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Abstract

This thesis presents a framework and workflow for the automatic preparation of data and images
to enable the use of hyper resolution images for mineshaft inspections. The focus of the thesis is
on the process from image registration to visualization of image data in the dimensions of 10° x
10° pixels.

Concepts regarding image registration are presented, including phase correlation, non-rigid regis-
tration and homography. The thesis addresses the suitability of different web mapping libraries for
building a visualization tool for deep mine shafts. Attention is focused on handling large volumes
of data, resulting from the demand for a high image quality with a resolution of 1 pixel per mil-
limetre for 2.5 - 10* m?. A mapping tool is developed, using the Leaflet JavaScript library. The
generation of a tile-layer as input for the mapping application is achieved, using GDAL for generic
tiling of hyper resolution images. JSON is used as data exchange format and the JSON files provide
meta-data associated with tag representations in the hyper resolution image. In order to guaran-
tee consistency in connecting meta-data to pixel coordinates an example for the use of a common
coordinate reference system is proposed. Finally, the functionality of the mapping application is
presented and the framework is tested.

Index Terms

automatic shaft monitoring; hyper resolution images; web mapping applications; Leaflet
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Kurzfassung

Diese Arbeit stellt ein Framework und einen Arbeitsablauf zur automatischen Vorbereitung von
Daten und Bildern vor, um die Verwendung von hochauflésenden Bildern fiir die Inspektion von
Minenschichten zu ermoglichen. Der Fokus der Arbeit liegt dabei auf dem Prozess von der Bil-
dregistrierung bis zur Visualisierung von Bilddaten mit den Dimensionen von 10° x 10° Pixeln.

Phasenkorrelation, Non-Rigid-Registration und Homographie werden als Konzepte der Bildre-
gistrierung vorgestellt. Die Arbeit befasst sich mit der Eignung unterschiedlicher Web-Mapping
Bibliotheken fiir die Entwicklung eines Visualisierungswerkzeuges fiir tiefe Schichte. Beson-
dere Aufmerksamkeit liegt auf der Handhabung grofler Datenmengen, die sich aus der Forder-
ung nach einer hohen Bildqualitit mit einer Auflésung von 1 Pixel pro Millimeter fiir 2.5 - 10*
m? ergibt. Leaflet, eine JavaScript Bibliothek, wird fiir die Entwicklung eines Mapping-Tools
verwendet. GDAL wird fiir die generische Erzeugung eines Kachel-Layers aus hochauflosenden
Bildern verwendet. Dieser Layer dient als Eingabe fiir die Mapping-Anwendung. JSON wird als
Datenaustauschformat verwendet und die JSON-Dateien beinhalten Metadaten, die mit den Tag-
Darstellungen im hochauflosenden Bild verkniipft sind. Um die Konsistenz bei der Verkniipfung
von Metadaten mit Pixel-Koordinaten zu gewihrleisten wird ein Beispiel fiir die Verwendung eines
gemeinsamen Koordinatenreferenzsystems vorgeschlagen. AbschlieBend wird die Funktionalitét
der Mapping-Anwendung vorgestellt und das Framework getestet.

Schlagworter

automatische Schachtiiberwachung; hochauflosende Bilder; Web-Mapping Anwendungen; Leaflet
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Chapter 1

Introduction

Mining Equipment

Figure 1.1: Model of a high-performance underground mining operation. Courtesy of DMT.

Mine shafts are exposed to various influences, such as motion of earth, vibration, abrasion through
production and corrosion of steel components, which causes the shafts’ building structure to de-
generate, which can lead to instabilities or water inflow. This can also cause possible production
interruptions and leads to very serious safety concerns for the mining operators. Mining compan-
ies distinguish between active production shafts and disused shafts. Interruptions in active shafts,
operated in high-performance underground mining operations as shown in Figure 1.1, lead to pro-
duction downtimes, often causing losses in the dimensions of several million Euro. The risk of
collapse of a disused deep-mine shaft, as found amongst densely populated areas like the Ruhr



region, is a great danger to the local infrastructure and can also lead to the pollution of ground
water. The detection of damages, wear and change is therefore of great interest for the mining
companies. Newer regulations from the mining authorities require more precise methods of shaft
inspection. In particular, cracks in the dimension of a few millimetres have to be detected in deep
mine shafts with a depth of 1000 m and a diameter of 8 m. The intervals of these inspections range
from monthly to daily inspection runs.

The current methods of inspection involve experts examining the shaft wall. These inspection runs
are not only time and labour intensive, but also deliver poor quality results, due to fatigue and lim-
ited attentiveness and precision of the human inspectors. Most inspections are only documented by
handwritten records. Additional photos taken by the inspectors support the documentation of their
findings, but there exists no system that provides comparison of surveys over time, an automatic
alert functionality, or a simply navigation through these surveys. Due to these disadvantages it is
necessary to develop a system, supporting an objective and high quality inspection. As presented
in [1] existing solutions use methods, such as kinematic laser scanning and profiling for 3D recon-
struction. These solutions generate huge volumes of data, in particular point clouds, that are very
difficult to handle by the means of data transfer and visualization. However, there are as of yet no
approaches towards a replacement of the regular visual shaft inspection.

In 2016, the project iDeepMon (Intelligent Deep Mine Shaft Inspection and Monitoring), aiming
at a fully automated process of shaft inspection, was awarded funding from the European EIT
RawMaterials Network. As part of the project team, the Chair of Automation is responsible for
the development of an automatic data processing system. This system receives amongst other data
a sequence of overlapping images along a shaft, acquired from an eight-camera prototype from
DMT!. This data is then processed to provide comparable and reliable datasets, linked to a virtual
representation of the shaft, upon which the shaft inspector is able to perform data evaluation and
investigation. Furthermore, the new system allows virtual marking of locations within the shaft
that need further attention; monitoring of critical changes over time in history reports; reliable
documentation of inspection results in case of damage or accidents; automated protocol generation;
reduction of inspection-time; and the possibility to carry out the inspection in a safe environment.

In order to detect millimetre-sized cracks, an accuracy of 1 pixel per millimetre is demanded. The
visualization of deep-mine shafts with a depth of 1000 m and a diameter of 8 m in the mentioned
accuracy leads to hyper resolution images in the dimensions of 10° x 10° pixels. Assuming PNG as
data format, 4 channels per pixel, 8 bits per channel, no compression and ignoring meta-data, the
file size of the resulting image is approximately 370 GB, just for the visualization of one inspection
run. Additional data, such as the input stream of single images from the camera prototype, as well
as the comparison of weekly inspection runs makes it obvious that the new system has to handle
data volumes of several terabytes.

The implementation of such a data processing system builds upon the ideas of data ingestion,
processing and storage, presented in [3] and also includes two research areas. The first area handles
the generation of hyper resolution images out of an input stream of smaller, overlapping images,
while the second area addresses the problem of visualizing large amounts of data in user-tolerated
times at the client. The above mentioned system requirements: visualization of high resolution

'DMT is a global corporate group of 14 engineering and consulting firms, providing interdisciplinary services in
the four markets Mining, Oil & Gas, Civil Engineering and Infrastructure & Plant Engineering[2]



imagery; navigation; marking and searching of locations; linking additional data to locations;
showing past records; and providing different types of information in several layers are addressed
by using web mapping applications. Their features are adapted to the specifications of automatic
shaft inspection. 2

Besides presenting methods of image registration, the main contributions of this thesis are:

1. showing the concept of using web mapping applications for hyper resolution image visual-
ization;
2. implementation of a web mapping tool for mineshaft monitoring;

3. development of a framework and workflow for the automatic preparation of data and images
to enable the use of hyper resolution images for mineshaft inspections.

2The nature of this project and its complexity is truly interdisciplinary. For this reason a number of different people
with different skill sets and knowledge have been involved. This will be visible within certain chapters in this thesis.



Chapter 2

Image Registration

Receiving a sequence of images, acquired from the prototype shown in Figure 2.1, identifies the
beginning of the workflow, presented in this thesis. Together the received images cover a horizontal
field of view of 360° over the total depth of a mineshaft. In order to obtain a single hyper resolution
image, used for the visual inspection of the shaft, these images are aligned through registration.
This chapter gives a short introduction to the registration methods, used for this purpose.

Figure 2.1: 8-camera prototype from DMT, which is supposed to acquire overlapping images of a
shaft wall for later use in a visualization tool.

2.1 Homography

A point p in 3 dimensional space is mapped to an image coordinate &,, where 0 denotes the
camera, through a combination of rotation and translation Ej,

- {RO to

Lo = ol 1 } p = Eyp, (2.1)



2.2. Phase Only Correlation

using the formulation of the projection matrix P,

K |0
:féwlo l]p:Pp (2.2)

where K = diag(f, f,1) denotes the camera intrinsics with f being the focal length.

Combining the projection matrix P and the camera extrinsics F it is possible to formulate the
projection of an image point &, into an image point Z; in a different image,

531 = PlElp = PlElEo IPO 15)0 = MIO:ED' (23)

For a planar scene, the mapping is reduced to

531 — H]_(]féo (24)

where H1o is a 3x3 homography matrix and &,, &; are 2D homogeneous coordinates[4]. In the
case of images taken from a horizontal rotation which are then projected onto a closed surface,
e.g., a cylinder, the registration problem is reduced to finding the translation between images. In
order to determine the translation £, different registration methods are available. In this thesis the
so called Phase Correlation and Non Rigid Registration are presented.

2.2 Phase Only Correlation

Given two translated images, either through the correct choice of projection or by acquisition, it is
intended to automatically find the offset between them.

(a) Reference image. f (b) Image g with an offset to the reference image.

Figure 2.2: Example for two horizontally translated images with overlapping area.

This can be achieved by analysing the phase correlation of the two overlapping images. For this
the cross-power spectrum R of the two input images f and g is computed by



2.2. Phase Only Correlation

FoG*
R = —|F o G*| (2.5

where F' = F(f) is the Fourier transform of the image f and G* = F(g) is the complex conjugate
of the Fourier transform of the image g. The correlation factor  can be computed by

v=F'(R) (2.6)
and the offset between the images is
(Az, Ay) = arg r(r;a;)({fy} (2.7)

Figure 2.3 shows the correlation factor + for the images shown in Figure 2.2.

Ax and Ay are then used in a reference object in MATLAB to perform the translation computa-
tion and the images are positioned relative to each other which is shown in Figure 2.4. A hyper
resolution image of a shaft wall is produced by finding the position of the images, acquired by the
prototype, relative to each other and computing a 2D reconstruction by correct alignment according

to their position.

><1011
1.3 4

—
[N
(9]
L

Correlation Factor
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L
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Figure 2.3: Correlation factor v of the images from Figure 2.2.



2.3. Non-rigid-registration

Figure 2.4: Overlay of the registered images according to the result of the phase correlation.

2.3 Non-rigid-registration

In the case of areas in the image chain, which can not be registered, methods such as the non-rigid
registration are necessary to perform the registration. This is especially important for monitoring
shafts over time. An image, capturing deformation of the shaft’s wall, is registered by taking a
previously acquired image of the same frame as reference image for the registration. This allows
comparison and visualization of time series images.

(a) Reference image. (b) Image which is to be registered.

Figure 2.5: Example for change in x-rays over time.



2.3. Non-rigid-registration

Figure 2.5 shows x-rays of a brain, acquired at different times. The second image shows deform-
ation in the brain area relative to the first image. The images are subdivided using a quad-tree
structure. A coarse to fine registration is performed from the top to the bottom of the tree. The
quad-tree structure of the decomposition of the reference image, as well as the registered and
modified patches in the quad-tree structure of the second image are shown in Figure 2.6.

(a) Reference decomposition tree. (b) Registered decomposition tree with modified position
of each patch.

Figure 2.6: Pyramid structures of the deconstruction tree, each with 5 layers.

A modified normalized phase correlation is used for registration. The images are compressed and
decimated from the bottom to the top of the tree, using Savitzky-Golay smoothing. This ensures
that only global features are used for global registration and local features (details) at the bottom
of the tree. The results of the smoothing and decimation for layer level [, 2 to 5 across the multi-
resolution pyramid are shown in Figure 2.7. The decimation rate shown corresponds to 2!~ 1.

Figure 2.7: Results from the Savitzky-Golay smoothing and decimation with decimation rates,
from left to right, 2, 4, 8 and 16.

A intermediate bivariate tensor polynomial approximation is used between each subdivision. This
eliminates the tendency of individual patches to shift away from the grid.

There may be regions in an image which contain no or very little information. The principle is
to weight the patch during the tensor approximation proportional to the information content. This



2.3. Non-rigid-registration

is achieved by vectorizing the tensor approximation, and using a weighted bivariate polynomial
regression. The reformed grid is then computed for all patches.

Layer=3 Jor-E sorS Layer =151

Figure 2.8: The above figures show the registration at sublayer 3 to 5 in the multi-resolution
pyramid. The color of the patch is proportional to the entropy of data contained within the patch.

Figure 2.8 shows the weighting of the patches dependent on the entropy of the data in a patch.
Other weighting measures such as standard deviation, total gradient, or moment invariants could
also be used. Adding weighted tensor polynomial approximation improves the quality of the re-
gistration by reducing the effect of patches with low information content. The parameter which is
suitable to indicate information content is dependent on the application. [5][6]



Chapter 3

Web Mapping Applications

Web mapping applications, such as Google Maps, Bing Maps or OpenStreetMaps are used by
geographic information systems (GIS) to display maps over the internet. This chapter presents
the method of using a raster tile map to display high resolution imagery. Raster tile maps are
also referred to as tiled web maps or slippy maps. Furthermore, the suitability of this method
for displaying hyper resolution images with a resolution of 106 x 105 pixels is investigated. In
addition, concepts of web mapping applications, including projections and coordinate systems
are introduced and relevant differences between different providers of web mapping libraries are
specified.

3.1 Tiling

At first, the general structure of a slippy map is explained. Then, the specific structure considering
the requirements from Chapter 1 is investigated with respect to the resulting file sizes. In addition,
different ways of tile indexing are presented.

3.1.1 General structure

Slippy Map 1is a term, referring to the zooming and panning functionality of modern web maps
(the map slips around when you drag the mouse)[7]. This map does not consist of a single high
resolution image, but is composed of many small images, called tiles. Each tile is a square with
a resolution of 256 x 256 pixels. These tiles are arranged in a raster and build up a pyramid like
hierarchy according to their zoom level. Figure 3.1 shows the top 5 levels of this hierarchy. On
zoom level 0, the whole world is displayed in a single tile. With each increasing zoom level,
the number of tiles doubles in horizontal and vertical direction. This means on zoom level z, the
whole map consists of 47 tiles with a side length of 256 - 2% pixels. In order to avoid reloading the
whole web page when the user pans around, the map is an AJAX component and the browser runs
JavaScript. AJAX (Asynchronous JavaScript and XML) is a concept of asynchronous data transfer
between browser and server. This allows to dynamically request new tiles from the server and
keep still relevant tiles displayed. The tiles are rendered in advance and only actually needed tiles

10



3.1. Tiling

Zoom Level Q,Q\l Tile, 256x256 px
Zoom Level 1,, \4 Tiles, 512x512 px

Zoom Level 2 <

/
/
/

Zoom Level 3 <

Zoom Level 4 - \\\256 Tiles, 4096x4096 px

Figure 3.1: Representation of the pyramid tiling scheme from zoom level O to 4.

are loaded, which makes this method significantly faster than loading the whole map or render the
current viewport. Rendering, storing and providing tiles are the main functionalities of a so called
tile server. The maximum zoom level most tile servers support is 18. However, one can go beyond
that level, by setting up a custom tile server.

3.1.2 File size consideration

The maximum possible zoom level z,,,, can be determined by,

ty = 256, 3.1
. M (3.2)
Zmaz = 108y (8)], (3.3)

where ¢ is the side length of a tile in pixels, s is a scaling factor and p, and p, specify the number
of pixels in horizontal and vertical direction of the hyper resolution image.

The number of tiles 7 in the respective direction at each zoom level can then be calculated by,

2(Zmazfz)
n = P’/t—w , (3.4)

11



3.1. Tiling

Table 3.1: Data sizes of each zoom level for the visualization of a shaft with a depth of 1000 m
and a diameter of 8 m and an accuracy of 1 pixel per millimetre. Assuming PNG as data format, 4
channels per pixel, 8 bits per channel, no compression, no meta-data.

Zoom level | Horizontal tiles | Vertical tiles Data size | Cumulated data size
0 1 1 256 kB 256 kB
1 1 2 512kB 768 kB
2 1 4 1MB 1.75MB
3 1 8 2MB 3.75 MB
4 1 16 4 MB 7.75MB
5 1 31 7.75MB 15.5MB
6 2 62 31 MB 46.5 MB
7 4 123 123 MB 169.5 MB
8 7 245 | 428.75 MB 598.25 MB
9 13 489 1.55GB 2.14GB

10 25 977 5.96 GB 8.10GB
11 50 1954 23.85 GB 31.95GB
12 99 3907 94.43 GB 126.38 GB

where z is the current zoom level and p the number of horizontal or vertical pixels.

Table 3.1 shows the number of tiles in horizontal and vertical direction, the data size and the cu-
mulated data size of each zoom level. The visualization of a shaft specified in Chapter 1 requires a
pyramid structure with 12 zoom levels and leads to an overall data size of approximately 125 GB.
About 8 MB need to be transferred in order to display a viewport filling the whole screen of a
monitor with a resolution of 1920 x 1080 pixels. Data transfer rates above 64 Mbit /s guarantee
loading times of under 1 second for this viewport and are sufficient to provide tiles without notice-
able latency as the user navigates through the map. The currently supported 18 zoom levels are
sufficient to visualize images with 6.7 - 107 horizontal and vertical pixels. The method of using a
raster tile map is therefore suited for displaying hyper resolution images in the field of mineshaft
inspections.

3.1.3 Indexing

According to [8], the three main systems of tile indexing are: Google XYZ, Microsoft QuadTree
and TMS (Tile Map Service). Figure 3.2 shows the differences between tile indexing in these
systems. Dealing with GIS-applications, the terminology for up-down is north-south, referring
to the vertical axis and the terminology for left-right is west-east referring to the horizontal axis.
The first row shows Google’s tile coordinates in the format (x,y). The origin tile is in the north-
west corner of the map. [9] The z-value (first coordinate) increases from west to east and the
y-value (second coordinate) increases from north to south. The second row shows TMS indexing
in the format (x,y), however compared to Google the origin tile starts in the south-west corner with
increasing x-value towards east and increasing y-value towards north. Both systems, Google and

12



3.2. Map Projections

Zoom 0 Zoom 2
0,00 Google 00 _ 1,0 20 | 30
0,0 .| TMS 0,3 " 1,3 " 23 -+ 33
" QuadTree 00+ 01- goa0 | 11
| 0,1 1,1 2.1 3.1
g 0,20 1,2/8m22 32
| Zoom 1 02 g 03 WE 2% P13
0;00 - 1,0 ': 0,2 .13 ]I_ 2,2 | 82 1
01 117 01 i P21 | B8
0 @it 20 +21 | 30 | 3
0,1 1,1 0,3 | 1,3 J{ 2.3 3,3 1
0,0 1,0 00 | 1,0 : 20 3,0
2 3 22 | 23 !_ 32 33

Figure 3.2: Different tile indexing schemes for zoom level O to 2. The first row shows Google’s
tile coordinates in the format (x,y). The second TMS indexing (z,y) and the third quad-keys.
Attribution: Felipe Menegaz

TMS, use the zoom level of the respective layer as additional coordinate z, which is not shown in
Figure 3.2. The third row shows Microsoft’s Bing Maps Tile System indexing. This system uses so
called quad-keys. On zoom level 1 the map is divided into 4 tiles, indexed clockwise with (0), (1),
(3) and (2), starting in the upper-left corner. With each increasing zoom level the quad-keys of the
children are indexed in the same way, starting with the quad-key of the parent tile. As shown in
Figure 3.2, the tile with quad-key (3) is the parent of the tiles with quad-keys (30) through (33).

3.2 Map Projections

A map projection is a mathematical transformation of a 3-dimensional spherical model, i.e. the
planet earth, into a flat 2-dimensional surface. All map projections create distortions and are di-
vided into categories according to which properties they preserve: area; shape; direction; distance
or scale. The standard for web mapping applications is the Web Mercator Projection, which is a
variant of the Mercator projection. The Mercator projection is a cylindrical map projection. Fig-
ure 3.3 shows the construction of a cylindrical projection. The earth is approximated with a sphere
and a cylinder is placed tangential to it associated with the equatorial line. A line is extended from
the centre point of the sphere and a point on the surface of the sphere is mapped to a point on the
cylinder as the line intersects the cylinder. The cylinder is then rolled out to obtain the map, shown
in Figure 3.4. Distortion rates grow as the distance to the equatorial line increases and the projec-
tion goes to infinity at the poles. However, the scale of the east-west stretching is equal to the scale
of the north-south stretching at every point, making the Mercator projection conformal. Angles
are preserved locally, which means that the shape of relatively small objects is preserved as well.

13



3.2. Map Projections

In addition north and south equal straight up and down, and east and west equal straight right and
left at any point. In order to avoid partially filled tiles, a square aspect ratio is used and because the
projection goes to infinity at the poles, polar regions are excluded, by truncating latitudes above

85.05 degrees. [10][9][11][12]

Figure 3.3: Construction of a cylindrical map projection.[13]

Figure 3.4: Result of the Mercator projection.[14]

14



3.3. Coordinate Systems

3.3 Coordinate Systems

In general, coordinate systems are used to address specific locations on the earth’s surface. The
most common is the geographic coordinate system, where locations are specified by latitude, lon-
gitude and elevation. Lines of latitude and longitude form a grid over the earth’s surface, as shown
in Figure 3.5. Lines of latitude are parallel to the equator and circle the globe. The latitude of a
point is specified by the angle between the axis, passing through this point on the surface of the
earth and the equatorial plane. The equator has a latitude of 0 degrees and the poles 90 degrees
north, respectively south. These lines are the same distance apart. Lines of longitude, also called
meridians are vertical to the equator and circle the globe. They intersect at the poles, making them
not equidistant. The prime meridian at 0 degree longitude runs through the town Greenwich. The
longitude of a point is specified by the angle between this prime meridian and the meridian run-
ning through this point. The earth is divided into 180 degrees of longitude west, and 180 degrees
of longitude east. Elevation is specified as the normal distance between a point on the surface and
the geoide of the mathematical model of the Earth’s sea level.

In order to address locations on a map, web mapping applications translate spherical coordinates,
longitude and latitude, to Cartesian coordinates x and y. In the terminology of web mapping
applications, these coordinates are referred to as world coordinates. World coordinates are inde-
pendent of the current zoom level and refer to the tile at zoom level O with x and y ranges between
0 and 256. World coordinates are specified by floating point values, measured from the upper-left
corner to the specific location[9]. The z coordinate increases towards east and the y coordinate
towards south. Pixel coordinates are used to identify a specific pixel on the map at a specific zoom
level. Given latitude ¢, longitude A, the current zoom level z and the side length of a tile ¢, the
pixel coordinates p, and p, can be calculated by,

r = 2%, 3.5)

_ (o7
54 = sin (180 , (3.6)

A+ 180
. = , i
Pe =T 555 (3.7

1 1+S¢

= b= —1 .
Dy T<O5 P 0g<1_8¢)), (3.8)

where 7 is a scaling factor and s, is the sine of ¢ (in radians), as described in [10]. Using Equa-
tion 3.4 with p as pixel coordinates and taking the integer part of the solution instead of rounding
up, the tile index of the tile, where the pixel is located can be determined.

15



3.3. Coordinate Systems

Figure 3.5: Representation of lines of latitude ¢ and longitude .

16



Chapter 4

Implementation

The implementation of a web mapping application requires the use of a web mapping library.
Several APIs (Application Programming Interface) exist from providers like Google, Microsoft,
OpenLayers, Leaflet, Mapbox etc., however not every library is suited for the implementation of
a non-GIS application. As web mapping applications are intended for the use of GIS maps and
geodata, they expect the base map to be in Web Mercator projection, as well as the use of a geo-
graphic coordinate system. An image of a shaft wall, or any other non-GIS imagery, contains no
geographic informations with respect to longitude and latitude. Although hypothetical geographic
coordinates can be assigned to the corner points of the image as proposed by [15], this leads to
inaccurate measurements or presentations of distances due to the effects of distortion. Leaflet is
the only library that natively supports methods for defining a coordinate reference system (CRS).
Defining a CRS regulates the assignment of coordinates, which makes the use of projections un-
necessary. Besides that, an external library called Proj4Leaflet exists, that supports the use of
projections and CRSs not built into Leaflet. Furthermore Leaflet is the most light weight library
with a data size of approximately 130 kB, supports all major browsers on desktop and mobile plat-
forms, has a well documented API and is free to use. Therefore, Leaflet’s JavaScript library is used
for the implementation of a visualization tool for hyper resolution images in the fields of mineshaft
inspection. !

4.1 Layers

Web mapping applications display different information on different layers. Leaflet accepts three
basic types of input data for these layers: image data; raster tiles; and vector data. Every type
can be used as base map, or as an overlay for certain sectors, or as a full layer on top of the base
map. Large images can not be handled efficiently due to limited data transfer rates. Therefore large
images are divided into tiles as described in Chapter 3. SVG (Scalable Vector Graphics) images
can also be used in Leaflet. The data size of such an image does not depend on its dimensions,
but on the information it contains. As long as the data size is small enough, a SVG image can

I'This chapters’s descriptions of Leaflet’s methods, classes and functionalities are taken from the tutorials and
documentation, provided by http://leafletjs.com

17



4.1. Layers

be handled efficiently by assigning its corner points to coordinates on the map. Opacity can be
adjusted for all kinds of image and raster data and is used to display different layers at once, e.g.
a heat, pressure or error map on top of the base map. The use of vector data will be discussed in
Section 4.2. Figure 4.1 shows different layers with different data types on top of each other.

Figure 4.1: Representation of different information in different layers. From bottom to top: a raster
tile layer as base map; an image layer using a PNG image; an image layer using a scalable vector
graphic (SVG); and a vector layer represented by markers on the map.

In order to receive continuous location referencing across all layers, a CRS is defined. The Chair
of Automation uses different software for image processing and data analysis. Especially in the
data exploratory phase, MATLAB and Python are mainly used. Both represent images as a 3 di-
mensional matrix. This matrix has 3 fields for every pixel, holding values from 0 to 255 for the
RGB color space. The CRS is defined to use the row and column indices of this matrix as y and
x pixel coordinates of the image. This ensures correct referencing between different software.
Furthermore a coordinate system in pixel coordinates provides simple integer coordinates that can
be used to identify certain tiles with the formulas from Chapter 3. In addition it is easily possible
to convert between pixels and meters, if the camera intrinsics and extrinsics are known. Leaflet
uses the CRS internally for all distance and location calculations. Leaflet’s built in CRS.Simple is
used for flat maps and transforms longitude and latitude into x and y world coordinates directly.
The new CRS is generated through extending this CRS.Simple by defining an affine coordinate
transformation. With

Sé{“o}, (4.1)
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Ax
t2 : 4.2
o @2)

N [z ]
= , 4.3
P=1y (4.3)
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the matrix equation is formulated as

p=Sp+t, 4.5)

with 2 and g, being the transformed coordinates of a point p with coordinates = and y, the scaling
matrix S with

1

a=c=-, (4.6)

s

using s from Equation 3.2 and the translation vector ¢ with horizontal translation Az and vertical
translation Ay.

The corner points of the image can then be used as pixel coordinates to define the map bounds,
which ensures correct loading of tiles. The tile layer, serving as base map is loaded by committing
the directory structure of the raster tile pyramid as URL (Uniform Resource Locator). Leaflet uses
the OpenStreetMap standard scheme for this URL, referring to tiles that follow Google’s indexing
system. Figure 4.2 shows a representation of the directory structure, following this scheme. Every
zoom level has its own sub-directory in which again every x-index makes up an own sub-directory.
The y-index is used in the file name of the tiles. The generation of this tile-directory will be
described in Chapter 5. Each layer can be added to the so called layer control, which enables the
user to switch between base maps and show or hide additional layers. Figure 4.3 shows the user
interface of the layer control among other features.
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Figure 4.2: Representation of the directory structure resulting from using the OpenStreetMap
standard URL (tile name) scheme: ’/zoom/x/y.png’.
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Figure 4.3: Representation of the user interface, that allows the user to switch between differ-
ent base maps; show or hide additional layers; place, edit or delete markers; and export tagged
locations as a JSON file. Icons made by Leaflet, www.flaticon.com/authors/anton-saputro and
www.flaticon.com/authors/google.
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{ "type": "FeatureCollection",
"features": [{"type": "Feature",
"geometry": {"type": "Point",
"coordinates": [9393,802]},
"properties": "name": "Locationl",
"file": "reportl.pdf"}},
{"type": "Feature",
"geometry": {"type": "Point",
"coordinates": [178,2057]},
"properties": "name": "Location2",
"file": "report2.pdf"}}1}

Source Code 4.1: Example for the content of a JSON file, containing two locations with associated
coordinates and linked pdf-files.

4.2 Location Tagging

It is possible to add information to locations in the visualization. In web mapping applications,
tagged locations are represented by markers. JSON (JavaScript Object Notation) objects are used
by Leaflet to store the information content. These objects are also called features and can be
stored in JSON files. JSON is used as data exchange format between different software®. Besides
vector data, these JSON files provide meta data associated with the tag representation in the hyper
resolution image. Thus it is possible to link additional files and documents to marked locations,
e.g. downloadable error reports or inspection results. The content of such an JSON file can be
defined as follows:

Besides using markers to represent tagged locations, web mapping applications use different geo-
metries to display vector data: points; lines; circles; rectangles; and polygons. A marker is Leaf-
let’s native representation of a point. Different features can be displayed at different zoom levels,
which avoids overcrowded maps with too much information. Google Maps uses this functionality
to display street names of small streets only below a certain zoom level.

In order to navigate through all tagged locations, a navigation list is implemented, as shown in
Figure 4.4. By clicking on a location in this list, the map is centred on its coordinates and zoomed
closer. The same can be achieved by clicking on a marker on the map. The navigation list also
contains click-able links forwarding to the associated PDF-files.

Another feature is implemented using the Leaflet.draw plugin, that allows the user to place and edit
markers on the map. This enables the shaft inspector to tag locations, that need further attention.
To start placing markers, the user has to add a so called drawlayer to the map in the layer control.
If markers are already on the map when activating the drawlayer, they will be added to this layer
automatically. The user can then edit, delete or remove these markers, or add new ones. In order
to save new locations, the feature collection can be exported as a JSON file. Figure 4.4 shows the
graphical user interface (GUI) of the application with a short description of its functionalities. The
source code of the HTML file of the application is shown in the list of source codes in the appendix
of this thesis.

2MATLAB supports JSON encoding and decoding since version R2017a.
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Figure 4.4: Graphical user interface with description of features. Note that all layers from Fig-
ure 4.1 are displayed.

4.3 Image Identification

The hyper resolution image production process includes the composition of the original images
according to the results of the registration, and a blending step. This blending produces regions in
the image where important features might be unrecognisable. To account this problem, a method
is implemented to inspect all original images, which contribute to the blended region. This feature
uses MATLAB’s reference object, that was generated during registration, for referencing pixel
coordinates of the map with the original images. As the usability of the application depends on
the amount of data being transferred, considerations concerning data structure demand explicit
reference. The attempt to use a matrix with the dimensions of the composite image and store the
IDs of the belonging original image in the corresponding field of the pixel fails due to the resulting
huge amount of data. A solution is found by storing only information about the image area and its
location in the hyper resolution image in an array, which is shown in Table 4.1. The row index of
the array is used as image ID and a second array contains the belonging file names of the original
image. Table 4.2 compares the two approaches, considering filesize and dimensions. The resulting
file size of the reference array is only proportional to the number of original images.

By clicking the right button of the mouse at any location on the map, a popup opens, which displays
the pixel coordinates of this location. In addition, the popup contains a link that opens a slideshow
tracing back to the original captured images. Figure 4.5 shows this slideshow. This functionality
can be expanded to show images of different inspection runs within the same frame. This enables
the inspector to compare changes in the shaft wall over time, e.g. length of cracks, deformation or
wear. In order to monitor these changes, the shaft inspector can then use the tagging functionality
to mark locations that need further attention.
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4.3. Image Identification

Table 4.1: Extract of the reference array of approach 2, storing the corner points of the original
images in pixel coordinates, referring to an area in the composite image. The row index is used as

ID, linked to the actual file name of the image.

Tmin Tmaz | Ymin | Ymaz

1 722 1| 451

622 | 1476 1| 451
1376 | 2002 1| 451
14187 | 14260 | 904 | 2525
14885 | 14260 | 904 | 2525

Table 4.2: Comparison of different data structures for image backtracking. Approach 1 uses an
array in the dimensions of the composite image to store the IDs of the belonging original images
for each pixel. Approach 2 stores only the corner points of each original image. The test was
performed for a high resolution image with 14260 x 2525 pixels, composed of 75 images.

‘ Number of rows ‘ Number of columns ‘ Resulting file size

Approach 1 2525
Approach 2 75
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[ Maps for Mines x Mdml - 0 x

& C O O 100.028000/stoneWallMap.htmi w @

Figure 4.5: Slideshow presenting overlapping images from the construction of the hyper resolution
image.
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Chapter 5

Dataflow Design

This chapter completes the framework for hyper resolution image visualization in mineshaft in-
spection by presenting the last missing component: the implementation of the tiling process. The
complete workflow from image acquisition to data visualization is considered in detail and a solu-
tion towards a generic tiling and registration process is proposed. Finally the workflow is tested.

5.1 Map Tiling

In order to use a hyper resolution image as a map in web mapping applications, the image has to be
divided and rendered into base tiles and overview tiles. Base tiles are tiles at the maximum zoom
level and overview tiles are tiles below that zoom level. The tiles are produced and stored by a
tile server. For test purposes a local tile server is set up, using GDAL (Geospatial Data Abstraction
Library) as tool for image tiling. Single tiles on this server can be accessed and investigated with re-
spect to filesize, indexing and correct referencing, which is very valuable for debugging during the
development of the mapping application. Furthermore the maximum number of zoom levels is only
limited by disk size. GDAL is also used internally by many tile server providers to perform image
tiling. The generation of base tiles is a simple cutting process. Creating overview tiles require
image re-sampling (scaling) methods. GDAL uses the “average” scaling algorithm per default
for rendering overview tiles, but also supports other algorithms!. The Python-script gdal2tiles.py
is normally used for tiling, but only supports the TMS indexing scheme. As mentioned above,
Leaflet follows the OpenStreetMap URL scheme for addressing tiles, following Google’s indexing
scheme. Therefore, a modified version of this script is used, provided by [16]. Figure 5.1 shows
a sub-folder of the directory structure of a tiled test image on the example of Windows Explorer.
Following the OpenStreetMap URL scheme for addressing tiles leads to duplicate file names in
different directories, as there are many tiles with the same y-index. Although Leaflet follows this
scheme, it is possible to define an own addressing scheme to avoid duplicate file names. Meta-data
can be added by extending the directory structure or the file name itself. However, Leaflet transfers
the requested tile coordinates only as plain integers. It is therefore not possible to use leading zeros
in order to construct file names with the same number of characters. An example for a thoughtful

"http://www.gdal.org/gdal_translate.html
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5.1. Map Tiling

way of tile naming is Microsoft’s Bing Maps’ use of quad-key indexing, which allows unique file
names. In addition tile retrieval performance is enhanced, which is described in [10] as follows:
”Quadkeys provide a one-dimensional index key that usually preserves the proximity of tiles in XY
space. In other words, two tiles that have nearby XY coordinates usually have quadkeys that are
relatively close together. This is important for optimizing database performance, because neigh-
boring tiles are usually requested in groups, and it’s desirable to keep those tiles on the same disk
blocks, in order to minimize the number of disk reads.”

| ¥ 5 | C\Users\brand\OneDrive...  Bildtools - ] Zoom level
Start Freigeben Ansicht Verwalten 0

<« v <« StoneWall » Tiles » stoneWall )@) R‘:-L_i durchsuchen 0

x-index

» o Schnellzugriff
> 4 OneDrive

™ Dieser PC

0.png

>+« Bibliotheken
» W Netzwerk

*¢ Heimnetzgruppe

8.png 9.png

10Elemente 1 Element ausgewahit (106 KB) FHE|

Figure 5.1: Representation of the directory structure of the image tiles in windows explorer. Note
that the image 9.png has a white area at the bottom of the image. This results from tiling an image
whose dimensions does not match a power of 2.
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5.2 Workflow
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Figure 5.2: Workflow from image acquisition to data visualization.

The final workflow is shown in figure 5.2. The original images of the shaft wall are acquired by
an 8-camera prototype of DMT. Together with meta-data these images are sent to the data centre,
where they are registered and stitched to obtain a continuous visualization of the shaft wall. The
image model is then tiled and the tiles are stored on a tile server. A generic solution for both,
image registration and tile creation, is found by using Apache NiFi for automated data processing,
as described in [3]. A NiFi GetFile processor monitors the incoming directory of the data centre’s
storage and once a complete sequence of images arrives, an ExecuteStreamCommand processor
is triggered, that uses a Python script for image registration and stitching. The composed hyper
resolution image is then sent to another processor, that uses the modified version of gdal2tiles.py
to create the tiles. A PutFile processor places the tiles in the correct directory structure on the tile
server. The creation and storage of tiles is executed by the data centre, but can also be outsourced
to an external tile server provider. A web server hosts a web page with the implementation of
the web mapping application and provides additional datasets and necessary meta-data. This web
server permits viewing the data on any device, stationary or mobile. Finally the shaft inspector is
able to access the web page and the data can be viewed.
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5.3 System Testing

(a) VST image of the star-forming region Messier  (b) VISTA gigapixel mosaic of the central parts of the Milky Way
17

Figure 5.3: Two examples for hyper resolution images: (a) 664 MB TIFF-image in the dimensions
16017 x 16017 px and (b) 24.6 GB PSB-image in the dimensions 108199 x 81503 px. Credits:
(a) ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute;
(b) ESO/VVYV Survey/D. Minniti Acknowledgement: Ignacio Toledo, Martin Kornmesser

While the camera prototype from DMT is still in development, test images are needed for the
implementation of the mapping tool and for testing its performance. Tests are performed on hyper
resolution images provided by the European Southern Observatory (ESO), as well as on self-
acquired images. Figure 5.3 shows the two images that are used for the performance tests. Image
(a) contains approximately 3 - 10® pixels and image (b) 9 - 10° pixels. JPEG can not be used as data
format for image (b), because JPEG images have a limited side length of approximately 65000
pixels[17]. Special data formats, such as BigTI/FF or Photoshop’s PSB are used to handle large
images. Unfortunately the ESO is only able to provide image (b) in the PSB file format, which
is not supported by GDAL. Therefore a smaller version of this image (3.92 GB) with a resolution
of 40000 x 30131 pixels in the TIFF file format is used for testing. Both images are inconvenient
to use by the means of loading times and resource consumption on a laptop with an Intel Core i7
processor, 32 GB of RAM, and a SSD storage, even when stored and accessed locally. However
tiling the images enables a zooming and panning functionality without latency, even when serving
the tiles over the internet.

In order to test the whole workflow from image acquisition to data visualization, sequences of test
images are acquired. Figure 5.4 shows two different approaches to image acquisition. The 360°
panorama image (a) is composed of 3200 images from a slit-camera, as described in [18]. For
obtaining the image sequence of image (b), a camera is positioned normal to a wall and moves
along the wall in the same distance as the images are acquired. Image (b) is composed of 75
images. Image registration methods, presented in Chapter 2, are used to register the sequences of
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5.3. System Testing

images and stitch them together to obtain hyper resolution images. The image reference object in
MATLAB, created during registration, enables backtracking to the original images in the mapping
tool. GDAL handles tiling as expected and it turns out that the actual file size of a single tile is
only about one half of the originally assumed 256 kB, due to compression. This means that the
complete structure of the tile directory for the visualization of a deep mine shaft will only need
around 60 GB of storage, if a similar compression rate applies. Finally, the data visualization in
the mapping tool as well as the tool’s functionality works as described.

(b) Composite image of a stonewall

Figure 5.4: Two examples for stitched images: (a) 6.5 MB png-image in the dimensions 6400 x 972
px, composed of 3200 images and (b) 57.1 MB png-image in the dimensions 14260 x 2525 px,
composed of 75 images.
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Chapter 6

Conclusion and Outlook

It is concluded that the framework and workflow for hyper resolution image visualization estab-
lished in this thesis meet the requirements of mineshaft inspection defined in Chapter 1. Fur-
thermore the ability to use web mapping applications as framework for hyper resolution image
visualization independent of their nature is demonstrated. Tiling an image with respect to a pyr-
amid scheme is not only suited for web mapping applications, but for displaying hyper resolution
images in general. This approach can be extended to be used with different software in order to
handle visualization of very large datasets, both for vectorized and raster data.

Tests on tile servers from different providers have to be performed. This investigation allows
decisions on whether to stay with the local solution, or to outsource image tiling, storage and tile
serving to an external provider.

The integration of all components, from image acquisition in the mineshaft to providing data to
the shaft inspector, into a fully automated system will be a future issue of the project iDeepMon.
As the data volumes which the system needs to handle are truly massive, data transfer rates are
a limiting factor and the transport of image data to a local storage and further to the data centre
could be problematic. However, everything was prepared to guarantee a functioning process, once
the data is at the data centre.
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Appendix

During the work for this thesis, the author used own code as well as code that was available at the
Chair of Automation.

MATLABQ) is a registered trademark of The MathWorks, Inc.
Python(®) is a registered trademark of the Python Software Foundation.

NiFi™ is a registered trademark of the Apache Software Foundation in the United States and other
countries.

JavaScript(®®) is a trademark or registered trademark of Oracle in the U.S. and other countries.

Leaflet is developed by Vladimir Agafonkin, previously with CloudMade but is now employed by
Mapbox.
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coordinates and linked pdf-files. . . . .. ... .. ... ... ... ... .. .. 21
1 Mapsfor Mines . . . . . . . . . . . . e 35

<!DOCTYPE html>
<html lang="en">
<head>
<title >Maps for Mines</title >
<meta charset="UTF-8">
<!—— IMPORT —>
<!l——<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
—_—>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="/Sources/w3.css">

<!—— LEAFLET —>
<link rel="stylesheet" href="/Sources/leaflet/leaflet.css">
<script src="/Sources/leaflet/leaflet.js"></script>

<!—— SIDEBAR —>

<link rel="stylesheet" href="/Sources/leaflet-sidebar-master/src/L.Control
.Sidebar.css">

<script src="/Sources/leaflet-sidebar-master/src/L.Control.Sidebar.js"></
script>

<!—— JQUERY —>
<script type="text/Jjavascript" src="/Sources/jQuery.Jjs"></script>

<!—— LEAFLET DRAW —>
<link rel=’stylesheet’ href=’/Sources/leaflet/leaflet.draw.css’ />
<script src=’/Sources/leaflet/leaflet.draw.js’></script>

<!—— Page style —>
<style >
html, body {
height: 100%;
}
#footer {
position: fixed;
bottom: O;
height: 50px;
right: 0;

width: 100%;
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}

#mapContainer {
position: fixed;
top: 126px;
bottom: 50px;
width: 100%;
right: 0;

}

#map {
background: #f2f2f2;

}

</style >

<script>
function init() {

var tileSize = 256;

var xImagelLength = 14260;

var ylmageLength = 2525;

var xLength = nextPowerOf2 (xImageLength);

var yLength = nextPowerOf2 (yImageLength);

var maxLength = Math.max(xLength, yLength);

var scaleFactor = maxLength / tileSize;

var overzoom =

var mapMinZoom

var mapMaxZoom
overzoom; //5

var activeMark = "w3-pale-green";

03
Math. ceil (Math.log(scaleFactor) / Math.log(2)) +

o

= MAP, TILELAYERS

// Define coordinate reference system
L.CRS.MySimple = L.extend ({}, L.CRS.Simple, {
transformation: new L. Transformation(l / scaleFactor, 0, 1 /
scaleFactor , 0)

IOF

//Specify map bounds (dimensions of the image)

var mapBounds = L.latLngBounds ([
[yImageLength, 1], // southwest corner
[1, xImageLength] // northeast corner

D3
// Load tilelLayers to variables

var stoneWall = L.tileLayer(’/Tiles/stoneWall/{z}/{x}/{y}.png’, {
minZoom: mapMinZoom,
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maxZoom: mapMaxZoom,

bounds: mapBounds,

attribution: "Images from Jakob Koenig",
noWrap: true

b

Y/ {x}/{y}.png’, {
minZoom: mapMinZoom,
maxZoom: mapMaxZoom,
bounds: mapBounds,
noWrap: true

stoneWalllnverted = L.tileLayer(’/Tiles/stoneWallInverted/{z

b,
geoData = L.tileLayer(’/Tiles/geo/{z}/{x}/{y}.png’, {
minZoom: mapMinZoom,
maxZoom: mapMaxZoom,
bounds: mapBounds,
noWrap: true,
opacity: 0.3

})s

// Define Map
var map = L.map(’'map’, {

maxZoom: mapMaxZoom,

minZoom: mapMinZoom,

crs: L.CRS.MySimple,

zoomControl: false ,

layers: [stoneWalllnverted , stoneWall]
1) .setView ([0, 0], mapMinZoom + 2);

map . fitBounds (mapBounds) ;

var baseMaps = {
"Inverted": stoneWalllnverted ,
"Original": stoneWall

var sidebarContent = document. getElementByld(’listings’);
[ x %
* Report List
*/
function buildReportList(data) {
// Iterate through the list of reports
Object.keys(data).forEach(function (key){
var currentFeature = data[key]. feature;
var prop = currentFeature.properties;
var listing = sidebarContent.appendChild (document.
createElement(’11"));
listing .className = 'w3-bar-item’;
listing .classList.add("w3-border");
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/ x %

listing

activeMark) ;

function (key) {

listing .classList.add("w3-hover-light-gray");
listing .id = key;
var link = listing.appendChild(document.createElement(’a’)

link . href = "4’ ;

link .className = "title’;
link . dataPosition = key;
link .innerHTML = "<h4>"+4prop.name+"</h4>";

// Add an event listener for the links in the sidebar

link .addEventListener(’click’, function () {

var currentFeature = data[this.dataPosition]. feature;
flyToPoint(currentFeature);
var activeltem = document. getElementsByClassName (

if (activeltem[0]) {
activeltem [0]. classList.remove (activeMark) ;
}

this.parentNode.classList.add(activeMark);

// Highlight marker on map

var jsonLayers = jsonLayerGroup.getLayers();

for(var j=0; j<jsonLayers.length;j++){
Object.keys(jsonLayers[j]. _layers).forEach (

jsonLayers[j]. -layers[key].setlcon(blueMarker)

IDE
}

data[this.dataPosition ].setlcon(redMarker);

1)

// Create a new div with the class ’details’ for each
report

// and fill it with the associated file

var coords = listing.appendChild(document.createElement(’
div’));

coords .className = "coords";

coords .innerHTML = "X: " + currentFeature.geometry.
coordinates[0] + "™ || Y: " 4+ currentFeature.geometry.coordinates [1];

var associatedFile = listing.appendChild (document.
createElement(’a’));

associatedFile . href = "4’ ;

associatedFile .className = "associatedFile";

innerHTML) ;

})s

associatedFile .innerHTML prop. file;
associatedFile.addEventListener("click", function () {
window . open (" /Reports/PDFs/" + datum + "/" + this.

1}
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* OVERLAYS, REPORTS

*/ var activeLayerID = null;
var jsonLayerGroup = L.layerGroup();
var datum;
var reportFilesDirectory = ’/Reports/Reports/’;
var fNames = [];

// Create the control and add it to the map;
var control = L.control.layers (baseMaps, null, {
position: ’topright’,
hideSingleBase: true,
sortLayers: true
}):; // Grab the handle of the Layer Control, it will be easier to
find.
control .addTo (map);
control.addOverlay (geoData, "Geodata");

$.ajax ({url: reportFilesDirectory }).then(function(html) {
// create temporary DOM element
var document = $(html);
// find all links ending with .pdf
document. find (" a[href$=".Json"]’).each(function () {
var jsonName = $(this).text();
fNames . push (jsonName) ;
1
for(var f=0; f<fNames.length; f++){
(function (f) {
$.ajax ({
dataType: "json",
url: reportFilesDirectory+fNames[f],
global: false ,
success: function (data) {
createOverlay (data, fNames[f]);
¥

s
P (f);
}
s

// Pipes
var pipesLayer = new L. geoJson();
//pipesLayer.addTo (map) ;
$.ajax ({
dataType: "json",
url: "/Reports/pipes.json",
success: function(data) {
pipesLayer.addData(data);
}
1

control .addOverlay (pipesLayer, "Pipes’);

map.on(’overlayadd’, onOverlayAdd);
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map.on(’overlayremove’ , onOverlayRemove);
var firstLoad = true;

function onOverlayAdd(e) {
// DRAW Layer
if(e.layer. _leaflet_id===getDrawFeutureGroup (). _leaflet_id){
if (activeLayerID!==null){
var activeLayer = jsonLayerGroup.getLayer (
activeLayerID);

var drawlL = getDrawFeutureGroup () ;
var layers = activeLayer.getLayers();

setTimeout (function () {
map.removeLayer(activeLayer);

oo

setTimeout (function () {
for (var 1=0; l<layers.length; 1++){
drawL . addLayer(layers[1]);

}.o5);
}

// JSON Layer with Reports
if (jsonLayerGroup.hasLayer(e.layer)){
if (firstLoad && sbOpen===false){
w3 _toggle () ;
firstLoad = false;
}
$("#listings’).empty();
var layerName = e.name;
var layerID = e.layer. _leaflet_id;
datum = layerName.substr (0, layerName.lastIndexOf(’.”)) ||
layerName ;
buildReportList(e.layer. _layers);
// Exclusive JSON Layers
jsonLayerGroup.eachLayer(function (layer) {
if (layer. _leaflet_id !== layerID){
setTimeout (function () {
map . removeLayer(layer);
booDs
}
b

activeLayerID = layerID;

}

function onOverlayRemove(e) {
var layerID = e.layer. _leaflet_id;
if (layerID===activeLayerID){
activeLayerID = null;
¥
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}

function createOverlay (data, layerName) {
var overlay = L.geoJSON(data, { // Make the layer from the
JSON and grab the handle.
onEachFeature: onEachFeature ,
pointToLayer: function (feature, latlng) {
var marker = L.marker(latlng , {icon: blueMarker});
marker.on("click", function (e) {
var jsonLayers = jsonLayerGroup.getLayers();
for(var j=0; j<jsonLayers.length;j++){
Object.keys(jsonLayers[j]. _-layers).forEach (
function (key) {
jsonLayers[j]. -layers[key]. setlcon (
blueMarker) ;

})s
}

e.target.setlcon (redMarker);
flyToPoint(e.target.feature);
var activeltem = document. getElementsByClassName (
activeMark) ;
if (activeltem[0]) {
activeltem [0]. classList.remove(activeMark) ;
}

$("div #" + e.target. _leaflet_id).addClass(
activeMark) ;
//Scroll to active element on the sidebar
/*location.href = "#’;
location.href = "#’ + e.target._leaflet_id;*/
1
return marker;
}
1
//overlay.addTo (map); // Add the data to the map
jsonLayerGroup.addLayer(overlay);
control.addOverlay (overlay , layerName); // Add the layer to
the Layer Control.

}

function onEachFeature(feature , layer) {
layer.on(’ contextmenu’ , function (e) {
rcPopup (e, "marker");
1
}

var enableFlyTo = true;
function flyToPoint(currentFeature) {
if (enableFlyTo){
map. flyTo(currentFeature . geometry.coordinates.reverse (),
mapMaxZoom — overzoom, {
animate: true,
duration: 2 // in seconds
P

currentFeature . geometry.coordinates.reverse () ;
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var markerUrl = ' /Sources/Icons/’;
var markerlcon = L.Icon.extend ({
options: {
shadowUrl: markerUrl+’' marker-shadow.png’ ,
iconAnchor: [13, 40]
//shadowAnchor: [2, 58],
//popupAnchor: [1, —-36]

IDF

var blueMarker = new markerIcon({iconUrl: markerUrl+’

markerInactive.png’ }),
redMarker = new markerlcon({iconUrl: markerUrl+' markerActive.

png’ });

*/
var imgNames;
$.ajax ({
dataType: "json",
url: "/OriginallImages/jsonNames. json",
success: function (data) {
imgNames = data;
¥
}).error(function () {
1
var imgRefMatrix;
$.ajax ({
dataType: "json",
url: "/originallImages/jsonRefMatrixV2.json",

success: function (data) {
imgRefMatrix = data;

}).error (function () {

P

map.on(’ contextmenu’ , function (e) {
rcPopup (e, "map");

b

function rcPopup(e) {
var x = Math.round(e.latlng.Ing);
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var y = Math.round(e.latlng.lat);
L.popup ()
.setContent ("<h6>X:" + X + "<br>Y:" + y + "</h6><a class
=\"plink\" href=\"#\">" +
"<h6>Show Original Images</h6></a>")
.setLatLng ([e.latlng.lat, e.latlng.Ilng])
.openOn(map) ;

var imgName = [];
for (var ungH) 1; imgID<=imgRefMatrix.length; imgID++){
var xMin = imgRefMatrix [imgID —1][0];
var xMax = imgRefMatrix [imgID —1][1];
var yMin = imgRefMatrix [imgID —1][2];
var yMax = imgRefMatrix [imgID —1][3];
if ( (x>=xMin) &&(x<=xMax ) &&(y>=yMin ) &&(y<=yMax) ){
imgName . push (imgNames [imgID —1]) ;
}

}

var linkTolmg = $("a.plink");
linkToImg.on("click",function () {
for (var g=0;g<imgName.length; g++){
$("#slideTmages™).append("<a href=\"#\" onclick=\"
window.open (' /OriginalImages/Images/"+
imgName[g]+".JPG’, '_blank’);\">\n"+"<img class=\"
mySlides\" src=\"/OriginallImages/Images/"+
imgName[g]+".JPG\" style=\"width:100%\">\n"+"</a>"
)
$("#slideButtons").append ("<button class=\"w3-button
demo\" onclick=\"currentDiv ("+(g+1)+")\">"+
(g+1)+"</button>")
//window.open (' /originalImages/Images/’ + imgName[g]+
" .JPGY);
}

openModal () ;
I

var drawFeatureGroup = L. featureGroup ();
//drawFeatureGroup.addTo (map) ;
control .addOverlay (drawFeatureGroup , 'Drawlayer’);

var drawControl = new L. Control.Draw({
position: ’topright’,
draw: {
polyline: false,
polygon: false,
rectangle: false ,
circle: false
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}5
edit: {
featureGroup: drawFeatureGroup
}
IOF

drawControl . addTo (map) ;

map.on(’draw:editstart’, function (){
enableFlyTo = false;

IF

map.on(’draw:editstop’, function (){
enableFlyTo = true;

1)

map.on(’draw:deletestart’, function (){
enableFlyTo = false;

1

map.on(’draw:deletestop’, function (){
enableFlyTo = true;

})s

// From https://jsfiddle.net/ve2huzxw/314/
// https://stackoverflow.com/questions/34738805/update-properties—-of-
geojson-to-use—-it-with-leaflet/34740632#34740632
map.on(’draw:created’, function(e) {
// Each time a feature is created, it’s added to the over

arching feature group

var layer = e.layer,
feature = layer.feature = layer.feature || {};
feature .type = feature.type || "Feature";
var props = feature.properties = feature.properties || {};
props.name = null;
props. file = "";

drawFeatureGroup .addLayer(layer);
addPopup (layer);
1

function addPopup(layer) {

var content = document.createElement("textarea");

content.addEventListener ("keyup", function () {
layer. feature . properties .name = content.value;

P

layer.on("popupopen", function () {
content.value = layer.feature.properties.name;
content . focus () ;

R

layer .bindPopup (content).openPopup () ;

}

// on click, clear all layers
document . getElementById (’ clear’).onclick = function () {
drawFeatureGroup.clearLayers () ;

+s
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document. getElementByld (' export’).onclick = function() {
// Extract GeoJson from featureGroup
var data = drawFeatureGroup .toGeoJSON () ;
//console.log (JSON.stringify (data, null, 2));

// Stringify the GeodJson
var convertedData = ’text/json;charset=utf-8,’ +
encodeURIComponent (JSON. stringify (data));

// Create export

//var saveName = prompt ("Enter Filename", ’new.Jjson’);

document. getElementByld (' export’).setAttribute (' href’, 'data:’
+ convertedData);

//document .getElementById (' export’) .setAttribute (' download’,
saveName) ;

document. getElementByld (' export’).setAttribute (' download’ , '
new. json’);

}s

*/
function nextPowerOf2 (number) {
var power = Math.ceil (Math.log(number)/Math.log(2));
return Math.pow(2,power);
}
function getDrawFeutureGroup (){
return drawFeatureGroup;
}
}
</script>
</head>

<body onload="init () ">

<div class="w3-sidebar w3-bar-block w3-card-2 w3-animate-left" style="display:
none; z-index:2" id="sidebar">
<div class="w3-container w3-blue-gray" style="position:fixed; z-index:1;
width:20%">

<h2>Reports </h2>

</div>
<ul id="listings" class="w3-ul w3-border w3-hoverable" style="position:
relative; top:65px"></ul>

</div>

<div class="w3-main" id="main" style="height: 100%; background-color: #f2f2f2"
>

<div class="w3-teal" id="header">
<button style="position: relative; z-index: 1" class="w3-button w3-
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teal w3-xlarge" onclick="w3_toggle () ">
&#9776;
</button>
<div class="w3-container">
<hl1>Maps for Mines </h1>
</div>
<img src="/Sources/ideepmon-logo.svg" alt="projectLogo" style="width
:200px; height:200px; position:absolute;
z—index:1; top: -30px; right: 200px">
<img src="/Sources/unilogo.png" alt="unilLogo" style="width:110px;
height:110px; position:absolute; z-index:1;
top: 8px; right: 20px">
</div>

<div class="w3-display-container" id="mapContainer">
<div id="map" class="Middle" style="height: 100%; width: 100%; z-—
index: 0">
</div>
<a href="4#’ id='clear’ style="position:absolute; right: 10px; bottom:
40px; z—-index: 2">
<img src="/Sources/Icons/clearBtn.png" style="height:30px; width
:30px; ">
</a>
<a href="4#’ id='export’ style="position: absolute; right: 10px; bottom
80px; z-index: 2">
<img src="/Sources/Icons/exportFileBtn.png" style="height:30px;
width:30px; ">
</a>

</div>
<div class="w3-container w3-teal w3-bottom w3-right-align" id="footer">

<p>&copy; 2017 Chair of Automation, Leoben, Austria, Michael Brandner<
P>
</div>
<l—
<div>

Icons made by <a href="https://www.flaticon.com/authors/google" title=
"Google">Google </a> from

<a href="https://www.flaticon.com/" title="Flaticon">www. flaticon .com
</a> is licensed by

<a href="http://creativecommons.org/licenses/by/3.0/" title="Creative
Commons BY 3.0" target="_blank">CC 3.0 BY

</a>
</div>

<div>
Icons made by <a href="https://www.flaticon.com/authors/anton-saputro"

title="Anton Saputro">Anton Saputro </a>
from <a href="https://www.flaticon.com/" title="Flaticon">www. flaticon

.com</a> is licensed by
<a href="http://creativecommons.org/licenses/by/3.0/" title="Creative

Commons BY 3.0" target="_blank">CC 3.0 BY
</a>

</div>

—>

</div>
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<div id="myModal" class="w3-modal w3-black" style="width:100%">
<span class="w3-text-white w3-xxlarge w3-hover-text-grey w3-container w3-
display-topright" onclick="closeModal ()"
style="cursor:pointer">x</span>
<div class="w3-modal-content w3-black" style="width:100%">

<div class="w3-content w3-black w3-animate-zoom" id="slideImages"
style="width:100%">
<div class="w3-center w3-black" id="slideButtons">
<div class="w3-section">

<button class="w3-button w3-light-grey" onclick="plusDivs
(=1) ">Prev </button>

<button class="w3-button w3-light-grey" onclick="plusDivs
(1) ">Next</button >

</div>
</div>
</div> <!—— End w3—content —>
</div> <!-—— End modal content —>
</div> <!—— End modal —>

<!—— TOGGLE SIDEBAR —>
<script>
var sbOpen = false;
function w3 _toggle() {

if (sbOpen){
document. getElementByld ("main").style.marginLeft = "0%";
document. getElementByld ("sidebar").style.display = "none";
sbOpen = false;
}else{
document. getElementByld ("main").style . marginLeft = "20%";
document. getElementByld ("sidebar").style.width = "20%";
document. getElementByld ("sidebar").style.display = "block";
sbOpen = true;
}
}
</script>
<!—— IMAGE SLIDESHOW —>
<script>
var slidelndex = 1;
function openModal () {
document. getElementByld (' myModal’).style.display = "block";

showDivs(slideIndex) ;

}

function closeModal () {
document. getElementByld (' myModal’).style.display = "none";
$(".mySlides").remove () ;
$(".demo").remove () ;
slideIndex = 1;

}

function plusDivs(n) {
showDivs(slideIndex += n);

}
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function currentDiv(n) {

}

showDivs(slideIndex = n);

function showDivs(n) {

var i;
var x = document. getElementsByClassName ("mySlides");
var dots = document. getElementsByClassName ("demo") ;

if (n > x.length) {
slideIndex =1

}
if (n< 1) {
slideIndex = x.length
}
for (i = 0; i < x.length; i++) {
x[i].style.display = "none";
}
for (i = 0; i < dots.length; i++) {
dots[i].className = dots[i].className.replace (" w3-blue-gray",
}
x[slideIndex — 1].style.display = "block";
dots[slideIndex — 1].className += " w3-blue-gray";
}
</script>
</body>
</html>

Source Code 1: Maps for Mines
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