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Kurzfassung

Scheduling-Probleme sind Problemstellungen, denen man häufig in der Industrie begeg-
net. Beispiele dafür sind Personalplanung, Maschinenbelegungsplanung oder auch die
Zuweisung von Zügen zu Gleisen. Die Aufgabe ist es, eine bestimmte Anzahl von Objek-
ten einer bestimmten Anzahl von Ressourcen unter Berücksichtigung der entsprechenden
benötigten Kapazitäten zuzuweisen. Je größer die Anzahl an Objekten und die Anzahl an
Ressourcen ist, desto schwieriger wird es, eine solche Zuteilung zu finden. Außerdem er-
schweren oft zusätzliche Randbedingungen das Lösen eines solchen Scheduling-Problems.

Heutzutage wird versucht, Scheduling-Probleme mittels unterschiedlicher Algorithmen zu
lösen, um Zeit, Kosten oder auch Energie zu sparen. In dieser Arbeit wird Monte Carlo
Tree Search, eine Methode des Reinforcement Learning, angewandt, um speziell Job Shop
Scheduling Probleme zu lösen. Dabei werden zwei unterschiedliche Evaluierungsmethoden
(Threshold Ascent und Upper Confidence Bound for Trees) getestet und miteinander
verglichen. Schließlich werden die gefundenen Schedules mit den optimalen verglichen
und Aussagen über ihre Effektivität und Effizienz getroffen.

III



Abstract

Scheduling problems are among the most common problems in industry. They deal with
the allocation of a number of objects to a number of resources. Examples are human
resource planning, machine scheduling, or the allocation of arriving trains to station plat-
forms. These problems can be simple, if for example the number of objects and resources
is very small and if there are no further constraints. But the higher the number of ob-
jects or resources and the more constraints have to be considered, the more difficult the
problems become.

Different algorithms try to solve such problems in order to reduce costs, time, or energy
and to increase quality and performance. In this master thesis the Reinforcement Learning
method Monte Carlo Tree Search is used for solving Job Shop Scheduling problems. In
particular, as evaluation functions we use the bandit algorithms Upper Confidence Bound
for Trees and Threshold Ascent. These methods are tested on a set of Job Shop Scheduling
problems.
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1. Introduction

1.1. Motivation
Industry 4.0 has shifted the focus on problems in operations research. Machines are no
longer exclusively used as operational tools, but also for the automated execution of con-
trol and planning activities. However, it is not only the number of machines, but also
the complexity of activities that is increasing. Scheduling problems are a particularly
interesting type of problems, that are frequently encountered in industry. The larger the
number of objects that need to be allocated to certain resources and the larger the number
of resources, the more difficult it is to find an optimal schedule. Exploiting the increasing
power of computers, simple processes can be optimized in advance, saving time and thus
money. However, many problems of practical interest fall into a class of complexity, where
exact algorithms will not run in reasonable time and efficient approximate algorithms or
heuristics are required to produce feasible solutions in a reasonable amount of time. In
this master thesis the Reinforcement Learning method Monte Carlo Tree Search is inves-
tigated for its use for Job Shop Scheduling problems.

1.2. Overview
In Chapter 2, the multi-armed bandit problem and its setting are explained in detail.
Two different algorithms for the multi-armed bandit problem are introduced, the Upper
Confidence Bound algorithm proposed by Auer et al. [2] and Threshold Ascent proposed
by Streeter and Smith [14].

In Chapter 3, Reinforcement Learning (RL) is explained. Since tree structures play a
profound role for RL, they are described alongside. Monte Carlo Tree Search (MCTS) is
introduced as a method for finding an optimal policy in an RL setting.

Chapter 4 starts with an introduction to general scheduling problems. Next the impor-
tant sub-category of Job Shop Scheduling problems, on which we focus in this thesis, are
highlighted. Furthermore the main adaptations, that have to be made in order to be able
to use Monte Carlo Tree Search for Job Shop Scheduling problems are pointed out in

1



detail.

In Chapter 5 the experimental setting is presented. The computational experiments car-
ried out are described in detail, i.e. the numbers of independent experiments, the used/-
calibrated parameters and the resulting characteristic values, used for the evaluation of
the performance of the algorithms.

In Chapter 6 the results of the computational experiments (for MCTS using UCT and
TA) are presented and discussed.

In Chapter 7 data quality is discussed in the context of scheduling.
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2. Multi-armed Bandit Problem

Table 2.1.: Notation I - Multi-armed Bandit Problems
Abbreviation Explanation
A set of arms
ai arm i
δ positive real parameter (error-probability)
ibest best arm
k number of arms
n total number of pulls
ni number of times arm i has been pulled
Qi cumulative reward for arm i
s number of best memorized rewards for TA
si number of rewards received from arm i that are under the s best
X̄i mean reward for arm i
μi expected reward of arm i
μ∗ maximum expected value

Setting:
Imagine a slot-machine (environment) and a gambler (the learning system). The slot-
machine has several arms (these correspond to actions) that follow a fixed but unknown
reward-distribution. Denote A = {a1, . . . , ak} as the set of possible actions (arms) and k

as the number of possible actions. In each time step t = 1, 2, . . . , n, the gambler can pull
one of the arms and receives the corresponding reward. We assume that pulling an arm
i gives independent and identically distributed rewards in the interval [0, 1].[3]

Objective:
There are various different objectives one may consider. One objective can be to maximize
the expected total reward over n pulls and another one can be to identify the arm that
leads to the single best reward.[3]

Let us assume that the gambler’s objective is to maximize the total reward over n pulls.
In general, various different algorithms exist for the multi-armed bandit problem (see
Subsection 2.0.1 and 2.0.2). For each algorithm it is important to keep a balance between
exploitation (pulling the arm with the highest reward so far often) and exploration (trying
out different arms). Here we investigate two different algorithms. The first is the Upper
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Confidence Bound algorithm proposed by Auer et al. [2] and the second one is Threshold
Ascent proposed by Streeter and Smith [15].[3]

2.0.1. Upper Confidence Bound (UCB)

We consider a multi-armed bandit setting with the following objective.

Objective:
The objective is to maximize the total reward over n pulls.[3]

Algorithm:
The algorithm proposed by Auer et al. [2] first pulls each arm once. Then for each of the
subsequent pulls the UCB-value

UCBi = X̄i +
√

2 ln(n)
ni

(2.1)

is calculated for each arm i. X̄i denotes the mean reward gained from arm i so far and ni

denotes the number of times arm i has been pulled. The algorithm pulls the arm with the
highest UCB-value and receives the corresponding reward. X̄i ensures the exploitation
of promising arms, whereas the second term in Equation 2.1 encourages the pulling of
less-played arms. In Algorithm 1 the corresponding code is presented.[3]
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Algorithm 1: Upper Confidence Bound Algorithm [2]
Function UCBSelection(n, A)

foreach arm i ∈ A do
ni = 0;

end
counter = 0;
while counter < n do

if ni = 0 then
UCBi = ∞;

else

X̄i = Qi

ni

;

UCBi = X̄i + c

√
2 ln(n)

ni

;

end
ibest = arg maxi UCBi;
pull arm ibest;
i = ibest;
receive reward r;
ni = ni + 1;
Qi = Qi + r;
counter++;

end

To measure the quality of an algorithm one considers how much it loses with respect to
the optimal arm. Correspondingly, the regret is defined as:[2]

μ∗n − μi

k∑
i=1

E[ni], (2.2)

where μi is the expected reward of arm i and let μ∗ be defined as follows:[2]

μ∗ = max
1≤i≤k

μi

Theorem:
The regret of the UCB-algorithm is upper-bounded by:[2]

⎡
⎣8

∑
i:μi<μ∗

(
ln n

Δi

)⎤
⎦ +

(
1 + π2

3

) ⎛
⎝ K∑

j=1
Δj

⎞
⎠ , (2.3)
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where μi is the expected reward for arm i, k is the number of arms, and Δi is

Δi
def= μ∗ − μi. (2.4)

2.0.2. Threshold Ascent (TA)

The Threshold Ascent algorithm, first proposed by Streeter and Smith, aims at a multi-
armed bandit setting with a different objective.[14]

Objective:
We consider a multi-armed bandit setting. The objective is to maximize the single best
reward over n pulls.[14]

Algorithm:
The basic idea is to track the s best rewards and the respective arms that have led to
these rewards. Let δ be a positive real parameter, which describes the error probability
for confidence intervals implicitly used by TA. Let si be the number of rewards received
from arm i that are among the s best rewards. Calculate for each arm i = 1, . . . , k a value
h(si, ni) by using the following formula.[14]

h(si, ni) =

⎧⎪⎨
⎪⎩

si + α +
√

2siα + α2

ni

, if ni ≥ 1

∞ , if ni = 0
(2.5)

α = ln
(

2nk

δ

)
(2.6)

Then pull arm ibest,

ibest = max
1≤i≤k

h(si, ni), (2.7)

receive its reward and increment ni. This procedure is repeated n times. The correspond-
ing code is presented below.
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Algorithm 2: Threshold Ascend Algorithm [14]
Function TASelection(n, s, A)

si = 0;
ni = 0;
counter = 0;
while counter < n do

if ni = 0 then
h(si, ni) = ∞;

else

h(si, ni) = si + α +
√

2siα + α2

ni

;

end
ibest = argi max h(si, ni);
pull arm ibest;
i = ibest;
receive reward r;
ni = ni + 1;
if arm i is among s best arms then

Update the list with the s best arms and the values sj for the affected arms j;
end
counter++;

end

Parameter s influences the trade-off between exploitation and exploration. If s = 1,
Threshold ascent behaves like Round-Robin Sampling (see [14]). If s = ∞, TA behaves
like Chernoff Intervall Estimation (see [14]).

The algorithm of Streeter and Smith works best, when the reward distributions fulfil the
following criteria:[14]

1. Let tcritical be a threshold, that is very low at the beginning of the algorithm. For
all t > tcritical it holds that the arm that is most likely to lead to a reward > t is the
same arm that is most likely to yield to a reward > tcritical. This arm is denoted as
i∗. Note that this is an assumption that may not be fulfilled in general.[14]

2. The gap between the probability that arm i∗ leads to a reward > t and the proba-
bility that some other arm gives reward > t grows, when t increases beyond tcritical

(see Figure 2.1). Hence the ratio pi∗(t)
pi(t)

, where pi(t) denotes the probability that

the ith arm returns a reward > t, should increase as well for any i �= i∗.[14]
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Figure 2.1.: Reward distributions of k-armed bandit instances [14]
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3. Monte Carlo Tree Search

Table 3.1.: Notation II - MCTS
Abbreviation Explanation
A set of possible actions
at action at time step t
δ error probability
E set of edges
G graph
k number of possible actions
n total number of rollouts
N(y) number of visits in node y
p(s′|s, a) probability for landing in state s′ when taking action a in state s
Q(y) total pay-off received from node y
S set of possible states
st state at time step t
sinit initial state
send final state
S(y) number of times y has led to one of the s best rewards
t a discrete time step (t ∈ {1, 2, . . . })
V set of vertices
y0 root-node
ynext node selected by the tree-policy
y′ child node of node y

3.1. Reinforcement Learning
Setting:
A typical Reinforcement Learning (RL) setting consists of a learning-system and an envi-
ronment. Let S be a set of possible states and let A be a set of actions the learning system
can take. Denote p(s′|s, a) as the probability for landing in state s′ when taking action a

in state s. When choosing action a in state s, one obtains a random reward according to
an unknown but fixed reward distribution depending on a and s. The expected reward
for taking action a in state s and landing in s is denoted as r(s, a). Note that rewards
are independent are identically distributed for (s, a). [16]

9



Objective:
Find a policy that minimizes or maximizes a certain reward-function (depends on the
underlying problem setting).

The learning-system typically interacts with its environment in discrete time steps t =
{1, 2, 3, . . . }. The learning-system starts in an initial state sintit in time step 1. At each
time step t the learning-system selects an action a according to a certain policy. A policy
is a mapping of states to actions at a certain time step. Consider that at step t the
learning-system finds itself in state st ∈ S, from where it can choose an action a ∈ A(st)
(a set of possible actions that can be taken in state st). After choosing action at ∈ A(st),
the environment reacts, offers a new state and communicates the corresponding reward
rt+1 in the next time step t + 1. As a consequence of its choice the learning-system finds
itself in a new state st+1. [16]

The following picture illustrates the RL setting described above.

Environment

Learning-System

reward(t+1) state(t+1)action(t)

Figure 3.1.: RL setting
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3.2. Trees
The following terms are explained following the work of Cormen [6]:

Graph:
Given a set of nodes V, an undirected graph is an ordered pair (V, E), where the set of
edges E ⊆ V × V and edges (u, v) and (v, u) are identified.

Path:
A path in a graph G = (V, E) is a sequence of pairwise disjoint nodes P = (v1, v2, . . . , vk)
with edges between vi and vi+1 (for i = 1 to i = k − 1). The length of a path is the
number of contained edges.

Circle:
A circle is a path for which the first node v1 and last node vk are connected via an edge.

Acyclic:
A graph is acyclic, if the graph does not contain circles.

Connected:
A graph is connected if there is a path between any two nodes.

Tree:
A tree is a connected and acyclic graph.

Rooted tree:
A tree is called rooted tree if one node (the "root") of the tree is distinguished.

In the following, we introduce some terminology for rooted trees. We assume a given
rooted tree with all edges directed away from the root of the tree.

Predecessors:
Each node vi for i < k in a directed path P = (v1, v2, . . . , vk) starting in the root-node is
called predecessor of vk.

Successor:
Each node vi for i > 1 in a directed path P = (v1, v2, . . . , vk) starting in the root-node is
called successor of v1.
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Parent-node:
A parent-node v of a node v′ is the first immediate predecessor of the node v′.

Child-node:
A child-node v′ of a node v is the first immediate successor of the node v.

Siblings:
Two nodes are siblings, if they have the same parent-node.

Leaf-node:
A leaf-node is a node that has no child-nodes.

1

2 3 4

8 9765 10

Node

Edges

Level 1

Level 2

Level 3

Figure 3.2.: Tree Structure

The tree in Figure 3.2 is a rooted tree. In this case the root is node 1. Each node in the
tree of Figure 3.2 has a parent-node except the root node and each node has at least one
child-node except the leaf-nodes (i.e. a node can only have one parent-node, whereas it
can have more than one child-nodes). In Figure 3.2 each node in level 3 is a leaf-node.
For example node 3 is the parent-node of node 7. Therefore node 7 is the child of node
3. Nodes that have the same parent-node are called siblings, like nodes 5 and 6.[17]

3.3. Monte Carlo Tree Search (MCTS)
Subsequently, MCTS is introduced following Browne [3] by taking advantage of the no-
tion of trees. Monte Carlo Tree Search is an RL-method for solving sequential decision
problems.

Setting:
The setting corresponds to the RL-setting described in Chapter 3, with the difference
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that now there is a predefined set of terminal states. When such a state is reached there
are no actions at disposal and the interaction with the environment ends.

Objective:
The objective is to find an optimal policy for selecting actions in order to maximize the
total reward.

Algorithm:
Monte Carlo Tree Search is a method of RL. It sequentially generates a tree, with states
represented as nodes, and actions represented as edges. We assume that the transitions
from one state into another are deterministic. In general this is not a necessary condition in
order to apply MCTS. However for our particular application it holds and the description
of MCTS is simpler for the case of deterministic transformations. We also consider that
the reward is not received directly after taking an action, but only in the terminal states.
More precisely, this means that the (deterministic) reward is 0 in all nodes except the leaf
nodes. In general MCTS is based on four steps: Select, Expand, Simulate, and Back-up.
In the Expand step unvisited child-nodes are selected. In the Select step an evaluation
function is used for selecting already-visited child-nodes. Simulation (or roll-out) means
randomly choosing a path down the tree until a leaf node (terminal node) is reached.
Depending on the evaluation function used different parameters need to be updated in
the back-up step (for example the reward or the number of visits of a node). The MCTS-
algorithm finishes, either if a terminal-state is reached or if a certain number of rollouts
has been executed. The following picture depicts the four steps.[5]

SELECTION EXPANSION SIMULATION BACK-UP

Tree Policy

Default Policy

Figure 3.3.: The four major steps in the MCTS algorithm - redesigned from [3].
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Let sinit be the initial state of the RL-setting (root-node). Starting at this node the
tree-policy is executed. This policy covers the selection and the expand step, which se-
quentially adds child-nodes to the tree. At the very beginning the learning system is in
state sinit and does not know any of its children, that means the system is not able to
choose the "best" action yet and the algorithm starts by applying the expand step first [3].

If each child-node of the root-node has been visited at least once. MCTS starts with the
selection step. At each node, where every child-node has been visited at least once (the
node is fully expanded), the best child-node is selected by using an evaluation function.
The evaluation function gives for a given node the corresponding best child-node. Different
approaches for the evaluation of the best child-node exist, but in this work the UCT-
algorithm and the TA-method are applied (see Subsection 2.0.1 and 2.0.2). Figure 3.4
visualizes the first step [3].

...

v number of visits
r(t) reward
t time step

v=5

v=2 v=1 v=1

Level 1

Level 2

v=0 v=0

.

v=1

t = 0 : 0
t = 1 : 0
t = 2 : r(2)
t = 3 : r(2)
t = 4 : r(2)
t = 5 : r(2) + r(5)

t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : r(3)
t = 4 : r(3)
t = 5 : r(3)

t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : 0
t = 4 : r(4)
t = 5 : r(4)

t = 0 : 0
t = 1 : r(1)
t = 2 : r(1)+(r2)
t = 3 : r(1)+(r2)+r(3)
t = 4 : r(1)+(r2)+r(3)+r(4)
t = 5 : r(1)+(r2)+r(3)+r(4)+r(5)

t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : 0
t = 4 : 0
t = 5 : r(5)

Level 3

......

Figure 3.4.: Select Step

In general, MCTS first conducts a Select step and only after a node is reached, where not
every child has been visited yet, an Expand step is triggered. That is, as explained before
for the initial state, a child with no visits so far is selected (an untried action) and added
as a new node to the tree. The action that leads to this child-node is the edge between
the child-node and its parent-node. This step is depicted in Figure 3.5 [5].
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t = 4 : r(2)
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t = 4 : r(1)+(r2)+r(3)+r(4)
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t = 3 : 0
t = 4 : 0
t = 5 : r(5)

Level 3

... ...

...

Figure 3.5.: Expand Step

In the Simulation step a random path from the node that has been chosen in the Expand
step to a leaf-node is chosen. This step covers the so-called default policy, a random
selection of nodes until the terminal node is reached.[5]
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r(t) reward
t time step
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v=2 v=1 v=1
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v=0 v=0v=1

t = 0 : 0
t = 1 : 0
t = 2 : r(2)
t = 3 : r(2)
t = 4 : r(2)
t = 5 : r(2) + r(5)

t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : r(3)
t = 4 : r(3)
t = 5 : r(3)

t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : 0
t = 4 : r(4)
t = 5 : r(4)

t = 0 : 0
t = 1 : r(1)
t = 2 : r(1)+(r2)
t = 3 : r(1)+(r2)+r(3)
t = 4 : r(1)+(r2)+r(3)+r(4)
t = 5 : r(1)+(r2)+r(3)+r(4)+r(5)

t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : 0
t = 4 : 0
t = 5 : r(5)

Level 3

v=0
Level i*j

...

......

...

Figure 3.6.: Simulate Step

15



The last step is called the Back Up step. Nodes that have been selected through the tree
policy are updated based on the results of the simulation and the parameters needed for
the evaluation function. The following Figure illustrates the Back Up step.[5]

v number of visits
r(t) reward
t time step

f visits
v=6

v=3 v=1 v=1
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Level 2
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t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : r(3)
t = 4 : r(3)
t = 5 : r(3)
t = 6 : r(3)

t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : 0
t = 4 : r(4)
t = 5 : r(4)
t = 6 : r(4)

t = 0 : 0
t = 1 : r(1)
t = 2 : r(1)+(r2)
t = 3 : r(1)+(r2)+r(3)
t = 4 : r(1)+(r2)+r(3)+r(4)
t = 5 : r(1)+(r2)+r(3)+r(4)+r(5)
t = 6 : r(1)+(r2)+r(3)+r(4)+r(5)+r(6)

t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : 0
t = 4 : 0
t = 5 : r(5)
t = 6 : r(5)

Level 3

t = 0 : 0
t = 1 : 0
t = 2 : 0
t = 3 : 0
t = 4 : 0
t = 5 : 0
t = 6 : r(6)

... ...

... ...

Figure 3.7.: Back Up Step

The more often the four steps (depicted in Figure 3.3) are repeated the more accurate the
tree gets, because more actions have been tried out. In practise, a computational budget is
defined, which regulates the number of iterations of the MCTS-algorithm (see Algorithm
3). The computational budget typically is adopted to a specific problem considering the
total number of time steps or memory efficiency. Hence the main computational steps are
presented in Algorithm 3 the following way.[3]
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Algorithm 3: MCTS-Algorithm [3]
Input: sinit, Evaluation(node), budget;
Function MCTS(sinit)

create a root-node y0 = sinit;
counter = 0;
while counter < budget do

ynext = TreePolicy(y0);
reward = DefaultPolicy(ynext);
BackUp(ynext, r);
counter++;

return a(Select(y0));

Function TreePolicy(y)
while y is non − terminal do

if y is not fully expanded then
return Expand(y);

else
y = Select(y);

return x;

Function Expand(y)
choose an untried child-node y′ of y;
return y′;

Function Select(y)
ybest=Evaluation(y);
return ybest;

Function DefaultPolicy(y)
while y is non-terminal do

y = randomly selected child of y;
return reward of y (terminal node)

Function BackUp(y, reward)
while y is not null do

update all parameters of y needed to compute the evaluation function of y in the
select step;

y = parent of y;

The following paragraphs are based on [3] and [7]. An evaluation function is used in
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the Selection step in order to identify the best child-nodes. In this thesis we apply two
functions, the TA-algorithm [15] and the UCT-algorithm[2] (see Chapter 2). Note that in
this case UCT is used for a minimization problem (instead of an maximization problem as
described in Subsection 2.0.1). Below, an algorithmic representation of both evaluation-
methods and the corresponding Back-up functions are presented. In the following, y

denotes a certain node and y′ denotes the child-node of y. N(y) is the number of visits
to node y and Q(y′) is the total pay-off received from node y′. c is a constant and δ is
a error probability parameter. S(y′) is the number of times node y′ leads to one of the
s best rewards and k is the number of actions that can be taken next. At the beginning
N(y), Q(y) and S(y) are set to zero for every y.

UCT:

Function Evaluation(y)
foreach child y′ of y do

reward(y′) = Q(y′)
N(y′) − c

√
2 log N(y)

N(y′) ;

return child y′ with maximum reward;

Function BackUp(y, reward(y))
reward∗ = reward(y);
while y �= null do

N(y) = N(y) + 1;
Q(y) = Q(y) + reward∗;
y = parent of y;
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TA:

Function Evaluation(y)

α = log 2N(y)k
δ

;

foreach child y′ of y do

h(S(y′), N(y′)) =
S(y′) + α +

√
2S(y′)α + α2

N(y′) ;

return child y′ with maximum h(S(y′), N(y′));

Function BackUp(y, reward(y)
reward∗ = reward(y);
if reward∗ is under the s-best rewards then

Let z be the node that gave the worst reward among the s best;
Update the s-best list;

while y �= null do
N(y) = N(y) + 1;
y = parent of y;
S(y) = S(y) + 1;

while z �= null do
S(z) = S(z) − 1;
z = parent of z;
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4. MCTS for Job Shop Scheduling

Table 4.1.: Notation III - MCTS Scheduling
Abbreviation Explanation
J set of n jobs
m number of machines
Mj set of m machines
Oi set of operations that correspond to Ji

oi,j operation that belongs to job i and has to be processed on machine j
P set of processing-times
pi,j processing-time oi,j needs to be processed on machine j
Ri ordering numbers for operations in Ji

σ set of routes
W factor for norming the confidence interval in the UCB formula
z number of jobs

4.1. Scheduling
The basic setting of a scheduling problem after Brucker [4] is defined as follows. Let
M = {M1, . . . , Mj} be a set of m machines and let J = {J1, . . . , Ji} be a set of z jobs,
where Ji consists of a set of operations O = {oi,1, . . . , oi,z}, where operation oi,j has to be
performed on machine j. The mapping of all these operations for all jobs to machines is
called a schedule, an allocation of operations to machines. The amount of time it takes
to process operation oi,j ∈ Ji on machine Mj is defined as pi,j. The processing times of
all jobs on all machines can be summarized in a matrix P = (pi,j)i,j.

Example 1:
Scheduling problems are often written in vector/matrix form:

J =

⎡
⎢⎢⎢⎣

J1

J2

J3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

o1,1 o1,2 o1,3

o2,1 o2,2 o2,3

o3,1 o3,2 o3,3

⎤
⎥⎥⎥⎦ ; M =

⎡
⎢⎢⎢⎣

M1

M2

M3

⎤
⎥⎥⎥⎦ ; P =

⎡
⎢⎢⎢⎣

10 3 5
4 13 7
3 35 12

⎤
⎥⎥⎥⎦

This problem has size 3 × 3 (z × m), which means it consists of 3 jobs and 3 machines.
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Each job consists of 3 operations. Operation o1,1 needs 10 units of time for the processing
step on machine 1. Operation o1,2 needs 3 units on machine 2, operation o1,3 needs 5 units
on machine 3 and so on. The assignment of the jobs to machines is called schedule. The
amount of time it takes to finish all operations of all jobs is called completion time for
the schedule or also make-span.

4.2. Job Shop Scheduling
Job Shop Scheduling is a special subclass of general scheduling problems.[12] The problem-
setting encountered in Job Shop Scheduling problems additionally provides an ordering
of operations. That is for each job Ji there is a route Ri = {σi,1, . . . , σi,z}, which indicates
the order in which the operations have to be processed. σi,k is the index l of the k-th
operation oi,l in the route of job Ji.[12]

Example 1 - extended
Again the routes of a Job Shop Scheduling problem can be summarized in a matrix:

σ =

⎡
⎢⎢⎢⎣

R1

R2

R3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

σ1,1 σ1,2 σ1,3

σ2,1 σ2,2 σ2,3

σ3,1 σ3,2 σ3,3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2 1 3
1 3 2
1 2 3

⎤
⎥⎥⎥⎦

For job Ji, σ1,2 is in this case 2, which means that operation o1,2 has to be processed
on machine 2 first, then according to this example operation o1,1 has to be processed on
machine 1 and then o1,3 on machine 3.

4.3. Implementation of Job Shop Scheduling as a MCTS
problem

In order to apply MCTS to Job Shop Scheduling we first have to explain how to fit Job
Shop Scheduling into the RL-setting of Section 3.1. For this we consider an online set-
ting, where the allocation of the operations is done sequentially. Then states correspond
to partial schedules and we start with the empty schedule as initial state. In each state
we can decide, which job to assign to a machine as a next step.

At the beginning, no operation-machine combination has been selected, which means that
the first node, from which the algorithm starts, corresponds to an empty schedule. In
the next step, an operation-machine combination is selected from a set of next possible
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combinations. This results in a new state, a node with a schedule that has been extended
by the newly selected assignment. The set of terminal states is defined as those states
that correspond to a complete schedule. Concerning the rewards (or rather costs), each
state gives reward 0, except the terminal states, where the reward corresponds to the
make-span of the respective complete schedule. The objective is obviously to minimize
the make-span.

In case of using UCT as an evaluation function in MCTS applied to Job Shop Scheduling,
two adaptations have to be made to Equation 2.1. First, the sign between the first and
second term of the UCB-formula has to be changed, since we want to minimize rewards.
Second, the formula has to be scaled, because rewards are not between 0 and 1 anymore.
The scaling-factor W and is difficult to define, because processing times are generated
randomly and differ from example to example. The first idea for parameter W was to
calculate it according to the following formula.

W1 =
∑n

i=1
∑m

j=1 pi,j

m
(4.1)

To see whether this value is suitable, the differences between make-spans produced dur-
ing one MCTS rollout and the optimal make-span (W2) were calculated. It turned out
that the maximum difference was between two and three times higher than W1 for each
problem size. Considering that very high W2 values are mostly outliers, the following
values for W for different problem sizes were defined.

Table 4.2.: Normalising factor for different problem sizes
Problem size W
6 × 6 500
10 × 10 900
14 × 14 1600

The additional parameter c in the UCB formula compensates inaccuracies in the estima-
tion of W . When using TA as evaluation function no further adaptations have to be made.

4.4. Branch and Bound
The Branch and Bound method is often used for solving combinatorial optimizations
problems which repeats Branch and Bound steps. The basic idea is to divide the search
space obtaining sub-problems with smaller search space (branch). For each of these a
lower bound is calculated. Furthermore, at the beginning of the algorithm, an upper
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bound (UB) is calculated by means of a suitable heuristic. If the lower bound of a sub-
problem is already larger than the UB, this sub-problem is rejected for further calculations
(Bound). The lower UB is at the beginning, the less branching has to be done. The algo-
rithm finishes when a point is reached, at which the sub-problem offers only one feasible
solution. Then UB is set to LB (if LB<UB) and LB is set to the current best solution.[4]

In this thesis we used the Branch and Bound algorithm provided by Google using or-
tools in order to compute the optimal solutions for the job shop scheduling problems
considered.[10]
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5. Experiments

5.1. Problem Instances
We tested MCTS using UCT and MCTS using TA on a variation of Job Shop Scheduling
problems. The problem instances were created randomly in three different sizes: 6 × 6,
10 × 10 and 14 × 14 and with processing times between 0 and 100. Recall that the size
is defined as number of jobs × number of machines. For each size, five different exam-
ples were generated and each example was tested 30 times applying UCT and 30 times
applying TA unless described differently. Although the examples were not tested very
often, the results presented in Chapter 6 do not show large variance. Below Example 1
in dimension 6 × 6 is presented.

Example 1 (6 × 6):

σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 4 6 5 3 1
6 4 1 5 2 3
3 5 6 1 2 4
6 4 5 1 3 2
4 2 5 3 6 1
6 1 2 5 3 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

28 54 71 16 47 91
51 59 12 68 66 80
17 4 7 68 32 38
35 79 55 69 39 49
1 74 16 27 81 58
33 39 26 78 38 64

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For each problem instance the optimal solution was computed by applying the Branch and
Bound algorithm (BaB) provided by google (see Section 4.4).[10] This algorithm solves
Job Shop Scheduling problem instances optimally. Up to size 10×10, BaB solves problem
instances very quickly. The bigger the size gets (already starting at problem size 14×14),
the longer the algorithm takes to calculate a solution. For some examples of problem size
14 × 14, BaB was not able to find a solution at all in less than two weeks running on a
commercial available hardware. In case of Example 1 (6 × 6) the optimal make-span is
469 units. [4]
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5.2. Parameters
UCT-Algorithm:
Applying UCT on MCTS, four different sizes of computational budgets (number of roll-
outs) were tested: 100, 1000, 5000 and 10000. For each example and computational
budget a variation of eight different c values was tested: 0.001, 0.01, 0.1, 0.5, 1, 2, 5
and 10, unless described differently. The positive real parameter δ was set to 0.01. The
scaling-factor W is used as described in Section 4.3.

TA-Algorithm:
Applying TA on MCTS, four different sizes of computational budgets were tested: 100,
1000, 5000 and 10000. For each example and computational budget a variation of five
different s values was tested: 30, 50, 70, 100 and 200, unless described differently.

5.3. Key Values
In order to be able to compare the different methods, different key values are used.

Mean percentage error (MPE):

Let k be the number of times the algorithm has been applied (number of trials) onto
example j, let yj be the optimal solution for the problem-instance j and let xi be the
result gained from trial i (i = 1, . . . , k). Then we consider the mean percentage error

MPEj = 1 + 1
k

k∑
i=1

(xi − yj)
yj

(5.1)

If the MPE for a certain problem instance is equal to 1, the optimal solution has always
been found. For example, an MPE of 1.5 means that results produced are 1.5 times worse
than the optimum.

Average mean percentage error (AMPE):

Let z be the number of examples for a given problem size. Then the average mean
percentage error is defined by

AMPE = 1
z

z∑
j=1

MPEj (5.2)
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Relative Standard Deviation:

The standard deviation Std is a quantity for measuring dispersion. A high standard
deviation means that the probability for receiving a value xi (in our case a make-span)
that is much greater or much smaller than the mean value x̄ (expected value) is very
high. A low standard deviation indicates that the probability for getting values close to
the mean is very high. Again k is the number of trials. The standard deviation for the
computed make-spans is defined as

Std =
√∑k

i=1(xi − x̄)2

k
(5.3)

The relative standard deviation is then defined as:[8]

RStd = Std

x̄
(5.4)
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6. Results

6.1. Results for UCT
In this chapter the results for MCTS using UCT are presented. UCT has been tested for
four different numbers of rollouts and the other parameters described in Section 5.3. In
the following, parameter n denotes the number of rollouts, W denotes the normed factor
explained in Section 4.3, and c is the parameter to calibrate the confidence interval for
UCT. The following characteristic values will be compared to each other:

• Min: Minimum MPE found for all examples.

• Mean: AMPE

• Max: Maximum MPE found for all examples.

• RStd: Average Relative Standard deviation found for make-spans for all examples.

• Opt: Average number of times the optimal make-span was found (in percent).

6.1.1. Results for 6 × 6

In Table 6.1 the average values computed from the results over the different numbers
of rollouts (n = 100, 1000, 5000, 10000) and all tested problem instances of size 6 × 6,
using UCT are depicted for each tested constant c respectively. The blue highlighted line
marks the results that correspond to the parameter with the smallest mean error. For
this problem size parameter 0.1 leads to the smallest mean error.
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Table 6.1.: Average characteristic values taken over all tested problem instances and all
numbers of rollouts for problem instances of size 6 × 6 for MCTS using UCT
for different c-parameters
Problem c Min Mean Max RStd [%] Opt [%]
6x6 0.001 1.0296 1.0444 1.0638 3.0521 7.4000
Average 0.01 1.0268 1.0411 1.0614 2.8651 10.6000

0.1 1.0180 1.0311 1.0453 2.3767 20.6000
0.5 1.0333 1.0496 1.0748 2.8475 10.4000
1 1.0371 1.0602 1.0985 2.7483 6.9000
2 1.0441 1.0675 1.1050 3.0008 3.2000
5 1.0477 1.0699 1.1113 3.0020 3.2000
10 1.0527 1.0746 1.1189 3.0592 2.4000

Table 6.2 gives more detailed information, showing additionally to the results for each
parameter also the respective results for each number of rollouts. Green highlighted lines
show the results that correspond to the parameter, which was identified as the average
best one in terms of the characteristic values. In this case the average best parameter for
c is 0.1. It offers very low AMPEs. Gray highlighted cells mark single optima outside the
average best. Obviously, the higher n, the better the results. Looking at the results for
UCT with 5000 and 10000 rollouts it is clear that c = 0.1 offers much better results than
other c values. In this case the optimal make-span is found about 35 percent of the time
and the difference to the optimal solution is on average about 1% . For a number of 1000
rollouts, parameter c = 0.01 offers slightly better results than parameter c = 0.1.
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Table 6.2.: Average results over all tested problem instances of size 6 × 6 for MCTS using
UCT for different number of rollouts and different c-parameters

Problem c Min Mean Max RStd [%] Opt [%]
6x6 0.001 1.0529 1.0731 1.1046 4.1389 2.80
n=100 0.01 1.0525 1.0761 1.1068 3.7864 0.40
W=500 0.1 1.0547 1.0736 1.0986 3.9876 3.20

0.5 1.0779 1.1091 1.1470 4.5586 0.40
1 1.0824 1.1243 1.2031 3.9972 0.00
2 1.0935 1.1299 1.2032 4.4094 0.40
5 1.1025 1.1365 1.2077 4.1990 0.00
10 1.1141 1.1478 1.2181 4.4119 0.00

6x6 0.001 1.0269 1.0379 1.0592 2.9803 7.60
n=1000 0.01 1.0198 1.0257 1.0333 2.3824 15.20
W=500 0.1 1.0121 1.0308 1.0480 2.4806 11.60

0.5 1.0358 1.0503 1.0927 3.2813 4.80
1 1.0435 1.0622 1.1065 2.8844 1.60
2 1.0474 1.0689 1.1029 3.3031 1.20
5 1.0456 1.0668 1.1160 3.0953 1.60
10 1.0517 1.0707 1.1190 3.1768 0.40

6x6 0.001 1.0153 1.0341 1.0461 2.5449 9.60
n=5000 0.01 1.0161 1.0322 1.0515 2.7635 12.40
W=500 0.1 1.0050 1.0108 1.0193 1.7802 35.20

0.5 1.0129 1.0245 1.0359 1.9947 12.80
1 1.0158 1.0328 1.0536 2.1140 7.20
2 1.0223 1.0418 1.0731 2.4006 4.40
5 1.0251 1.0423 1.0660 2.3792 4.00
10 1.0287 1.0460 1.0778 2.4281 3.20

6x6 0.001 1.0234 1.0324 1.0454 2.5444 9.60
n=10000 0.01 1.0188 1.0305 1.0540 2.5279 14.40
W=500 0.1 1.0050 1.0091 1.0151 1.2585 32.40

0.5 1.0064 1.0144 1.0237 1.5553 23.60
1 1.0066 1.0214 1.0306 1.9975 18.80
2 1.0133 1.0292 1.0409 1.8903 6.80
5 1.0177 1.0341 1.0553 2.3344 7.20
10 1.0165 1.0340 1.0607 2.2201 6.00
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Figure 6.1 presents the comparison of calculation time with the mean error for UCT (with
c = 0.1) and Branch and Bound. The error bars show the average maximum MPE (upper
bound) the average minimum MPE (lower bound) and the average AMPE. Each error
bar corresponds to a different number of rollouts (left: n = 100, middle: n = 1000, right:
n = 10000). The solution of the Branch and Bound algorithm is marked with a red cross.
As can be seen, for n = 100 UCT needs on average slightly more time for calculating one
problem instance than Branch and Bound. For this problem size UCT cannot compete
with BaB in terms of performance.
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Figure 6.1.: Branch and Bound compared to MCTS using UCT for problem size 6 × 6 for
different rollouts and parameter c = 0.1
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6.1.2. Results for 10 × 10

In Table 6.3 the results for size 10 × 10 are presented. Again, parameter c = 0.1 yields
the smallest mean error and the best results on average.

Table 6.3.: Average characteristic values taken over all tested problem instances and all
numbers of rollouts for problem instances of size 10×10 for MCTS using UCT
for different c-parameters

Problem c Min Mean Max RStd [%] Opt [%]
10×10 0.001 1.1445 1.1565 1.1727 3.0501 0

0.01 1.1328 1.1543 1.1774 2.9635 0
0.1 1.1276 1.1454 1.1687 2.9264 0
0.5 1.2454 1.2716 1.2986 3.5831 0
1 1.2870 1.3060 1.3327 3.4921 0
2 1.2902 1.3158 1.3475 3.1295 0
5 1.3003 1.3274 1.3516 2.9926 0
10 1.2728 1.2987 1.3285 3.1751 0

Table 6.4 presents the average results for problem instances of size 10 × 10 over all ex-
amples. For n = 5000 each example was calculated 15 times. For n = 100 parameter
c = 0.01 offers slightly better results than c = 0.1. For every other tested n clearly c = 0.1
offers the best results. For c > 0.1 characteristic values are a lot worse, the mean error
being about 20% higher.
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Table 6.4.: Average results over all tested problem instances of size 10 × 10 for MCTS
using UCT for different number of rollouts and different c-parameters

Problem c Min Mean Max RStd [%] Opt [%]
10×10 0.001 1.2311 1.2475 1.2644 5.0390 0
n=100 0.01 1.2238 1.2472 1.2691 4.2917 0
W=900 0.1 1.2280 1.2634 1.3074 4.1214 0

0.5 1.3341 1.3656 1.4057 3.6652 0
1 1.3699 1.3868 1.4076 3.5765 0
2 1.3528 1.3865 1.4297 3.4480 0
5 1.3567 1.3968 1.4226 4.0365 0
10 1.2619 1.2796 1.3144 4.5255 0

10×10 0.001 1.1657 1.1816 1.1969 3.2740 0
n=1000 0.01 1.1522 1.1733 1.1931 3.4805 0
W=900 0.1 1.1380 1.1565 1.1728 3.4211 0

0.5 1.2655 1.2949 1.3214 3.6547 0
1 1.3094 1.3219 1.3477 3.5622 0
2 1.3041 1.3233 1.3451 3.4296 0
5 1.3049 1.3357 1.3706 3.0172 0
10 1.3000 1.3299 1.3594 3.0910 0

10×10 0.001 1.0930 1.1003 1.1152 2.0666 0
n=5000 0.01 1.0854 1.1125 1.1387 2.4182 0
W=900 0.1 1.0791 1.0886 1.1035 2.0997 0

0.5 1.2029 1.2326 1.2531 3.4022 0
1 1.2420 1.2714 1.3162 3.7028 0
2 1.2694 1.2887 1.3149 2.7757 0
5 1.2713 1.2965 1.3176 2.2128 0
10 1.2604 1.2984 1.3285 2.5802 0

10x10 0.001 1.0882 1.0967 1.1142 1.8208 0
n=10000 0.01 1.0700 1.0840 1.1086 1.6636 0
W=900 0.1 1.0653 1.0729 1.0910 2.0632 0

0.5 1.1790 1.1935 1.2141 3.6101 0
1 1.2267 1.2440 1.2595 3.1270 0
2 1.2344 1.2647 1.3003 2.8646 0
5 1.2682 1.2804 1.2957 2.7037 0
10 1.2691 1.2871 1.3117 2.5037 0
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In Figure 6.2 the mean error and the computation time for UCT (for c = 0.01) and Branch
and Bound are presented. Interestingly, for this problem size Branch and Bound works
even slighty faster than UCT for n = 100. This indicates that Branch and Bound is quite
sensitive to the specific problem instance. The average mean errors are in this case higher
than for problem size 6 × 6.
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Figure 6.2.: Branch and Bound compared to MCTS using UCT for problem size 10 × 10
for different rollouts and parameter c = 0.1

6.1.3. Results for 14 × 14

For size 14 × 14 five different problem instances were calculated five times respectively.
Parameters c = 5 and c = 10 have not been considered in this case, due to bad results in
previous calculations. In Table 6.5 the average results for UCT for problem size 14 × 14
are presented. The parameter that offers the lowest mean error is in this case c = 0.001.
Due to the fact that parameter W is an empiric value, c has to compensate possible in-
accuracies.

Table 6.6 presents the results for UCT for six different parameters. Results found for
parameter c = 0.001 and for n = 10000 are 1.2 times worse than the optimal solution.

33



Table 6.5.: Average results over all tested problem instances of size 14 × 14 for MCTS
using UCT for differnt number of rollouts and different c-parameters

Problem c Min Mean Max RStd [%] Opt [%]
14x14 0.001 1.2470 1.2570 1.2668 3.0792 0.0000

0.01 1.3041 1.3192 1.3337 3.8253 0.0000
0.1 1.4359 1.4568 1.4776 3.2753 0.0000
0.5 1.4866 1.5053 1.5268 2.7985 0.0000
1 1.5040 1.5267 1.5519 2.7287 0.0000
2 1.5023 1.5295 1.5616 2.7185 0.0000

Table 6.6.: Average results over all tested problem instances of size 14 × 14 for MCTS
using UCT for different number of rollouts and different c-parameters

Problem c Min Mean Max RStd [%] Opt [%]
14x14 0.001 1.3667 1.3853 1.4065 3.5022 0
n=100 0.01 1.3836 1.3981 1.4100 3.8228 0
W=1600 0.1 1.3977 1.4150 1.4427 4.1557 0

0.5 1.5100 1.5503 1.5814 3.0066 0
1 1.5747 1.6018 1.6338 3.1478 0
2 1.5679 1.6128 1.6725 3.1073 0

14x14 0.001 1.2226 1.2302 1.2351 2.6953 0
n=1000 0.01 1.3856 1.4091 1.4356 5.3771 0
W=1600 0.1 1.5136 1.5401 1.5579 2.8766 0

0.5 1.5326 1.5433 1.5598 2.1256 0
1 1.5031 1.5329 1.5493 2.3505 0
2 1.5031 1.5329 1.5493 2.3505 0

14x14 0.001 1.2018 1.2018 1.2018 2.5167 0
n=5000 0.01 1.2658 1.2658 1.2658 3.5603 0
W=1600 0.1 1.4448 1.4448 1.4448 2.9992 0

0.5 1.4531 1.4531 1.4531 3.3688 0
1 1.4821 1.4821 1.4821 2.8511 0
2 1.4821 1.4821 1.4821 2.8511 0

14x14 0.001 1.1967 1.2109 1.2237 3.6025 0
n=10000 0.01 1.1814 1.2040 1.2233 2.5411 0
W=1600 0.1 1.3875 1.4273 1.4649 3.0698 0

0.5 1.4507 1.4746 1.5127 2.6929 0
1 1.4561 1.4902 1.5426 2.5652 0
2 1 1.4902 1.5426 2.5652 0
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In Figure 6.3 results for UCT (for c = 0.001) are presented. In this case Branch and
Bound needs almost the same amount of computation time as UCT for n = 10000. Note
that some of the randomly generated problem instances of size 14×14 could not be solved
using Branch and Bound within two weeks. Hence, those examples have been exchanged
with new ones, Branch and Bound was able to solve, in an acceptable amount of time.
Considering these information, the advantage of UCT is, that it computes solutions for
problem instances of size 14 × 14 independent of how complex they are in almost always
the same amount of time.
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Figure 6.3.: Branch and Bound compared to MCTS using UCT for problem size 14 × 14
for different rollouts and parameter c = 0.001
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6.2. Results for TA

6.2.1. Results for 6 × 6

In Table 6.7 the average values for each parameter s are presented. s = 70 is identified
as the average best parameter giving the smallest mean error. Nevertheless, looking at
the number of times the optimum has been found (Opt) for s = 100 and s = 200, those
parameter values evidently yield slightly better results in some cases.

Table 6.7.: Average characteristic values taken over all tested problem instances and all
numbers of rollouts for problem instances of size 6 × 6 for MCTS using TA for
different s-parameters
Problem s Min Mean Max RStd [%] Opt [%]
6x6 30 1.0460 1.0640 1.0874 3.0743 1.6000

50 1.0435 1.0636 1.0994 2.8616 1.6000
70 1.0321 1.0586 1.0948 2.8931 2.4000
100 1.0491 1.0743 1.1111 2.8208 2.5000
200 1.0527 1.0775 1.1202 2.5712 2.7000

The results for MCTS using TA are depicted in Table 6.8. Again n denotes the number
of rollouts. The parameter s to calibrate as well as the characteristic values are explained
in Section 5.3.
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Table 6.8.: Average results over all tested problem instances of size 6 × 6 for MCTS using
TA for different number of rollouts and different s-parameters
Problem s Min Mean Max RStd [%] Opt [%]
6x6 30 1.0949 1.1183 1.1613 4.4399 0.40
n=100 50 1.0892 1.1149 1.1864 4.1876 0

70 1.0570 1.1085 1.1929 4.1126 0.40
100 1.1130 1.1785 1.2739 4.1545 0
200 1.1408 1.1940 1.2868 3.0747 0

6x6 30 1.0495 1.0679 1.0836 3.3176 0
n=1000 50 1.0362 1.0677 1.1084 2.9251 0.80

70 1.0367 1.0637 1.0830 2.9647 0.40
100 1.0461 1.0598 1.0852 2.9741 0.80
200 1.0407 1.0584 1.0957 2.8880 0.80

6x6 30 1.0228 1.0381 1.0624 2.3676 3.20
n=5000 50 1.0298 1.0444 1.0607 2.3157 1.60

70 1.0171 1.0355 1.0635 2.4076 2.80
100 1.0223 1.0358 1.0531 2.5061 5.60
200 1.0197 1.0317 1.0525 2.2993 3.60

6x6 30 1.0170 1.0316 1.0424 2.1721 2.80
n=10000 50 1.0187 1.0272 1.0421 2.0180 4.00

70 1.0177 1.0267 1.0398 2.0875 6.00
100 1.0149 1.0233 1.0320 1.6483 3.60
200 1.0094 1.0258 1.0460 2.0227 6.40

Although s = 70 offers the best results on average, the higher the number of rollouts get,
the worse the results for this parameter compared to higher s-values become. For n = 100
parameter s = 70 works very good, giving small mean error. For n = 1000 parameter
s = 100 and s = 200 offer better results. Moreover, in this case the optimum was found
more often. The same trend is identified for n = 5000 and n = 10000.

Figure 6.4 again compares the results obtained with TA (for s = 70 identified as the
best) to Branch and Bound. The error bars for TA again are three different numbers of
rollouts (left: n = 100, middle: n = 1000, right: n = 10000). For n = 100, TA needs less
computation time than Branch and Bound.
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Figure 6.4.: Branch and Bound compared to MCTS using TA for problem size 6 × 6 for
different rollouts and parameter s = 70

6.2.2. Results for 10 × 10

Table 6.9 presents the average characteristic values for each parameter s for size 10 × 10.
For MCTS using TA and problem size 10×10 parameter s = 70 promises the best average
results.

Table 6.9.: Average characteristic values taken over all tested problem instances and all
numbers of rollouts for problem instances of size 10 × 10 for MCTS using TA
for different s-parameters
Problem s Min Mean Max RStd [%] Opt [%]
6x6 30 1.2511 1.3246 1.3746 3.0553 0.000

50 1.2538 1.3187 1.3613 3.0737 0.000
70 1.2327 1.3087 1.3595 2.9713 0.000
100 1.2699 1.3283 1.3718 3.0971 0.000
200 1.2416 1.3217 1.3695 3.2419 0.000

The results for problem size 10×10 are depicted on Table 6.10. For n = 100 and n = 1000
five different examples were calculated for each parameter 30 times. For n = 5000 and
n = 10000 the five problem instances were calculated for each parameter 15 times.
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Table 6.10.: Average results over all tested problem instances of size 10 × 10 for MCTS
using TA for different number of rollouts and different s-parameters

Problem s Min Mean Max RStd [%] Opt [%]
10x10 30 1.369 1.408 1.440 3.814 0
n=100 50 1.356 1.397 1.424 3.922 0

70 1.324 1.369 1.414 3.313 0
100 1.431 1.464 1.492 3.391 0
200 1.409 1.470 1.498 3.138 0

10x10 30 1.115 1.307 1.411 3.087 0
n=1000 50 1.128 1.301 1.371 3.242 0

70 1.101 1.299 1.407 3.033 0
100 1.124 1.291 1.377 3.687 0
200 1.088 1.284 1.382 3.621 0

10x10 30 1.263 1.299 1.333 2.645 0
n=5000 50 1.273 1.300 1.335 2.554 0

70 1.265 1.290 1.320 3.165 0
100 1.269 1.286 1.319 2.767 0
200 1.251 1.277 1.316 3.054 0

10x10 30 1.257 1.284 1.315 2.675 0
n=10000 50 1.258 1.277 1.314 2.577 0

70 1.241 1.276 1.297 2.374 0
100 1.256 1.272 1.299 2.544 0
200 1.219 1.256 1.282 3.154 0

For n = 100 it is true that s = 70 is the average best parameter. Looking at the results
for n = 1000, n = 5000, and n = 10000 parameter s = 200 seems to be better, because
it leads to the smallest mean error. For this problem size TA was not able to find the
optimal solution once.

In Figure 6.5 the results for TA for s = 70 are presented. In this case Branch and Bound
works even faster than UCT for n = 100 (left bar). The maximum MPEs found are
much higher than for problem size 6 × 6. The second bar in this diagram is particularly
striking, because the difference between the maximum and minimum MPE found is very
high. This is due to outliers that result from the random simulation.

39



100 102 104 106 108

Time [sec]

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

M
P

E

BaB
TA

Figure 6.5.: Branch and Bound compared to MCTS using TA for problem size 10× 10 for
different rollouts and parameter s = 70

6.2.3. Results for 14 × 14

In Table 6.11 the average characteristic values for each parameter are presented. For
n = 100 and n = 1000 each of the five problem instances was calculated 15 times for each
parameter s; for n = 5000 and n = 10000 each of the five problem instances was calcu-
lated 5 times for each parameter, due to time reasons. For this problem size, parameter
s = 30, is identified as the average best parameter, giving the smallest mean error. Note
that in this case the mean errors for different s are very close to each other.

Table 6.11.: Average characteristic values taken over all tested problem instances and all
numbers of rollouts for problem instances of size 14 × 14 for MCTS using TA
for different s-parameters
Problem s Min Mean Max RStd [%] Opt [%]
6x6 30 1.490 1.534 1.574 2.416 0.000

50 1.500 1.540 1.583 2.938 0.000
70 1.518 1.544 1.575 2.556 0.000
100 1.529 1.564 1.607 2.213 0.000
200 1.532 1.559 1.587 2.557 0.000
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Table 6.12 presents the characteristic values for TA for different s-values and for different
numbers of rollouts. For this problem size the optimum was not found once. For n = 10000
the mean error is approximately 1.5. This means that generated solutions were about 1.5
times worse than the optimum solution.

Table 6.12.: Average results over all tested problem instances of size 14 × 14 for MCTS
using TA for different number of rollouts and different s-parameters

Problem s Min Mean Max RStd [%] Opt [%]
14x14 30 1.5240 1.5835 1.6274 3.3054 0
n=100 50 1.5774 1.5957 1.6268 3.0220 0

70 1.5783 1.6238 1.6588 2.3989 0
100 1.6559 1.6938 1.7522 2.0124 0
200 1.6591 1.7061 1.7456 2.2680 0

14x14 30 1.5199 1.5445 1.5919 2.8250 0
n=1000 50 1.5101 1.5501 1.6069 3.4221 0

70 1.5217 1.5443 1.5661 2.4640 0
100 1.5267 1.5490 1.5714 2.9439 0
200 1.5062 1.5346 1.5830 3.3091 0

14x14 30 1.4764 1.5081 1.5266 1.9420 0
n=5000 50 1.4440 1.5137 1.5715 2.1685 0

70 1.4944 1.5111 1.5397 2.2044 0
100 1.4712 1.5086 1.5558 1.8983 0
200 1.4800 1.5042 1.5234 2.1255 0

14x14 30 1.4394 1.4984 1.5500 1.5925 0
n=10000 50 1.4692 1.4987 1.5273 3.1410 0

70 1.4782 1.4981 1.5340 3.1585 0
100 1.4626 1.5055 1.5502 1.9986 0
200 1.4814 1.4895 1.4959 2.5241 0

Figure 6.6 shows the comparison of the mean error and the computing time for TA (for
s = 30) and Branch and Bound. In this case Branch and Bound needs almost as long as
TA for n = 10000. The mean error for every number of rollouts is very high and com-
pared to results for UCT (for the same problem instances), TA works significantly worse
concerning time and quality. Although the number of performed tests for each problem
instance is rather small, one can note that different values for parameter s influence the
quality of the results marginally.
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Figure 6.6.: Branch and Bound compared to MCTS using TA for problem size 14× 14 for
different rollouts and parameter s = 30

6.3. Other Rollout algorithms
The Rollout algorithm, also Pilot Method, aims at efficiently solving combinatorial op-
timization problems using heuristics. They are special forms of MCTS differing in the
heuristics used for the rollouts (or simulations). After performing the rollouts, the best
action (in case of minimization, the action that leads to the smallest reward) is selected.[13]

Average rollout algorithm:
The average rollout algorithm is a special form of the rollout algorithm and it differs
concerning the selection of the next best action. The average rollout algorithm does not
select the action that leads to the smallest reward (in case of minimization), but the av-
erage best one. To ensure that the final solution is a very good one, the final solution is
the best solution found during the rollouts.[9]

Below some heuristics, that can be used for rollout algorithms are presented:

• Random heuristic: This heuristic randomly chooses next actions during the simula-
tion step.[9]

• Randomly Chosen Dispatch Rules: This heuristic randomly chooses one dispatch
rule out of a certain set of dispatch rules for each time a new action has to be taken
during the simulation step. Possible dispatch rules can for example be FIFO (first
in first out) or LIFO (last in last out).[9]
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• Threshold Ascent: Another heuristic used for average rollout algorithms is Thresh-
old Ascent (see 2.0.2).

• Most work remaining heuristic: The job with the longest processing time is selected
next.[13]

• Shortest processing time heuristic: The job with the shortest processing time is
selected next.[13]

6.4. Comparison with other research
Results presented in the master thesis of Einar Geirsson [9] are compared to the two
algorithms used in this master thesis. DHave denotes an average rollout algorithm using
random dispatch rules. RHave denotes an average rollout algorithm using a random
heuristic and RHTA denotes an average rollout algorithm using a random heuristic and
Threshold Ascent (see Section 6.3).
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Table 6.13.: Average rollout algorithms using different heuristics compared to MCTS using
UCT and TA for different problem sizes and n = 10000

Problem Method Min Mean Max RStd Opt
6x6 DHave 1.00 1.03 1.18 0.96 22.63

RHave 1.00 1.05 1.16 1.30 14.77
RHT A

ave 1.01 1.07 1.17 3.84 8.10
UCT 1.00 1.01 1.02 1.26 32.40
TA 1.01 1.02 1.04 1.91 13.20

10x10 DHave 1.01 1.06 1.13 1.87 0.28
RHave 1.07 1.03 1.12 2.21 0.08
RHT A

ave 1.05 1.10 1.15 3.19 0.05
UCT 1.07 1.07 1.09 2.06 0.00
TA 1.22 1.26 1.28 3.15 0.00

14x14 DHave 1.04 1.09 1.14 1.91 0.28
RHave 1.04 1.09 1.13 1.95 0.00
RHT A

ave 1.06 1.13 1.17 2.67 0.18
UCT 1.20 1.21 1.22 3,60 0.00
TA 1.44 1.50 1.55 1.60 0.00

The UCT-algorithm yields the best results for problem size 6 × 6 compared to the other
algorithms presented in Table 6.13. Its mean is close to one, which means that the al-
gorithm finds the optimal or an almost optimal solution on average very often. More
precisely, the optimum was found in about 33%. Although TA has the second lowest
mean error, the optimum was only found in 13%.

For problem size 10 × 10, TA seems to work much worse than any other algorithm. UCT
again performs quite well. It yields the second best mean error. UCT and TA were not
able to find the optimum once.

For problem size 14 × 14, UCT and TA seem to work worse than any of the rollout algo-
rithms. Again, UCT offers better characteristic values than TA.

In the paper of Runarsson et al. [13] results for the pilot method using different heuris-
tics are presented. In the Table 6.14 those results are compared to results of this thesis.
Denote MWKR as the most work remaining heuristic and SPT as the shortest processing
time heuristic (see Section6.3).
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For problem size 6 × 6, UCT seems to work better than the other presented rollout
algorithms: the optimum was found in 35% of times and the mean error is very small.
The same trend is identified for the other problem sizes (10 × 10 and 14 × 14) as well.
For problem size 14 × 14 the rollout algorithm using MWKR as a heuristic offers slightly
better results. MCTS using TA yields the worst characteristic values for problem size
10 × 10 as well as for size 14 × 14.

Table 6.14.: Rollout algorithms using MWKR and SPT compared to MCTS using UCT
and TA for different problem sizes and n = 5000

Size Heuristic Min Mean Max RStd Opt
6x6 MWKR 1.000 1.025 1.104 2.9 33

SPT 1.000 1.052 1.265 4.5 14
UCT 1.005 1.011 1.019 1.780 35.20
TA 1.020 1.032 1.053 2.299 3.60

10x10 MWKR 1.004 1.082 1.158 3.5 0
SPT 1.063 1.172 1.296 4.8 0
UCT 1.079 1.089 1.104 2.100 0
TA 1.251 1.277 1.316 3.054 0

14x14 MWKR 1.046 1.129 1.230 3.4 0
SPT 1.153 1.286 1.517 6.0 0
UCT 1.202 1.202 1.202 2.517 0
TA 1.476 1.508 1.527 1.942 0
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6.5. Summary
The performance of the algorithms tested in this thesis yield quite satisfying results com-
pared to other rollout algorithms from the literature. Especially, the combination of
MCTS using UCT yields promising results. For the 6 × 6 problems UCT finds the op-
timal solution more often than the other presented algorithms. For the problem sizes
10 × 10 and 14 × 14 UCT generates quite good solutions considering the comparatively
low mean errors.

Results generated by TA are generally worse than those of UCT. They show much higher
mean errors and find the optimal solutions less often. In addition, TA requires more com-
putation time than UCT. The behaviour of the results for TA do not vary significantly
for different s-values at a constant number of rollouts. It is also noteworthy that for UCT
with a parameter c < 1 (see Formula 2.1) better results have been found throughout the
tested examples. Summing up, the absolute value of the parameter s for TA has little
influence on the results, whereas the tuning of value c for UCT leads to better character-
istic values.

Finally, it has to be pointed out that above a certain size (already observed at 14 × 14 for
a significant fraction of tested configurations), Branch and Bound fails to find a solution
within a reasonable amount of time, whereas MCTS is always able to calculate acceptable
solutions. Although it is clear that the results obtained for larger problems merely depict
decent approximations of the optimum, it has to be kept in mind that the number of
rollouts can still improve the results, although at the cost of higher calculation time.
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7. Relevance for Logistics

7.1. Quality
Quality is the match between the characteristics of an object with the object-requirements
someone has. In other words, it describes the degree of requirements- and expectation-
fulfilments. [1]

More detailed, an object may be a product, a process, a system, or raw data. The person
defining the requirements is normally either a customer or a producer or a seller. Thus
best quality products and services are dependent on the performance requirements, on
the performance itself and the interaction of the people involved.[1]

If one of the requirements is not fulfilled, the product is regarded to be qualitatively low-
order and it is not possible to compensate this by over-achieving another requirement. As
a matter of fact the customer will be dissatisfied with the output. Bad quality does not
only affect customer-satisfaction as well as the acquisition of new customers, but it also
impacts the performance of internal and external processes and the corporate identity as
well as it affects costs and time (processing times, delivery times etc.).[11]

7.2. Data-Quality
Data quality, also called information-quality, is defined as the suitability of data for its
intended use. Thus data quality can be subdivided into intrinsic, contextual, representa-
tional and accessible data quality. [18]
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Table 7.1.: A Conceptual Framework of Data Quality[18]
Type Characteristics
Intrinsic data quality Credibility

Accuracy
Objectivity
Reputation

Contextual data quality Value-added
Relevancy
Timeliness
Completeness
Appropriate account of data

Representational data quality Interpretability
Ease of understanding
Representational consistency
Concise Representation

Accessibility data quality Accessibility
Access security

Table 7.1 lists aspects that people associate with high quality data. Intrinsic data quality
refers to direct properties of data. In contrast, contextual data quality highlights the
characteristics that support its intended use. Representational and accessible data quality
focuses on the interpretability and accessibility of data for a system.[18]

7.3. Data quality in terms of scheduling problems
Scheduling problems are very common problems in industry. The higher the number of
resources and objects, that have to be matched to each other, the more complex the
scheduling process becomes. For large problems, it is not even possible to find the opti-
mal solution in acceptable time. At this point different scheduling algorithms are used to
compute very good approximate solutions.

Examples for scheduling problems in industry are the allocation of jobs to machines,
train/bus/plane schedules, or personnel planning. Each of these problems has a certain
objective. Depending on the specific objective, potentials in saving money or time, in
reducing set-up operations or in decreasing the lead time can be found.

Looking at scheduling problems, the quality of input data is as essential, as the definition
of an objective. In this master thesis the objective is the minimization of the make-span,
which means keeping the overall processing time at a minimum. Besides a precise for-
mulated objective the algorithm needs the following input data: the number of jobs, the
number of machines, the corresponding processing times and in the case of Job Shop
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Scheduling problems corresponding partial routes (see Chapter 4). The parameter "num-
ber of machines" is mostly dictated by the nature of the production lines. The number
of jobs is already more difficult to determine, because depending on the company, new
jobs can enter the system at any time. The route a job follows is dictated by the type
of the job. The input parameters with the highest error-proneness are the processing
times or in general capacities, which correspond to the objects that have to be allocated
to some resources. It is crucial that the quality of the processing times is as good as
possible, because it has a great impact on the quality of the output data. In Figure 7.1
two schedules are depicted on machine-oriented Gantt-charts. The underlying problem
consists of a set of 3 machines (M1,M2, M3) and a set of 3 jobs (J1, J2, J3). In this
figure the processing time of each job is illustrated directly next to the respective job (for
example job 1 needs 3 units on machine 3).

Figure 7.1.: Representation of two schedules of different lengths for the same example

The upper schedule (see Figure 7.1) leads to a make-span of 28 units. There are very
few dwell-times and a certain job is mostly processed directly without any idle time. The
schedule with a make-span of 42 units, needs 14 lengths more than the other one. The
quality of this schedule is worse due to very long dwell times. The problem is that the
machines are not used for such high capacities and moreover the lead-time for job 1 and
job 2 is unnecessarily high.

To sum it up, a schedule is of high quality, if the make-span is short and if there are no
or only a few dwell-times. Moreover it is preferable to have short lead-times of jobs and
that machines are used to capacity. In order to achieve high quality output data a good
algorithm as well as high-quality input data are necessary. In this thesis Monte Carlo
Tree Search is used to solve scheduling problems. For smaller problems, the algorithm
finds the optimal solution in most cases. The larger the problems become, the less often
the optimal solution is found. Nevertheless, the solutions the algorithm finds are good
and in any case better than manually found solutions.
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The quality of the input data is strongly dependent on precise data acquisition. Par-
ticularly inaccuracies in the collection of the process times can have fatal effects on the
accuracy of the output data. The greater the deviations of the fixed process times in
comparison to the real times are, the less the make-span calculated by an algorithm will
coincide with reality. Inaccuracies in the processing times can find their roots in different
causes. If automated detection is not used, differences could be caused by the estimation
of processing times or by the use of experience values. In case of estimating processing
times, it is important to preserve objectivity in order to not overstate or underestimate
certain processing times. In the case of automated time recording, errors could be caused
by misinterpretations, due to different data structures and by incomplete data (for exam-
ple due to system failures).

Consequences of poor data quality can be various. Longer overall processing times lead to
higher costs. This includes costs for overtime, energy costs and any resulting payments for
delays in delivery. Furthermore, the overall utilization of the machines is lower and less
output is produced in a certain time interval. Poorly estimated or incorrect processing
times can cause unnecessary dwell- and lead-times as well as poor utilization. Personnel-
or shift-plans based on machine scheduling plans of low quality could be over- or under-
sized and thus affect the entire company’s processes. Oversized machine-schedules lead
to an oversized personnel plan at the appropriate workplaces. Furthermore, fewer orders
than possible are accepted, because of the consideration of a wrong lead time. Under-sized
schedules lead to delays within and outside the company. More orders than produced with
existing capacities, were accepted in advance.Thus additional costs are the consequence
due to backorders and bad reputation.

For the calculations in this thesis no practical data was used. The input data was created
independently and the corresponding processing times were generated randomly between
0 and 100. The data was stored in text-files and the main difficulty was to obtain the
wanted data from the files and use them in the programming-environment correctly. The
data-import process is very important and it has to be tested sufficiently in order to
guarantee the completeness and correctness of the input data. The structure of the input
data corresponds to the structure described in Section 4.1. Therefore the input data fully
meets the previous suggested quality requirements. This forms the basis for an objective
assessment of the tested algorithms. Besides high quality input-data the representation
of the output-data is very important. The latter was stored in text-files, including the
example-number, the applied algorithm, the complete schedule, the corresponding make-
span, the computation time and the parameters used for calculation. Based on these
records, the algorithms were evaluated in terms of their performance (see Section 6).
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A. Appendix

A.1. TAG-Code

A.1.1. Class: AlgorithmTA

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.Writer;
import java.security.GeneralSecurityException;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Formatter;
import java.util.HashSet;
import java.util.Random;

public class MCTSAlg {
//Input-data
private static int[][] p;
private static int[][] sigma;
private static int jobs;
private static int machines;
//Parameter
private static int s;
private static int compB;
private static int k;
private static double delta;
private static int n;
//Output-data
private static int[][] bestSchedule;

XIV



private static double bestMakeSpan;
private static Node[][] sBest;

private static HashSet<Node> nodesList;

public static void main(String[] args) throws IOException{
//Dimensions
jobs = 3;
machines = 3;
s = 0;
//Tested values for s
int[] parameterS = new int[5];
parameterS[0] = 200;
parameterS[1] = 30;
parameterS[2] = 50;
parameterS[3] = 70;
parameterS[4] = 100;
//Number of the Example
int exnum =8;
//Number of Rollouts
n =1000;

p = new int[jobs][machines];
sigma = new int[jobs][machines];
inputData = new ArrayList<Integer>();
for(int j = 0; j<parameterS.length; j++){

s = parameterS[j];

//Server Pfad
File ff = new

File("OutputData//"+jobs+"x"+machines+"//TA//Example"+exnum+"//results//n"+
n+"//"+"s"+s+"DIM"+jobs+"x"+machines+".txt");
File outputF = new

File("OutputData//"+jobs+"x"+machines+"//TA//Example"+exnum+"//schedules//n"
+n+"//"+"s"+s+"DIM"+jobs+"x"+machines+".txt");

//Output-File
BufferedWriter bw = new BufferedWriter(new FileWriter(ff,true));
OutputStreamWriter(fout));
BufferedWriter bw2 = new BufferedWriter(new FileWriter(outputF,

true)); OutputStreamWriter(fout2));
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//Write into the Output-File
for(int counter = 1; counter<6; counter++){

nodesList = new HashSet<Node>();
sBest = new Node[s][2];
bestMakeSpan = Integer.MAX_VALUE;
bestSchedule = new int[(jobs*machines)+1][2];
k = jobs; // number of levers that can be pulled
delta = 0.01; // error probability
setInputData(); //fetches the input-data
long beginT = System.currentTimeMillis();
Node startNode = createRootNode(0);
int end = 0;
Node bestNextNode = null;
while(end < (jobs*machines)){

bestNextNode = doTASearch(startNode);
startNode = new

Node(bestNextNode.getT(),bestNextNode.getSchedule(), s) ;
end = end +1;
nodesList.clear();
nodesList.add(startNode);

}
String string = ""+bestMakeSpan;
bw = new BufferedWriter(new FileWriter(ff,true));
bw.append(string);
bw.newLine();
bw.close();
Formatter out;
long endT = System.currentTimeMillis();
long diff = endT-beginT;
try{

bw2 = new BufferedWriter(new FileWriter(outputF, true));
writeIntoOutputFile2(bw2, diff);

}
catch(Exception e){

System.out.println(e);
}

}
}

}
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//Writes the second Output-File (Content: Schedules)
public static void writeIntoOutputFile2(BufferedWriter b, long diff)

throws IOException{
int[][] results = new int[jobs][machines];
for(int count1 = 1; count1<=(machines*jobs); count1++){

int lineIndex = bestSchedule[count1][0]-1;
int columnIndex = bestSchedule[count1][1]-1;
results[lineIndex][columnIndex] = count1;

}
for(int count1 = 0; count1<jobs; count1++){

String line = "";
for(int count2 = 0; count2<machines; count2++){

line = line+""+results[count1][count2]+"\t";
}
b.append(line);
b.newLine();

}
b.append("BestMakespan:"+"\t"+ bestMakeSpan+"\t");
b.newLine();
b.append("Begin Time:"+"\t"+diff);
b.newLine();
b.append("Konstanten:");
b.append("s ="+s);//write("s ="+s);
b.newLine();
b.append("compB="+compB);
b.newLine();
b.newLine();
b.close();

}

public static void setInputData(){
//Processing times
p[0][0] = 13;
p[0][1] = 5;
p[0][2] = 8;
p[1][0] = 2;
p[1][1] = 7;
p[1][2] = 12;
p[2][0] = 21;
p[2][1] = 9;
p[2][2] = 7;
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//Routes
sigma[0][0] = 0;
sigma[0][1] = 1;
sigma[0][2] = 2;
sigma[1][0] = 2;
sigma[1][1] = 0;
sigma[1][2] = 1;
sigma[2][0] = 2;
sigma[2][1] = 1;
sigma[2][2] = 0;

}

//4 Steps of MCTS
public static Node doTASearch(Node root){

int compBudget = 1;
while(compBudget<=n){

Node lastNode = doTreePolicy(root);
Node finalNode = doDefaultPolicy(lastNode);
doBackUp(lastNode, finalNode);
compBudget++;

}
return findBestChild(root);

}
//Creates root-node with empty schedule
public static Node createRootNode(int index){

int[] t = new int[jobs];
for(int i = 0; i<jobs; i++){

t[i] = 0;
}
int[][] rootSchedule = new int[(jobs*machines)+1][2];
Node rootNode = new Node(t, rootSchedule, s);
nodesList.add(rootNode);
return rootNode;

}
//Execute the expand and the select step
public static Node doTreePolicy(Node dn){

while(isNonTerminal(dn)){
if(notFullyExpanded(dn)){

return expand(dn);
}
else{
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dn = findBestChild(dn);
}

}
return dn;

}
//Tests whether a node is a leaf-node
public static boolean isNonTerminal(Node no){

for(int i = 0; i<jobs; i++){
if(no.getT()[i]<machines){

return true; // the node is not terminal
}

}
return false; // the node is terminal

}
//Tests whether every child of a node has been visited at least once
public static boolean notFullyExpanded(Node no){

int l1 = no.getT().length;
int[] tCopy = new int[l1];
int count = 0;
for(int i = 0; i<l1; i++){

tCopy[i] = no.getT()[i];
if(tCopy[i]<machines){

count++;
}

}
if(no.getChildren().size()<count){

return true; // the node is not fully expanded
}
return false; // the node is fully expanded

}
//Expand-Step
public static Node expand(Node e){

int[] tCopy = new int[jobs];
int count = 1;
for(int i = 0; i<jobs; i++){

tCopy[i] = e.getT()[i];
count = count + tCopy[i]; // index of the new entry in the schedule

}
int l1 = (jobs*machines)+1;
int[][] partialSchedule = new int[l1][2];
System.arraycopy(e.getSchedule(), 0, partialSchedule, 0, l1);
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for(int i = 0; i<jobs; i++){
if(tCopy[i]+1<=machines){ // adding the expand-child to its parent

tCopy[i] = tCopy[i] +1;
partialSchedule[count][0] = i+1;
partialSchedule[count][1] = sigma[i][tCopy[i]-1];
Node newChild = new Node(tCopy, partialSchedule,s);
e.addChild(newChild);
if(isExistingInList(newChild)==false){

newChild.setParent(e);
nodesList.add(newChild);
tCopy[i] = tCopy[i] -1;
return newChild;

}
tCopy[i] = tCopy[i] -1;

}
}
return null;

}

public static boolean isExistingInList(Node ex){
return nodesList.contains(ex);

}

public static Node findBestChild(Node bc){
int n_i = 0;
int s_i = 0;
double alpha = 0;
int h_ges = calculateHges(bc);
double h = Integer.MIN_VALUE;
Node bestNode = null;
double bestValue = 0;
k = bc.getChildren().size();
for(int i =0; i<bc.getChildren().size(); i++){

Node parent = bc;
n_i = bc.getChildren().get(i).getVisits();
if(n_i>0){

s_i = countNode(bc.getChildren().get(i), bc.getSBestList());
alpha = Math.log(2*h_ges*k/delta);
h = (s_i + alpha +Math.sqrt((2*s_i*alpha)+alpha*alpha))/n_i;

}
else{
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h = Integer.MAX_VALUE;
}
if(h>=bestValue){

bestValue = h;
bestNode =bc.getChildren().get(i);

}
}
return bestNode;

}

public static int calculateHges(Node nod){
int sum =0;
int l = nod.getChildren().size();
for(int i = 0;i<l; i++){

sum = sum +nod.getChildren().get(i).getVisits();
}
return sum;

}

public static int countNode(Node n1, Node[][] sL){
int counter = 0;
int l = sL.length;
for(int i = 0;i<l; i++){

if(sL[i][1]!=null){
if(n1.getKey().equals(sL[i][1].getKey())){

counter = counter +1;
}

}
}
return counter;

}

public static Node doDefaultPolicy(Node n){
// chooses randomly a path from n to the end
Node endNode = null;
while(isNonTerminal(n)){

Random rand = new Random();
int[] tCopy = new int[jobs];
ArrayList<Integer> indexList = new ArrayList<Integer>();
int count = 1;
for(int i = 0; i<jobs; i++){
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tCopy[i] = n.getT()[i];
count = count +tCopy[i];
if(tCopy[i]<machines){

indexList.add(i);
}

}
indexList.trimToSize();
int randomIndex = 0;
if(indexList.size()>1) randomIndex = rand.nextInt(indexList.size());
tCopy[indexList.get(randomIndex)] =

tCopy[indexList.get(randomIndex)] +1;
int l1 = (jobs*machines)+1;
int[][] partialS = new int[l1][2];
System.arraycopy(n.getSchedule(), 0, partialS, 0, l1);
partialS[count][0] = indexList.get(randomIndex)+1;
partialS[count][1] =

sigma[indexList.get(randomIndex)][tCopy[indexList.get(randomIndex)]-1];
n = new Node(tCopy, partialS, s);
endNode = n;

}
return endNode;

}

private static void addNodesToSBest(Node begin, Node end){
double rewardOfEnd = calculateReward(end);
//If the list is already full
if(sBest[s-1][0]!=null){

sBest[s-1][0] = null;
sBest[s-1][1] = null;
for(int i=s-1; i>=0; i--){

if(sBest[i][0] != null){
if(rewardOfEnd<=calculateReward(sBest[i][0])){

sBest[1+i][0]=sBest[i][0];
sBest[1+i][1]=sBest[i][1];
if(i==0){

sBest[i][0] = end;
sBest[i][1] = begin;
break;

}
if(rewardOfEnd>calculateReward(sBest[i-1][0])){

sBest[i][0] = end;
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sBest[i][1] = begin;
break;

}
}

}
}

}
if(sBest[s-1][0]==null){

for(int i=s-1; i>=0; i--){
if(sBest[i][0] != null){

if(rewardOfEnd<=calculateReward(sBest[i][0])){
sBest[1+i][0]=sBest[i][0];
sBest[1+i][1]=sBest[i][1];
if(i==0){

sBest[i][0] = end;
sBest[i][1] = begin;
break;

}
if(rewardOfEnd>calculateReward(sBest[i-1][0])){

sBest[i][0] = end;
sBest[i][1] = begin;
break;

}
}
else{

sBest[1+i][0]=end;
sBest[1+i][1]=begin;
break;

}
}
if(i==0 && sBest[i][0] == null){

sBest[i][0] = end;
sBest[i][1] = begin;
break;

}
}

}
}

public static void sortSBest(){
for(int i = 0; i<s-1; i++){
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for(int j = i+1; j<s; j++){
double value1 = Integer.MAX_VALUE;
double value2 = Integer.MAX_VALUE;
if(sBest[i][0] != null){

value1 = calculateReward(sBest[i][0]);
}
if(sBest[j][0] != null){

value2 = calculateReward(sBest[j][0]);
}
if(value1>value2){

Node help1 = sBest[i][0];
sBest[i][0] = sBest[j][0];
sBest[j][0] = help1;
Node help2 = sBest[i][1];
sBest[i][1] = sBest[j][1];
sBest[j][1] = help2;

}
}

}
}

private static double calculateReward(Node no){
int[] jobFinishingTime = new int[jobs];
int[] machineIsFreeTime = new int[machines];
int[][] s = new int[bestSchedule.length][2];
int s_l = s.length;
System.arraycopy(no.getSchedule(), 0, s, 0, s_l);
for(int i = 1; i<s.length; i++){

if(jobFinishingTime[s[i][0]-1]>machineIsFreeTime[s[i][1]-1]){
jobFinishingTime[s[i][0]-1] = jobFinishingTime[s[i][0]-1] +

p[s[i][0]-1][s[i][1]-1];
machineIsFreeTime[s[i][1]-1] = jobFinishingTime[s[i][0]-1];

}
else{

machineIsFreeTime[s[i][1]-1] = machineIsFreeTime[s[i][1]-1] +
p[s[i][0]-1][s[i][1]-1];

jobFinishingTime[s[i][0]-1] = machineIsFreeTime[s[i][1]-1];
}

}
double shortesTime=Integer.MIN_VALUE;
for(int i = 0; i<jobFinishingTime.length; i++){
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if(shortesTime <= jobFinishingTime[i]){
shortesTime = jobFinishingTime[i];

}
}
if(bestMakeSpan>=shortesTime){

bestMakeSpan = shortesTime;
System.arraycopy(s, 0, bestSchedule, 0, s_l);

}
return shortesTime;

}

private static void doBackUp(Node n1, Node n2){
// Updates the visits

double reward = 0;
while(n1!=null){

if(isNonTerminal(n1)==false) n2 = n1;
reward = calculateReward(n2);
n1.setReward(reward);
if(n1.getParent()!=null){

setList(n1.getParent().getSBestList());
addNodesToSBest(n1, n2);
n1.getParent().updateSBestList(sBest);
n1.increaseVisits();

}
if(n1.getParent()==null) {

n1.increaseVisits();
n1 = null;

}
else{

n1 = n1.getParent();
}

}
}

private static void setList(Node[][] nlist){
System.arraycopy(nlist, 0, sBest, 0, sBest.length);

}
}

A.1.2. Class: Node
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import java.util.ArrayList;

public class Node {

private int[] t;
private int[][] schedule;
private ArrayList<Node> children;
private Node[][] sBestList;
private int visits;
private double reward;
private Node parent;
private String key;
private int t_crit;
private int h_ges;
private int lengthOfSBest;

public Node(int[] x, int[][] s, int lengthSBest){
int l1 = x.length;
t = new int[l1];
key ="";
for(int i = 0; i<l1; i++){

t[i] = x[i];
key = key+""+t[i]+";";

}
int l2 = s.length;
schedule = new int[l2][2];
for(int i = 0; i<l2; i++){

for(int j = 0; j<2; j++){
schedule[i][j] = s[i][j];
key = key+"*"+schedule[i][j];

}
}
children = new ArrayList<Node>();
visits = 0;
reward = 0;
parent = null;
lengthOfSBest = lengthSBest;
sBestList = new Node[lengthOfSBest][2];
h_ges =0;

}
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public int[] getT() {
return t;

}

public int[][] getSchedule() {
return schedule;

}

public ArrayList<Node> getChildren() {
return children;

}

public void deleteChildren(){
children.clear();
children.trimToSize();

}

public String getKey(){
return key;

}

public void addChild(Node child) {
boolean alreadyExisting =false;
for(int i = 0; i<children.size(); i++){

if(child.getKey().equals(children.get(i).getKey())){
alreadyExisting = true;

}
}
if(alreadyExisting==false){

children.add(child);
}

}

public int getVisits() {
return visits;

}

public void increaseVisits() {
visits = visits+1;

}
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public void setBackVisits(){
visits =0;

}

public double getReward() {
return reward;

}

public void setBackReward(){
reward =0;

}

public void setReward(double reward) {
this.reward = reward;

}

public Node getParent() {
return parent;

}

public void setParent(Node parent) {
this.parent = parent;

}

public void setSBest(Node[][] xy){
int l1 = xy.length;
for(int i = 0; i<l1; i++){

sBestList[i][0] = xy[i][0];
sBestList[i][1] = xy[i][1];

}
}

public void setBackSBest(){
sBestList = new Node[lengthOfSBest][2];

}

public void updateSBestList(Node[][] list){
for(int i = 0; i<list.length; i++){

for(int j = 0; j<list[0].length; j++){
sBestList[i][j]= list[i][j];

}
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}
}

public Node[][] getSBestList(){
return sBestList;

}

public int getH(){
return h_ges;

}

public void setBackHges(){
h_ges =0;

}

public void increaseH(){
h_ges = h_ges +1;

}
public int hashCode() {

return key.hashCode();
}

public boolean equals(Object otherNode) {
return (otherNode instanceof Node &&

key.equals(((Node)otherNode).key));
}

}

A.2. UCT-Code

A.2.1. Class: MCTSAlgorithm

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.HashSet;

XXIX



import java.util.Random;

public class MCTSAlgorithm {
//Input-data
private static int[][] p;
private static int[][] sigma;
private static int jobs;
private static int machines;
//Parameters
private static double c;
private static double w;
private static int compB;
//Output-data
private static int[][] bestSchedule;
private static double bestMakeSpan;

private static HashSet<Node> nodesList;

public static void main(String[] args) throws IOException {

double[] cValues1 = new double[5];
String[] cValues2 = new String[5];
setCValues(cValues1, cValues2);
int firstL = cValues1.length;
for(int x = 0; x<firstL; x++){

w = 1600;
c = cValues1[x];
String cc = cValues2[x];
compB = 1000;

int jnum = 14;
int mnum = 14;
int exnum =7;
p = new int[jnum][mnum];
sigma = new int[jnum][mnum];
setInputData();
jobs = p.length;
machines = p[0].length;
//Server
File ff = new

File("OutputData//"+jnum+"x"+mnum+"//UCT//Example"+exnum+"//results//n"+
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compB+"//"+"c"+cc+"n"+compB+"DIM"+jnum+"x"+mnum+".txt");
File outputF = new

File(("OutputData//"+jnum+"x"+mnum+"//UCT//Example"+exnum+"//schedules//n"+
compB+"//"+"c"+cc+"DIM"+jnum+"x"+mnum+".txt"));

BufferedWriter bw = new BufferedWriter(new
FileWriter(ff,true));//new OutputStreamWriter(fout));

BufferedWriter bw2 = new BufferedWriter(new FileWriter(outputF,
true));//new OutputStreamWriter(fout2));

for(int counter = 1; counter <16; counter++){
long beginT = System.currentTimeMillis();
bestSchedule = new int[(jobs*machines)+1][2];
bestMakeSpan = Integer.MAX_VALUE;
worstMakeSpan = Integer.MIN_VALUE;
nodesList = new HashSet<Node>();

Node startNode = createRootNode(0);
int end = 0;
Node bestNextNode = null;
while(end < (jobs*machines)){

bestNextNode = uctSearch(startNode);
startNode = new

Node(bestNextNode.getT(),bestNextNode.getSchedule()) ;
end = end +1;
nodesList.clear();
nodesList.add(startNode);

}
String string = ""+bestMakeSpan;
bw = new BufferedWriter(new FileWriter(ff,true));
bw.append(string);
bw.newLine();
bw.close();
long endT = System.currentTimeMillis();
long diff = endT-beginT;
try{

bw2 = new BufferedWriter(new FileWriter(outputF, true));
writeIntoOutputFile2(bw2, diff);

}
catch(Exception e){

System.out.println(e);
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}
}

}
}

public static void setCValues(double[] list1, String[] list2){
list1[0] = 0.01;
list1[1] = 0.1;
list1[2] = 0.5;
list1[3] = 1;
list1[4] =2;
list2[0] = "0_01";
list2[1] = "0_1";
list2[2] = "0_5";
list2[3] = "1";
list2[4] = "2";

}

public static void writeIntoOutputFile2(BufferedWriter b, long diff)
throws IOException{

int[][] results = new int[jobs][machines];
for(int count1 = 1; count1<=(machines*jobs); count1++){

int lineIndex = bestSchedule[count1][0]-1;
int columnIndex = bestSchedule[count1][1]-1;
results[lineIndex][columnIndex] = count1;

}

for(int count1 = 0; count1<jobs; count1++){
String line = "";
for(int count2 = 0; count2<machines; count2++){

line = line+""+results[count1][count2]+"\t";
}
b.append(line);
b.newLine();

}
b.append("BestMakespan:"+"\t"+ bestMakeSpan+"\t");
b.newLine();
b.append("Time:"+"\t"+ diff);
b.newLine();
b.append("Konstanten:");
b.newLine();
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b.append("c ="+c);
b.newLine();
b.append("compB="+compB);
b.newLine();
b.newLine();
b.close();

}

public static void setInputData(){

}

public static Node uctSearch(Node root){
int compBudget = 1;
while(compBudget<=compB){

Node lastNode = doTreePolicy(root);
double delta = doDefaultPolicy(lastNode);
doBackUp(lastNode, delta);
compBudget++;

}
return findBestChild(root);

}

public static Node createRootNode(int index){
int[] t = new int[jobs];
for(int i = 0; i<jobs; i++){

t[i] = 0;
}
int[][] rootSchedule = new int[(jobs*machines)+1][2];
Node rootNode = new Node(t, rootSchedule);
nodesList.add(rootNode);
return rootNode;

}

public static Node doTreePolicy(Node aNode){
while(isNonTerminal(aNode)){

counterTP = counterTP+1;
if(notFullyExpanded(aNode)){

return expand(aNode);
}
else{

XXXIII



aNode = findBestChild(aNode);
}

}
return aNode;

}

public static boolean isNonTerminal(Node no){
for(int i = 0; i<jobs; i++){

if(no.getT()[i]<machines){
return true;

}
}
return false;

}

public static boolean notFullyExpanded(Node no){
int l1 = no.getT().length;
int[] tCopy = new int[l1];
int count = 0;
for(int i = 0; i<l1; i++){

tCopy[i] = no.getT()[i];
if(tCopy[i]<machines){

count++;
}

}
if(no.getChildren().size()<count){

return true;
}
return false;

}

public static Node expand(Node e){
int[] tCopy = new int[jobs];
int count = 1;
for(int i = 0; i<jobs; i++){

tCopy[i] = e.getT()[i];
count = count + tCopy[i];

}
int l1 = (jobs*machines)+1;
int[][] partialSchedule = new int[l1][2];
System.arraycopy(e.getSchedule(), 0, partialSchedule, 0, l1);
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for(int i = 0; i<jobs; i++){
if(tCopy[i]+1<=machines){

tCopy[i] = tCopy[i] +1;
partialSchedule[count][0] = i+1;
partialSchedule[count][1] = sigma[i][tCopy[i]-1];
Node newChild = new Node(tCopy, partialSchedule);
e.addChild(newChild);
if(isExistingInList(newChild)==false){

newChild.setParent(e);
nodesList.add(newChild);
tCopy[i] = tCopy[i] -1;
return newChild;

}
tCopy[i] = tCopy[i] -1;

}
}
return null;

}

public static boolean isExistingInList(Node ex){
return nodesList.contains(ex);

}

public static Node findBestChild(Node bc){
// Minimieren
double bestValue = Double.MAX_VALUE;
Node bestChildNode = null;
int l = bc.getChildren().size();
for(int i = 0; i<l; i++){

Node childN = bc.getChildren().get(i);
double childReward = childN.getReward();
double childVisits = childN.getVisits();
double parentVisits = bc.getVisits();
double term1 = childReward/childVisits;
if(childReward <1 || childVisits < 1){

term1 = 0;
}
double term2 = 0;
if(parentVisits>1 && childVisits >0){

term2 = w*c*Math.sqrt((2*Math.log(parentVisits))/childVisits);
}
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double value = term1 - term2;
if(bestValue>value){

bestValue = value;
bestChildNode = childN;

}
}
try {

bestChildNode.setParent(bc);
} catch (Exception e) {

e.printStackTrace();
}
return bestChildNode;

}

public static double doDefaultPolicy(Node n){
counterDP = counterDP+1;
while(isNonTerminal(n)){

Random rand = new Random();
int[] tCopy = new int[jobs];
ArrayList<Integer> indexList = new ArrayList<Integer>();
int count = 1;
for(int i = 0; i<jobs; i++){

tCopy[i] = n.getT()[i];
count = count +tCopy[i];
if(tCopy[i]<machines){

indexList.add(i);
}

}
indexList.trimToSize();
int randomIndex = 0;
if(indexList.size()>1) randomIndex = rand.nextInt(indexList.size());
tCopy[indexList.get(randomIndex)] =

tCopy[indexList.get(randomIndex)] +1;
int l1 = (jobs*machines)+1;
int[][] partialS = new int[l1][2];
System.arraycopy(n.getSchedule(), 0, partialS, 0, l1);
partialS[count][0] = indexList.get(randomIndex)+1;
partialS[count][1] =

sigma[indexList.get(randomIndex)][tCopy[indexList.get(randomIndex)]-1];
n = new Node(tCopy, partialS);

}
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return calculateReward(n);
}

private static double calculateReward(Node no){
int[] jobFinishingTime = new int[jobs];
int[] machineIsFreeTime = new int[machines];
int[][] s = new int[bestSchedule.length][2];
int sL = s.length;
System.arraycopy(no.getSchedule(), 0, s, 0, sL);
for(int i = 1; i<s.length; i++){

if(jobFinishingTime[s[i][0]-1]>machineIsFreeTime[s[i][1]-1]){
jobFinishingTime[s[i][0]-1] = jobFinishingTime[s[i][0]-1] +

p[s[i][0]-1][s[i][1]-1];
machineIsFreeTime[s[i][1]-1] = jobFinishingTime[s[i][0]-1];

}
else{

machineIsFreeTime[s[i][1]-1] = machineIsFreeTime[s[i][1]-1] +
p[s[i][0]-1][s[i][1]-1];

jobFinishingTime[s[i][0]-1] = machineIsFreeTime[s[i][1]-1];
}

}
double shortesTime=Integer.MIN_VALUE;
for(int i = 0; i<jobFinishingTime.length; i++){

if(shortesTime <= jobFinishingTime[i]){
shortesTime = jobFinishingTime[i];

}
}
if(bestMakeSpan>=shortesTime){

bestMakeSpan = shortesTime;
System.arraycopy(s, 0, bestSchedule, 0, sL);

}
if(worstMakeSpan<=shortesTime){

worstMakeSpan = shortesTime;
}
return shortesTime;

}

private static void doBackUp(Node n, double d){
while(n!=null){

n.increaseVisits();
n.setReward(n.getReward()+d);
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if(n.getParent()==null) n = null;
else n = n.getParent();

}
}

}

A.2.2. Class: Node

import java.util.ArrayList;

public class Node {

private int[] t;
private int[][] schedule;
private ArrayList<Node> children;
private int visits;
private double reward;
private Node parent;
private String key;

public Node(int[] x, int[][] s){
int l1 = x.length;
t = new int[l1];
key ="";
for(int i = 0; i<l1; i++){

t[i] = x[i];
key = key+""+t[i]+";";

}
int l2 = s.length;
schedule = new int[l2][2];
for(int i = 0; i<l2; i++){

for(int j = 0; j<2; j++){
schedule[i][j] = s[i][j];
key = key+"*"+schedule[i][j];

}
}
children = new ArrayList<Node>();
visits = 0;
reward = 0;
parent = null;
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}

public int[] getT() {
return t;

}

public int[][] getSchedule() {
return schedule;

}

public ArrayList<Node> getChildren() {
return children;

}

public String getKey(){
return key;

}

public void addChild(Node child) {
boolean alreadyExisting =false;
for(int i = 0; i<children.size(); i++){

if(child.getKey().equals(children.get(i).getKey())){
alreadyExisting = true;

}
}
if(alreadyExisting==false){

children.add(child);
}

}

public int getVisits() {
return visits;

}

public void increaseVisits() {
visits = visits+1;

}

public double getReward() {
return reward;

}
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public void setReward(double reward) {
this.reward = reward;

}

public Node getParent() {
return parent;

}

public void setParent(Node parent) {
this.parent = parent;

}

public int hashCode() {
return key.hashCode();

}

public boolean equals(Object otherNode) {
return (otherNode instanceof Node &&

key.equals(((Node)otherNode).key));
}

}
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