (p, q). The effect of varying the direction of incident illumination is to change
the reflectance map R(p, q) that characterises the imaging situation.

Let the reflectance maps corresponding to I1(x, y) and I2(x, y) be R1(p, q) and R2(p, q)
respectively. Based on Equation 3.3 these two views are characterised by two independent
equations:

I1(x, y) = R1(p, q) (3.8)

I2(x, y) = R2(p, q) (3.9)

Thus we can determine the surface normal parameters from two images. This means that
two reflectance maps R1(p, q) and R2(p, q) are required. Defining the two light source
vectors as [p1, q1,−1] and [p2, q2,−1] and assuming that Equations 3.8 and 3.9 are linear
and independent there will be a unique solution for p and q. [8] showed this to be as
follow:

p =

(
I21r1 − 1

)
q2 −

(
I22r2 − 1

)
q1

p1q2 − q1p2

(3.10)

q =

(
I22r2 − 1

)− (I21r1 − 1
)

p1q2 − q1p2

(3.11)

where provided p1/q1 �= p2/q2; r1 =
√

1 + p2
1 + q2

1 and r2 =
√

1 + p2
2 + q2

2 This gives a
unique solution for surface orientation at all points in the image.

However if Equations 3.10 and 3.16 are non-linear, which translates to the fact that
either there are no solutions or there are more possible solutions. In the case of a Lamber-
tian reflectance function, we have to introduce another image to remove such ambiguities,
ie

I3(x, y) = R3(p, q) (3.12)

It is now shown that for such a surface three images are sufficient to determine the
gradients and the reflectance factor.

From Fig 3.2 and using Equation 3.7, the following equation can be deduced

I(x, y) = Iaρcos(i) (3.13)

but
cos(i) =

s.n

‖s‖‖n‖ (3.14)
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where s is the illumination source vector and n is the local surface normal. ‖s‖ denotes
the magnitude of vector s. If Iaρ is replaced with R then Equation 3.7 can be rewritten
as

I(x, y) = R
s.n

‖s‖‖n‖ (3.15)

Unit length of the vectors s and n are assumed, therefore the imaging equation simplify
to:

I(x, y) = Rsn (3.16)

where R is known as the surface reflectance factor or the surface albedo. Let

I = [I1, I2, I3]
T (3.17)

be a column vector of the intensity values recorded at a point(x, y) where T represents
the transposition of the vectors. And let

n = [n1, n2, n3]
T (3.18)

be a column vector corresponding to a unit surface normal ar the point (x, y), also let

s1 = [ s11, s12, s13 ]T

s2 = [ s21, s22, s23 ]T

s3 = [ s31, s32, s33 ]T

be unit column vectors defining the three directions of incident illumination.
Therefore

S =

⎡
⎣ s11 s21 s31

s12 s22 s32

s13 s23 s33

⎤
⎦

If we represent n = [n1, n2, n3]
T to be the unit vector corresponding to a unit surface

normal at (x, y) to solve for the reflectance factor R, Equation 3.16 is transformed to

Rn = S−1I (3.19)

Due to the unit length of n, R is computed as

R = ‖S−1I‖ (3.20)

Given R, the unit surface normal vector n can be computed as

n =
1

R
S−1I (3.21)

For each pixel, the reflectance factor R and the three components of the unit vector n
are computed. The inverse of the light source matrix S only exists, if the positions of the
lighting do not lie on a straight line [9].
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Equation 3.2 can be written as

n = [n1 n2 n3]
T = [ p q − 1 ]T (3.22)

Therefore,

p =
n1

n3

(3.23)

q =
n2

n3

(3.24)

3.5 Dealing with Specularity in Photometric Stereo

The use of a three-light source photometric stereo leads to poor results. Two causes were
identified by [3]. These are:

1. The surface is not entirely Lambertian and can contain some specular component;
2. Some points might be in shadow for one or more of the images.

Specularity detection is important for obvious reasons. A lot of work has been done to
tackle this problem. A brief review of two of these works is now presented.

In their work, Coleamn and Jain [10] proposed a method to detect specularity com-
ponent from a four light-source stereo technique. As already pointed out only three light
sources are sufficient to recover surface shape for Lambertian surface. But, if a point on
the surface has orientation such that its specular spikes is in the same direction as one
of the three light sources, the computed normal will be higher than the surface normal.
A fourth light source is added to detect the existence of specularity by computing four
surface normal vectors, one normal for each combination of three images.

They illustrated the difference between the calculated normals with and without spec-
ular contribution. At any given point (x, y) on the surface, if none of the intensities has
a specular component, the resulting four surface normals will appear very close to each
other. In this case the surface normal is the average of the computed four normals.

If specularity exists in one of the images, the intensity value from this image will elevate
the resulting surface normal causing a deviation among the resulting four surface normals.
The existence of specularity will cause a high deviation in both direction and magnitude
of the vectors.

A thresholding procedure was then used to eliminate the specular effects. First, the
relative deviation in the surface reflectance factor is computed from the four images in-
tensity. Before computing the surface normal at point (x,y), the relative deviation is
checked against a threshold value which is chosen to indicate a specular contribution. If
relative deviation is greater than the largest amount of the reflectance deviation allowed,
the surface normal is chosen from the combination of the three intensity values which has
the smallest reflectance factor. In the other hand, if there is no specular contribution the
surface normal is computed as the average of all four normals
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They concluded that this method can apply only when specular regions are not overlapped
and specular contribution does not appear in two or more images. Adjusting the angle of
incidence would prevent the overlap of specular regions. Finally, they recommended that
the phase angles between all source vectors and the view vector must not be so large as to
prevent all four sources from contributing measurable intensity values from the specular
reflection.

In their work Gendy and Shalaby [11] used also four-source photometric stereo. How-
ever, their method of computing the surface normals and reflectance factors avoided the
inverse matrix method. Instead they used the method suggested by McGunnigle [12]. In
this method the light sources have the same slant (σ) and tilt (τ) angles but their posi-
tions are increased by 900. For the definition of σ and τ see Fig.2.4. They chose positions
with τ = 00, 900, 1800, and 2700. With these angles they substituted into Equation 3.7 to
yield:

i0(x,y) = ioρ(x,y)
−p(x,y) sin(σ) + cos(σ)√

p(x,y)2 + q(x,y)2 + 1
(3.25)

i90(x,y) = ioρ(x,y)
−q(x,y) sin(σ) + cos(σ)√

p(x,y)2 + q(x,y)2 + 1
(3.26)

i180(x,y) = ioρ(x,y)
p(x,y) sin(σ) + cos(σ)√

p(x,y)2 + q(x,y)2 + 1
(3.27)

i270(x,y) = ioρ(x,y)
q(x,y) sin(σ) + cos(σ)√
p(x,y)2 + q(x,y)2 + 1

(3.28)

where io is it the incident intensity, i0, i90, i180, and i270 are image intensities at τ =
00, 900, 1800, and 2800 respectively.

Using Equations 3.26 − 3.28 and knowing that only three images are needed to fully
determine p, q and albedo estimated intensities are computed for the four images. If there
is no specularity contribution, the difference between any of the original and estimated
image intensity is small. Otherwise the specular component will increase the original im-
age intensity. They detected specular contributions by computing the differences between
the original and estimated values and checking it against a determined threshold, which
they concluded is about 20% of the average image intensity. When specularity is detected
they excluded that pixel from their computation of q(x, y), since their computation of
p(x, y) is independent of specular component

In the first part of this chapter it has been shown how images of a surface during pho-
tometric stereo can be acquired and how the image gradients can be estimated while
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attempting to remove specularity in the acquired images. Using photometric stereo for
quality surface inspection requires that a three-dimensional reconstruction of the surface
be made to reveal the defects on the surface.

The reconstruction of images of objects can be done using moment sets which describe
the images. This is as a results of a useful property of the Radon transform [39]. For
clarification purpose a definition of this transform is given.

Consider a coordinate system shown in Fig 3.4 and taken from [40]. The function g(s, θ)
is a projection of f(x, y) on the axis s of θ direction. The function g(s, θ) is obtained by
the integration along the line whose normal vector is in θ direction. The value g(0, θ)
is so defined that it is obtained by the integration along the line passing the origin of
(x, y)-coordinate. The Radon transform of a square integrable function f(x, y), which is
an image in this case, to the projection g(s, θ) can be expressed, therefore, as

g(s, θ) =

∫∫ ∞

−∞
f(x, y)δ(s cos θ + y sin θ − s)dydx (3.29)

Figure 3.4: The Radon transform of a functionf(x, y) to a projection g(s, θ).
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where δ(.) denotes the Dirac delta function. Equation 3.29 can be rewritten as

g(s, θ) =

∫∫ ∞

−∞
f(x, y)δ(s − ω.[x, y]T )dydx (3.30)

where ω = [cos θ, sin θ] [39]. Because of this property of the Radon transform an integrable
function F (s) sampled over the interval [-1,1] is expressed as

1∫
−1

g(s, θ)F (s)ds =

∫∫ ∞

−∞
f(x, y)F (s − ω.[x, y]T )dydx (3.31)

It would be shown that moments of an image can be obtained in two different ways: either
from polynomials or by the use of moments generating functions. The next section, Section
3.6, shows how moments can be generated from polynomials while Section 3.7 shows how
moments can be obtained from a moment generating function. It is also shown in this
chapter how particular moments can be used to describe particular geometric properties
of an image. This chapter ends with an algorithm which was utilised for this thesis.

3.6 A Brief Introduction to Statistical Moments

Statistical moments are applicable to many different aspects of image processing. This field
was pioneered by Hu [15] in the early 1960’s. It ranges from invariant pattern recognition
and image encoding to pose estimation. When applied to images they describe the image
content (or distribution) with respect to its axes. They are designed to capture both
global and detailed geometric information about the image. In this thesis they were used
to characterise grey level images in order to be able to extract the flaws from the surface.

An images can be represented as a discrete function f(x, y) with the sampled points
defined on the nodes of a square lattice. These values can be embedded in a continuous
function g(x, y) defined on the square surrounding every pixel. Because of the Weierstrass
theorem a uniform approximation of the image using polynomials can be made [41]. This
theorem is stated below as

Theorem 3.1 If f is a continuous complex valued function on [a, b], then there exists a
sequence of polynomials Pn(x) such that

lim
n−→∞

Pn(x) = f(x) (3.32)

uniformly on [a,b], where [a,b]∈ R. If f is real valued, the Pn’s may be taken real.

The proof of this theorem can be found in [41]. Representing images as polynomials has
advantages. These advantages were given by Eden et al in [13] and are cited here.

1. The correspondence between array values and polynomial coefficients allows the
discrete set of values to be described by an analytical continuous function. This
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function has a very simple expression.Operations such as interpolation, projection,
and affine transformation take on a consistent interpretation and the numeric
computations entailed by an operation may be simplified. A local continuous form
of an image is used to extract edge or local texture properties. This may be so
because the basis function may have properties which are passed unto the moments
and thus producing descriptions which are invariant under rotation, scale,
translation, and orientation [14].

2. Polynomials fit the geometric forms of images harmoniously. Slowly varying
surfaces in images are well represented by polynomials

In continuous form an image can be considered as a two-dimensional Cartesian density
distribution f(x, y)f(x, y), two dimensional continuous function. Therefore, a moment of
order (p + q) evaluated over the entire image plane ξ can be represented generally as:

Mpq =

∫∫
ψpq(x, y)f(x, y)dxdy ; p, q = 0, 1, 2, ...,∞ (3.33)

ψpq is known as the weighted kernel or the basis function. This produces a weighted
description of f(x, y) over the entire plane ξ.

Two theorems help to establish the fact that the moment Mpq does in fact exists and
is unique over the function f(x, y).

Theorem 3.2 The uniqueness theorem:
Assuming that the intensity function f(x, y) is piece-wise continuous and bounded in the
region ζ , the moment sequence Mpq is uniquely determined by the intensity function
f(x, y) and conversely.

Theorem 3.3 Existence theorem:
Assuming that the intensity function f(x, y) is piece-wise continuous and bounded in the
region ζ , the moment Mpq of all orders exist and are finite.

The proofs of these theorems can be found in [16] and [17] respectively.

If the moment has to be applied to digital images Equation 3.33 needs to be expressed
in discrete form. Recall that that the probability density distribution of a continuous
variable is different from that of the probability of a discrete distribution.

Let us assume that the whole image plane ξ is divided into square pixels of dimension
1 × 1, with constant intensity I over each square. Let Pxy also be a discrete pixel value,
then

Pxy = I(x, y)ΔA (3.34)
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where ΔA is the sampled or pixel area equal to one. Thus, analysing Mpq defined in
Equation 3.33 over a complete discrete image intensity plane, we have:

Mpq =
∑

x

∑
y

ψpq(x, y)Pxy ; p, q = 0, 1, 2, ...,∞ (3.35)

where ψpq remains the basis function. The choice of basis function depends on the applica-
tion and the desired invariant properties. The choice may introduce constraints including
limiting the x and y range.

In sections 3.8 and 3.9 two types of moments are reviewed. These are orthogonal mo-
ments and non-orthogonal moments.

3.7 The Moment Generating Function

To describe the distribution of a random variable f(x) the characteristic function given
below can be used:

X(ω) =

∞∫
−∞

f(x)ejωxdx = E[ejωx] (3.36)

This function shown here is for the signal density f(x), where j =
√−1 and ω is the spatial

frequency. This is essentially the Fourier transform of the signal and has a maximum at
the origin ω = 0, as f(x) ≥ 0.

If f(x) a one dimensional continuous function is the density of a positive, real valued
variable x, such that x ∈ R, then a continuous exponential distribution can be defined. If
jω in Equation 3.36 is replaced with s this produces a real valued integral of the form:

Mx(s) =

∞∫
−∞

f(x)exsdx = E[exs] (3.37)

where E[.] is the expectation and Mx(s) exists as a real number. Mx(s) is called the
moment generating function, shown here for a one-dimensional distribution. Expressing
the exponential in terms of an expanded Taylor series produces:

exs =
∞∑

n=0

xnsn

n!
= 1 + xs +

1

2!
x2s2 + · · · + Rn(x) (3.38)

where Rn(x) is the error term. We see that this series will only converge and represent
x(s) completely if Rn(x) = 0. This means that if the distribution is finite in length, all
values outside this length must be zero (or in terms of an image, all values outside the
sampled image plane must be zero). If this is so, and Equation 3.38 is substituted into
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Equation 3.37, this produces

Mx(s) =

∞∫
−∞

f(x)exsdx

=

∞∫
−∞

(1 + xs +
1

2!
x2s2 · · · )f(x)dx

= 1 + sm1 +
1

2!
s2m2 + · · · , (3.39)

where mn is the nth moment about the origin. Differentiating 3.37 n times with respect
to s produces:

Mx
n (s) = E[xnexs] (3.40)

If Mx(s) is differentiable at zero, then the nth order moments about the origin are given
by

Mx
n (0) = E[xn] = mn (3.41)

The first three moments of this distribution, therefore, are

Mx
0 (s) = E[exs] ; Mx

0 (0) = 1

Mx
1 (s) = E[xexs] ; Mx

1 (0) = x

Mx
2 (s) = E[x2exs] ; Mx

2 (0) = x2 (3.42)

Finally, it is possible to evaluate the moment of a distribution by two methods. Either
by using the direct integration method (i.e by integrating Equation 3.36, alternatively it
is evaluated using the moment generation function just shown.

3.8 Orthogonal Polynomials and Moments

The common form of a polynomial is given as:

P(x) = a0 + a1x + a2x
2 + · · · + anxn. (3.43)

However a more general definition of a polynomial of degree n as given by [23] is

P(x) =
n∑

i=0

aiφi(x) (3.44)

The quantity n is known as the degree of the polynomial. Orthogonal polynomials are
defined as
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Defintion 3.1 Let λ(t) be a nondecreasing function on the real line R having final limits
as t → −∞ and t → +∞, and assume that the induced positive measure dλ has finite
moments of all orders [24],

μr = μr(dλ) :=

∫
R

trdλ(t), r = 1, 2, 3, . . . , with μ0 > 0 (3.45)

Let P be the space of real polynomials and Pd ⊂ P the space polynomials of degree ≤ d.
For any pair u, v in P, one may define an inner product as

(u, v) =

∫
R

u(t)v(t)dλ(t) (3.46)

If (u, v) = 0, then u is said to be orthogonal to v. If u = v, then

‖u‖ =
√

(u, v) =

(∫
R

u2(t)dλ(t)

)1/2

(3.47)

is called the norm of u.

Moments produced using orthogonal basis sets are called orthogonal moments, examples
of which are the Legendre moments and the Zernike moments.

3.8.1 Legendre Moments

The kernel of Legendre moments are products of the Legendre polynomials defined along
rectangular image coordinate axes inside a unit circle. The Legendre moments of order
(p + q) are defined as [17]

Lpq =
(2p + 1)(2q + 1)

4

1∫
−1

1∫
−1

Pp(x)Pq(y)f(x, y)dxdy (3.48)

where the functions Pn(x) denote the Legendre polynomial of order n [see 3.8.1.1] below.

The pth order term is given by the Rodrigues formula [25]

Pp(x) =
1

2P p!

dp

dxp
(x2 − 1)p, x ∈ [−1, 1] . (3.49)

In order to evaluate the Legendre moments, the image coordinate space has to be scaled
so that their respective magnitudes are less than 1. If the image dimension along each
image coordinate axis is N pixels, and i, j denote the pixel coordinate indices along the
axes, 0 ≤ i, j ≤ N , then the discrete Legendre moments can be written as

Lpq =
(2p + 1)(2q + 1)

(N − 1)2

n∑
i=1

n∑
j=1

Pp(xi)Pq(yj)f(i, j) (3.50)

where xi, yj denote the normalised pixel coordinates in the range [-1,1], given by

xi = (2i/N) − 1; yj = (2j/N) − 1 (3.51)
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3.8.1.1 Legendre Polynomials

The Legendre polynomial Pn(x) of order n is defined as

Pn(x) =
n∑

k=0

(−1)(n−k)/2 1

2n

(n + k)!xk(
n−k

2

)
!
(

n+k
2

)
!k!

, | x |≤ 1, and (n − k) is even. (3.52)

The above series expansion of Legendre polynomials can be obtained using Equation 3.49.
The Legendre polynomials form a complete orthogonal set inside the circle, hence

1∫
−1

Pm(x)Pn(x)dx =
2

(2m + 1)
δmn (3.53)

where δmn denotes the Kronecker delta.

The equation below provides a recursive relation in Legendre polynomials:

Pn(x) =
(2n − 1)xPn−1(x) − (n − 1)Pn−2(x)

n
(3.54)

where
P0(x) = 1; P1(x) = x; | x |≤ 1; and, n > 1.
The integral formula for Legendre polynomials is given by∫

Pn(x)dx =
xPn(x) − Pn−1(x)

n + 1
(3.55)

The polynomial expressions for Pn(x) up to the fourth order are given below:

P0(x) = 1

P1(x) = x

P2(x) = (3x2 − 1)/2

P3(x) = (5x3 − 3)/2

P4(x) = (35x4 − 30x2 + 3)/8 (3.56)

3.9 Non-orthogonal Moments

Non-orthogonal moments are moments which do not satisfy the condition for orthogonality
given in Equation 3.46. Examples are geometric moments, Cartesian moments and regular
moments. These sets of moments are the simplest amongst moment functions, the kernel
functions are defined as a product of the pixel coordinates [17]. Only a brief review of how
they can be obtain is given here. There exist a number of works on how these moments
can be used for surface reconstruction. Examples can be found in [14, 25, 27].
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Geometric moments can be defined with the basis set {xpyq}. The (p + q)th order two-
dimensional geometric moments are denoted by mpq, and can be expressed as

mpq =

∫∫
ζ

xpyqf(x, y)dxdy p, q = 1, , 2, 3, . . . (3.57)

where ζ is the region of the pixel space in which the image intensity function f(x, y)
is defined. Equation 3.57 has the form of the projection of the equation of the function
f(x, y) onto the monomial xpyq. The basis set {xpyq}, while complete, is not orthogonal.
It is assumed that f(x, y) is a piecewise continuous, bounded function and that it can
have non-zero values only in the finite region of the x − y plane.

Analysing a two-dimensional irradiance distribution f(x, y)

Mxy(u, v) =

∞∫
−∞

∞∫
−∞

exp (ux + vy)f(x, y)dxdy (3.58)

and expanding the exponential using Taylor series produces

Mxy(u, v) =
∞∑

p=0

∞∑
q=0

up

p!

vq

q!
mpq (3.59)

where mpq are the moments of the two dimensional distribution.

The discrete version of the Cartesian moment defined in Equation 3.57 for an image
consisting of pixels Pxy is obtained by replacing the integrals in Equation 3.57 with sum-
mations, as

mpq =
M∑

x=1

N∑
y=1

xpyqPxy (3.60)

where mpq is the two-dimensional Cartesian moment, MandN are the image dimensions
and the monomial product xpyq is the basis function.

3.10 Shape Representation Using Moments

Describing shapes from given moments falls under what is known as the moment problem,
see [26] and [27]. It has also been called the inverse moment, or Hausdorf ’s moment
problem see [25]. The inverse moment problem, simply put, states that if given a sequence
of numbers {μ∞

n=0}, under what conditions is it possible to determine a function a(t) of
bounded variation in the interval [0 1] such that

μn =

1∫
0

tnda(t) for n = 1, 2, 3, · · · [22] (3.61)

Applying this to image reconstruction, it simply states that: ”if only a finite set of moments
of an image is given, how well can we reconstruct the image?” [25].
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Geometric moments of different order represent different spatial characteristics of the
image intensity distribution. Thus, a set of moments can form a global shape descriptor
of the image. The representation given below is first shown for geometric moments and
then followed by the Legendre moments.

3.10.1 Shape representation using geometric moments

By definition the moment of order zero (m00) represents the total intensity of the image.
For a binary image this term gives the geometrical area of the image region. The first two
order moments m10 and m01 provide the intensity moments about the y−axis and x−axis
of the image respectively, and are used to find the Centre of Mass (COM) of the image.
Accordingly, the centre coordinates, or intensity centroid, (x , y) is given by

x̄ = m10/m00; ȳ = m01/m00 (3.62)

It is sometimes convenient to evaluate the moments with the origin of the reference system
shifted to the intensity centroid of the image [17]. This transformation makes the moment
computation independent of the position of the image reference system. The moments
computed with respect to intensity centroid are called central moments, are are defined
as

μpq =

∫∫
ζ

(x − x̄)p(y − ȳ)qf(x, y)dxdy p, q = 1, 2, 3, · · · (3.63)

From the definition of central moments we have that

μ00 = m00; μ10 = μ01 = 0 (3.64)

The method commonly used for image reconstruction using geometric moments is called
moments matching and it is covered in many literatures [14],[17],[25]and[27]. For more
shape description moments and moment sets which are invariant with respect to image
plane transformation see [17] and [15].

3.10.2 Shape representation using Legendre moments

The Legendre moments of order (p+q) in Equation 3.48 can be approximated by discrete
summations and in terms of geometric moments can be expressed as follows:

Lpq =
(2p + 1)(2q + 1)

4

p∑
i=0

q∑
j=0

apiaqimij (3.65)

where api denotes the coefficient of xi in the series expansion of Pp(x) as given in Equation
3.48. Assigning particular values for p, q in Equation 3.65, we get the following relations
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in Legendre moments up to the second order.

L00 = m00,

L10 = (3/4)m10,

L01 = (3/4)m01,

L20 = (5/4)[(3/2)m20 − (1/2)m00],

L02 = (5/4)[(3/2)m02 − (1/2)m00],

(3.66)

The orthogonality property of the Legendre polynomial helps in expressing the image
intensity function f(x, y) in terms of its Legendre moments using the Fourier expansion
theorem on orthogonal functions. This is expressed mathematically as:

f(x, y) =
∞∑
i=0

∞∑
j=0

LijPi(x)Pj(y), |x |,|y | ≤ 1 (3.67)

Equation 3.67 is called the inverse Legendre moments transform. For a finite number n
of Legendre moments, an approximated version f ′(x, y) of the intensity function can be
reconstructed as follows:

f ′(x, y) =
n∑

i=0

i∑
j=0

Li−jjPi−j(x)Pj(y), |x |, |y | ≤ 1 (3.68)

The analysis done so far is restricted to using the Legendre moments as continuous
orthogonal moments and applied to a continuous set of points. However these moments
can be utilised on a finite set of points to generate shape descriptor moments. Legendre
moments suitable for such computations are known as discrete Legendre moments.

Consider an image model represented as n × n pixel array, without loss of generality,
on the set Ω = {(i, j), 0 ≤ i, j ≤ n}. This means that we have the digital image
{f(x, y); (x, y) ∈ Ω}.

The orthogonal system on Ω is defined as {Pp(x)Pq(y), 0 ≤ p, q ≤ n} for (x, y) ∈ Ω,
where the orthogonality of {Pp(x), 0 ≤ p ≤ n} is defined as follows

n∑
x=0

Pp(x)Pq(x) = Cp(n)δpq (3.69)

Here Cp(n) =
n∑

x=0

P 2
p (x) is the normalising constant [27].

From the above, we can represent the digital image {f(x, y), 0 ≤ x, y ≤ n} by the
following expansion after first employing (T + 1)2 discrete moments

fT (x, y) =
T∑

p=0

T∑
q=0

τpqλpqPp(x)Pq(y), (x, y) ∈ Ω (3.70)
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where τpq = (Cp(n)Cq(n))−1 is the normalising constant and

λpq =
n∑

i=0

n∑
j=0

f(i, j)Pp(i)Pq(j) (3.71)

defines the (p, q) order discrete moment with respect to the basis {Pp(x)Pq(y), 0 ≤ p, q ≤
n}.

An example of {Pp(x); 1 ≤ p ≤ n} is a discrete analog of Legendre orthogonal polyno-
mials given by [27] as

Pp(x) =

p∑
s=0

(−1)s
(

p
s

)(
p + s

s

)
n(n − 1) · · · (n − s + 1)

x[s] (3.72)

for 0 ≤ p ≤ n and 0 ≤ x ≤ n, where x[s] = x(x − 1) · · · (x − s + 1) with x[0] = 1. In
particular, P0(x) = 1, P1(x) = 1 − 2x/n, P2(x) = 1 − 6x/n + 6x(x − 1)/(n(n − 1)).

Different methods have been used to generate discrete Legendre polynomial as basis for
obtaining moments used for image reconstruction. These method are numerically involved
and the computation takes time. Some of these methods are given in [29] and [30]. In the
next section a new surface approximation algorithm is presented, which is numerically
more efficient than previous solutions.

3.11 New surface Approximation method

This method is based on using polynomials to describe the surface and estimating the
polynomials coefficients. In computing for the coefficients the reconstruction is reduced
to least square approximation. The obtained coefficients are back-substituted into the
polynomial equations to give the required surface.

3.11.1 Representing Images as Polynomials

Images are in discrete forms but can be approximate as continuous functions, see [13]. It
has also be shown that these function can be represented as a polynomial. It is now shown
how this polynomial can be derived. To do this the interpolation theory in one dimension
is stated below

Theorem 3.4 . If given a sequence of n distinct numbers xk (called nodes), and for
each xk a second number yk, there exist a function f so that

f(xk) = yk ; k = 1, 2, 3, . . . , n and yk �= yj (3.73)

where the pair (xk, yk) is called a data point and the function f is called an interpolant
for the data points.
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Equation 3.73 can be written as

g(yk) =
n∑

j=1

ajy
j−1
k (3.74)

where k = 1, 2, . . . , n and aj are coefficients. If the function f in Equation 3.73 is replaced
by a polynomial p(x) then the equation can be written as

P (x) =
n∑

j=1

ajx
j−1 (3.75)

which is unique and satisfy the n equations. Note that this equation is similar to that
given in Equation 3.44 for the equation of a polynomial.

If g in equation 3.74 is defined as

g = [g(y1) . . . g(y(n)]T (3.76)

as the vector of the function values at the points of interest and

a = [a1 . . . an]T (3.77)

the vector of the polynomial coefficient values, therefore the system of equations repre-
sented in Equation 3.75 can be rewritten as

g = Pv(y1, . . . , yn).a (3.78)

where Pv is the N × N matrix defined by

Pv
�
=

⎡
⎢⎣

1 y1
1 y2

1 · · · yn
1

...
...

...
. . .

...
1 y1

n y2
n · · · yn

n

⎤
⎥⎦ (3.79)

where the matrix in Equation 3.79 is known as the Vandermonde matrix. This derivation
can now be generalized.

Any polynomial basis P(x) which are sums of monomials can be defined by post-
multiplying the Vandermonde matrix PV by an upper triangular matrix A [32], i.e.

PA
�
= PvA (3.80)

whereby the Vandermonde matrix of degree dx for nx points in x is defined as,

Pv
�
=

⎡
⎢⎣ 1 x1

1 · · · xdx
1

...
...

. . .
...

1 x1
nx

· · · xdx
nx

⎤
⎥⎦ (3.81)

Note: It has not been implied that this polynomial basis is orthogonal.
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3.11.2 The New Method

Surfaces being inspected have coordinates in x and y directions with elevation in the
z direction, the surface height. The axes are well aligned at experimentation time with
the camera axis, therefore a suitable model for the smooth surface is provided by a two-
dimensional tensor polynomial regression [31].

Let us consider a given point p(i, j) which is on an invariant cartesian grid G(i, j) and
whose size is denoted as nx ×ny with its corresponding elevation z(i, j). A bivariate poly-
nomial for z(i, j) of degree dx in x and dy in y can be formulated as a sum of monomials,
compare Equation 3.35, that is

z(i, j) =
dx∑

m=0

dy∑
n=0

C(m,n)xm
i yn

j , (3.82)

where C is the matrix of coefficients. Equation 3.82 can also be written as a tensor product
of a vector in x and y; hence the name bivariate tensor polynomial [31],

z(i, j) =
[
y0

i · · · y
dy

i

]
C
[
x0

j · · · xdx
j

]T
. (3.83)

The complete polynomial surface can now be written as

Z = YVCXT
V (3.84)

Equation 3.84 is the starting point for the polynomial regression. The computation is
stated as follows: If given Z, XV and YV we sought the values of C, which minimizes the
cost function ε =| Z − XvCYT

V |2. Therefore, the reconstruction method has been reduced
to a least square approximation method.

Let us denote the partial derivatives of the surface in x and y directions as

Ix = YV C
d

dx
XT

V (3.85)

Iy =
d

dy
YV CXT

V (3.86)

The subscript would be dropped from here onwards. From Equations 3.85 and 3.86 the
cost function is given as

ε = ‖Ix − YC
d

dx
XT‖2

F + ‖Iy − d

dy
YCXT‖2

F (3.87)

where ‖.‖F is the Fronenius norm.

Since ‖A‖2
F = trace(AAT ), Equation 3.87 becomes

ε = trace{(Ix − YC
d

dx
XT )(Ix − YC

d

dx
XT )T} + trace{(Iy − d

dy
YCXT )(Iy − d

dy
YCXT )T}

(3.88)
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To solve Equation 3.88, it is expanded and differentiate with respect to C because this
would minimize the cost function and the result set equal to zero, i.e.

YT YC
d

dx
XT d

dx
X − YT Ix

d

dx
X +

d

dy
YT d

dy
YCXT X − d

dy
YT IyX =

O∼ (3.89)

If the basis function are carefully chosen to be orthonormal1, then Equation 3.89 simplifies
to :

d

dy
YT d

dy
YC + C

d

dx
XT d

dx
X − YT Ix

d

dx
X − d

dy
YT IyX =

O∼ (3.90)

Equation 3.90 is a Lyapunov equation of the form;

A1C + CA2 + A3 = 0 . (3.91)

from which C is readily obtained.
The general Lyapunov equation is of the form

AT P + PA + Q = 0 (3.92)

where A, T, P, Q ∈ R
n×n with P and Q being symmetric. This equation is commonly

encountered in countrol engineering and the solution can be found in [42].

Care has to be taken in solving for C in Equation 3.91. The first column of the derivatives
d
dx

X and d
dy

Y are zero (because they are derivatives of constants). The matrices can be

partitioned as:

d

dy
YT d

dy
Y =

⎡
⎣ 0

⇀

0
T

⇀

0
⇀

A1

⎤
⎦ (3.93)

The value of C is back-substituted into equation 3.84 to reconstruct the surface.

This algorithm was used to reconstruct surfaces of objects whose images have been
captured using a CCD camera and the gradients obtained using photometric stereo. The
results of these computation are shown in the next chapter.

1An orthogonal matrix A has the property AT A = W, where W is a diagonal matrix containing the
norms of the columns. The condition number of the matrix is defined as κ2(P) = max{W}/min{W}.
An orthonormal matrix is one which has the property that AT A = I, its condition number is 1. Such
matrices are also known as unary matrices



Chapter 4

Experimental Set-up, Results and
Discussion

4.1 Construction of the Experimental Apparatus

An experimental apparatus was constructed for the acquisition of image under controlled
lighting conditions. The following hardware were utilised for this experiment: a camera;
four white light sources; a rigid frame to support the camera and the light sources; and
of course text samples.

The figure shown in Fig 4.1 is a schematic diagram of the experimental set-up. For
simplicity purpose only two of the light source are shown and a fixed distance of 0.5m for
from the camera centre shown. An overview of the various components used is now given.

4.1.1 Camera specification

The camera used is the PULNiX R©–TM– 6CN with view lenses of 35mm 50mm. The
PULNiX R© TM–TM– 6CN is a VGA format, high-speed monochrome camera. It’s field of
view covers 752 × 582 pixels. The camea is shown in Fig 4.2.

4.1.2 Lighting specification and configuration

Although it might not be obvious, the success of the experiment depends greatly on
the lighting and its configuration with respect to the other components. Therefore, care
must be taken during material selection, construction of the rigid structure and image
acquisition in order to have optimal results. To simplify the computation the light sources
were at equal horizontal distance from the camera at each x and y directions.

The lighting used was a Luxeon R© 6-ring white LED shown in Fig 4.3 with typical
luminous flux of 150Φv. The choice of using LED is due to the experimental requirement
for a pointed source of light which is constant for the duration of the experiment.
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Figure 4.1: A schematic diagram of the experimental set-up.
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Figure 4.2: PUNiX TM – 6CN.

Figure 4.3: Luxeon R© 6-ring LED (white)
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4.1.3 Experimental procedure

A figure of the actual structure used for this experiment is shown in Fig 4.4. The object
coordinate was chosen in a way that the plane of the camera lens is the (x, y) axis, this
coordinate coincides with that of the test sample also. The positive z-axis is vertically
upwards. The camera was positioned vertically above the test sample and the camera
height maintained for each session of image capture, that is during each image/lighting
confiuration.

The camera image plane was place at a considerable distance from the test object. This
was to achieve the requirement of orthogonality between the object plane and the image
plane. To reduce the possibility of ambient light affecting the result, care was taken to
exclude this from the experiment.

The experiment was performed in two ways. First images were taken with the light
sources positioned along the x and y axes and secondly when the light source were posi-
tioned in between these axes.

4.2 Surface Reconstruction

For the reconstruction of the surface a new method was developed and tested. The al-
gorithm is given in chapter three. It is based on using discrete polynomial moments to
reconstruct the surface. This method appeared better than any existing solution for sur-
face approximation. Because of the problem of instability of discrete polynomials at higher
degrees previous methods had to reconstruct surfaces in little patches. This problem ap-
pears to have been solved in [32]. Based on this result the algorithm shown in chapter
three was developed.

4.3 Specular Pixels in Test Samples

In dealing with specular pixels three options were considered. The first is the case where
no pixel is encountered. In this case the the pseudo-inverse is used to compute the surface
normals by the use of Equation 3.24.

In the situation where a pixel in only one of the images is saturated, that pixel is
excluded from the computation of the surface normal vector and the remaining three
images are used, which is the normal situation, thus enabling complete reconstruction.

The third case is a situation where a pixel is found saturated in more than one of the
images. In this situation that particular pixel surface normal is assumed to be vertical.
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Figure 4.4: Picture of the experimental set-up



4.4. TEST RESULTS 48

4.4 Presentation of Test result

The software used for this experiment was developed in Matab R©. Various samples were
tested using this software and the results are now presented.

Figure 4.5: Original images

Fig 4.5 shows four acquired images of a steel block taken with the light positions varying
as denoted by positions 1,2,3 and 4 as shown in Fig 4.1. Specular pixels in the images are
easily identified.

Figure 4.6 shows the gradients of the image obtained using the four–light source photo-
metric stereo and the pseudo–inverse of the light source vector. Notice how specularity in
the images have been removed.
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Figure 4.6: Obtained image Gradient using Photometric Stereo

Figure 4.7: Reconstructed Gradients
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Fig 4.7 shows the gradients of the image reconstructed using the new method. Compare
these with those shown in Fig 4.6 to check the effectiveness of this method.

Figure 4.8: Reconstruction of Original Surface

Fig 4.8 shows the reconstructed image from discrete polynomial moments generated with
the method discussed in section 3.11. The object axis was chosen in such a way that the
vertical direction upwards was the z-direction. Therefore, points on the surface whose
elevation are nearer the camera appear brighter than those farther.
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Figure 4.9: Reconstructed Surface without Defect

Figure 4.9 shows what the surface would have looked like without flaws.

Figure 4.10: Extracted Surface Irregularities

Fig 4.11 shows the extracted flaws as surface heights. Note the heights in blue. These are
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flaws, which are below the surface, that is into the material.

Figure 4.11: Extracted Surface Heights

Figure 4.12: 3–D reconstructed Surface from moments

Fig 4.12 shows the reconstructed surface in three-dimension, while Fig 4.13 is a contour
trace of the reconstructed surface in three-dimension
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Figure 4.13: Contour trace of the reconstructed surface surface

4.5 More Results

Judging from the success of this method in its use to inspect metallic surface for flaws,
attempt was made to see how effective it can be used for reconstructing metallic surfaces
with engraved code. The obtained results are now presented.
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Figure 4.14: Original images
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Figure 4.15: Obtain gradients using photometric stereo

Fig 4.15 shows the gradients computed from the four acquired images. Note how spec-
ularity in the images has been removed. Compare these images with those in Fig 4.16.

Figure 4.16: Reconstructed Gradients
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Figure 4.17: Reconstruction of Original Surface

Fig 4.17 shows the reconstructed surface from discrete moments. However, the numbers
are no very clear. Fig 4.18 shows what the surface would have looked like without its
roughness.

Figure 4.18: Reconstructed Surface without Defect
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Figure 4.19: Extracted Surface Irregularities

Notice how the legibility of the number have been improved in Fig 4.19 after the flaws
have been extracted. Fig 4.20 shows the extracted flaws as surface heights.

Figure 4.20: Extracted Surface Heights
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Figure 4.21: 3–D reconstructed Surface



Chapter 5

Summary and Conclusions

This thesis has shown that the use of four light source photometric stereo is possible and
together with the pseudo-inverse of the light source matrix the problem of specularity
often encountered in surface inspection can be solved.

This new algorithm has been shown to consider three special cases. The first case is a
situation where no specular pixel exist, in which case the image gradients were computed
normally by using the pseudo-inverse of the light source matrix. If on the other hand
only a saturated pixel is encountered in one of the images, this particular pixel was
eliminated from the computation and remaining three images were then used for gradients
computations. If, finally, more than one pixels were found saturated then the the surface
height of that particular pixel was set to vertical.

It has also been shown, in this thesis, the concept used in the new method of surface
reconstruction from discrete polynomial moments. The moments were generated from
the Vandermonde matrix and the computation reduced to a least square approximation
solution. To obtain the coefficients of the moments the system of equations were reduced
to Lyapunov equations, which are encountered in control engineering. As a precaution
from having errors in solving this equation the matrices were partitioned before they were
solved.

The required steps to be taken in order to be able to used this method can be sum-
marised as follows:

1. Arrange for three or more images with different lighting positions.

2. Calculate image gradients Ix and Iy in the x and y diections respectively.
— Eliminate saturated pixels and compute surface normal for the remaining

three pixels.
— When more than one pixels are saturated normalize Ix and Iy about the

z−direction. i.e. by the use of four pixels use the pseudo-inverse of the source
matrix, by three pixels use inverse of the source matrix, when two pixels are
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saturated set the normal to vertical.

3. Apply the reconstruction algorithm to get the surface

In applying these methods the results have shown its effectiveness. The method of pho-
tometric stereo yielded the image gradients required for the surface reconstruction and
when specular pixels were identified they were eliminated. The surface albedo were also
evaluated from which the surface normals were obtained. A comparison of the recon-
structed gradients and the estimated gradient further highlights the effectiveness of the
reconstruction method. The surface defects were extracted and shown as surface heights
and the quality of the reconstructed surface is a further proof of the performance of the
reconstruction algorithm.

An inherent limitation of the photometric stereo method is that absolute height of
object shapes cannot be reconstructed [33]. However, in situations where presence of flaws
are to be identified and extracted, because of the numerical efficiency and superiority of
the shown method, it could be incorporated in a real-time system in the industry for
automatic surface inspection for identifying and extracting surface flaws.



Chapter 6

Outlook

6.0.1 Dynamic Photometric Stereo

The method used in this thesis to inspect metallic surfaces cannot be said to be all
conclusive as there is room for future work. This method has been used subject to the
fact that the inspected object is static. It would be interesting to investigate how this
concept of four light-source photometric stereo behaves when applied to moving objects.
This is what Smith and Smith [35] referred to as Dynamic Photometric Stereo (DPS).
The first problem encountered here is how to acquire the images. Solving this problem
has led to the idea of multiplexing. [35] gave a brief discussion of the various types of
multiplexing. The types he identified are: temporal multiplexing; spatial multiplexing;
and spectral multiplexing.

Brief definitions are now given for the various types. Temporal multiplexing represents
an adaptation of the conventional static photometric stereo (SPS) to dynamic appli-
cations, in which separate lighting configurations are deployed and images are rapidly
acquired at closely spaced intervals in time. Spatial multiplexing involves separate images
of the same surface location being acquired at different points in space. image acquisition
at the separate locations occurs simultaneously, therefore in order to register images be-
tween viewing positions the scan lines of the CCD(s) must be carefully synchronised with
the velocity of the moving surface.

The SPS carried out in this thesis required switching the light on and off. In spectral
multiplexing no switching of light on and off is required. Instead, three spectrally distinct
light sources continuously illuminate the target objects from three different directions.
A suitable RGB color camera acquires three-channel video images that subsequently are
treated as three separate B&W images, one corresponding to each condition of illumina-
tion. An image/illumination configuration is called a ’channel ’. However, this method can
be sensitive to decoloring of the surface, which may be interpreted as geometric variation
[32]. Further investigation of this problem and proposals of addressing it would enhance
the usefulness of this technique in the industry for two dimensional or three dimensional
object texture classification.
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Furthermore, [34] stated that surface reconstruction using moments of orthogonal poly-
nomial basis is computational complex and therefore has been excluded from real- time
implementations in software. [32] has shown that this is not true and real-time imple-
mentation is possible using these moments. Applying the conclusion reached in [32] to
dynamic photometric stereo can be an issue to be looked into.

From the presented results it can be seen that an attempt was made to see the legibility
of numbers and bar-codes engraved in an iron slab. Is it possible to apply the principle
of photometric stereo to optical character recognition (OCR) or not? This is a question
that could also be investigated because of its apparent usefulness.

6.0.2 Surface Reconstruction

The reconstruction method employed for this thesis is based on generating discrete poly-
nomials from which its moments are derived. There exists now a new method of surface
reconstruction in this Institute for Automation, which appears to reconstruct a required
surface from its gradients quickly. This method is described in [43] and is based on the
method of least square approximation. A brief explanation of this method is now given.
The cost function between the require surface Z and its obtained gradients Ẑ is derived,
which is then differentiated upon with respect to Z and the equation set equal to zero.
The problem lies in solving this equation for the constant of differentiation.

The effectiveness of this method is based on the fast that for set of N distinct points the
differentiated is exact and can be done to degree d = N - 1 enabling the reconstruction
of a full digital image. It is claimed that this method is numerically fast, which will make
it suitable for on-line use. The four light photometric stereo can be used for obtaining
the gradients and the reconstruction done with this method. It could also be tested for
on-line use.
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Appendix A

MatlabR© Codes

A.1 Gradients and Albedo extraction
%
% Filename: gradient
%*********************************************************************************************
% Description:
% This code determines the intensity values of three images and with the position vector given determines
% the surface normal of the images and determine the values of p and q, where p is the image gradient in
% the x-direction and q is the image gradient in the y-direction. This code can also generate the surface albedo.
%
% By Godwin Ohenhen
% Date: December 14, 2007
%
% Version: 1.0
%
% c© 2007, Institute for Automation, University of Leoben, Austria

% email: automation@unileoben.ac.at, url: automation.unileoben.ac.at
%*********************************************************************************************
close all;
clear all;
clc;
%**********************************************************************************************
% read in images from file
%
[pic 1, mapa] =imread(’C: Documents and Settings Ohenhen My Documents My Pictures Test Images
12 07 07 imageA3 12 07 07.bmp’);
%
[pic 2, mapb] = imread(’C: Documents and Settings Ohenhen My Documents My Pictures Test Images
12 07 07 imageB3 12 07 07.bmp’);
%
[pic 3, mapc] = imread(’C: Documents and Settings Ohenhen My Documents My Pictures Test mages
12 07 07 imageC3 12 07 07.bmp’);
%
[pic 4, mapc] = imread(’C: Documents and Settings Ohenhen My Documents My Pictures Test Images
12 07 07 imageD3 12 07 07.bmp’);
%
[ny, nx] = size( pic 1 );
cut = 370;
startx = round( (nx - cut)/2 );
starty = round( (ny - cut)/2 );
%
Ia = Ia(starty:starty+cut-1,startx:startx+cut-1) ;
Ib = Ib(starty:starty+cut-1,startx:startx+cut-1) ;
Ic = Ic(starty:starty+cut-1,startx:startx+cut-1) ;
Id = Id(starty:starty+cut-1,startx:startx+cut-1) ;
%%
%*******************************************************************************************

66
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set up the position vector
%*******************************************************************************************

S = 0.01 ∗

2
664

s11 s21 s31 ; · · ·
s12 s22 s32 ; · · ·
s13 s23 s33 ; · · ·
s14 s24 s34

3
775 ;

%
%********************************************************************************************

pinvS = pinv(S) ;
%*******************************************************************************************
PL = zeros(size(Ia)) ; QL = zeros(size(Ia)) ;
%
[m,n] = size( Ia ) ;
%
count = 0 ;
%
for i = 1:m

for j = 1:n
I = [Ia(i,j); Ib(i,j); Ic(i,j); Id(i,j)];

%
ind = find(I==254) ;

%
if isempty(ind)

%
% No saturated pixels:

%
N = pinvS * I ;

%
elseif length(ind) == 1

%
% One saturated pixel:

%
rowind = find([1,2,3,4] =ind) ;
%
Ssub = S(rowind,:) ;
%
N = inv(Ssub)*I(rowind) ;
%

else
%

% More than one saturated pixel:
%
N = [ 0; 0; -1 ] ;
%
count = count + 1 ;
%

end
%

N = pinvS * I ;
PL(i,j) = –N(1)/N(3);
QL(i,j) = –N(2)/N(3);

end
end
%
P = PL ;
Q = QL ;
%
fig = figure;
subplot(2,2,1) ;
imagesc( Ia ) ;
axis image ;
colormap(’gray’) ;
title(’Orignal image 1’)
%
subplot(2,2,2) ;
imagesc( Ib ) ;
axis image ;
colormap(’gray’) ;
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title(’Original image 2’);
%
subplot(2,2,3) ;
imagesc( Ic ) ;
axis image ;
colormap(’gray’) ;
title(’Original image 3’);
%
subplot(2,2,4) ;
imagesc( Id ) ;
axis image ;
colormap(’gray’) ;
title(’Original image 4’)

A.2 Surface Reconstruction
% Filename: reconstruction
%
% This code reconstructs the surface of the object using Polynomial basis fuction, the Vandermonde
% polynomail basis function. For this code we require the gradients obtained from the images.
%
% By Matthew Harker
% Date: December 14, 2007
%
% Version: 1.0
%
% c©2007, Institute for Automation, University of Leoben, Austria
% email: automation@unileoben.ac.at, url: automation.unileoben.ac.at
%***************************************************************************************
close all;
clear all;
clc;
%****************************************************************************************
% Load the code for calculating the image gradient from a set of four photometric stereo images.
%
gradient;
%
Ix = P;
Iy = – Q;
%

[ny, nx] = size( Ix ); cut = 370;

% startx = round( (nx - cut)/2 );

starty = round( (ny - cut)/2 );

%
Ix = Ix(starty:starty+cut-1,startx:startx+cut-1) ;

Iy =Iy(starty:starty+cut-1,startx:startx+cut-1) ;

%

[m,n] = size(Ix) ;

%%

x = (1:n)’ ;
y = (1:m)’ ;

Evaluating the integration range of the Legendre Polynomial P(x) in the limit[-1,1] %
x = 2*(x-min(x))/(max(x)-min(x))-1;
y = 2*(y-min(y))/(max(y)-min(y))-1;

%
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d = 450 ;

%

%****************** Set up the Vandermonde matrices: ******************************

XV = ones(size(x));
YV = ones(size(y));

XVI = x;
YVI = y;

XVD = zeros(size(x));
YVD = zeros(size(y));

%The Vandemonde matrix is of the form

% X v =

2
6664

1 x11 x12 · · · x2d
1 x21 x22 · · · x2d
.
..

.

..
.
..

. . .

1 xn1 xn2 · · · xnd

3
7775.

% The same is done for Y v.
%
for k = 1: d

%
XV = [XV, x.k];
YV = [YV, y.k];

XVD = [XVD, k ∗ x.̂(k − 1)];

YVD = [YVD, k*y.̂(k − 1)];
%

end
%
XV(:,1:2) = [ones(size(x)), x];
YV(:,1:2) = [ones(size(y)), y];
%
%
XVD(:, 1:2) = [zeros(size(x)), ones(size(x))];
YVD(:, 1:2) = [zeros(size(y)), ones(size(y))];
%
[Qx,Rx] = qr( XV, 0 ) ;
[Qy,Ry] = qr( YV, 0 ) ;
%
XV = Qx; YV = Qy;
%
[dXVx,dXVy] = gradient(XV);
XVD = dXVy;
%
[dYVx,dYVy] = gradient(YV); YVD = dYVy;
%
% The Lyapunov matrix equation is of the form AX + BX = C
%
% This section solve for X using the Lyapunov’s equation where;
%
A = YVD’*YVD;
B = XVD’*XVD;
C = -YV’*Ix*XVD - YVD’*Iy*XV;
%
%
As = A(2:end,2:end);
%
Bs = B(2:end,2:end);
% Cs =C(2:end,2:end);
%
c0 = C(1,1); c1 = C(1,2:end)’; c2 = C(2:end,1); cs = C(2:end,2:end);
%
Ms = lyap(As,Bs,Cs);
%
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% Partition the matrix M

%The matrix is reduced to the form M =

»
0 x1′;
x2 Ms

–
, % where Ms is the value of X obtained.

%
x1 = -Bs1̧; x2 = -As2̧;
%
M = [0, x1’; x2, Ms];
%
t = 88;
%******************************* Estimated Results **************************************
%
MT = M - fliplr(triu(fliplr(M),d+1-t));
ML =fliplr(triu(fliplr(M), d+1-t));
%
px = YV*M*XVD’ ; % approximated gradient in the x-direction
py = YVD*M*XV’ ; % approximated gradient in the y-direction
IIL = YV*M*XV’ ; % the reconstucted surface from gradients
Sp = YV*ML*XV’ ; % estimated surface without irregularities
Sr = YV*MT*XV’ ; % estimated surface irregularities

%******************************** Results Output ***********************************
%
figure
%
subplot(1,2,1);
imagesc(Ix);
colormap(gray);
axis image;
title(’Estimated Gradient in x-direction’);
%
subplot(1,2,2);
imagesc(Iy);
colormap(gray);
axis image;
title(’Estimated Gradient in y-direction’);
%
figure
%
subplot(1,2,1);
imagesc(px);
colormap(gray);
axis image;
title(’Approximated Gradient in x-direction’);
%
subplot(1,2,2);
imagesc(py);
colormap(gray);
axis image;
title(’Approximated Gradient in y-direction’);
%
fig = figure;
imagesc(IIL);
colormap(gray);
axis image;
title(’Reconstructed surface from Gradients’);
%
figure
%
subplot(1,3,1);
imagesc(IIL);
colormap(gray);
axis image;
title(’Reconstructed Surface from gradients’);
%
figure
%
subplot(1,3,2);
imagesc(Sp);
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colormap(gray);
axis image;
title(’Surface without Irregularities’);
%
figure
subplot(1,3,3);
imagesc(Sr);
colormap(gray);
axis image;
title(’Surface Irregularities’);
%
figure

surf(IIL, ’linestyle’, ’none’);
axis image;
axis ij colormap(’gray’);
title(’Contour Diagram of the Surface’);
%
figure surf(YV*MT*XV’,’linestyle’,’none’);
title(’Surface Heights’)
%
figure
%
contour(Sr );
axis image;
axis ij
colormap(’gray’);
title(’Contour Diagram of the Surface’);


